WO2024045339A1 - Appareil de séparation azote-oxygène et méthode de séparation - Google Patents

Appareil de séparation azote-oxygène et méthode de séparation Download PDF

Info

Publication number
WO2024045339A1
WO2024045339A1 PCT/CN2022/130891 CN2022130891W WO2024045339A1 WO 2024045339 A1 WO2024045339 A1 WO 2024045339A1 CN 2022130891 W CN2022130891 W CN 2022130891W WO 2024045339 A1 WO2024045339 A1 WO 2024045339A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
oxygen
exhaust port
inlet
molecular sieve
Prior art date
Application number
PCT/CN2022/130891
Other languages
English (en)
Chinese (zh)
Inventor
王学渊
唐礼
Original Assignee
深圳市利孚医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市利孚医疗技术有限公司 filed Critical 深圳市利孚医疗技术有限公司
Publication of WO2024045339A1 publication Critical patent/WO2024045339A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/0274Other molecular sieve materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B21/0472Other molecular sieve materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0015Physical processing by adsorption in solids characterised by the adsorbent
    • C01B2210/002Other molecular sieve materials

Definitions

  • the present invention relates to the technical field of skin beauty equipment, and in particular to a nitrogen and oxygen separation device and a separation method.
  • the existing plasma generation methods in the beauty industry are all based on high-frequency, high-voltage, and high-power ionization in an air environment.
  • the plasma generated belongs to spark discharge or even arc discharge, and its temperature and power are very high. When it acts on the skin in the air, due to rapid heating, it causes serious loss of water, coagulative necrosis of the tissue, and even carbonization or vaporization.
  • Technologies optimized to address this technical problem usually generate plasma in a low-temperature environment and act on the skin. Although this method reduces the probability of rapid heating and protects the skin to a certain extent, plasma still cannot achieve the ideal skin treatment effect in the air medium. If it is in an oxygen-rich environment or a nitrogen-rich environment, the skin treatment effect of plasma will be significantly improved.
  • the purpose of the present invention is to provide a nitrogen and oxygen separation device and a separation method to solve the problems existing in the prior art. It not only has the functions of producing nitrogen and oxygen, but also has a simple and compact structure.
  • the present invention provides a nitrogen and oxygen separation device, including a multi-way control valve, an oxygen-producing molecular sieve tower, a nitrogen-producing molecular sieve tower and a four-way control valve. It is provided with a main air inlet and a main exhaust port with opening and closing functions, an oxygen production vent connected to the oxygen-producing molecular sieve tower, and a nitrogen-producing vent connected to the nitrogen-producing molecular sieve tower.
  • the main air inlet is connected to the main air inlet.
  • the exhaust port is connected through the first cavity, and the multi-way control valve is also provided with a cut-off switch for controlling the on-off of the first cavity.
  • the oxygen-generating vent and the nitrogen-generating vent are both connected to the The first cavity is connected, and the oxygen-generating vent is located between the main exhaust port and the cut-off switch, and the nitrogen-generating vent is located between the cut-off switch and the main exhaust port;
  • the four-way control valve includes a second cavity, an oxygen inlet, an oxygen exhaust, a nitrogen inlet and a nitrogen exhaust that are all connected to the second cavity and have opening and closing functions, so
  • the oxygen inlet and the oxygen exhaust are respectively connected to the oxygen-producing molecular sieve tower and the oxygen storage tank, and the nitrogen-transporting inlet and the nitrogen exhaust are connected to the nitrogen-producing molecular sieve tower and nitrogen respectively. storage tank.
  • the nitrogen and oxygen separation device further includes an oil-free air compressor, and the compressed air exhaust port of the oil-free air compressor is connected to the main air inlet.
  • a temperature controller for adjusting air temperature is further provided between the oil-free air compressor and the multi-way control valve.
  • a filter is provided at the air inlet of the oil-free air compressor.
  • the nitrogen storage tank and the oxygen storage tank are respectively connected to a nitrogen discharge pipeline and an oxygen discharge pipeline, and a nitrogen cut-off valve and an oxygen cut-off valve are respectively provided on the nitrogen discharge pipeline and the oxygen discharge pipeline. valve.
  • a nitrogen flow control valve is provided on the nitrogen discharge pipeline, and an oxygen flow control valve is provided on the oxygen discharge pipeline.
  • both the oxygen storage tank and the nitrogen storage tank are equipped with pressure gauges for detecting their internal pressures.
  • the main air inlet, the main exhaust port, the oxygen generating vent, the nitrogen generating vent, the oxygen inlet, the oxygen exhaust, the nitrogen inlet Control switches are provided at the gas port and the nitrogen delivery and exhaust port.
  • the invention also provides a nitrogen and oxygen separation method, which includes the following steps:
  • it also includes a desorption and cleaning step after oxygen or nitrogen production is completed: opening the main air inlet, oxygen production vent, oxygen delivery inlet, nitrogen delivery inlet, nitrogen production vent and main exhaust port, Close the cutoff switch, oxygen exhaust port, and nitrogen exhaust port, open the temperature controller, set its heating temperature, and then start the oil-free air compressor.
  • the air enters from the filter and passes through the oil-free air compressor and temperature controller. Then it enters the oxygen-generating molecular sieve tower and the nitrogen-generating molecular sieve tower in sequence, and is discharged through the main exhaust port to complete cleaning.
  • the nitrogen and oxygen separation device in the present invention has the functions of generating oxygen and nitrogen by setting up an oxygen-generating molecular sieve tower and a nitrogen-generating molecular sieve tower.
  • an oxygen-rich atmosphere or a nitrogen-rich atmosphere can be selected. atmosphere to ensure a good effect on the skin;
  • the nitrogen-generating function and the oxygen-generating function can be conveniently switched, and it can also perform
  • the desorption and cleaning process also replaces the complicated connecting pipelines between the two molecular sieve towers, making the structure of the device simpler and more compact, which is beneficial to the lightweight design of the nitrogen and oxygen separation device.
  • Figure 1 is a schematic diagram of the overall structure of the nitrogen and oxygen separation device in the present invention.
  • Multi-way control valve 2. Oxygen generating molecular sieve tower; 3. Nitrogen generating molecular sieve tower; 4. Four-way control valve; 5. Main air inlet; 6. Main exhaust port; 7. Oxygen generating vent ; 8. Nitrogen production vent; 9. Cut-off switch; 10. Oxygen inlet; 11. Oxygen exhaust port; 12. Nitrogen inlet; 13. Nitrogen exhaust port; 14. Oxygen storage tank; 15 , Nitrogen storage tank; 16. Oil-free air compressor; 17. Temperature controller; 18. Filter; 19. Nitrogen discharge pipeline; 20. Oxygen discharge pipeline; 21. Nitrogen stop valve; 22. Oxygen stop valve; 23. Nitrogen flow control valve; 24. Oxygen flow control valve.
  • the purpose of the present invention is to provide a nitrogen and oxygen separation device and a separation method to solve the problems existing in the prior art. It not only has the functions of producing nitrogen and oxygen, but also has a simple and compact structure.
  • this embodiment provides a nitrogen and oxygen separation device, including a multi-way control valve 1, an oxygen-producing molecular sieve tower 2, a nitrogen-producing molecular sieve tower 3 and a four-way control valve 4.
  • the multi-way control valve 1 is provided with The main air inlet 5, the main exhaust port 6 with opening and closing functions, the oxygen generating vent 7 connected to the oxygen generating molecular sieve tower 2 and the nitrogen generating vent 8 connected to the nitrogen generating molecular sieve tower 3, the main air inlet 5 and the main exhaust
  • the gas port 6 is connected through the first cavity.
  • the multi-way control valve 1 is also provided with a cut-off switch 9 for controlling the on-off of the first cavity.
  • the oxygen-generating vent 7 and the nitrogen-generating vent 8 are both connected to the first cavity. , and the oxygen-generating vent 7 is located between the main exhaust port 6 and the cut-off switch 9, and the nitrogen-generating vent 8 is located between the cut-off switch 9 and the main exhaust port 6;
  • the four-way control valve 4 includes a second cavity, an oxygen inlet 10, an oxygen exhaust port 11, a nitrogen inlet 12 and a nitrogen exhaust port 13 that are all connected to the second cavity and have opening and closing functions.
  • the oxygen inlet 10 and the oxygen exhaust 11 are connected to the oxygen molecular sieve tower 2 and the oxygen storage tank 14 respectively.
  • the nitrogen inlet 12 and the nitrogen exhaust 13 are connected to the nitrogen molecular sieve tower 3 and the nitrogen storage tank 15 respectively.
  • oxygen generation molecular sieve tower 2 When collecting oxygen-enriched air, open the main air inlet 5, oxygen production vent 7, oxygen air inlet 10, oxygen transmission exhaust port 11, close the main exhaust port 6, cutoff switch 9, nitrogen production vent 8, The nitrogen gas inlet 12, the nitrogen gas exhaust port 13, the gas independent gas inlet 5, and the oxygen generation vent 7 enter the oxygen generation molecular sieve tower 2.
  • the oxygen generation molecular sieve tower 2 adsorbs other gases except oxygen, and rich The oxygen gas enters the oxygen storage tank 14 from the oxygen inlet 10 and the oxygen exhaust outlet 11 for storage.
  • nitrogen-rich air open the main air inlet 5, cut-off switch 9, nitrogen production vent 8, nitrogen air inlet 12, nitrogen transmission exhaust port 13, and close the main exhaust port 6 and oxygen production vent. 7.
  • the nitrogen-generating molecular sieve tower 3 adsorbs other gases except nitrogen, rich Nitrogen gas enters the nitrogen storage tank 15 from the nitrogen inlet 12 and the nitrogen exhaust port 13 for storage.
  • nitrogen-rich or oxygen-rich air After the collection of nitrogen-rich or oxygen-rich air is completed, open the main air inlet 5, the oxygen production vent 7, the oxygen air inlet 10, the nitrogen air inlet 12, the nitrogen production vent 8 and the main exhaust port 6, and close them.
  • the cut-off switch 9, the oxygen delivery exhaust port 11, the nitrogen delivery exhaust port 13, the gas independent air inlet 5, and the oxygen production vent 7 enter the oxygen production molecular sieve tower 2 to desorb and clean the molecular sieves in the oxygen production molecular sieve tower 2. Then it is discharged from the oxygen exhaust port 11, and enters the nitrogen-generating molecular sieve tower 3 from the nitrogen exhaust port 13. The molecular sieves in the nitrogen-generating molecular sieve tower 3 are desorbed and cleaned, and finally discharged from the independent exhaust port 6.
  • the nitrogen and oxygen separation device in this embodiment has the functions of generating oxygen and nitrogen by setting up the oxygen-generating molecular sieve tower 2 and the nitrogen-generating molecular sieve tower 3.
  • the oxygen-enriched device can be selected. atmosphere or nitrogen-rich atmosphere to ensure a good effect on the skin; at the same time, in this embodiment, by setting the multi-way control valve 1 and the four-way control valve 4, the opening and closing of the multi-way control valve 1 and the four-way control valve 4 are controlled.
  • the nitrogen and oxygen separation device also includes an oil-free air compressor 16.
  • the compressed air exhaust port of the oil-free air compressor 16 is connected with the main air inlet 5 to provide circulation power for the air.
  • a temperature controller 17 for adjusting the air temperature is provided between the oil-free air compressor 16 and the multi-way control valve 1; molecular sieves usually have a greater adsorption effect on the gas to be screened in high-pressure and low-temperature environments. Well, in low-pressure and high-temperature environments, the adsorption effect is poor, and desorption may even occur. Therefore, when performing the nitrogen or oxygen production process, the temperature controller 17 is used to cool the air. When performing desorption cleaning, the temperature controller 17 is used. 17 to heat the air; specifically, the desorption temperature control of the molecular sieve and the structure of the temperature controller 17 are well known to those skilled in the art, and will not be described in detail in this embodiment.
  • a filter 18 is provided at the air inlet of the oil-free air compressor 16 in this embodiment.
  • the nitrogen storage tank 15 and the oxygen storage tank 14 are respectively connected to a nitrogen discharge pipeline 19 and an oxygen discharge pipeline 20.
  • the nitrogen discharge pipeline 19 and the oxygen discharge pipeline 20 are respectively provided with nitrogen cut-off valves. 21 and oxygen shut-off valve 22.
  • the nitrogen discharge pipeline 19 is provided with a nitrogen flow control valve 23
  • the oxygen discharge pipeline 20 is provided with an oxygen flow control valve 24
  • both the oxygen storage tank 14 and the nitrogen storage tank 15 are provided with pressure gauges for detecting their internal pressures.
  • This embodiment also provides a nitrogen and oxygen separation method, including the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

La présente invention concerne le domaine technique des dispositifs de beauté de soins de la peau. L'invention concerne un appareil de séparation azote-oxygène et une méthode de séparation. L'appareil de séparation azote-oxygène comprend une vanne de contrôle à voies multiples, une tour de tamis moléculaire de production d'oxygène, une tour de tamis moléculaire de production d'azote et une vanne de contrôle à quatre voies, la vanne de contrôle à voies multiples étant pourvue d'une entrée d'air principale, d'une sortie d'air principale, d'un évent de production d'oxygène en communication avec la tour de tamis moléculaire de production d'oxygène, et d'un évent de production d'azote en communication avec la tour de tamis moléculaire de production d'azote, qui ont une fonction d'ouverture et de fermeture, l'entrée d'air principale étant en communication avec la sortie d'air principale au moyen d'une première cavité, et la vanne de contrôle à voies multiples étant en outre pourvue d'un commutateur de coupure pour contrôler la connexion et la déconnexion de la première cavité ; et la vanne de contrôle à quatre voies comprend une seconde cavité, et une entrée de transport d'oxygène, une sortie de transport d'oxygène, une entrée de transport d'azote et une sortie de transport d'azote, qui sont toutes en communication avec la seconde cavité et ont une fonction d'ouverture et de fermeture, l'entrée de transport d'oxygène et la sortie de transport d'oxygène étant respectivement en communication avec la tour de tamis moléculaire de production d'oxygène et un réservoir de stockage d'oxygène, et l'entrée de transport d'azote et la sortie de transport d'azote étant respectivement en communication avec la tour de tamis moléculaire de production d'azote et un réservoir de stockage d'azote. De cette manière, la présente invention permet non seulement d'obtenir des fonctions de production d'azote et de production d'oxygène, mais présente également une structure simple et compacte.
PCT/CN2022/130891 2022-08-30 2022-11-09 Appareil de séparation azote-oxygène et méthode de séparation WO2024045339A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211044803.8 2022-08-30
CN202211044803.8A CN115340070A (zh) 2022-08-30 2022-08-30 一种氮氧分离装置及分离方法

Publications (1)

Publication Number Publication Date
WO2024045339A1 true WO2024045339A1 (fr) 2024-03-07

Family

ID=83954224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130891 WO2024045339A1 (fr) 2022-08-30 2022-11-09 Appareil de séparation azote-oxygène et méthode de séparation

Country Status (2)

Country Link
CN (1) CN115340070A (fr)
WO (1) WO2024045339A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118439564A (zh) * 2024-05-27 2024-08-06 深圳市松岩医疗科技有限公司 一种持续稳定制氧的制氧装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148270A (ja) * 2002-11-01 2004-05-27 Mitsubishi Kakoki Kaisha Ltd 圧力変動吸着装置並びにこの装置を用いた高濃度酸素及び高濃度窒素の製造方法
CN206033226U (zh) * 2016-08-30 2017-03-22 赣州川汇气体设备制造有限公司 一种新型高纯制氧制氮两用装置
CN107399723A (zh) * 2016-05-19 2017-11-28 拜默实验设备(上海)股份有限公司 一种连续制备高纯度氮气的装置
CN107673312A (zh) * 2017-10-24 2018-02-09 南京创维家用电器有限公司 一种家用电器气体输入控制系统及制氧制氮装置
CN209456076U (zh) * 2018-10-24 2019-10-01 江苏新颖氧科技发展有限公司 高压力分子筛制氧装置及具有升压功能的分子筛制氧模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740146B2 (en) * 2002-09-12 2004-05-25 Edward L. Simonds Oxygen concentrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148270A (ja) * 2002-11-01 2004-05-27 Mitsubishi Kakoki Kaisha Ltd 圧力変動吸着装置並びにこの装置を用いた高濃度酸素及び高濃度窒素の製造方法
CN107399723A (zh) * 2016-05-19 2017-11-28 拜默实验设备(上海)股份有限公司 一种连续制备高纯度氮气的装置
CN206033226U (zh) * 2016-08-30 2017-03-22 赣州川汇气体设备制造有限公司 一种新型高纯制氧制氮两用装置
CN107673312A (zh) * 2017-10-24 2018-02-09 南京创维家用电器有限公司 一种家用电器气体输入控制系统及制氧制氮装置
CN209456076U (zh) * 2018-10-24 2019-10-01 江苏新颖氧科技发展有限公司 高压力分子筛制氧装置及具有升压功能的分子筛制氧模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118439564A (zh) * 2024-05-27 2024-08-06 深圳市松岩医疗科技有限公司 一种持续稳定制氧的制氧装置

Also Published As

Publication number Publication date
CN115340070A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN107899381B (zh) 一种不停机除霜的油气吸附-冷凝处理装置及油气回收方法
CN105132060A (zh) 一种低温变压吸附工艺净化天然气中co2的装置及其方法
WO2024045339A1 (fr) Appareil de séparation azote-oxygène et méthode de séparation
CN113264506A (zh) 一种氢气液化装置的氢低温吸附器再生工艺
CN214528139U (zh) 一种节能型制氧装置
CN118304741B (zh) 一种压缩空气脱碳干燥装置及使用方法
CN218290445U (zh) 一种氮氧分离装置
CN214611527U (zh) 一种可回收不合格氧气的制氧设备
CN105087094B (zh) 天然气净化装置、净化系统、处理系统及吸附剂再生方法
JP3378949B2 (ja) 圧力変動式空気分離装置及びその運転方法
CN210237126U (zh) 一种高温高效快速型变压吸附制氮设备
CN212039734U (zh) 双管变压吸附装置
CN209791215U (zh) 实现运行中六氟化硫电气设备杂质气体处理装置
CN210905559U (zh) 一种压缩空气纯化装置
CN220056360U (zh) 一种解决低温工况气体分离不彻底的分子筛制氧分离系统
CN220370745U (zh) 二氧化碳制气装置
CN102114377B (zh) 变压吸附气体分离装置及其控制方法
CN221752811U (zh) 能够回收压缩余热及再生气可调控的压缩空气纯化的装置
CN221693207U (zh) 一种普氩提纯至高纯氩装置
CN115224311A (zh) 一种利用分子筛的低尾排燃料电池阴极处理系统及燃料电池系统、车辆
CN114655930B (zh) 一种多重能量转换回收的节能低噪制氧设备及方法
CN217083085U (zh) 一种深冷空分纯化系统
CN220238198U (zh) 快速切换的制氮系统
CN212864135U (zh) 一种分子筛吸附制氧组件
CN110394028A (zh) 基于变压吸附与深冷分离耦合的大规模梯级空分装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE