WO2024040721A1 - Rotary braking mechanism, and c-arm x-ray machine and monitor bracket thereof - Google Patents

Rotary braking mechanism, and c-arm x-ray machine and monitor bracket thereof Download PDF

Info

Publication number
WO2024040721A1
WO2024040721A1 PCT/CN2022/125177 CN2022125177W WO2024040721A1 WO 2024040721 A1 WO2024040721 A1 WO 2024040721A1 CN 2022125177 W CN2022125177 W CN 2022125177W WO 2024040721 A1 WO2024040721 A1 WO 2024040721A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
pedestal
rotary
arm
lever
Prior art date
Application number
PCT/CN2022/125177
Other languages
French (fr)
Inventor
Te ZHANG
Ji Pan
Original Assignee
Siemens Shanghai Medical Equipment Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Shanghai Medical Equipment Ltd. filed Critical Siemens Shanghai Medical Equipment Ltd.
Publication of WO2024040721A1 publication Critical patent/WO2024040721A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/462Displaying means of special interest characterised by constructional features of the display
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D49/00Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like
    • F16D49/08Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like shaped as an encircling band extending over approximately 360 degrees
    • F16D49/10Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like shaped as an encircling band extending over approximately 360 degrees mechanically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/28Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged apart from the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/42Slack adjusters mechanical non-automatic
    • F16D65/46Slack adjusters mechanical non-automatic with screw-thread and nut
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/14Mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/02Locking means
    • F16M2200/021Locking means for rotational movement

Definitions

  • the utility model relates to a braking mechanism, and in particular, to a rotary braking mechanism, a monitor bracket of a C-arm X-ray machine that includes the rotary braking mechanism, and a C-arm X-ray machine.
  • a C-arm X-ray machine is widely applied to interventional therapy and general medical examinations.
  • the C-arm X-ray machine is usually equipped with a monitoring display on the body thereof.
  • the monitoring display is connected to the body by using a monitor bracket, and the monitor bracket can rotate relative to the body.
  • a rotary braking mechanism may be configured to implement rotary braking of the monitor bracket and the body. Due to a complex structure and a requirement for a large installation space, the existing rotary braking mechanism cannot adapt to a miniaturization requirement of the C-arm X-ray machine.
  • An objective of the utility model is to provide a rotary braking mechanism with a simple structure, which is conducive to saving space.
  • Another objective of the utility model is to provide a monitor bracket of a C-arm X-ray machine whose rotary braking mechanism has a simple structure, which is conducive to saving the space.
  • Another objective of the utility model is to provide a C-arm X-ray machine whose rotary braking mechanism has a simple structure, which is conducive to saving the space.
  • the utility model provides a rotary braking mechanism, which is configured to implement rotary braking of a first component and a second component that are rotatable relative to each other.
  • the rotary braking mechanism includes a pedestal, an operating shaft, a disc cam, a lever, and a braking member.
  • the pedestal is configured to be fixedly connected to the first component.
  • the operating shaft is rotatably connected to the pedestal around a first axis or threadedly connected to the pedestal by using the first axis as a thread axis.
  • the disc cam is connected to the operating shaft. An axis of the disc cam coincides with the first axis.
  • the lever is rotatably connected to the pedestal.
  • a rotation axis of the lever is parallel to the first axis and eccentrically arranged with the first axis.
  • the lever has a power portion and a load portion. The power portion and the load portion deviate from the rotation axis of the lever.
  • a cam surface of the disc cam abuts against the power portion, to drive the lever to rotate by a motion of the disc cam.
  • the lever is rotatable to make the load portion drive the braking member to move or deform, so that the braking member presses against the second component.
  • the operating shaft is operated to make the disc cam move and push the lever to rotate.
  • the rotating lever drives the braking member to move or deform, so that the braking member presses against the second component, to implement the rotary braking of the first component and the second component.
  • the rotary braking mechanism has a simple structure, which is conducive to saving the space.
  • the braking member in another schematic implementation of the rotary braking mechanism, includes a hoop portion, a first end portion, and a second end portion.
  • the hoop portion is elastic and in a shape of a split ring surrounding the second component.
  • the first end portion is connected to one end of the hoop portion.
  • the second end portion is connected to an other end of the hoop portion.
  • the rotary braking mechanism further includes a latching member. The latching member is connected to the pedestal and abuts against the first end portion along a direction toward the second end portion.
  • the lever is rotatable to make the load portion press against the second end portion along a direction toward the first end portion, so that the first end portion and the second end portion approach each other by overcoming an elastic force of the hoop portion, and the hoop portion is elastically deformed to wrap the second component.
  • the braking member has a simple structure and a better braking effect on the rotary shaft.
  • the load portion has a pressing rod.
  • the pressing rod extends along a direction parallel to the first axis.
  • the load portion presses against the second end portion by the pressing rod.
  • An abutting force between the pressing rod and the second end portion is perpendicular to the first axis, which is conducive to improving stability of the mechanism.
  • the latching member penetrates through the pedestal and threadedly connected to the pedestal.
  • the latching member is movable spirally to push the first end portion along the direction toward the second end portion.
  • the rotary braking mechanism further includes a locking screw rod.
  • the locking screw rod is threadedly connected to the pedestal and is movable spirally until it abuts against the latching member, to prevent the latching member from moving relative to the pedestal. This is conducive to improving flexibility of the rotary braking mechanism.
  • the operating shaft is threadedly connected to the pedestal by using the first axis as the thread axis.
  • the rotary braking mechanism further includes a damping member.
  • the damping member is configured as a disc spring or a set of disc springs stacked on each other. An axis of the disc spring is parallel to the first axis.
  • the damping member is sleeved on the operating shaft. One end of the damping member abuts against the pedestal, and an other end of the damping member abuts against the operating shaft.
  • a thread of the operating shaft is configured, so that the damping member is gradually clamped by the pedestal and the operating shaft in a process in which the operating shaft moves spirally to drive the braking member to gradually press the second component.
  • the operating shaft includes a first cylindrical portion and a second cylindrical portion.
  • the first cylindrical portion is in a shape of a cylinder with an axis coinciding with the first axis.
  • the damping member is sleeved on the first cylindrical portion.
  • the second cylindrical portion is in a shape of a cylinder with an axis coinciding with the first axis and a diameter greater than a diameter of the first cylindrical portion.
  • the other end of the damping member abuts against an end surface of the second cylindrical portion.
  • the operating shaft has a limiting portion.
  • the rotary braking mechanism further includes two stoppers.
  • the two stoppers are fixedly connected to the pedestal and arranged on a motion track of the limiting portion, to limit a rotation range of the operating shaft by abutting against the limiting portion. In this way, the rotation range of the operating shaft can be limited.
  • the limiting portion is configured to be in a shape of a rod extending along a direction perpendicular to the first axis.
  • Each of the stoppers is configured to be in a shape of a rod extending along a direction parallel to the first axis.
  • the pedestal in another schematic implementation of the rotary braking mechanism, includes a housing and a seat body.
  • the housing has an accommodating cavity.
  • the seat body is arranged in the accommodating cavity and fixedly connected to the housing.
  • the operating shaft and the lever are connected to the seat body.
  • One end of the operating shaft along the first axis passes through the housing.
  • the disc cam, the lever, and the braking member are arranged in the accommodating cavity.
  • the rotary braking mechanism further includes an operating handle.
  • the operating handle is connected to the end of the operating shaft passing through the housing.
  • the utility model further provides a monitor bracket of a C-arm X-ray machine, including a rotary shaft, a support arm, and the foregoing rotary braking mechanism.
  • the support arm is rotatably connected to the rotary shaft around an axis of the rotary shaft.
  • the support arm is configured to be connected to a monitoring display.
  • the pedestal is fixedly connected to the support arm.
  • the first axis is parallel to the axis of the rotary shaft.
  • the lever is rotatable to make the load portion drive the braking member to move or deform, so that the braking member presses against a circumferential surface of the rotary shaft.
  • the rotary braking mechanism of the monitor bracket has a simple and compact structure, which is conducive to saving the space.
  • an accommodating cavity is formed in the pedestal.
  • a disc cam, a lever, and a braking member are arranged in the accommodating cavity.
  • the operating shaft passes through one end of the pedestal along the first axis.
  • the support arm includes a rotating connection portion and an arm portion.
  • the rotating connection portion is connected to an other end of the pedestal along the first axis.
  • the arm portion is in a shape of a long hollow arm with openings at both ends.
  • One end of the arm portion is connected to the rotating connection portion and the pedestal.
  • An other end of the arm portion is configured to be connected to the monitoring display.
  • the rotary shaft penetrates through the rotating connection portion with one end extending into the accommodating cavity.
  • the rotary shaft is in a shape of a circular tube.
  • a tube cavity of the rotary shaft, the accommodating cavity, and a cavity of the arm portion are in communication in sequence. In this way, it is convenient for a cable to pass through.
  • the monitor bracket further includes several bearings.
  • the bearings are arranged between the rotary shaft and the rotating connection portion, to reduce rotational resistance.
  • the monitor bracket further includes an annular support ring.
  • the support ring is coaxially and fixedly connected to one end of the rotary shaft arranged outside the accommodating cavity.
  • An outer diameter of the support ring is greater than an outer diameter of the rotary shaft.
  • the support ring supports the rotating connection portion along a direction parallel to the first axis.
  • the monitor bracket further includes a lubrication washer.
  • the lubrication washer is sleeved on the rotary shaft and arranged between the support ring and the rotating connection portion, to reduce a rotational friction force of the rotating connection portion.
  • the lubrication washer is a PTFE washer.
  • the utility model further provides a C-arm X-ray machine, including the foregoing monitor bracket.
  • a rotary braking mechanism of the monitor bracket of the C-arm X-ray machine has a simple and compact structure, which is conducive to saving space.
  • FIG. 1 is a cross-sectional view of a schematic implementation of a rotary braking mechanism.
  • FIG. 2 is a three-dimensional view of a partial structure of the rotary braking mechanism shown in FIG. 1.
  • FIG. 3 is a partial cross-sectional view of the rotary braking mechanism shown in FIG. 1.
  • FIG. 4 is a cross-sectional view of a schematic implementation of a monitor bracket of a C-arm X-ray machine.
  • FIG. 5 is a partial enlarged view of FIG. 4.
  • FIG. 6 is a schematic structural view of a schematic implementation of a C-arm X-ray machine.
  • FIG. 1 is a cross-sectional view of a schematic implementation of a rotary braking mechanism.
  • FIG. 2 is a three-dimensional view of a partial structure of the rotary braking mechanism shown in FIG. 1.
  • a cutting position of FIG. 1 is shown as IV-IV in FIG. 2.
  • the rotary braking mechanism 100 is configured to implement rotary braking of a first component and a second component that are rotatable relative to each other.
  • the rotary braking mechanism 100 includes a pedestal 10, an operating shaft 20, a disc cam 30, a lever 40, and a braking member 50.
  • the pedestal 10 is configured to be fixedly connected to a first component 90.
  • the pedestal 10 includes a housing 11 (which is not shown in FIG. 2) and a seat body 13.
  • the housing 11 has an accommodating cavity 12.
  • the seat body 13 is arranged in the accommodating cavity 12 and fixedly connected to the housing 11.
  • the seat body 13 is fixedly connected to the housing 11, for example, by using a screw bolt, but the utility model is not limited thereto.
  • the operating shaft 20 is threadedly connected to the seat body 13 by using a first axis L1 as a thread axis, but the utility model is not limited thereto.
  • the operating shaft 20 may be rotatably connected to the seat body 13 around the first axis L1.
  • the disc cam 30 is connected to one end (that is, a lower end in FIG. 1 and FIG. 2) of the operating shaft 20 along the first axis L1, and an other end (that is, an upper end in FIG. 1 and FIG. 2) of the operating shaft 20 along the first axis L1 passes through the housing 11.
  • An axis (that is, a rotation axis for implementing a cam function) of the disc cam 30 coincides with the first axis L1.
  • the disc cam 30 is, for example, an eccentric shaft.
  • the lever 40 is rotatably connected to the seat body 13 around a second axis L2.
  • the second axis L2 is parallel to the first axis L1 and eccentrically arranged with the first axis L1.
  • the rotary braking mechanism 100 further includes a connection rod 66.
  • the connection rod 66 extends along a direction parallel to the first axis L1. Two ends of the connection rod 66 are respectively connected to the seat body 13 and the lever 40.
  • the lever 40 is rotatably connected to the seat body 13 by the connection rod 66, but the utility model is not limited thereto.
  • FIG. 3 is a partial cross-sectional view of the rotary braking mechanism shown in FIG. 1, and a view direction thereof is from bottom to top as shown in FIG. 1.
  • the lever 40 has a power portion 41 and a load portion 42.
  • the power portion 41 and the load portion 42 deviate from the rotation axis of the lever 40.
  • a cam surface of the disc cam 30 abuts against the power portion 41, to drive the lever 40 to rotate by a motion of the disc cam 30.
  • the disc cam 30 moves clockwise, the lever 40 is driven to rotate counterclockwise.
  • the disc cam 30 moves spirally with the operating shaft 20, a position of the disc cam 30 along the first axis L1 changes. It may be understood that a rotation angle of the operating shaft 20 needs to ensure that the disc cam 30 and the lever 40 do not fall off during use.
  • the lever 40 is rotatable to make the load portion 42 drive the braking member 50 to move or deform, so that the braking member 50 presses against the second component.
  • a rotary shaft 71 serves as the second component is used for description.
  • an axis of the rotary shaft 71 that serves as the second component coincides with the first axis L1.
  • the axis of the rotary shaft 71 may be parallel to but not coincident with the first axis L1.
  • the braking member 50 includes a hoop portion 51, a first end portion 52, and a second end portion 53.
  • the hoop portion 51 is elastic and in a shape of a split ring surrounding the rotary shaft 71 along a circumferential direction of the rotary shaft 71.
  • the first end portion 52 is connected to one end of the hoop portion 51.
  • the second end portion 53 is connected to an other end of the hoop portion 51.
  • the rotary braking mechanism 100 further includes a latching member 61.
  • the latching member 61 is connected to the housing 11 and abuts against the first end portion 52 along a direction toward the second end portion 53.
  • the load portion 42 can press against the second end portion 53 along a direction toward the first end portion 52, so that the first end portion 52 and the second end portion 53 approach each other by overcoming an elastic force of the hoop portion 51, and the hoop portion 51 is elastically deformed to wrap the rotary shaft 71, thereby implementing braking.
  • the load portion 42 has a pressing rod 43.
  • the pressing rod 43 extends along a direction parallel to the first axis L1.
  • the load portion 42 presses against the second end portion 53 by a circumferential surface of the pressing rod 43.
  • An abutting force between the pressing rod and the second end portion is perpendicular to the first axis, which is conducive to improving stability of the mechanism.
  • the utility model is not limited thereto.
  • the braking member 50 has a simple structure and a better braking effect on the rotary shaft.
  • the utility model is not limited thereto. In other schematic implementations, the braking member 50 may have other structures.
  • the lever 40 can, for example, drive the braking member 50 to translate or rotate, to prevent the rotary shaft 71 from rotating.
  • the operating shaft 20 is controlled to make the disc cam 30 move and push the lever 40 to rotate.
  • the rotating lever 40 drives the braking member 50 to move or deform, so that the braking member 50 presses against the second component, to implement the rotary braking of the first component and the second component.
  • the rotary braking mechanism has a simple structure, which is conducive to saving the space.
  • the latching member 61 penetrates through the housing 11 and threadedly connected to the housing 11.
  • the latching member 61 is movable spirally to push the first end portion 52 along the direction toward the second end portion 53.
  • the rotary braking mechanism 100 further includes a locking screw rod 62.
  • the locking screw rod 62 is threadedly connected to the housing 11 and movable spirally until it abuts against the latching member 61, to prevent the latching member 61 from moving relative to the housing 11.
  • a position of the latching member 61 relative to the housing 11 may be adjusted.
  • the position of the latching member 61 relative to the housing 11 may be fixed.
  • a degree to which the hoop portion 51 wraps the rotary shaft 71 may be fine-tuned when the operating shaft 20 is operated. This is conducive to improving flexibility of the rotary braking mechanism, but the utility model is not limited thereto.
  • the rotary braking mechanism 100 further includes a damping member 63.
  • the damping member 63 is configured as a disc spring or a set of disc springs stacked on each other. In this schematic implementation, a set of disc springs stacked on each other is used as the damping member 63. Axes of the disc springs are parallel to the first axis L1.
  • the damping member 63 is sleeved on the operating shaft 20. One end of the damping member 63 abuts against the seat body 13, and an other end of the damping member 63 abuts against the operating shaft 20.
  • a thread of the operating shaft 20 is configured, so that the damping member 63 is gradually clamped by the pedestal 10 and the operating shaft 20 in a process in which the operating shaft 20 moves spirally to drive the braking member 50 to gradually press the rotary shaft 71.
  • the damping member 63 By arranging the damping member 63, an external force required for starting the operating shaft 20 when the braking is released can be increased.
  • the operating shaft 20 may be configured to be rotatably connected to the pedestal 10 around the first axis L1.
  • the operating shaft 20 includes a first cylindrical portion 21 and a second cylindrical portion 22.
  • the first cylindrical portion 21 is in a shape of a cylinder with an axis coinciding with the first axis L1.
  • the damping member 63 is sleeved on the first cylindrical portion 21.
  • the second cylindrical portion 22 is in a shape of a cylinder with an axis coinciding with the first axis L1 and a diameter greater than a diameter of the first cylindrical portion 21.
  • the other end of the damping member 63 abuts against an end surface of the second cylindrical portion 22.
  • the operating shaft 20 has a limiting portion 23.
  • the rotary braking mechanism 100 further includes two stoppers 64.
  • the two stoppers 64 are fixedly connected to the seat body 13 and arranged on a motion track of the limiting portion 23, to limit a rotation range of the operating shaft 20 by abutting against the limiting portion 23. In this way, the rotation range of the operating shaft 20 can be limited.
  • the limiting portion 23 is configured to be in a shape of a rod extending along a direction perpendicular to the first axis L1.
  • Each of the stoppers 64 is configured to be in a shape of a rod extending along the direction parallel to the first axis L1. This structure is simple and convenient to machine. However, the utility model is not limited thereto. In other schematic implementations, the limiting portion 23 and the stoppers 64 may be configured in other shapes.
  • the rotary braking mechanism 100 further includes an operating handle 65.
  • the operating handle 65 is connected to one end of the operating shaft 20 passing through the housing 11. By arranging the operating handle 65, it is convenient for a manual operation. By arranging the housing 11, it is conducive to isolating and protecting an internal structure, but the utility model is not limited thereto.
  • the utility model further provides a monitor bracket of a C-arm X-ray machine.
  • FIG. 4 is a cross-sectional view of a schematic implementation of the monitor bracket of a C-arm X-ray machine.
  • FIG. 5 is a partial enlarged view of FIG. 4.
  • FIG. 6 shows a C-arm X-ray machine using the monitor bracket in FIG. 4.
  • the C-arm X-ray machine includes, for example, a C-arm 300, a motion support mechanism 400, a main body 500, and a monitoring display 600.
  • One end of the C-arm 300 is installed with an X-ray source, and an other end of the C-arm 300 is installed with a detector.
  • the motion support mechanism 400 is connected to the main body 500 and the C-arm 300, and is configured to adjust an angle and a position of the C-arm 300.
  • the monitoring display 600 is connected to the motion support mechanism 400 by using the monitor bracket 200.
  • the monitor bracket 200 includes a rotary shaft 71, a support arm 80, and a rotary braking mechanism 100.
  • the rotary shaft 71 is configured, for example, to be fixedly connected to the motion support mechanism 400 of the C-arm X-ray machine.
  • the support arm 80 is rotatably connected to the rotary shaft 71 around an axis of the rotary shaft 71.
  • the support arm 80 includes a rotating connection portion 81 and an arm portion 82.
  • the rotating connection portion 81 is rotatably sleeved on the rotary shaft 71.
  • several bearings 72 may be arranged between the rotary shaft 71 and the rotating connection portion 81, to reduce rotational resistance.
  • the arm portion 82 is configured to be connected to the monitoring display 600.
  • the rotary braking mechanism 100 shown in FIG. 4 and FIG. 5 slightly differs from the rotary braking mechanism 100 shown in FIG. 1 only in the housing 11. Specifically, the housing 11 of the rotary braking mechanism 100 shown in FIG. 4 and FIG. 5 is provided with an opening for communicating with a cavity of the arm portion 82, but the utility model is not limited thereto. In other schematic implementations, the rotary braking mechanism 100 shown in FIG. 1 may be used instead.
  • the housing 11 is fixedly connected to the support arm 80.
  • the housing 11 and the support arm 80 are illustrated as two components, it may be understood that, in a schematic implementation, the housing 11 and the support arm 80 may be configured as components that are separable from each other, or may be configured as an integral and inseparable structure that are integrally formed, that is, the housing 11 and the support arm 80 are integrally formed.
  • the first axis L1 of the rotary braking mechanism 100 coincides with the axis of the rotary shaft 71.
  • the first axis L1 of the rotary braking mechanism 100 may be parallel to but not coincident with the axis of the rotary shaft 71.
  • Coincidence facilitates the compact structure and allows the operating handle 65 of the rotary braking mechanism 100 to be operated on an axial side of the rotary shaft 71, thereby implementing the braking.
  • the lever 40 is rotatable to make the load portion 42 drive the braking member 50 to deform, so that the braking member 50 presses against a circumferential surface of the rotary shaft 71, thereby implementing rotary braking of the rotary shaft 71 and the support arm 80.
  • the operating shaft 20 is operated to make the disc cam 30 move and push the lever 40 to rotate.
  • the rotating lever 40 drives the braking member 50 to deform, so that the braking member 50 presses against the rotary shaft 71 to implement the rotary braking of the rotary shaft 71 and the support arm 80.
  • the rotary braking mechanism of the monitor bracket has a simple and compact structure, which is conducive to saving the space.
  • the rotating connection portion 81 is in a shape of a circular tube and connected to a lower end of the housing 11 along the first axis L1.
  • the arm portion 82 is in a shape of a long hollow arm with openings at both ends.
  • One end of the arm portion 82 is connected to the rotating connection portion 81 and the housing 11.
  • An other end of the arm portion 82 is configured to be connected to the monitoring display 600.
  • the rotary shaft 71 is in a shape of circular tube with one end extending into the accommodating cavity 12.
  • a tube cavity of the rotary shaft 71, the accommodating cavity 12, and a cavity of the arm portion 82 are in communication in sequence. In this way, it is convenient for a cable to pass through.
  • the monitor bracket 200 further includes an annular support ring 73.
  • the support ring 73 is coaxially and fixedly connected to one end of the rotary shaft 71 arranged outside the accommodating cavity 12.
  • An outer diameter of the support ring 73 is greater than an outer diameter of the rotary shaft 71.
  • the support ring 73 supports the rotating connection portion 81 along the direction parallel to the first axis L1.
  • the monitor bracket 200 further includes a lubrication washer 74.
  • the lubrication washer 74 is sleeved on the rotary shaft 71 and arranged between the support ring 73 and the rotating connection portion 81, to reduce a rotational friction force of the rotating connection portion 81.
  • the lubrication washer 74 is a PTFE washer.
  • FIG. 6 is a schematic structural view of a schematic implementation of the C-arm X-ray machine.
  • the C-arm X-ray machine includes a C-arm 300, a motion support mechanism 400, a main body 500, a monitoring display 600, and the monitor bracket shown in FIG, 4.
  • One end of the C-arm 300 is installed with an X-ray source, and an other end of the C-arm 300 is installed with a detector.
  • the motion support mechanism 400 is connected to the main body 500 and the C-arm 300, and is configured to adjust an angle and a position of the C-arm 300.
  • the monitoring display 600 is connected to the motion support mechanism 400 by using the monitor bracket 200.
  • a rotary braking mechanism of the monitor bracket of the C-arm X-ray machine has a simple and compact structure, which is conducive to saving space.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Braking Arrangements (AREA)

Abstract

A rotary braking mechanism is disclosed, including a pedestal (10), an operating shaft (20), a disc cam (30), a lever (40), and a braking member (50). The pedestal is configured to be fixedly connected to a first component. The operating shaft is rotatably connected to the pedestal around a first axis (LI) or threadedly connected to the pedestal by using the first axis as a thread axis. The disc cam is connected to the operating shaft. An axis of the disc cam coincides with the first axis. The lever is rotatably connected to the pedestal. A rotation axis of the lever is parallel to the first axis and eccentrically arranged with the first axis. The lever has a power portion (41) and a load portion (42) that deviate from the rotation axis of the lever. A cam surface of the disc cam abuts against the power portion, to drive the lever to rotate by a motion of the disc cam. The lever is rotatable to make the load portion drive the braking member to move or deform, so that the braking member presses against the second component. The rotary braking mechanism has a simple structure, which is conducive to saving space. A C-arm X-ray machine and a monitor bracket of the C-arm X-ray machine are further disclosed.

Description

ROTARY BRAKING MECHANISM, AND C-ARM X-RAY MACHINE AND MONITOR BRACKET THEREOF TECHNICAL FIELD
The utility model relates to a braking mechanism, and in particular, to a rotary braking mechanism, a monitor bracket of a C-arm X-ray machine that includes the rotary braking mechanism, and a C-arm X-ray machine.
BACKGROUND
In the medical field, a C-arm X-ray machine is widely applied to interventional therapy and general medical examinations. To facilitate a doctor to view an instrument parameter and an examination result at any time in an examination process, the C-arm X-ray machine is usually equipped with a monitoring display on the body thereof. The monitoring display is connected to the body by using a monitor bracket, and the monitor bracket can rotate relative to the body. A rotary braking mechanism may be configured to implement rotary braking of the monitor bracket and the body. Due to a complex structure and a requirement for a large installation space, the existing rotary braking mechanism cannot adapt to a miniaturization requirement of the C-arm X-ray machine.
SUMMARY
An objective of the utility model is to provide a rotary braking mechanism with a simple structure, which is conducive to saving space.
Another objective of the utility model is to provide a monitor bracket of a C-arm X-ray machine whose rotary braking mechanism has a simple structure, which is conducive to saving the space.
Another objective of the utility model is to provide a C-arm X-ray machine whose rotary braking mechanism has a simple structure, which is conducive to saving the space.
The utility model provides a rotary braking mechanism, which is configured to implement rotary braking of a first component and a second component that are rotatable relative to each other. The rotary braking mechanism includes a pedestal, an operating shaft, a disc cam, a lever, and a braking member. The pedestal is configured to be fixedly connected to the first component. The  operating shaft is rotatably connected to the pedestal around a first axis or threadedly connected to the pedestal by using the first axis as a thread axis. The disc cam is connected to the operating shaft. An axis of the disc cam coincides with the first axis. The lever is rotatably connected to the pedestal. A rotation axis of the lever is parallel to the first axis and eccentrically arranged with the first axis. The lever has a power portion and a load portion. The power portion and the load portion deviate from the rotation axis of the lever. A cam surface of the disc cam abuts against the power portion, to drive the lever to rotate by a motion of the disc cam. The lever is rotatable to make the load portion drive the braking member to move or deform, so that the braking member presses against the second component.
During use of the rotary braking mechanism, the operating shaft is operated to make the disc cam move and push the lever to rotate. The rotating lever drives the braking member to move or deform, so that the braking member presses against the second component, to implement the rotary braking of the first component and the second component. The rotary braking mechanism has a simple structure, which is conducive to saving the space.
In another schematic implementation of the rotary braking mechanism, the braking member includes a hoop portion, a first end portion, and a second end portion. The hoop portion is elastic and in a shape of a split ring surrounding the second component. The first end portion is connected to one end of the hoop portion. The second end portion is connected to an other end of the hoop portion. The rotary braking mechanism further includes a latching member. The latching member is connected to the pedestal and abuts against the first end portion along a direction toward the second end portion. The lever is rotatable to make the load portion press against the second end portion along a direction toward the first end portion, so that the first end portion and the second end portion approach each other by overcoming an elastic force of the hoop portion, and the hoop portion is elastically deformed to wrap the second component. The braking member has a simple structure and a better braking effect on the rotary shaft.
In another schematic implementation of the rotary braking mechanism, the load portion has a pressing rod. The pressing rod extends along a direction parallel to the first axis. The load portion presses against the second end portion by the pressing rod. An abutting force between the pressing rod and the second end portion is perpendicular to the first axis, which is conducive to improving stability of the mechanism.
In another schematic implementation of the rotary braking mechanism, the latching member penetrates through the pedestal and threadedly connected to the pedestal. The latching member is movable spirally to push the first end portion along the direction toward the second end portion. The rotary braking mechanism further includes a locking screw rod. The locking screw rod is  threadedly connected to the pedestal and is movable spirally until it abuts against the latching member, to prevent the latching member from moving relative to the pedestal. This is conducive to improving flexibility of the rotary braking mechanism.
In another schematic implementation of the rotary braking mechanism, the operating shaft is threadedly connected to the pedestal by using the first axis as the thread axis. The rotary braking mechanism further includes a damping member. The damping member is configured as a disc spring or a set of disc springs stacked on each other. An axis of the disc spring is parallel to the first axis. The damping member is sleeved on the operating shaft. One end of the damping member abuts against the pedestal, and an other end of the damping member abuts against the operating shaft. A thread of the operating shaft is configured, so that the damping member is gradually clamped by the pedestal and the operating shaft in a process in which the operating shaft moves spirally to drive the braking member to gradually press the second component. By arranging the damping member, an external force required for starting the operating shaft when the braking is released can be increased.
In another schematic implementation of the rotary braking mechanism, the operating shaft includes a first cylindrical portion and a second cylindrical portion. The first cylindrical portion is in a shape of a cylinder with an axis coinciding with the first axis. The damping member is sleeved on the first cylindrical portion. The second cylindrical portion is in a shape of a cylinder with an axis coinciding with the first axis and a diameter greater than a diameter of the first cylindrical portion. The other end of the damping member abuts against an end surface of the second cylindrical portion. This structure is simple and has better stability.
In another schematic implementation of the rotary braking mechanism, the operating shaft has a limiting portion. The rotary braking mechanism further includes two stoppers. The two stoppers are fixedly connected to the pedestal and arranged on a motion track of the limiting portion, to limit a rotation range of the operating shaft by abutting against the limiting portion. In this way, the rotation range of the operating shaft can be limited.
In another schematic implementation of the rotary braking mechanism, the limiting portion is configured to be in a shape of a rod extending along a direction perpendicular to the first axis. Each of the stoppers is configured to be in a shape of a rod extending along a direction parallel to the first axis. This structure is simple and convenient to machine.
In another schematic implementation of the rotary braking mechanism, the pedestal includes a housing and a seat body. The housing has an accommodating cavity. The seat body is arranged in the accommodating cavity and fixedly connected to the housing. The operating shaft and the lever are connected to the seat body. One end of the operating shaft along the first axis passes through the  housing. The disc cam, the lever, and the braking member are arranged in the accommodating cavity. The rotary braking mechanism further includes an operating handle. The operating handle is connected to the end of the operating shaft passing through the housing. By arranging the housing, it is conducive to isolating and protecting an internal structure, and by arranging the operating handle, it is convenient for a manual operation.
The utility model further provides a monitor bracket of a C-arm X-ray machine, including a rotary shaft, a support arm, and the foregoing rotary braking mechanism. The support arm is rotatably connected to the rotary shaft around an axis of the rotary shaft. The support arm is configured to be connected to a monitoring display. The pedestal is fixedly connected to the support arm. The first axis is parallel to the axis of the rotary shaft. The lever is rotatable to make the load portion drive the braking member to move or deform, so that the braking member presses against a circumferential surface of the rotary shaft. The rotary braking mechanism of the monitor bracket has a simple and compact structure, which is conducive to saving the space.
In another schematic implementation of the monitor bracket of a C-arm X-ray machine, an accommodating cavity is formed in the pedestal. A disc cam, a lever, and a braking member are arranged in the accommodating cavity. The operating shaft passes through one end of the pedestal along the first axis. The support arm includes a rotating connection portion and an arm portion. The rotating connection portion is connected to an other end of the pedestal along the first axis. The arm portion is in a shape of a long hollow arm with openings at both ends. One end of the arm portion is connected to the rotating connection portion and the pedestal. An other end of the arm portion is configured to be connected to the monitoring display. The rotary shaft penetrates through the rotating connection portion with one end extending into the accommodating cavity. The rotary shaft is in a shape of a circular tube. A tube cavity of the rotary shaft, the accommodating cavity, and a cavity of the arm portion are in communication in sequence. In this way, it is convenient for a cable to pass through.
In another schematic implementation of the monitor bracket of a C-arm X-ray machine, the monitor bracket further includes several bearings. The bearings are arranged between the rotary shaft and the rotating connection portion, to reduce rotational resistance.
In another schematic implementation of the monitor bracket of a C-arm X-ray machine, the monitor bracket further includes an annular support ring. The support ring is coaxially and fixedly connected to one end of the rotary shaft arranged outside the accommodating cavity. An outer diameter of the support ring is greater than an outer diameter of the rotary shaft. The support ring supports the rotating connection portion along a direction parallel to the first axis. The monitor bracket further includes a lubrication washer. The lubrication washer is sleeved on the rotary shaft  and arranged between the support ring and the rotating connection portion, to reduce a rotational friction force of the rotating connection portion. Preferably, the lubrication washer is a PTFE washer. By arranging the support ring, the stability of the entire structure can be improved, and by arranging the lubrication washer, it is conducive to reducing the rotational friction force.
The utility model further provides a C-arm X-ray machine, including the foregoing monitor bracket. A rotary braking mechanism of the monitor bracket of the C-arm X-ray machine has a simple and compact structure, which is conducive to saving space.
BRIEF DESCRIPTION OF THE DRAWINGS
The following accompanying drawings are only intended to give schematic illustrations and explanations of the utility model, but are not intended to limit the scope of the utility model.
FIG. 1 is a cross-sectional view of a schematic implementation of a rotary braking mechanism.
FIG. 2 is a three-dimensional view of a partial structure of the rotary braking mechanism shown in FIG. 1.
FIG. 3 is a partial cross-sectional view of the rotary braking mechanism shown in FIG. 1.
FIG. 4 is a cross-sectional view of a schematic implementation of a monitor bracket of a C-arm X-ray machine.
FIG. 5 is a partial enlarged view of FIG. 4.
FIG. 6 is a schematic structural view of a schematic implementation of a C-arm X-ray machine.
Description of reference numerals
100 Rotary braking mechanism
10 Pedestal
11 Housing
12 Accommodating cavity
13 Seat body
20 Operating shaft
21 First cylindrical portion
22 Second cylindrical portion
23 Limiting portion
30 Disc cam
40 Lever
41 Power portion
42 Load portion
43 Pressing rod
50 Braking member
51 Hoop portion
52 First end portion
53 Second end portion
61 Latching member
62 Locking screw rod
63 Damping member
64 Stopper
65 Operating handle
66 Connection rod
71 Rotary shaft
72 Bearing
73 Support ring
74 Lubrication washer
80 Support arm
81 Rotating connection portion
82 Arm portion
90 First component
200 Monitor bracket
300 C-arm
400 Motion support mechanism
500 Main body
600 Monitoring display
L1 First axis
L2 Second axis
DETAILED DESCRIPTION
To have a clearer understanding of the technical features, the objectives, and the effects of the utility model, specific implementations of the utility model are now illustrated with reference to the accompanying drawings, and same reference numerals in the accompanying drawings represent components with a same structure or similar structures but a same function.
In this specification, "schematic" indicates "serving as an example, a case, or description" , and any illustration or implementation described as "schematic" in this specification should not be interpreted as a more preferred or more advantageous technical solution.
In this specification, "first" , "second" , and the like do not indicate importance, an order, or the like, but are only used to distinguish from each other, to facilitate description of this specification.
For brevity of the accompanying drawings, only parts related to the utility model are schematically shown in the accompanying drawings, and are not represented as the actual structure of the product.
FIG. 1 is a cross-sectional view of a schematic implementation of a rotary braking mechanism. FIG. 2 is a three-dimensional view of a partial structure of the rotary braking mechanism shown in FIG. 1. A cutting position of FIG. 1 is shown as IV-IV in FIG. 2. The rotary braking mechanism 100 is configured to implement rotary braking of a first component and a second component that are rotatable relative to each other. As shown in FIG. 1 and FIG. 2, the rotary braking mechanism 100 includes a pedestal 10, an operating shaft 20, a disc cam 30, a lever 40, and a braking member 50.
As shown in FIG. 1, the pedestal 10 is configured to be fixedly connected to a first component 90.In this schematic implementation, the pedestal 10 includes a housing 11 (which is not shown in FIG. 2) and a seat body 13. The housing 11 has an accommodating cavity 12. The seat body 13 is arranged in the accommodating cavity 12 and fixedly connected to the housing 11. Specifically, the seat body 13 is fixedly connected to the housing 11, for example, by using a screw bolt, but the utility model is not limited thereto.
As shown in FIG. 1 and FIG. 2, the operating shaft 20 is threadedly connected to the seat body 13 by using a first axis L1 as a thread axis, but the utility model is not limited thereto. In other schematic implementations, the operating shaft 20 may be rotatably connected to the seat body 13 around the first axis L1. The disc cam 30 is connected to one end (that is, a lower end in FIG. 1 and FIG. 2) of the operating shaft 20 along the first axis L1, and an other end (that is, an upper end in FIG. 1 and FIG. 2) of the operating shaft 20 along the first axis L1 passes through the housing 11. An axis (that is, a rotation axis for implementing a cam function) of the disc cam 30 coincides with the first axis L1. The disc cam 30 is, for example, an eccentric shaft.
The lever 40 is rotatably connected to the seat body 13 around a second axis L2. The second axis L2 is parallel to the first axis L1 and eccentrically arranged with the first axis L1. Specifically, in this schematic implementation, the rotary braking mechanism 100 further includes a connection rod 66. The connection rod 66 extends along a direction parallel to the first axis L1. Two ends of the connection rod 66 are respectively connected to the seat body 13 and the lever 40. The lever 40 is rotatably connected to the seat body 13 by the connection rod 66, but the utility model is not limited thereto.
FIG. 3 is a partial cross-sectional view of the rotary braking mechanism shown in FIG. 1, and a view direction thereof is from bottom to top as shown in FIG. 1. As shown in FIG. 1 and FIG. 3, the  lever 40 has a power portion 41 and a load portion 42. The power portion 41 and the load portion 42 deviate from the rotation axis of the lever 40. A cam surface of the disc cam 30 abuts against the power portion 41, to drive the lever 40 to rotate by a motion of the disc cam 30. As shown in FIG. 3, when the disc cam 30 moves clockwise, the lever 40 is driven to rotate counterclockwise. When the disc cam 30 moves spirally with the operating shaft 20, a position of the disc cam 30 along the first axis L1 changes. It may be understood that a rotation angle of the operating shaft 20 needs to ensure that the disc cam 30 and the lever 40 do not fall off during use.
The lever 40 is rotatable to make the load portion 42 drive the braking member 50 to move or deform, so that the braking member 50 presses against the second component. In this schematic implementation, an example in which a rotary shaft 71 serves as the second component is used for description. Specifically, as shown in FIG. 1 and FIG. 2, in this schematic implementation, an axis of the rotary shaft 71 that serves as the second component coincides with the first axis L1. Certainly, in other schematic implementations, the axis of the rotary shaft 71 may be parallel to but not coincident with the first axis L1. The braking member 50 includes a hoop portion 51, a first end portion 52, and a second end portion 53. The hoop portion 51 is elastic and in a shape of a split ring surrounding the rotary shaft 71 along a circumferential direction of the rotary shaft 71. The first end portion 52 is connected to one end of the hoop portion 51. The second end portion 53 is connected to an other end of the hoop portion 51.
The rotary braking mechanism 100 further includes a latching member 61. As shown in FIG. 3, the latching member 61 is connected to the housing 11 and abuts against the first end portion 52 along a direction toward the second end portion 53. In a process in which the disc cam 30 that moves clockwise drives the lever 40 to rotate counterclockwise, the load portion 42 can press against the second end portion 53 along a direction toward the first end portion 52, so that the first end portion 52 and the second end portion 53 approach each other by overcoming an elastic force of the hoop portion 51, and the hoop portion 51 is elastically deformed to wrap the rotary shaft 71, thereby implementing braking. Specifically, in this schematic implementation, the load portion 42 has a pressing rod 43. The pressing rod 43 extends along a direction parallel to the first axis L1. The load portion 42 presses against the second end portion 53 by a circumferential surface of the pressing rod 43. An abutting force between the pressing rod and the second end portion is perpendicular to the first axis, which is conducive to improving stability of the mechanism. However, the utility model is not limited thereto.
When the operating shaft 20 is operated to make the disc cam 30 move counterclockwise back to a position shown in FIG. 3, the first end portion 52 and the second end portion 53 can also move away from each other under an action of the elastic force of the hoop portion 51, thereby allowing  the rotary shaft 71 to rotate. The braking member 50 has a simple structure and a better braking effect on the rotary shaft. However, the utility model is not limited thereto. In other schematic implementations, the braking member 50 may have other structures. The lever 40 can, for example, drive the braking member 50 to translate or rotate, to prevent the rotary shaft 71 from rotating.
During use of the rotary braking mechanism, the operating shaft 20 is controlled to make the disc cam 30 move and push the lever 40 to rotate. The rotating lever 40 drives the braking member 50 to move or deform, so that the braking member 50 presses against the second component, to implement the rotary braking of the first component and the second component. The rotary braking mechanism has a simple structure, which is conducive to saving the space.
As shown in FIG. 3, in a schematic implementation, the latching member 61 penetrates through the housing 11 and threadedly connected to the housing 11. The latching member 61 is movable spirally to push the first end portion 52 along the direction toward the second end portion 53. The rotary braking mechanism 100 further includes a locking screw rod 62. The locking screw rod 62 is threadedly connected to the housing 11 and movable spirally until it abuts against the latching member 61, to prevent the latching member 61 from moving relative to the housing 11. By loosening the locking screw rod 62, a position of the latching member 61 relative to the housing 11 may be adjusted. By screwing the locking screw rod 62, the position of the latching member 61 relative to the housing 11 may be fixed. By adjusting the position of the latching member 61 relative to the housing 11, a degree to which the hoop portion 51 wraps the rotary shaft 71 may be fine-tuned when the operating shaft 20 is operated. This is conducive to improving flexibility of the rotary braking mechanism, but the utility model is not limited thereto.
As shown in FIG. 1, in this schematic implementation, the operating shaft 20 is threadedly connected to the seat body 13 by using the first axis L1 as the thread axis. The rotary braking mechanism 100 further includes a damping member 63. The damping member 63 is configured as a disc spring or a set of disc springs stacked on each other. In this schematic implementation, a set of disc springs stacked on each other is used as the damping member 63. Axes of the disc springs are parallel to the first axis L1. The damping member 63 is sleeved on the operating shaft 20. One end of the damping member 63 abuts against the seat body 13, and an other end of the damping member 63 abuts against the operating shaft 20. A thread of the operating shaft 20 is configured, so that the damping member 63 is gradually clamped by the pedestal 10 and the operating shaft 20 in a process in which the operating shaft 20 moves spirally to drive the braking member 50 to gradually press the rotary shaft 71. By arranging the damping member 63, an external force required for starting the operating shaft 20 when the braking is released can be increased. A person skilled in the art may understand that, if this preferred effect is not required in other schematic implementations, the  operating shaft 20 may be configured to be rotatably connected to the pedestal 10 around the first axis L1.
As shown in FIG. 1, in a schematic implementation, the operating shaft 20 includes a first cylindrical portion 21 and a second cylindrical portion 22. The first cylindrical portion 21 is in a shape of a cylinder with an axis coinciding with the first axis L1. The damping member 63 is sleeved on the first cylindrical portion 21. The second cylindrical portion 22 is in a shape of a cylinder with an axis coinciding with the first axis L1 and a diameter greater than a diameter of the first cylindrical portion 21. The other end of the damping member 63 abuts against an end surface of the second cylindrical portion 22. This structure is simple and has better stability, but the utility model is not limited thereto.
As shown in FIG. 2, in a schematic implementation, the operating shaft 20 has a limiting portion 23. The rotary braking mechanism 100 further includes two stoppers 64. The two stoppers 64 are fixedly connected to the seat body 13 and arranged on a motion track of the limiting portion 23, to limit a rotation range of the operating shaft 20 by abutting against the limiting portion 23. In this way, the rotation range of the operating shaft 20 can be limited. Specifically, in this schematic implementation, the limiting portion 23 is configured to be in a shape of a rod extending along a direction perpendicular to the first axis L1. Each of the stoppers 64 is configured to be in a shape of a rod extending along the direction parallel to the first axis L1. This structure is simple and convenient to machine. However, the utility model is not limited thereto. In other schematic implementations, the limiting portion 23 and the stoppers 64 may be configured in other shapes.
As shown in FIG. 1, in this schematic implementation, the disc cam 30, the lever 40, and the braking member 50 are arranged in the accommodating cavity 12. The rotary braking mechanism 100 further includes an operating handle 65. The operating handle 65 is connected to one end of the operating shaft 20 passing through the housing 11. By arranging the operating handle 65, it is convenient for a manual operation. By arranging the housing 11, it is conducive to isolating and protecting an internal structure, but the utility model is not limited thereto.
The utility model further provides a monitor bracket of a C-arm X-ray machine. FIG. 4 is a cross-sectional view of a schematic implementation of the monitor bracket of a C-arm X-ray machine. FIG. 5 is a partial enlarged view of FIG. 4. FIG. 6 shows a C-arm X-ray machine using the monitor bracket in FIG. 4. As shown in FIG. 6, the C-arm X-ray machine includes, for example, a C-arm 300, a motion support mechanism 400, a main body 500, and a monitoring display 600. One end of the C-arm 300 is installed with an X-ray source, and an other end of the C-arm 300 is installed with a detector. The motion support mechanism 400 is connected to the main body 500 and the C-arm 300, and is configured to adjust an angle and a position of the C-arm 300. The  monitoring display 600 is connected to the motion support mechanism 400 by using the monitor bracket 200.
As shown in FIG. 4 and FIG. 5, the monitor bracket 200 includes a rotary shaft 71, a support arm 80, and a rotary braking mechanism 100. The rotary shaft 71 is configured, for example, to be fixedly connected to the motion support mechanism 400 of the C-arm X-ray machine. The support arm 80 is rotatably connected to the rotary shaft 71 around an axis of the rotary shaft 71. Specifically, in this schematic implementation, the support arm 80 includes a rotating connection portion 81 and an arm portion 82. The rotating connection portion 81 is rotatably sleeved on the rotary shaft 71. Further, several bearings 72 may be arranged between the rotary shaft 71 and the rotating connection portion 81, to reduce rotational resistance. The arm portion 82 is configured to be connected to the monitoring display 600.
The rotary braking mechanism 100 shown in FIG. 4 and FIG. 5 slightly differs from the rotary braking mechanism 100 shown in FIG. 1 only in the housing 11. Specifically, the housing 11 of the rotary braking mechanism 100 shown in FIG. 4 and FIG. 5 is provided with an opening for communicating with a cavity of the arm portion 82, but the utility model is not limited thereto. In other schematic implementations, the rotary braking mechanism 100 shown in FIG. 1 may be used instead.
As shown in FIG. 4 and FIG. 5, the housing 11 is fixedly connected to the support arm 80. In this schematic implementation, although the housing 11 and the support arm 80 are illustrated as two components, it may be understood that, in a schematic implementation, the housing 11 and the support arm 80 may be configured as components that are separable from each other, or may be configured as an integral and inseparable structure that are integrally formed, that is, the housing 11 and the support arm 80 are integrally formed.
The first axis L1 of the rotary braking mechanism 100 coincides with the axis of the rotary shaft 71. Certainly, in other schematic implementations, the first axis L1 of the rotary braking mechanism 100 may be parallel to but not coincident with the axis of the rotary shaft 71. Coincidence facilitates the compact structure and allows the operating handle 65 of the rotary braking mechanism 100 to be operated on an axial side of the rotary shaft 71, thereby implementing the braking. The lever 40 is rotatable to make the load portion 42 drive the braking member 50 to deform, so that the braking member 50 presses against a circumferential surface of the rotary shaft 71, thereby implementing rotary braking of the rotary shaft 71 and the support arm 80. During use of the monitor bracket, the operating shaft 20 is operated to make the disc cam 30 move and push the lever 40 to rotate. The rotating lever 40 drives the braking member 50 to deform, so that the braking member 50 presses against the rotary shaft 71 to implement the rotary braking of the rotary  shaft 71 and the support arm 80. The rotary braking mechanism of the monitor bracket has a simple and compact structure, which is conducive to saving the space.
As shown in FIG. 4 and FIG. 5, in this schematic implementation, the rotating connection portion 81 is in a shape of a circular tube and connected to a lower end of the housing 11 along the first axis L1. The arm portion 82 is in a shape of a long hollow arm with openings at both ends. One end of the arm portion 82 is connected to the rotating connection portion 81 and the housing 11. An other end of the arm portion 82 is configured to be connected to the monitoring display 600. The rotary shaft 71 is in a shape of circular tube with one end extending into the accommodating cavity 12. A tube cavity of the rotary shaft 71, the accommodating cavity 12, and a cavity of the arm portion 82 are in communication in sequence. In this way, it is convenient for a cable to pass through.
As shown in FIG. 5, in a schematic implementation, the monitor bracket 200 further includes an annular support ring 73. The support ring 73 is coaxially and fixedly connected to one end of the rotary shaft 71 arranged outside the accommodating cavity 12. An outer diameter of the support ring 73 is greater than an outer diameter of the rotary shaft 71. The support ring 73 supports the rotating connection portion 81 along the direction parallel to the first axis L1. The monitor bracket 200 further includes a lubrication washer 74. The lubrication washer 74 is sleeved on the rotary shaft 71 and arranged between the support ring 73 and the rotating connection portion 81, to reduce a rotational friction force of the rotating connection portion 81. Preferably, the lubrication washer 74 is a PTFE washer. By arranging the support ring 73, the stability of the entire structure can be improved.
The utility model further provides a C-arm X-ray machine. FIG. 6 is a schematic structural view of a schematic implementation of the C-arm X-ray machine. As shown in FIG. 6, in a schematic implementation, the C-arm X-ray machine includes a C-arm 300, a motion support mechanism 400, a main body 500, a monitoring display 600, and the monitor bracket shown in FIG, 4. One end of the C-arm 300 is installed with an X-ray source, and an other end of the C-arm 300 is installed with a detector. The motion support mechanism 400 is connected to the main body 500 and the C-arm 300, and is configured to adjust an angle and a position of the C-arm 300. The monitoring display 600 is connected to the motion support mechanism 400 by using the monitor bracket 200. During use of the monitor bracket, the operating shaft 20 is operated to make the disc cam 30 move and push the lever 40 to rotate. The rotating lever 40 drives the braking member 50 to deform, so that the braking member 50 presses against the second component to implement the rotary braking of the rotary shaft 71 and the support arm 80. A rotary braking mechanism of the monitor bracket of the C-arm X-ray machine has a simple and compact structure, which is  conducive to saving space.
It should be understood that, although this specification is described according to various embodiments, not each embodiment includes only a separate technical solution. The specification is described in such a manner only for the sake of clarity. A person skilled in the art should take the specification as a whole, and the technical solutions in various embodiments may also be appropriately combined to form other implementations that can be understood by the person skilled in the art.
The series of detailed descriptions listed above are only specific descriptions of the feasible embodiments of the utility model, and are not intended to limit the protection scope of the utility model. All embodiments or changes made without departing from the technical spirit of the utility model, such as a combination, division, and repetition of features, shall be included in the protection scope of the utility model.

Claims (14)

  1. A rotary braking mechanism, configured to implement rotary braking of a first component and a second component that are rotatable relative to each other, and comprising:
    a pedestal (10) , configured to be fixedly connected to the first component;
    an operating shaft (20) , rotatably connected to the pedestal (10) around a first axis (L1) or threadedly connected to the pedestal (10) by using the first axis (L1) as a thread axis;
    a disc cam (30) , connected to the operating shaft (20) , wherein an axis of the disc cam (30) coincides with the first axis (L1) ;
    a lever (40) , rotatably connected to the pedestal (10) , wherein a rotation axis of the lever (40) is parallel to the first axis (L1) and eccentrically arranged with the first axis (L1) , the lever (40) has a power portion (41) and a load portion (42) , wherein the power portion (41) and the load portion (42) deviate from the rotation axis of the lever (40) , and a cam surface of the disc cam (30) abuts against the power portion (41) , to drive the lever (40) to rotate by a motion of the disc cam (30) ; and
    a braking member (50) , wherein the lever (40) is rotatable to make the load portion (42) drive the braking member (50) to move or deform, so that the braking member (50) presses against the second component.
  2. The rotary braking mechanism according to claim 1, wherein the braking member (50) comprises:
    a hoop portion (51) , which is elastic and in a shape of a split ring surrounding the second component;
    a first end portion (52) , connected to one end of the hoop portion (51) ; and
    a second end portion (53) , connected to an other end of the hoop portion (51) ; and
    the rotary braking mechanism further comprises a latching member (61) , wherein the latching member (61) is connected to the pedestal (10) and abutting against the first end portion (52) along a direction toward the second end portion (53) , and the lever (40) is rotatable to make the load portion (42) press against the second end portion (53) along a direction toward the first end portion (52) , so that the first end portion (52) and the second end portion (53) approach each other by overcoming an elastic force of the hoop portion (51) , and the hoop portion (51) is elastically deformed to wrap the second component.
  3. The rotary braking mechanism according to claim 2, wherein the load portion (42) has a pressing rod (43) , the pressing rod (43) extends along a direction parallel to the first axis (L1) , and the load portion (42) presses against the second end portion (53) by the pressing rod (43) .
  4. The rotary braking mechanism according to claim 2, wherein the latching member (61) penetrates through the pedestal (10) and is threadedly connected to the pedestal (10) , the latching member (61) is movable spirally to push the first end portion (52) along the direction toward the second end  portion (53) , and the rotary braking mechanism further comprises a locking screw rod (62) , wherein the locking screw rod (62) is threadedly connected to the pedestal (10) and movable spirally until it abuts against the latching member (61) , to prevent the latching member (61) from moving relative to the pedestal (10) .
  5. The rotary braking mechanism according to claim 1, wherein the operating shaft (20) is threadedly connected to the pedestal (10) by using the first axis (L1) as the thread axis, and the rotary braking mechanism further comprises a damping member (63) , wherein the damping member (63) is configured as a disc spring or a set of disc springs stacked on each other, an axis of the disc spring is parallel to the first axis (L1) , the damping member (63) is sleeved on the operating shaft (20) , one end of the damping member (63) abuts against the pedestal (10) , an other end of the damping member (63) abuts against the operating shaft (20) , and a thread of the operating shaft (20) is configured, so that the damping member (63) is gradually clamped by the pedestal (10) and the operating shaft (20) in a process in which the operating shaft (20) moves spirally to drive the braking member (50) to gradually press the second component.
  6. The rotary braking mechanism according to claim 5, wherein the operating shaft (20) comprises: a first cylindrical portion (21) , wherein the first cylindrical portion (21) is in a shape of a cylinder with an axis coinciding with the first axis (L1) , and the damping member (63) is sleeved on the first cylindrical portion (21) ; and
    a second cylindrical portion (22) , wherein the second cylindrical portion (22) is in a shape of a cylinder with an axis coinciding with the first axis (L1) and a diameter greater than a diameter of the first cylindrical portion (21) , and the other end of the damping member (63) abuts against an end surface of the second cylindrical portion (22) .
  7. The rotary braking mechanism according to claim 1, wherein the operating shaft (20) has a limiting portion (23) , and the rotary braking mechanism further comprises two stoppers (64) , wherein the two stoppers (64) are fixedly connected to the pedestal (10) and arranged on a motion track of the limiting portion (23) , to limit a rotation range of the operating shaft (20) by abutting against the limiting portion (23) .
  8. The rotary braking mechanism according to claim 7, wherein the limiting portion (23) is configured to be in a shape of a rod extending along a direction perpendicular to the first axis (L1) , and each of the stoppers (64) is configured to be in a shape of a rod extending along a direction parallel to the first axis (L1) .
  9. The rotary braking mechanism according to claim 1, wherein the pedestal (10) comprises:
    a housing (11) , having an accommodating cavity (12) ; and
    a seat body (13) , arranged in the accommodating cavity (12) and fixedly connected to the housing  (11) , wherein the operating shaft (20) and the lever (40) are connected to the seat body (13) , one end of the operating shaft (20) along the first axis (L1) passes through the housing (11) , the disc cam (30) , the lever (40) , and the braking member (50) are arranged in the accommodating cavity (12) , and the rotary braking mechanism further comprises an operating handle (65) , which is connected to the end of the operating shaft (20) passing through the housing (11) .
  10. A monitor bracket of a C-arm X-ray machine, comprising:
    a rotary shaft (71) ;
    a support arm (80) , rotatably connected to the rotary shaft (71) around an axis of the rotary shaft (71) , and configured to be connected to a monitoring display; and
    the rotary braking mechanism according to any one of claims 1 to 9, wherein the pedestal (10) is fixedly connected to the support arm (80) , the first axis (L1) is parallel to the axis of the rotary shaft (71) , and the lever (40) is rotatable to make the load portion (42) drive the braking member (50) to move or deform, so that the braking member (50) presses against a circumferential surface of the rotary shaft (71) .
  11. The monitor bracket of a C-arm X-ray machine according to claim 10, wherein an accommodating cavity (12) is formed in the pedestal (10) , the disc cam (30) , the lever (40) , and the braking member (50) are arranged in the accommodating cavity (12) , and the operating shaft (20) passes through one end of the pedestal (10) along the first axis (L1) ; the support arm (80) comprises a rotating connection portion (81) and an arm portion (82) , wherein the rotating connection portion (81) is connected to an other end of the pedestal (10) along the first axis (L1) , the arm portion (82) is in a shape of a long hollow arm with openings at both ends, one end of the arm portion (82) is connected to the rotating connection portion (81) and the pedestal (10) , and an other end of the arm portion (82) is configured to be connected to the monitoring display; and the rotary shaft (71) penetrates through the rotating connection portion (81) with one end extending into the accommodating cavity (12) , the rotary shaft (71) is in a shape of a circular tube, and a tube cavity of the rotary shaft (71) , the accommodating cavity (12) , and a cavity of the arm portion (82) are in communication in sequence.
  12. The monitor bracket of a C-arm X-ray machine according to claim 11, further comprising several bearings (72) , wherein the bearings (72) are arranged between the rotary shaft (71) and the rotating connection portion (81) .
  13. The monitor bracket of a C-arm X-ray machine according to claim 11, further comprising: an annular support ring (73) , wherein the support ring (73) is coaxially and fixedly connected to one end of the rotary shaft (71) arranged outside the accommodating cavity (12) , an outer diameter of the support ring (73) is greater than an outer diameter of the rotary shaft (71) , and the support ring  (73) supports the rotating connection portion (81) along a direction parallel to the first axis (L1) ; and a lubrication washer (74) , wherein the lubrication washer (74) is sleeved on the rotary shaft (71) and arranged between the support ring (73) and the rotating connection portion (81) , to reduce a rotational friction force of the rotating connection portion (81) .
  14. A C-arm X-ray machine, comprising the monitor bracket according to any one of claims 10 to 13.
PCT/CN2022/125177 2022-08-22 2022-10-13 Rotary braking mechanism, and c-arm x-ray machine and monitor bracket thereof WO2024040721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222212731.5U CN218738969U (en) 2022-08-22 2022-08-22 Rotary braking mechanism, C-shaped arm X-ray machine and monitor bracket thereof
CN202222212731.5 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024040721A1 true WO2024040721A1 (en) 2024-02-29

Family

ID=84044642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125177 WO2024040721A1 (en) 2022-08-22 2022-10-13 Rotary braking mechanism, and c-arm x-ray machine and monitor bracket thereof

Country Status (2)

Country Link
CN (1) CN218738969U (en)
WO (1) WO2024040721A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3391822A1 (en) * 2017-04-17 2018-10-24 General Electric Company Method and systems for a compact integrated monitor arm for an imaging system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3391822A1 (en) * 2017-04-17 2018-10-24 General Electric Company Method and systems for a compact integrated monitor arm for an imaging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENERAL ELECTRIC COMPANY: "OEC One(TM) Mobile C-arm X-ray Product Service Manual", 30 September 2021 (2021-09-30), pages 1 - 221, XP093041892, Retrieved from the Internet <URL:https://customer-doc.cloud.gehealthcare.com/copyDoc/6888001-1EN/8> [retrieved on 20230425] *

Also Published As

Publication number Publication date
CN218738969U (en) 2023-03-28

Similar Documents

Publication Publication Date Title
US5802641A (en) Leg holder system for simultaneous positioning in the abduction and lithotomy dimensions
CN106514701B (en) A kind of flexible joint of stiffness variable
JPS5833429B2 (en) Douriyokusadougata Pivottsugite
EP0888084A1 (en) Cammed retractor clamp
US12005023B2 (en) Gait motion assisting apparatus
WO2024040721A1 (en) Rotary braking mechanism, and c-arm x-ray machine and monitor bracket thereof
JPH06508419A (en) small linear actuator
CN110382911B (en) Worm transmission mechanism for wheelchair
WO2023124946A1 (en) Guide wire or catheter controller and surgical robot
CN110381903B (en) Worm transmission mechanism for wheelchair
CN213787762U (en) Rotary joint braking device
CN213499282U (en) Rotary joint braking device with gear pair
JP2020530792A (en) Spindle traction mechanism with a fast adjustable and small automatic lock used in surgery
CN209645060U (en) A kind of the instrument retarder and device system of surgical operation auxiliary robot
CN114810654B (en) Rotating shaft locking structure for pitching of fan and fan with same
CN114027989B (en) Main hand controller with swing driving structure and surgical robot
CN217886165U (en) Medical orthopedic external fixing support
CN112451098B (en) Mechanical arm rotating joint
CN217488682U (en) C-shaped arm X-ray machine and rotation braking mechanism thereof
CN113964777B (en) External cable fixing device of medical portable C arm machine
CN114224501B (en) Clutch control device of master hand controller and surgical robot
CN219183955U (en) Hemostatic nursing device capable of controlling flow rate
CN109453444A (en) A kind of controllable needleless introducing apparatus component of importing depth
CN115192198A (en) Rotary joint and blood vessel interventional operation auxiliary operation system
CN219212901U (en) Rotary device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22797642

Country of ref document: EP

Kind code of ref document: A1