WO2024040468A1 - 混合滤波器及其制备方法、滤波装置 - Google Patents

混合滤波器及其制备方法、滤波装置 Download PDF

Info

Publication number
WO2024040468A1
WO2024040468A1 PCT/CN2022/114511 CN2022114511W WO2024040468A1 WO 2024040468 A1 WO2024040468 A1 WO 2024040468A1 CN 2022114511 W CN2022114511 W CN 2022114511W WO 2024040468 A1 WO2024040468 A1 WO 2024040468A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductive
electrode
connection block
filter
Prior art date
Application number
PCT/CN2022/114511
Other languages
English (en)
French (fr)
Inventor
王立会
李月
魏秋旭
任艳飞
肖月磊
冯昱霖
曹雪
韩基挏
常文博
吴艺凡
安齐昌
李慧颖
周毅
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/114511 priority Critical patent/WO2024040468A1/zh
Priority to CN202280002823.0A priority patent/CN117941256A/zh
Publication of WO2024040468A1 publication Critical patent/WO2024040468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present disclosure relates to but is not limited to the field of semiconductor technology, and in particular, to a hybrid filter, a manufacturing method thereof, and a filtering device.
  • filters can solve the problem of mutual interference during signal transmission and improve spectrum utilization.
  • mobile communication systems have put forward requirements for faster transmission rates, higher spectrum utilization, more device access, and lower delays. Therefore, higher requirements have been placed on filters.
  • the present disclosure provides a hybrid filter, including a first substrate and a second substrate arranged oppositely, with a first space provided between the first substrate and the second substrate. At least one of the substrates is provided with a thin film bulk acoustic resonator, at least one of the first substrate and the second substrate is provided with at least one passive filter, and the thin film bulk acoustic resonator is provided in the first space , and is connected to the passive filter.
  • the passive filter includes a filter inductor and a filter capacitor.
  • the filter inductor is a three-dimensional spiral inductor structure.
  • the first substrate at least includes a first substrate and a first connection block disposed on a side of the first substrate close to the second substrate
  • the second substrate at least includes a second substrate and a second connection block disposed on the side of the second substrate close to the first substrate, the first connection block and the second connection block are connected by bonding, and the first substrate is A first space for accommodating the thin film bulk acoustic resonator is formed between the bottom and the second substrate, and the materials of the first substrate and the second substrate include glass.
  • the first connection block and the second connection block connected by bonding form an annular sealing structure, and the first space is formed by the first liner.
  • the bottom, the second substrate and the annular sealing structure form an air-tight and/or sound-tight sealing space.
  • the thin film bulk acoustic resonator at least includes a cavity, a first electrode disposed on the first substrate, and a second electrode disposed on a side of the first electrode away from the first substrate.
  • a piezoelectric layer and a second electrode provided on the side of the piezoelectric layer away from the first substrate;
  • the cavity is a groove provided on the side of the first substrate close to the second substrate,
  • the cavity is a through groove provided on the first substrate, or the cavity is formed by a surface of the first substrate close to the second substrate, the first electrode and the space enclosed by the piezoelectric layer.
  • the first substrate of the first substrate is provided with n conductive pillars penetrating the first substrate in the thickness direction, and the first substrate is away from the second substrate.
  • (n-1)/2 first connection lines are provided on one side
  • (n-1)/2 second connection lines are provided on the side of the first substrate close to the second substrate.
  • a connecting line is respectively connected to the i-th conductive pillar and the i+1-th conductive pillar among the n conductive pillars
  • the second connecting line is respectively connected to the i+1-th conductive pillar and the i+2-th conductive pillar among the n conductive pillars.
  • the first conductive column among the n conductive columns is connected to the second electrode of the thin film bulk acoustic resonator, the nth conductive column among the n conductive columns is connected to the filter capacitor, the n conductive columns, (n- 1)/2 first connecting lines and (n-1)/2 second connecting lines form a filter inductor with a three-dimensional spiral inductor structure, n is an odd number greater than 1, i is greater than or equal to 1 and less than or equal to n- 2 is a positive integer.
  • the filter capacitor includes a first plate, a second plate, and a dielectric layer disposed between the first plate and the second plate, and the first plate is disposed on the
  • the first substrate is on a side away from the second substrate and is connected to the nth conductive pillar among the n conductive pillars.
  • the dielectric layer is disposed on a side of the first plate away from the first substrate.
  • the second electrode plate is disposed on a side of the dielectric layer away from the first substrate
  • the orthographic projection of the first electrode plate on the first substrate is the same as the orthographic projection of the second electrode plate on the first substrate.
  • the orthographic projections on the first substrate at least partially overlap.
  • the hybrid filter further includes a first terminal and a second terminal, the first terminal being disposed on a side of the first substrate away from the second substrate and connected with the film
  • the first electrode of the bulk acoustic wave resonator is connected, and the second terminal is provided on a side of the dielectric layer away from the first substrate and connected to the second plate.
  • the first substrate is further provided with an electrode conductive pillar penetrating the first substrate in the thickness direction, and the first electrode of the thin film bulk acoustic resonator passes through the electrode conductive pillar. Connect to the first terminal.
  • a first passive filter is provided on the second substrate, or a first passive filter and a second passive filter are provided on the second substrate, and the first passive filter is provided on the second substrate.
  • a passive filter and the second passive filter are arranged on both sides of the thin film bulk acoustic resonator.
  • the first passive filter includes a first filter inductor and a first filter capacitor connected to each other.
  • the second passive filter includes a second filter inductor and a second filter capacitor connected to each other.
  • the second substrate of the second substrate is provided with n conductive pillars penetrating the second substrate in the thickness direction, and the second substrate is away from the first substrate.
  • (n-1)/2 first connection lines are provided on one side
  • (n-1)/2 second connection lines are provided on the side of the second substrate close to the first substrate.
  • a connecting line is respectively connected to the i-th conductive pillar and the i+1-th conductive pillar among the n conductive pillars
  • the second connecting line is respectively connected to the i+1-th conductive pillar and the i+2-th conductive pillar among the n conductive pillars.
  • the first conductive column among the n conductive columns is connected to the second electrode of the thin film bulk acoustic resonator, the nth conductive column among the n conductive columns is connected to the first filter capacitor, the n conductive columns, ( n-1)/2 first connection lines and (n-1)/2 second connection lines constitute the first filter inductor of the three-dimensional spiral inductor structure, n is an odd number greater than 1, i is greater than or equal to 1 and less than Or a positive integer equal to n-2.
  • the first filter capacitor includes a first plate, a second plate, and a dielectric layer disposed between the first plate and the second plate, and the first plate is provided On the side of the second substrate away from the first substrate and connected to the nth conductive pillar, the dielectric layer is provided on the side of the first plate away from the second substrate, The second electrode plate is disposed on a side of the dielectric layer away from the second substrate, and the orthographic projection of the first electrode plate on the second substrate is the same as the orthographic projection of the second electrode plate on the second substrate.
  • the orthographic projections on the second substrate at least partially overlap.
  • the hybrid filter further includes a first terminal and a second terminal, the first terminal being disposed on a side of the second substrate away from the first substrate and connected with the film
  • the first electrode of the bulk acoustic wave resonator is connected, and the second terminal is provided on a side of the dielectric layer away from the second substrate and connected to the second plate.
  • the first substrate further includes a third connection block
  • the second substrate further includes a fourth connection block and an electrode conductive post
  • the third connection block is disposed on the thin film bulk acoustic resonator.
  • the first electrode is close to the side of the second substrate
  • the fourth connection block is disposed on the side of the second substrate close to the first substrate
  • the electrode conductive post is away from the side of the first substrate.
  • One end is connected to the first terminal
  • one end of the electrode conductive post close to the first substrate is connected to the fourth connection block
  • the third connection block and the fourth connection block are connected by bonding
  • the first electrode of the thin film bulk acoustic resonator is connected to the first terminal through the third connection block, the fourth connection block and the electrode conductive post.
  • the first substrate further includes a fifth connection block
  • the second substrate further includes a sixth connection block
  • the fifth connection block is disposed on the second electrode of the thin film bulk acoustic resonator.
  • the sixth connection block is disposed on a side of the second substrate close to the first substrate and is connected to the first conductive pillar among the n conductive pillars.
  • the fifth connection block and the sixth connection block are connected by bonding, so that the second electrode of the thin film bulk acoustic resonator is connected to the first filter inductor through the fifth connection block and the sixth connection block. connect.
  • the second substrate of the second substrate is provided with n+m conductive pillars penetrating the second substrate in the thickness direction, and the second substrate is away from the first substrate.
  • One side of the substrate is provided with (n-1)/2 first connection lines and (m-1)/2 third connection lines
  • the side of the second substrate close to the first substrate is provided with ( n-1)/2 second connection lines and (m-1)/2 fourth connection lines, n conductive pillars, (n-1)/2 first connection lines and (n-1)/2
  • Two second connecting lines are arranged on one side of the thin film bulk acoustic resonator, and m conductive pillars, (m-1)/2 third connecting lines and (m-1)/2 fourth connecting lines are arranged on The other side of the thin film bulk acoustic resonator; the first connection lines are respectively connected to the i-th conductive column and the i+1-th conductive column among the n conductive columns, and the second connection lines are respectively connected to the n conductive columns.
  • the i+1th conductive pillar and the i+2th conductive pillar in , the third connection lines are respectively connected to the jth conductive pillar and the j+1th conductive pillar among the m conductive pillars, and the fourth connection lines are respectively connected to The j+1th conductive column and the j+2th conductive column among the m conductive columns, the first conductive column among the n conductive columns is connected to the second electrode of the thin film bulk acoustic resonator, and the j+1th conductive column among the n conductive columns is connected to the second electrode of the thin film bulk acoustic resonator.
  • the nth conductive pillar is connected to the first filter capacitor, the first conductive pillar among the m conductive pillars is connected to the first electrode of the thin film bulk acoustic resonator, and the mth conductive pillar among the m conductive pillars is connected to the first filter capacitor.
  • the second filter capacitor is connected; n conductive pillars, (n-1)/2 first connection lines and (n-1)/2 second connection lines form the first filter inductor of the three-dimensional spiral inductor structure, and m conductive
  • the column, (m-1)/2 third connecting lines and (m-1)/2 fourth connecting lines constitute the second filter inductor of the three-dimensional spiral inductor structure.
  • n is an odd number greater than 1
  • m is greater than 1.
  • i is a positive integer greater than or equal to 1 and less than or equal to n-2
  • j is a positive integer greater than or equal to 1 and less than or equal to m-2.
  • the first filter capacitor includes a first plate, a second plate, and a dielectric layer disposed between the first plate and the second plate
  • the second filter capacitor includes A third electrode plate, a fourth electrode plate and a dielectric layer arranged between the third electrode plate and the fourth electrode plate
  • the first electrode plate and the third electrode plate are arranged on the second substrate
  • the first electrode plate is connected to the n-th conductive pillar among the n conductive pillars
  • the third electrode plate is connected to the m-th conductive pillar among the m conductive pillars
  • the dielectric layer is disposed on the side of the first electrode plate and the third electrode plate away from the second substrate, and the second electrode plate and the fourth electrode plate are disposed on the side of the dielectric layer away from the second substrate.
  • the orthographic projection of the first plate on the second substrate at least partially overlaps with the orthographic projection of the second plate on the second substrate, and the third The orthographic projection of the electrode plate on the second substrate at least partially overlaps the orthographic projection of the fourth electrode plate on the second substrate.
  • the hybrid filter further includes a first terminal and a second terminal, the first terminal and the second terminal being disposed on a side of the dielectric layer away from the second substrate, the The first terminal is connected to the fourth electrode plate, and the second terminal is connected to the second electrode plate.
  • the first substrate further includes a third connection block
  • the second substrate further includes a fourth connection block
  • the third connection block is disposed on the first electrode of the thin film bulk acoustic resonator.
  • the fourth connection block is disposed on a side of the second substrate close to the first substrate and is connected to the first conductive pillar among the m conductive pillars.
  • the third connection block and the fourth connection block are connected by bonding, so that the first electrode of the thin film bulk acoustic resonator is connected to the second filter inductor through the third connection block and the fourth connection block. connect.
  • the first substrate further includes a fifth connection block
  • the second substrate further includes a sixth connection block
  • the fifth connection block is disposed on the second electrode of the thin film bulk acoustic resonator.
  • the sixth connection block is disposed on a side of the second substrate close to the first substrate and is connected to the first conductive pillar among the n conductive pillars.
  • the fifth connection block and the sixth connection block are connected by bonding, so that the second electrode of the thin film bulk acoustic resonator is connected to the first filter inductor through the fifth connection block and the sixth connection block. connect.
  • the present disclosure also provides a filtering device, including the aforementioned hybrid filter.
  • the present disclosure also provides a method for preparing a hybrid filter, including:
  • a first substrate and a second substrate are respectively prepared, at least one of the first substrate and the second substrate is provided with a thin film bulk acoustic resonator, and at least one of the first substrate and the second substrate is provided with at least one passive Filter, the passive filter includes a filter inductor and a filter capacitor, the filter inductor is a three-dimensional spiral inductor structure;
  • a first space is formed between the opposed first substrate and the second substrate, and the thin film bulk acoustic resonator is disposed in the first space and connected to the passive filter.
  • Figure 1 is a schematic structural diagram of a hybrid filter according to an exemplary embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a cavity pattern formed in a hybrid filter of the present disclosure
  • Figure 3 is a schematic diagram after forming a sacrificial layer pattern in a hybrid filter of the present disclosure
  • Figure 4 is a schematic diagram after forming a first conductive layer pattern in a hybrid filter of the present disclosure
  • Figure 5 is a schematic diagram after forming a piezoelectric layer pattern in a hybrid filter of the present disclosure
  • Figure 6 is a schematic diagram after forming a second conductive layer pattern in a hybrid filter of the present disclosure
  • Figure 7 is a schematic diagram after releasing the sacrificial layer in a hybrid filter of the present disclosure
  • Figure 8 is a schematic diagram after forming a first bonding layer pattern in a hybrid filter of the present disclosure
  • Figure 9 is a schematic diagram after forming multiple through hole patterns in a hybrid filter of the present disclosure.
  • Figure 10 is a schematic structural diagram of a through hole according to an exemplary embodiment of the present disclosure.
  • Figure 11 is a schematic diagram after forming a conductive pillar pattern in a hybrid filter of the present disclosure
  • Figure 12 is a schematic diagram after forming a third conductive layer pattern in a hybrid filter of the present disclosure.
  • Figure 13 is a schematic diagram after forming a dielectric layer pattern in a hybrid filter of the present disclosure
  • Figure 14 is a schematic diagram after forming a fourth conductive layer pattern in a hybrid filter of the present disclosure.
  • Figure 15 is a schematic diagram after forming a second bonding layer pattern in a hybrid filter of the present disclosure
  • Figure 16 is an equivalent circuit diagram of a hybrid filter according to an exemplary embodiment of the present disclosure.
  • Figure 17 is a schematic structural diagram of another hybrid filter according to an exemplary embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of yet another hybrid filter according to an exemplary embodiment of the present disclosure.
  • Figure 19 is a schematic structural diagram of yet another hybrid filter according to an exemplary embodiment of the present disclosure.
  • Figure 20 is a schematic structural diagram of yet another hybrid filter according to an exemplary embodiment of the present disclosure.
  • the scale of the drawings in this disclosure can be used as a reference in actual processes, but is not limited thereto.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, and the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the hybrid filter and the number of sub-pixels in each pixel are not limited to the numbers shown in the figure.
  • the drawings described in this disclosure are only structural schematic diagrams, and one mode of this disclosure is not limited to The shapes or numerical values shown in the drawings.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • electrical connection includes a case where constituent elements are connected together through an element having some electrical effect.
  • component having some electrical function There is no particular limitation on the “component having some electrical function” as long as it can transmit and receive electrical signals between the connected components.
  • elements having some electrical function include not only electrodes and wiring, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements with various functions.
  • parallel refers to a state in which the angle formed by two straight lines is -10° or more and 10° or less. Therefore, it also includes a state in which the angle is -5° or more and 5° or less.
  • vertical refers to a state where the angle formed by two straight lines is 80° or more and 100° or less, and therefore includes an angle of 85° or more and 95° or less.
  • film and “layer” may be interchanged.
  • conductive layer may sometimes be replaced by “conductive film.”
  • insulating film may sometimes be replaced by “insulating layer”.
  • triangles, rectangles, trapezoids, pentagons or hexagons in this specification are not strictly speaking. They can be approximate triangles, rectangles, trapezoids, pentagons or hexagons, etc. There may be some small deformations caused by tolerances. There can be leading angles, arc edges, deformations, etc.
  • RF filters are a core component of Radio Frequency (RF) front-end chips in wireless communication equipment, and acoustic wave resonators based on piezoelectric induction are the basic elements that constitute RF filters.
  • Acoustic wave resonators based on piezoelectric induction are mainly divided into surface acoustic wave resonators (Surface Acoustic Wave Resonator, referred to as SAWR) and bulk acoustic wave resonators (Bulk Acoustic Wave Resonator, referred to as BAWR).
  • SAWR Surface Acoustic Wave Resonator
  • BAWR Bulk Acoustic Wave Resonator
  • the bulk acoustic wave resonator has low insertion loss and high quality.
  • Thin film bulk acoustic resonators have the characteristics of high quality factor value (Q value), high operating frequency, large power capacity, low loss and small size.
  • the Q value is the quality factor value of the resonator, which is defined as the center frequency divided by the resonator 3dB. bandwidth.
  • the passband bandwidth of the film bulk acoustic resonator is limited.
  • the non-acoustic filter can use a passive filter (also called an LC filter)
  • Thin film bulk acoustic resonators can improve the roll-off coefficient, and passive filters can provide wider bandwidth.
  • the thin film bulk acoustic resonator and passive filter in the existing hybrid filter are separate devices, and the two are combined together through packaging, etc., resulting in a larger size of the hybrid filter and greater parasitic effects.
  • the existing thin film bulk acoustic resonator uses silicon material as the substrate. Due to the large positive loss angle of the silicon substrate itself, the conductivity and parasitic capacitance of the silicon substrate, the Q value of the thin film bulk acoustic resonator is too large. , the insertion loss is relatively large, which to a certain extent restricts the overall performance of the thin film bulk acoustic resonator in the high-frequency field.
  • the present disclosure provides an FBAR-LC hybrid filter, including a first substrate and a second substrate arranged oppositely, with a first space provided between the first substrate and the second substrate, and the first substrate and the second substrate. At least one of the substrates is provided with a thin film bulk acoustic resonator, at least one of the first substrate and the second substrate is provided with at least one passive filter, and the thin film bulk acoustic resonator is provided in the first space , and is connected to the passive filter.
  • the passive filter includes a filter inductor and a filter capacitor.
  • the filter inductor is a three-dimensional spiral inductor structure.
  • the first substrate at least includes a first substrate and a first connection block disposed on a side of the first substrate close to the second substrate
  • the second substrate at least includes a second substrate and a second connection block disposed on the side of the second substrate close to the first substrate, the first connection block and the second connection block are connected by bonding, and the first substrate is A first space for accommodating the thin film bulk acoustic resonator is formed between the bottom and the second substrate.
  • the material of the first and second substrates includes glass.
  • the first connection block and the second connection block connected by bonding form an annular sealing structure, and the first space is formed by the first liner.
  • the bottom, the second substrate and the annular sealing structure form an air-tight and/or sound-tight sealing space.
  • the thin film bulk acoustic resonator at least includes a cavity, a first electrode disposed on the first substrate, and a second electrode disposed on a side of the first electrode away from the first substrate.
  • a piezoelectric layer and a second electrode provided on the side of the piezoelectric layer away from the first substrate;
  • the cavity is a groove provided on the side of the first substrate close to the second substrate,
  • the cavity is a through groove provided on the first substrate, or the cavity is formed by a surface of the first substrate close to the side of the second substrate, the first electrode and the space enclosed by the piezoelectric layer.
  • a passive filter is provided on the first substrate, and the passive filter includes a filter inductor and a filter capacitor connected to each other.
  • a first passive filter is provided on the second substrate, and the first passive filter includes a first filter inductor and a first filter capacitor connected to each other.
  • a first passive filter and a second passive filter are provided on the second substrate, and the first passive filter and the second passive filter are provided On both sides of the thin film bulk acoustic resonator, the first passive filter includes a first filter inductor and a first filter capacitor connected to each other, and the second passive filter includes a second filter inductor connected to each other. and a second filter capacitor.
  • FIG. 1 is a schematic structural diagram of a hybrid filter according to an exemplary embodiment of the present disclosure, which is a single capacitor and inductor structure.
  • the main structure of the hybrid filter in this exemplary embodiment may include a first substrate 100 and a second substrate 200 that are oppositely arranged. The first substrate 100 and the second substrate 200 are fixed together to form a first space 300 .
  • a thin film bulk acoustic wave resonator 30 is provided on the first substrate 100
  • a passive filter 40 is provided on the second substrate 200 .
  • the thin film bulk acoustic wave resonator 30 is located in the first space 300 and is connected to the passive filter 40 .
  • the passive filter 40 may at least include a filter inductor and a filter capacitor, and the filter inductor may be a three-dimensional spiral inductor structure.
  • the first substrate 100 may at least include the first substrate 10 and the first connection block 31 disposed on a side of the first substrate 10 close to the second substrate 200
  • the second substrate 200 may at least include a second The substrate 20 and the second connection block 32 provided on the side of the second substrate 20 close to the first substrate 100.
  • the first connection block 31 and the second connection block 32 are fixed together by bonding.
  • a first space 300 for accommodating the thin film bulk acoustic resonator 30 is formed between 10 and the second substrate 20 .
  • the first connection block 31 and the second connection block 32 connected by bonding may form an annular sealing structure, and the first space 300 is formed by the first liner.
  • the bottom 10, the second substrate 20 and the annular sealing structure form an airtight and/or acoustically sealed sealed space.
  • materials of the first substrate 10 and the second substrate 20 may include glass.
  • the first substrate 10 may include a first side surface close to the second substrate 20 and a second side surface away from the second substrate 20
  • the second substrate 20 may include a first side surface close to the first substrate 10 and a fourth side surface on the side away from the first substrate 10 .
  • the thin film bulk acoustic resonator 30 may be disposed on the first side surface of the first substrate 10 , and the thin film bulk acoustic resonator 30 may at least include the first electrode 11 disposed on the first substrate 10 , the piezoelectric layer 13 arranged on the side of the first electrode 11 away from the first substrate, and the second electrode 12 arranged on the side of the piezoelectric layer 13 away from the first substrate, the first electrode 11 is on the first substrate 10
  • the orthographic projection of the piezoelectric layer 13 on the first substrate 10 and the orthographic projection of the second electrode 12 on the first substrate 10 have a first overlapping area.
  • the first side surface of the first substrate 10 is provided with a cavity 91 , and the first electrode 11 covers at least a portion of the cavity 91 .
  • the cavity 91 may be a groove provided on a side surface of the first substrate 10 close to the second substrate 200 to form a concave cavity, where the first electrode 11 , the piezoelectric layer 13 and the second The first overlapping area of the electrodes 12 at least partially overlaps the orthographic projection of the cavity 91 on the first substrate 10 .
  • the filter inductor of the three-dimensional spiral inductor structure may be disposed on the second substrate 200 , and the filter inductor may include at least a first conductive pillar 41 , a second conductive pillar 42 , a third conductive pillar 43 , and a first connection line. 51 and the second connection line 52.
  • the second substrate 20 may be provided with first through holes, second through holes and third through holes penetrating the second substrate 20 in the thickness direction.
  • the conductive pillar 42 and the third conductive pillar 43 are respectively disposed in the first through hole, the second through hole and the third through hole.
  • the first connection line 51 can be disposed on the fourth side surface of the second substrate 20, and respectively Connected to one end of the first conductive pillar 41 and the second conductive pillar 42 away from the first substrate 10
  • the second connection line 52 may be disposed on the third side surface of the second substrate 20 and connected to the second conductive pillar 42 respectively. It is connected to one end of the third conductive pillar 43 close to the first substrate 10.
  • the first conductive pillar 41, the first connection line 51, the second conductive pillar 42, the second connection line 52 and the third conductive pillar 43 are connected in sequence to form a three-dimensional structure. Filter inductor with spiral inductor structure.
  • the filter capacitor of the parallel plate capacitor structure may be disposed on the second substrate 200 , and the filter capacitor may at least include a first plate 61 , a second plate 62 , and a filter capacitor disposed on the first plate 61 and the second plate 62 .
  • the first electrode plate 61 may be disposed on the fourth side surface of the second substrate 20 and connected to an end of the third conductive pillar 43 away from the first substrate 10 , and the dielectric layer 22 may be disposed on The first electrode plate 61 is on the side away from the second substrate 20 .
  • the second electrode plate 62 can be disposed on the side of the dielectric layer 22 away from the second substrate 20 .
  • the first electrode plate 61 is on the front side of the second substrate 20 .
  • the projection at least partially overlaps with the orthographic projection of the second plate 62 on the second substrate 20 to form a filter capacitor of a parallel plate capacitor structure.
  • the second substrate 200 may further include the first terminal 71 and the second terminal 72 of the hybrid filter.
  • the first terminal 71 may be provided on the fourth side surface of the second substrate 20 and connected to the first electrode 11 of the thin film bulk acoustic resonator 30 .
  • the second terminal 72 may be disposed on a side of the dielectric layer 22 away from the second substrate 20 and connected to the second plate 62 of the passive filter 40 .
  • the first connection line 51 , the first plate 61 and the first terminal 71 may be arranged on the same layer and formed simultaneously through the same process.
  • the second electrode plate 62 and the second terminal 72 may be arranged on the same layer and be an integral structure connected to each other.
  • the first substrate 100 may further include a third connection block 33
  • the second substrate 200 may further include a fourth connection block 34 and an electrode conductive post 44 .
  • the second substrate 20 may be provided with a fourth through hole penetrating the second substrate 20 in the thickness direction.
  • the electrode conductive pillar 44 is disposed in the fourth through hole. An end of the electrode conductive pillar 44 away from the first substrate 10 is connected to the second substrate 20 .
  • the first terminal 71 is connected.
  • the fourth connection block 34 may be disposed on the third side surface of the second substrate 20 and connected to an end of the electrode conductive post 44 close to the first substrate 10 .
  • the third connection block 33 can be disposed on the side of the first electrode 11 away from the first substrate 10 and is fixedly connected to the fourth connection block 34 by bonding, so that the first electrode 11 of the thin film bulk acoustic resonator 30 passes through the third connection block 33 .
  • the three connection blocks 33 , the fourth connection block 34 and the electrode conductive posts 44 are connected to the first terminal 71 .
  • the first substrate 100 may further include a fifth connection block 35
  • the second substrate 200 may further include a sixth connection block 36 .
  • the sixth connection block 36 may be disposed on the third side surface of the second substrate 20 and connected to an end of the first conductive pillar 41 close to the first substrate 10 .
  • the fifth connection block 35 may be disposed on a side of the second electrode 12 away from the first substrate 10 and fixedly connected to the sixth connection block 36 by bonding, so that the second electrode 12 of the thin film bulk acoustic resonator 30 passes through the third connection block 35 .
  • the fifth connection block 35 and the sixth connection block 36 are connected to the filter inductor of the passive filter 40 .
  • the first connection block 31 , the third connection block 33 and the fifth connection block 35 may be arranged on the same layer and formed simultaneously through the same process.
  • the second connection block 32 , the fourth connection block 34 , the sixth connection block 36 and the second connection line 52 may be arranged on the same layer and formed simultaneously through the same process.
  • the number of conductive pillars and connecting wires included in the filter inductor can be set according to parameters such as inductance (such as the number of coil turns).
  • the second substrate 20 may be provided with n through holes penetrating the second substrate 20 in the thickness direction, and n conductive pillars are respectively disposed in the n through holes.
  • the n conductive pillars may Arrange regularly along the set direction.
  • the side of the second substrate 20 away from the first substrate 100 may be provided with (n-1)/2 first connection lines 51, and the side of the second substrate 20 close to the first substrate 100 may be provided with (n-1)/2 first connection lines 51.
  • the plurality of first connection lines 51 can respectively connect the i-th conductive column and the i+1-th conductive column among the n conductive columns
  • the plurality of second connection lines 52 can respectively connect n
  • n is an odd number greater than 1
  • i is a positive integer greater than or equal to 1 and less than or equal to n-2.
  • the first conductive column among the n conductive columns may be connected to the second electrode 12 of the thin film bulk acoustic resonator, and the nth conductive column among the n conductive columns may be connected to the first plate of the filter capacitor. 61 connections.
  • the following is an exemplary description through the preparation process of the hybrid filter.
  • the "patterning process" mentioned in this disclosure includes processes such as coating of photoresist, mask exposure, development, etching, and stripping of photoresist for metal materials, inorganic materials, or transparent conductive materials.
  • organic materials it includes Processes such as coating of organic materials, mask exposure and development.
  • Deposition can use any one or more of sputtering, evaporation, and chemical vapor deposition.
  • Coating can use any one or more of spraying, spin coating, and inkjet printing.
  • Etching can use dry etching and wet etching. Any one or more of them are not limited by this disclosure.
  • Thin film refers to a thin film produced by depositing, coating or other processes of a certain material on a substrate. If the "thin film” does not require a patterning process during the entire production process, the “thin film” can also be called a “layer.” If the "thin film” requires a patterning process during the entire production process, it will be called a “thin film” before the patterning process and a “layer” after the patterning process. The “layer” after the patterning process contains at least one "pattern”. “A and B are arranged on the same layer” mentioned in this disclosure means that A and B are formed simultaneously through the same patterning process, and the “thickness” of the film layer is the size of the film layer in the direction perpendicular to the hybrid filter.
  • the orthographic projection of B is within the range of the orthographic projection of A
  • the orthographic projection of A includes the orthographic projection of B means that the boundary of the orthographic projection of B falls within the orthographic projection of A. within the bounds of A, or the bounds of the orthographic projection of A overlap with the bounds of the orthographic projection of B.
  • the preparation process of the hybrid filter according to the exemplary embodiment of the present disclosure may include at least three parts, namely first substrate preparation, second substrate preparation and bonding process. There is no order requirement for the preparation of the first substrate and the preparation of the second substrate, and they can be carried out at the same time, while the bonding process needs to be carried out after the preparation of the first substrate and the preparation of the second substrate are completed.
  • the three parts of the preparation process are described below.
  • the preparation process of the first substrate may include the following operations.
  • preparing the first substrate pattern may include: first providing the first substrate 10, and then using a patterning process to form a cavity 91 on the first substrate 10, as shown in FIG. 2 .
  • the first substrate 10 may include a first side surface and a second side surface that are away from each other.
  • the first side surface may be a surface close to a side of the second substrate, and the second side surface may be a surface away from the second substrate.
  • the cavity 91 may be disposed on the first side surface.
  • forming the cavity 91 on the first substrate 10 using a patterning process may include: first coating a layer of photoresist on the first side surface of the first substrate 10 and using a mask. The photoresist is exposed, and after development, an exposed area and an unexposed area are formed. The photoresist in the exposed area is removed, exposing the first side surface of the first substrate 10 , and the unexposed area is still covered with photoresist. The first substrate 10 in the exposure area is etched using a dry etching process or a wet etching process, the photoresist is peeled off, and a cavity 91 is formed on the first side surface of the first substrate 10. The cavity 91 is configured as a thin film body. Acoustic reflective structure of acoustic resonator.
  • the material of the first substrate may be glass, such as silicon oxide, silicon dioxide, or photosensitive glass.
  • the depth h of the cavity 91 may be approximately 0.5 ⁇ m to 2 ⁇ m.
  • the shape of the cavity 91 may be any one or more of the following: rectangular, pentagonal, hexagonal, circular, and elliptical.
  • the shape of the cavity 91 may be square, and the side length of the cavity 91 may be approximately 50 ⁇ m*50 ⁇ m to 500 ⁇ m*500 ⁇ m.
  • forming the sacrificial layer pattern may include: first depositing a sacrificial film on the first side surface on the first substrate on which the foregoing pattern is formed, and the thickness of the sacrificial film may be greater than the depth of the cavity 91, so that the sacrificial film The cavity 91 is completely filled, and then the sacrificial film is thinned and polished using chemical mechanical polishing (CMP) to remove the sacrificial film outside the cavity 91 and within the cavity 91 of the first substrate 10 A sacrificial layer 92 is formed, and the surface of the sacrificial layer 92 is flush with the first side surface of the first substrate 10 , as shown in FIG. 3 .
  • CMP chemical mechanical polishing
  • the thickness of the sacrificial film may be about 0.6 ⁇ m to 2.2 ⁇ m, that is, the thickness of the sacrificial film is about 0.1 ⁇ m to 0.2 ⁇ m greater than the depth h of the cavity 91 to facilitate the subsequent thinning process.
  • the sacrificial layer 92 may be made of amorphous silicon, silicon oxide, phosphosilicate glass, or other materials, and may be deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the surface roughness of sacrificial layer 92 may be less than or equal to 1 nm.
  • Form a first conductive layer pattern may include: depositing a first conductive film on the first substrate on which the foregoing pattern is formed, patterning the first conductive film using a patterning process, and depositing a first conductive film on the first substrate.
  • a first conductive layer pattern is formed on the first side surface of the bottom 10 , as shown in FIG. 4 .
  • the first conductive layer may include at least the first electrode 11 , the first electrode 11 may cover at least a portion of the sacrificial layer 92 and expose at least a portion of the sacrificial layer 92 , and the first electrode 11 may be disposed on the first substrate.
  • the orthographic projection on the first substrate partially overlaps with the orthographic projection of the sacrificial layer 92 on the first substrate.
  • the thickness of the first electrode 11 may be approximately 0.1 ⁇ m to 0.3 ⁇ m.
  • the material of the first electrode 11 may be a metal material such as tungsten (W) or molybdenum (Mo), and may be deposited by physical vapor deposition.
  • a lift-off process may also be used to form the first conductive layer pattern.
  • a photoresist is first coated on the first substrate, exposed and developed to form a photoresist pattern, then a first conductive film is deposited, and then the photoresist pattern and the first conductive film on the photoresist pattern are peeled off.
  • a first conductive layer including the first electrode 11 is formed on the first substrate.
  • forming the piezoelectric layer pattern may include: depositing a piezoelectric film on the first substrate on which the foregoing pattern is formed, patterning the piezoelectric film using a patterning process, and forming the piezoelectric layer on the first substrate 10 and A piezoelectric layer 13 is formed on the first electrode 11, as shown in FIG. 5 .
  • a portion of the piezoelectric layer 13 is disposed on the surface of the first electrode 11 on a side away from the first substrate 10 , and another portion of the piezoelectric layer 13 is disposed on the surface of the first substrate 10 , and The orthographic projection of the piezoelectric layer 13 on the first substrate at least partially overlaps the orthographic projection of the sacrificial layer 92 on the first substrate.
  • the material of the piezoelectric layer 13 can be aluminum nitride, zinc oxide, lead zirconate titanate (PZT) or potassium sodium niobate (KNN), etc., and can be deposited by physical vapor deposition to form a low
  • the stress piezoelectric layer, the piezoelectric layer 13, is the core film layer of the thin film bulk acoustic wave resonator, and is configured to generate resonance under the action of high-frequency AC voltage of the first electrode and the second electrode, thereby realizing the resonator function.
  • forming the second conductive layer pattern may include: depositing a second conductive film on the first substrate on which the foregoing pattern is formed, patterning the second conductive film using a patterning process, and depositing a second conductive film on the first substrate.
  • a second conductive layer pattern is formed on the bottom 10 and the piezoelectric layer 13, as shown in Figure 6.
  • the second conductive layer may at least include a second electrode 12 , a part of the second electrode 12 being disposed on a surface of the piezoelectric layer 13 away from the first substrate 10 , and another part of the second electrode 12 Disposed on the surface of the first substrate 10, the orthographic projection of the second electrode 12 on the first substrate at least partially overlaps the orthographic projection of the piezoelectric layer 13 on the first substrate.
  • the orthographic projection of the first electrode 11 on the first substrate, the orthographic projection of the piezoelectric layer 13 on the first substrate, and the orthographic projection of the second electrode 12 on the first substrate have a third An overlapping area, the first overlapping area overlaps with the orthographic projection of the sacrificial layer 92 on the first substrate.
  • the thickness of the second electrode 12 may be approximately 0.1 ⁇ m to 0.3 ⁇ m.
  • the material of the second electrode 12 may be a metal material such as tungsten (W) or molybdenum (Mo), and may be deposited by physical vapor deposition.
  • a lift-off process may also be used to prepare the second electrode pattern.
  • forming the cavity pattern may include: using a dry etching process or a wet etching process to etch away the sacrificial layer (ie, release the sacrificial layer) on the first substrate on which the foregoing pattern is formed, to form the cavity 91, As shown in Figure 7.
  • the first electrode 11 , the second electrode 12 and the piezoelectric layer 13 may constitute a thin film bulk acoustic resonator.
  • the first overlapping area where the first electrode 11 , the second electrode 12 and the piezoelectric layer 13 overlap is partially placed above the cavity 91 of the first substrate 10 , and the intersection generated by the first electrode 11 and the second electrode 12 Under the action of a variable electric field, the body and surface of the piezoelectric layer 13 of the film structure will generate longitudinal and transverse elastic vibrations of bulk acoustic waves, converting electrical energy into sound waves to form resonance.
  • the thin film bulk acoustic resonator may include a fixed part and a cantilever part, the fixed part is fixedly connected to the surface of the first substrate 10 , the cantilever part is disposed above the cavity 91 , and the cantilever part exposes part of the cavity 91.
  • forming the first bonding layer pattern may include: depositing a first bonding film on the first substrate on which the foregoing pattern is formed, patterning the first bonding film using a patterning process, and forming The first bonding layer pattern is shown in Figure 8.
  • the first bonding layer may include at least a first connection block 31 , a third connection block 33 , and a fifth connection block 35 .
  • the first connection block 31 may be disposed on the first side surface of the first substrate 10 and located at an edge of the first substrate 10 , and the first connection block 31 is configured to communicate with the second connection block 31 . They are bonded together to form an annular sealing structure, so that the first substrate, the second substrate and the annular sealing structure enclose a first space that is airtight and/or acoustically sealed.
  • the shape of the first connection block 31 may be a ring shape extending along the edge of the first substrate 10 , and on a plane perpendicular to the first substrate
  • the cross-sectional shape of the first connecting block 31 may be a rectangular shape or a trapezoidal shape.
  • the third connection block 33 may be disposed on a side of the first electrode 11 away from the first substrate 10 , and the third connection block 33 is configured to be fixedly bonded with the fourth connection block by bonding. , realizing the connection between the first electrode 11 and the first terminal of the hybrid filter.
  • the shape of the third connection block 33 may be any one or more of the following: triangle, rectangle, pentagon, hexagon, circle. and elliptical.
  • the cross-sectional shape of the third connecting block 33 may be rectangular or trapezoidal.
  • the fifth connection block 35 may be disposed on a side of the second electrode 12 away from the first substrate 10 , and the fifth connection block 35 is configured to be fixedly bonded with the sixth connection block by bonding. , realizing the connection between the second electrode 12 and the filter inductor of the hybrid filter.
  • the shape of the fifth connection block 35 may be any one or more of the following: triangle, rectangle, pentagon, hexagon, circle and elliptical.
  • the cross-sectional shape of the fifth connecting block 35 may be rectangular or trapezoidal.
  • the material of the first bonding layer may be a composite layer of titanium (Ti) and gold (Au), or a composite layer of chromium (Cr) and gold (Au), or physical vapor deposition may be used. way of deposition.
  • the thickness of the gold layer in the first bonding layer may be approximately 0.02 ⁇ m to 0.05 ⁇ m, and the thickness of the titanium layer or the chromium layer in the first bonding layer may be approximately 1.5 ⁇ m to 2.0 ⁇ m.
  • a lift-off process may also be used to form the first bonding layer pattern.
  • chemical mechanical polishing may be used to polish the surfaces of the first connection block 31 , the third connection block 33 and the fifth connection block 35 away from the first substrate. Polish so that the surfaces of the first connection block 31 , the third connection block 33 and the fifth connection block 35 are flush and the first connection block 31 , the third connection block 33 and the fifth connection block 35 are away from the side of the first substrate.
  • the surface roughness of the surface may be less than or equal to 1 nm.
  • the preparation process of the second substrate may include the following operations.
  • preparing the second substrate pattern may include: first providing the second substrate 20, and then forming a plurality of via hole patterns on the second substrate 20, as shown in FIG. 9 .
  • the second substrate 20 may include a third side surface and a fourth side surface that are away from each other.
  • the third side surface may be a surface close to the first substrate 100
  • the fourth side surface may be a surface away from the first substrate 100 .
  • the plurality of through holes may be a through hole structure penetrating the third side surface and the fourth side surface.
  • the plurality of through hole patterns may include at least first through holes 71 , second through holes 72 , third through holes 73 , and fourth through holes 74 .
  • the fourth through hole 74 may be located on one side of the second substrate 20 (the left side in FIG. 9 ), and the first through hole 71 , the second through hole 72 and the third through hole 73 may be located on one side of the second substrate 20 On the other side (the right side in FIG. 9 ), the first through hole 71 , the second through hole 72 and the third through hole 73 are sequentially arranged along the direction away from the fourth through hole 74 .
  • the structures of the first through hole 71 to the fourth through hole 74 may be substantially the same, and they are all through hole structures penetrating the second substrate 20 in the thickness direction.
  • the cross-sectional shapes of the first to fourth through holes 71 to 74 may be circular, and the diameter of the circular through holes may be approximately 80 ⁇ m to 100 ⁇ m.
  • the cross-sectional shapes of the first to fourth through holes 71 to 74 may be columnar.
  • the first through hole 71 is configured to accommodate a subsequently formed first conductive pillar
  • the second through hole 72 is configured to accommodate a subsequently formed second conductive pillar
  • the third through hole 73 is configured to accommodate a subsequently formed third conductive pillar.
  • Three conductive posts, and the fourth through hole 74 is configured to accommodate subsequently formed electrode conductive posts.
  • the material of the second substrate may be glass, such as silicon oxide, silicon dioxide, or photosensitive glass.
  • the diameter of each through hole may be the same along the thickness direction of the second substrate, or may be different.
  • FIG. 10 is a schematic structural diagram of a through hole according to an exemplary embodiment of the present disclosure. As shown in FIG. 10 , on a plane perpendicular to the second substrate, the diameter of the through hole close to the surface of the second substrate 20 is larger than the diameter of the through hole far away from the surface of the second substrate 20 , forming an hourglass-shaped through hole. hole.
  • the angle ⁇ between the sidewall of the through hole and the surface of the second substrate 20 may be approximately 80° to 88°.
  • a patterning process may be used to form the plurality of via holes on the second substrate 20, or a laser drilling process may be used.
  • forming at least one through hole on the second substrate using a patterning process may include: first coating a layer of light on the first side surface of the second substrate. Resist, the photoresist is exposed and developed to form an exposed area and an unexposed area, the photoresist in the exposed area is removed, exposing the first side surface of the second substrate, and the unexposed area is still covered with photoresist .
  • the second substrate in the exposure area is etched using a dry etching process or a wet etching process, and a plurality of first blind holes are formed on the side surface of the second substrate.
  • the cross-sectional shape of the first blind holes may be a trapezoid shape.
  • a layer of photoresist is coated on the second side surface of the second substrate, and the photoresist is exposed and developed to form an exposed area and an unexposed area.
  • the photoresist in the exposed area is removed, exposing the second On the second side surface of the second substrate, the unexposed area is still covered with photoresist.
  • the second substrate in the exposure area is etched using a dry etching process or a wet etching process, and a plurality of second blind holes are formed on the side surface of the second substrate.
  • the cross-sectional shape of the second blind holes may be a trapezoid shape.
  • the blind hole is connected with the first blind hole to form an hourglass-shaped through hole.
  • using a laser drilling process to form at least one through hole on the second substrate may include: first using a laser to irradiate the second substrate with a laser beam that is vertically incident
  • the first side surface of the second substrate is formed with a first blind hole in the shape of an inverted truncated cone on the side surface of the second substrate, and then a laser is used to illuminate the second side surface of the second substrate with a laser beam that is vertically incident.
  • a second blind hole in the shape of an inverted truncated cone is formed on the side surface of the substrate.
  • the second blind hole is connected with the first blind hole to form an hourglass-shaped through hole.
  • the higher energy laser photons ionize the atoms in the second substrate and eject them out of the second substrate.
  • the hole gradually deepens until the first blind hole is formed. and a second blind hole.
  • the type of laser can be continuous laser, pulse laser, etc.
  • the laser wavelength can be about 532nm, 355nm, 266nm, 248nm, 197nm, etc.
  • the pulse width of the laser can be selected from 1fs to 100fs, 1ps to 100ps, 1ns. to 100ns etc.
  • laser drilling methods may include but are not limited to the following two methods.
  • the first method when the diameter of the laser spot is large, the relative position of the laser beam and the second substrate is fixed, and high energy is used to directly hit the second substrate to a preset depth.
  • the second method when the diameter of the laser spot is small, the laser beam scans in a circle on the second substrate. The radius of the circle gradually decreases, the focus point of the spot continues to change, and the focus depth also changes.
  • the second substrate is Base the base to the preset depth.
  • forming the conductive pillar pattern may include: forming a plurality of conductive pillar patterns in a plurality of through holes through a filling process on the second substrate on which the foregoing pattern is formed, as shown in FIG. 11 .
  • the conductive pillar pattern may include at least first conductive pillars 41 , second conductive pillars 42 , third conductive pillars 43 and electrode conductive pillars 44 .
  • the first conductive pillar 41 may be disposed in the first through hole 71 and configured to be connected to the subsequently formed first connection line and the sixth connection block respectively
  • the second conductive pillar 42 may be disposed in the second through hole 72 .
  • the third conductive pillar 43 may be disposed in the third through hole 73 and configured to be connected to the first connection line and the second connection line to be formed subsequently.
  • the electrode conductive pillar 44 may be disposed in the fourth through hole 74 and configured to be connected to the subsequently formed first terminal and the fourth connection block respectively.
  • the structures of the first conductive pillar 41 , the second conductive pillar 42 , the third conductive pillar 43 and the electrode conductive pillar 44 may be substantially the same.
  • Each conductive pillar may include a conductive layer and an adhesive layer located outside the conductive layer, and the adhesive layer is connected to the inner wall of the through hole.
  • the preparation process of the conductive pillar may include: first using physical vapor deposition or chemical vapor deposition to form an adhesion layer on the inner wall of the through hole, and then using an electroplating process to form a conductive layer in the adhesion layer.
  • the adhesion layer may be made of metal materials such as titanium (Ti) or chromium (Cr), and the thickness of the adhesion layer may be approximately 0.02 ⁇ m to 0.05 ⁇ m.
  • the conductive layer may be made of copper (Cu), and the thickness of the conductive layer may be approximately 0.2 ⁇ m to 0.5 ⁇ m.
  • forming the third conductive layer may include: depositing a third conductive film on the fourth side surface on the second substrate on which the foregoing pattern is formed, and patterning the third conductive film through a patterning process, A third conductive layer pattern is formed on the fourth side surface of the second substrate, as shown in FIG. 12 .
  • the third conductive layer pattern may include at least the first connection line 51 , the first plate 61 and the first terminal 71 .
  • the first terminal 71 may be located on one side of the second substrate 20 (the left side in FIG. 9 ), and the first terminal 71 and the electrode conductive post 44 are located at one end of the fourth side surface (away from the fourth side surface). One end of a substrate) is connected, and the first terminal 71 is configured as an input terminal of the hybrid filter.
  • the first electrode plate 61 may be located on the other side of the second substrate 20 (right side in FIG. 9 ), and the first electrode plate 61 and the third conductive pillar 43 may be located on the fourth side surface. One end is connected, and the first plate 61 is configured as a plate (lower plate) of the filter capacitor.
  • the first connection line 51 may be located between the first terminal 71 and the first plate 61 , and the first connection line 51 is located at one end of the fourth side surface and the second conductive post 41 respectively. One end of the post 42 located on the fourth side surface is connected, and the first connection line 51 is configured as a connection line of the filter inductor.
  • the third conductive film may be a composite layer of titanium (Ti) and gold (Au), or may be a composite layer of chromium (Cr) and gold (Au), and may be deposited by physical vapor deposition.
  • the thickness of the gold layer in the third conductive layer may be approximately 0.02 ⁇ m to 0.05 ⁇ m, and the thickness of the titanium layer or the chromium layer in the third conductive layer may be approximately 0.2 ⁇ m to 2.0 ⁇ m.
  • a lift-off process may also be used to prepare the third conductive layer.
  • forming the dielectric layer pattern may include: depositing a capacitive dielectric film on the fourth side surface on the second substrate on which the foregoing pattern is formed, patterning the capacitive dielectric film through a patterning process, and forming a capacitive dielectric film covering the fourth side surface.
  • a connecting line 51 and the dielectric layer 22 pattern of the first plate 61 are shown in FIG. 13 .
  • the orthographic projection of the dielectric layer 22 on the second substrate may include the orthographic projection of the first connection line 51 and the first plate 61 on the second substrate, that is, the dielectric layer 22 completely covers the first The electrode plate 61 and the first connection line 51 .
  • the orthographic projection of the dielectric layer 22 on the second substrate does not overlap with the orthographic projection of the first terminal 71 on the second substrate, that is, the dielectric layer 22 does not cover the first terminal 71 .
  • the material of the dielectric layer 22 may be inorganic insulating materials such as silicon oxide, silicon nitride, aluminum oxide, tantalum oxide, barium titanate, titanium oxide, or lead zirconate titanate, or may be polyimide. (PI) or photosensitive epoxy resin photoresist (such as SU8) and other organic insulating materials.
  • Inorganic insulating materials can use chemical vapor deposition and other methods, and organic insulating materials can use coating and other methods.
  • forming the fourth conductive layer pattern may include: depositing a fourth conductive film on the fourth side surface on the second substrate on which the foregoing pattern is formed, and patterning the fourth conductive film through a patterning process. , forming a fourth conductive layer pattern, as shown in Figure 14.
  • the fourth conductive layer pattern may include at least the second plate 62 and the second terminal 72 .
  • the second electrode plate 62 may be disposed on a side of the dielectric layer 22 away from the second substrate, and the orthographic projection of the second electrode plate 62 on the second substrate is the same as the orthographic projection of the first electrode plate 61 on the second substrate.
  • the orthographic projections on the substrate at least partially overlap, the second plate 62 is configured as another plate (upper plate) of the filter capacitor, the first plate 61, the second plate 62 and the first plate 62 are arranged on the first plate.
  • the dielectric layer 22 between the plate 61 and the second plate 62 may form a filter capacitor of a parallel plate capacitor structure.
  • the second terminal 72 may be disposed on a side of the dielectric layer 22 away from the second substrate, the second terminal 72 is connected to the second plate 62 , and the second terminal 72 is configured to function as a hybrid filter. output terminal.
  • the second plate 62 and the second terminal 72 may be an integral structure connected to each other.
  • the material of the fourth conductive film may be a composite layer of titanium (Ti) and gold (Au), or a composite layer of chromium (Cr) and gold (Au), or physical vapor deposition may be used. deposition.
  • the thickness of the gold layer in the fourth conductive layer may be approximately 0.02 ⁇ m to 0.05 ⁇ m, and the thickness of the titanium layer or the chromium layer in the third conductive layer may be approximately 0.2 ⁇ m to 2.0 ⁇ m.
  • a lift-off process may also be used to prepare the fourth conductive layer.
  • forming the second bonding layer pattern may include: depositing a second bonding film on the third side surface of the second substrate, patterning the second bonding film using a patterning process, forming The second bonding layer pattern is shown in Figure 15.
  • the second bonding layer may include at least a second connection block 32, a fourth connection block 34, a sixth connection block 36, and a second connection line 52.
  • the second connection block 32 may be disposed on the third side surface of the second substrate 10 and located at an edge of the second substrate 20 , and the second connection block 32 is configured to be connected to the first substrate 10 .
  • the first connecting blocks 31 are bonded together to form an annular sealing structure, so that the first substrate, the second substrate and the annular sealing structure form an airtight and/or acoustically sealed first space.
  • the shape of the second connection block 32 may be a ring shape extending along the edge of the second substrate 20.
  • the shape and geometry of the second connection block 32 The parameters may be substantially the same as the shape of the first connection block 31.
  • the cross-sectional shape of the second connection block 32 may be rectangular or trapezoidal.
  • the fourth connection block 34 may be disposed on the third side surface of the second substrate 10 and connected to one end of the electrode conductive post 44 located on the third side surface (an end close to the first substrate), The fourth connection block 34 is configured to be fixedly connected with the third connection block 33 on the first substrate by bonding to realize the connection between the first electrode 11 of the thin film bulk acoustic resonator and the first terminal 71 of the hybrid filter. .
  • the shape of the fourth connection block 34 and the shape and geometric parameters of the third connection block 33 may be substantially the same, and on a plane perpendicular to the second substrate Above, the cross-sectional shape of the fourth connecting block 34 may be a rectangular shape or a trapezoidal shape.
  • the sixth connection block 36 may be disposed on the third side surface of the second substrate 10 and connected to one end of the first conductive pillar 41 located on the third side surface, and the sixth connection block 36 is configured In order to be fixed together with the fifth connection block 35 on the first substrate through bonding, the second electrode 12 of the thin film bulk acoustic resonator is connected to the filter inductor of the hybrid filter.
  • the shape of the sixth connection block 36 and the shape and geometric parameters of the fifth connection block 35 may be substantially the same, and on a plane perpendicular to the second substrate Above, the cross-sectional shape of the sixth connecting block 36 may be a rectangular shape or a trapezoidal shape.
  • the second connection line 52 may be disposed on the third side surface of the second substrate 10 and be located at one end of the third side surface of the second conductive pillar 42 and the third conductive pillar 43 respectively. One end of the three side surfaces is connected, and the second connection line 52 is configured as another connection line of the filter inductor.
  • the first conductive pillar 41, the first connection wire 51, the second conductive pillar 42, the second connection wire 52 and the third conductive pillar 43 connected in sequence may constitute a filter inductor of a three-dimensional spiral inductor structure.
  • One conductive post 41 can be used as the first end of the filter inductor
  • the third conductive post 43 can be used as the second end of the filter inductor.
  • the first end of the filter inductor is connected to the second electrode 12 of the thin film bulk acoustic resonator, and the third conductive post 43 of the filter inductor can be used as the second end of the filter inductor.
  • the two ends are connected to the first plate 61 of the filter capacitor.
  • the disclosed hybrid filter adopts a filter inductor with a three-dimensional spiral inductor structure, which has a higher Q value than the traditional planar spiral inductor, about 1.5 times to 2 times.
  • the performance of the hybrid filter such as out-of-band suppression can be further improved.
  • the material of the second bonding layer may be a composite layer of titanium (Ti) and gold (Au), or a composite layer of chromium (Cr) and gold (Au), or physical vapor deposition may be used. way of deposition.
  • the thickness of the gold layer in the second bonding layer may be approximately 0.02 ⁇ m to 0.05 ⁇ m, and the thickness of the titanium layer or the chromium layer in the second bonding layer may be approximately 0.2 ⁇ m to 2.0 ⁇ m.
  • a lift-off process may also be used to form the second bonding layer pattern.
  • chemical mechanical polishing may be used to move the second connection block 32 , the fourth connection block 34 , the sixth connection block 36 and the second connection line 52 away from the second liner.
  • the surface on the bottom side is polished so that the surfaces of the second connection block 32, the fourth connection block 34, the sixth connection block 36 and the second connection line 52 are flush, and the second connection block 32, the fourth connection block 34,
  • the surface roughness of the sixth connection block 36 and the second connection line 52 on the side surface away from the second substrate may be less than or equal to 1 nm.
  • the bonding process may include the following operations: positioning the prepared first substrate 100 and the second substrate 200 together, and using metal-to-metal diffusion bonding to connect the first connection block 31 and the second substrate 200 .
  • the second connection block 32 , the third connection block 33 , the fourth connection block 34 , the fifth connection block 35 and the sixth connection block 36 are bonded to form an electrical connection structure of the first substrate 100 and the second substrate 200 , as shown in FIG. 1 shown.
  • the metal-to-metal diffusion bonding method may be a gold-gold bonding method.
  • the ring-shaped first connection block 31 and the ring-shaped second connection block 32 are fixed together by bonding to form a ring shape between the first substrate 10 and the second substrate 20
  • the sealing structure is such that the first substrate, the second substrate and the annular sealing structure form an airtight and/or acoustically sealed sealed space, and the thin film acoustic wave resonator is located in the sealed space, and the sealed space can protect the thin film body. Acoustic resonators are not affected by the external environment and external interference.
  • the third connection block 33 and the fourth connection block 34 are fixed together by bonding to realize the connection between the thin film bulk acoustic resonator and the first terminal 71 of the hybrid filter. Since the third connection block 33 is connected to the first electrode 11 of the thin film bulk acoustic resonator, and the fourth connection block 34 is connected to the first terminal 71 through the electrode conductive post 44, the first electrode 11 of the thin film bulk acoustic resonator is connected to the first electrode 11 of the thin film bulk acoustic resonator. The first terminal 71 of the hybrid filter is connected, and an external device can input a voltage signal to the first electrode 11 of the thin film bulk acoustic resonator through the first terminal 71 .
  • the fifth connection block 35 and the sixth connection block 36 are fixed together by bonding to realize the connection between the thin film bulk acoustic resonator and the filter inductor. Since the fifth connection block 35 is connected to the second electrode 12 of the thin film bulk acoustic resonator, and the sixth connection block 36 is connected to the first end of the filter inductor, the connection between the second electrode 12 of the thin film bulk acoustic resonator and the filter inductor is realized. First end connection.
  • the bonding pressure may be about 40 kN to 100 kN, and the bonding temperature may be about 350°C to 450°C.
  • the hybrid filter is an LC filter connected in series on the basis of FBAR, and is an FBAR-LC hybrid filter.
  • FIG 16 is an equivalent circuit diagram of the hybrid filter according to an exemplary embodiment of the present disclosure.
  • the equivalent circuit diagram of the thin film bulk acoustic resonator can adopt the MBVD (Modified Butterworth-Van Dyke) model.
  • MBVD Modified Butterworth-Van Dyke
  • static capacitance Co, dynamic capacitance Cm, dynamic inductance Lm, dielectric loss resistance Ro, mechanical loss resistance Rm and electrode loss resistance Re form a thin film bulk acoustic wave resonator
  • filter inductor L and filter capacitor C form a passive filter.
  • LC filter liquid crystal filter
  • thin film bulk acoustic resonator and passive filter are connected in series between the input and output ends.
  • the integrated hybrid filter chip is integrated
  • the high degree of accuracy not only improves the bandwidth and roll-off coefficient of the hybrid filter, but also minimizes the size of the filter, reduces transmission loss, reduces parasitic effects, and maximizes filtering performance.
  • the present disclosure can increase the quality factor value (Q value) by 1.5 to 2 times compared to a planar spiral inductor, which can further improve the out-of-band suppression and other performance of the hybrid filter.
  • the present disclosure can not only improve the Q value of the filter, reduce insertion loss, avoid the problem of excessive parasitic effects of silicon substrates, but also reduce production costs.
  • the preparation process of the present disclosure can be realized by using existing mature preparation equipment. It has little improvement to the existing process and can be well compatible with the existing preparation process. The process is simple to realize, easy to implement, has high production efficiency and low production cost. The yield rate is high.
  • FIG. 17 is a schematic structural diagram of another hybrid filter according to an exemplary embodiment of the present disclosure, which is a dual-capacitor-inductor structure.
  • the main structure of the hybrid filter may include a first substrate 100 and a second substrate 200 arranged opposite each other. The first substrate 100 and the second substrate 200 are fixed together to form a first space 300 .
  • a thin film bulk acoustic resonator 30 is provided on the first substrate 100 , and two passive filters 40 are provided on the second substrate 200 .
  • the thin film bulk acoustic resonator 30 is located in the first space 300 , and the two passive filters 40 They are respectively located on both sides of the thin film bulk acoustic resonator 30 , and the thin film bulk acoustic resonator 30 is connected to two passive filters 40 respectively.
  • the structures of the thin film bulk acoustic resonator 30 , the first connection block 31 , the third connection block 33 and the fifth connection block 35 on the first substrate 10 may be substantially the same as the previous embodiment.
  • the second The structures of the second connection block 32 , the fourth connection block 34 and the sixth connection block 36 on the substrate 10 may be substantially the same as the previous embodiment.
  • the first conductive pillar 41, the second conductive pillar 42, the third conductive pillar 43, the first connection line 51 and the second connection line 52 provided on the second substrate 200 constitute a first filter inductor.
  • One plate 61 and the second plate 62 constitute a first filter capacitor.
  • the second electrode 12 of the thin film bulk acoustic resonator 30 is connected to the first conductive pillar 41 through the fifth connection block 35 and the sixth connection block 36.
  • the post 43 is connected to the first pole plate 61 , and the second pole plate 62 and the second terminal 72 are an integral structure connected to each other.
  • the fifth conductive pillar 45, the sixth conductive pillar 46, the seventh conductive pillar 47, the third connection line 53 and the fourth connection line 54 provided on the second substrate 200 constitute a second filter inductor.
  • the three connection lines 53 are connected to the fifth conductive pillar 45 and the sixth conductive pillar 46 respectively, and the fourth connection line 54 is connected to the sixth conductive pillar 46 and the seventh conductive pillar 47 respectively.
  • the third plate 63 and the fourth plate 64 form a second filter capacitor, and the orthographic projection of the third plate 63 on the second substrate at least partially overlaps with the orthographic projection of the fourth plate 64 on the second substrate. .
  • the first electrode 11 of the thin film bulk acoustic resonator 30 is connected to the fifth conductive pillar 45 through the third connection block 33 and the fourth connection block 34.
  • the seventh conductive pillar 47 is connected to the third electrode plate 63.
  • the fourth electrode plate 64 and The first terminals 71 are an integral structure connected to each other.
  • the first connection line 51 , the third connection line 53 , the first electrode plate 61 and the third electrode plate 63 may be arranged on the same layer and formed simultaneously through the same patterning process.
  • the second connection block 32 , the fourth connection block 34 , the sixth connection block 36 , the second connection line 52 and the fourth connection line 54 may be arranged on the same layer and formed simultaneously through the same patterning process. .
  • the second electrode plate 62 , the fourth electrode plate 64 , the first terminal 71 and the second terminal 72 may be arranged on the same layer and formed simultaneously through the same patterning process.
  • the preparation process of the hybrid filter of this exemplary embodiment is basically the same as that of the previous embodiment, except that the second substrate may include a first conductive pillar 41, a second conductive pillar 42, There are three conductive pillars 43, fifth conductive pillars 45, sixth conductive pillars 46 and seventh conductive pillars 47.
  • the third conductive layer pattern may include first connection lines 51, third connection lines 53, first plate 61 and third The electrode plate 63 and the dielectric layer 22 completely cover the third conductive layer pattern.
  • the fourth conductive layer pattern may include the second electrode plate 62, the fourth electrode plate 64, the first terminal 71 and the second terminal 72.
  • the second bonding layer may It includes a second connection block 32, a fourth connection block 34, a sixth connection block 36, a second connection line 52 and a fourth connection line 54.
  • the number of conductive pillars and connection lines included in the first filter inductor and the second filter inductor can be set according to parameters such as inductance.
  • the second substrate 20 may be provided with n+m through holes penetrating the second substrate 20 in the thickness direction, and the n+m conductive pillars are respectively provided in the n+m through holes.
  • the n conductive pillars located on one side of the thin film bulk acoustic resonator 30 can be regularly arranged along the set direction
  • the m conductive pillars located on the other side of the thin film bulk acoustic resonator 30 can be regularly arranged along the set direction.
  • the side of the second substrate 20 away from the first substrate 100 may be provided with (n-1)/2 first connection lines 51 and (m-1)/2 third connection lines 53, n conductive pillars, ( n-1)/2 first connection lines 51 and (n-1)/2 second connection lines 52 may be provided on one side of the thin film bulk acoustic resonator 30 .
  • the side of the second substrate 20 close to the first substrate 100 may be provided with (n-1)/2 second connection lines 52 and (m-1)/2 fourth connection lines 54, m conductive pillars, ( m-1)/2 third connection lines 53 and (m-1)/2 fourth connection lines 54 may be provided on the other side of the thin film bulk acoustic resonator 30 .
  • the plurality of first connection lines 51 can respectively connect the i-th conductive column and the i+1-th conductive column among the n conductive columns
  • the plurality of second connection lines 52 can respectively connect the i+1-th conductive column among the n conductive columns.
  • the i+2th conductive pillar, n conductive pillars, (n-1)/2 first connection lines 51 and (n-1)/2 second connection lines 52 form the first filter inductor of the three-dimensional spiral inductor structure. .
  • a plurality of third connection lines 53 are respectively connected to the j-th conductive column and the j+1-th conductive column among the m conductive columns, and a plurality of fourth connection lines are respectively connected to the j+1-th conductive column and the j-th conductive column among the m conductive columns.
  • +2 conductive pillars, m conductive pillars, (m-1)/2 third connection lines 53 and (m-1)/2 fourth connection lines 54 constitute the second filter inductor of the three-dimensional spiral inductor structure.
  • n is an odd number greater than 1
  • m is an odd number greater than 1
  • i is a positive integer greater than or equal to 1 and less than or equal to n-2
  • j is a positive integer greater than or equal to 1 and less than or equal to m-2.
  • the first conductive column among the n conductive columns is connected to the second electrode 12 of the thin film bulk acoustic resonator 30 , the nth conductive column among the n conductive columns is connected to the first filter capacitor, and m The first conductive column among the conductive columns is connected to the first electrode 11 of the thin film bulk acoustic resonator 30, and the m-th conductive column among the m conductive columns is connected to the second filter capacitor.
  • the hybrid filter provided by this exemplary embodiment not only has the advantages of reducing filter size, reducing transmission loss, and reducing parasitic effects, but also can optimize the out-of-band suppression and roll-off performance of the hybrid filter by adding a capacitor and inductor structure.
  • the hybrid filter may adopt a multi-capacitor-inductor structure, which is not limited by the present disclosure.
  • FIG. 18 is a schematic structural diagram of yet another hybrid filter according to an exemplary embodiment of the present disclosure.
  • the main structure of the hybrid filter may include a first substrate 100 and a second substrate 200 arranged opposite each other.
  • the first substrate 100 and the second substrate 200 are fixed together to form a first space 300 .
  • a thin film bulk acoustic resonator 30 and at least one passive filter 40 are disposed on the first substrate 100 .
  • the thin film bulk acoustic resonator 30 is located in the first space 300 and connected to the passive filter 40 .
  • the structure of the thin film bulk acoustic resonator 30 and the first connection block 31 on the first substrate 10 may be substantially the same as the previous embodiment, and the structure of the second connection block 32 on the second substrate 10 may be Basically the same as the previous embodiment.
  • the first conductive pillar 41, the second conductive pillar 42, the third conductive pillar 43, the first connection line 51 and the second connection line 52 provided on the first substrate 100 constitute a filter inductor.
  • the connecting wires 51 are connected to the first conductive pillars 41 and the second conductive pillars 42 respectively, and the second connecting wires 52 are connected to the second conductive pillars 42 and the third conductive pillars 43 respectively, forming the first conductive pillars 41 and the first connecting wires 51 , the second conductive pillar 42, the second connecting wire 52 and the third conductive pillar 43 are connected in sequence.
  • the first plate 61 and the second plate 62 disposed on the first substrate 100 constitute a filter capacitor, and the orthographic projection of the first plate 61 on the first substrate is in contact with the second plate 62 Orthographic projections on the first substrate at least partially overlap.
  • one end of the electrode conductive post 44 provided on the first substrate 100 is connected to the first electrode 11 of the thin film body acoustic resonator 30 , and the other end of the electrode conductive post 44 is connected to the first terminal 71 , and the thin film body
  • the second electrode 12 of the acoustic resonator 30 is directly connected to the first conductive post 41, the third conductive post 43 is connected to the first plate 61, and the second plate 62 and the second terminal 72 are an integral structure connected to each other.
  • the first connection line 51 , the first plate 61 and the first terminal 71 may be arranged on the same layer and formed simultaneously through the same patterning process.
  • the second electrode 12 and the second connection line 52 may be provided on the same layer and formed simultaneously through the same patterning process.
  • the number of conductive pillars and connecting lines included in the filter inductor can be set according to parameters such as inductance.
  • the first substrate 10 may be provided with n through holes penetrating the first substrate 10 in the thickness direction, and n conductive pillars are respectively disposed in the n through holes.
  • the n conductive pillars may Arrange regularly along the set direction.
  • the side of the first substrate 10 away from the second substrate 200 may be provided with (n-1)/2 first connection lines 51, and the side of the first substrate 10 close to the second substrate 200 may be provided with (n-1)/2 first connection lines 51.
  • the plurality of first connection lines 51 can respectively connect the i-th conductive column and the i+1-th conductive column among the n conductive columns
  • the plurality of second connection lines 52 can respectively connect n
  • the i+1-th conductive pillar and the i+2-th conductive pillar among the conductive pillars, n conductive pillars, (n-1)/2 first connection lines 51 and (n-1)/2 second connection lines 52 For the filter inductor that constitutes a three-dimensional spiral inductor structure, n is an odd number greater than 1, and i is a positive integer greater than or equal to 1 and less than or equal to n-2.
  • the first conductive column among the n conductive columns may be directly connected to the second electrode 12 of the thin film bulk acoustic resonator, and the nth conductive column among the n conductive columns may be connected to the first pole of the filter capacitor.
  • Board 61 is connected.
  • the hybrid filter provided by this exemplary embodiment not only has the advantages of reducing filter size, reducing transmission loss, and reducing parasitic effects, but also has the advantages of arranging both the thin film bulk acoustic resonator and the passive filter on the first substrate.
  • the second substrate only serves as a sealing structure, which can effectively reduce the height of the hybrid filter and further improve the integration level.
  • both the thin film bulk acoustic resonator and the passive filter may be disposed on the second substrate.
  • the first substrate only serves as a sealing structure.
  • FIG. 19 is a schematic structural diagram of yet another hybrid filter according to an exemplary embodiment of the present disclosure.
  • the main structure of the hybrid filter of this exemplary embodiment is basically the same as that of the hybrid filter shown in FIG. 1 .
  • the difference is that the cavity 91 is disposed on the first side of the first substrate 10 . between the side surface, the first electrode 11 and the piezoelectric layer 13 .
  • the thin film bulk acoustic resonator 30 may be disposed on the first side surface of the first substrate 10 , and the thin film bulk acoustic resonator 30 may at least include the first electrode 11 disposed on the first substrate 10 , the piezoelectric layer 13 disposed on the side of the first electrode 11 away from the first substrate, the second electrode 12 disposed on the side of the piezoelectric layer 13 away from the first substrate, the first side surface of the first substrate 10,
  • the space surrounded by the first electrode 11 and the piezoelectric layer 13 serves as a cavity 91, forming an upward convex cavity.
  • the preparation process of the hybrid filter of this exemplary embodiment is basically the same as that of the previous embodiment, except that a patterning process is directly used to form a sacrificial layer on the first substrate, and the first After the electrode, the piezoelectric layer and the second electrode, the sacrificial layer is released to form a cavity.
  • the hybrid filter provided by this exemplary embodiment not only has the advantages of reducing filter size, reducing transmission loss, and reducing parasitic effects, but also simplifies the process by forming an upward convex cavity.
  • the upward convex cavity structure can not only reduce the process of creating grooves on the first substrate, but also because the sacrificial layer polishing process only involves a single material, the process can be simplified and the process quality can be improved.
  • Figure 20 is a schematic structural diagram of yet another hybrid filter according to an exemplary embodiment of the present disclosure.
  • the main structure of the hybrid filter of this exemplary embodiment is basically the same as that of the hybrid filter shown in FIG. 1 .
  • the difference is that the cavity 91 is provided on the first substrate 10 Channel.
  • the thin film bulk acoustic resonator 30 may be disposed on the first side surface of the first substrate 10 , and the thin film bulk acoustic resonator 30 may at least include the first electrode 11 disposed on the first substrate 10 , the piezoelectric layer 13 arranged on the side of the first electrode 11 away from the first substrate, the second electrode 12 arranged on the side of the piezoelectric layer 13 away from the first substrate, the first substrate 10 is provided with a thickness direction A through groove passes through the first substrate 10 , and the through groove serves as a cavity 91 .
  • the preparation process of the hybrid filter of this exemplary embodiment is basically the same as that of the previous embodiment, except that a patterning process is directly used to prepare the first side surface of the first substrate. After an electrode, a piezoelectric layer and a second electrode, a through groove as a cavity is formed on the second side surface of the first substrate through a patterning process to form a back cavity etching type cavity.
  • the hybrid filter provided by this exemplary embodiment not only has the advantages of reducing filter size, reducing transmission loss, and reducing parasitic effects, but also simplifies the process through the back cavity etching cavity structure.
  • the back cavity etching type cavity junction can not only reduce the process of forming the sacrificial layer, but also reduce the process of releasing the sacrificial layer. The process is relatively easy and shortens the production time.
  • the structure of the hybrid filter and its preparation process according to the exemplary embodiments of the present disclosure are merely illustrative. In exemplary embodiments, the corresponding structure can be changed and the patterning process can be added or reduced according to actual needs, and the present disclosure is not limited here.
  • Exemplary embodiments of the present disclosure also provide a method of preparing a hybrid filter to prepare the hybrid filter of the foregoing embodiment.
  • a method of preparing a hybrid filter may include:
  • a first substrate and a second substrate are respectively prepared, at least one of the first substrate and the second substrate is provided with a thin film bulk acoustic resonator, and at least one of the first substrate and the second substrate is provided with at least one passive Filter, the passive filter includes a filter inductor and a filter capacitor, the filter inductor is a three-dimensional spiral inductor structure;
  • a first space is formed between the opposed first substrate and the second substrate, and the thin film bulk acoustic resonator is disposed in the first space and connected to the passive filter.
  • the present disclosure also provides a filtering device, including the hybrid filter of the aforementioned embodiment.
  • the filtering device can be used in radio frequency front-end devices in wireless communication devices, such as radio frequency filters.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本公开提供了一种混合滤波器及其制备方法、滤波装置。混合滤波器包括相对设置的第一基板(100)和第二基板(200),第一基板(100)和第二基板(200)之间设置有第一空间(300),第一基板(100)和第二基板(200)中的至少一个设置有薄膜体声波谐振器(30),第一基板(100)和第二基板(200)中的至少一个设置有至少一个无源滤波器(40),薄膜体声波谐振器(30)设置在第一空间(300)内,且与无源滤波器(40)连接,无源滤波器(40)包括滤波电感和滤波电容,滤波电感为三维螺旋电感结构。

Description

混合滤波器及其制备方法、滤波装置 技术领域
本公开涉及但不限于半导体技术领域,尤指一种混合滤波器及其制造方法、滤波装置。
背景技术
滤波器作为通信终端中的重要组成部件,能够解决信号传输过程中的相互干扰问题,提高频谱利用率。随着移动通信技术的发展,移动通信系统提出更快的传输速率、更高的频谱利用率、更多的设备接入量和更低的时延等要求,因而对滤波器提出了更高的要求,如宽带宽、高滚降系数,低寄生效应等。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开提供了一种混合滤波器,包括相对设置的第一基板和第二基板,所述第一基板和第二基板之间设置有第一空间,所述第一基板和第二基板中的至少一个设置有薄膜体声波谐振器,所述第一基板和第二基板中的至少一个设置有至少一个无源滤波器,所述薄膜体声波谐振器设置在所述第一空间内,且与所述无源滤波器连接,所述无源滤波器包括滤波电感和滤波电容,所述滤波电感为三维螺旋电感结构。
在示例性实施方式中,所述第一基板至少包括第一衬底以及设置在所述第一衬底靠近所述第二基板一侧的第一连接块,所述第二基板至少包括第二衬底以及设置在所述第二衬底靠近所述第一基板一侧的第二连接块,所述第一连接块和所述第二连接块通过键合方式连接,在所述第一衬底和所述第二衬底之间形成容置所述薄膜体声波谐振器的第一空间,所述第一衬底和第二 衬底的材料包括玻璃。
在示例性实施方式中,在平行于混合滤波器的平面上,通过键合方式连接的第一连接块和第二连接块构成环形的密封结构,所述第一空间是由所述第一衬底、所述第二衬底和所述环形的密封结构围成的气密封和/或声密封的密封空间。
在示例性实施方式中,所述薄膜体声波谐振器至少包括空腔、设置在所述第一衬底上的第一电极、设置在所述第一电极远离所述第一衬底一侧的压电层以及设置在所述压电层远离所述第一衬底一侧的第二电极;所述空腔为设置在所述第一衬底靠近所述第二基板一侧的凹槽,或者,所述空腔为设置在所述第一衬底上的通槽,或者,所述空腔为由所述第一衬底靠近所述第二基板一侧的表面、所述第一电极和所述压电层围成的空间。
在示例性实施方式中,所述第一基板的第一衬底上设置有在厚度方向上贯通所述第一衬底的n个导电柱,所述第一衬底远离所述第二基板的一侧设置有(n-1)/2个第一连接线,所述第一衬底靠近所述第二基板的一侧设置有(n-1)/2个第二连接线,所述第一连接线分别连接n个导电柱中的第i导电柱和第i+1导电柱,所述第二连接线分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱中的第1导电柱与所述薄膜体声波谐振器的第二电极连接,n个导电柱中的第n导电柱与所述滤波电容连接,n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线构成三维螺旋电感结构的滤波电感,n为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数。
在示例性实施方式中,所述滤波电容包括第一极板、第二极板以及设置在所述第一极板和第二极板之间的介质层,所述第一极板设置在所述第一衬底远离所述第二基板的一侧,且与n个导电柱中的第n导电柱连接,所述介质层设置在所述第一极板远离所述第一衬底的一侧,所述第二极板设置在所述介质层远离所述第一衬底的一侧,所述第一极板在所述第一衬底上的正投影与所述第二极板在所述第一衬底上的正投影至少部分交叠。
在示例性实施方式中,所述混合滤波器还包括第一端子和第二端子,所述第一端子设置在所述第一衬底远离所述第二基板的一侧,且与所述薄膜体声波谐振器的第一电极连接,所述第二端子设置在所述介质层远离所述第一 衬底的一侧,且与所述第二极板连接。
在示例性实施方式中,所述第一衬底上还设置有在厚度方向上贯通所述第一衬底的电极导电柱,所述薄膜体声波谐振器的第一电极通过所述电极导电柱与所述第一端子连接。
在示例性实施方式中,所述第二基板上设置有第一无源滤波器,或者,所述第二基板上设置有第一无源滤波器和第二无源滤波器,所述第一无源滤波器和所述第二无源滤波器设置在所述薄膜体声波谐振器的两侧,所述第一无源滤波器包括相互连接的第一滤波电感和第一滤波电容,所述第二无源滤波器包括相互连接的第二滤波电感和第二滤波电容。
在示例性实施方式中,所述第二基板的第二衬底上设置有在厚度方向上贯通所述第二衬底的n个导电柱,所述第二衬底远离所述第一基板的一侧设置有(n-1)/2个第一连接线,所述第二衬底靠近所述第一基板的一侧设置有(n-1)/2个第二连接线,所述第一连接线分别连接n个导电柱中的第i导电柱和第i+1导电柱,所述第二连接线分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱中的第1导电柱与所述薄膜体声波谐振器的第二电极连接,n个导电柱中的第n导电柱与所述第一滤波电容连接,n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线构成三维螺旋电感结构的第一滤波电感,n为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数。
在示例性实施方式中,所述第一滤波电容包括第一极板、第二极板以及设置在所述第一极板和第二极板之间的介质层,所述第一极板设置在所述第二衬底远离所述第一基板的一侧,且与所述第n导电柱连接,所述介质层设置在所述第一极板远离所述第二衬底的一侧,所述第二极板设置在所述介质层远离所述第二衬底的一侧,所述第一极板在所述第二衬底上的正投影与所述第二极板在所述第二衬底上的正投影至少部分交叠。
在示例性实施方式中,所述混合滤波器还包括第一端子和第二端子,所述第一端子设置在所述第二衬底远离所述第一基板的一侧,且与所述薄膜体声波谐振器的第一电极连接,所述第二端子设置在所述介质层远离所述第二衬底的一侧,且与所述第二极板连接。
在示例性实施方式中,所述第一基板还包括第三连接块,所述第二基板还包括第四连接块和电极导电柱,所述第三连接块设置在所述薄膜体声波谐振器的第一电极靠近所述第二基板的一侧,所述第四连接块设置在所述第二衬底靠近所述第一基板的一侧,所述电极导电柱远离所述第一基板的一端与所述第一端子连接,所述电极导电柱靠近所述第一基板的一端与所述第四连接块连接,所述第三连接块与所述第四连接块通过键合方式连接,使所述薄膜体声波谐振器的第一电极通过所述第三连接块、所述第四连接块和所述电极导电柱与所述第一端子连接。
在示例性实施方式中,所述第一基板还包括第五连接块,所述第二基板还包括第六连接块,所述第五连接块设置在所述薄膜体声波谐振器的第二电极靠近所述第二基板的一侧,所述第六连接块设置在所述第二衬底靠近所述第一基板的一侧,且与n个导电柱中的第一导电柱连接,所述第五连接块和所述第六连接块通过键合方式连接,使所述薄膜体声波谐振器的第二电极通过所述第五连接块和所述第六连接块与所述第一滤波电感连接。
在示例性实施方式中,所述第二基板的第二衬底上设置有在厚度方向上贯通所述第二衬底的n+m个导电柱,所述第二衬底远离所述第一基板的一侧设置有(n-1)/2个第一连接线和(m-1)/2个第三连接线,所述第二衬底靠近所述第一基板的一侧设置有(n-1)/2个第二连接线和(m-1)/2个第四连接线,n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线设置在所述薄膜体声波谐振器的一侧,m个导电柱、(m-1)/2个第三连接线和(m-1)/2个第四连接线设置在所述薄膜体声波谐振器的另一侧;所述第一连接线分别连接n个导电柱中的第i导电柱和第i+1导电柱,所述第二连接线分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,所述第三连接线分别连接m个导电柱中的第j导电柱和第j+1导电柱,所述第四连接线分别连接m个导电柱中的第j+1导电柱和第j+2导电柱,n个导电柱中的第1导电柱与所述薄膜体声波谐振器的第二电极连接,n个导电柱中的第n导电柱与所述第一滤波电容连接,m个导电柱中的第1导电柱与所述薄膜体声波谐振器的第一电极连接,m个导电柱中的第m导电柱与所述第二滤波电容连接;n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线构成三维螺旋电感结 构的第一滤波电感,m个导电柱、(m-1)/2个第三连接线和(m-1)/2个第四连接线构成三维螺旋电感结构的第二滤波电感,n为大于1的奇数,m为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数,j为大于或等于1、小于或等于m-2的正整数。
在示例性实施方式中,所述第一滤波电容包括第一极板、第二极板以及设置在所述第一极板和第二极板之间的介质层,所述第二滤波电容包括第三极板、第四极板以及设置在所述第三极板和第四极板之间的介质层;所述第一极板和所述第三极板设置在所述第二衬底远离所述第一基板的一侧,所述第一极板与n个导电柱中的第n导电柱连接,所述第三极板与m个导电柱中的第m导电柱连接;所述介质层设置在所述第一极板和第三极板远离所述第二衬底的一侧,所述第二极板和所述第四极板设置在所述介质层远离所述第二衬底的一侧,所述第一极板在所述第二衬底上的正投影与所述第二极板在所述第二衬底上的正投影至少部分交叠,所述第三极板在所述第二衬底上的正投影与所述第四极板在所述第二衬底上的正投影至少部分交叠。
在示例性实施方式中,所述混合滤波器还包括第一端子和第二端子,所述第一端子和第二端子设置在所述介质层远离所述第二衬底的一侧,所述第一端子与所述第四极板连接,所述第二端子与所述第二极板连接。
在示例性实施方式中,所述第一基板还包括第三连接块,所述第二基板还包括第四连接块,所述第三连接块设置在所述薄膜体声波谐振器的第一电极靠近所述第二基板的一侧,所述第四连接块设置在所述第二衬底靠近所述第一基板的一侧,且与m个导电柱中的第1导电柱连接,所述第三连接块与所述第四连接块通过键合方式连接,使所述薄膜体声波谐振器的第一电极通过所述第三连接块和所述第四连接块与所述第二滤波电感连接。
在示例性实施方式中,所述第一基板还包括第五连接块,所述第二基板还包括第六连接块,所述第五连接块设置在所述薄膜体声波谐振器的第二电极靠近所述第二基板的一侧,所述第六连接块设置在所述第二衬底靠近所述第一基板的一侧,且与n个导电柱中的第1导电柱连接,所述第五连接块和所述第六连接块通过键合方式连接,使所述薄膜体声波谐振器的第二电极通过所述第五连接块和所述第六连接块与所述第一滤波电感连接。
另一方面,本公开还提供了一种滤波装置,包括前述的混合滤波器。
又一方面,本公开还提供了一种混合滤波器的制备方法,包括:
分别制备第一基板和第二基板,所述第一基板和第二基板中的至少一个设置有薄膜体声波谐振器,所述第一基板和第二基板中的至少一个设置有至少一个无源滤波器,所述无源滤波器包括滤波电感和滤波电容,所述滤波电感为三维螺旋电感结构;
在相对设置的所述第一基板和第二基板之间形成第一空间,所述薄膜体声波谐振器设置在所述第一空间内,且与所述无源滤波器连接。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开示例性实施例一种混合滤波器的结构示意图;
图2为本公开一种混合滤波器中形成空腔图案后示意图;
图3为本公开一种混合滤波器中形成牺牲层图案后示意图;
图4为本公开一种混合滤波器中形成第一导电层图案后示意图;
图5为本公开一种混合滤波器中形成压电层图案后示意图;
图6为本公开一种混合滤波器中形成第二导电层图案后示意图;
图7为本公开一种混合滤波器中释放牺牲层后示意图;
图8为本公开一种混合滤波器中形成第一键合层图案后示意图;
图9为本公开一种混合滤波器中形成多个通孔图案后示意图;
图10为本公开示例性实施例一种通孔的结构示意图;
图11为本公开一种混合滤波器中形成导电柱图案后示意图;
图12为本公开一种混合滤波器中形成第三导电层图案后示意图;
图13为本公开一种混合滤波器中形成介质层图案后示意图;
图14为本公开一种混合滤波器中形成第四导电层图案后示意图;
图15为本公开一种混合滤波器中形成第二键合层图案后示意图;
图16为本公开示例性实施例一种混合滤波器的等效电路图;
图17为本公开示例性实施例另一种混合滤波器的结构示意图;
图18为本公开示例性实施例又一种混合滤波器的结构示意图;
图19为本公开示例性实施例又一种混合滤波器的结构示意图;
图20为本公开示例性实施例又一种混合滤波器的结构示意图。
附图标记说明:
10—第一衬底;         11—第一电极;         12—第二电极;
13—压电层;           20—第二衬底;         22—介质层;
30—薄膜体声波谐振器; 31—第一连接块;       32—第二连接块;
33—第三连接块;       34—第四连接块;       35—第五连接块;
36—第六连接块;       40—无源滤波器;       41—第一导电柱;
42—第二导电柱;       43—第三导电柱;       44—电极导电柱;
45—第五导电柱;       46—第六导电柱;       47—第七导电柱;
51—第一连接线;       52—第二连接线;       53—第三连接线;
54—第四连接线;       61—第一极板;         62—第二极板;
63—第三极板;         64—第四极板;         71—第一端子;
72—第二端子;         91—空腔;             92—牺牲层;
100—第一基板;        200—第二基板;        300—密封空间。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实 施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。混合滤波器中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本说明书中三角形、矩形、梯形、五边形或六边形等并非严格意义上的,可以是近似三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在导角、弧边以及变形等。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
射频滤波器是无线通信设备中射频(Radio Frequency,简称RF)前端芯片的一个核心器件,而基于压电感应的声波谐振器是构成射频滤波器的基本元素。基于压电感应的声波谐振器主要分为表面声波谐振器(Surface Acoustic Wave Resonator,简称SAWR)和体声波谐振器(Bulk Acoustic Wave Resonator,简称BAWR),体声波谐振器具有低插损、高品质因子等优良特性,尤其在2.0GHz以上频率,体声波谐振器较表面声波谐振器具有明显的优势。近年来,随着无线通信技术朝着高频率和高速度方向迅猛发展,以及电子元器件朝着微型化和低功耗的方向发展,基于薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR)的滤波器的研究与开发越来越受到人们的关注。
薄膜体声波谐振器具有高品质因数值(Q值)、工作频率高、功率容量大、损耗低和体积小等特点,Q值是谐振器的品质因数值,定义为中心频率除以谐振器3dB带宽。但受制于压电材料的机电耦合系数(electro mechanical coupling factor),薄膜体声波谐振器的通带(passband)带宽有限。为了拓宽通带带宽并同时具有高带外抑制,一种薄膜体声波谐振器和非声学滤波器结合的混合滤波器被提出,非声学滤波器可以采用无源滤波器(也称LC滤波器),薄膜体声波谐振器可以提高滚降系数,无源滤波器可以提供较宽的带宽。
研究表明,现有混合滤波器中的薄膜体声波谐振器和无源滤波器为分离器件,通过封装等形式将二者组合在一起,导致混合滤波器尺寸偏大,寄生效应较大。此外,现有薄膜体声波谐振器采用硅材料作为基底,由于硅基底本身的损耗角正值较大,硅基底的导电性与寄生电容的问题,因而导致薄膜体声波谐振器的Q值偏大,插入损耗偏大,在一定程度上制约了薄膜体声波谐振器在高频领域的整体性能。
本公开提供了一种FBAR-LC混合滤波器,包括相对设置的第一基板和第二基板,所述第一基板和第二基板之间设置有第一空间,所述第一基板和第二基板中的至少一个设置有薄膜体声波谐振器,所述第一基板和第二基板中的至少一个设置有至少一个无源滤波器,所述薄膜体声波谐振器设置在所述第一空间内,且与所述无源滤波器连接,所述无源滤波器包括滤波电感和滤波电容,所述滤波电感为三维螺旋电感结构。
在示例性实施方式中,所述第一基板至少包括第一衬底以及设置在所述第一衬底靠近所述第二基板一侧的第一连接块,所述第二基板至少包括第二衬底以及设置在所述第二衬底靠近所述第一基板一侧的第二连接块,所述第一连接块和所述第二连接块通过键合方式连接,在所述第一衬底和所述第二衬底之间形成容置所述薄膜体声波谐振器的第一空间。
在示例性实施方式中,所述第一衬底和第二衬底的材料包括玻璃。
在示例性实施方式中,在平行于混合滤波器的平面上,通过键合方式连接的第一连接块和第二连接块构成环形的密封结构,所述第一空间是由所述第一衬底、所述第二衬底和所述环形的密封结构围成的气密封和/或声密封的密封空间。
在示例性实施方式中,所述薄膜体声波谐振器至少包括空腔、设置在所述第一衬底上的第一电极、设置在所述第一电极远离所述第一衬底一侧的压电层以及设置在所述压电层远离所述第一衬底一侧的第二电极;所述空腔为设置在所述第一衬底靠近所述第二基板一侧的凹槽,或者,所述空腔为设置在所述第一衬底上的通槽,或者,所述空腔为由所述第一衬底靠近所述第二基板一侧的表面、所述第一电极和所述压电层围成的空间。
在一种示例性实施方式中,所述第一基板上设置有无源滤波器,所述无源滤波器包括相互连接的滤波电感和滤波电容。
在另一种示例性实施方式中,所述第二基板上设置有第一无源滤波器,所述第一无源滤波器包括相互连接的第一滤波电感和第一滤波电容。
在又一种示例性实施方式中,所述第二基板上设置有第一无源滤波器和第二无源滤波器,所述第一无源滤波器和所述第二无源滤波器设置在所述薄膜体声波谐振器的两侧,所述第一无源滤波器包括相互连接的第一滤波电感和第一滤波电容,所述第二无源滤波器包括相互连接的第二滤波电感和第二滤波电容。
图1为本公开示例性实施例一种混合滤波器的结构示意图,为单电容电感结构。如图1所示,本示例性实施例混合滤波器的主体结构可以包括相对设置的第一基板100和第二基板200,第一基板100和第二基板200固接在一起形成第一空间300。第一基板100上设置有一个薄膜体声波谐振器30,第二基板200上设置有一个无源滤波器40,薄膜体声波谐振器30位于第一空间300内,且与无源滤波器40连接。无源滤波器40可以至少包括滤波电感和滤波电容,滤波电感可以为三维螺旋电感结构。
在示例性实施方式中,第一基板100可以至少包括第一衬底10以及设置在第一衬底10靠近第二基板200一侧的第一连接块31,第二基板200可以至少包括第二衬底20以及设置在第二衬底20靠近第一基板100一侧的第二连接块32,第一连接块31和第二连接块32通过键合方式固接在一起,在第一衬底10和第二衬底20之间形成容置薄膜体声波谐振器30的第一空间300。
在示例性实施方式中,在平行于混合滤波器的平面上,通过键合方式连接的第一连接块31和第二连接块32可以构成环形的密封结构,第一空间300是由第一衬底10、第二衬底20和环形的密封结构围成的气密封和/或声密封的密封空间。
在示例性实施方式中,第一衬底10和第二衬底20的材料可以包括玻璃。第一衬底10可以包括靠近第二衬底20一侧的第一侧表面和远离第二衬底20一侧的第二侧表面,第二衬底20可以包括靠近第一衬底10一侧的第三侧表 面和远离第一衬底10一侧的第四侧表面。
在示例性实施方式中,薄膜体声波谐振器30可以设置在第一衬底10的第一侧表面上,薄膜体声波谐振器30可以至少包括设置在第一衬底10上的第一电极11、设置在第一电极11远离第一衬底一侧的压电层13以及设置在压电层13远离第一衬底一侧的第二电极12,第一电极11在第一衬底10上的正投影、压电层13在第一衬底10上的正投影以及第二电极12在第一衬底10上的正投影具有第一重叠区域。
在示例性实施方式中,第一衬底10的第一侧表面设置有空腔91,第一电极11覆盖空腔91的至少一部分。
在示例性实施方式中,空腔91可以为设置在第一衬底10靠近第二基板200一侧表面上的凹槽,形成下凹型空腔,第一电极11、压电层13和第二电极12的第一重叠区域与空腔91在第一衬底10上的正投影至少部分交叠。
在示例性实施方式中,三维螺旋电感结构的滤波电感可以设置在第二基板200上,滤波电感可以至少包括第一导电柱41、第二导电柱42、第三导电柱43、第一连接线51和第二连接线52。
在示例性实施方式中,第二衬底20上可以设置有在厚度方向上贯通第二衬底20的第一通孔、第二通孔和第三通孔,第一导电柱41、第二导电柱42和第三导电柱43分别设置在第一通孔、第二通孔和第三通孔内,第一连接线51可以设置在第二衬底20的第四侧表面上,且分别与第一导电柱41和第二导电柱42远离第一衬底10的一端连接,第二连接线52可以设置在第二衬底20的第三侧表面上,且分别与第二导电柱42和第三导电柱43靠近第一衬底10的一端连接,依次连接的第一导电柱41、第一连接线51、第二导电柱42、第二连接线52和第三导电柱43组成三维螺旋电感结构的滤波电感。
在示例性实施方式中,平行板电容结构的滤波电容可以设置在第二基板200上,滤波电容可以至少包括第一极板61、第二极板62以及设置在第一极板61和第二极板62之间的介质层22。
在示例性实施方式中,第一极板61可以设置在第二衬底20的第四侧表面上,且与第三导电柱43远离第一衬底10的一端连接,介质层22可以设置 在第一极板61远离第二衬底20的一侧,第二极板62可以设置在介质层22远离第二衬底20的一侧,第一极板61在第二衬底20上的正投影与第二极板62在第二衬底20上的正投影至少部分交叠,形成平行板电容结构的滤波电容。
在示例性实施方式中,第二基板200还可以包括混合滤波器的第一端子71和第二端子72。第一端子71可以设置在第二衬底20的第四侧表面上,且与薄膜体声波谐振器30的第一电极11连接。第二端子72可以设置在介质层22远离第二衬底20的一侧,且与无源滤波器40的第二极板62连接。
在示例性实施方式中,第一连接线51、第一极板61和第一端子71可以同层设置,且通过同一次工艺同步形成。
在示例性实施方式中,第二极板62和第二端子72可以同层设置,且为相互连接的一体结构。
在示例性实施方式中,第一基板100还可以包括第三连接块33,第二基板200还可以包括第四连接块34和电极导电柱44。第二衬底20上可以设置有在厚度方向上贯通第二衬底20的第四通孔,电极导电柱44设置在第四通孔内,电极导电柱44远离第一衬底10的一端与第一端子71连接。第四连接块34可以设置在第二衬底20的第三侧表面上,且与电极导电柱44靠近第一衬底10的一端连接。第三连接块33可以设置在第一电极11远离第一衬底10的一侧,且通过键合方式与第四连接块34固接,使薄膜体声波谐振器30的第一电极11通过第三连接块33、第四连接块34和电极导电柱44与第一端子71连接。
在示例性实施方式中,第一基板100还可以包括第五连接块35,第二基板200还可以包括第六连接块36。第六连接块36可以设置在第二衬底20的第三侧表面上,且与第一导电柱41靠近第一衬底10的一端连接。第五连接块35可以设置在第二电极12远离第一衬底10的一侧,且通过键合方式与第六连接块36固接,使得薄膜体声波谐振器30的第二电极12通过第五连接块35和第六连接块36与无源滤波器40的滤波电感连接。
在示例性实施方式中,第一连接块31、第三连接块33和第五连接块35 可以同层设置,且通过同一次工艺同步形成。
在示例性实施方式中,第二连接块32、第四连接块34、第六连接块36和第二连接线52可以同层设置,且通过同一次工艺同步形成。
在示例性实施方式中,滤波电感所包括的导电柱和连接线数量可以根据电感量(如线圈匝数)等参数进行设置。
在示例性实施方式中,第二衬底20上可以设置有在厚度方向上贯通第二衬底20的n个通孔,n个导电柱分别设置在n个通孔内,n个导电柱可以沿着设定方向规则排布。第二衬底20远离第一基板100的一侧可以设置有(n-1)/2个第一连接线51,第二衬底20靠近第一基板100的一侧可以设置有(n-1)/2个第二连接线52,多个第一连接线51可以分别连接n个导电柱中的第i导电柱和第i+1导电柱,多个第二连接线52可以分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱、(n-1)/2个第一连接线51和(n-1)/2个第二连接线52构成三维螺旋电感结构的第一滤波电感,n为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数。
在示例性实施方式中,n个导电柱中的第1导电柱可以与薄膜体声波谐振器的第二电极12连接,n个导电柱中的第n导电柱可以与滤波电容的第一极板61连接。
下面通过混合滤波器的制备过程进行示例性说明。本公开所说的“图案化工艺”,对于金属材料、无机材料或透明导电材料,包括涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理,对于有机材料,包括涂覆有机材料、掩模曝光和显影等处理。沉积可以采用溅射、蒸镀、化学气相沉积中的任意一种或多种,涂覆可以采用喷涂、旋涂和喷墨打印中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种,本公开不做限定。“薄膜”是指将某一种材料在基底上利用沉积、涂覆或其它工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需图案化工艺,则该“薄膜”还可以称为“层”。若在整个制作过程当中该“薄膜”需图案化工艺,则在图案化工艺前称为“薄膜”,图案化工艺后称为“层”。经过图案化工艺后的“层”中包含至少一个“图案”。本公开所说的“A和B同层设置”是指,A和B通过同一次图案化工艺同时形成,膜层的“厚度”为膜层在垂直于混合滤波器方向上的尺寸。本公开 示例性实施例中,“B的正投影位于A的正投影的范围之内”或者“A的正投影包含B的正投影”是指,B的正投影的边界落入A的正投影的边界范围内,或者A的正投影的边界与B的正投影的边界重叠。
本公开示例性实施例混合滤波器的制备过程可以至少包括三部分,分别为第一基板制备、第二基板制备和键合处理。其中,第一基板制备和第二基板制备两者没有先后次序要求,可以同时进行,而键合处理需要在第一基板制备和第二基板制备完成后进行。下面分别说明三部分的制备过程。
第一部分、第一基板的制备
在示例性实施方式中,第一基板的制备过程可以包括如下操作。
(11)制备第一衬底图案。在示例性实施方式中,制备第一衬底图案可以包括:先提供第一衬底10,然后采用图案化工艺在第一衬底10上形成空腔91,如图2所示。
在示例性实施方式中,第一衬底10可以包括相互背离的第一侧表面和第二侧表面,第一侧表面可以是靠近第二基板一侧的表面,第二侧表面可以是远离第二基板一侧的表面,空腔91可以设置在第一侧表面上。
在示例性实施方式中,采用图案化工艺在第一衬底10上形成空腔91可以包括:先在第一衬底10的第一侧表面上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光,显影后形成曝光区和未曝光区,曝光区的光刻胶被去除,暴露出第一衬底10的第一侧表面,未曝光区仍覆盖有光刻胶。采用干刻工艺或者湿刻工艺刻蚀曝光区的第一衬底10,剥离光刻胶,在第一衬底10的第一侧表面上形成空腔91,空腔91被配置为作为薄膜体声波谐振器的声反射结构。
在示例性实施方式中,第一衬底的材料可以采用玻璃,例如氧化硅、二氧化硅或者光敏玻璃等。
在示例性实施方式中,空腔91的深度h可以约为0.5μm至2μm。
在示例性实施方式中,在平行于第一衬底的平面上,空腔91的形状可以是如下任意一种或多种:矩形、五边形、六边形、圆形和椭圆形。例如,空 腔91的形状可以为正方形,空腔91的边长可以约为50μm*50μm至500μm*500μm。
(12)形成牺牲层图案。在示例性实施方式中,形成牺牲层图案可以包括:在形成前述图案的第一衬底上,先在第一侧表面沉积牺牲薄膜,牺牲薄膜的厚度可以大于空腔91的深度,使得牺牲薄膜完全填充空腔91,然后采用化学机械抛光(Chemical Mechanical Polishing,简称CMP)方式对牺牲薄膜进行减薄和抛光处理,去除空腔91以外的牺牲薄膜,在第一衬底10的空腔91内形成牺牲层92,牺牲层92的表面与第一衬底10的第一侧表面平齐,如图3所示。
在示例性实施方式中,牺牲薄膜的厚度可以约为0.6μm至2.2μm,即牺牲薄膜的厚度比空腔91的深度h约大0.1μm至0.2μm左右,以便于后续减薄工艺。
在示例性实施方式中,牺牲层92的材料可以采用非晶硅、氧化硅、磷硅玻璃等材料,可以采用物理气相沉积(PVD)或者化学气相沉积(CVD)等方式沉积。
在示例性实施方式中,牺牲层92的表面粗糙度可以小于或等于1nm。
(13)形成第一导电层图案。在示例性实施方式中,形成第一导电层图案可以包括:在形成前述图案的第一衬底上,沉积第一导电薄膜,采用图案化工艺对第一导电薄膜进行图案化,在第一衬底10的第一侧表面上形成第一导电层图案,如图4所示。
在示例性实施方式中,第一导电层可以至少包括第一电极11,第一电极11可以覆盖牺牲层92的至少一部分,并暴露牺牲层92的至少一部分,第一电极11在第一衬底上的正投影与牺牲层92在第一衬底上的正投影部分交叠。
在示例性实施方式中,第一电极11的厚度可以约为0.1μm至0.3μm。
在示例性实施方式中,第一电极11的材料可以采用钨(W)或者钼(Mo)等金属材料,可以采用物理气相沉积方式沉积。
在示例性实施方式中,形成第一导电层图案也可以采用剥离(Lift-Off) 工艺。例如,先在第一衬底上涂覆光刻胶,曝光显影后形成光刻胶图案,然后沉积第一导电薄膜,随后剥离光刻胶图案以及光刻胶图案上面的第一导电薄膜,在第一衬底上形成包括第一电极11的第一导电层。
(14)形成压电层图案。在示例性实施方式中,形成压电层图案可以包括:在形成前述图案的第一衬底上,沉积压电薄膜,采用图案化工艺对压电薄膜进行图案化,在第一衬底10和第一电极11上形成压电层13,如图5所示。
在示例性实施方式中,压电层13的一部分设置在第一电极11远离第一衬底10一侧的表面上,压电层13的另一部分设置在第一衬底10的表面上,且压电层13在第一衬底上的正投影与牺牲层92在第一衬底上的正投影至少部分交叠。
在示例性实施方式中,压电层13的材料可以采用氮化铝、氧化锌、锆钛酸铅(PZT)或者铌酸钾钠(KNN)等材料,可以采用物理气相沉积方式沉积,形成低应力压电层,压电层13为薄膜体声波谐振器的核心膜层,被配置为在第一电极和第二电极的高频交流电压作用下产生谐振,从而实现谐振器功能。
(15)形成第二导电层图案。在示例性实施方式中,形成第二导电层图案可以包括:在形成前述图案的第一衬底上,沉积第二导电薄膜,采用图案化工艺对第二导电薄膜进行图案化,在第一衬底10和压电层13上形成第二导电层图案,如图6所示。
在示例性实施方式中,第二导电层可以至少包括第二电极12,第二电极12的一部分设置在压电层13远离第一衬底10一侧的表面上,第二电极12的另一部分设置在第一衬底10的表面上,第二电极12在第一衬底上的正投影与压电层13在第一衬底上的正投影至少部分交叠。
在示例性实施方式中,第一电极11在第一衬底上的正投影、压电层13在第一衬底上的正投影以及第二电极12在第一衬底上的正投影具有第一重叠区域,该第一重叠区域与牺牲层92在第一衬底上的正投影部分交叠。
在示例性实施方式中,第二电极12的厚度可以约为0.1μm至0.3μm。
在示例性实施方式中,第二电极12的材料可以采用钨(W)或者钼(Mo)等金属材料,可以采用物理气相沉积方式沉积。
在示例性实施方式中,制备第二电极图案也可以采用剥离(Lift-Off)工艺。
(16)形成空腔图案。在示例性实施方式中,形成空腔图案可以包括:在形成前述图案的第一衬底上,采用干刻工艺或者湿刻工艺刻蚀掉牺牲层(即释放牺牲层),形成空腔91,如图7所示。
在示例性实施方式中,第一电极11、第二电极12和压电层13可以组成薄膜体声波谐振器。第一电极11、第二电极12和压电层13相重叠的第一重叠区域部分置于第一衬底10的空腔91之上,在第一电极11和第二电极12所产生的交变电场的作用下,薄膜结构的压电层13体内和表面会产生纵向和横向的体声波弹性震动,将电能量转换成声波从而形成谐振。
在示例性实施方式中,薄膜体声波谐振器可以包括固定部分和悬臂部分,固定部分与第一衬底10的表面固定连接,悬臂部分设置在空腔91之上,且悬臂部分露出部分空腔91。
(17)形成第一键合层图案。在示例性实施方式中,形成第一键合层图案可以包括:在形成前述图案的第一衬底上,沉积第一键合薄膜,采用图案化工艺对第一键合薄膜进行图案化,形成第一键合层图案,如图8所示。
在示例性实施方式中,第一键合层可以至少包括第一连接块31、第三连接块33和第五连接块35。
在示例性实施方式中,第一连接块31可以设置在第一衬底10的第一侧表面上,且位于第一衬底10的边缘,第一连接块31被配置为与第二连接块通过键合方式固接在一起构成环形的密封结构,使得第一衬底、第二衬底和环形的密封结构围成气密封和/或声密封的第一空间。
在示例性实施方式中,在平行于第一衬底的平面上,第一连接块31的形状可以是沿着第一衬底10的边缘延伸的环形状,在垂直于第一衬底的平面上,第一连接块31的截面形状可以是矩形状或者梯形状。
在示例性实施方式中,第三连接块33可以设置在第一电极11远离第一衬底10的一侧,第三连接块33被配置为与第四连接块通过键合方式固接在一起,实现第一电极11与混合滤波器的第一端子的连接。
在示例性实施方式中,在平行于第一衬底的平面上,第三连接块33的形状可以是如下任意在一种或多种:三角形、矩形、五边形、六边形、圆形和椭圆形,在垂直于第一衬底的平面上,第三连接块33的截面形状可以是矩形状或者梯形状。
在示例性实施方式中,第五连接块35可以设置在第二电极12远离第一衬底10的一侧,第五连接块35被配置为与第六连接块通过键合方式固接在一起,实现第二电极12与混合滤波器的滤波电感的连接。
在示例性实施方式中,在平行于第一衬底的平面上,第五连接块35的形状可以是如下任意在一种或多种:三角形、矩形、五边形、六边形、圆形和椭圆形,在垂直于第一衬底的平面上,第五连接块35的截面形状可以是矩形状或者梯形状。
在示例性实施方式中,第一键合层的材料可以采用钛(Ti)和金(Au)的复合层,或者可以采用铬(Cr)和金(Au)的复合层,可以采用物理气相沉积方式沉积。
在示例性实施方式中,第一键合层中金层的厚度可以约为0.02μm至0.05μm,第一键合层中钛层或者铬层的厚度可以约为1.5μm至2.0μm。
在示例性实施方式中,形成第一键合层图案也可以采用剥离工艺。
在示例性实施方式中,形成第一键合层图案后,可以采用化学机械抛光方式对第一连接块31、第三连接块33和第五连接块35远离第一衬底一侧的表面进行抛光,使得第一连接块31、第三连接块33和第五连接块35的表面平齐,且第一连接块31、第三连接块33和第五连接块35远离第一衬底一侧表面的表面粗糙度可以小于或等于1nm。
第二部分、第二基板的制备
在示例性实施方式中,第二基板的制备过程可以包括如下操作。
(21)制备第二衬底图案。在示例性实施方式中,制备第二衬底图案可以包括:先提供第二衬底20,然后在第二衬底20上形成多个通孔图案,如图9所示。
在示例性实施方式中,第二衬底20可以包括相互背离的第三侧表面和第四侧表面,第三侧表面可以是靠近第一基板100一侧的表面,第四侧表面可以是远离第一基板100一侧的表面,多个通孔可以是贯通第三侧表面和第四侧表面的通孔结构。
在示例性实施方式中,多个通孔图案可以至少包括第一通孔71、第二通孔72、第三通孔73和第四通孔74。第四通孔74可以位于第二衬底20的一侧(如图9中的左侧),第一通孔71、第二通孔72和第三通孔73可以位于第二衬底20的另一侧(如图9中的右侧),且第一通孔71、第二通孔72和第三通孔73沿着远离第四通孔74的方向依次设置。
在示例性实施方式中,第一通孔71至第四通孔74的结构可以基本上相同,均为在厚度方向上贯通第二衬底20的通孔结构。
在示例性实施方式中,在平行于第二衬底的平面上,第一通孔71至第四通孔74的截面形状可以为圆形状,圆形状通孔的直径可以约为80μm至100μm。在垂直于第二衬底的平面上,第一通孔71至第四通孔74的截面形状可以为柱状。第一通孔71被配置为容置后续形成的第一导电柱,第二通孔72被配置为容置后续形成的第二导电柱,第三通孔73被配置为容置后续形成的第三导电柱,第四通孔74被配置为容置后续形成的电极导电柱。
在示例性实施方式中,第二衬底的材料可以采用玻璃,例如氧化硅、二氧化硅或者光敏玻璃等。
在示例性实施方式中,沿着第二衬底的厚度方向,每个通孔的直径可以是相同的,或者可以是不同的。图10为本公开示例性实施例一种通孔的结构示意图。如图10所示,在垂直于第二衬底的平面上,靠近第二衬底20表面处的通孔的直径大于远离第二衬底20表面处的通孔的直径,形成沙漏状的通孔。
在示例性实施方式中,通孔的侧壁与第二衬底20的表面之间的夹角θ 可以约为80°至88°。
在示例性实施方式中,在第二衬底20上形成多个通孔图案可以采用图案化工艺,或者可以采用激光打孔工艺。
在示例性实施方式中,以沙漏状通孔为例,采用图案化工艺在第二衬底上形成至少一个通孔可以包括:先在第二衬底的第一侧表面上涂覆一层光刻胶,对光刻胶进行曝光和显影后形成曝光区和未曝光区,曝光区的光刻胶被去除,暴露出第二衬底的第一侧表面,未曝光区仍覆盖有光刻胶。采用干刻工艺或者湿刻工艺刻蚀曝光区的第二衬底,在第二衬底的该侧表面上形成多个第一盲孔,第一盲孔的截面形状可以为梯形状。然后,在第二衬底的第二侧表面上涂覆一层光刻胶,对光刻胶进行曝光和显影后形成曝光区和未曝光区,曝光区的光刻胶被去除,暴露出第二衬底的第二侧表面,未曝光区仍覆盖有光刻胶。采用干刻工艺或者湿刻工艺刻蚀曝光区的第二衬底,在第二衬底的该侧表面上形成多个第二盲孔,第二盲孔的截面形状可以为梯形状,第二盲孔和第一盲孔连通,形成沙漏状的通孔。
在示例性实施方式中,以沙漏状通孔为例,采用激光打孔工艺在第二衬底上形成至少一个通孔可以包括:先使用激光器以激光束垂直入射的方式照射到第二衬底的第一侧表面,在第二衬底的该侧表面形成倒圆台状的第一盲孔,然后使用激光器以激光束垂直入射的方式照射到第二衬底的第二侧表面,在第二衬底的该侧表面形成倒圆台状的第二盲孔,第二盲孔和第一盲孔连通,形成沙漏状的通孔。在激光束与第二衬底相互作用时,能量较高的激光光子将第二衬底中的原子电离化并抛射出第二衬底,随时间增加,孔逐渐加深,直至形成第一盲孔和第二盲孔。
在示例性实施方式中,激光器的类型可选连续激光器、脉冲激光器等,激光波长可以约为532nm、355nm、266nm、248nm、197nm等,激光的脉冲宽度可选1fs至100fs、1ps至100ps、1ns至100ns等。
在示例性实施方式中,激光打孔的方式可以包括但不限于如下两种。第一种方式,当激光光斑直径较大时,激光束和第二衬底的相对位置固定,依靠高能量直接把第二衬底打到预设深度。第二种方式,当激光光斑直径较小时,激光束在第二衬底上画圈扫描,画圈的半径逐渐减小,光斑聚焦点不断 变化,聚焦焦点深度也在不断变化,把第二衬底打到预设深度。
(22)形成导电柱图案。在示例性实施方式中,形成导电柱图案可以包括:在形成前述图案的第二衬底上,通过填充工艺在多个通孔内形成多个导电柱图案,如图11所示。
在示例性实施方式中,导电柱图案可以至少包括第一导电柱41、第二导电柱42、第三导电柱43和电极导电柱44。第一导电柱41可以设置在第一通孔71中,被配置为分别与后续形成的第一连接线和第六连接块连接,第二导电柱42可以设置在第二通孔72中,被配置为分别与后续形成的第一连接线和第二连接线连接,第三导电柱43可以设置在第三通孔73中,被配置为分别与后续形成的第一极板和第二连接线连接,电极导电柱44可以设置在第四通孔74中,被配置为分别与后续形成的第一端子和第四连接块连接。
在示例性实施方式中,第一导电柱41、第二导电柱42、第三导电柱43和电极导电柱44的结构可以基本上相同。每个导电柱可以包括导电层和位于导电层外侧的黏附层,黏附层与通孔的内壁连接。导电柱的制备过程可以包括:先采用物理气相沉积或者化学气相沉积在通孔的内壁形成黏附层,然后采用电镀工艺在黏附层内形成导电层。
在示例性实施方式中,黏附层的材料可以采用钛(Ti)或者铬(Cr)等金属材料,黏附层的厚度可以约为0.02μm至0.05μm。
在示例性实施方式中,导电层的材料可以采用铜(Cu),导电层的厚度可以约为0.2μm至0.5μm。
(23)形成第三导电层图案。在示例性实施方式中,形成第三导电层可以包括:在形成前述图案的第二衬底上,在第四侧表面沉积第三导电薄膜,通过图案化工艺对第三导电薄膜进行图案化,在第二衬底的第四侧表面形成第三导电层图案,如图12所示。
在示例性实施方式中,第三导电层图案可以至少包括第一连接线51、第一极板61和第一端子71。
在示例性实施方式中,第一端子71可以位于第二衬底20的一侧(如图9中的左侧),第一端子71与电极导电柱44位于第四侧表面的一端(远离 第一基板的一端)连接,第一端子71被配置为作为混合滤波器的输入端。
在示例性实施方式中,第一极板61可以位于第二衬底20的另一侧(如图9中的右侧),第一极板61与第三导电柱43位于第四侧表面的一端连接,第一极板61被配置为作为滤波电容的一个极板(下极板)。
在示例性实施方式中,第一连接线51可以位于第一端子71和第一极板61之间,第一连接线51分别与第一导电柱41位于第四侧表面的一端和第二导电柱42位于第四侧表面的一端连接,第一连接线51被配置为作为滤波电感的一个连接线。
在示例性实施方式中,第三导电薄膜可以采用钛(Ti)和金(Au)的复合层,或者可以采用铬(Cr)和金(Au)的复合层,可以采用物理气相沉积方式沉积。
在示例性实施方式中,第三导电层中金层的厚度可以约为0.02μm至0.05μm,第三导电层中钛层或者铬层的厚度可以约为0.2μm至2.0μm。
在示例性实施方式中,制备第三导电层也可以采用剥离工艺。
(24)形成介质层图案。在示例性实施方式中,形成介质层图案可以包括:在形成前述图案的第二衬底上,在第四侧表面沉积电容介质薄膜,通过图案化工艺对电容介质薄膜进行图案化,形成覆盖第一连接线51和第一极板61的介质层22图案,如图13所示。
在示例性实施方式中,介质层22在第二衬底上的正投影可以包含第一连接线51和第一极板61在第二衬底上的正投影,即介质层22完全覆盖第一极板61和第一连接线51。
在示例性实施方式中,介质层22在第二衬底上的正投影与第一端子71在第二衬底上的正投影没有交叠,即介质层22没有覆盖第一端子71。
在示例性实施方式中,介质层22的材料可以采用氧化硅、氮化硅、氧化铝、氧化钽、钛酸钡、氧化钛或者锆钛酸铅等无机绝缘材料,或者可以采用聚酰亚胺(PI)或者光感环氧树脂光刻胶(例如SU8)等有机绝缘材料,无机绝缘材料可以采用化学气相沉积等方式,有机绝缘材料可以采用涂覆等方 式。
(25)形成第四导电层图案。在示例性实施方式中,形成第四导电层图案可以包括:在形成前述图案的第二衬底上,在第四侧表面沉积第四导电薄膜,通过图案化工艺对第四导电薄膜进行图案化,形成第四导电层图案,如图14所示。
在示例性实施方式中,第四导电层图案可以至少包括第二极板62和第二端子72。
在示例性实施方式中,第二极板62可以设置在介质层22远离第二衬底的一侧,第二极板62在第二衬底上的正投影与第一极板61在第二衬底上的正投影至少部分交叠,第二极板62被配置为作为滤波电容的另一个极板(上极板),第一极板61、第二极板62以及设置在第一极板61和第二极板62之间的介质层22可以构成平行板电容结构的滤波电容。
在示例性实施方式中,第二端子72可以设置在介质层22远离第二衬底的一侧,第二端子72与第二极板62连接,第二端子72被配置为作为混合滤波器的输出端。
在示例性实施方式中,第二极板62和第二端子72可以为相互连接的一体结构。
在示例性实施方式中,第四导电薄膜的材料可以采用钛(Ti)和金(Au)的复合层,或者可以采用铬(Cr)和金(Au)的复合层,可以采用物理气相沉积方式沉积。
在示例性实施方式中,第四导电层中金层的厚度可以约为0.02μm至0.05μm,第三导电层中钛层或者铬层的厚度可以约为0.2μm至2.0μm。
在示例性实施方式中,制备第四导电层也可以采用剥离工艺。
(26)形成第二键合层图案。在示例性实施方式中,形成第二键合层图案可以包括:在第二衬底的第三侧表面上沉积第二键合薄膜,采用图案化工艺对第二键合薄膜进行图案化,形成第二键合层图案,如图15所示。
在示例性实施方式中,第二键合层可以至少包括第二连接块32、第四连 接块34、第六连接块36和第二连接线52。
在示例性实施方式中,第二连接块32可以设置在第二衬底10的第三侧表面上,且位于第二衬底20的边缘,第二连接块32被配置为与第一基板上的第一连接块31通过键合方式固接在一起构成环形的密封结构,使得第一衬底、第二衬底和环形的密封结构围成气密封和/或声密封的第一空间。
在示例性实施方式中,在平行于第二衬底的平面上,第二连接块32的形状可以是沿着第二衬底20的边缘延伸的环形状,第二连接块32的形状和几何参数可以与第一连接块31的形状基本上相同,在垂直于第二衬底的平面上,第二连接块32的截面形状可以是矩形状或者梯形状。
在示例性实施方式中,第四连接块34可以设置在第二衬底10的第三侧表面上,且与电极导电柱44位于第三侧表面的一端(靠近第一基板的一端)连接,第四连接块34被配置为与第一基板上的第三连接块33通过键合方式固接在一起,实现薄膜体声波谐振器的第一电极11与混合滤波器的第一端子71的连接。
在示例性实施方式中,在平行于第二衬底的平面上,第四连接块34的形状与第三连接块33的形状和几何参数可以基本上相同,在垂直于第二衬底的平面上,第四连接块34的截面形状可以是矩形状或者梯形状。
在示例性实施方式中,第六连接块36可以设置在第二衬底10的第三侧表面上,且与第一导电柱41位于第三侧表面的一端连接,第六连接块36被配置为与第一基板上的第五连接块35通过键合方式固接在一起,实现薄膜体声波谐振器的第二电极12与混合滤波器的滤波电感的连接。
在示例性实施方式中,在平行于第二衬底的平面上,第六连接块36的形状与第五连接块35的形状和几何参数可以基本上相同,在垂直于第二衬底的平面上,第六连接块36的截面形状可以是矩形状或者梯形状。
在示例性实施方式中,第二连接线52可以设置在第二衬底10的第三侧表面上,且分别与第二导电柱42位于第三侧表面的一端和第三导电柱43位于第三侧表面的一端连接,第二连接线52被配置为作为滤波电感的另一个连接线。
在示例性实施方式中,依次连接的第一导电柱41、第一连接线51、第二导电柱42、第二连接线52和第三导电柱43可以构成三维螺旋电感结构的滤波电感,第一导电柱41可以作为滤波电感的第一端,第三导电柱43可以作为滤波电感的第二端,滤波电感的第一端与薄膜体声波谐振器的第二电极12连接,滤波电感的第二端与滤波电容的第一极板61连接。
本公开混合滤波器采用三维螺旋电感结构的滤波电感,相比于传统的平面螺旋电感具有更高的Q值,约为其1.5倍至2倍。此外,通过滤波电感和滤波电容组合,可以进一步提高混合滤波器的带外抑制等性能。
在示例性实施方式中,第二键合层的材料可以采用钛(Ti)和金(Au)的复合层,或者可以采用铬(Cr)和金(Au)的复合层,可以采用物理气相沉积方式沉积。
在示例性实施方式中,第二键合层中金层的厚度可以约为0.02μm至0.05μm,第二键合层中钛层或者铬层的厚度可以约为0.2μm至2.0μm。
在示例性实施方式中,形成第二键合层图案也可以采用剥离工艺。
在示例性实施方式中,形成第二键合层图案后,可以采用化学机械抛光方式对第二连接块32、第四连接块34、第六连接块36和第二连接线52远离第二衬底一侧的表面进行抛光,使得第二连接块32、第四连接块34、第六连接块36和第二连接线52的表面平齐,且第二连接块32、第四连接块34、第六连接块36和第二连接线52远离第二衬底一侧表面的表面粗糙度可以小于或等于1nm。
第三部分、键合处理
在示例性实施方式中,键合处理可以包括如下操作:将制备完成的第一基板100和第二基板200对位贴合在一起,采用金属与金属扩散键合方式将第一连接块31和第二连接块32、第三连接块33和第四连接块34、第五连接块35和第六连接块36进行键合,形成第一基板100和第二基板200的电连接结构,如图1所示。
在示例性实施方式中,金属与金属扩散键合方式可以是金金键合方式。
在示例性实施方式中,环形状的第一连接块31和环形状的第二连接块32通过键合方式固接在一起,在第一衬底10和第二衬底20之间形成环形状的密封结构,使得第一衬底、第二衬底和环形的密封结构围成气密封和/或声密封的密封空间,薄膜体声波谐振器位于该将密封空间内,密封空间可以保护薄膜体声波谐振器不受外部环境和外部干扰的影响。
在示例性实施方式中,第三连接块33和第四连接块34通过键合方式固接在一起,实现了薄膜体声波谐振器与混合滤波器的第一端子71的连接。由于第三连接块33与薄膜体声波谐振器的第一电极11连接,第四连接块34通过电极导电柱44与第一端子71连接,因而实现了薄膜体声波谐振器的第一电极11与混合滤波器的第一端子71连接,外部装置可以通过第一端子71向薄膜体声波谐振器的第一电极11输入电压信号。
在示例性实施方式中,第五连接块35和第六连接块36通过键合方式固接在一起,实现了薄膜体声波谐振器与滤波电感的连接。由于第五连接块35与薄膜体声波谐振器的第二电极12连接,第六连接块36与滤波电感的第一端连接,因而实现了薄膜体声波谐振器的第二电极12与滤波电感的第一端的连接。
在示例性实施方式中,键合过程中,键合压力可以约为40kN至100kN,键合温度可以约为350℃至450℃。
至此,制备完成本公开示例性实施例混合滤波器,混合滤波器是在FBAR的基础上串联LC滤波器,为一种FBAR-LC混合滤波器。
图16为本公开示例性实施例混合滤波器的等效电路图,薄膜体声波谐振器的等效电路图可以采用MBVD(Modified Butterworth-Van Dyke)模型。如图16所示,静态电容Co、动态电容Cm、动态电感Lm、介质损耗电阻Ro、机械损耗电阻Rm和电极损耗电阻Re组成薄膜体声波谐振器,滤波电感L和滤波电容C组成无源滤波器(LC滤波器),薄膜体声波谐振器和无源滤波器串接在输入端和输出端之间。
通过本公开示例性实施例混合滤波器的结构和制备过程可以看出,本公开通过将声学薄膜体声波谐振器与非声学无源滤波器集成在一个芯片上,所 集成的混合滤波器芯片集成度高,不仅可以提高混合滤波器的带宽和滚降系数,而且最大限度地减小了滤波器的尺寸,减少了传输损耗,降低了寄生效应,最大限度地提高了滤波性能。本公开通过采用三维螺旋电感结构的滤波电感,品质因数值(Q值)比平面螺旋电感可以提高1.5倍至2倍,可以进一步提高混合滤波器的带外抑制等性能。本公开通过采用玻璃基底,不仅可以提高滤波器的Q值,降低插入损耗,避免了硅基底存在的寄生效应偏大的问题,而且降低了生产成本。本公开的制备工艺利用现有成熟的制备设备即可实现,对现有工艺改进较小,可以很好地与现有制备工艺兼容,工艺实现简单,易于实施,生产效率高,生产成本低,良品率高。
图17为本公开示例性实施例另一种混合滤波器的结构示意图,为双电容电感结构。如图17所示,混合滤波器的主体结构可以包括相对设置的第一基板100和第二基板200,第一基板100和第二基板200固接在一起形成第一空间300。第一基板100上设置有一个薄膜体声波谐振器30,第二基板200上设置有两个无源滤波器40,薄膜体声波谐振器30位于第一空间300内,两个无源滤波器40分别位于薄膜体声波谐振器30的两侧,薄膜体声波谐振器30分别与两个无源滤波器40连接。
在示例性实施方式中,第一衬底10上薄膜体声波谐振器30、第一连接块31、第三连接块33和第五连接块35的结构可以与前述实施例基本上相同,第二衬底10上第二连接块32、第四连接块34和第六连接块36的结构可以与前述实施例基本上相同。
在示例性实施方式中,设置在第二基底200上第一导电柱41、第二导电柱42、第三导电柱43、第一连接线51和第二连接线52构成第一滤波电感,第一极板61和第二极板62构成第一滤波电容,薄膜体声波谐振器30的第二电极12通过第五连接块35和第六连接块36与第一导电柱41连接,第三导电柱43与第一极板61连接,第二极板62和第二端子72为相互连接的一体结构。
在示例性实施方式中,设置在第二基底200上第五导电柱45、第六导电柱46、第七导电柱47、第三连接线53和第四连接线54构成第二滤波电感,第三连接线53分别与第五导电柱45和第六导电柱46连接,第四连接线54 分别与第六导电柱46和第七导电柱47连接。第三极板63和第四极板64构成第二滤波电容,第三极板63在第二衬底上的正投影与第四极板64在第二衬底上的正投影至少部分交叠。薄膜体声波谐振器30的第一电极11通过第三连接块33和第四连接块34与第五导电柱45连接,第七导电柱47与第三极板63连接,第四极板64和第一端子71为相互连接的一体结构。
在示例性实施方式中,第一连接线51、第三连接线53、第一极板61和第三极板63可以同层设置,且通过同一次图案化工艺同步形成。
在示例性实施方式中,第二连接块32、第四连接块34、第六连接块36、第二连接线52和第四连接线54可以同层设置,且通过同一次图案化工艺同步形成。
在示例性实施方式中,第二极板62、第四极板64、第一端子71和第二端子72可以同层设置,且通过同一次图案化工艺同步形成。
在示例性实施方式中,本示例性实施例混合滤波器的制备过程与前述实施例基本上相同,不同之处在于:第二衬底可以包括第一导电柱41、第二导电柱42、第三导电柱43、第五导电柱45、第六导电柱46和第七导电柱47,第三导电层图案可以包括第一连接线51、第三连接线53、第一极板61和第三极板63,介质层22完全覆盖第三导电层图案,第四导电层图案可以包括第二极板62、第四极板64、第一端子71和第二端子72,第二键合层可以包括第二连接块32、第四连接块34、第六连接块36、第二连接线52和第四连接线54。
在示例性实施方式中,第一滤波电感和第二滤波电感所包括的导电柱和连接线数量可以根据电感量等参数进行设置。
在示例性实施方式中,第二衬底20上可以设置有在厚度方向上贯通第二衬底20的n+m个通孔,n+m个导电柱分别设置在n+m个通孔内,位于薄膜体声波谐振器30一侧的n个导电柱可以沿着设定方向规则排布,位于薄膜体声波谐振器30另一侧的m个导电柱可以沿着设定方向规则排布。第二衬底20远离第一基板100的一侧可以设置有(n-1)/2个第一连接线51和(m-1)/2个第三连接线53,n个导电柱、(n-1)/2个第一连接线51和(n-1)/2个 第二连接线52可以设置在薄膜体声波谐振器30的一侧。第二衬底20靠近第一基板100的一侧可以设置有(n-1)/2个第二连接线52和(m-1)/2个第四连接线54,m个导电柱、(m-1)/2个第三连接线53和(m-1)/2个第四连接线54可以设置在薄膜体声波谐振器30的另一侧。多个第一连接线51可以分别连接n个导电柱中的第i导电柱和第i+1导电柱,多个第二连接线52可以分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱、(n-1)/2个第一连接线51和(n-1)/2个第二连接线52构成三维螺旋电感结构的第一滤波电感。多个第三连接线53分别连接m个导电柱中的第j导电柱和第j+1导电柱,多个第四连接线分别连接m个导电柱中的第j+1导电柱和第j+2导电柱,m个导电柱、(m-1)/2个第三连接线53和(m-1)/2个第四连接线54构成三维螺旋电感结构的第二滤波电感。n为大于1的奇数,m为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数,j为大于或等于1、小于或等于m-2的正整数。
在示例性实施方式中,n个导电柱中的第1导电柱与薄膜体声波谐振器30的第二电极12连接,n个导电柱中的第n导电柱与第一滤波电容连接,m个导电柱中的第1导电柱与薄膜体声波谐振器30的第一电极11连接,m个导电柱中的第m导电柱与第二滤波电容连接。
本示例性实施例所提供的混合滤波器,不仅具有减小滤波器尺寸、减少传输损耗和降低寄生效应等优点,而且通过增加电容电感结构可以优化混合滤波器的带外抑制及滚降性能。
在示例性实施方式中,混合滤波器可以采用多电容电感结构,本公开在此不做限定。
图18为本公开示例性实施例又一种混合滤波器的结构示意图。如图18所示,混合滤波器的主体结构可以包括相对设置的第一基板100和第二基板200,第一基板100和第二基板200固接在一起形成第一空间300。第一基板100上设置有一个薄膜体声波谐振器30和至少一个无源滤波器40,薄膜体声波谐振器30位于第一空间300内,且与无源滤波器40连接。
在示例性实施方式中,第一衬底10上薄膜体声波谐振器30和第一连接块31的结构可以与前述实施例基本上相同,第二衬底10上第二连接块32 的结构可以与前述实施例基本上相同。
在示例性实施方式中,设置在第一基底100上的第一导电柱41、第二导电柱42、第三导电柱43、第一连接线51和第二连接线52构成滤波电感,第一连接线51分别与第一导电柱41和第二导电柱42连接,第二连接线52分别与第二导电柱42和第三导电柱43连接,形成第一导电柱41、第一连接线51、第二导电柱42、第二连接线52和第三导电柱43依次连接的结构。
在示例性实施方式中,设置在第一基底100上的第一极板61和第二极板62构成滤波电容,第一极板61在第一衬底上的正投影与第二极板62在第一衬底上的正投影至少部分交叠。
在示例性实施方式中,设置在第一基底100上的电极导电柱44的一端与薄膜体声波谐振器30的第一电极11连接,电极导电柱44的另一端第一端子71连接,薄膜体声波谐振器30的第二电极12与第一导电柱41直接连接,第三导电柱43与第一极板61连接,第二极板62和第二端子72为相互连接的一体结构。
在示例性实施方式中,第一连接线51、第一极板61和第一端子71可以同层设置,且通过同一次图案化工艺同步形成。
在示例性实施方式中,第二电极12和第二连接线52可以同层设置,且通过同一次图案化工艺同步形成。
在示例性实施方式中,滤波电感所包括的导电柱和连接线数量可以根据电感量等参数进行设置。
在示例性实施方式中,第一衬底10上可以设置有在厚度方向上贯通第一衬底10的n个通孔,n个导电柱分别设置在n个通孔内,n个导电柱可以沿着设定方向规则排布。第一衬底10远离第二基板200的一侧可以设置有(n-1)/2个第一连接线51,第一衬底10靠近第二基板200的一侧可以设置有(n-1)/2个第二连接线52,多个第一连接线51可以分别连接n个导电柱中的第i导电柱和第i+1导电柱,多个第二连接线52可以分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱、(n-1)/2个第一连接线51和(n-1)/2个第二连接线52构成三维螺旋电感结构的滤波电感,n为大于1的奇数, i为大于或等于1、小于或等于n-2的正整数。
在示例性实施方式中,n个导电柱中的第1导电柱可以与薄膜体声波谐振器的第二电极12直接连接,n个导电柱中的第n导电柱可以与滤波电容的第一极板61连接。
在示例性实施方式中,第一基板上的无源滤波器可以为多个,本公开在此不做限定。
本示例性实施例所提供的混合滤波器,不仅具有减小滤波器尺寸、减少传输损耗和降低寄生效应等优点,而且通过将薄膜体声波谐振器和无源滤波器均设置在第一基板上,第二基板仅作为密封结构,可以有效降低混合滤波器的高度,进一步提高集成度。
在示例性实施方式中,薄膜体声波谐振器和无源滤波器可以均设置在第二基板上,第一基板仅作为密封结构,无源滤波器可以为多个,本公开在此不做限定。
图19为本公开示例性实施例又一种混合滤波器的结构示意图。如图19所示,本示例性实施例混合滤波器的主体结构与图1所示混合滤波器的主体结构基本上相同,所不同的是,空腔91设置在第一衬底10的第一侧表面、第一电极11和压电层13之间。
在示例性实施方式中,薄膜体声波谐振器30可以设置在第一衬底10的第一侧表面上,薄膜体声波谐振器30可以至少包括设置在第一衬底10上的第一电极11、设置在第一电极11远离第一衬底一侧的压电层13、设置在压电层13远离第一衬底一侧的第二电极12,第一衬底10的第一侧表面、第一电极11和压电层13围成的空间作为空腔91,形成上凸型空腔。
在示例性实施方式中,本示例性实施例混合滤波器的制备过程与前述实施例基本上相同,不同之处在于:直接采用图案化工艺在第一衬底上形成牺牲层,制备完成第一电极、压电层和第二电极后,释放牺牲层,形成空腔。
本示例性实施例所提供的混合滤波器,不仅具有减小滤波器尺寸、减少传输损耗和降低寄生效应等优点,而且通过形成上凸型空腔,简化了工艺。上凸型空腔结构不仅可以减少在第一衬底上开设凹槽的工艺,而且由于牺牲 层抛光过程只涉及单一材料,可以简化工艺过程,提高工艺质量。
图20为本公开示例性实施例又一种混合滤波器的结构示意图。如图20所示,本示例性实施例混合滤波器的主体结构与图1所示混合滤波器的主体结构基本上相同,所不同的是,空腔91为设置在第一衬底10上的通槽。
在示例性实施方式中,薄膜体声波谐振器30可以设置在第一衬底10的第一侧表面上,薄膜体声波谐振器30可以至少包括设置在第一衬底10上的第一电极11、设置在第一电极11远离第一衬底一侧的压电层13、设置在压电层13远离第一衬底一侧的第二电极12,第一衬底10上设置有在厚度方向上贯通第一衬底10的通槽,通槽作为空腔91。
在示例性实施方式中,本示例性实施例混合滤波器的制备过程与前述实施例基本上相同,不同之处在于:直接采用图案化工艺在第一衬底的第一侧表面上制备完成第一电极、压电层和第二电极后,在第一衬底的第二侧表面通过图案化工艺形成作为空腔的通槽,形成背腔刻蚀型空腔。
本示例性实施例所提供的混合滤波器,不仅具有减小滤波器尺寸、减少传输损耗和降低寄生效应等优点,而且通过背腔刻蚀型空腔结构,简化了工艺。背腔刻蚀型空腔结不仅可以减少形成牺牲层的工艺,而且可以减少释放牺牲层的工艺,工艺相对容易,缩短了生产时间。
本公开示例性实施例混合滤波器的结构及其制备过程仅仅是一种示例性说明。在示例性实施方式中,可以根据实际需要变更相应结构以及增加或减少图案化工艺,本公开在此不做限定。
本公开示例性实施例还提供了一种混合滤波器的制备方法,以制备前述实施例的混合滤波器。在示例性实施方式中,混合滤波器的制备方法可以包括:
分别制备第一基板和第二基板,所述第一基板和第二基板中的至少一个设置有薄膜体声波谐振器,所述第一基板和第二基板中的至少一个设置有至少一个无源滤波器,所述无源滤波器包括滤波电感和滤波电容,所述滤波电感为三维螺旋电感结构;
在相对设置的所述第一基板和第二基板之间形成第一空间,所述薄膜体 声波谐振器设置在所述第一空间内,且与所述无源滤波器连接。
本公开还提供了一种滤波装置,包括前述实施例的混合滤波器。滤波装置可以用于无线通信装置中的射频前端装置,如射频滤波器等。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (21)

  1. 一种混合滤波器,包括相对设置的第一基板和第二基板,所述第一基板和第二基板之间设置有第一空间,所述第一基板和第二基板中的至少一个设置有薄膜体声波谐振器,所述第一基板和第二基板中的至少一个设置有至少一个无源滤波器,所述薄膜体声波谐振器设置在所述第一空间内,且与所述无源滤波器连接,所述无源滤波器包括滤波电感和滤波电容,所述滤波电感为三维螺旋电感结构。
  2. 根据权利要求1所述的混合滤波器,其中,所述第一基板至少包括第一衬底以及设置在所述第一衬底靠近所述第二基板一侧的第一连接块,所述第二基板至少包括第二衬底以及设置在所述第二衬底靠近所述第一基板一侧的第二连接块,所述第一连接块和所述第二连接块通过键合方式连接,在所述第一衬底和所述第二衬底之间形成容置所述薄膜体声波谐振器的第一空间,所述第一衬底和第二衬底的材料包括玻璃。
  3. 根据权利要求2所述的混合滤波器,其中,在平行于混合滤波器的平面上,通过键合方式连接的第一连接块和第二连接块构成环形的密封结构,所述第一空间是由所述第一衬底、所述第二衬底和所述环形的密封结构围成的气密封和/或声密封的密封空间。
  4. 根据权利要求1所述的混合滤波器,其中,所述薄膜体声波谐振器至少包括空腔、设置在所述第一衬底上的第一电极、设置在所述第一电极远离所述第一衬底一侧的压电层以及设置在所述压电层远离所述第一衬底一侧的第二电极;所述空腔为设置在所述第一衬底靠近所述第二基板一侧的凹槽,或者,所述空腔为设置在所述第一衬底上的通槽,或者,所述空腔为由所述第一衬底靠近所述第二基板一侧的表面、所述第一电极和所述压电层围成的空间。
  5. 根据权利要求1至4任一项所述的混合滤波器,其中,所述第一基板的第一衬底上设置有在厚度方向上贯通所述第一衬底的n个导电柱,所述第一衬底远离所述第二基板的一侧设置有(n-1)/2个第一连接线,所述第一衬底靠近所述第二基板的一侧设置有(n-1)/2个第二连接线,所述第一连接线 分别连接n个导电柱中的第i导电柱和第i+1导电柱,所述第二连接线分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱中的第1导电柱与所述薄膜体声波谐振器的第二电极连接,n个导电柱中的第n导电柱与所述滤波电容连接,n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线构成三维螺旋电感结构的滤波电感,n为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数。
  6. 根据权利要求5所述的混合滤波器,其中,所述滤波电容包括第一极板、第二极板以及设置在所述第一极板和第二极板之间的介质层,所述第一极板设置在所述第一衬底远离所述第二基板的一侧,且与n个导电柱中的第n导电柱连接,所述介质层设置在所述第一极板远离所述第一衬底的一侧,所述第二极板设置在所述介质层远离所述第一衬底的一侧,所述第一极板在所述第一衬底上的正投影与所述第二极板在所述第一衬底上的正投影至少部分交叠。
  7. 根据权利要求6所述的混合滤波器,其中,所述混合滤波器还包括第一端子和第二端子,所述第一端子设置在所述第一衬底远离所述第二基板的一侧,且与所述薄膜体声波谐振器的第一电极连接,所述第二端子设置在所述介质层远离所述第一衬底的一侧,且与所述第二极板连接。
  8. 根据权利要求7所述的混合滤波器,其中,所述第一衬底上还设置有在厚度方向上贯通所述第一衬底的电极导电柱,所述薄膜体声波谐振器的第一电极通过所述电极导电柱与所述第一端子连接。
  9. 根据权利要求1至4任一项所述的混合滤波器,其中,所述第二基板上设置有第一无源滤波器,或者,所述第二基板上设置有第一无源滤波器和第二无源滤波器,所述第一无源滤波器和所述第二无源滤波器设置在所述薄膜体声波谐振器的两侧,所述第一无源滤波器包括相互连接的第一滤波电感和第一滤波电容,所述第二无源滤波器包括相互连接的第二滤波电感和第二滤波电容。
  10. 根据权利要求9所述的混合滤波器,其中,所述第二基板的第二衬底上设置有在厚度方向上贯通所述第二衬底的n个导电柱,所述第二衬底远离所述第一基板的一侧设置有(n-1)/2个第一连接线,所述第二衬底靠近所 述第一基板的一侧设置有(n-1)/2个第二连接线,所述第一连接线分别连接n个导电柱中的第i导电柱和第i+1导电柱,所述第二连接线分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,n个导电柱中的第1导电柱与所述薄膜体声波谐振器的第二电极连接,n个导电柱中的第n导电柱与所述第一滤波电容连接,n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线构成三维螺旋电感结构的第一滤波电感,n为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数。
  11. 根据权利要求10所述的混合滤波器,其中,所述第一滤波电容包括第一极板、第二极板以及设置在所述第一极板和第二极板之间的介质层,所述第一极板设置在所述第二衬底远离所述第一基板的一侧,且与所述第n导电柱连接,所述介质层设置在所述第一极板远离所述第二衬底的一侧,所述第二极板设置在所述介质层远离所述第二衬底的一侧,所述第一极板在所述第二衬底上的正投影与所述第二极板在所述第二衬底上的正投影至少部分交叠。
  12. 根据权利要求11所述的混合滤波器,其中,所述混合滤波器还包括第一端子和第二端子,所述第一端子设置在所述第二衬底远离所述第一基板的一侧,且与所述薄膜体声波谐振器的第一电极连接,所述第二端子设置在所述介质层远离所述第二衬底的一侧,且与所述第二极板连接。
  13. 根据权利要求12所述的混合滤波器,其中,所述第一基板还包括第三连接块,所述第二基板还包括第四连接块和电极导电柱,所述第三连接块设置在所述薄膜体声波谐振器的第一电极靠近所述第二基板的一侧,所述第四连接块设置在所述第二衬底靠近所述第一基板的一侧,所述电极导电柱远离所述第一基板的一端与所述第一端子连接,所述电极导电柱靠近所述第一基板的一端与所述第四连接块连接,所述第三连接块与所述第四连接块通过键合方式连接,使所述薄膜体声波谐振器的第一电极通过所述第三连接块、所述第四连接块和所述电极导电柱与所述第一端子连接。
  14. 根据权利要求12所述的混合滤波器,其中,所述第一基板还包括第五连接块,所述第二基板还包括第六连接块,所述第五连接块设置在所述薄膜体声波谐振器的第二电极靠近所述第二基板的一侧,所述第六连接块设置 在所述第二衬底靠近所述第一基板的一侧,且与n个导电柱中的第一导电柱连接,所述第五连接块和所述第六连接块通过键合方式连接,使所述薄膜体声波谐振器的第二电极通过所述第五连接块和所述第六连接块与所述第一滤波电感连接。
  15. 根据权利要求9所述的混合滤波器,其中,所述第二基板的第二衬底上设置有在厚度方向上贯通所述第二衬底的n+m个导电柱,所述第二衬底远离所述第一基板的一侧设置有(n-1)/2个第一连接线和(m-1)/2个第三连接线,所述第二衬底靠近所述第一基板的一侧设置有(n-1)/2个第二连接线和(m-1)/2个第四连接线,n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线设置在所述薄膜体声波谐振器的一侧,m个导电柱、(m-1)/2个第三连接线和(m-1)/2个第四连接线设置在所述薄膜体声波谐振器的另一侧;所述第一连接线分别连接n个导电柱中的第i导电柱和第i+1导电柱,所述第二连接线分别连接n个导电柱中的第i+1导电柱和第i+2导电柱,所述第三连接线分别连接m个导电柱中的第j导电柱和第j+1导电柱,所述第四连接线分别连接m个导电柱中的第j+1导电柱和第j+2导电柱,n个导电柱中的第1导电柱与所述薄膜体声波谐振器的第二电极连接,n个导电柱中的第n导电柱与所述第一滤波电容连接,m个导电柱中的第1导电柱与所述薄膜体声波谐振器的第一电极连接,m个导电柱中的第m导电柱与所述第二滤波电容连接;n个导电柱、(n-1)/2个第一连接线和(n-1)/2个第二连接线构成三维螺旋电感结构的第一滤波电感,m个导电柱、(m-1)/2个第三连接线和(m-1)/2个第四连接线构成三维螺旋电感结构的第二滤波电感,n为大于1的奇数,m为大于1的奇数,i为大于或等于1、小于或等于n-2的正整数,j为大于或等于1、小于或等于m-2的正整数。
  16. 根据权利要求15所述的混合滤波器,其中,所述第一滤波电容包括第一极板、第二极板以及设置在所述第一极板和第二极板之间的介质层,所述第二滤波电容包括第三极板、第四极板以及设置在所述第三极板和第四极板之间的介质层;所述第一极板和所述第三极板设置在所述第二衬底远离所述第一基板的一侧,所述第一极板与n个导电柱中的第n导电柱连接,所述第三极板与m个导电柱中的第m导电柱连接;所述介质层设置在所述第一 极板和第三极板远离所述第二衬底的一侧,所述第二极板和所述第四极板设置在所述介质层远离所述第二衬底的一侧,所述第一极板在所述第二衬底上的正投影与所述第二极板在所述第二衬底上的正投影至少部分交叠,所述第三极板在所述第二衬底上的正投影与所述第四极板在所述第二衬底上的正投影至少部分交叠。
  17. 根据权利要求16所述的混合滤波器,其中,所述混合滤波器还包括第一端子和第二端子,所述第一端子和第二端子设置在所述介质层远离所述第二衬底的一侧,所述第一端子与所述第四极板连接,所述第二端子与所述第二极板连接。
  18. 根据权利要求17所述的混合滤波器,其中,所述第一基板还包括第三连接块,所述第二基板还包括第四连接块,所述第三连接块设置在所述薄膜体声波谐振器的第一电极靠近所述第二基板的一侧,所述第四连接块设置在所述第二衬底靠近所述第一基板的一侧,且与m个导电柱中的第1导电柱连接,所述第三连接块与所述第四连接块通过键合方式连接,使所述薄膜体声波谐振器的第一电极通过所述第三连接块和所述第四连接块与所述第二滤波电感连接。
  19. 根据权利要求17所述的混合滤波器,其中,所述第一基板还包括第五连接块,所述第二基板还包括第六连接块,所述第五连接块设置在所述薄膜体声波谐振器的第二电极靠近所述第二基板的一侧,所述第六连接块设置在所述第二衬底靠近所述第一基板的一侧,且与n个导电柱中的第1导电柱连接,所述第五连接块和所述第六连接块通过键合方式连接,使所述薄膜体声波谐振器的第二电极通过所述第五连接块和所述第六连接块与所述第一滤波电感连接。
  20. 一种滤波装置,包括权利要求1至19任一项所述的混合滤波器。
  21. 一种混合滤波器的制备方法,包括:
    分别制备第一基板和第二基板,所述第一基板和第二基板中的至少一个设置有薄膜体声波谐振器,所述第一基板和第二基板中的至少一个设置有至少一个无源滤波器,所述无源滤波器包括滤波电感和滤波电容,所述滤波电 感为三维螺旋电感结构;
    在相对设置的所述第一基板和第二基板之间形成第一空间,所述薄膜体声波谐振器设置在所述第一空间内,且与所述无源滤波器连接。
PCT/CN2022/114511 2022-08-24 2022-08-24 混合滤波器及其制备方法、滤波装置 WO2024040468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/114511 WO2024040468A1 (zh) 2022-08-24 2022-08-24 混合滤波器及其制备方法、滤波装置
CN202280002823.0A CN117941256A (zh) 2022-08-24 2022-08-24 混合滤波器及其制备方法、滤波装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114511 WO2024040468A1 (zh) 2022-08-24 2022-08-24 混合滤波器及其制备方法、滤波装置

Publications (1)

Publication Number Publication Date
WO2024040468A1 true WO2024040468A1 (zh) 2024-02-29

Family

ID=90011986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114511 WO2024040468A1 (zh) 2022-08-24 2022-08-24 混合滤波器及其制备方法、滤波装置

Country Status (2)

Country Link
CN (1) CN117941256A (zh)
WO (1) WO2024040468A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756076A (zh) * 2004-09-28 2006-04-05 富士通媒体部品株式会社 双工器
CN109155299A (zh) * 2016-05-20 2019-01-04 高通股份有限公司 具有集成在基底内的3d线绕电感器的装置
CN209787129U (zh) * 2019-06-20 2019-12-13 杭州左蓝微电子技术有限公司 一种声波器件及一种声波器件温度控制装置
CN111164889A (zh) * 2017-09-29 2020-05-15 株式会社村田制作所 混合滤波器装置以及多路调制器
US20210099149A1 (en) * 2019-09-30 2021-04-01 Qualcomm Incorporated Device with 3d inductor and magnetic core in substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756076A (zh) * 2004-09-28 2006-04-05 富士通媒体部品株式会社 双工器
CN109155299A (zh) * 2016-05-20 2019-01-04 高通股份有限公司 具有集成在基底内的3d线绕电感器的装置
CN111164889A (zh) * 2017-09-29 2020-05-15 株式会社村田制作所 混合滤波器装置以及多路调制器
CN209787129U (zh) * 2019-06-20 2019-12-13 杭州左蓝微电子技术有限公司 一种声波器件及一种声波器件温度控制装置
US20210099149A1 (en) * 2019-09-30 2021-04-01 Qualcomm Incorporated Device with 3d inductor and magnetic core in substrate

Also Published As

Publication number Publication date
CN117941256A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN108259017B (zh) 射频谐振器和滤波器的制造方法
AU2018203942B2 (en) Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
CN108173525B (zh) 射频谐振器与滤波器
US7939356B2 (en) Method of manufacturing film bulk acoustic resonator using internal stress of metallic film and resonator manufactured thereby
US6601276B2 (en) Method for self alignment of patterned layers in thin film acoustic devices
CN103684336B (zh) 包含具有内埋式温度补偿层的电极的谐振器装置
US11417826B2 (en) Ultrasonic sensor, manufacturing method thereof and display device
WO2010125873A1 (ja) 弾性波装置及びその製造方法
US20050269904A1 (en) Thin film bulk acoustic resonator and method of manufacturing the same
JP2004007847A (ja) 薄膜バルク波共振子フィルタ
CN102509844A (zh) 一种微机械圆盘谐振器及制作方法
WO2021196725A1 (zh) 一种薄膜压电声波滤波器及其制造方法
CN109786923A (zh) 一种声学驱动的微型磁电天线结构及其制备方法
CN114337585B (zh) 一种单晶薄膜体声波谐振器及其制备方法、滤波器
WO2024040468A1 (zh) 混合滤波器及其制备方法、滤波装置
CN107094004A (zh) 声波滤波器和制造该声波滤波器的方法
WO2022006817A1 (zh) Mems扬声器及其制造方法
WO2020191750A1 (zh) 晶体振荡器及其制作方法和设备
US20220368310A1 (en) Film piezoelectric acoustic wave filter and fabrication method thereof
CN114301413B (zh) 空腔型倒置声波器件及其制备方法
CN112635195B (zh) 一种电容器及其制造方法
CN112039489B (zh) 一种薄膜压电声波滤波器及其制造方法
CN110380703B (zh) 一种微型电子器件的整片晶圆级封装结构和工艺
WO2021042342A1 (zh) 一种体声波谐振装置及一种体声波滤波器
WO2024040517A1 (zh) 滤波器及其制备方法、电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002823.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956017

Country of ref document: EP

Kind code of ref document: A1