WO2024036891A1 - 消息发送参数的设置方法、电子设备及存储介质 - Google Patents

消息发送参数的设置方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024036891A1
WO2024036891A1 PCT/CN2023/075102 CN2023075102W WO2024036891A1 WO 2024036891 A1 WO2024036891 A1 WO 2024036891A1 CN 2023075102 W CN2023075102 W CN 2023075102W WO 2024036891 A1 WO2024036891 A1 WO 2024036891A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameters
message sending
parameter
type
message
Prior art date
Application number
PCT/CN2023/075102
Other languages
English (en)
French (fr)
Inventor
杨斌
陈文兵
刘光勇
Original Assignee
浙江艾克斯精灵人工智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江艾克斯精灵人工智能科技有限公司 filed Critical 浙江艾克斯精灵人工智能科技有限公司
Publication of WO2024036891A1 publication Critical patent/WO2024036891A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast

Definitions

  • the embodiments of the present application relate to the field of communication technology, and specifically relate to a method for setting message sending parameters, an electronic device, and a storage medium.
  • the Bluetooth Mesh (wireless mesh) network is a mesh network that establishes communication between devices based on BLE (Bluetooth Low Energy). It is widely used in intelligent interconnection scenarios of devices such as smart homes and smart offices.
  • BLE Bluetooth Low Energy
  • network-distributed node devices need to periodically send messages to synchronize status with control devices such as Bluetooth Mesh gateways and terminal devices.
  • control devices such as Bluetooth Mesh gateways and terminal devices.
  • the node device mainly sends messages based on message sending parameters. Therefore, how to reasonably set the message sending parameters of the node device to adapt to the network conditions of the Bluetooth Mesh network has become an urgent technical problem that technicians in the field need to solve.
  • embodiments of the present application provide a method, electronic device, and storage medium for setting message sending parameters, so as to achieve reasonable setting of message sending parameters for node devices in a Bluetooth Mesh network, and to reasonably set the message sending parameters of the node device.
  • sending parameters the bandwidth and traffic of the Bluetooth Mesh network can be optimized and the congestion of the Bluetooth Mesh network can be reduced.
  • embodiments of the present application provide a method for setting message sending parameters, including: sending a first broadcast packet to a node device in a Bluetooth Mesh network, where the first broadcast packet is used to set a first message sending parameter for the node device. parameters; obtain the message sent by the node device with the first message sending parameter; and determine the number of node devices in the Bluetooth Mesh network according to the message sent by the node device; send a third message to the node device in the Bluetooth Mesh network.
  • Two broadcast packets, the second broadcast packet is used to set a second message sending parameter for a node device, wherein the second message sending parameter is associated with the number of the node devices, and the second message sending parameter is associated with the The parameter values of the first message parameters are different.
  • embodiments of the present application provide a method for setting message sending parameters, which includes: obtaining a first broadcast packet, and setting the first message sending parameters according to the first broadcast packet; and sending according to the first message sending parameters.
  • message obtain a second broadcast packet, and set a second message sending parameter according to the second broadcast packet; wherein the second message sending parameter is associated with the number of node devices in the Bluetooth Mesh network, and the second message sending parameter The parameter is different from the parameter value of the first message parameter.
  • embodiments of the present application provide an electronic device, including at least one memory and at least one processor.
  • the memory stores one or more computer-executable instructions.
  • the processor calls the one or more computer-executable instructions. Execute the instruction to execute the setting method of message sending parameters as described in the above first aspect, or execute the setting method of message sending parameters as described in the above second aspect.
  • embodiments of the present application provide a storage medium that stores one or more computer-executable instructions. When the one or more computer-executable instructions are executed, the method described in the first aspect is implemented. The setting method of message sending parameters, or the setting method of message sending parameters described in the second aspect above.
  • embodiments of the present application provide a computer program that, when executed, implements the method for setting message sending parameters as described in the first aspect, or the message sending as described in the second aspect. How to set parameters.
  • Figure 1 shows an example diagram of a Bluetooth Mesh network.
  • FIG. 2 shows a flow chart of a method for setting message sending parameters provided by an embodiment of the present application.
  • Figure 3 shows another example diagram of a Bluetooth Mesh network.
  • Figure 4 shows a block diagram of a device for setting message sending parameters provided by an embodiment of the present application.
  • FIG. 5 shows another block diagram of a device for setting message sending parameters provided by an embodiment of the present application.
  • Figure 6 shows a block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 schematically shows an example diagram of a Bluetooth Mesh network.
  • the Bluetooth Mesh network may include multiple node (Node) devices 101 that have been configured with a network.
  • the Bluetooth Mesh gateway 102 and the terminal device 103 serve as control devices.
  • the unprovisioned device (Unprovisioned Device) 104 can also Configure and control the node equipment of the distribution network.
  • the node device 101 can be regarded as a Bluetooth Mesh device that has joined the Bluetooth Mesh network;
  • the unequipped device 104 can be regarded as a Bluetooth Mesh device that has not yet joined the Bluetooth Mesh network;
  • the Bluetooth Mesh gateway 102 can, for example, have Bluetooth communication capabilities and Smart speakers with Internet connection capabilities, multi-mode gateways, etc.;
  • the terminal device 103 can be a user-side device such as a smartphone or tablet computer used by the user, which has the configuration and control functions of the node device 101, and The functions of the node device 101 and the like are controlled through the Bluetooth Mesh gateway 102.
  • the unequipped device 103 can become a node device in the Bluetooth Mesh network, and the user can access the Bluetooth Mesh network through the Bluetooth Mesh gateway 102 and/or the terminal device 103
  • the mid-node device 101 implements security control.
  • the Bluetooth Mesh gateway and/or the terminal device can realize the control and device status monitoring of the node device, thereby It ensures user experience of fast and continuous control of node devices, and can also present the device status of each node device to the user within a certain period of time.
  • the Bluetooth Mesh gateway 102 and/or the terminal device 103 can send a broadcast packet to the node device. If there is an instruction in the broadcast packet that requires the node device to reply, the node device sends a broadcast packet to the Bluetooth Mesh gateway and/or based on the content of the broadcast packet.
  • the terminal device sends a status synchronization message.
  • the node device can send a status synchronization message to the Bluetooth Mesh gateway and/or the terminal device according to the message sending parameters.
  • the message sending parameters can be, for example, the status synchronization cycle of the node device, message sending and Relay retransmission. Number of times, multicast status reply time range, powered device synchronization status delay range and other parameters.
  • the Bluetooth Mesh gateway broadcasts a control message, and the node device can The Bluetooth Mesh gateway sends a status return message, in which each message can correspond to different data transmission amounts according to different message sending parameters such as TTL (Time To Live, survival time) when sending and the number of broadcast Relay retransmissions; when N When greater than 1, the Bluetooth Mesh gateway controls multiple node devices, that is, in a group control scenario. At this time, the data transmission volume is directly related to the number of node devices.
  • the Bluetooth Mesh gateway broadcasts a control message, and N node devices can send messages to the Bluetooth Mesh node.
  • the gateway sends N status return messages, in which each message can correspond to different data transmission amounts according to message sending parameters such as TTL when sent by the node device and the number of broadcast Relay retransmissions.
  • the control device can poll and read the status of the node device to control all node devices in the Bluetooth Mesh network.
  • the control device in the Bluetooth Mesh network can Control multiple node devices.
  • the control device needs to control a large number of node devices, the control device needs to send broadcast packets frequently. Frequent sending of broadcast packets will affect the messages sent by the receiving node device, so polling reading is used.
  • the method of device status based on the limit on the number of node devices supported by a single control device, will also have an impact on the user experience.
  • the embodiment of the present application uses an improved technical solution to dynamically and adaptively adjust the message sending parameters of the node device in the Bluetooth Mesh network based on the number of node devices in the Bluetooth Mesh network, so that the message sending parameters of the node device, Able to adapt to the network scale of Bluetooth Mesh network situation, thereby achieving reasonable setting of the message sending parameters of the node device; at the same time, since the message sending parameters of the node device affect the bandwidth and traffic of the Bluetooth Mesh network, under the condition of reasonably setting the message sending parameters of the node device, the embodiment of the present application It can optimize the bandwidth and traffic of the Bluetooth Mesh network and reduce the congestion of the Bluetooth Mesh network.
  • FIG. 2 exemplarily shows a flow chart of a method for setting message sending parameters provided by an embodiment of the present application.
  • the method flow can be executed by the control device (including Bluetooth Mesh gateway or terminal device) and the node device (ie, the Bluetooth Mesh device has been configured with the network).
  • the method flow can include the following steps.
  • Step S211 The control device sends a first broadcast packet to the node device in the Bluetooth Mesh network, where the first broadcast packet is used to set first message sending parameters for the node device.
  • the first broadcast packet referred to in the embodiment of this application can be used to set the first message sending parameters for the node device, so that the control device can obtain the status synchronization message of the node device in a timely manner and realize control of the node device.
  • the first message sending parameter may be, for example, the status synchronization period of the node device, the number of retransmissions of message sending and Relay, the time range of multicast status reply, the power-on device synchronization status delay range, and other parameters.
  • Step S212 The node device obtains the first broadcast packet and sets the first message sending parameters according to the first broadcast packet.
  • Step S213 The node device sends a message according to the first message sending parameter.
  • Step S214 The control device obtains the message sent by the node device using the first message sending parameter; and determines the number of node devices in the Bluetooth Mesh network based on the message sent by the node device.
  • the first broadcast packet sent by the control device to the node device may include instructions that require the node device to return a message, so as to obtain the status of the node device in a timely manner, or may include instructions that do not require the node device to return a message, then
  • the first broadcast packet may be used as a one-way notification broadcast packet.
  • the node device needs to return the message to the control device according to the first message sending parameter, so that the control device can obtain the message sent by the node device with the first message sending parameter, And according to the message sent by the node device, the number of node devices in the Bluetooth Mesh network is determined.
  • the message sent by the node device obtained by the control device may be the attribute information of the node device.
  • the message sent by it includes the switch, brightness, color temperature and other attribute values of the lamp, where the node device sends
  • the message can be sent according to a certain format.
  • the message format can follow the Bluetooth Mesh model, and each node device sends a message containing its attribute information to the control device. If the node device contains more attribute information, it must The transmitted content may exceed one segment, so the attribute information of the node device can be compressed and sent in one segment.
  • the message sent by the node device will contain the address information of the device, where the address information may be information that uniquely identifies the node device, such as a unicast address.
  • the control device can determine the address information of the node device according to the message sent by the node device, thereby recording the address information, statistics of the recorded address information, and determining the amount of address information. According to the determined address The amount of information can determine the number of node devices in the Bluetooth Mesh network.
  • the Bluetooth Mesh gateway sends the first broadcast packet to the node device every 30 seconds, so that before the next 30 seconds arrive, it can obtain the message sent by the node device with the first message sending parameter, and count the messages within 30 seconds. The number of recorded unicast addresses to determine the number of node devices in the Bluetooth Mesh network.
  • Step S215 The control device sends a second broadcast packet to the node device in the Bluetooth Mesh network.
  • the second broadcast packet is used to set a second message sending parameter for a node device, wherein the second message sending parameter is associated with the number of node devices, and the second message sending parameter is associated with the first message sending parameter.
  • the parameter values of the message parameters are different.
  • Step S216 The node device obtains the second broadcast packet and sets the second message sending parameters according to the second broadcast packet.
  • Step S217 The node device sends a message according to the second message sending parameter.
  • the control device can generate a second broadcast packet based on the determined number of node devices, and send the second broadcast to the node device in the Bluetooth Mesh network. packet, so that the node device sets the second message sending parameter according to the second broadcast packet.
  • the control device can determine whether the number of node devices has changed by determining the number of node devices in the Bluetooth Mesh network, where the change in the number of node devices can be based on the node device determined by the control device when sending the first broadcast packet.
  • the number is obtained by comparing it with the obtained number of node devices determined by the message sent by the node device using the first message sending parameter. Therefore, when the number of node devices changes, based on the determined number of node devices in the Bluetooth Mesh network, the first message sending parameters are correspondingly adjusted to obtain the second message sending parameters adapted to the scale of the Bluetooth Mesh network, wherein the second message sending parameters are The parameter value of the parameter is obtained after adjustment. Therefore, it may be different from the parameter value of the first message parameter.
  • the second message sending parameters of the node device can be hashed within its time period, thereby effectively reducing the conflict probability of each node device and enabling large-scale processing. Minimize conflicts in the Bluetooth Mesh network, thereby optimizing the bandwidth and traffic of the Bluetooth Mesh network, and reducing congestion in the Bluetooth Mesh network.
  • the first broadcast packet may be a broadcast packet sent to all node devices in the initial state of the Bluetooth Mesh network to implement initialization of the node devices.
  • the first broadcast packet may also be a previous broadcast packet used to adjust message sending parameters of the node device.
  • the second broadcast packet may be broadcast by the control device based on a preset time period. For example, after the control device broadcasts the first broadcast packet, if the time reaches the preset time period, the control device may broadcast the second broadcast packet. 2. Broadcast package.
  • the second broadcast packet may be broadcast based on preset conditions.
  • the preset condition may be a condition under which the control device senses a change in the number of node devices.
  • the preset condition may be that the control device senses that the change value of the number of node devices reaches a preset value; the preset value may be an increase or decrease in the number of node devices in the Bluetooth Mesh network.
  • the embodiment of the present application can determine the preset value that affects the bandwidth traffic of the Bluetooth Mesh network, that is, when the change value of the number of node devices reaches the preset value, it will affect the bandwidth traffic of the Bluetooth Mesh network; thus, the control device can After broadcasting the first broadcast packet, if it is sensed that the change in the number of node devices reaches the preset value, and the change in the number of node devices has affected the bandwidth traffic of the Bluetooth Mesh network, the second broadcast packet can be broadcast to increase the bandwidth of the node device. Message sending parameters are adjusted.
  • the second broadcast packet sent by the control device to the node device may include a second message set for the node device. Send parameters so that the node device can perform corresponding settings based on the obtained second message sending parameters in the second broadcast packet. Set.
  • the second broadcast packet sent by the control device to the node device may include the number of node devices, where the number of node devices is used to make the node that receives the second broadcast packet
  • the device sets the second message sending parameter, so that the node device can correspondingly set the second message sending parameter based on the number of node devices in the acquired second broadcast packet.
  • the embodiment of the present application dynamically and adaptively adjusts the message sending parameters of the node device based on the number of node devices in the Bluetooth Mesh network determined by the control device to obtain the second message sending parameter, so that the second message sending parameter of the node device , adapted to the network scale of the Bluetooth Mesh network, to achieve reasonable setting of message sending parameters of the node device; at the same time, because the message sending parameters of the node device affect the bandwidth and traffic of the Bluetooth Mesh network, it is necessary to set the message sending parameters of the node device reasonably.
  • the embodiments of the present application can optimize the bandwidth and traffic of the Bluetooth Mesh network and reduce the congestion of the Bluetooth Mesh network.
  • the Bluetooth mesh gateway in the Bluetooth Mesh network and the Bluetooth Mesh device can interact by directly sending broadcast packets, and the smartphone Since terminal devices such as computers and tablets do not support the interactive method of directly sending broadcast packets, they can establish a Proxy (agent) connection with the node device in the Bluetooth Mesh network, and the node device as the Proxy forwards the broadcast packet to other nodes in the Bluetooth Mesh network.
  • the node device needs to set the number of message sending and Relay retransmissions corresponding to the node device, and the terminal device can send broadcast packets to all node devices in the Bluetooth Mesh network.
  • the second message sending parameters may include at least first type parameters and second type parameters, wherein the first type parameters may be parameters associated with the number of message sending times of the node device, such as the number of retransmissions of message sending and relay;
  • the second type of parameters may be parameters associated with the message sending time of the node device, such as status synchronization cycle, multicast status reply time range, powered device synchronization status delay range and other parameters.
  • the first-type parameter in the second message sending parameters has a positive correlation with the number of node devices.
  • the first type parameters in the second message sending parameters increase, and the increased first type parameters are larger than the first message sending parameters.
  • the first type of parameters in the sending parameters for example: a relay node device that receives and forwards messages from other node devices in the Bluetooth Mesh network. If the number of node devices increases, the relay node needs to receive and forward messages from the node devices.
  • the number of message sending and relay retransmissions in the second message sending parameter corresponding to the relay node device increases; when the number of node devices decreases, based on the first message sending parameter, the second message sending parameter
  • the first type parameter in is reduced, and the reduced first type parameter is smaller than the first type parameter in the first message sending parameter, for example: a relay node that receives and forwards messages from other node devices in the Bluetooth Mesh network equipment, wherein if the number of node devices decreases, the number of messages from node devices that the relay node needs to receive and forward decreases, so the number of retransmissions of message sending and relay in the second message sending parameter corresponding to the relay node device decreases. Small.
  • the second type of parameter in the second message sending parameters has a negative correlation with the number of node devices. In one embodiment, when the number of node devices increases, based on the first message sending parameters, the second type parameters in the second message sending parameters decrease, and the reduced second type parameters are smaller than the first message sending parameters.
  • Send the second type of parameter in the parameter for example: in In the Bluetooth Mesh network, when the number of node devices increases, in order to ensure that the messages sent by all node devices can be hashed within the time period of the control device, the period of status synchronization of each node device decreases; when the number of node devices decreases, hours, based on the first message sending parameters, the second type of parameters in the second message sending parameters are increased, and the increased second type parameters are greater than the second type of parameters in the first message sending parameters, for example: In the Bluetooth Mesh network, when the number of node devices decreases, in order to enable the messages sent by all node devices to be hashed within the time period of the control device, the period of status synchronization of each node device increases.
  • the control device periodically sends broadcast packets to each node device in the Bluetooth Mesh network according to the broadcast cycle
  • the broadcast cycle based on the control device is fixed, so the control device obtains the packet sent by the node device with the second message sending parameter.
  • the messages can be randomized within the broadcast cycle of the control device, as long as the messages sent by multiple node devices do not cause data conflicts.
  • the first message sending parameter can be selected within the default random delay range, so that within the broadcast cycle of the control device, the first message sending parameter can be selected according to the increase or decrease in the number of node devices in the Bluetooth Mesh network. , select an increased or decreased parameter value within the default parameter value range.
  • the Bluetooth Alliance SIG Mesh standard "Mesh Profile Specification" involves each node making a random delay of 20 to 500 milliseconds before sending the packet, then the second type of parameter in the first message sending parameter can be a parameter value selected within the default range of 20 to 500 milliseconds, so that when Bluetooth When the number of node devices in the Mesh network increases or decreases, a random delay range of 20 to 500 milliseconds can be selected to obtain the second type of parameters in the second message sending parameters.
  • the delay range of the message sending parameters can be set accordingly according to changes in the number of node devices in the network.
  • the embodiment of the present application associates the second message sending parameter with the number of node devices in the Bluetooth Mesh network, so that the set second message sending parameter can adapt to the network scale of the Bluetooth Mesh network, thereby achieving the minimum requirement in the large-scale Bluetooth Mesh network.
  • Data conflicts can be achieved to achieve the minimum delay in a small-scale Bluetooth Mesh network, thereby optimizing the bandwidth and traffic of the Bluetooth Mesh network and reducing the congestion of the Bluetooth Mesh network.
  • the node device in the embodiment of the present application can set message sending parameters based on the broadcast packet sent by the control device, and is associated with the number of node devices in the Bluetooth Mesh network based on the message sending parameters, so that the node device It can dynamically and adaptively adjust message sending parameters according to the determined number of node devices in the Bluetooth Mesh network, thereby adapting to the network scale of the Bluetooth Mesh network and achieving reasonable setting of message sending parameters for node devices.
  • the node device can send information according to the first message sending parameter, so that the control device can determine the number of node devices in the Bluetooth Mesh network, thereby The node device sends the second broadcast packet.
  • the node device may set the second message sending parameter according to the number of node devices carried in the second broadcast packet, and the second message sending parameter is determined by the node device. Corresponding settings.
  • the node device may set the message sending parameter to the second message sending parameter carried in the second broadcast packet, where the second message sending parameter is set by the control device according to the determined number of node devices. set.
  • the second message sending parameters may include at least a first type of parameter and a second type of parameter, wherein the first type of parameter is associated with the number of message sending times of the node device, and the second type of parameter is associated with the number of message sending of the node device. time associated.
  • the first type of parameters in the second message sending parameters has a positive correlation with the number of node devices.
  • the first type of parameters increases, and the increased first type of parameters increases.
  • the class parameter is greater than the first class parameter in the first message sending parameters; when the number of node devices decreases, the first class parameter decreases, and the reduced first class parameter is smaller than the first message Send the first type of parameters in the parameters.
  • the second type of parameter in the second message sending parameter has a negative correlation with the number of node devices; when the number of node devices increases, the first type of parameter decreases, and after decreasing The second type of parameter is smaller than the second type of parameter in the first message sending parameter; when the number of node devices decreases, the first type of parameter increases, and the increased second type of parameter is greater than the The second type of parameters in the first message sending parameters.
  • the node device sets the second message sending parameter according to the second broadcast packet, and then after the node device obtains the broadcast packet sent by the control device again, it can send the message according to the second message sending parameter. Specifically, the node device can Determine the random delay corresponding to the second type parameter in the second message sending parameter, so that within the broadcast cycle of the control device, if the random delay time corresponding to the node device is reached, the message is sent.
  • the random delay of the node device may be associated with the number of node devices. In one embodiment, if the number of node devices increases, the random delay determined by the node device for the second type of parameter in the second message sending parameter is smaller than the random delay determined by the second type of parameter in the first message sending parameter; In another embodiment, if the number of node devices decreases, the random delay determined for the second type of parameters in the second message sending parameters is greater than the random delay determined for the second type of parameters in the first message sending parameters.
  • each node device is randomly delayed within the broadcast cycle of the control device, which means that under the premise that the number of node devices is satisfied, each node device is randomly delayed according to the broadcast cycle time of the control device, thereby avoiding each node device Generate data conflicts to ensure that the actual sending time of each node device is hashed within the broadcast cycle of the control device.
  • the broadcast period of a control device is 30 seconds, and it controls a total of 50 node devices. Then the sending time of messages sent by the 50 node devices to the control device is randomly determined within 30 seconds (that is, the 50 node devices randomly send messages to the control device within 30 seconds. device sends a message), thereby reducing the probability of conflict.
  • the number of Bluetooth Mesh gateways may be multiple.
  • the second message sending parameter corresponding to the node device may be It is set based on the number of node devices determined by the Bluetooth Mesh gateway that controls the largest number of node devices.
  • Figure 3 illustrates another example diagram of a Bluetooth Mesh network.
  • the Bluetooth Mesh network may include: Bluetooth Mesh gateways G1 and G2, and node devices N1, N2,..., N99.
  • G1 covers 10 node devices, namely N1 ⁇ N10
  • G2 covers 92 node devices, respectively N8 ⁇ N99.
  • node devices N8, N9, and N10 are within the coverage of both G1 and G2 gateways. Then G1 and G2 both send broadcast packets to N8, N9, and N10, and N8, N9, and N10 can all obtain broadcast packets.
  • the number of node devices controlled based on the coverage of G2 is higher than the number of node devices controlled within the coverage of G1, then N8, N9, and N10 broadcast according to the broadcast of G2.
  • the package content sets the message sending parameters.
  • the following is an introduction to the device for setting message sending parameters provided by the embodiment of the present application.
  • the content of the device described below can be considered as a method for setting the message sending parameters provided by the control device (including a Bluetooth Mesh gateway and a terminal device) for implementing the embodiment of the present application.
  • Function modules required to be set The contents described below may be mutually referenced with the contents described above.
  • FIG. 4 schematically shows a block diagram of a device for setting message sending parameters provided by an embodiment of the present application.
  • the device can be applied to a control device.
  • the device may include: a broadcast packet Sending module 41, configured to send a first broadcast packet to a node device in the Bluetooth Mesh network, where the first broadcast packet is used to set first message sending parameters for the node device; and to send a first message to the node device in the Bluetooth Mesh network.
  • a second broadcast packet, the second broadcast packet is used to set a second message sending parameter for a node device, wherein the second message sending parameter is associated with the number of node devices, and the second message sending parameter is associated with the node device number.
  • the parameter value of the first message parameter is different; the acquisition module 42 is used to obtain the message sent by the node device with the first message sending parameter; the determination module 43 is used to determine the message according to the message sent by the node device.
  • the number of node devices in the Bluetooth Mesh network is used to determine the message according to the message sent by the node device.
  • the second broadcast packet is used to set the second message sending parameters for the node device, including: the second broadcast packet carries the second message sending parameters set for the node device; or, The second broadcast packet carries the number of node devices, and the number of node devices is used to enable the node device that receives the second broadcast packet to set second message sending parameters.
  • the determining module 43 is configured to determine the number of node devices in the Bluetooth Mesh network according to the message sent by the node device, including: determining the number of node devices according to the message sent by the node device. Address information of the device; determine the number of node devices in the Bluetooth Mesh network based on the determined amount of address information.
  • the second broadcast packet sent by the broadcast packet sending module 41 may be a second broadcast packet sent based on a broadcast cycle, or the number of node devices in the Bluetooth Mesh network meets preset conditions.
  • the preset condition may be a condition under which the control device senses a change in the number of node devices. For example, the change value of the number of node devices sensed by the control device reaches a preset value.
  • the device for setting message sending parameters provided by the embodiment of the present application is introduced below.
  • the content of the device described below can be considered as the message provided by the node device to implement the embodiment of the present application.
  • the contents described below may be mutually referenced with the contents described above.
  • FIG. 5 schematically shows another block diagram of a device for setting message sending parameters provided by an embodiment of the present application.
  • the device can be applied to a node device.
  • the device may include: first The broadcast packet obtaining module 51 is used to obtain the first broadcast packet and set the first message sending parameters according to the first broadcast packet; the first sending module 52 is used to send the message according to the first message sending parameters; the second The broadcast packet acquisition module 53 is used to acquire the second broadcast packet and set the second message sending parameters according to the second broadcast packet; wherein the second message sending parameters are associated with the number of node devices in the Bluetooth Mesh network, The second message sending parameters have different parameter values from the first message parameters.
  • the second broadcast packet obtaining module 53 is used to obtain the second broadcast packet and set the second message sending parameters according to the second broadcast packet: according to the node device carried in the second broadcast packet quantity, and set the second message sending parameter; or, set the message sending parameter to the second message sending parameter carried in the second broadcast packet.
  • the device further includes: a second sending module 54, configured to send a message according to the second message sending parameters; a second sending module 54, configured to send a message according to the second message sending parameter.
  • the step of sending a message with parameters includes: determining the random delay corresponding to the second type parameter in the second message sending parameter; within the broadcast period, if the random delay time is reached, the message is sent; the random delay Associated with the number of node devices.
  • FIG. 6 is a block diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 6, the electronic device may include: at least one processor 1, at least one communication interface 2, and at least one memory 3 and at least one communication bus 4.
  • the number of the processor 1, the communication interface 2, the memory 3, and the communication bus 4 is at least one, and the processor 1, the communication interface 2, and the memory 3 complete communication with each other through the communication bus 4.
  • the communication interface 2 may be an interface of a communication module used for network communication.
  • the processor 1 may be a CPU, GPU (Graphics Processing Unit, graphics processor), NPU (embedded neural network processor), FPGA (Field Programmable Gate Array, field programmable logic gate array), TPU (Tensor processing unit), AI chip, Application Specific Integrated Circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement embodiments of the present application, etc.
  • the memory 3 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the memory 3 stores one or more computer-executable instructions, and the processor 1 calls the one or more computer-executable instructions to execute the message sending parameter setting method provided by the embodiment of the present application.
  • the processor calls the one or more computer-executable instructions to execute the message sending parameter setting method executed by the control device in this embodiment of the present application.
  • the processor calls the one or more computer-executable instructions to execute the message sending parameter setting method executed by the node device in this embodiment of the present application.
  • Embodiments of the present application also provide a storage medium that stores one or more computer-executable instructions.
  • the control device as provided by the embodiments of the present application is implemented.
  • the method for setting message sending parameters is executed, or the method for setting message sending parameters executed by the node device as provided in the embodiment of the present application is implemented.
  • An embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed, the method for setting message sending parameters executed by a control device as provided by the embodiment of the present application is implemented, or the method of setting message sending parameters by a node as provided by an embodiment of the present application is implemented. Method for setting message sending parameters executed by the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种消息发送参数的设置方法、电子设备及存储介质,其中方法包括:向蓝牙Mesh网络中的节点设备发送第一广播包,所述第一广播包用于为节点设备设置第一消息发送参数;获取节点设备以所述第一消息发送参数所发送的消息;以及根据所述节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量;向蓝牙Mesh网络中的节点设备发送第二广播包,所述第二广播包用于为节点设备设置第二消息发送参数,其中,所述第二消息发送参数与所述节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。本申请实施例能够实现合理的设置节点设备的消息发送参数。

Description

消息发送参数的设置方法、电子设备及存储介质
本申请要求于2022年08月15日提交中国专利局、申请号为202210976166.1、名称为“消息发送参数的设置方法、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种消息发送参数的设置方法、电子设备及存储介质。
背景技术
蓝牙Mesh(无线网格)网络是基于BLE(Bluetooth Low Energy,低能耗蓝牙)建立设备间通信的网状网络,其广泛用于智能家居、智慧办公等设备智能互联场景。在蓝牙Mesh网络中,已配网的节点(Node)设备需要周期性的发送消息,以向蓝牙Mesh网关、终端设备等控制设备同步状态。其中,节点设备主要基于消息发送参数进行消息发送,因此如何合理的设置节点设备的消息发送参数,以适应蓝牙Mesh网络的网络情况,成为了本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本申请实施例提供一种消息发送参数的设置方法、电子设备及存储介质,以对蓝牙Mesh网络中的节点设备实现合理的设置消息发送参数,并且,在合理设置节点设备的消息发送参数的情况下,实现优化蓝牙Mesh网络的带宽、流量,减少蓝牙Mesh网络的堵塞情况。
为实现上述目的,本申请实施例提供如下技术方案。
第一方面,本申请实施例提供一种消息发送参数的设置方法,包括:向蓝牙Mesh网络中的节点设备发送第一广播包,所述第一广播包用于为节点设备设置第一消息发送参数;获取节点设备以所述第一消息发送参数所发送的消息;以及根据所述节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量;向蓝牙Mesh网络中的节点设备发送第二广播包,所述第二广播包用于为节点设备设置第二消息发送参数,其中,所述第二消息发送参数与所述节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。
第二方面,本申请实施例提供一种消息发送参数的设置方法,包括:获取第一广播包,并根据所述第一广播包设置第一消息发送参数;根据所述第一消息发送参数发送消息;获取第二广播包,并根据所述第二广播包设置第二消息发送参数;其中,所述第二消息发送参数与蓝牙Mesh网络中的节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。
第三方面,本申请实施例提供一种电子设备,包括至少一个存储器和至少一个处理器,所述存储器存储一条或多条计算机可执行指令,所述处理器调用所述一条或多条计算机可 执行指令,执行如上述第一方面所述的消息发送参数的设置方法,或者,执行如上述第二方面所述的消息发送参数的设置方法。
第四方面,本申请实施例提供一种存储介质,所述存储介质存储一条或多条计算机可执行指令,所述一条或多条计算机可执行指令被执行时,实现上述第一方面所述的消息发送参数的设置方法,或者,上述第二方面所述的消息发送参数的设置方法。
第五方面,本申请实施例提供一种计算机程序,所述计算机程序被执行时,实现如上述第一方面所述的消息发送参数的设置方法,或者,如上述第二方面所述的消息发送参数的设置方法。
上述概述仅仅是为了说明书的目的,并不意图以任何方式进行限制。除上述描述的示意性的方面、实施方式和特征之外,通过参考附图和以下的详细描述,本申请进一步的方面、实施方式和特征将会是容易明白的。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1示出了一种蓝牙Mesh网络的示例图。
图2示出了本申请实施例提供的一种消息发送参数的设置方法的流程图。
图3示出了蓝牙Mesh网络的另一种示例图。
图4示出了本申请实施例提供的一种消息发送参数的设置装置的框图。
图5示出了本申请实施例提供的消息发送参数的设置装置的另一框图。
图6示出了本申请实施例提供的一种电子设备的框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示例性的示出了一种蓝牙Mesh网络的示例图,如图1所示,蓝牙Mesh网络可以包括:已配网的多个节点(Node)设备101。在图1所示中,蓝牙Mesh网关102和终端设备103作为控制设备,除可以通过Provisioning(启动配置)过程,将未配网设备(Unprovisioned Device)104加入到蓝牙Mesh网络中外,还可以对已配网的节点设备进行配置、控制。
其中,节点设备101可以视为是已加入蓝牙Mesh网络的蓝牙Mesh设备;未配网设备104可以视为是还未加入蓝牙Mesh网络的蓝牙Mesh设备;蓝牙Mesh网关102可以例如具有蓝牙通信能力和互联网连接能力的智能音箱、多模网关等;终端设备103可以是用户使用的智能手机、平板电脑等用户侧设备,其具有节点设备101的配置、控制功能,以及 通过蓝牙Mesh网关102控制节点设备101的功能等。可以理解的是,未配网设备103接入到蓝牙Mesh网络之后,未配网设备103可成为蓝牙Mesh网络中的节点设备,用户通过蓝牙Mesh网关102和/或终端设备103可对蓝牙Mesh网络中节点设备101实现安全控制。
其中,在蓝牙Mesh网关102和/或终端设备103对蓝牙Mesh网络中节点设备101实现安全控制的过程中,可以由蓝牙Mesh网关和/或终端设备实现对节点设备的控制与设备状态监控,从而保证对节点设备的快速、连续控制的用户体验,并且,也可以在一定时间内将各节点设备的设备状态呈现给用户。具体的,蓝牙Mesh网关102和/或终端设备103可以向节点设备发送广播包,若广播包中存在需要节点设备进行回复的指令,则节点设备基于广播包的内容,向蓝牙Mesh网关和/或终端设备发送状态同步消息,其中,节点设备可以根据消息发送参数向蓝牙Mesh网关和/或终端设备发送状态同步消息,消息发送参数可以例如为节点设备的状态同步周期、消息发送与Relay的重传次数、组播状态回复的时间范围、上电设备同步状态延时范围等参数。
需要说明的是,蓝牙Mesh网络中的节点设备可以是多个,从而需要控制的节点设备数量可以是多个,其一次控制的目标节点设备也可以为多个。以蓝牙Mesh网关控制N个节点设备为例,当N=1时,蓝牙Mesh网关控制一个节点设备,即单控的场景下,数据传输量有限,蓝牙Mesh网关广播一条控制消息,节点设备可以向蓝牙Mesh网关发送一条状态返回消息,其中,每条消息可以根据例如发送时的TTL(Time To Live,生存时间)和广播的Relay重传次数等不同消息发送参数对应不同的数据传输量;当N大于1时,蓝牙Mesh网关控制多个节点设备,即组控的场景下,此时数据传输量与节点设备的数量存在直接关系,蓝牙Mesh网关广播一条控制消息,N个节点设备可以向蓝牙Mesh网关发送N条状态返回消息,其中,每条消息可以根据节点设备发送时的TTL和广播的Relay重传次数等消息发送参数对应不同的数据传输量。
然而,在大规模蓝牙Mesh网络中的蓝牙Mesh设备的数量为上百个的情况下,若多个节点设备同时向控制设备发送消息,则会产生数据冲突,造成蓝牙Mesh网络的堵塞,导致控制设备不能及时接收所有节点设备的发送消息,从而丢包率上升,影响用户的控制体验。因此,需要对节点设备的消息发送参数进行设置。在一实施例中,可以在各个节点设备发送消息前做20-500毫秒的随机延时,以规避多个节点设备的数据冲突。但是发明人发现,该种方式对于蓝牙Mesh网络中的节点设备数量较少的情况下,能够达到冲突规避的效果,对于节点设备数量众多大规模蓝牙Mesh网络,仍会存在大量的传输冲突。在一实施例中,可以采用控制设备轮询读取节点设备状态的方式,对蓝牙Mesh网络中的所有节点设备进行控制,但是基于该种方式,发明人发现,蓝牙Mesh网络中的控制设备可以控制多个节点设备,当控制设备需要控制的数量较多的节点设备时,控制设备需要频繁发送广播包,而频繁的发送广播包会影响接收节点设备所发送的消息,因此采用轮询读取设备状态的方式,基于单个控制设备支持的节点设备数量限制,也会对用户体验造成影响。
可见,在蓝牙Mesh网络中,如何合理的设置节点设备的消息发送参数,以适应蓝牙Mesh网络的网络情况,显得尤为重要。基于此,本申请实施例通过改进的技术方案,在蓝牙Mesh网络中,以基于蓝牙Mesh网络中的节点设备数量,动态自适应的调整节点设备的消息发送参数,使得节点设备的消息发送参数,能够适应于蓝牙Mesh网络的网络规模情 况,从而实现合理的设置节点设备的消息发送参数;同时,由于节点设备的消息发送参数影响蓝牙Mesh网络的带宽、流量,因此在合理设置节点设备的消息发送参数的情况下,本申请实施例可使得蓝牙Mesh网络的带宽、流量得到优化,减少蓝牙Mesh网络的堵塞情况。
基于上述思路,图2示例性的示出了本申请实施例提供的一种消息发送参数的设置方法的流程图。该方法流程可由该方法流程可由控制设备(包括蓝牙Mesh网关或终端设备)和节点设备(即已配网蓝牙Mesh设备)执行,参照图2,该方法流程可以包括如下步骤。
步骤S211,控制设备向蓝牙Mesh网络中的节点设备发送第一广播包,所述第一广播包用于为节点设备设置第一消息发送参数。
本申请实施例所指的第一广播包可以用于为节点设备设置第一消息发送参数,以便控制设备及时获取节点设备的状态同步消息,实现对节点设备的控制。其中,第一消息发送参数可以是例如节点设备的状态同步周期、消息发送与Relay的重传次数、组播状态回复的时间范围、上电设备同步状态延时范围等参数。
步骤S212,节点设备获取第一广播包,并根据所述第一广播包设置第一消息发送参数。
步骤S213,节点设备根据所述第一消息发送参数,发送消息。
步骤S214,控制设备获取节点设备以所述第一消息发送参数所发送的消息;以及根据所述节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量。
在一些实施例中,控制设备向节点设备发送的第一广播包中可以包含需要节点设备返回消息的指令,以便于及时获取节点设备的状态,也可以包含不需要节点设备返回消息的指令,则第一广播包可以作为单向通知广播包。当第一广播包中存在需要节点设备返回消息的指令时,节点设备需要根据第一消息发送参数将消息返回至控制设备,从而控制设备能够获取节点设备以第一消息发送参数所发送的消息,并且根据节点设备发送的消息,确定蓝牙Mesh网络中的节点设备数量。
需要说明的是,控制设备获取的节点设备发送的消息可以是节点设备的属性信息,例如节点设备为灯,则其发送的消息包括灯的开关、亮度、色温等属性值,其中,节点设备发送的消息可以是按照一定格式发送的,例如消息的格式可以是遵循蓝牙Mesh model,并且,每个节点设备向控制设备发送包含其属性信息的消息,如果节点设备包含的属性信息较多,其要传输的内容可能超过一个segment,因此可以将节点设备的属性信息进行压缩在一个segment发送。
在一些实施例中,节点设备发送的消息中会包含有该设备的地址信息,其中,地址信息可以是对节点设备进行唯一标识的信息,例如单播地址。在一实施例中,控制设备根据节点设备发送的消息,能够确定节点设备的地址信息,从而对地址信息进行记录,并对记录的地址信息进行统计,确定地址信息的数量,根据所确定的地址信息的数量,能够确定蓝牙Mesh网络中的节点设备数量。
需要说明的是,在控制设备根据一定的时间周期向节点设备发送广播包时,可以在下一个时间周期到达时,对该时间周期内记录的发送消息的节点设备的地址信息进行统计。以蓝牙Mesh网关为例,蓝牙Mesh网关每30秒向节点设备发送第一广播包,从而在下一个30秒到达前,能够获取节点设备以第一消息发送参数所发送的消息,并且统计30秒内 记录的单播地址数量,从而确定蓝牙Mesh网络中的节点设备数量。
步骤S215,控制设备向蓝牙Mesh网络中的节点设备发送第二广播包。
其中,所述第二广播包用于为节点设备设置第二消息发送参数,其中,所述第二消息发送参数与所述节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。
步骤S216,节点设备获取第二广播包,并根据所述第二广播包设置第二消息发送参数。
步骤S217,节点设备根据所述第二消息发送参数,发送消息。
为使得节点设备的第一消息发送参数能够适应蓝牙Mesh网络的网络规模情况,控制设备可基于确定的节点设备数量,生成第二广播包,并且通过向蓝牙Mesh网络中的节点设备发送第二广播包,以使得节点设备根据第二广播包设置第二消息发送参数。
在一些实施例中,控制设备通过确定蓝牙Mesh网络中的节点设备数量,可以确定节点设备数量是否发生变化,其中,节点设备数量的变化可以是控制设备基于发送第一广播包时确定的节点设备数量,与获取的节点设备以第一消息发送参数所发送的消息确定的节点设备数量进行比对得到。从而在节点设备数量发生变化时,基于确定的蓝牙Mesh网络中的节点设备数量,对第一消息发送参数进行对应调整,得到适应蓝牙Mesh网络规模的第二消息发送参数,其中,第二消息发送参数的参数值为调整之后得到的,因此,其可以是不同与第一消息参数的参数值,可见,基于第二消息发送参数与节点设备数量相关联,实现第二消息发送参数的合理配置。并且,在合理设置节点设备的第二消息发送参数的情况下,使得控制设备接收各个节点设备发送的消息能够在其时间周期内散列,从而能够有效减少各节点设备的冲突概率,在大规模蓝牙Mesh网络中实现最小冲突,进而实现蓝牙Mesh网络的带宽、流量的优化,减少蓝牙Mesh网络的堵塞情况。
需要说明的是,在一些实施例中,第一广播包可以是在蓝牙Mesh网络的初始状态向所有节点设备发送的广播包,以实现节点设备的初始化。在另一些实施例中,第一广播包也可以是用于调整节点设备的消息发送参数的上一个广播包。
在一实施例中,第二广播包可以是控制设备基于预设的时间周期进行广播,例如,控制设备在广播第一广播包之后,如果时间到达预设的时间周期,则控制设备可广播第二广播包。
在其他可能的实现中,第二广播包可以是基于预设条件进行广播。所述预设条件可以为控制设备感知节点设备数量发生变化的条件。在一个示例中,所述预设条件可以是控制设备感知到节点设备数量的变化值达到预设值;所述预设值可以是蓝牙Mesh网络中的节点设备数量增加或者减小的数值。例如,本申请实施例可确定对蓝牙Mesh网络的带宽流量造成影响的预设值,即节点设备数量的变化值达到预设值,将对蓝牙Mesh网络的带宽流量造成影响;从而,控制设备在广播第一广播包之后,如果感知到节点设备数量的变化值达到预设值,节点设备数量的变化已对蓝牙Mesh网络的带宽流量造成影响,则可广播第二广播包,以对节点设备的消息发送参数进行调整。
在一些实施例中,基于控制设备对蓝牙Mesh网络中的所有节点设备的控制和监控,在一实施例中,控制设备向节点设备发送的第二广播包可以包括为节点设备设置的第二消息发送参数,使得节点设备能够基于获取的第二广播包中的第二消息发送参数进行对应设 置。在一实施例中,基于第二消息发送参数与节点设备数量相关联,控制设备向节点设备发送的第二广播包可以包括节点设备数量,其中节点设备数量用于使接收第二广播包的节点设备设置第二消息发送参数,从而节点设备能够基于获取的第二广播包中的节点设备数量对应设置第二消息发送参数。
可以看出,本申请实施例基于控制设备确定的蓝牙Mesh网络中的节点设备数量,动态自适应的调整节点设备的消息发送参数,得到第二消息发送参数,使得节点设备的第二消息发送参数,适应于蓝牙Mesh网络的网络规模情况,实现合理的设置节点设备的消息发送参数;同时,由于节点设备的消息发送参数影响蓝牙Mesh网络的带宽、流量,因此在合理设置节点设备的消息发送参数的情况下,本申请实施例可使得蓝牙Mesh网络的带宽、流量得到优化,减少蓝牙Mesh网络的堵塞情况。
在一些实施例中,蓝牙Mesh网络中的蓝牙mesh网关与蓝牙Mesh设备(包括已配网的节点设备和未配网的未配网设备)可以通过直接发送广播包的方式进行交互,而智能手机、平板电脑等终端设备由于不支持直接发送广播包的交互方式,可以通过与蓝牙Mesh网络中的节点设备建立Proxy(代理)连接,由作为Proxy的节点设备转发广播包给蓝牙Mesh网络中的其他节点设备,从而需要设置节点设备对应的消息发送和Relay重传次数,并且,终端设备可以向蓝牙Mesh网络中的所有节点设备发送广播包,若所有节点设备均向控制设备返回消息,则可以使节点设备对发送的消息设置一定的延时,而且,节点设备向终端设备发送消息可以是在节点设备的消息发送周期内实现的。因此,第二消息发送参数可以至少包括第一类参数和第二类参数,其中,第一类参数可以是与节点设备的消息发送次数相关联的参数,例如消息发送与relay的重传次数;第二类参数可以是与节点设备的消息发送时间相关联的参数,例如状态同步的周期、组播状态回复的时间范围、上电设备同步状态延时范围等参数。
在一些实施例中,基于第二消息发送参数中对的第一类参数与节点设备的消息发送次数相关联,则第二消息发送参数中的第一类参数与节点设备数量呈正相关关系。在一实施例中,当节点设备数量增加时,在第一消息发送参数的基础上,第二消息发送参数中的第一类参数增大,且增大后的第一类参数大于第一消息发送参数中的第一类参数,例如:在蓝牙Mesh网络中接收和转发其他节点设备的消息的中继节点设备,其中,若节点设备数量增加,则中继节点需要接收和转发的节点设备的消息增加,从而中继节点设备对应的第二消息发送参数中的消息发送与relay的重传次数增大;当节点设备数量减小时,在第一消息发送参数的基础上,第二消息发送参数中的第一类参数减小,且减小后的第一类参数小于第一消息发送参数中的第一类参数,例如:在蓝牙Mesh网络中接收和转发其他节点设备的消息的中继节点设备,其中,若节点设备数量减小,则中继节点需要接收和转发的节点设备的消息减小,从而中继节点设备对应的第二消息发送参数中的消息发送与relay的重传次数减小。
在一些实施例中,基于第二消息发送参数中对的第二类参数与节点设备的消息发送时间相关联,则第二消息发送参数中的第二类参数与节点设备数量呈负相关关系。在一实施例中,当节点设备数量增加时,在第一消息发送参数的基础上,第二消息发送参数中的第二类参数减小,且减小后的第二类参数小于第一消息发送参数中的第二类参数,例如:在 蓝牙Mesh网络中,当节点设备数量增加时,为使所有的节点设备发送的消息能够在控制设备的时间周期内散列开,则各节点设备的状态同步的周期减小;当节点设备数量减小时,在第一消息发送参数的基础上,第二消息发送参数中的第二类参数增大,且增大后的第二类参数大于第一消息发送参数中的第二类参数,例如:在蓝牙Mesh网络中,当节点设备数量减小时,为使所有的节点设备发送的消息能够在控制设备的时间周期内散列开,则各节点设备的状态同步的周期增加。
需要说明的是,当控制设备根据广播周期向蓝牙Mesh网络中的各节点设备周期发送广播包时,基于控制设备的广播周期是固定的,从而控制设备获取节点设备以第二消息发送参数所发送的消息可以在控制设备的广播周期内随机,只要保证多个节点设备发送的消息不产生数据冲突即可。
另外,还需要说明的是,第一消息发送参数可以是在默认的随机延时范围内选取的,从而在控制设备的广播周期内,可以根据蓝牙Mesh网络中的节点设备数量的增加或减小,在默认的参数值范围内选取增加或减小的参数值。以第二类参数为例,蓝牙联盟SIG Mesh标准《Mesh ProfileSpecification》中涉及各个节点在发包前做20~500毫秒的随机延时,则第一消息发送参数中的第二类参数可以是在20~500毫秒的默认范围内选取的参数值,从而当蓝牙Mesh网络中的节点设备数量的增加或减小时,可以在20~500毫秒的随机延时范围内进行选取,以得到第二消息发送参数中的第二类参数,其中,当节点设备数量增加时,第二消息发送参数中的第二类参数的取值小于第一类参数中的第二类参数在该范围内的取值;当节点设备数量减小时,第二消息发送参数中的第二类参数的取值大于第一类参数中的第二类参数在该范围内的取值。在一实施例中,当蓝牙Mesh网络中的节点设备增量较大时,消息发送参数的延时范围可以根据网络中节点设备的数量变化进行对应设置。
本申请实施例通过将第二消息发送参数与蓝牙Mesh网络中的节点设备数量相关联,使得设置的第二消息发送参数能够适应蓝牙Mesh网络的网络规模,从而在大规模蓝牙Mesh网络中实现最小数据冲突,在小规模蓝牙Mesh网络中实现最小延时,从而优化蓝牙Mesh网络的带宽、流量,减少蓝牙Mesh网络的堵塞情况。
可以看出,本申请实施例的节点设备基于获取控制设备发送的广播包,能够根据广播包设置消息发送参数,并且,基于消息发送参数与蓝牙Mesh网络中的节点设备数量相关联,使得节点设备能够根据确定的蓝牙Mesh网络中的节点设备数量,动态自适应的调整消息发送参数,从而适应于蓝牙Mesh网络的网络规模情况,实现合理的设置节点设备的消息发送参数。
在一些实施例中,基于控制设备对节点设备的控制操作和设备状态的监控操作,节点设备可以根据第一消息发送参数发送信息,使得控制设备能够确定蓝牙Mesh网络中的节点设备数量,从而向节点设备发送第二广播包。
在节点设备根据第二广播包设置第二消息发送的实施例中,节点设备可以根据第二广播包中携带的节点设备数量设置第二消息发送参数,所述第二消息发送参数为由节点设备对应设置的。在另在一实施例中,节点设备可以将消息发送参数设置为第二广播包中携带的第二消息发送参数,所述第二消息发送参数为控制设备根据确定的节点设备数量对应设 置的。
在一些实施例中,第二消息发送参数可以至少包括第一类参数和第二类参数,其中,第一类参数与节点设备的消息发送次数相关联,第二类参数与节点设备的消息发送时间相关联。
在一实施例中,第二消息发送参数中的第一类参数与节点设备数量呈正相关关系,当所述节点设备数量增加时,所述第一类参数增大,且增大后的第一类参数大于所述第一消息发送参数中的第一类参数;当所述节点设备数量减小时,所述第一类参数减小,且减小后的第一类参数小于所述第一消息发送参数中的第一类参数。
在一实施例中,第二消息发送参数中的第二类参数与所述节点设备数量呈负相关关系;当所述节点设备数量增加时,所述第一类参数减小,且减小后的第二类参数小于所述第一消息发送参数中的第二类参数;当所述节点设备数量减小时,所述第一类参数增大,且增大后的第二类参数大于所述第一消息发送参数中的第二类参数。
在一些实施例中,节点设备根据第二广播包设置第二消息发送参数,进而在节点设备再次获取控制设备发送的广播包后,可以根据第二消息发送参数发送消息,具体的,节点设备可以确定第二消息发送参数中的第二类参数对应的随机延时,从而在控制设备的广播周期内,若到达节点设备对应的随机延时时间,则发送消息。
在一些实施例中,基于节点设备获取的控制设备周期广播的广播包,节点设备的随机延时可以是与节点设备数量相关联。在一实施例中,若节点设备数量增加,则节点设备为第二消息发送参数中的第二类参数确定的随机延时小于第一消息发送参数中的第二类参数确定的随机延时;在另一实施例中,若节点设备数量减小,则为第二消息发送参数中的第二类参数确定的随机延时大于第一消息发送参数中的第二类参数确定的随机延时。
需要说明的是,各个节点设备在控制设备的广播周期内随机延时,指的是在满足节点设备的数量前提下,各个节点设备根据控制设备的广播周期时间随机延时,从而避免各个节点设备产生数据冲突,保证各节点设备的实际发送时间在控制设备的广播周期内散列。例如控制设备的广播周期是30秒,其共控制50个节点设备,则50个节点设备向控制设备发送消息的发送时间在30秒内随机确定(即50个节点设备在30秒内随机向控制设备发送消息),从而降低冲突概率。
可以理解的是,在蓝牙Mesh网络中,蓝牙Mesh网关的数量可以为多个,当节点设备同属于多个蓝牙Mesh网关的控制范围时,所述节点设备所对应的第二消息发送参数可以是以控制节点设备数量最多的蓝牙Mesh网关所确定的节点设备数量进行设置的。图3示例性的示出了蓝牙Mesh网络的另一种示例图。
如图3所示,蓝牙Mesh网络可以包括:蓝牙Mesh网关G1和G2,节点设备N1、N2、......、N99。其中,G1覆盖10个节点设备,分别为N1~N10,G2覆盖92个节点设备,分别为N8~N99,而且,节点设备N8,N9,N10同时在G1和G2两个网关的覆盖范围内,则G1和G2均向N8、N9、N10发送广播包,N8,N9,N10均能获取广播包。但是,在N8、N9、N10设置消息发送参数的过程中,基于G2覆盖范围内的控制的节点设备数量高于G1覆盖范围内控制的节点设备数量,则N8,N9,N10按G2广播的广播包内容设置消息发送参数。
下面对本申请实施例提供的消息发送参数的设置装置进行介绍,下文描述的装置内容可以认为是控制设备(包括蓝牙Mesh网关和终端设备)为实现本申请实施例提供的消息发送参数的设置方法,所需设置的功能模块。下文描述的内容可与上文描述内容相互对应参照。
在一实施例中,图4示例性的示出了本申请实施例提供的一种消息发送参数的设置装置的框图,该装置可应用于控制设备,参照图4,该装置可以包括:广播包发送模块41,用于向蓝牙Mesh网络中的节点设备发送第一广播包,所述第一广播包用于为节点设备设置第一消息发送参数;以及用于向蓝牙Mesh网络中的节点设备发送第二广播包,所述第二广播包用于为节点设备设置第二消息发送参数,其中,所述第二消息发送参数与所述节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同;获取模块42,用于获取节点设备以所述第一消息发送参数所发送的消息;确定模块43,用于根据所述节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量。
在一些实施例中,所述第二广播包用于为节点设备设置第二消息发送参数的步骤,包括:所述第二广播包携带为节点设备设置的第二消息发送参数;或者,所述第二广播包携带所述节点设备数量,所述节点设备数量用于使接收所述第二广播包的节点设备设置第二消息发送参数。
在一些实施例中,所述确定模块43,用于根据所述节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量,包括:根据所述节点设备发送的消息,确定所述节点设备的地址信息;根据所确定的地址信息的数量,确定所述蓝牙Mesh网络中的节点设备数量。
在一些实施例中,所述广播包发送模块41发送的第二广播包可以为基于广播周期发送的第二广播包,或者,在所述蓝牙Mesh网络中的节点设备的设备数量满足预设条件时发送的第二广播包。其中,所述预设条件可以是控制设备感知节点设备数量发生变化的条件,例如,控制设备感知的节点设备数量的变化值达到预设值。
下面从节点设备(即已配网蓝牙Mesh设备)的角度,对本申请实施例提供的消息发送参数的设置装置进行介绍,下文描述的装置内容可以认为是节点设备为实现本申请实施例提供的消息发送参数的设置方法,所需设置的功能模块。下文描述的内容可与上文描述内容相互对应参照。
在一实施例中,图5示例性的示出了本申请实施例提供的消息发送参数的设置装置的另一框图,该装置可应用于节点设备,参照图5,该装置可以包括:第一广播包获取模块51,用于获取第一广播包,并根据所述第一广播包设置第一消息发送参数;第一发送模块52,用于根据所述第一消息发送参数发送消息;第二广播包获取模块53,用于获取第二广播包,并根据所述第二广播包设置第二消息发送参数;其中,所述第二消息发送参数与蓝牙Mesh网络中的节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。
在一些实施例中,第二广播包获取模块53,用于获取第二广播包,并根据所述第二广播包设置第二消息发送参数包括:根据所述第二广播包中携带的节点设备数量,设置第二消息发送参数;或者,将消息发送参数设置为所述第二广播包中携带的第二消息发送参数。
在一些实施例中,结合图5,所述装置还包括:第二发送模块54,用于根据所述第二消息发送参数发送消息;第二发送模块54,用于根据所述第二消息发送参数发送消息的步骤包括:确定所述第二消息发送参数中第二类参数对应的随机延时;在广播周期内,若到达所述随机延时的时间,则发送消息;所述随机延时与所述节点设备数量相关联。
本申请实施例还提供一种电子设备,该电子设备可以通过设置上述描述的消息发送参数的设置装置,以实现本申请实施例提供的消息发送参数的设置方法。在一实施例中,图6为本申请实施例提供的一种电子设备的框图,如图6所示,该电子设备可以包括:至少一个处理器1,至少一个通信接口2,至少一个存储器3和至少一个通信总线4。
在本申请实施例中,处理器1、通信接口2、存储器3、通信总线4的数量为至少一个,且处理器1、通信接口2、存储器3通过通信总线4完成相互间的通信。
在一实施例中,通信接口2可以为用于进行网络通信的通信模块的接口。
在一实施例中,处理器1可能是CPU,GPU(Graphics Processing Unit,图形处理器),NPU(嵌入式神经网络处理器),FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列),TPU(张量处理单元),AI芯片,特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路等。
存储器3可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
其中,存储器3存储一条或多条计算机可执行指令,处理器1调用所述一条或多条计算机可执行指令,以执行本申请实施例提供的消息发送参数的设置方法。
在一实施例中,在所述电子设备为控制设备时,所述处理器调用所述一条或多条计算机可执行指令,以执行本申请实施例由控制设备执行的消息发送参数的设置方法。在所述电子设备为节点设备时,所述处理器调用所述一条或多条计算机可执行指令,以执行本申请实施例由节点设备执行的消息发送参数的设置方法。
本申请实施例还提供一种存储介质,所述存储介质存储一条或多条计算机可执行指令,所述一条或多条计算机可执行指令被执行时,实现如本申请实施例提供的由控制设备执行的消息发送参数的设置方法,或者,实现如本申请实施例提供的由节点设备执行的消息发送参数的设置方法。
本申请实施例还提供一种计算机程序,所述计算机程序被执行时实现如本申请实施例提供的由控制设备执行的消息发送参数的设置方法,或者,实现如本申请实施例提供的由节点设备执行的消息发送参数的设置方法。
上文描述了本申请实施例提供的多个实施例方案,各实施例方案介绍的各实施方式可在不冲突的情况下相互结合、交叉引用,从而延伸出多种可能的实施例方案,这些均可认为是本申请实施例披露、公开的实施例方案。
虽然本申请实施例披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (14)

  1. 一种消息发送参数的设置方法,其中,包括:
    向蓝牙Mesh网络中的节点设备发送第一广播包,所述第一广播包用于为节点设备设置第一消息发送参数;
    获取节点设备以所述第一消息发送参数所发送的消息;以及根据节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量;
    向蓝牙Mesh网络中的节点设备发送第二广播包,所述第二广播包用于为节点设备设置第二消息发送参数,其中,所述第二消息发送参数与节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。
  2. 根据权利要求1所述的消息发送参数的设置方法,其中,所述第二消息发送参数至少包括第一类参数和第二类参数,所述第一类参数为与所述节点设备的消息发送次数相关联的参数,所述第二类参数为与所述节点设备的消息发送时间相关联的参数。
  3. 根据权利要求2所述的消息发送参数的设置方法,其中,所述第二消息发送参数与节点设备数量相关联,包括:
    所述第二消息发送参数中的第一类参数与所述节点设备数量呈正相关关系;当所述节点设备数量增加时,所述第一类参数增大,且增大后的第一类参数大于所述第一消息发送参数中的第一类参数;当所述节点设备数量减小时,所述第一类参数减小,且减小后的第一类参数小于所述第一消息发送参数中的第一类参数;
    所述第二消息发送参数中的第二类参数与所述节点设备数量呈负相关关系;当所述节点设备数量增加时,所述第二类参数减小,且减小后的第二类参数小于所述第一消息发送参数中的第二类参数;当所述节点设备数量减小时,所述第二类参数增大,且增大后的第二类参数大于所述第一消息发送参数中的第二类参数。
  4. 根据权利要求1所述的消息发送参数的设置方法,其中,所述第二广播包用于为节点设备设置第二消息发送参数,包括:
    所述第二广播包携带为节点设备设置的第二消息发送参数;
    或者,所述第二广播包携带所述节点设备数量,所述节点设备数量用于使接收所述第二广播包的节点设备设置第二消息发送参数。
  5. 根据权利要求1所述的消息发送参数的设置方法,其中,所述根据节点设备发送的消息,确定所述蓝牙Mesh网络中的节点设备数量,包括:
    根据所述节点设备发送的消息,确定所述节点设备的地址信息;
    根据所确定的地址信息的数量,确定所述蓝牙Mesh网络中的节点设备数量。
  6. 根据权利要求1所述的消息发送参数的设置方法,其中,所述第二广播包为基于广播周期发送的第二广播包,或者,在所述蓝牙Mesh网络中的节点设备的设备数量满足预设条件时发送的第二广播包。
  7. 一种消息发送参数的设置方法,其中,包括:
    获取第一广播包,并根据所述第一广播包设置第一消息发送参数;
    根据所述第一消息发送参数发送消息;
    获取第二广播包,并根据所述第二广播包设置第二消息发送参数;其中,所述第二消 息发送参数与蓝牙Mesh网络中的节点设备数量相关联,所述第二消息发送参数与所述第一消息参数的参数值不同。
  8. 根据权利要求7所述的消息发送参数的设置方法,其中,所述根据所述第二广播包设置第二消息发送参数包括:
    根据所述第二广播包中携带的节点设备数量,设置第二消息发送参数;
    或者,
    将消息发送参数设置为所述第二广播包中携带的第二消息发送参数。
  9. 根据权利要求8所述的消息发送参数的设置方法,其中,所述第二消息发送参数至少包括第一类参数和第二类参数,所述第一类参数为与所述节点设备的消息发送次数相关联的参数,所述第二类参数为与所述节点设备的消息发送时间相关联的参数。
  10. 根据权利要求9所述的消息发送参数的设置方法,其中,所述第二消息发送参数与蓝牙Mesh网络中的节点设备数量相关联,包括:
    所述第二消息发送参数中的第一类参数与所述节点设备数量呈正相关关系;当所述节点设备数量增加时,所述第一类参数增大,且增大后的第一类参数大于所述第一消息发送参数中的第一类参数;当所述节点设备数量减小时,所述第一类参数减小,且减小后的第一类参数小于所述第一消息发送参数中的第一类参数;
    所述第二消息发送参数中的第二类参数与所述节点设备数量呈负相关关系;当所述节点设备数量增加时,所述第二类参数减小,且减小后的第二类参数小于所述第一消息发送参数中的第二类参数;当所述节点设备数量减小时,所述第二类参数增大,且增大后的第二类参数大于所述第一消息发送参数中的第二类参数。
  11. 根据权利要求7所述的消息发送参数的设置方法,其中,还包括:根据所述第二消息发送参数发送消息;
    所述根据所述第二消息发送参数发送消息包括:
    确定所述第二消息发送参数中第二类参数对应的随机延时;在广播周期内,若到达所述随机延时的时间,则发送消息;所述随机延时与所述节点设备数量相关联。
  12. 根据权利要求11所述的消息发送参数的设置方法,其中,所述随机延时与所述节点设备数量相关联,包括:
    若所述节点设备数量增加,则为第二消息发送参数中的第二类参数确定的随机延时小于所述第一消息发送参数中的第二类参数确定的随机延时;若所述节点设备数量减小,则为第二消息发送参数中的第二类参数确定的随机延时大于所述第一消息发送参数中的第二类参数确定的随机延时。
  13. 一种电子设备,其中,包括至少一个存储器和至少一个处理器,所述存储器存储一条或多条计算机可执行指令,所述处理器调用所述一条或多条计算机可执行指令,执行如权利要求1-6任一项所述的消息发送参数的设置方法,或者,执行如权利要求7-12任一项所述的消息发送参数的设置方法。
  14. 一种存储介质,其中,所述存储介质存储一条或多条计算机可执行指令,所述一条或多条计算机可执行指令被执行时,实现如权利要求1-6任一项所述的消息发送参数的设置方法,或者,如权利要求7-12任一项所述的消息发送参数的设置方法。
PCT/CN2023/075102 2022-08-15 2023-02-09 消息发送参数的设置方法、电子设备及存储介质 WO2024036891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210976166.1 2022-08-15
CN202210976166.1A CN115442869A (zh) 2022-08-15 2022-08-15 消息发送参数的设置方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024036891A1 true WO2024036891A1 (zh) 2024-02-22

Family

ID=84243567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075102 WO2024036891A1 (zh) 2022-08-15 2023-02-09 消息发送参数的设置方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115442869A (zh)
WO (1) WO2024036891A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115442869A (zh) * 2022-08-15 2022-12-06 浙江猫精人工智能科技有限公司 消息发送参数的设置方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180343200A1 (en) * 2017-05-26 2018-11-29 Qualcomm Incorporated Congestion control and message analysis in a wireless mesh network
CN112055343A (zh) * 2020-08-21 2020-12-08 北京小米移动软件有限公司 蓝牙Mesh网络泛洪方法、装置及存储介质
US20210211905A1 (en) * 2018-03-16 2021-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for obtaining information regarding a bluetooth mesh network
CN115442869A (zh) * 2022-08-15 2022-12-06 浙江猫精人工智能科技有限公司 消息发送参数的设置方法、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106993263A (zh) * 2017-02-15 2017-07-28 青岛亿联客信息技术有限公司 蓝牙mesh网络内设备自动编号的方法、系统
US11252636B2 (en) * 2019-05-16 2022-02-15 Delta Electronics, Inc. System and method for establishing bluetooth mesh network
CN111093249B (zh) * 2019-12-05 2022-06-21 合肥中感微电子有限公司 无线局域网通信方法、系统及无线收发设备
CN113225688B (zh) * 2020-01-21 2022-03-25 海信视像科技股份有限公司 数据传输方法及显示装置
CN112004216B (zh) * 2020-07-23 2022-09-27 苏州博联科技有限公司 一种用于蓝牙Mesh中继节点转发处理的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180343200A1 (en) * 2017-05-26 2018-11-29 Qualcomm Incorporated Congestion control and message analysis in a wireless mesh network
US20210211905A1 (en) * 2018-03-16 2021-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for obtaining information regarding a bluetooth mesh network
CN112055343A (zh) * 2020-08-21 2020-12-08 北京小米移动软件有限公司 蓝牙Mesh网络泛洪方法、装置及存储介质
CN115442869A (zh) * 2022-08-15 2022-12-06 浙江猫精人工智能科技有限公司 消息发送参数的设置方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN115442869A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
US10681773B2 (en) Real-time relay of wireless communications
JP5351336B2 (ja) 移動端末をアクセスポイントとして動作させる方法および対応する移動端末
Tao et al. ECODA: enhanced congestion detection and avoidance for multiple class of traffic in sensor networks
WO2021232568A1 (zh) 无线局域网收发数据的方法、终端和系统及网络接入设备
US11659411B2 (en) Single radio switching between multiple wireless links
JP5022477B2 (ja) トラフィックフローを区別する方法及び装置
WO2024036891A1 (zh) 消息发送参数的设置方法、电子设备及存储介质
CN102090023A (zh) 传输控制协议发送控制装置以及传输控制协议发送控制方法
US20230139633A1 (en) Data Packet Sending Method and Apparatus
Aad et al. Priorities in wlans
WO2024001190A1 (zh) 消息发送方法、设备智能互联系统、相关设备及存储介质
CN112004216B (zh) 一种用于蓝牙Mesh中继节点转发处理的方法
TW201006158A (en) Method for scheduling transmission time in a communications system, link layer coordinating device and multiple access communications system
EP2922365A1 (en) Packet transmission method, system, and station
CN110996268A (zh) 基于SIG mesh的广播承载层报文过滤策略的方法
GB2496384A (en) Placing some of the circuitry for sending and receiving data, in a wireless device, in a low power state and buffering data for a time period
CN107104813B (zh) 一种信息传输方法、网关及控制器
US20220104131A1 (en) Bluetooth-based data transmission method and data receiving method, communicating apparatus and computer storage medium
EP3893413B1 (en) Data transmission method and communication device
EP4142359A1 (en) Method, device, and computer program for selecting channel in wireless communication system, and recording medium therefor
Nguyen et al. Adaptive collision avoidance scheduling based on traffic and priority for IoT sensor networks
CN114125935A (zh) 一种数据链路聚合方法、装置、存储介质和聚合设备
JP7379476B2 (ja) ワイヤレスメッシュネットワークにおけるマルチバンド通信
Yaakob et al. Distributed collision control with the integration of packet size for congestion control in wireless sensor networks
WO2018045864A1 (zh) 一种数据传输的方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853810

Country of ref document: EP

Kind code of ref document: A1