WO2024036524A1 - 排气构件、箱体、电池及用电装置 - Google Patents

排气构件、箱体、电池及用电装置 Download PDF

Info

Publication number
WO2024036524A1
WO2024036524A1 PCT/CN2022/113129 CN2022113129W WO2024036524A1 WO 2024036524 A1 WO2024036524 A1 WO 2024036524A1 CN 2022113129 W CN2022113129 W CN 2022113129W WO 2024036524 A1 WO2024036524 A1 WO 2024036524A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
exhaust
pressure relief
relief mechanism
emissions
Prior art date
Application number
PCT/CN2022/113129
Other languages
English (en)
French (fr)
Inventor
张辰辰
李星
唐彧
俸靖杰
王朴
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/113129 priority Critical patent/WO2024036524A1/zh
Publication of WO2024036524A1 publication Critical patent/WO2024036524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to an exhaust component, a box, a battery and an electrical device.
  • Embodiments of the present application provide an exhaust component, a box, a battery and an electrical device, which can effectively reduce potential safety hazards during use of the battery.
  • an exhaust component including a body part and a unidirectional guide part; an exhaust chamber is provided inside the body part, the body part has a first surface, and the first surface is provided with an exhaust chamber connected to the exhaust chamber.
  • the ventilation hole; the unidirectional flow guide is provided on the body part, and the unidirectional flow guide is configured to allow the emissions released by the pressure relief mechanism of the battery cell to enter the exhaust chamber through the breather hole, and is configured to prevent the exhaust gas from being located in the exhaust chamber. Emissions from the chamber are discharged through the vent.
  • the battery with such an exhaust component has a pressure relief mechanism for the battery cell when thermal runaway occurs in the battery cell.
  • the discharged emissions can enter the exhaust cavity through the vent holes to realize the directional discharge of the discharged emissions from the battery cells.
  • the body part is provided with a unidirectional guide part, which can allow emissions to enter the exhaust chamber through the vent hole, and can prevent emissions from flowing out of the exhaust chamber to the outside of the exhaust component, causing the pressure relief mechanism to leak.
  • the discharged emissions will not flow out from other vents after entering the exhaust chamber from the vent hole, so as to alleviate the phenomenon of backflow of the emissions released by the pressure relief mechanism into the exhaust chamber, thereby reducing the risk of emissions located in the exhaust chamber.
  • a first surface is formed on one side of the body part, and the ventilation hole is used to be arranged opposite the pressure relief mechanism along the first direction; the first surface is provided with a plurality of ventilation holes, and the unidirectional flow guide part The vent hole is blocked, and the unidirectional flow guide part corresponds to the vent hole one-to-one, and the unidirectional flow guide part is configured to be triggered by emissions released from the opposite pressure relief mechanism to open the vent hole.
  • a plurality of ventilation holes are provided on the first surface of the body part along the first direction to correspond to the pressure relief mechanism of the battery cell, and each ventilation hole passes through a unidirectional guide part. Blocking is performed so that the emissions released by the pressure relief mechanism of the battery cell can directly impact the vent hole and trigger the unidirectional flow guide to open the vent hole when the battery cell is thermally runaway, thereby allowing the emissions released by the pressure relief mechanism of the battery cell. It can be discharged directly into the exhaust chamber through the vent holes.
  • the unidirectional guide can prevent the emissions in the exhaust chamber from flowing out of the exhaust chamber through other vent holes to the outside of the body, so that the pressure relief mechanism can release the emissions.
  • the substance After the substance enters the exhaust cavity from the vent hole, it will not flow out from other vent holes, so as to alleviate the phenomenon of backflow of the emissions released by the pressure relief mechanism into the exhaust cavity, thereby ensuring the exhaust gas inside the exhaust component.
  • the space of the cavity is sufficient and can effectively reduce the risk of emissions spreading further inside the battery. It can also alleviate the phenomenon of emissions impacting other battery cells through other ventilation holes, thereby reducing the thermal runaway of individual battery cells. This will cause the risk of fire and explosion of battery cells in a large area.
  • the one-way guide portion covers the vent hole, and the one-way guide portion is configured to separate from the body portion under the impact of the exhaust discharged by the pressure relief mechanism to open the vent hole.
  • the one-way guide part is arranged to cover the vent hole to block the vent hole, and can be separated from the body part under the impact of the emissions discharged by the corresponding pressure relief mechanism, thereby achieving leakage.
  • the exhaust released by the pressure mechanism triggers the function of opening the vent hole.
  • the one-way flow guide is a plate-like structure covering the vent hole.
  • the one-way guide part by arranging the one-way guide part for covering the vent hole into a plate-like structure, the one-way guide part with this structure facilitates the one-way guide part to cover the vent hole, so as to protect the vent hole. It has a better blocking effect, and on the other hand, it can optimize the occupied space of the one-way guide part.
  • the vent hole penetrates the wall surface of the exhaust chamber, and the unidirectional flow guide is connected to the wall surface of the exhaust chamber.
  • the one-way guide part is provided on the wall surface of the exhaust chamber to cover the ventilation hole that penetrates the wall surface of the exhaust chamber.
  • the exhaust component adopting this structure is beneficial to the single-use exhaust component on the one hand.
  • the guide part is better separated from the cavity wall of the exhaust chamber under the impact of the emissions released by the pressure relief mechanism, thereby opening the vent hole.
  • the emissions impact from the inside of the exhaust chamber other components are covered.
  • the one-way guide part of the vent hole will cause the one-way guide part to be pressed tightly against the cavity wall of the exhaust chamber, thereby improving the blocking effect of the one-way guide part on the vent hole and easing the flow of emissions from other vent holes. Backflow occurs.
  • a receiving groove is provided on the cavity wall of the exhaust chamber, the receiving groove communicates with the vent hole and the exhaust chamber, and at least part of the unidirectional flow guide is accommodated in the receiving groove.
  • the cavity wall of the exhaust chamber is provided with a groove for accommodating the one-way guide part, and the ventilation hole and the exhaust chamber are connected through the groove, that is to say, the ventilation hole penetrates the bottom wall of the groove,
  • the exhaust component adopting this structure can also improve the assembly stability of the one-way guide part on the body part on the premise of ensuring that the one-way guide part blocks the vent hole, so as to reduce the risk of the one-way guide part during use.
  • the risk of accidentally detaching from the main body due to vibration and other usage environments can effectively reduce the phenomenon of the one-way guide portion accidentally opening the vent hole.
  • the one-way flow guide is a one-way valve disposed in the vent hole.
  • the one-way guide part as a one-way valve located in the vent hole, the function of the one-way guide part to open the vent hole under the action of the emissions released by the pressure relief mechanism can be realized to function.
  • the one-way guide with this structure has a better anti-backflow effect.
  • the body part along the first direction, has two opposite first surfaces, and both first surfaces are provided with ventilation holes.
  • the body part has first surfaces on both sides in the first direction, and both first surfaces are provided with ventilation holes. That is to say, the body part is provided on both sides in the first direction.
  • ventilation holes connected with the exhaust chamber, so that battery cells can be assembled on both sides of the exhaust member, so that one exhaust member can be adapted to two rows of battery cells with pressure relief mechanisms oppositely arranged, which is beneficial to This saves the production cost of batteries with such an exhaust component and helps optimize the arrangement of battery cells within the battery.
  • the first surface is a surface with the largest area among the outer surfaces of the body portion.
  • the first surface provided with the ventilation holes is the surface with the largest area among the outer surfaces of the body part.
  • the exhaust member adopting this structure facilitates the pressure relief of the battery cells provided on the first surface.
  • the vent holes arranged opposite the mechanism enable the first surface to be pressed against by the side of the battery cell equipped with the pressure relief mechanism, thereby facilitating the discharge of the emissions released by the pressure relief mechanism through the vent holes to the exhaust of the main body. within the air cavity.
  • a media channel is also provided inside the body part.
  • the media channel and the exhaust chamber are not connected to each other.
  • the media channel is used to accommodate refrigerant to manage the temperature of the battery cells.
  • a medium channel that is not connected to the exhaust chamber is provided inside the body, that is, the medium channel and the exhaust chamber are set independently of each other and do not interfere with each other, so that management can be achieved by introducing refrigerant into the medium channel.
  • the temperature of the battery cell in order to achieve an exhaust component that integrates the emissions released by the pressure relief mechanism of the battery cell and the thermal management of the battery cell, which is conducive to optimizing the battery with such an exhaust component internal space.
  • embodiments of the present application further provide a box, including a box body and the above-mentioned exhaust member; the exhaust member is disposed in the box body, and the exhaust member is configured to divide the interior of the box body into multiple accommodation units.
  • the cavity is used to accommodate battery cells.
  • embodiments of the present application also provide a battery, including a battery cell and the above-mentioned box; the battery cell is accommodated in the accommodation cavity, and the battery cell is provided with a pressure relief mechanism, and the pressure relief mechanism is configured to release The internal pressure of a battery cell.
  • one side of the body portion forms the first surface
  • the pressure relief mechanism is disposed on one side of the battery cell in the first direction, and the pressure relief mechanism is disposed opposite to the vent hole.
  • the first surface is formed on one side of the main body in the first direction, that is, the ventilation hole is provided on one side of the main body in the first direction, and the pressure relief mechanism is correspondingly provided on the battery cell.
  • the pressure relief mechanism can be arranged corresponding to the vent hole on the body part, so that when the battery cell is thermally runaway, the emissions released by the pressure relief mechanism are directly discharged to the body part through the vent hole. In the exhaust chamber, it is helpful to alleviate the spread of emissions released by the pressure relief mechanism in the box.
  • the battery includes a plurality of battery cells arranged along the second direction, the body portion extends along the second direction, the vent holes correspond to the pressure relief mechanism one by one, and the second direction is perpendicular to the first direction.
  • the plurality of battery cells in the battery are arranged to be arranged along the second direction, and a pressure relief mechanism corresponding to the plurality of battery cells is provided on the body portion extending along the second direction.
  • ventilation holes so that multiple battery cells arranged along the second direction can share an exhaust component.
  • it can reduce the assembly difficulty between the exhaust component and the battery cells, and on the other hand, it can help reduce the manufacturing cost.
  • the battery cell has a rectangular parallelepiped structure
  • the battery cell has a second surface
  • the second surface is the largest surface among the outer surfaces of the battery cell
  • the second surface is parallel to the first direction and the second direction.
  • the battery cell is arranged in a rectangular parallelepiped structure, and the second surface with the largest area among the outer surfaces of the battery cell is parallel to both the first direction and the second direction. That is to say, the thickness of the battery cell
  • the direction is perpendicular to the first direction and the second direction, so that the direction in which the battery cells are arranged along the second direction is the length direction or width direction of the battery cells.
  • the battery using this structure can effectively increase the pressure relief mechanism of the battery cells.
  • the spacing in the second direction is conducive to increasing the distance of the vent holes in the second direction. On the one hand, it effectively alleviates the phenomenon of insufficient structural strength of the body due to excessive density of vent holes in the first direction.
  • the battery includes multiple rows of battery cells arranged along a third direction, each row of battery cells includes a plurality of battery cells arranged along a second direction, and the third direction is perpendicular to the first direction and the third direction. Two directions.
  • each battery cell in the battery is arranged in multiple rows along the third direction, and each row of battery cells includes multiple battery cells arranged along the second direction, thereby realizing an exhaust member. Adapting more battery cells will help reduce battery manufacturing costs and save battery internal space.
  • embodiments of the present application further provide an electrical device, including the above-mentioned battery, and the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of an exhaust component provided by some embodiments of the present application.
  • Figure 5 is a cross-sectional view of an exhaust component provided by some embodiments of the present application.
  • Figure 6 is a schematic diagram of the assembly of the exhaust component and the battery cell provided by some embodiments of the present application.
  • Figure 7 is a partial enlarged view of position A of the exhaust component shown in Figure 5;
  • Figure 8 is a cross-sectional view of an exhaust component provided by some further embodiments of the present application.
  • Figure 9 is a partial enlarged view of position B of the exhaust component shown in Figure 8.
  • Figure 10 is a cross-sectional view of an exhaust component provided by some further embodiments of the present application.
  • Figure 11 is a partial enlarged view of position C of the exhaust component shown in Figure 10;
  • FIG. 12 is a partial enlarged view of D of the exhaust member shown in FIG. 5 .
  • Icon 1000-vehicle; 100-battery; 10-box; 11-box body; 111-first part; 112-second part; 12-exhaust component; 121-body part; 1211-exhaust chamber; 1212- First surface; 1213-ventilation hole; 1214-accommodating groove; 1215-medium channel; 122-unidirectional flow guide; 13-accommodating cavity; 20-battery cell; 21-pressure relief mechanism; 22-second surface; 200 -Controller; 300-motor; X-first direction; Y-second direction; Z-third direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-ion batteries or magnesium-ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the casing is used to accommodate the electrode assembly and the electrolyte.
  • the electrode assembly is the component in the battery cell where electrochemical reactions occur.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer.
  • the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer. The negative electrode active material layer is coated on the surface of the negative electrode current collector. The negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer. Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and small self-discharge coefficient. They are an important part of the development of new energy today. With the continuous development of battery technology, higher requirements have been put forward in terms of battery safety.
  • the battery is composed of multiple battery cells, and the battery cells are usually provided with a pressure relief mechanism, so that the pressure relief mechanism can cause thermal runaway of the battery cell.
  • the pressure is released to reduce the risk of explosion caused by thermal runaway of battery cells.
  • the emissions released due to thermal runaway of individual battery cells will spread inside the battery, such as high-temperature smoke, etc., which can easily cause The battery experienced a large area of thermal runaway.
  • baffles are provided in the battery box, and the baffles separate the inside of the box.
  • a plurality of chambers for accommodating battery cells are separated, an exhaust channel for exhaust is provided in the baffle, and an opening interconnected with the exhaust channel is provided on one side of the baffle, so that the battery cells are
  • the high-temperature smoke released by the pressure relief mechanism can enter the exhaust channel of the baffle through the opening to alleviate the spread of high-temperature smoke inside the battery.
  • the high-temperature smoke released by the battery cells through the pressure relief mechanism can easily flow out from other openings in the baffle after entering into the exhaust channel through the opening, thus causing The high-temperature smoke released by the pressure relief mechanism shows a backflow phenomenon, which causes the high-temperature smoke to still spread inside the battery.
  • the high-temperature smoke located in the exhaust channel flows out through the opening and impacts other cells.
  • the phenomenon of battery cells may cause other battery cells to have safety risks such as thermal runaway or fire and explosion, which is not conducive to the safety of the battery.
  • the exhaust component includes a body part and a unidirectional guide part.
  • An exhaust chamber is provided inside the body part, the body part has a first surface, and a vent hole connected to the exhaust chamber is provided on the first surface.
  • the unidirectional flow guide is provided on the body part, and the unidirectional flow guide is configured to allow the emissions released by the pressure relief mechanism of the battery cell to enter the exhaust chamber through the vent hole, and is configured to prevent emissions located in the exhaust chamber The material is discharged through the vent hole.
  • the battery with this exhaust member can be used when the battery cell undergoes thermal runaway.
  • the emissions released by the pressure relief mechanism can enter the exhaust cavity through the vent holes to achieve the directional discharge of the emissions released by the battery cells.
  • the body part is provided with a unidirectional guide part, which can allow emissions to enter the exhaust chamber through the vent hole, and can prevent emissions from flowing out of the exhaust chamber to the outside of the exhaust component, causing the pressure relief mechanism to leak.
  • the discharged emissions will not flow out from other vents after entering the exhaust chamber from the vent hole, so as to alleviate the phenomenon of backflow of the emissions released by the pressure relief mechanism into the exhaust chamber, thereby reducing the risk of emissions located in the exhaust chamber.
  • the exhaust components disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of a box, a battery, etc. disclosed in this application. In this way, it is helpful to alleviate the phenomenon that the emissions discharged into the exhaust cavity of the exhaust component are reversed and spread inside the battery. To improve the safety of battery use.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application
  • Figure 3 is a schematic structural diagram of the battery cell 20 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box body 10 includes a box body 11.
  • the box body 11 is used to provide an assembly space for the battery cells 20.
  • the box body 11 can adopt a variety of structures.
  • the box body 11 includes a first part 111 and a second part 112.
  • the second part 112 covers the first part 111.
  • the first part 111 and the second part 112 jointly define an assembly space for accommodating the battery cell 20.
  • the first part 111 may be a hollow structure with one end open
  • the second part 112 may be a plate-like structure
  • the second part 112 covers the open side of the first part 111, so that the first part 111 and the second part 112 jointly define a space for An assembly space that accommodates the battery cells 20 .
  • the first part 111 and the second part 112 may both be hollow structures with one side open, and the open side of the second part 112 covers the open side of the first part 111 .
  • the box body 11 formed by the first part 111 and the second part 112 can be in various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the box body 11 is a rectangular parallelepiped structure.
  • the battery 100 there may be one battery cell 20 or a plurality of battery cells 20.
  • the multiple battery cells 20 can be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • the battery cell 20 is provided with a pressure relief mechanism 21.
  • the pressure relief mechanism 21 is located on one side of the battery cell 20.
  • the pressure relief mechanism 21 is used to release the pressure inside the battery cell 20, that is, the pressure relief mechanism. 21 is used to discharge the emissions inside the battery cell 20, such as high-temperature smoke, etc. when the battery cell 20 experiences thermal runaway.
  • the pressure relief mechanism 21 may be a component such as an explosion-proof valve, explosion-proof disc, air valve, pressure relief valve or safety valve.
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes. For example, in FIG. 3 , the battery cell 20 has a rectangular parallelepiped structure.
  • the box 10 may further include at least one exhaust component 12 disposed within the box body 11 , and the at least one exhaust component 12 is configured to vent the box
  • the interior of the body 11 is divided into a plurality of accommodation chambers 13 for accommodating the battery cells 20.
  • the exhaust member 12 is used for accommodating the emissions released by the pressure relief mechanism 21 when the battery cells 20 are thermally runaway, such as high-temperature smoke. wait.
  • the side of the battery cell 20 provided with the pressure relief mechanism 21 abuts against the exhaust member 12 so that the emissions released by the pressure relief mechanism 21 of the battery cell 20 are discharged to the exhaust. inside the gas component 12.
  • the side of the battery cell 20 provided with the pressure relief mechanism 21 may be disposed facing the first part 111 or the second part 112 .
  • the exhaust component 12 is disposed in the first part 111 of the box body 11 .
  • Figure 4 is a schematic structural diagram of the exhaust component 12 provided in some embodiments of the present application
  • Figure 5 is a schematic diagram of some implementations of the present application.
  • a cross-sectional view of the exhaust component 12 is provided in the example.
  • the present application provides an exhaust component 12.
  • the exhaust component 12 includes a body part 121 and a unidirectional guide part 122.
  • An exhaust chamber 1211 is provided inside the body part 121 .
  • the body part 121 has a first surface 1212 , and the first surface 1212 is provided with a vent hole 1213 communicating with the exhaust chamber 1211 .
  • the one-way guide part 122 is provided on the body part 121.
  • the one-way guide part 122 is configured to allow the emissions released by the pressure relief mechanism 21 of the battery cell 20 to enter the exhaust chamber 1211 through the vent hole 1213, and is configured to prevent it from entering the exhaust chamber 1211. Emissions located in the exhaust chamber 1211 are discharged through the vent hole 1213 .
  • the first surface 1212 is one of the outer surfaces of the body part 121 .
  • the exhaust chamber 1211 of the main body 121 serves to accommodate the emissions released by the pressure relief mechanism 21 of the battery cell 20 .
  • the exhaust chamber 1211 can be connected to the outside through the box 10 of the battery 100 to release the pressure relief mechanism 21
  • the discharged emissions are discharged to the outside of the battery 100 , and may not be connected to the outside world, so that the discharged materials released by the pressure relief mechanism 21 are accommodated in the exhaust chamber 1211 .
  • the unidirectional flow guide 122 is configured to allow the emissions released by the pressure relief mechanism 21 of the battery cell 20 to enter the exhaust chamber 1211 through the vent hole 1213, and is configured to prevent the emissions located in the exhaust chamber 1211 from passing through the vent.
  • the air hole 1213 discharges, that is, the one-way guide 122 only allows the emissions released by the pressure relief mechanism 21 to flow in one direction, that is, only allows the emissions released by the pressure relief mechanism 21 to flow from the accommodation cavity in the box 10 13 enters the exhaust chamber 1211 of the body part 121 through the vent hole 1213.
  • the one-way guide part 122 may be a variety of structures, such as an airway one-way valve, a one-way guide valve, or a one-way guide tube, etc.
  • the battery 100 with such an exhaust component 12 can reduce the leakage of the battery cell 20 when thermal runaway occurs in the battery cell 20.
  • the emissions released by the pressure mechanism 21 can enter the exhaust chamber 1211 through the vent hole 1213, so as to realize the directional discharge of the emissions released by the battery cells 20.
  • the body portion 121 is provided with a unidirectional guide portion 122 , which can allow emissions to enter the exhaust chamber 1211 through the vent hole 1213 , and can prevent emissions from flowing out of the exhaust chamber 1211 from the exhaust member 12 Externally, the emissions released by the pressure relief mechanism 21 will not flow out from other vents 1213 after entering the exhaust chamber 1211 from the vent hole 1213, so as to alleviate the emissions released by the pressure relief mechanism 21 into the exhaust chamber 1211. This can reduce the risk of the emissions in the exhaust chamber 1211 backflowing and causing the emissions to further spread inside the battery 100, which is beneficial to improving the use safety of the battery 100 with such an exhaust component 12. sex.
  • Figure 6 is a schematic assembly diagram of the exhaust component 12 and the battery cell 20 provided in some embodiments of the present application.
  • a first surface 1212 is formed on one side of the body part 121 , and the ventilation hole 1213 is used to be arranged opposite to the pressure relief mechanism 21 along the first direction X.
  • the first surface 1212 is provided with a plurality of vent holes 1213.
  • the unidirectional guide portion 122 blocks the vent holes 1213 and corresponds to the vent holes 1213 one by one.
  • the unidirectional guide portion 122 is configured to consist of oppositely arranged vent holes. The discharge from the pressure mechanism 21 is triggered to open the vent 1213 .
  • the first surface 1212 is a surface of one side of the main body 121 in the first direction X.
  • the ventilation holes 1213 are arranged opposite to the pressure relief mechanism 21 along the first direction X, that is, each ventilation hole 1213 is arranged facing the pressure relief mechanism 21 of one battery cell 20 along the first direction
  • the pressure relief mechanism 21 of the unit 20 is aligned with a vent hole 1213 along the first direction X.
  • the unidirectional flow guide 122 has the function of blocking the vent hole 1213 and opening the vent hole 1213 under the action of the emissions released by the pressure relief mechanism 21. That is to say, when the battery cell 20 experiences thermal runaway, the battery cell 20 will The exhaust released by the pressure relief mechanism 21 of the body 20 will impact the vent 1213, thereby triggering the unidirectional flow guide 122 to open the vent 1213, so that the exhaust can enter into the exhaust chamber 1211 through the vent 1213.
  • the unidirectional flow guide 122 can block the ventilation hole 1213 in various ways.
  • the unidirectional flow guide 122 can block the ventilation hole 1213 by covering the ventilation hole 1213, that is, the unidirectional flow guide 122 is in the third position.
  • the one-way guide part 122 is triggered by the impact of the discharged emissions from the pressure relief mechanism 21.
  • it can also be controlled by a control mechanism.
  • a control mechanism is provided in the box 10 of the battery 100. The control mechanism is used to detect the usage status of the pressure relief mechanism 21 of the battery cell 20. When the control mechanism detects the pressure relief When the mechanism 21 triggers and releases the internal pressure of the battery cell 20 , the control mechanism can control the one-way guide part 122 to open the vent hole 1213 to realize the triggering function of the one-way guide part 122 .
  • a plurality of vent holes 1213 are provided on the first surface 1212 of the body part 121 along the first direction The part 122 is blocked, so that when the battery cell 20 is thermally runaway, the emissions released by the pressure relief mechanism 21 can directly impact the vent hole 1213 and trigger the unidirectional flow guide part 122 to open the vent hole 1213, thereby allowing the battery cell 20 to The emissions released by the pressure relief mechanism 21 can be directly discharged into the exhaust chamber 1211 through the vent hole 1213.
  • the unidirectional flow guide 122 can prevent the emissions in the exhaust chamber 1211 from passing through other vent holes 1213 from the exhaust chamber 1211.
  • the cavity flows out of the outside of the body part 121, so that the emissions released by the pressure relief mechanism 21 will not flow out from other vents 1213 after entering the exhaust chamber 1211 from the vent hole 1213, so as to ease the discharge of the pressure relief mechanism 21 to the exhaust chamber.
  • the emissions in the air cavity 1211 will flow back, thereby ensuring that the space of the exhaust cavity 1211 inside the exhaust component 12 is sufficient while effectively reducing the risk of further spread of emissions inside the battery 100 and mitigating
  • the emission impacts other battery cells 20 through other vent holes 1213 to reduce the risk of fire and explosion of battery cells 20 in a large area due to thermal runaway of individual battery cells 20 in the battery 100 .
  • FIG. 5 refers to FIG. 5 , and please further refer to FIG. 7 , which is a partial enlarged view of position A of the exhaust component 12 shown in FIG. 5 .
  • the one-way guide part 122 covers the vent hole 1213, and the one-way guide part 122 is configured to break away from the body part 121 under the impact of the emissions discharged by the pressure relief mechanism 21, so as to open the vent hole 1213.
  • the one-way guide part 122 covers the vent hole 1213, that is, along the first direction X, the one-way guide part 122 completely covers the vent hole 1213 to block the vent hole 1213.
  • the one-way guide part 122 is configured to break away from the main body part 121 under the impact of the emissions discharged by the pressure relief mechanism 21 . That is to say, when the battery cell 20 is thermally runaway, the emissions discharged by the pressure relief mechanism 21 will impact on the battery cell 20 .
  • the one-way guide part 122 impacts, so that the one-way guide part 122 is separated from the body part 121 and no longer covers the vent hole 1213, thereby realizing the opening of the vent hole 1213.
  • the unidirectional flow guide 122 can be connected to the wall surface of the exhaust chamber 1211 to cover the vent hole 1213, or can be connected to the wall surface of the vent hole 1213 to cover the vent hole 1213.
  • the one-way guide part 122 can be connected to the body part 121 by bonding or snapping, so that the one-way guide part 122 can better detach from the body part 121 under the impact of the emissions released by the pressure relief mechanism 21 .
  • the material of the one-way guide part 122 may be a high-temperature resistant material such as steel, mica, or ceramics, so that the one-way guide part 122 is not affected by the high-temperature impact of the emissions released by the pressure relief mechanism 21 There will be no melting phenomenon, so as to ensure the normal use of the one-way guide part 122.
  • the vent hole 1213 is blocked, and can be separated from the body part 121 under the impact of the emissions released by the corresponding pressure relief mechanism 21, thereby achieving pressure relief.
  • the discharge from the mechanism 21 triggers the function of opening the vent 1213.
  • the unidirectional flow guide 122 is a plate-like structure covering the vent hole 1213 .
  • the one-way guide part 122 By arranging the one-way guide part 122 for covering the vent hole 1213 into a plate-like structure, the one-way guide part 122 with this structure facilitates the one-way guide part 122 to cover the vent hole 1213, so as to protect the vent hole 1213. It has a better blocking effect, and on the other hand, it can optimize the occupied space of the one-way guide part 122.
  • the vent hole 1213 penetrates the cavity wall of the exhaust chamber 1211 , and the unidirectional flow guide 122 is connected to the cavity wall of the exhaust cavity 1211 .
  • the one-way guide part 122 is connected to the wall surface of the exhaust chamber 1211. That is to say, the one-way guide part 122 is disposed in the exhaust chamber 1211 and connected to the wall surface of the exhaust chamber 1211, so that the one-way guide part 122 is connected to the wall surface of the exhaust chamber 1211.
  • the portion 122 covers the vent hole 1213 from the inside of the exhaust chamber 1211, thereby achieving the blocking effect on the vent hole 1213.
  • the one-way guide part 122 is bonded to the cavity wall surface of the exhaust chamber 1211, so that when the emissions released by the pressure relief mechanism 21 impact the one-way guide part 122 from the outside of the body part 121, one-way guide part 122 can be realized.
  • the part 122 is effectively separated from the body part 121.
  • the pressure of the one-way guide part 122 against the wall surface of the exhaust chamber 1211 can be increased, thereby effectively preventing Emissions flow back.
  • the unidirectional flow guide 122 can also be connected to the cavity wall of the exhaust cavity 1211 through snap connection.
  • the exhaust member 12 By arranging the unidirectional flow guide 122 on the wall surface of the exhaust chamber 1211 to cover the ventilation holes 1213 penetrating the wall surface of the exhaust chamber 1211, the exhaust member 12 adopting this structure is conducive to the unidirectional guide.
  • the flow part 122 is better separated from the cavity wall surface of the exhaust chamber 1211 under the impact of the emissions released by the pressure relief mechanism 21, thereby opening the vent hole 1213.
  • the one-way guide part 122 covering other vent holes 1213 is internally impacted, the one-way guide part 122 will be pressed tightly against the cavity wall of the exhaust chamber 1211, thereby improving the blocking of the vent holes 1213 by the one-way guide part 122. function to alleviate the backflow of emissions from other vents 1213.
  • FIG. 8 is a cross-sectional view of the exhaust component 12 provided by some further embodiments of the present application
  • FIG. 9 is a partial view of B of the exhaust component 12 shown in FIG. 8 Enlarge image.
  • An accommodating groove 1214 is provided on the wall of the exhaust chamber 1211. The accommodating groove 1214 communicates with the ventilation hole 1213 and the exhaust chamber 1211. At least part of the unidirectional flow guide 122 is accommodated in the accommodating groove 1214.
  • an accommodating groove 1214 is provided on the wall of the exhaust chamber 1211.
  • the accommodating groove 1214 communicates with the vent hole 1213 and the exhaust chamber 1211, that is, the vent hole 1213 penetrates the bottom wall of the groove, so that the vent hole 1213 passes through the groove and communicates with the exhaust chamber 1211.
  • the exhaust chamber 1211 is connected.
  • the one-way flow guide 122 can be connected to the bottom wall of the groove or the side wall of the groove, and the connection method can be mutually bonded or snap-fitted to achieve Covering of vent 1213.
  • At least part of the one-way guide part 122 is accommodated in the accommodating groove 1214. That is to say, the one-way guide part 122 can be accommodated in the accommodating groove 1214 as a whole or partially in the accommodating groove 1214, that is, the one-way guide part 122 122 has a portion extending from the groove into the exhaust chamber 1211 along the first direction X.
  • the cavity wall of the exhaust chamber 1211 is provided with a groove for accommodating the one-way guide part 122, and the vent hole 1213 and the exhaust chamber 1211 are connected through the groove.
  • the exhaust component 12 using this structure ensures that the one-way guide part 122 On the premise of blocking the vent hole 1213, it can also improve the assembly stability of the one-way guide part 122 on the body part 121, so as to reduce the risk of the one-way guide part 122 accidentally detaching from the body part due to vibration and other use environments during use. 121, thereby effectively reducing the phenomenon that the one-way guide portion 122 mistakenly opens the vent hole 1213.
  • Figure 10 is a cross-sectional view of the exhaust component 12 provided in some embodiments of the present application.
  • Figure 11 is a partial view of the exhaust component 12 shown in Figure 10 at C. Enlarge image.
  • the one-way guide part 122 is a one-way valve provided in the ventilation hole 1213 . That is to say, the one-way guide part 122 may be disposed in the ventilation hole 1213 to block the ventilation hole 1213 .
  • the specific structure of the one-way valve can be found in related technologies and will not be described again here.
  • the one-way guide part 122 may be a gas path one-way valve, and its structure may be of various types, such as a spring-type one-way valve, a gravity-type one-way valve, or a diaphragm-type one-way valve.
  • the one-way guide part 122 As a one-way valve located in the vent hole 1213, the function of the one-way guide part 122 to open the vent hole 1213 under the action of the emissions released by the pressure relief mechanism 21 can be realized to achieve the function of
  • the unidirectional flow guide 122 with this structure has a better anti-backflow effect to prevent the exhaust materials in the exhaust chamber 1211 from flowing back.
  • the body part 121 has two opposite first surfaces 1212, and the two first surfaces 1212 are both provided with ventilation holes 1213, that is, both sides of the body part 121 in the first direction Connected vents 1213.
  • the body part 121 has first surfaces 1212 on both sides in the first direction
  • a vent hole 1213 is provided in communication with the exhaust chamber 1211, so that the battery cells 20 can be assembled on both sides of the exhaust member 12, so that one exhaust member 12 can be adapted to two opposite rows of the pressure relief mechanism 21.
  • the battery cells 20 are further beneficial to saving the production cost of the battery 100 having such an exhaust component 12, and are conducive to optimizing the arrangement of the battery cells 20 within the battery 100.
  • the first surface 1212 is the surface with the largest area among the outer surfaces of the body part 121 .
  • the body part 121 has a rectangular parallelepiped structure, and the first direction
  • the first surface 1212 provided with the ventilation holes 1213 is the largest surface among the outer surfaces of the body part 121.
  • the exhaust member 12 adopting this structure facilitates the pressure relief of the battery cell 20 provided on the first surface 1212.
  • the vent holes 1213 arranged opposite to the mechanism 21, on the other hand, enable the first surface 1212 to be pressed against by the side of the battery cell 20 provided with the pressure relief mechanism 21, thereby facilitating the passage of the emissions released by the pressure relief mechanism 21 through the vent holes. 1213 is discharged into the exhaust chamber 1211 of the body part 121.
  • FIG. 5 refers to FIG. 5 , and please further refer to FIG. 12 , which is a partial enlarged view of D of the exhaust component 12 shown in FIG. 5 .
  • a medium channel 1215 is also provided inside the main body 121 .
  • the medium channel 1215 and the exhaust chamber 1211 are not connected to each other.
  • the medium channel 1215 is used to accommodate refrigerant to manage the temperature of the battery cells 20 .
  • the medium channel 1215 and the exhaust chamber 1211 are not connected to each other, that is, the medium channel 1215 and the exhaust chamber 1211 are set independently of each other and do not interfere with each other.
  • the number of media channels 1215 provided on the body part 121 may be one or multiple.
  • the body part 121 is provided with multiple media channels extending along the extension direction of the body part 121 . 1215.
  • the medium channel 1215 functions to accommodate refrigerant, so that the refrigerant can be injected into the medium channel 1215 to cool the battery cell 20 to achieve temperature management of the battery cell 20 .
  • the refrigerant may be a gas, such as air or hydrogen, or the refrigerant may be a liquid, such as water, saline solution, or liquid nitrogen.
  • the temperature of the battery cells 20 can be managed by passing the refrigerant into the medium channel 1215, so that the exhaust member 12 can accommodate the battery cells.
  • the integrated structure of the pressure relief mechanism 21 of the body 20 and the thermal management of the battery cells 20 is conducive to optimizing the internal space of the battery 100 having such an exhaust component 12 .
  • embodiments of the present application also provide a box 10 .
  • the box 10 includes a box body 11 and an exhaust component 12 of any of the above solutions.
  • the exhaust member 12 is disposed in the box body 11 and is configured to divide the interior of the box body 11 into a plurality of accommodating cavities 13 for accommodating battery cells 20 .
  • the exhaust component 12 is disposed in the first part 111 of the box body 11 to divide the interior of the box body 11 into a plurality of accommodation chambers 13 .
  • the number of exhaust components 12 provided in the box body 11 may be one or multiple.
  • the exhaust member 12 divides the interior of the box body 11 into two accommodation chambers 13 , so that the exhaust member 12 and the first part 111 form a "sun"-shaped structure.
  • the multiple exhaust components 12 can be arranged at intervals along the length direction or width direction of the box body 11 , so that the exhaust components 12 and the first part 111 are enclosed to form a "mesh"-shaped structure, etc.
  • a plurality of exhaust components 12 can also be arranged crosswise with each other in the first part 111, so that the exhaust components 12 and the first part 111 are enclosed to form a "field"-shaped structure, etc.
  • FIG. 2 there are two exhaust members 12 , and the two exhaust members 12 are spaced apart along the first direction X to divide the interior of the box body 11 into three accommodation cavities 13 .
  • inventions of the present application also provide a battery 100 .
  • the battery 100 includes a battery cell 20 and a box 10 of any of the above solutions.
  • the battery cell 20 is accommodated in the accommodation cavity 13 .
  • the battery cell 20 is provided with a pressure relief mechanism 21 .
  • the pressure relief mechanism 21 is configured to relieve the internal pressure of the battery cell 20 .
  • the battery cell 20 can be assembled into the accommodation cavity 13 in various ways.
  • the side of the battery cell 20 provided with the pressure relief mechanism 21 can face the first surface 1212 of the exhaust member 12 , or it can The side of the battery cell 20 on which the pressure relief mechanism 21 is provided faces the first part 111 or the second part 112 .
  • the pressure relief mechanism 21 is arranged opposite to the ventilation hole 1213, that is, along the first direction X, the pressure relief mechanism 21 is aligned with the ventilation hole 1213 and arranged oppositely.
  • the side of the battery cell 20 provided with the pressure relief mechanism 21 may be against the first surface 1212 of the body part 121 , or may be in the first direction X with the first surface 1212 of the body part 121 There are gaps.
  • the side of the battery cell 20 provided with the pressure relief mechanism 21 abuts against the first surface 1212 of the body part 121 , which is beneficial to improving the connection between the battery cell 20 and the exhaust member 12
  • the assembly stability between the pressure relief mechanism 21 and the exhaust gas released by the pressure relief mechanism 21 is discharged into the exhaust cavity 1211 of the body part 121 through the vent hole 1213 .
  • the first surface 1212 is formed on one side of the body part 121 in the first direction X, that is, the ventilation hole 1213 is provided on one side of the body part 121 in the first direction 20 is on one side in the first direction It is discharged into the exhaust chamber 1211 of the body part 121 through the vent hole 1213, which is helpful to alleviate the spread of the emissions released by the pressure relief mechanism 21 in the box 10.
  • the battery 100 includes a plurality of battery cells 20 arranged along the second direction Y, the body portion 121 extends along the second direction Y, and the ventilation hole 1213 is connected to the second direction Y.
  • the pressure relief mechanisms 21 correspond one to one, and the second direction Y is perpendicular to the first direction X.
  • the body part 121 is a rectangular parallelepiped structure extending along the second direction Y, and the ventilation hole 1213 is provided on one side of the body part 121 in the thickness direction of the body part 121 .
  • the body part 121 has first surfaces 1212 on both sides in the first direction
  • Battery cells 20 are provided on both sides of X, and the pressure relief mechanisms 21 of the battery cells 20 located on both sides of the body part 121 in the first direction X are disposed facing each other.
  • the corresponding ventilation holes 1213 enable multiple battery cells 20 arranged along the second direction Y to share one exhaust member 12. On the one hand, it can reduce the assembly difficulty between the exhaust member 12 and the battery cells 20, and on the other hand, it can reduce the assembly difficulty between the exhaust member 12 and the battery cells 20. On the one hand, it is beneficial to reduce the manufacturing cost of the battery 100 .
  • the battery cell 20 has a rectangular parallelepiped structure.
  • the battery cell 20 has a second surface 22 .
  • the second surface 22 is the outer surface of the battery cell 20 .
  • the second surface 22 is the largest surface among the surfaces and is parallel to the first direction X and the second direction Y.
  • the second surface 22 is the surface with the largest area among the outer surfaces of the battery cell 20 , that is, the second surface 22 is the surface of the battery cell 20 in the thickness direction of the battery cell 20 .
  • the second surface 22 is parallel to the first direction X and the second direction Y, that is, the plane defined by the first direction The first direction X and the second direction Y.
  • the second direction Y is the length direction of the battery cell 20
  • the pressure relief mechanism 21 is disposed on one side of the battery cell 20 in the width direction (the first direction X) of the battery cell 20 . .
  • the second direction Y may also be the thickness direction of the battery cell 20 , that is, the second surface 22 is perpendicular to the second direction Y. That is to say, the plurality of battery cells 20 are arranged along the battery cell. The monomers 20 are arranged in the thickness direction.
  • the battery cell 20 By arranging the battery cell 20 in a rectangular parallelepiped structure, and the second surface 22 with the largest area among the outer surfaces of the battery cell 20 is parallel to both the first direction X and the second direction Y, that is, the thickness of the battery cell 20
  • the direction is perpendicular to the first direction X and the second direction Y, so that the direction in which the battery cells 20 are arranged along the second direction Y is the length direction or the width direction of the battery cells 20.
  • the battery 100 using this structure can effectively increase the number of batteries.
  • the spacing of the pressure relief mechanism 21 of the unit 20 in the second direction Y is conducive to increasing the distance of the vent holes 1213 in the second direction Y. On the one hand, it effectively alleviates the excessive density of the vent holes 1213 in the first direction X.
  • the battery 100 includes multiple rows of battery cells 20 arranged along the third direction Z, and each row of battery cells 20 includes cells 20 arranged along the second direction Y.
  • the plurality of battery cells 20 are arranged in a third direction Z perpendicular to the first direction X and the second direction Y.
  • the third direction Z is perpendicular to the first direction X and the second direction Y, that is, the third direction Z is perpendicular to the second surface 22 of the battery cell 20 , that is to say, the third direction Z is the thickness of the battery cell 20 direction.
  • the battery 100 includes two rows of battery cells 20 arranged along the third direction Z.
  • the battery 100 includes three, four, five or six rows of battery cells 20 arranged along the third direction Z.
  • the plurality of battery cells 20 in the battery 100 are arranged in multiple rows along the third direction Z, and each row of battery cells 20 includes a plurality of battery cells 20 arranged along the second direction Y, thereby realizing an exhaust member. 12 adapts to more battery cells 20, which is beneficial to reducing the manufacturing cost of the battery 100 and saving the internal space of the battery 100.
  • embodiments of the present application also provide an electrical device.
  • the electrical device includes the battery 100 of any of the above solutions, and the battery 100 is used to provide electrical energy to the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides an exhaust component 12 .
  • the exhaust component 12 includes a body part 121 and a unidirectional guide part. 122.
  • An exhaust chamber 1211 is provided inside the body part 121.
  • the air hole 1213 is arranged opposite to the pressure relief mechanism 21 along the first direction X.
  • a receiving groove 1214 is provided on the cavity wall of the exhaust chamber 1211. The receiving groove 1214 communicates with the ventilation hole 1213 and the exhaust chamber 1211.
  • the unidirectional flow guide 122 is provided in one-to-one correspondence with the ventilation holes 1213.
  • the unidirectional flow guide 122 is connected to the main body 121 and at least part of the unidirectional flow guide 122 is accommodated in the accommodation groove 1214.
  • the unidirectional flow guide 122 covers the ventilation hole 1213.
  • the one-way guide part 122 is configured to break away from the main body part 121 under the impact of the exhaust released by the pressure relief mechanism 21, so as to open the vent hole 1213.
  • a medium channel 1215 is also provided inside the body part 121.
  • the medium channel 1215 and the exhaust chamber 1211 are not connected to each other.
  • the medium channel 1215 is used to accommodate refrigerant to manage the temperature of the battery cell 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种排气构件、箱体、电池及用电装置,属于电池技术领域。其中,排气构件包括本体部和单向导流部。本体部内部设置有排气腔,本体部具有第一表面,第一表面设置有与排气腔连通的通气孔。单向导流部设置于本体部,单向导流部被配置为允许电池单体的泄压机构泄放的排放物通过通气孔进入排气腔内,并被配置为阻止位于排气腔内的排放物通过通气孔排出。通过单向导流部能够允许排放物通过通气孔进入排气腔,并能够阻止排放物从排气腔内排出,以缓解泄压机构泄放至排气腔内的排放物出现倒流的现象,从而能够降低位于排气腔内的排放物出现倒流而造成排放物在电池的内部进一步蔓延的风险,有利于提升具有这种排气构件的电池的使用安全性。

Description

排气构件、箱体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种排气构件、箱体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。随着新能源汽车的大力推广,对动力电池产品的需求也日益增长,其中,电池作为新能源汽车核心零部件不论在使用寿命或安全性方面等都有着较高的要求。电池由多个电池单体组成,电池单体的热失控是威胁电池安全性能的重要因素之一,然而,现有技术中的电池在其电池单体发生热失控时从电池单体的内部泄放的排放物依旧会造成较大的安全隐患,比如,高温烟气等,从而不利于消费者的使用安全。
发明内容
本申请实施例提供一种排气构件、箱体、电池及用电装置,能够有效降低电池在使用过程中存在的安全隐患。
第一方面,本申请实施例提供一种排气构件,包括本体部和单向导流部;本体部内部设置有排气腔,本体部具有第一表面,第一表面设置有与排气腔连通的通气孔;单向导流部设置于本体部,单向导流部被配置为允许电池单体的泄压机构泄放的排放物通过通气孔进入排气腔内,并被配置为阻止位于排气腔内的排放物通过通气孔排出。
在上述技术方案中,通过在本体部的第一表面上设置与排气腔相互连通的通气孔,使得具有这种排气构件的电池在电池单体出现热失控时电池单体的泄压机构泄放的排放物能够通过通气孔进入到排气腔内,以实现电池单体泄放的排放物定向排放的作用。此外,本体部上设置有单向导流部,单向导流部能够允许排放物通过通气孔进入排气腔,并能够阻止排放物从排气腔内流出排气构件的外部,使得泄压机构泄放的排放物在从通气孔进入排气腔内后不会再从其他通气孔流出,以缓解泄压机构泄放至排气腔内的排放物出现倒流的现象,从而能够降低位于排气腔内的排放物出现倒流而造成排放物在电池的内部进一步蔓延的风险,有利于提升具有这种排气构件的电池的使用安全性。
在一些实施例中,沿第一方向,本体部的一侧形成第一表面,通气孔用于与泄压机构沿第一方向相对设置;第一表面设置有多个通气孔,单向导流部封堵通气孔,且单向导流部与通气孔一一对应,单向导流部被配置为由相对设置的泄压机构泄放的排放物触发,以打开通气孔。
在上述技术方案中,通过在本体部的第一表面上设置沿第一方向用于与电池单体的泄压机构对应设置的多个通气孔,且每个通气孔对应通过一个单向导流部进行封堵,以使电池单体在热失控时泄压机构泄放的排放物能够直接冲击通气孔并触发单向导流部打开通气孔,从而使得电池单体的泄压机构泄放的排放物能够直接通过通气孔排放至排气腔内,同时单向导流部能够阻止排气腔内的排放物从排气腔内通过其他通气孔腔流出本体部的外界,使得泄压机构泄放的排放物在从通气孔进入排气腔内后不会再从其他通气孔流出,以缓解泄压机构泄放至排气腔内的排放物出现倒流的现象,进而在保证排气构件内部的排气腔的空间大小足够的同时能够有效降低排放物在电池的内部出现进一步蔓延的风险,且能够缓解排放物通过其他通气孔冲击其他电池单体的现象,以降低电池因个别电池单体出现热失控而引发大面积的电池单体出现起火爆炸的风险。
在一些实施例中,单向导流部覆盖通气孔,且单向导流部被配置为在泄压机构泄放的排放物的冲击下脱离本体部,以打开通气孔。
在上述技术方案中,通过将单向导流部设置为覆盖通气孔的方式对通气孔进行封堵,且在对应的泄压机构泄放的排放物的冲击下能够脱离本体部,从而实现有泄压机构泄放的排放物触发而打开通气孔的功能,这种结构简单,且便于实现和制造。
在一些实施例中,单向导流部为覆盖通气孔的板状结构。
在上述技术方案中,通过将用于覆盖通气孔的单向导流部设置为板状结构,采用这种结构的单向导流部一方面便于单向导流部对通气孔进行覆盖,以对通气孔起到较好的封堵效果,另一方面能够优化单向导流部的占用空间。
在一些实施例中,通气孔贯穿排气腔的腔壁面,单向导流部连接于排气腔的腔壁面。
在上述技术方案中,通过将单向导流部设置于排气腔的腔壁面上,以对贯穿排气腔的腔壁面的通气孔进行覆盖,采用这种结构的排气构件一方面有利于单向导流部在泄压机构泄放的排放物的冲击下更好地脱离排气腔的腔壁面,从而实现对通气孔的打开作用,另一方面在排放物从排气腔的内部冲击覆盖其他通气孔的单向导流部时会使得单向导流部紧紧地压于排气腔的腔壁面上,从而能够提高单向导流部对通气孔的封堵作用,以缓解排放物从其他通气孔出现倒流的现象。
在一些实施例中,排气腔的腔壁面上设置有容纳槽,容纳槽连通通气孔和排气腔,单向导流部的至少部分容纳于容纳槽内。
在上述技术方案中,排气腔的腔壁面设置有用于容纳单向导流部的凹槽,且通气孔和排气腔通过凹槽连通,也就是说,通气孔贯穿凹槽的槽底壁,采用这种结构的排气构件在保证单向导流部对通气孔进行封堵的前提下还能够提高单向导流部设置于本体部上的装配稳定性,以降低单向导流部在使用过程中因震动等使用环境出现误脱离本体部的风险,从而能够有效减少单向导流部误打开通气孔的现象。
在一些实施例中,单向导流部为设置于通气孔内的单向阀。
在上述技术方案中,通过将单向导流部设置为位于通气孔内的单向阀,从而能够实现单向导流部在泄压机构泄放的排放物的作用下打开通气孔的功能,以起到防止排气腔内的排放物倒流的作用,采用这种结构的单向导流部具有较好的防倒流效果。
在一些实施例中,沿第一方向,本体部具有相对的两个第一表面,两个第一表面均设置有通气孔。
在上述技术方案中,本体部在第一方向上的两侧均具有第一表面,且两个第一表面均设置有通气孔,也就是说,本体部在第一方向上的两侧均设置有与排气腔连通的通气孔,从而能够在排气构件的两侧均装配电池单体,以实现一个排气构件能够适配于泄压机构相对设置的两排电池单体,进而有利于节省具有这种排气构件的电池的生产成本,且有利于优化电池单体在电池内的排布方式。
在一些实施例中,第一表面为本体部的外表面中面积最大的面。
在上述技术方案中,设置有通气孔的第一表面为本体部的外表面中面积最大的面,采用这种结构的排气构件一方面便于在第一表面上设置于电池单体的泄压机构相对设置的通气孔,另一方面使得第一表面能够供电池单体设置有泄压机构的一侧进行抵靠,从而便于泄压机构泄放的排放物通过通气孔排放至本体部的排气腔内。
在一些实施例中,本体部的内部还设置有介质通道,介质通道与排气腔彼此不连通,介质通道用于容纳冷媒,以管理电池单体的温度。
在上述技术方案中,通过在本体部的内部设置与排气腔彼此不连通的介质通道,即介质通道与排气腔相互独立设置,互不干涉,从而通过向介质通道内通入冷媒能够管理电池单体的温度,以实现排气构件集容纳电池单体的泄压机构泄放的排放物和对电池单体进行热管理于一体的结构,进而有利于优化具有这种排气构件的电池的内部空间。
第二方面,本申请实施例还提供一种箱体,包括箱本体和上述的排气构件;排气构件设置于箱本体内,排气构件被配置为将箱本体的内部分隔成多个容纳腔,容纳腔用于容纳电池单体。
第三方面,本申请实施例还提供一种电池,包括电池单体和上述的箱体;电池单体容纳于容纳腔内,电池单体设置有泄压机构,泄压机构被配置为泄放电池单体的内部压力。
在一些实施例中,沿第一方向,本体部的一侧形成第一表面,泄压机构设置于电池单体在第一方向上的一侧,且泄压机构与通气孔相对设置。
在上述技术方案中,本体部在第一方向上的一侧形成第一表面,即通气孔设置于本体部在第一方向上的一侧上,并对应将泄压机构设置于电池单体在第一方向上的一侧上,使得泄压机构能够与本体部上的通气孔对应设置,从而便于电池单体在热失控时泄压机构泄放的排放物直接通过通气孔排放至本体部的排气腔内,有利于缓解泄压机构泄放的排放物在箱体内出现蔓延的现象。
在一些实施例中,电池包括沿第二方向排布的多个电池单体,本体部沿第二方向延伸,通气孔与泄压机构一一对应,第二方向垂直于第一方向。
在上述技术方案中,通过将电池内的多个电池单体设置为沿第二方向排布,且在沿第二方向延伸的本体部上设置与多个电池单体的泄压机构一一对应的通气孔,从而能够实现沿第二方向排布的多个电池单体共用一个排气构件,一方面能够降低排气构件与电池单体之间的装配难度,另一方面有利于降低电池的制造成本。
在一些实施例中,电池单体为长方体结构,电池单体具有第二表面,第二表面为电池单体的外表面中面积最大的面,第二表面平行于第一方向和第二方向。
在上述技术方案中,通过将电池单体设置为长方体结构,且电池单体的外表面中面积最大的第二表面与第一方向和第二方向均平行,也就是说,电池单体的厚度方向垂直于第一方向和第二方向,使得电池单体沿第二方向排布的方向为电池单体的长度方向或宽度方向,采用这种结构的电池能够有效增加电池单体的泄压机构在第二方向上的间距,从而有利于增加通气孔在第二方向上的距离,一方面有效缓解因通气孔在第一方向上的密度过大而导致本体部的结构强度不足的现象,以降低本体部在泄压机构泄放的排放物的高温作用下损坏的风险,另一方面能够减少电池单体的泄放机构泄放的排放物对相邻的通气孔设置的单向导流部造成的影响。
在一些实施例中,电池包括沿第三方向排布的多排电池单体,每排电池单体包括沿第二方向排布的多个 电池单体,第三方向垂直于第一方向和第二方向。
在上述技术方案中,电池内的多个电池单体沿第三方向呈多排布置,且每排电池单体包括沿第二方向排布的多个电池单体,从而能够实现一个排气构件适配更多的电池单体,有利于降低电池的制造成本和节省电池的内部空间。
第四方面,本申请实施例还提供一种用电装置,包括上述的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池单体的结构示意图;
图4为本申请一些实施例提供的排气构件的结构示意图;
图5为本申请一些实施例提供的排气构件的剖视图;
图6为本申请一些实施例提供的排气构件与电池单体的装配示意图;
图7为图5所示的排气构件的A处的局部放大图;
图8为本申请又一些实施例提供的排气构件的剖视图;
图9为图8所示的排气构件的B处的局部放大图;
图10为本申请再一些实施例提供的排气构件的剖视图;
图11为图10所示的排气构件的C处的局部放大图;
图12为图5所示的排气构件的D处的局部放大图。
图标:1000-车辆;100-电池;10-箱体;11-箱本体;111-第一部分;112-第二部分;12-排气构件;121-本体部;1211-排气腔;1212-第一表面;1213-通气孔;1214-容纳槽;1215-介质通道;122-单向导流部;13-容纳腔;20-电池单体;21-泄压机构;22-第二表面;200-控制器;300-马达;X-第一方向;Y-第二方向;Z-第三方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同 部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模组的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、电极组件和电解液,外壳用于容纳电极组件和电解液。电极组件是电池单体中发生电化学反应的部件,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。随着电池技术的不断发展,在电池的使用安全方面也提出了更高的要求。
发明人发现,对于一般的电池而言,电池由多个电池单体组成,电池单体上通常设置有泄压机构,使得泄压机构能够在电池单体发生热失控时对电池单体的内部压力进行泄放,以降低电池单体因热失控产生的爆炸风险,但是,因个别电池单体热失控泄放的排放物会在电池的内部蔓延,比如,高温烟气等,从而极容易引发电池出现大面积热失控的现象。
由此,为了解决电池单体在热失控时产生的高温烟气等在电池内部蔓延的问题,在现有技术中,通过在电池的箱体内设置多个挡板,挡板将箱体的内部分隔出用于容纳电池单体的多个腔室,挡板内设置有用于排气的排气通道,并在挡板的一侧设置与排气通道相互连通的开口,从而使得电池单体的泄压机构泄放的高温烟气能够通过开口进入至挡板的排气通道内,以缓解高温烟气等在电池的内部蔓延的现象。然而,在这种结构的电池中,电池单体通过泄压机构泄放的高温烟气在通过开口进入至排气通道内后极容易出现从挡板的其他开口流出的现象,从而一方面造成泄压机构泄放的高温烟气呈现出倒流现象,以导致高温烟气仍旧会出现在电池内部蔓延的现象,另一方面导致位于排气通道内的高温烟气通过开口流出后会出现冲击其他电池单体的现象,从而使得造成其他电池单体存在热失控或起火爆炸等安全隐患,进而不利于电池的使用安全性。
基于上述考虑,为了解决电池在使用过程中存在较大的安全隐患的问题,发明人经过深入研究,设计了一种排气构件,排气构件包括本体部和单向导流部。本体部内部设置有排气腔,本体部具有第一表面,第一表面设置有与排气腔连通的通气孔。单向导流部设置于本体部,单向导流部被配置为允许电池单体的泄压机构泄放的排放物通过通气孔进入排气腔内,并被配置为阻止位于排气腔内的排放物通过通气孔排出。
在这种结构的排气构件中,通过在本体部的第一表面上设置与排气腔相互连通的通气孔,使得具有这种排气构件的电池在电池单体出现热失控时电池单体的泄压机构泄放的排放物能够通过通气孔进入到排气腔内,以实现电池单体泄放的排放物定向排放的作用。此外,本体部上设置有单向导流部,单向导流部能够允许排放物通过通气孔进入排气腔,并能够阻止排放物从排气腔内流出排气构件的外部,使得泄压机构泄放的排放物在从通气孔进入排气腔内后不会再从其他通气孔流出,以缓解泄压机构泄放至排气腔内的排放物出现倒流的现象,从而能够降低位于排气腔内的排放物出现倒流而造成排放物在电池的内部进一步蔓延的风险,有利于提升具有这种排气构件的电池的使用安全性。
本申请实施例公开的排气构件可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的箱体、电池等组成该用电装置的电源系统,这样,有利于缓解排放至排气构件的排气腔内的排放物出现倒流而在电池的内部蔓延的现象,以提升电池的使用安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞 机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2和图3,图2为本申请一些实施例提供的电池100的结构爆炸图,图3为本申请一些实施例提供的电池单体20的结构示意图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。
其中,箱体10包括箱本体11,箱本体11用于为电池单体20提供装配空间,箱本体11可以采用多种结构。在图2中,箱本体11包括第一部分111和第二部分112,第二部分112盖合于第一部分111,第一部分111和第二部分112共同限定出用于容纳电池单体20的装配空间。第一部分111可以为一端开放的空心结构,第二部分112可以为板状结构,第二部分112盖合于第一部分111的开放侧,以使第一部分111和第二部分112共同限定出用于容纳电池单体20的装配空间。在一些实施例中,第一部分111和第二部分112也可以均为一侧开放的空心结构,第二部分112的开放侧盖合于第一部分111的开放侧。当然,第一部分111和第二部分112形成的箱本体11可以是多种形状,比如,圆柱体、长方体等,示例性的,在图2中,箱本体11为长方体结构。
在电池100中,电池单体20可以是一个,也可以是多个。当电池100具有多个电池单体20时,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
参见图3所示,电池单体20设置有泄压机构21,泄压机构21位于电池单体20的一侧,泄压机构21用于泄放电池单体20内部的压力,即泄压机构21用于在电池单体20出现热失控时泄放电池单体20内部的排放物,比如,高温烟气等。泄压机构21可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。示例性的,在图3中,电池单体20为长方体结构。
在一些实施例中,参见图2和图3所示,箱体10还可以包括至少一个排气构件12,排气构件12设置于箱本体11内,至少一个排气构件12被配置为将箱本体11的内部分隔成用于容纳电池单体20的多个容纳腔13,排气构件12用于容纳电池单体20在热失控时泄压机构21泄放的排放物,比如,高温烟气等。
示例性的,在图2中,电池单体20设置有泄压机构21的一侧抵靠于排气构件12上,以便于电池单体20的泄压机构21泄放的排放物排放至排气构件12内。当然,在其他实施例中,电池单体20设置有泄压机构21的一侧可以面向第一部分111或第二部分112设置。
示例性的,在图2中,排气构件12设置于箱本体11的第一部分111内。
根据本申请的一些实施例,参照图2和图3,并请进一步参照图4和图5,图4为本申请一些实施例提供的排气构件12的结构示意图,图5为本申请一些实施例提供的排气构件12的剖视图。本申请提供了一种排气构件12,排气构件12包括本体部121和单向导流部122。本体部121内部设置有排气腔1211,本体部121具有第一表面1212,第一表面1212设置有与排气腔1211连通的通气孔1213。单向导流部122设置于本体部121,单向导流部122被配置为允许电池单体20的泄压机构21泄放的排放物通过通气孔1213进入排气腔1211内,并被配置为阻止位于排气腔1211内的排放物通过通气孔1213排出。
其中,第一表面1212为本体部121的外表面中的一个表面。
本体部121的排气腔1211起到容纳电池单体20的泄压机构21泄放的排放物的作用,排气腔1211可以通过电池100的箱体10与外界连通,以将泄压机构21泄放的排放物排放至电池100的外部,也可以不与外界连通,以使泄压机构21泄放的排放物容纳于排气腔1211内。
单向导流部122被配置为允许电池单体20的泄压机构21泄放的排放物通过通气孔1213进入排气腔1211内,并被配置为阻止位于排气腔1211内的排放物通过通气孔1213排出,即单向导流部122起到只允许泄压机构21泄放的排放物单向流动,也就是说,只允许泄压机构21泄放的排放物从箱体10内的容纳腔13通过通气孔1213进入至本体部121的排气腔1211内。
示例性的,单向导流部122可以是多种结构,比如,气路单向阀、单向导流瓣膜或单向导流管等。
通过在本体部121的第一表面1212上设置与排气腔1211相互连通的通气孔1213,使得具有这种排气构件12的电池100在电池单体20出现热失控时电池单体20的泄压机构21泄放的排放物能够通过通气孔1213进入到排气腔1211内,以实现电池单体20泄放的排放物定向排放的作用。此外,本体部121上设置有单向导流部122,单向导流部122能够允许排放物通过通气孔1213进入排气腔1211,并能够阻止排放物从排气腔1211内流出排气构件12的外部,使得泄压机构21泄放的排放物在从通气孔1213进入排气腔1211内后不会再从其他通气孔1213流出,以缓解泄压机构21泄放至排气腔1211内的排放物出现倒流的现象,从而能够降低位于排气腔1211内的排放物出现倒流而造成排放物在电池100的内部进一步蔓延的风险,有利于提升具有这种排气构件12的电池100的使用安全性。
根据本申请的一些实施例,参照图4和图5,并请进一步参照图6,图6为本申请一些实施例提供的排气构件12与电池单体20的装配示意图。沿第一方向X,本体部121的一侧形成第一表面1212,通气孔1213用于与泄压机构21沿第一方向X相对设置。第一表面1212设置有多个通气孔1213,单向导流部122封堵通气孔1213,且单向导流部122与通气孔1213一一对应,单向导流部122被配置为由相对设置的泄压机构21泄放的排放物触发,以打开通气孔1213。
其中,第一表面1212为本体部121在第一方向X上的一侧的表面。
通气孔1213用于与泄压机构21沿第一方向X相对设置,即每个通气孔1213与一个电池单体20的泄压机构21沿第一方向X面向设置,也就是说,每个电池单体20的泄压机构21沿第一方向X对准一个通气孔1213。
单向导流部122起到封堵通气孔1213,并在泄压机构21泄放的排放物的作用下打开通气孔1213的作用,也就是说,在电池单体20出现热失控时,电池单体20的泄压机构21泄放的排放物会冲击通气孔1213,从而触发单向导流部122打开通气孔1213,以使排放物能够通过通气孔1213进入至排气腔1211内。
其中,单向导流部122封堵通气孔1213的方式可以是多种,比如,单向导流部122可以通过覆盖通气孔1213的方式对通气孔1213进行封堵,即单向导流部122在第一方向X上的投影大于通气孔1213,当然,单向导流部122也可以通过设置于通气孔1213内对通气孔1213进行堵塞的方式对通气孔1213进行封堵。
需要说明的是,在本申请实施例中,单向导流部122是在泄压机构21的泄放的排放物的冲击下触发,当然,在其他实施例中,也可以通过控制机构进行控制,以实现单向导流部122触发的功能,比如,电池100的箱体10内设置有控制机构,控制机构用于检测电池单体20的泄压机构21的使用状况,当控制机构检测到泄压机构21触发并泄放电池单体20的内部压力时,控制机构能够控制单向导流部122打开通气孔1213,以实现单向导流部122的触发的功能。
通过在本体部121的第一表面1212上设置沿第一方向X用于与电池单体20的泄压机构21对应设置的多个通气孔1213,且每个通气孔1213对应通过一个单向导流部122进行封堵,以使电池单体20在热失控时泄压机构21泄放的排放物能够直接冲击通气孔1213并触发单向导流部122打开通气孔1213,从而使得电池单体20的泄压机构21泄放的排放物能够直接通过通气孔1213排放至排气腔1211内,同时单向导流部122能够阻止排气腔1211内的排放物从排气腔1211内通过其他通气孔1213腔流出本体部121的外界,使得泄压机构21泄放的排放物在从通气孔1213进入排气腔1211内后不会再从其他通气孔1213流出,以缓解泄压机构21泄放至排气腔1211内的排放物出现倒流的现象,进而在保证排气构件12内部的排气腔1211的空间大小足够的同时能够有效降低排放物在电池100的内部出现进一步蔓延的风险,且能够缓解排放物通过其他通气孔1213冲击其他电池单体20的现象,以降低电池100因个别电池单体20出现热失控而引发大面积的电池单体20出现起火爆炸的风险。
根据本申请的一些实施例,参照图5,并请进一步参照图7,图7为图5所示的排气构件12的A处的局部放大图。单向导流部122覆盖通气孔1213,且单向导流部122被配置为在泄压机构21泄放的排放物的冲击下脱离本体部121,以打开通气孔1213。
其中,单向导流部122覆盖通气孔1213,即沿第一方向X,单向导流部122完全覆盖通气孔1213,以对通气孔1213进行封堵。
单向导流部122被配置为在泄压机构21泄放的排放物的冲击下脱离本体部121,也就是说,在电池单体20热失控时,泄压机构21泄放的排放物会对单向导流部122进行冲击,以使单向导流部122脱离本体部121并不再对通气孔1213进行覆盖,从而实现通气孔1213的打开。
可选地,单向导流部122可以连接于排气腔1211的腔壁面上,以对通气孔1213进行覆盖,也可以连接于通气孔1213的孔壁面上,以实现对通气孔1213的覆盖。
其中,单向导流部122可以采用粘接或卡接等方式连接于本体部121上,使得单向导流部122在泄压机构21泄放的排放物的冲击下能够更好的脱离本体部121。
示例性的,在这种实施例中,单向导流部122的材质可以是钢、云母或陶瓷等耐高温的材质,使得单向导流部122在泄压机构21泄放的排放物的高温冲击下不会出现熔化的现象,以保证单向导流部122的正常使用。
通过将单向导流部122设置为覆盖通气孔1213的方式对通气孔1213进行封堵,且在对应的泄压机构21泄放的排放物的冲击下能够脱离本体部121,从而实现有泄压机构21泄放的排放物触发而打开通气孔1213的功能,这种结构简单,且便于实现和制造。
在一些实施例中,单向导流部122为覆盖通气孔1213的板状结构。通过将用于覆盖通气孔1213的单向导流部122设置为板状结构,采用这种结构的单向导流部122一方面便于单向导流部122对通气孔1213进行覆盖,以对通气孔1213起到较好的封堵效果,另一方面能够优化单向导流部122的占用空间。
根据本申请的一些实施例,请继续参见图5和图7所示,通气孔1213贯穿排气腔1211的腔壁面,单向导流部122连接于排气腔1211的腔壁面。
其中,单向导流部122连接于排气腔1211的腔壁面,也就是说,单向导流部122设置于排气腔1211内,并与排气腔1211的腔壁面相连,以使单向导流部122从排气腔1211的内部对通气孔1213进行覆盖,从而实现对通气孔1213的封堵作用。
示例性的,单向导流部122粘接于排气腔1211的腔壁面上,以使泄压机构21泄放的排放物从本体部121的外部冲击单向导流部122时能够实现单向导流部122有效脱离本体部121,反之,当位于排气腔1211内部的排放物冲击单向导流部122时能够增加单向导流部122压于排气腔1211的腔壁面上的压力,从而有效阻止排放物倒流。当然,在其他实施例中,单向导流部122也可以通过卡接的方式连接于排气腔1211的腔壁面。
通过将单向导流部122设置于排气腔1211的腔壁面上,以对贯穿排气腔1211的腔壁面的通气孔1213进行覆盖,采用这种结构的排气构件12一方面有利于单向导流部122在泄压机构21泄放的排放物的冲击下更好地脱离排气腔1211的腔壁面,从而实现对通气孔1213的打开作用,另一方面在排放物从排气腔1211的内部冲击覆盖其他通气孔1213的单向导流部122时会使得单向导流部122紧紧地压于排气腔1211的腔壁面上,从而能够提高单向导流部122对通气孔1213的封堵作用,以缓解排放物从其他通气孔1213出现倒流的现象。
根据本申请的一些实施例,参照图8和图9,图8为本申请又一些实施例提供的排气构件12的剖视图,图9为图8所示的排气构件12的B处的局部放大图。排气腔1211的腔壁面上设置有容纳槽1214,容纳槽1214连通通气孔1213和排气腔1211,单向导流部122的至少部分容纳于容纳槽1214内。
其中,排气腔1211的腔壁面上设置有容纳槽1214,容纳槽1214连通通气孔1213和排气腔1211,即通气孔1213贯穿凹槽的槽底壁,以使通气孔1213通过凹槽与排气腔1211连通。示例性的,在这种实施例中,单向导流部122可以与凹槽的槽底壁相连,也可以是与凹槽的槽侧壁相连,连接方式可以相互粘接或卡接,以实现对通气孔1213的覆盖。
单向导流部122的至少部分容纳于容纳槽1214内,也就是说,单向导流部122可以是整体容纳于容纳槽1214内,也可以是部分容纳于容纳槽1214内,即单向导流部122沿第一方向X具有从凹槽延伸至排气腔1211内的部分。
排气腔1211的腔壁面设置有用于容纳单向导流部122的凹槽,且通气孔1213和排气腔1211通过凹槽连通,采用这种结构的排气构件12在保证单向导流部122对通气孔1213进行封堵的前提下还能够提高单向导流部122设置于本体部121上的装配稳定性,以降低单向导流部122在使用过程中因震动等使用环境出现误脱离本体部121的风险,从而能够有效减少单向导流部122误打开通气孔1213的现象。
根据本申请的一些实施例,参照图10和图11,图10为本申请再一些实施例提供的排气构件12的剖视图,图11为图10所示的排气构件12的C处的局部放大图。单向导流部122为设置于通气孔1213内的单向阀。也就是说,单向导流部122可以是通过设置于通气孔1213内对通气孔1213进行封堵的方式。单向阀的具体结构可参见相关技术,在此不再赘述。
示例性的,单向导流部122可以为气路单向阀,其结构可以是多种,比如,弹簧式单向阀、重力式单向阀或隔膜式单向阀等。
通过将单向导流部122设置为位于通气孔1213内的单向阀,从而能够实现单向导流部122在泄压机构21泄放的排放物的作用下打开通气孔1213的功能,以起到防止排气腔1211内的排放物倒流的作用,采用这种结构的单向导流部122具有较好的防倒流效果。
根据本申请的一些实施例,参见图4、图5和图6所示,沿第一方向X,本体部121具有相对的两个第一表面1212,两个第一表面1212均设置有通气孔1213。
其中,本体部121具有相对的两个第一表面1212,两个第一表面1212均设置有通气孔1213,即本体部121在第一方向X上的两侧均开设有与排气腔1211相互连通的通气孔1213。
本体部121在第一方向X上的两侧均具有第一表面1212,且两个第一表面1212均设置有通气孔1213,也就是说,本体部121在第一方向X上的两侧均设置有与排气腔1211连通的通气孔1213,从而能够在排气构件12的两侧均装配电池单体20,以实现一个排气构件12能够适配于泄压机构21相对设置的两排电池单体20,进而有利于节省具有这种排气构件12的电池100的生产成本,且有利于优化电池单体20在电池100内的排布方式。
根据本申请的一些实施例,参见图4所示,第一表面1212为本体部121的外表面中面积最大的面。
示例性的,本体部121为长方体结构,第一方向X为本体部121的厚度方向,使得第一表面1212为本体部121的外表面中面积最大的面。
设置有通气孔1213的第一表面1212为本体部121的外表面中面积最大的面,采用这种结构的排气构件12一方面便于在第一表面1212上设置于电池单体20的泄压机构21相对设置的通气孔1213,另一方面使得第一表面1212能够供电池单体20设置有泄压机构21的一侧进行抵靠,从而便于泄压机构21泄放的排放物通过通气孔1213排放至本体部121的排气腔1211内。
根据本申请的一些实施例,参照图5,并请进一步参照图12,图12为图5所示的排气构件12的D处的局部放大图。本体部121的内部还设置有介质通道1215,介质通道1215与排气腔1211彼此不连通,介质通道1215用于容纳冷媒,以管理电池单体20的温度。
其中,介质通道1215与排气腔1211彼此不连通,即介质通道1215与排气腔1211相互独立设置,互不干涉。
可选地,本体部121上设置的介质通道1215可以是一个,也可以是多个,示例性的,在图12中,本体部121设置有沿本体部121的延伸方向延伸的多个介质通道1215。
介质通道1215起到容纳冷媒的作用,使得能够向介质通道1215内注入冷媒后对电池单体20起到降温冷却的功能,以实现对电池单体20的温度的管理。
示例性的,冷媒可以是气体,比如,空气或氢气等,冷媒也可以是液体,比如,水、盐水溶液或液氮等。
通过在本体部121的内部设置与排气腔1211彼此不连通的介质通道1215,从而通过向介质通道1215内通入冷媒能够管理电池单体20的温度,以实现排气构件12集容纳电池单体20的泄压机构21泄放的排放物和对电池单体20进行热管理于一体的结构,进而有利于优化具有这种排气构件12的电池100的内部空间。
根据本申请的一些实施例,参见图2所示,本申请实施例还提供了一种箱体10,箱体10包括箱本体11和以上任一方案的排气构件12。排气构件12设置于箱本体11内,排气构件12被配置为将箱本体11的内部分隔成多个容纳腔13,容纳腔13用于容纳电池单体20。
其中,排气构件12设置于箱本体11的第一部分111内,以将箱本体11的内部分隔成多个容纳腔13。
可选地,箱本体11内设置的排气构件12的数量可以为一个,也可以为多个。当排气构件12为一个时,排气构件12将箱本体11的内部分隔成两个容纳腔13,使得排气构件12与第一部分111围合形成“日”字形结构。当排气构件12为多个时,多个排气构件12可以沿箱本体11的长度方向或宽度方向间隔排布,以使排气构件12与第一部分111围合形成“目”字形结构等,当然,多个排气构件12也可以相互交叉设置于第一部分111内,以使排气构件12与第一部分111围合形成“田”字形结构等。示例性的,在图2中,排气构件12为两个,两个排气构件12沿第一方向X间隔设置,以将箱本体11的内部分隔成三个容纳腔13。
根据本申请的一些实施例,参见图2所示,本申请实施例还提供了一种电池100,电池100包括电池单体20和以上任一方案的箱体10。电池单体20容纳于容纳腔13内,电池单体20设置有泄压机构21,泄压机构21被配置为泄放电池单体20的内部压力。
其中,电池单体20装配至容纳腔13内的形式可以是多种,比如,可以是电池单体20设置有泄压机构21的一侧面向排气构件12的第一表面1212设置,也可以是电池单体20设置有泄压机构21的一侧面向第一部分111或第二部分112设置。
根据本申请的一些实施例,参见图2、图5和图6所示,沿第一方向X,本体部121的一侧形成第一表面1212,泄压机构21设置于电池单体20在第一方向X上的一侧,且泄压机构21与通气孔1213相对设置。
其中,泄压机构21与通气孔1213相对设置,即沿第一方向X,泄压机构21对准通气孔1213相对布置。
可选地,电池单体20设置有泄压机构21的一侧可以是抵靠于本体部121的第一表面1212上,也可以是与本体部121的第一表面1212在第一方向X上存在间隙。示例性的,在本申请实施例中,电池单体20设置有泄压机构21的一侧抵靠于本体部121的第一表面1212上,从而有利于提高电池单体20与排气构件12之间的装配稳定性,且有利于泄压机构21泄放的排放物通过通气孔1213排放至本体部121的排气腔1211内。
本体部121在第一方向X上的一侧形成第一表面1212,即通气孔1213设置于本体部121在第一方向X上的一侧上,并对应将泄压机构21设置于电池单体20在第一方向X上的一侧上,使得泄压机构21能够与本体部121上的通气孔1213对应设置,从而便于电池单体20在热失控时泄压机构21泄放的排放物直接通过通气孔1213排放至本体部121的排气腔1211内,有利于缓解泄压机构21泄放的排放物在箱体10内出现蔓延的现象。
根据本申请的一些实施例,请参见图2和图6所示,电池100包括沿第二方向Y排布的多个电池单体20,本体部121沿第二方向Y延伸,通气孔1213与泄压机构21一一对应,第二方向Y垂直于第一方向X。
示例性的,本体部121为沿第二方向Y延伸的长方体结构,通气孔1213设置于本体部121在本体部121的厚度方向上的一侧。
在一些实施例中,本体部121在第一方向X上的两侧均具有第一表面1212,且每个第一表面1212上均设置有通气孔1213,对应的,本体部121在第一方向X上的两侧均设置有电池单体20,且在第一方向X上位于本体部121的两侧的电池单体20的泄压机构21面向设置。
通过将电池100内的多个电池单体20设置为沿第二方向Y排布,且在沿第二方向Y延伸的本体部121上设置与多个电池单体20的泄压机构21一一对应的通气孔1213,从而能够实现沿第二方向Y排布的多个电池单体20共用一个排气构件12,一方面能够降低排气构件12与电池单体20之间的装配难度,另一方面有利于降低电池100的制造成本。
根据本申请的一些实施例,请参见图2、图3和图6所示,电池单体20为长方体结构,电池单体20具有第二表面22,第二表面22为电池单体20的外表面中面积最大的面,第二表面22平行于第一方向X和第二方向Y。
其中,第二表面22为电池单体20的外表面中面积最大的面,即第二表面22为电池单体20在电池单体20的厚度方向上的表面。
第二表面22平行于第一方向X和第二方向Y,即第一方向X和第二方向Y限定出的平面与第二表面22平行,也就是说,电池单体20的厚度方向垂直于第一方向X和第二方向Y。示例性的,在图6中,第二方向Y为电池单体20的长度方向,泄压机构21设置于电池单体20在电池单体20的宽度方向(第一方向X)上的一侧。
需要说明的是,在其他实施例中,第二方向Y也可以为电池单体20的厚度方向,即第二表面22垂直于第二方向Y,也就是说,多个电池单体20沿电池单体20的厚度方向排布。
通过将电池单体20设置为长方体结构,且电池单体20的外表面中面积最大的第二表面22与第一方向X和第二方向Y均平行,也就是说,电池单体20的厚度方向垂直于第一方向X和第二方向Y,使得电池单体20沿第二方向Y排布的方向为电池单体20的长度方向或宽度方向,采用这种结构的电池100能够有效增加电池单体20的泄压机构21在第二方向Y上的间距,从而有利于增加通气孔1213在第二方向Y上的距离,一方面有效缓解因通气孔1213在第一方向X上的密度过大而导致本体部121的结构强度不足的现象,以降低本体部121在泄压机构21泄放的排放物的高温作用下损坏的风险,另一方面能够减少电池单体20的泄放机构泄放的排放物对相邻的通气孔1213设置的单向导流部122造成的影响。
在一些实施例中,请继续参见图2、图3和图6所示,电池100包括沿第三方向Z排布的多排电池单体20,每排电池单体20包括沿第二方向Y排布的多个电池单体20,第三方向Z垂直于第一方向X和第二方向Y。
其中,第三方向Z垂直于第一方向X和第二方向Y,即第三方向Z垂直于电池单体20的第二表面22,也就是说,第三方向Z为电池单体20的厚度方向。
示例性的,电池100包括沿第三方向Z排布的两排电池单体20。当然,在其他实施例中,电池100包括沿第三方向Z排布的三排、四排、五排或六排等电池单体20。
电池100内的多个电池单体20沿第三方向Z呈多排布置,且每排电池单体20包括沿第二方向Y排布的多个电池单体20,从而能够实现一个排气构件12适配更多的电池单体20,有利于降低电池100的制造成本和节省电池100的内部空间。
根据本申请的一些实施例,本申请实施例还提供了一种用电装置,用电装置包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图2至图4、图8至图9以及图12所示,本申请提供了一种排气构件12,排气构件12包括本体部121和单向导流部122。本体部121内部设置有排气腔1211,沿第一方向X,本体部121的两侧均具有第一表面1212,第一表面1212设置有与排气腔1211连通的多个通气孔1213,通气孔1213用于与泄压机构21沿第一方向X相对设置,排气腔1211的腔壁面上设置有容纳槽1214,容纳槽1214连通通气孔1213和排气腔1211。单向导流部122与通气孔1213一一对应设置,单向导流部122连接于本体部121且单向导流部122的至少部分容纳于容纳槽1214内,单向导流部122覆盖通气孔1213,且单向导流部122被配置为在泄压机构21泄放的排放物的冲击下脱离本体部121,以打开通气孔1213。其中,本体部121的内部还设置有介质通道1215,介质通道1215与排气腔1211彼此不连通,介质通道1215用于容纳冷媒,以管理电池单体20的温度。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有 各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种排气构件,包括:
    本体部,内部设置有排气腔,所述本体部具有第一表面,所述第一表面设置有与所述排气腔连通的通气孔;以及
    单向导流部,设置于所述本体部,所述单向导流部被配置为允许电池单体的泄压机构泄放的排放物通过所述通气孔进入所述排气腔内,并被配置为阻止位于所述排气腔内的排放物通过所述通气孔排出。
  2. 根据权利要求1所述的排气构件,其中,沿第一方向,所述本体部的一侧形成所述第一表面,所述通气孔用于与所述泄压机构沿所述第一方向相对设置;
    所述第一表面设置有多个所述通气孔,所述单向导流部封堵所述通气孔,且所述单向导流部与所述通气孔一一对应,所述单向导流部被配置为由相对设置的所述泄压机构泄放的排放物触发,以打开所述通气孔。
  3. 根据权利要求2所述的排气构件,其中,所述单向导流部覆盖所述通气孔,且所述单向导流部被配置为在所述泄压机构泄放的排放物的冲击下脱离所述本体部,以打开所述通气孔。
  4. 根据权利要求3所述的排气构件,其中,所述单向导流部为覆盖所述通气孔的板状结构。
  5. 根据权利要求3或4所述的排气构件,其中,所述通气孔贯穿所述排气腔的腔壁面,所述单向导流部连接于所述排气腔的腔壁面。
  6. 根据权利要求5所述的排气构件,其中,所述排气腔的腔壁面上设置有容纳槽,所述容纳槽连通所述通气孔和所述排气腔,所述单向导流部的至少部分容纳于所述容纳槽内。
  7. 根据权利要求2所述的排气构件,其中,所述单向导流部为设置于所述通气孔内的单向阀。
  8. 根据权利要求2-7任一项所述的排气构件,其中,沿所述第一方向,所述本体部具有相对的两个所述第一表面,两个所述第一表面均设置有所述通气孔。
  9. 根据权利要求1-8任一项所述的排气构件,其中,所述第一表面为所述本体部的外表面中面积最大的面。
  10. 根据权利要求1-9任一项所述的排气构件,其中,所述本体部的内部还设置有介质通道,所述介质通道与所述排气腔彼此不连通,所述介质通道用于容纳冷媒,以管理所述电池单体的温度。
  11. 一种箱体,包括:
    箱本体;以及
    如权利要求1-10任一项所述的排气构件,所述排气构件设置于所述箱本体内,所述排气构件被配置为将所述箱本体的内部分隔成多个容纳腔,所述容纳腔用于容纳电池单体。
  12. 一种电池,包括:
    如权利要求11所述的箱体;以及
    电池单体,容纳于所述容纳腔内,所述电池单体设置有泄压机构,所述泄压机构被配置为泄放所述电池单体的内部压力。
  13. 根据权利要求12所述的电池,其中,沿第一方向,所述本体部的一侧形成所述第一表面,所述泄压机构设置于所述电池单体在所述第一方向上的一侧,且所述泄压机构与所述通气孔相对设置。
  14. 根据权利要求13所述的电池,其中,所述电池包括沿第二方向排布的多个所述电池单体,所述本体部沿所述第二方向延伸,所述通气孔与所述泄压机构一一对应,所述第二方向垂直于所述第一方向。
  15. 根据权利要求14所述的电池,其中,所述电池单体为长方体结构,所述电池单体具有第二表面,所述第二表面为所述电池单体的外表面中面积最大的面,所述第二表面平行于所述第一方向和所述第二方向。
  16. 根据权利要求15所述的电池,其中,所述电池包括沿第三方向排布的多排电池单体,每排电池单体包括沿所述第二方向排布的多个所述电池单体,所述第三方向垂直于所述第一方向和所述第二方向。
  17. 一种用电装置,包括如权利要求12-16任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/113129 2022-08-17 2022-08-17 排气构件、箱体、电池及用电装置 WO2024036524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113129 WO2024036524A1 (zh) 2022-08-17 2022-08-17 排气构件、箱体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113129 WO2024036524A1 (zh) 2022-08-17 2022-08-17 排气构件、箱体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024036524A1 true WO2024036524A1 (zh) 2024-02-22

Family

ID=89940455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113129 WO2024036524A1 (zh) 2022-08-17 2022-08-17 排气构件、箱体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024036524A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351219A1 (en) * 2017-05-31 2018-12-06 NextEv USA, Inc. Battery cell cooling plate with cell vents
CN111640888A (zh) * 2020-05-19 2020-09-08 威睿电动汽车技术(宁波)有限公司 一种电池包泄压防护系统及其设计方法和车辆
CN111668410A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 动力电池包及车辆
CN112018288A (zh) * 2020-08-21 2020-12-01 常州瑞德丰精密技术有限公司 一种电池包箱体、电池包、电动汽车及储能装置
CN215816098U (zh) * 2021-06-04 2022-02-11 恒大新能源技术(深圳)有限公司 电池包热失控防护系统及电池包
CN114678638A (zh) * 2022-03-31 2022-06-28 欣旺达电动汽车电池有限公司 排气组件、电池模组及电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351219A1 (en) * 2017-05-31 2018-12-06 NextEv USA, Inc. Battery cell cooling plate with cell vents
CN111668410A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 动力电池包及车辆
CN111640888A (zh) * 2020-05-19 2020-09-08 威睿电动汽车技术(宁波)有限公司 一种电池包泄压防护系统及其设计方法和车辆
CN112018288A (zh) * 2020-08-21 2020-12-01 常州瑞德丰精密技术有限公司 一种电池包箱体、电池包、电动汽车及储能装置
CN215816098U (zh) * 2021-06-04 2022-02-11 恒大新能源技术(深圳)有限公司 电池包热失控防护系统及电池包
CN114678638A (zh) * 2022-03-31 2022-06-28 欣旺达电动汽车电池有限公司 排气组件、电池模组及电池包

Similar Documents

Publication Publication Date Title
JP7429719B2 (ja) 電池、電力消費機器、電池の製造方法及び装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022067810A1 (zh) 电池、装置、电池的制备方法以及制备装置
WO2022067809A1 (zh) 电池、装置、电池的制备方法以及制备装置
WO2023004722A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023134479A1 (zh) 电池和用电设备
WO2023134273A1 (zh) 电池和用电设备
WO2024007451A1 (zh) 电池和用电装置
US20240204343A1 (en) Battery and electrical device
US20240222758A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
US20230238610A1 (en) Case of battery, battery, power consumption device, and method and device for manufacturing battery
WO2024036524A1 (zh) 排气构件、箱体、电池及用电装置
WO2023141878A1 (zh) 电池、用电装置及电池的制造方法和制造设备
WO2024092442A1 (zh) 电池和用电设备
CN116075968B (zh) 电池、用电装置以及制备电池的方法和装置
WO2023245547A1 (zh) 电池和用电设备
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2024000086A1 (zh) 电池和用电装置
WO2024000150A1 (zh) 端盖组件、电池单体和用电设备
EP4170785A1 (en) Battery, electric device, and battery preparation method and device
WO2023159645A1 (zh) 电池、用电装置、电池的制造方法及设备
EP4266472A1 (en) Battery, electric device, and battery preparation method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955305

Country of ref document: EP

Kind code of ref document: A1