WO2024034219A1 - Manufacturing method for nozzle plate, nozzle plate, manufacturing method for inkjet head, inkjet head, and image forming device - Google Patents

Manufacturing method for nozzle plate, nozzle plate, manufacturing method for inkjet head, inkjet head, and image forming device Download PDF

Info

Publication number
WO2024034219A1
WO2024034219A1 PCT/JP2023/019121 JP2023019121W WO2024034219A1 WO 2024034219 A1 WO2024034219 A1 WO 2024034219A1 JP 2023019121 W JP2023019121 W JP 2023019121W WO 2024034219 A1 WO2024034219 A1 WO 2024034219A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle plate
press
nozzle
punch
manufacturing
Prior art date
Application number
PCT/JP2023/019121
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 宮田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024034219A1 publication Critical patent/WO2024034219A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles

Definitions

  • the present invention relates to a nozzle plate manufacturing method, a nozzle plate, an inkjet head manufacturing method, an inkjet head, and an image forming apparatus.
  • An inkjet head used in an inkjet printer or the like has a nozzle plate equipped with a large number of minute nozzle holes for ejecting droplets (ink).
  • Patent Document 1 discloses that a photoresist pattern corresponding to the shape of the nozzle hole to be formed is formed on a substrate made of SUS or the like, and the substrate on which the photoresist pattern is formed is coated with a photoresist pattern.
  • a method for manufacturing a nozzle plate is disclosed in which, after forming a Ni plating film, the substrate and the photoresist pattern are separated from the Ni plating layer to form nozzle holes. According to Patent Document 1, by forming a Ni-FEP plating layer on the nozzle plate and heat-treating the plating layer, it was possible to manufacture a nozzle plate in which decreases in rigidity and brittleness were suppressed. There is.
  • a punching method in which a punch is press-fitted into a substrate to form nozzle holes.
  • Patent Document 2 discloses that after a punch is press-fitted into a substrate made of SUS or the like, a nozzle hole is formed by polishing and removing the protrusions produced by press-fitting the punch into the substrate.
  • a method of manufacturing a nozzle plate is disclosed in which the surface of a formed metal plate is blasted. According to Patent Document 2, by blasting the surface of a polished nozzle plate, it is possible to appropriately adjust the surface roughness and increase the adhesive strength between the nozzle plate and a flow path forming member used for manufacturing an inkjet head. It is said that it was possible.
  • Patent Document 3 discloses that before forming a plurality of nozzle holes in a metal or resin plate by punching, sag is removed from the edge of the nozzle hole on the most upstream side in the droplet ejection direction.
  • a method of manufacturing a nozzle plate is disclosed that forms a ring-shaped recess to reduce the width.
  • Patent Document 3 requires two punching operations, one for forming the nozzle holes and the other for forming the recesses, which is time-consuming and difficult to manufacture the nozzle plate simply. there were.
  • the present invention has been made in view of the above circumstances, and is a method for manufacturing a nozzle plate in which nozzle holes are formed by press-fitting a punch into a substrate, and it is possible to reduce the width of sag with a simpler configuration. It is an object of the present invention to provide a method for manufacturing a nozzle plate, a method for manufacturing a nozzle plate, an inkjet head, an inkjet head, and an image forming apparatus that can further suppress plastic deformation of the entire substrate.
  • One aspect of the present invention for solving the above problems relates to the method of manufacturing a nozzle plate described in [1] to [9] below.
  • a method for manufacturing a nozzle plate comprising: forming a nozzle plate.
  • [3] The method for manufacturing a nozzle plate according to [1] or [2], wherein the substrate has a thickness of 30 ⁇ m or more and 45 ⁇ m or less.
  • [4] The method for manufacturing a nozzle plate according to any one of [1] to [3], wherein the thickness of the substrate is 35 ⁇ m or more and 45 ⁇ m or less.
  • the step of forming the nozzle hole includes press-fitting the punch into the substrate, the punch having a first press-fitting part whose wall surface is inclined with respect to the press-fitting direction of the punch, according to any one of [1] to [4].
  • the punch has a second press-fitting part that is continuous with the first press-fitting part on a lower side than the first press-fitting part with respect to the press-fitting direction of the punch, and the second press-fitting part has a second press-fitting part that is continuous with the first press-fitting part, and
  • the maximum width of the nozzle hole to be formed on the most downstream side in the droplet ejection direction is n, and the Vickers hardness of the metal is H.
  • a step of preparing a substrate placed on a die having an opening, and a step of press-fitting a punch into the prepared substrate to form a nozzle hole for ejecting droplets In the step of forming the nozzle hole, the maximum width of the nozzle hole to be formed on the lowermost side in the press-fitting direction of the punch is n, the maximum width of the opening of the die is d, and the thickness of the substrate is t.
  • the nozzle plate according to [11] wherein the nozzle plate has a plurality of nozzle holes, and a distance between the plurality of adjacent nozzle holes is 170 ⁇ m or less.
  • the nozzle plate according to [11] or [12] which has a thickness of 30 ⁇ m or more and 45 ⁇ m or less.
  • the nozzle hole has a second flow path arranged to communicate with the first flow path on the downstream side of the first flow path with respect to the ejection direction of the droplets.
  • the nozzle plate according to [15] wherein the inclination of the wall surface of the second channel with respect to the discharge direction is smaller than the inclination of the wall surface of the first channel with respect to the discharge direction.
  • One aspect of the present invention for solving the above problems relates to the method of manufacturing an inkjet head described in [23] and [24] below.
  • a method for manufacturing an inkjet head comprising a step of joining the nozzle plate according to any one of [11] to [22] and a flow path member for supplying ink to the nozzle holes of the nozzle plate. .
  • One aspect of the present invention for solving the above problems relates to the inkjet head described in [25] below.
  • An inkjet head comprising the nozzle plate according to any one of [11] to [22].
  • One aspect of the present invention for solving the above problem relates to the image forming apparatus described in [26] below.
  • a method for manufacturing a nozzle plate in which nozzle holes are formed by press-fitting a punch into a substrate, and the width of sag can be reduced with a simpler configuration, and plastic deformation of the entire substrate can be prevented.
  • a method for manufacturing a nozzle plate, a nozzle plate, a method for manufacturing an inkjet head, an inkjet head, and an image forming apparatus that can more fully suppress the effects.
  • FIG. 1 is a flowchart showing a method for manufacturing a nozzle plate according to the first embodiment.
  • 2A to 2C are schematic cross-sectional views showing how a punch is press-fitted into a substrate.
  • FIG. 3 is a schematic cross-sectional view showing the shape of a punch used in the above-described nozzle plate manufacturing method.
  • FIG. 4 is a schematic diagram of a nozzle plate showing the contents of each symbol in formulas (a) and (b).
  • FIG. 5 is a schematic cross-sectional view showing an example of the nozzle plate according to the first embodiment.
  • FIG. 6 is a perspective view showing an outline of the inkjet head according to the first embodiment.
  • FIG. 7 is a perspective view showing a nozzle plate included in the inkjet head.
  • FIG. 8 is a cross-sectional view taken along line AA in FIG. 6.
  • FIG. 9 is a diagram schematically showing the configuration of an image forming apparatus according to the first embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a method for manufacturing a nozzle plate according to the second embodiment.
  • FIG. 11 is a graph showing the relationship between the Vickers hardness of the substrate and the width of the sag.
  • FIG. 12 is a graph showing the relationship between the Vickers hardness of the substrate and the maximum value of ⁇ a ( ⁇ 1 ) for ensuring the width of the bonding surface.
  • FIG. 13 is a graph showing the relationship between the Vickers hardness of the substrate and the maximum value of n for ensuring the width of the bonding surface.
  • FIG. 1 is a flowchart showing a method for manufacturing a nozzle plate according to the present embodiment.
  • the method for manufacturing a nozzle plate according to the present embodiment includes a step of preparing a metal substrate having a Vickers hardness of 250 HV or more (step S10), and punching the prepared substrate.
  • a nozzle plate manufacturing method that has a simple configuration and can reduce the width of sag. It is thought that the sag is formed by tensile stress generated when the punch is press-fitted into the substrate.
  • the inventor of the present invention after extensive study, discovered that the width of the sag can be significantly reduced by using a metal substrate with a Vickers hardness of 250 HV or more as the substrate into which the punch is press-fitted. Ta. This is believed to be because the Vickers hardness of 250 HV or more can sufficiently suppress deformation of the uppermost edge portion of the nozzle hole in the punch press-fitting direction due to tensile stress generated during punch press-fitting.
  • the present inventor has found that by making the thickness of a metal substrate with a Vickers hardness of 250 HV or more greater than 25 ⁇ m and press-fitting a punch, plastic deformation of the entire substrate can be more effectively suppressed. I found out. Because the thickness is greater than 25 ⁇ m, the stress caused by press-fitting the punch is less likely to reach the entire substrate, and because the Vickers hardness is 250 HV or more, the stress is even less likely to be applied to the substrate. It is thought that.
  • the "width of the sag” refers to the width of the sag formed on the nozzle plate in the direction perpendicular to the droplet ejection direction (see W in FIG. 4).
  • the "upper side” of the punch in the press-fitting direction refers to the upstream side in the press-fitting direction
  • the “lower side” refers to the downstream side in the press-fitting direction
  • Step S10 Step of preparing a substrate (step S10) In this step, a metal substrate having a Vickers hardness of 250 HV or more is prepared.
  • the material of the substrate is not particularly limited as long as it is a metal with a Vickers hardness of 250 HV or more.
  • metals having a Vickers hardness of 250HV or higher include stainless steel (SUS3042B, SUS304H, SUS304HTA), chrome steel (300HV), nickel-chrome steel (300HV), tungsten (340HV), and the like.
  • the Vickers hardness is more preferably 300 HV or more, and even more preferably 400 HV or more.
  • the Vickers hardness can be measured by a method according to JIS Z 2244:2009.
  • the thickness of the substrate is preferably 30 ⁇ m or more and 45 ⁇ m or less, more preferably 35 ⁇ m or more and 45 ⁇ m or less.
  • plastic deformation of the entire substrate can be suppressed when a punch is press-fitted into the substrate in the step of forming a nozzle hole (step S20), which will be described later.
  • a metal substrate having a Vickers hardness of 250 HV or more is used, when the thickness of the substrate is 30 ⁇ m or more, the above-mentioned plastic deformation can be significantly suppressed.
  • the width of the flat portion (hereinafter referred to as the bonding surface) on the most upstream surface of the nozzle plate in the droplet ejection direction tends to be larger.
  • Step S20 Step of forming a nozzle hole
  • a punch is press-fitted into the substrate prepared in step S10 to form a nozzle hole for ejecting droplets.
  • FIG. 2 is a schematic cross-sectional view showing how a punch is press-fitted into a substrate (FIGS. 2A and 2B).
  • a nozzle hole 210 (described later) having a shape corresponding to the shape of the punch 120 press-fitted into the substrate 100 is formed.
  • Figure 2C Note that arrow A in FIG. 2 represents the press-fitting direction of the punch 120.
  • the punch 120 is preferably made of metal with a Vickers hardness of 780 HV or more. By using such a punch 120, damage to the punch 120 when press-fitting into the substrate 100 can be suppressed.
  • metals having a Vickers hardness of 780 HV or higher include high speed steel, cemented carbide, and the like.
  • the press-fitting speed of the punch 120 is preferably 1 ⁇ m/s or more, more preferably 3 ⁇ m/s or more. When the press-fitting speed is 1 ⁇ m/s or more, the production efficiency of the nozzle hole can be further improved. Further, the upper limit of the press-fitting speed is not particularly limited, but is preferably 50 ⁇ m/s or less, for example. When the speed is 500 ⁇ m/s or less, it is easy to form a nozzle hole having a shape corresponding to the shape of the punch 120. Further, when the speed is 500 ⁇ m/s or less, the punch becomes less likely to be damaged.
  • the distance between adjacent nozzle holes is 170 ⁇ m or less.
  • the width of the joint surface between the nozzle holes tends to become smaller. Therefore, when the width of the sag is large, it tends to become more difficult to secure the above-mentioned bonding surface.
  • the width of the sag can be reduced by using a metal substrate having a Vickers hardness of 250 HV or more. Even if the distance between them is made small, the above-mentioned bonding surface can be easily secured.
  • the lower limit of the distance between the adjacent nozzle holes is not particularly limited, but is, for example, 85 ⁇ m or more.
  • FIG. 3 is a schematic cross-sectional view showing the shape of the punch 120.
  • a punch 120 having a first press-fitting part 121 whose wall surface is inclined with respect to the press-fitting direction of the punch 120 (arrow A in FIG. 3) is press-fitted into the substrate 100 in the same direction as the droplet ejection direction.
  • this embodiment includes a first press-fitting part 121 and a second press-fitting part 122 that is continuous with the first press-fitting part 121 on the downstream side of the first press-fitting part 121 with respect to the press-fitting direction of the punch 120.
  • the slope of the wall surface 122a of the second press-fitting part 122 with respect to the press-fitting direction ( ⁇ b in FIG. 3) is smaller than the slope of the wall surface 121a of the first press-fitting part 121 with respect to the press-fitting direction ( ⁇ a in FIG. 3).
  • the punch 120 having the above-mentioned shape be press-fitted into the substrate 100 in the same direction as the droplet ejection direction.
  • the ink remaining in the nozzle hole is drawn into the inkjet head immediately before the ink is ejected.
  • air is drawn into the inkjet head (upstream of the nozzle plate with respect to the droplet ejection direction) along with the ink, so the next time the ink is ejected, air bubbles may be included in the ink.
  • the ejection stability tends to deteriorate.
  • the nozzle hole has a shape corresponding to the first press-fitting part 121, the area of the cross section of the nozzle hole perpendicular to the droplet ejection direction increases as it goes upstream in the ejection direction.
  • the nozzle hole has a shape corresponding to the shape of the second press-fitting part 122, bending of ink ejection can be further suppressed. For these reasons, by using a punch having the above-mentioned shape, it is possible to further improve ink ejection stability when the manufactured nozzle plate is used in an inkjet head.
  • an acute angle is referred to as "the wall surface 121a of the first press-fitting part 121".
  • the slope of ⁇ a is ⁇ .
  • an acute angle between the straight line P2 parallel to the press-fitting direction of the punch and the wall surface 122a of the second press-fitting section 122 is defined as "the inclination ⁇ b of the wall surface 122a of the second press-fitting section 122.”
  • the above-mentioned inclination ⁇ a of the first press-fitting portion 121 is preferably 15° or more, more preferably 30° or more, and even more preferably 45° or more.
  • the above-mentioned inclination ⁇ a is 15° or more, the inclination of the wall surface of the formed nozzle hole with respect to the droplet ejection direction becomes larger.
  • the ejection stability can be improved more fully, and the fluid resistance during ink ejection can be lowered to further improve the ejection stability. Furthermore, it is possible to further suppress a decrease in the robustness of the nozzle plate due to variations in shape and dimensions during manufacturing and processing.
  • the above-mentioned inclination ⁇ a is preferably 50° or less.
  • the maximum width (W a in FIG. 3 ) of the first press-fitting part 121 on the uppermost side in the press-fitting direction of the punch 120 is preferably 100 ⁇ m or more and 200 ⁇ m or less. By setting the maximum width W a within the above range, the punch 120 can be manufactured more easily.
  • the length of the first press-fitting portion 121 in the press-fitting direction of the punch 120 is preferably 40 ⁇ m or more and 55 ⁇ m or less.
  • L a is 40 ⁇ m or more
  • the length of the nozzle hole to be formed can be more sufficiently ensured, and the drawing of air into the inside of the inkjet head can be further suppressed. Thereby, the ejection stability can be further improved.
  • the above-mentioned L a is 55 ⁇ m or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
  • the above-mentioned inclination ⁇ b of the second press-fitting part 122 is preferably 0° or more and 9° or less, more preferably 0° or more and 5° or less, and even more preferably 0° or more and 3° or less, It is particularly preferable that the angle is 0° or more and 1° or less.
  • the above-mentioned inclination ⁇ b is 9° or less, when the manufactured nozzle plate is used in an inkjet head, ink ejection bending can be further suppressed and ink ejection stability can be further improved.
  • the maximum width (W b in FIG. 3 ) of the second press-fitting portion 122 on the lowermost side in the press-fitting direction of the punch 120 is preferably 18 ⁇ m or more and 50 ⁇ m or less.
  • the punch 120 is less likely to be damaged during press-fitting into the substrate 100 .
  • the maximum width W b is 50 ⁇ m or less, the width of the droplet ejection opening of the formed nozzle hole can be made smaller, and a higher definition image can be formed.
  • the length of the second press-fitting portion 122 in the press-fitting direction of the punch 120 is preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • L b is 10 ⁇ m or more
  • ink ejection bending can be further suppressed and ink ejection stability can be further improved.
  • space saving of the nozzle plate in the inkjet head can be more easily achieved.
  • the above-mentioned inclination ⁇ a of the first press-fitting portion 121 satisfies the relationship of equation (1), where HA is the Vickers hardness of the metal that is the material of the substrate 100. ⁇ a ⁇ 0.0234 ⁇ H A +38.67 (1)
  • FIG. 4 is a schematic diagram of a nozzle plate showing the contents of each symbol in the following formula (a). Equation (1) can be derived as follows.
  • Equation (1) the fixed values shown below are used for values other than ⁇ a and W in equation (a).
  • P indicates the distance between adjacent nozzle holes (the distance between the centers of the nozzle holes), and n indicates the most downstream distance in the droplet ejection direction (arrow B in FIG. 4) of the nozzle holes to be formed. Indicates the maximum width of the side.
  • Equation (1) derived in this way is based on ⁇ a and H in order to secure the junction width x of 50 ⁇ m or more when P, n, L a , L b , and ⁇ b are the above values.
  • Equation (1) derived in this way is based on ⁇ a and H in order to secure the junction width x of 50 ⁇ m or more when P, n, L a , L b , and ⁇ b are the above values.
  • the maximum width n of the nozzle hole to be formed on the most downstream side in the droplet ejection direction and the Vickers hardness HA of the metal that is the material of the substrate 100 satisfy the relationship of formula (2).
  • the nozzle hole is formed by press-fitting the punch 120 in the same direction as the droplet ejection direction. n ⁇ 0.0672 ⁇ H A +2.01 (2)
  • Equation (2) can be derived as follows.
  • Equation (2) derived in this way is based on n and H in order to ensure the junction width x of 50 ⁇ m or more when P, L a , L b , ⁇ a , and ⁇ b are the above values.
  • Equation (2) derived in this way is based on n and H in order to ensure the junction width x of 50 ⁇ m or more when P, L a , L b , ⁇ a , and ⁇ b are the above values.
  • P , n can be adjusted as appropriate. Thereby, a sufficient bonding width can be ensured while adjusting the distance between adjacent nozzle holes and the above-mentioned inclination of the punch to desired values.
  • n can be increased as the value of the Vickers hardness of the substrate 100 is larger. Therefore, in an inkjet head using a nozzle plate, it is possible to further reduce fluid resistance during ink ejection, further improve ejection stability, and make it easier to secure a bonding surface.
  • the punch 120 is attached to the substrate 100 such that the maximum width W b of the second press-fitting part 122 on the lowest side in the press-fitting direction of the punch 120 satisfies W b ⁇ 0.0672 ⁇ H+2.01.
  • a nozzle hole that satisfies formula (2) can be formed.
  • the shapes of the cross sections of the first press-fitting part 121 and the second press-fitting part 122 in the direction orthogonal to the press-fitting direction are, for example, circular or oval, but from the viewpoint of further increasing ink ejection stability, they should be circular. is preferred.
  • the maximum width of the nozzle hole to be formed on the lowest side in the press-fitting direction of the punch is n
  • the maximum width of the opening of the die 110 is d
  • the maximum width of the opening of the die 110 is d.
  • the thickness is t
  • the above-mentioned nozzle hole is formed that satisfies the relationship of formula (A) (see FIG. 2).
  • the maximum width d of the opening of the die 110 is larger than the sum (t+n) of the maximum width n of the nozzle hole and the thickness t of the substrate, thereby making it easier for the punch 120 to penetrate the substrate 100. Can be done. This makes it easier to form the nozzle hole in accordance with the shape of the punch 120. Further, the load on the punch 120 can be reduced, and deterioration of the punch 120 can be further suppressed.
  • the press-fitting pressure of the punch 120 applied to the substrate 100 is difficult to be dispersed, and the punch 120 can be press-fitted into the substrate 100 more easily. can.
  • the punch 120 may have a third press-fitting part that is continuous with the second press-fitting part 122 on the downstream side of the second press-fitting part 122 with respect to the press-fitting direction of the punch 120. It is preferable that the third press-fitting part has a shape in which the inclination of the wall surface with respect to the press-fitting direction is different from the above-mentioned inclination of the wall surface of the second press-fitting part, and the maximum width becomes smaller toward the downstream side in the press-fitting direction.
  • Process of polishing the substrate surface may include a step of polishing the surface of the substrate in which the nozzle holes are formed in step S20 on the lowermost side in the press-fitting direction of the punch.
  • step S20 in order to remove the protrusion 130 caused by press-fitting the punch 120 into the substrate 100 in step S20, the surface of the substrate 100 on the lowermost side in the press-fitting direction of the punch is polished (FIG. 2B, C).
  • the method of polishing is not particularly limited, but can be performed using, for example, a parallel plane honing grinder (FS-35AN, manufactured by Fuji Sanki Co., Ltd.).
  • FS-35AN parallel plane honing grinder
  • the method for manufacturing a nozzle plate according to the present embodiment may include a step of forming a groove on the uppermost surface of the substrate in the press-fitting direction of the punch 120 after the above step S20.
  • the method for forming the groove is not particularly limited, but, for example, the groove may be formed by press-fitting a punch corresponding to the shape of the groove into the substrate.
  • the punch may be press-fitted into the substrate in the opposite direction to the direction in which droplets are ejected from the nozzle hole to be formed.
  • the nozzle plate according to this embodiment has a nozzle hole for ejecting droplets, and is made of metal with a Vickers hardness of 250 HV or more.
  • the above-mentioned nozzle plate can be obtained by the above-mentioned nozzle plate manufacturing method.
  • the material of the nozzle plate is not particularly limited as long as it is a metal with a Vickers hardness of 250 HV or more.
  • the type of metal having a Vickers hardness of 250 HV or more can be the same as that described in the nozzle plate manufacturing method.
  • the Vickers hardness is more preferably 300 HV or more, and even more preferably 400 HV or more, from the viewpoint of suppressing deformation of the nozzle plate during use.
  • the thickness of the nozzle plate is preferably 30 ⁇ m or more and 45 ⁇ m or less, more preferably 35 ⁇ m or more and 45 ⁇ m or less.
  • the thickness is 30 ⁇ m or more, a sufficient length of the nozzle hole can be ensured, and the drawing of air into the inside of the inkjet head can be further suppressed. Thereby, the ejection stability can be further improved. Further, since the thickness is 45 ⁇ m or less, space saving can be more easily achieved when the nozzle plate is used in an inkjet head.
  • the nozzle plate has a plurality of nozzle holes in which the distance between adjacent nozzle holes is 170 ⁇ m or less.
  • a higher definition image can be formed.
  • the lower limit of the distance between the adjacent nozzle holes is not particularly limited, but is, for example, 85 ⁇ m or more.
  • FIG. 5 is a schematic cross-sectional view showing an example of the nozzle plate 200.
  • the nozzle hole 210 has a first channel 211 whose wall surface is inclined with respect to the droplet ejection direction (arrow B in FIG. 5).
  • the nozzle hole 210 is connected to the first flow path 211 and the second flow path that is continuous with the first flow path 211 on the downstream side of the first flow path 211 with respect to the droplet ejection direction. 212, and the slope of the wall surface of the second flow path 212 with respect to the discharge direction ( ⁇ 2 in FIG. 5) is smaller than the slope of the wall surface of the first flow path 211 with respect to the press-fitting direction ( ⁇ 1 in FIG. 5). It is also preferable to have a small shape. Since the nozzle plate 200 has such nozzle holes 210, the ejection stability of ink droplets can be further improved when an inkjet head using the nozzle plate is used.
  • an acute angle is referred to as "the wall surface of the first flow path 211".
  • 211a is assumed to be ⁇ 1 .
  • an acute angle between the straight line P4 parallel to the droplet ejection direction and the wall surface 212a of the second flow path 212 is defined as "the inclination ⁇ 2 of the wall surface 212a of the second flow path 212.”
  • the above-mentioned inclination ⁇ 1 of the first flow path 211 is preferably 15° or more, more preferably 30° or more, and even more preferably 45° or more.
  • the above-mentioned inclination ⁇ 1 is 15° or more, when the nozzle plate is used in an inkjet head, the drawing of air from the nozzle holes can be further suppressed, and the ejection stability can be further improved.
  • the above-mentioned inclination ⁇ 1 is 45° or more, the ejection stability can be more fully improved, and the fluid resistance during ink ejection can be lowered to further improve the ejection stability.
  • the above-mentioned slope ⁇ 1 is preferably 50° or less, from the viewpoint of making it easier to adjust the amount of ink droplets to be ejected.
  • the length of the first channel 211 in the droplet ejection direction (L 1 in FIG. 5) is preferably 40 ⁇ m or more and 55 ⁇ m or less.
  • L 1 is 40 ⁇ m or more, a sufficient length of the nozzle hole can be ensured, and the drawing of air into the inside of the inkjet head can be further suppressed. Thereby, when the nozzle plate is used in an inkjet head, ejection stability can be further improved. Further, when L1 is 55 ⁇ m or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
  • the above-mentioned inclination ⁇ 2 of the second flow path 212 is preferably 0° or more and 9° or less, more preferably 0° or more and 5° or less, and even more preferably 0° or more and 3° or less, It is particularly preferable that the angle is 0° or more and 1° or less.
  • the above-mentioned inclination ⁇ 2 is 9° or less, when the manufactured nozzle plate is used in an inkjet head, ink ejection bending can be further suppressed and ink ejection stability can be further improved.
  • the length of the second flow path 212 in the droplet ejection direction is preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • L2 is 10 ⁇ m or more
  • ink ejection bending can be further suppressed and ink ejection stability can be further improved.
  • the above-mentioned L2 is 25 ⁇ m or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
  • the maximum width (n in FIG. 5) of the second flow path 212 on the most downstream side in the droplet ejection direction is preferably 18 ⁇ m or more and 50 ⁇ m or less.
  • the maximum width n is 18 ⁇ m or more, when the nozzle plate is used in an inkjet head, thickening of the ink due to aggregation of pigments in the ink near the ejection ports can be further suppressed. As a result, variations in ink ejection speed are less likely to occur, and ejection stability can be further improved.
  • the maximum width n is 50 ⁇ m or less, the width of the droplet ejection opening can be made smaller and a higher definition image can be formed.
  • the cross-sectional shapes of the first flow path 211 and the second flow path 212 in the direction perpendicular to the ejection direction are, for example, circular or oval, but from the viewpoint of further increasing ink ejection stability, the shape is circular. is preferred.
  • the nozzle plate 200 has a bonding surface 220 for bonding to an external member on the most upstream surface in the droplet ejection direction.
  • the width of the joint surface 220 in the direction in which the plurality of nozzle holes 210 are arranged (x in FIG. 5) is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the bonding surface 220 may have a groove. Since the bonding surface 220 has the groove, when the nozzle plate and the channel member are bonded using adhesive to manufacture an inkjet head, the adhesive is sufficiently prevented from protruding from the bonding surface 220. can do.
  • ⁇ 1 of the first flow path 211 satisfies the relationship of equation (3), where HB is the Vickers hardness of the metal that is the material of the nozzle plate. ⁇ 1 ⁇ 0.0234 ⁇ H B +38.67 (3)
  • Equation (3) can be derived as follows.
  • the nozzle plate has nozzle holes that satisfy the relationship of formula (3), a sufficient width of the joint surface of the nozzle plate in the direction in which the nozzle holes are arranged can be ensured. Further, when the relationship of equation (3) is satisfied, the value of ⁇ 1 can be increased as the Vickers hardness value of the metal that is the material of the nozzle plate increases. Therefore, in an inkjet head using a nozzle plate, it is possible to further suppress the drawing of air from the nozzle holes, further improve ejection stability, and make it easier to secure a bonding surface.
  • n 0.0672 ⁇ H B +2.01 (4)
  • Equation (4) can be derived as follows.
  • n can be increased as the Vickers hardness value of the metal that is the material of the nozzle plate increases. Therefore, in an inkjet head using a nozzle plate, it is possible to further reduce fluid resistance during ink ejection, further improve ejection stability, and make it easier to secure a bonding surface.
  • the sagging width W of the nozzle plate 200 in the direction perpendicular to the droplet ejection direction is preferably 14 ⁇ m or less.
  • the method for manufacturing a nozzle plate according to the present embodiment includes the step of joining the above-described nozzle plate and a channel member for supplying ink to the nozzle holes of the nozzle plate.
  • the method of joining the nozzle plate and the flow path member is not particularly limited, and examples thereof include a method of joining using an adhesive, a method of joining using a diffusion bonding method, and the like.
  • the amount of adhesive used is preferably less than 0.1 g from the viewpoint of suppressing deterioration of the adhesive due to the use of ink and further suppressing a decrease in bonding strength. Furthermore, when the amount of adhesive used is less than 0.1 g, it is possible to suppress the adhesive from flowing out into areas not involved in bonding, such as the flow path of the nozzle plate.
  • the channel member used in the above bonding step will be described in detail in the explanation of the inkjet head described later.
  • the method for manufacturing an inkjet head includes bonding a channel member for supplying ink to nozzle holes of a nozzle plate and a pressure chamber forming substrate having pressure chambers for applying pressure to the ink. It may have a step.
  • the method for joining the flow path member and the pressure chamber forming substrate is not particularly limited, and may be the same as the method for joining the nozzle plate and the flow path member.
  • the pressure chamber forming substrate to be joined to the flow path member will be described in detail in the explanation of the inkjet head described later.
  • the inkjet head according to this embodiment has the above-described nozzle plate.
  • an inkjet head having the nozzle plate 200 shown in FIG. 5 will be described, but the inkjet head according to this embodiment is not limited to this.
  • FIG. 6 is an exploded perspective view showing an overview of the inkjet head 1 according to the present embodiment.
  • the inkjet head 1 includes a housing 2, a circuit board 3, a head base 4, and a head chip 5 shown in FIG.
  • the housing 2 is a rectangular box with an open bottom surface.
  • a notch 2a connected to the inside is provided on the top surface of the casing 2, and the circuit board 3 is housed in the casing 2 through this notch 2a.
  • a drive circuit for driving an actuator in a head chip 5 (described later) is mounted on the circuit board 2.
  • Circular holes 2b are provided on the X-axis positive side and the X-axis negative side of the notch 2a, respectively.
  • the hole 2b is for guiding an ink supply tube (not shown) into the housing 2. Further, a common ink chamber (not shown) is provided within the housing 2.
  • the head base 4 is a frame body that has a rectangular opening 4a in the center that passes through it vertically.
  • a head chip 5 shown in FIG. 7 is provided at the lower end of the opening 4a.
  • a circuit board 3 and an FPC (flexible printed circuit board) are electrically connected to the head chip 5 within the opening 4a.
  • FIG. 8 is a cross-sectional view taken along line AA in FIG. 7, showing an outline of the head chip 4 included in the above-described inkjet head 1.
  • the head chip 5 includes a nozzle plate 200, a flow path member 10, a pressure chamber forming substrate 20, a drive plate 30, and a wiring board 40. Further, in the head chip 4, a nozzle plate 200, a channel member 10, a pressure chamber forming substrate 20, a drive plate 30, and a wiring board 40 are stacked in this order from the ink ejection surface side.
  • a liquid-repellent film may be formed on the ink ejection side surface of the nozzle plate 200.
  • the material contained in the liquid-repellent film is not particularly limited, but may be, for example, a fluororesin.
  • the thickness of the liquid-repellent film is not particularly limited, but is, for example, 1 nm or more and less than 100 nm.
  • the flow path member 10 is a member for supplying ink to the nozzle holes 210 of the nozzle plate.
  • the flow path member 10 includes an inlet forming substrate 11, a supply flow path forming substrate 12, and an air chamber forming substrate 13.
  • the inlet forming substrate 11 has an inlet 11a.
  • the inlet 11a is a through hole formed between a pressure chamber 21, which will be described later, and a supply channel 12a, and supplies ink from the pressure chamber 21 to the supply channel 12a.
  • the inlet 11a may have a throttle function for adjusting the amount of ink to be supplied.
  • the thickness of the inlet forming substrate 11 can be, for example, 30 ⁇ m or more and 100 ⁇ m or less.
  • the maximum opening width of the inlet 11a can be, for example, 10 ⁇ m or more and 80 ⁇ m or less.
  • the inlet forming substrate 11 has a second communication hole 11b.
  • the second communication hole 11b communicates with a third communication hole 24 and a first communication hole 12b, which will be described later.
  • the supply channel forming substrate 12 has a supply channel 12a.
  • the supply channel 12a is a channel for supplying ink supplied from the outside to the pressure chamber 21.
  • the supply channel forming substrate 12 has a first communication hole 12b.
  • the first communication hole 12b communicates with the second communication hole 11b, and communicates with the supply channel 12a.
  • the air chamber forming substrate 13 has a damper 13a and an air chamber 13b.
  • the damper 13a is a flexible membrane that can be plastically deformed in response to pressure fluctuations in the pressure chamber 21.
  • the damper 13a When the pressure in the supply channel 12a increases due to pressure fluctuations in the pressure chamber 21, the damper 13a is plastically deformed toward the air chamber 13b, and when the pressure in the supply channel 12a decreases, the damper 13a deforms the supply flow. It is plastically deformed toward the path 12a. Thereby, it is possible to further suppress sudden fluctuations in the pressure within the supply channel 12a.
  • the flow path member 10 has a silo 14.
  • the silo 14 is a through hole for supplying ink in the pressure chamber 21 to the nozzle hole 210.
  • the pressure chamber forming substrate 20 has a plurality of pressure chambers 21 and a diaphragm 22. Moreover, the pressure chamber 21 penetrates from one surface of the pressure chamber forming substrate 20 to the other surface. The pressure chamber 21 applies ejection pressure to the ink to be ejected from the nozzle hole 210 by changing its volume. Furthermore, partition walls 23 are formed between the plurality of pressure chambers 21 . In this embodiment, the partition wall 23 is entirely formed of a metal that can be electroplated, such as nickel (Ni). Thereby, the rigidity of the partition wall 23 can be increased, and the inkjet head 1 can have a stable structure that is less likely to be destroyed by vibration.
  • the thickness of the pressure chamber forming substrate 20 can be, for example, 50 ⁇ m or more and 300 ⁇ m.
  • the diaphragm 22 is arranged to cover the opening of the pressure chamber 21 on the side opposite to the nozzle plate 200.
  • the diaphragm 22 is provided with a third communication hole 24 .
  • a drive plate 30 is arranged on one surface of the diaphragm 22 on the pressure chamber 21 side and one surface on the opposite side.
  • the thickness of the diaphragm 22 is, for example, 1 ⁇ m or more and 10 ⁇ m or less. Note that an insulating layer may be disposed between the pressure chamber forming substrate 20 and the drive plate 30.
  • the drive plate 30 has a space 31 and a fourth communication hole 32 that communicates with the third communication hole 24 .
  • the space portion 31 is arranged at a position facing the pressure chamber 21 with the diaphragm 22 in between.
  • the actuator 50 is housed in the space 31 .
  • the actuator 50 has a piezoelectric element 51, a first electrode 52, and a second electrode 53.
  • the first electrode 52 is laminated on one surface of the diaphragm 22 . Note that an insulating layer may be disposed between the first electrode 52 and the diaphragm 22.
  • the piezoelectric element 51 is stacked on the first electrode 52 and is arranged for each pressure chamber 21 (for each channel) at a position facing the pressure chamber 21 with the diaphragm 22 and the first electrode 52 in between.
  • the first electrode 52 and the second electrode 53 may be formed by a method such as sputtering or vapor deposition, and patterned by a method such as photolithography.
  • the piezoelectric element 51 is made of a material that deforms when a voltage is applied, and is made of a ferroelectric material such as lead zirconate titanate (PZT), for example. Further, a second electrode 53 is laminated on the surface of the piezoelectric element 51 opposite to the first electrode 52 . The second electrode 53 is connected to a wiring layer 41 provided on a wiring board 40, which will be described later, via a bump 54.
  • the thickness of the piezoelectric element 51 is, for example, 10 ⁇ m or less.
  • the wiring board 40 has a wiring layer 41 and a silicon layer 42 on which the wiring layer 41 is formed over one surface.
  • the wiring layer 41 is connected to the bump 54 provided on the second electrode 53 via solder 41a. Further, the outer edge of the wiring layer 41 is connected to a flexible wiring board.
  • a silicon layer 42 is arranged on one surface of the wiring layer 41 on the side opposite to the drive plate 30. The silicon layer 42 is bonded to the holding part 3.
  • the wiring board 40 is provided with a fifth communication hole 43 that penetrates the wiring layer 41 and the silicon layer 42.
  • the fifth communication hole 43 communicates with the fourth communication hole 32 of the drive plate 30 and the common ink chamber within the housing.
  • the fifth communication hole 43 of the wiring board 40, the fourth communication hole 32 of the drive plate 30, the third communication hole 24 of the diaphragm 22, and the second communication hole 11b of the inlet forming board 11 communicate with each other.
  • the first communication hole 12b of the supply flow path forming substrate 12, and the supply flow path 12a constitute a flow path for supplying ink in the common ink chamber 2 to the pressure chamber 21.
  • the nozzle holes 210 of the nozzle plate 200 constitute an outlet for ejecting ink within the pressure chamber 21 toward the recording medium.
  • the ink stored in the common ink chamber in the housing 2 is distributed through the fifth communication hole 43, the fourth communication hole 32, the third communication hole 24, the second communication hole 11b, and the second communication hole 11b. It passes through the first communication hole 12b, flows into the supply channel 12a, and then flows into the pressure chamber 21 via the inlet 11a. Then, by applying a voltage between the first electrode 52 and the second electrode 53, the piezoelectric element 51 is deformed (vibrated), and along with the deformation of the piezoelectric element 51, the diaphragm 22 is deformed (vibrated). . The deformation (vibration) of the diaphragm 22 generates pressure within the pressure chamber 21 to eject ink. Due to the generation of this pressure, the ink in the pressure chamber 21 is pushed out through the silo 14 to the nozzle hole 210, and is ejected from the tip (nozzle opening) of the nozzle hole 210 toward the recording medium.
  • the inkjet head 1 only needs to include the nozzle plate 200, and may be a piezoelectric inkjet head in which the piezoelectric element 51 constitutes the wall of the pressure chamber 21, or a thermal inkjet head. good.
  • FIG. 9 is a diagram schematically showing the configuration of an image forming apparatus 300 according to the present embodiment.
  • the image forming apparatus 300 includes the above-described inkjet head 1, an ink supply device 310, a transport device 320, and a main tank 330.
  • the inkjet head 1 is arranged so as to be able to scan freely in a direction transverse to the transport direction D of the recording medium M on which an image is to be formed, for example, by a scanning method.
  • the type of ink ejected by the inkjet head 1 is not particularly limited, and includes, for example, actinic radiation-curable ink, solvent-based ink, water-based ink, and hot-melt ink.
  • the transport device 320 is a device for transporting the recording medium M to the inkjet head 1.
  • the conveyance device 320 includes, for example, a belt conveyor 321 and a rotatable feed roller 322.
  • the belt conveyor 321 includes a plurality of rotatable pulleys 321a and an endless belt 321b stretched around the pulleys 321a.
  • the feed roller 322 is disposed at a position facing the pulley 321a on the upstream side in the transport direction D of the recording medium M so as to sandwich the recording medium M between the belt 321b and feed the recording medium M onto the belt 321b.
  • the ink supply device 310 is arranged integrally with the inkjet head 1.
  • the ink supply devices 310 are arranged for each type of ink. For example, when using four color inks of Y (yellow), M (magenta), C (cyan), and K (black), four ink supply devices 310 are arranged in the inkjet head 1.
  • Each ink supply device 310 is supplied with ink in the main tank 330 via a pipe 341 and a valve 342 connected to the main tank 330. Further, each ink supply device 310 communicates with the common ink chamber of the inkjet head 1 via a pipe 344, and is connected to be able to supply ink of each color to the ink supply port 2a of a desired common ink chamber.
  • the inkjet head 1 is also connected to the main tank 330 by a bypass pipe 343 branching from the pipe 341 described above.
  • a valve 342 is arranged that can switch and set the ink flow path in one or both of the pipes 341 and the bypass pipe 343.
  • the pipe 341, the pipe 344, and the bypass pipe 343 are all flexible tubes, for example.
  • Valve 342 is, for example, a three-way valve.
  • the main tank 330 is a tank for storing ink to be supplied to the inkjet head 1.
  • the main tank 330 is arranged separately from the inkjet head 1.
  • the main tank 330 includes, for example, a stirring device (not shown).
  • the main tank 330 can be appropriately determined depending on the image forming performance, size, etc. of the image forming apparatus 300. For example, when the image forming speed of the image forming apparatus is 1 to 3 m 2 /min, the capacity of the main tank 330 is, for example, 1 L.
  • Embodiment 2 Method for manufacturing a nozzle plate
  • the method for manufacturing a nozzle plate according to Embodiment 2 of the present invention includes the steps of preparing a substrate placed on a die having an opening, and press-fitting a punch into the prepared substrate to form a liquid. forming a nozzle hole for discharging the droplet, and the step of forming the nozzle hole is such that the maximum width of the formed nozzle hole on the most downstream side in the press-fitting direction of the punch is n, When the maximum width of the opening of the die is d, and the thickness of the substrate is t, the nozzle hole is formed to satisfy the relationship of formula (A). t+n ⁇ d ⁇ 2t+n (A)
  • Step of preparing a substrate placed on a die In this step, a substrate placed on a die having an opening is prepared.
  • the type of die is not particularly limited as long as it has an opening that satisfies formula (A).
  • the type of substrate is not particularly limited, but it is preferably a metal substrate with a Vickers hardness of 250 HV or more.
  • the type of metal having a Vickers hardness of 250 HV or more can be the same as described above.
  • the thickness of the substrate is not particularly limited as long as it satisfies formula (A), but it is preferably 30 ⁇ m or more and 45 ⁇ m or less, more preferably 35 ⁇ m or more and 45 ⁇ m or less.
  • Step of Forming Nozzle Holes a punch is press-fitted into the substrate prepared above to form nozzle holes for ejecting droplets.
  • FIG. 10 is a schematic cross-sectional view showing a method of manufacturing a nozzle plate according to this embodiment.
  • the maximum width of the nozzle hole to be formed on the most downstream side in the press-fitting direction of the punch is n
  • the maximum width of the opening of the die is d
  • the thickness of the substrate is t
  • the nozzle hole is formed to satisfy the relationship (A). t+n ⁇ d ⁇ 2t+n (A)
  • the maximum width d of the opening of the die By making the maximum width d of the opening of the die larger than the sum (t+n) of the maximum width n of the nozzle hole and the thickness t of the substrate, it is possible to make it easier for the punch 120 to penetrate the substrate 100. can. This makes it easier to form the nozzle hole in accordance with the shape of the punch 120. Further, the load on the punch 120 can be reduced, and deterioration of the punch 120 can be further suppressed.
  • the press-fitting pressure of the punch 210 applied to the substrate 100 is difficult to be dispersed, and the punch 120 can be press-fitted into the substrate 100 more easily. . Further, it is possible to more easily form a nozzle hole having the shape of the punch 210.
  • This step may be performed using a holding member 140 to make it easier to fix the substrate.
  • the holding member has an opening 140a for press-fitting the punch 120 into the substrate 100.
  • the minimum width of the opening 140a may be at least the maximum width of the punch 120 press-fitted into the substrate 100, and is preferably larger than the maximum width of the punch 120 by 50 ⁇ m or more. This makes it easier to press-fit the punch 120 into the substrate 100, making it easier to form a nozzle hole corresponding to the shape of the punch 120.
  • the prepared metal plate 1 was placed on a die (the maximum width of the opening was 85 ⁇ m), and the metal plate 1 was fixed from above with a pressing member. Then, a punch having a shape similar to that shown in FIG. 3 was press-fitted into the metal plate 1 at a press-fitting speed of 3 ⁇ m/s, and then the punch was taken out from the metal plate 1.
  • the protrusion formed by press-fitting the punch was removed by polishing using a parallel plane honing grinder (FS-35AN, manufactured by Fuji Sanki Co., Ltd.) to form a nozzle hole.
  • FS-35AN parallel plane honing grinder
  • a plurality of nozzles were formed on the metal plate 1 using a similar method so that the distance P between adjacent nozzle holes was 170 ⁇ m. In this way, nozzle plate 1 was produced.
  • the punch used had an inclination ⁇ a of the wall surface of the first press-fitting part with respect to the press-fitting direction of the punch of 0°, an inclination ⁇ b of the wall surface of the second flow path with respect to the above-mentioned discharge direction of 45°, and
  • the length L a in the press-fitting direction was 5 ⁇ m
  • the length L b of the second press-fitting portion in the press-fitting direction was 45 ⁇ m.
  • the formed nozzle hole has a first flow path and a second flow path, the inclination ⁇ 1 of the wall surface of the first flow path with respect to the droplet ejection direction is 0°, and the wall surface of the second flow path is The inclination ⁇ 2 with respect to the discharge direction was 45°, the length L 1 of the first channel in the discharge direction was 5 ⁇ m, and the length L 2 of the second flow channel in the discharge direction was 45 ⁇ m. Further, the maximum width n of the nozzle hole on the most downstream side in the above-mentioned ejection direction was 20 ⁇ m. Note that the cross-sectional shape of the nozzle hole in the direction orthogonal to the above-mentioned discharge direction was circular.
  • Nozzle plates 2 to 4 were produced in the same manner as nozzle plate 1, except that the metal plates used were changed to metal plates 2 to 4 shown in Table 1. In each nozzle plate, the shapes of the nozzle holes formed were the same.
  • the width of the slope formed at the most upstream edge of the nozzle hole in the droplet ejection direction is defined as the sagging width W [ ⁇ m]. It was measured.
  • the sag width in each nozzle plate is shown in Table 1, and the relationship between the Vickers hardness of the metal plate and the sag width is shown in the graph of FIG. Note that the equation in FIG. 11 is an equation representing an approximate straight line of the graph.
  • Nozzle plates 5 to 10 were produced in the same manner except that . ⁇ a , ⁇ 1 :45° ⁇ b , ⁇ 2 :0° L a , L 1 :t-L 2 Lb , L2 : 5 ⁇ m n: 20 ⁇ m
  • the width (adhesion white) x [ ⁇ m] of the joint surface included in the most upstream surface in the droplet ejection direction in the direction in which a plurality of nozzle holes are arranged is calculated using the above formula (b ) was calculated.
  • the measurement results of the adhesion margin were evaluated according to the following evaluation criteria. Note that the sag width W in equation (b) was calculated from the equation of the approximate straight line in the graph of FIG. 11 using the Vickers hardness of the metal plate.
  • Adhesive margin is 50 ⁇ m or more ⁇ Adhesive margin is 40 ⁇ m or more and less than 50 ⁇ m ⁇ Adhesive margin is 25 ⁇ m or more and less than 40 ⁇ m ⁇ Adhesive margin is less than 25 ⁇ m
  • Equation (1) (Equation (3)) was derived under the condition that a metal plate with a Vickers hardness of 250 HV or more was used.
  • Equation (2) (Equation (4)) was derived under the condition that a metal plate with a Vickers hardness of 250 HV or more was used.
  • the present invention is useful, for example, in a method for manufacturing a nozzle plate using a punching method.
  • Inkjet head 2 Housing 3 Circuit board 4 Head base 5 Head chip 10 Channel forming board 20 Pressure chamber forming board 30 Drive plate 40 Wiring board 50 Actuator 100 Board 110 Die 120 Punch 130 Projection 140 Holding member 200 Nozzle plate 210 Channel 220 Joint surface 300 Image forming device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

The present invention pertains to a manufacturing method for a nozzle plate, in which a substrate is press-punched to form a nozzle hole therein. The manufacturing method reduces sag width and better suppresses plastic deformation of the entire substrate, with a simpler configuration. This manufacturing method for a nozzle plate includes: a step for preparing a metal substrate having a thickness greater than 25 μm and a Vickers hardness of 250 HV or greater; and a step for press-punching the prepared substrate to form a nozzle hole for discharging droplets of a liquid.

Description

ノズルプレートの製造方法、ノズルプレート、インクジェットヘッドの製造方法、インクジェットヘッド、および画像形成装置Nozzle plate manufacturing method, nozzle plate, inkjet head manufacturing method, inkjet head, and image forming device
 本発明は、ノズルプレートの製造方法、ノズルプレート、インクジェットヘッドの製造方法、インクジェットヘッド、および画像形成装置に関する。 The present invention relates to a nozzle plate manufacturing method, a nozzle plate, an inkjet head manufacturing method, an inkjet head, and an image forming apparatus.
 インクジェットプリンタ等に用いられるインクジェットヘッドは、液滴(インク)を吐出するための微小なノズル孔を多数備えたノズルプレートを有する。 An inkjet head used in an inkjet printer or the like has a nozzle plate equipped with a large number of minute nozzle holes for ejecting droplets (ink).
 ノズルプレートの製造方法として、例えば、特許文献1には、SUSなどを材料とする基板に、形成するノズル孔の形状に応じたフォトレジストパターンを形成し、上記フォトレジストパターンが形成された基板にNiメッキ膜を形成した後、上記基板および上記フォトレジストパターンを上記Niメッキ層から分離させてノズル孔を形成する、ノズルプレートの製造方法が開示されている。特許文献1によれば、上記ノズルプレートにNi-FEPメッキ層を形成し、上記メッキ層を加熱処理することで、剛性、脆性の低下が抑制されたノズルプレートを製造することができたとされている。 As a method for manufacturing a nozzle plate, for example, Patent Document 1 discloses that a photoresist pattern corresponding to the shape of the nozzle hole to be formed is formed on a substrate made of SUS or the like, and the substrate on which the photoresist pattern is formed is coated with a photoresist pattern. A method for manufacturing a nozzle plate is disclosed in which, after forming a Ni plating film, the substrate and the photoresist pattern are separated from the Ni plating layer to form nozzle holes. According to Patent Document 1, by forming a Ni-FEP plating layer on the nozzle plate and heat-treating the plating layer, it was possible to manufacture a nozzle plate in which decreases in rigidity and brittleness were suppressed. There is.
 より簡易的にノズルプレートを製造する方法の一つとして、パンチを基板に圧入してノズル孔を形成するパンチ加工法が知られている。 As one method for manufacturing a nozzle plate more simply, a punching method is known in which a punch is press-fitted into a substrate to form nozzle holes.
 例えば、特許文献2には、SUSなどを材料とする基板にパンチを圧入した後、上記基板にパンチを圧入したことにより生じた突起を研磨して除去してノズル孔を形成し、ノズル孔が形成された金属板の表面をブラスト加工する、ノズルプレートの製造方法が開示されている。特許文献2によれば、研磨したノズルプレートの表面をブラスト加工することで、表面粗さを適度に調整し、インクジェットヘッドの製造に用いる流路形成部材とノズルプレートとの接着強度を高めることができたとされている。 For example, Patent Document 2 discloses that after a punch is press-fitted into a substrate made of SUS or the like, a nozzle hole is formed by polishing and removing the protrusions produced by press-fitting the punch into the substrate. A method of manufacturing a nozzle plate is disclosed in which the surface of a formed metal plate is blasted. According to Patent Document 2, by blasting the surface of a polished nozzle plate, it is possible to appropriately adjust the surface roughness and increase the adhesive strength between the nozzle plate and a flow path forming member used for manufacturing an inkjet head. It is said that it was possible.
 ところで、パンチ加工法を用いると、パンチの圧入に伴い、パンチの圧入方向における最上手側の縁にダレが形成されてしまう問題があった。ダレの幅が大きいと、基板の、液滴の吐出方向における最上流側の表面における平坦部分の面積を十分に確保できないという問題が生じる。上記平坦部分は、インクジェットヘッドの製造の際に、他の部材(例えば、インク流路を形成する流路部材)との接合面となるため、その面積を十分に確保することが必要となる。そのため、パンチ加工法によりノズル孔を形成したときに、上記ダレの幅を低減することができるノズルプレートの製造方法の開発が望まれている。 By the way, when the punching method is used, there is a problem in that as the punch is press-fitted, a sag is formed on the uppermost edge in the press-fitting direction of the punch. If the width of the sag is large, a problem arises in that a sufficient area of the flat portion of the surface of the substrate on the most upstream side in the droplet ejection direction cannot be secured. The flat portion becomes a bonding surface with another member (for example, a flow path member forming an ink flow path) during manufacture of the inkjet head, so it is necessary to ensure a sufficient area. Therefore, it is desired to develop a method for manufacturing a nozzle plate that can reduce the width of the sagging when nozzle holes are formed by punching.
 例えば、特許文献3には、金属または樹脂製の板に、パンチ加工により複数のノズル孔を形成する前に、上記ノズル孔の、液滴の吐出方向における最上流側の淵部に、ダレの幅を低減するためのリング形状の凹部を形成する、ノズルプレートの製造方法が開示されている。 For example, Patent Document 3 discloses that before forming a plurality of nozzle holes in a metal or resin plate by punching, sag is removed from the edge of the nozzle hole on the most upstream side in the droplet ejection direction. A method of manufacturing a nozzle plate is disclosed that forms a ring-shaped recess to reduce the width.
特開2003-127345号公報Japanese Patent Application Publication No. 2003-127345 特開2004-255696号公報Japanese Patent Application Publication No. 2004-255696 特開2012-254531号公報Japanese Patent Application Publication No. 2012-254531
 しかしながら、特許文献3に記載の方法は、ノズル孔の形成と、凹部の形成とで2回のパンチ加工が必要になるため手間がかかってしまい、簡易的にノズルプレートを製造することが困難であった。 However, the method described in Patent Document 3 requires two punching operations, one for forming the nozzle holes and the other for forming the recesses, which is time-consuming and difficult to manufacture the nozzle plate simply. there were.
 また、パンチ加工をする際に、基板全体が塑性変形することをより十分に抑制したいという要望が存在する。基板が塑性変形すると、ノズルプレートをインクジェットヘッドに用いた際、インクの射出方向がノズルの中心軸に対して曲がってしまい、射出安定性が低下してしまうためである。 Additionally, there is a desire to more fully suppress plastic deformation of the entire substrate during punching. This is because if the substrate is plastically deformed, when the nozzle plate is used in an inkjet head, the ink ejection direction will be bent with respect to the central axis of the nozzle, resulting in a decrease in ejection stability.
 本発明は上記事情に鑑みてなされたものであり、基板にパンチを圧入してノズル孔を形成するノズルプレートの製造方法であって、より簡易的な構成で、ダレの幅を低減することができ、基板全体が塑性変形することをより抑制できるノズルプレートの製造方法、ノズルプレート、インクジェットヘッドの製造方法、インクジェットヘッドおよび画像形成装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method for manufacturing a nozzle plate in which nozzle holes are formed by press-fitting a punch into a substrate, and it is possible to reduce the width of sag with a simpler configuration. It is an object of the present invention to provide a method for manufacturing a nozzle plate, a method for manufacturing a nozzle plate, an inkjet head, an inkjet head, and an image forming apparatus that can further suppress plastic deformation of the entire substrate.
 上記課題を解決するための、本発明の一態様は、下記[1]~[9]のノズルプレートの製造方法に関する。
 [1]厚さが25μmよりも大きく、ビッカース硬さが250HV以上である金属製の基板を用意する工程と、前記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する工程と、を有する、ノズルプレートの製造方法。
 [2]前記ノズル孔を形成する工程は、隣接する前記ノズル孔間の距離が170μm以下となる複数の前記ノズル孔を形成する、[1]に記載のノズルプレートの製造方法。
 [3]前記基板の厚さは、30μm以上45μm以下である、[1]または[2]に記載のノズルプレートの製造方法。
 [4]前記基板の厚さは、35μm以上45μm以下である、[1]~[3]のいずれかに記載のノズルプレートの製造方法。
 [5]前記ノズル孔を形成する工程は、壁面が前記パンチの圧入方向に対する傾きを有する第1圧入部を有する、前記パンチを前記基板に圧入する、[1]~[4]のいずれかに記載のノズルプレートの製造方法。
 [6]前記パンチは、前記パンチの圧入方向に対して、前記第1圧入部よりも下手側で前記第1圧入部と連続する第2圧入部を有し、前記第2圧入部の壁面の前記圧入方向に対する傾きは、前記第1圧入部の壁面の前記圧入方向に対する傾きよりも小さい、[5]に記載のノズルプレートの製造方法。
 [7]前記パンチは、前記第1圧入部の壁面の前記圧入方向に対する傾きが45°以上である、[5]または[6]に記載のノズルプレートの製造方法。
 [8]前記パンチは、前記パンチの、前記第1圧入部の壁面の前記圧入方向に対する傾きをθとし、前記金属のビッカース硬さをHとしたとき、式(1)の関係を満たす、[5]~[7]に記載のノズルプレートの製造方法。
 θ≦0.0234×H+38.67   (1)
 [9]前記ノズル孔を形成する工程は、前記形成されるノズル孔の、液滴の吐出方向の最下流側の最大幅をnとし、前記金属のビッカース硬さをHとしたとき、式(2)の関係を満たす、前記ノズル孔を形成する、[1]~[8]のいずれかに記載のノズルプレートの製造方法。
 n≦0.0672×H+2.01   (2)
 [10]開口部を有するダイに載置された基板を用意する工程と、前記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する工程と、を有し、前記ノズル孔を形成する工程は、前記形成されるノズル孔の、前記パンチの圧入方向の最下手側の最大幅をn、前記ダイの開口部の最大幅をd、前記基板の厚さをtとしたとき、式(A)の関係を満たす、前記ノズル孔を形成する、ノズルプレートの製造方法。
 t+n<d≦2t+n   (A)
One aspect of the present invention for solving the above problems relates to the method of manufacturing a nozzle plate described in [1] to [9] below.
[1] A step of preparing a metal substrate with a thickness of more than 25 μm and a Vickers hardness of 250 HV or more, and press-fitting a punch into the prepared substrate to form a nozzle hole for ejecting droplets. A method for manufacturing a nozzle plate, comprising: forming a nozzle plate.
[2] The method for manufacturing a nozzle plate according to [1], wherein in the step of forming the nozzle holes, a plurality of the nozzle holes are formed such that the distance between adjacent nozzle holes is 170 μm or less.
[3] The method for manufacturing a nozzle plate according to [1] or [2], wherein the substrate has a thickness of 30 μm or more and 45 μm or less.
[4] The method for manufacturing a nozzle plate according to any one of [1] to [3], wherein the thickness of the substrate is 35 μm or more and 45 μm or less.
[5] The step of forming the nozzle hole includes press-fitting the punch into the substrate, the punch having a first press-fitting part whose wall surface is inclined with respect to the press-fitting direction of the punch, according to any one of [1] to [4]. A method of manufacturing the nozzle plate described.
[6] The punch has a second press-fitting part that is continuous with the first press-fitting part on a lower side than the first press-fitting part with respect to the press-fitting direction of the punch, and the second press-fitting part has a second press-fitting part that is continuous with the first press-fitting part, and The method for manufacturing a nozzle plate according to [5], wherein the inclination with respect to the press-fitting direction is smaller than the inclination of the wall surface of the first press-fitting part with respect to the press-fitting direction.
[7] The method for manufacturing a nozzle plate according to [5] or [6], wherein the punch has a wall surface of the first press-fitting portion whose inclination relative to the press-fitting direction is 45° or more.
[8] The punch satisfies the relationship of formula (1), where θ a is the inclination of the wall surface of the first press-fitting part of the punch with respect to the press-fitting direction, and H A is the Vickers hardness of the metal. , the method for manufacturing a nozzle plate according to [5] to [7].
θ a ≦0.0234×H A +38.67 (1)
[9] In the step of forming the nozzle hole, the maximum width of the nozzle hole to be formed on the most downstream side in the droplet ejection direction is n, and the Vickers hardness of the metal is H The method for manufacturing a nozzle plate according to any one of [1] to [8], wherein the nozzle hole is formed to satisfy the relationship (2).
n≦0.0672×H A +2.01 (2)
[10] A step of preparing a substrate placed on a die having an opening, and a step of press-fitting a punch into the prepared substrate to form a nozzle hole for ejecting droplets, In the step of forming the nozzle hole, the maximum width of the nozzle hole to be formed on the lowermost side in the press-fitting direction of the punch is n, the maximum width of the opening of the die is d, and the thickness of the substrate is t. A method for manufacturing a nozzle plate, in which the nozzle hole is formed so as to satisfy the relationship of formula (A).
t+n<d≦2t+n (A)
 上記課題を解決するための、本発明の一態様は、下記[11]~[22]のノズルプレートに関する。
 [11]液滴を吐出するためのノズル孔を有するノズルプレートであって、厚さが25μmよりも大きく、ビッカース硬さが250HV以上の金属製である、ノズルプレート。
 [12]前記ノズルプレートは複数の前記ノズル孔を有し、隣接する前記複数の前記ノズル孔間の距離は、170μm以下である、[11]に記載のノズルプレート。
 [13]厚さが30μm以上45μm以下である、[11]または[12]に記載のノズルプレート。
 [14]厚さが35μm以上45μm以下である、[11]~[13]のいずれかに記載のノズルプレート。
 [15]前記ノズル孔は、壁面が前記液滴の吐出方向に対する傾きを有する第1流路を有する、[11]~[14]のいずれかに記載のノズルプレート。
 [16]前記ノズル孔は、前記液滴の吐出方向に対して、前記第1流路よりも下流側で前記第1流路と連通するように配置された第2流路と、を有し、前記第2流路の壁面の前記吐出方向に対する傾きは、前記第1流路の壁面の前記吐出方向に対する傾きよりも小さい、[15]に記載のノズルプレート。
 [17]前記第1流路の壁面の前記吐出方向に対する傾きは、45°以上である、[15]または[16]に記載のノズルプレート。
 [18]前記金属のビッカース硬さをHとし、前記ノズル孔の前記第1流路の壁面の前記液滴の吐出方向に対する傾きをθとしたとき、式(3)の関係を満たす、[15]~[17]のいずれかに記載のノズルプレート。
 θ≦0.0234×H+38.67   (3)
 [19]前記金属のビッカース硬さをHとし、前記ノズル孔の、前記液滴の吐出方向における最下流側の最大幅をnとしたとき、式(4)の関係を満たす、[11]~[18]のいずれかに記載のノズルプレート。
 n≦0.0672×H+2.01   (4)
 [20]前記ノズルプレートは、前記液滴の吐出方向の最上流側の表面に、外部の部材に接合するための接合面を有し、前記接合面の、前記複数のノズル孔が配列する方向の幅は、50μm以上である、[11]~[19]のいずれかに記載のノズルプレート。
 [21]前記接合面は、溝部を有する、[20]に記載のノズルプレート。
 [22]前記ノズルプレートの、液滴の吐出方向に直交する方向のダレの幅は、14μm以下である、[11]~[21]のいずれかに記載のノズルプレート。
One aspect of the present invention for solving the above problems relates to the nozzle plates of [11] to [22] below.
[11] A nozzle plate having a nozzle hole for ejecting droplets, the nozzle plate being made of metal with a thickness of more than 25 μm and a Vickers hardness of 250 HV or more.
[12] The nozzle plate according to [11], wherein the nozzle plate has a plurality of nozzle holes, and a distance between the plurality of adjacent nozzle holes is 170 μm or less.
[13] The nozzle plate according to [11] or [12], which has a thickness of 30 μm or more and 45 μm or less.
[14] The nozzle plate according to any one of [11] to [13], which has a thickness of 35 μm or more and 45 μm or less.
[15] The nozzle plate according to any one of [11] to [14], wherein the nozzle hole has a first flow path whose wall surface is inclined with respect to the ejection direction of the droplets.
[16] The nozzle hole has a second flow path arranged to communicate with the first flow path on the downstream side of the first flow path with respect to the ejection direction of the droplets. , the nozzle plate according to [15], wherein the inclination of the wall surface of the second channel with respect to the discharge direction is smaller than the inclination of the wall surface of the first channel with respect to the discharge direction.
[17] The nozzle plate according to [15] or [16], wherein the wall surface of the first channel has an inclination of 45° or more with respect to the discharge direction.
[18] When the Vickers hardness of the metal is HB and the inclination of the wall surface of the first flow path of the nozzle hole with respect to the ejection direction of the droplet is θ 1 , the relationship of formula (3) is satisfied; The nozzle plate according to any one of [15] to [17].
θ 1 ≦0.0234×H B +38.67 (3)
[19] When the Vickers hardness of the metal is HB and the maximum width of the nozzle hole on the most downstream side in the droplet ejection direction is n, the relationship of formula (4) is satisfied, [11] The nozzle plate according to any one of ~[18].
n≦0.0672×H B +2.01 (4)
[20] The nozzle plate has a bonding surface for bonding to an external member on the most upstream surface in the droplet ejection direction, and the bonding surface has a direction in which the plurality of nozzle holes are arranged. The nozzle plate according to any one of [11] to [19], wherein the width of the nozzle plate is 50 μm or more.
[21] The nozzle plate according to [20], wherein the joint surface has a groove.
[22] The nozzle plate according to any one of [11] to [21], wherein the width of the sag in the direction perpendicular to the droplet ejection direction of the nozzle plate is 14 μm or less.
 上記課題を解決するための、本発明の一態様は、下記[23]、[24]のインクジェットヘッドの製造方法に関する。
 [23][11]~[22]のいずれかに記載のノズルプレートと、前記ノズルプレートの前記ノズル孔にインクを供給するための流路部材とを接合させる工程を含む、インクジェットヘッドの製造方法。
 [24]前記接合させる工程は、接着剤の使用量が0.1g未満である、[24]に記載のインクジェットヘッドの製造方法。
One aspect of the present invention for solving the above problems relates to the method of manufacturing an inkjet head described in [23] and [24] below.
[23] A method for manufacturing an inkjet head, comprising a step of joining the nozzle plate according to any one of [11] to [22] and a flow path member for supplying ink to the nozzle holes of the nozzle plate. .
[24] The method for manufacturing an inkjet head according to [24], wherein the amount of adhesive used in the joining step is less than 0.1 g.
 上記課題を解決するための、本発明の一態様は、下記[25]のインクジェットヘッドに関する。
 [25][11]~[22]のいずれかに記載のノズルプレートを有する、インクジェットヘッド。
One aspect of the present invention for solving the above problems relates to the inkjet head described in [25] below.
[25] An inkjet head comprising the nozzle plate according to any one of [11] to [22].
 上記課題を解決するための、本発明の一態様は、下記[26]の画像形成装置に関する。
 [26][25]に記載のインクジェットヘッドを有する画像形成装置。
One aspect of the present invention for solving the above problem relates to the image forming apparatus described in [26] below.
[26] An image forming apparatus having the inkjet head according to [25].
 本発明により、基板にパンチを圧入してノズル孔を形成するノズルプレートの製造方法であって、より簡易的な構成で、ダレの幅を低減することができ、基板全体が塑性変形することをより十分に抑制できるノズルプレートの製造方法、ノズルプレート、インクジェットヘッドの製造方法、インクジェットヘッドおよび画像形成装置が提供される。 According to the present invention, there is provided a method for manufacturing a nozzle plate in which nozzle holes are formed by press-fitting a punch into a substrate, and the width of sag can be reduced with a simpler configuration, and plastic deformation of the entire substrate can be prevented. Provided are a method for manufacturing a nozzle plate, a nozzle plate, a method for manufacturing an inkjet head, an inkjet head, and an image forming apparatus that can more fully suppress the effects.
図1は、実施の形態1に係るノズルプレートの製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a nozzle plate according to the first embodiment. 図2A~Cは、基板にパンチを圧入する様子を示した模式断面図である。2A to 2C are schematic cross-sectional views showing how a punch is press-fitted into a substrate. 図3は、上記ノズルプレートの製造方法に用いるパンチの形状を表す模式断面図である。FIG. 3 is a schematic cross-sectional view showing the shape of a punch used in the above-described nozzle plate manufacturing method. 図4は、式(a)、(b)の各符号の内容を示すノズルプレートの模式図である。FIG. 4 is a schematic diagram of a nozzle plate showing the contents of each symbol in formulas (a) and (b). 図5は、実施の形態1に係るノズルプレートの例を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing an example of the nozzle plate according to the first embodiment. 図6は、実施の形態1に係るインクジェットヘッドの概要を示す斜視図である。FIG. 6 is a perspective view showing an outline of the inkjet head according to the first embodiment. 図7は、インクジェットヘッドが有するノズルプレートを示す斜視図である。FIG. 7 is a perspective view showing a nozzle plate included in the inkjet head. 図8は、図6における線A-Aに沿った断面図である。FIG. 8 is a cross-sectional view taken along line AA in FIG. 6. 図9は、実施の形態1に係る画像形成装置の構成を模式的に示した図である。FIG. 9 is a diagram schematically showing the configuration of an image forming apparatus according to the first embodiment. 図10は、実施の形態2に係るノズルプレートの製造方法を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing a method for manufacturing a nozzle plate according to the second embodiment. 図11は、基板のビッカース硬さと、ダレの幅との関係を表すグラフである。FIG. 11 is a graph showing the relationship between the Vickers hardness of the substrate and the width of the sag. 図12は、基板のビッカース硬さと、接合面の幅を確保するためのθ(θ)の最大値との関係を表すグラフである。FIG. 12 is a graph showing the relationship between the Vickers hardness of the substrate and the maximum value of θ a1 ) for ensuring the width of the bonding surface. 図13は、基板のビッカース硬さと、接合面の幅を確保するためのnの最大値との関係を表すグラフである。FIG. 13 is a graph showing the relationship between the Vickers hardness of the substrate and the maximum value of n for ensuring the width of the bonding surface.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments.
 (実施の形態1)
 1.ノズルプレートの製造方法
 図1は、本実施の形態に係るノズルプレートの製造方法を示すフローチャートである。図1に示されるように、本実施の形態に係るノズルプレートの製造方法は、ビッカース硬さが250HV以上である金属製の基板を用意する工程(工程S10)と、上記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する工程(工程S20)と、ノズル孔が形成された基板の、パンチの圧入方向における最下手側の表面を研磨加工する工程(工程S30)と、を有する。
(Embodiment 1)
1. Method for Manufacturing a Nozzle Plate FIG. 1 is a flowchart showing a method for manufacturing a nozzle plate according to the present embodiment. As shown in FIG. 1, the method for manufacturing a nozzle plate according to the present embodiment includes a step of preparing a metal substrate having a Vickers hardness of 250 HV or more (step S10), and punching the prepared substrate. A step of press-fitting and forming a nozzle hole for ejecting droplets (step S20), and a step of polishing the surface of the substrate in which the nozzle hole is formed on the lowermost side in the press-fitting direction of the punch (step S30). ) and has.
 上述のように、簡易的な構成で、ダレの幅を低減できるノズルプレートの製造方法への要望が高まっている。上記ダレは、パンチの基板への圧入時に生じる引張応力によって形成されると考えられる。 As mentioned above, there is a growing demand for a nozzle plate manufacturing method that has a simple configuration and can reduce the width of sag. It is thought that the sag is formed by tensile stress generated when the punch is press-fitted into the substrate.
 これに対して、本発明者は、鋭意検討の末、パンチを圧入する基板として、ビッカース硬さが250HV以上である金属製の基板を用いることで、上記ダレの幅を顕著に低減できることを見出した。ビッカース硬さが250HV以上であることで、パンチ圧入時に生じる引張応力による、ノズル孔の、パンチの圧入方向における最上手側の縁部分が変形することを十分に抑制できるためであると考えられる。 On the other hand, the inventor of the present invention, after extensive study, discovered that the width of the sag can be significantly reduced by using a metal substrate with a Vickers hardness of 250 HV or more as the substrate into which the punch is press-fitted. Ta. This is believed to be because the Vickers hardness of 250 HV or more can sufficiently suppress deformation of the uppermost edge portion of the nozzle hole in the punch press-fitting direction due to tensile stress generated during punch press-fitting.
 ビッカース硬さが250HV以上である金属製の基板を用いることで、特許文献3のように工程数を増やすことなく、簡易的にダレの幅を低減することができる。 By using a metal substrate with a Vickers hardness of 250 HV or more, the width of the sag can be easily reduced without increasing the number of steps as in Patent Document 3.
 また、本発明者は、ビッカース硬さが250HV以上の金属製の基板の厚さを25μmよりも大きくすることで、パンチを圧入することによって、基板全体が塑性変形することをより十分に抑制できることを見出した。厚さが25μmよりも大きいことで、パンチの圧入によって生じる応力が、基板全体に及びにくくなることに加え、上記ビッカース硬さが250HV以上であることで、さらに上記応力が基板に及びにくくなったためであると考えられる。 In addition, the present inventor has found that by making the thickness of a metal substrate with a Vickers hardness of 250 HV or more greater than 25 μm and press-fitting a punch, plastic deformation of the entire substrate can be more effectively suppressed. I found out. Because the thickness is greater than 25 μm, the stress caused by press-fitting the punch is less likely to reach the entire substrate, and because the Vickers hardness is 250 HV or more, the stress is even less likely to be applied to the substrate. It is thought that.
 なお、本明細書において、「ダレの幅」とは、ノズルプレートに形成されるダレの、液滴の吐出方向に直交する方向の幅をいう(図4中のW参照)。 Note that in this specification, the "width of the sag" refers to the width of the sag formed on the nozzle plate in the direction perpendicular to the droplet ejection direction (see W in FIG. 4).
 また、本明細書において、パンチの圧入方向における「上手側」とは、圧入方向における上流側のことをいい、「下手側」とは、圧入方向における下流側のことをいう。 Furthermore, in this specification, the "upper side" of the punch in the press-fitting direction refers to the upstream side in the press-fitting direction, and the "lower side" refers to the downstream side in the press-fitting direction.
 1-1.基板を用意する工程(工程S10)
 本工程では、ビッカース硬さが250HV以上である金属製の基板を用意する。
1-1. Step of preparing a substrate (step S10)
In this step, a metal substrate having a Vickers hardness of 250 HV or more is prepared.
 基板の材料は、ビッカース硬さが250HV以上である金属であれば特に限定されない。ビッカース硬さが250HV以上である金属の例には、ステンレス鋼(SUS3042B、SUS304H、SUS304HTA)、クロム鋼(300HV)、ニッケルクロム鋼(300HV)、タングステン(340HV)などが含まれる。 The material of the substrate is not particularly limited as long as it is a metal with a Vickers hardness of 250 HV or more. Examples of metals having a Vickers hardness of 250HV or higher include stainless steel (SUS3042B, SUS304H, SUS304HTA), chrome steel (300HV), nickel-chrome steel (300HV), tungsten (340HV), and the like.
 ダレの幅をより低減する観点から、上記ビッカース硬さは、300HV以上であることがより好ましく、400HV以上であることがさらに好ましい。上記ビッカース硬さは、JIS Z 2244:2009に準じた方法により測定することができる。 From the viewpoint of further reducing the width of the sag, the Vickers hardness is more preferably 300 HV or more, and even more preferably 400 HV or more. The Vickers hardness can be measured by a method according to JIS Z 2244:2009.
 基板の厚さは、30μm以上45μm以下であることが好ましく、35μm以上45μm以下であることがより好ましい。基板の厚さが30μm以上であると、後述するノズル孔を形成する工程(工程S20)で、基板にパンチを圧入した際の、基板全体の塑性変形を抑制することができる。本実施の形態では、ビッカース硬さが250HV以上の金属製の基板を用いるため、基板の厚さが30μm以上であるとき、顕著に上記塑性変形を抑制することができる。 The thickness of the substrate is preferably 30 μm or more and 45 μm or less, more preferably 35 μm or more and 45 μm or less. When the thickness of the substrate is 30 μm or more, plastic deformation of the entire substrate can be suppressed when a punch is press-fitted into the substrate in the step of forming a nozzle hole (step S20), which will be described later. In this embodiment, since a metal substrate having a Vickers hardness of 250 HV or more is used, when the thickness of the substrate is 30 μm or more, the above-mentioned plastic deformation can be significantly suppressed.
 また、基板の厚さが45μm以下であることで、形成されるノズルプレートの、液滴の吐出方向の最上流側の表面における平坦部分(以下、接合面という)の幅が、より大きくなりやすい。 In addition, when the thickness of the substrate is 45 μm or less, the width of the flat portion (hereinafter referred to as the bonding surface) on the most upstream surface of the nozzle plate in the droplet ejection direction tends to be larger. .
 1-2.ノズル孔を形成する工程(工程S20)
 本工程では、工程S10で用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する。
1-2. Step of forming a nozzle hole (step S20)
In this step, a punch is press-fitted into the substrate prepared in step S10 to form a nozzle hole for ejecting droplets.
 図2は、基板にパンチを圧入する様子を示した模式断面図である(図2A、図2B)。本実施の形態では、例えば、ダイ110に載置された基板100にパンチ120を圧入することで、基板100に圧入されたパンチ120の形状に対応した形状を有するノズル孔210(後述)を形成することができる(図2C)。なお、図2における、矢印Aはパンチ120の圧入方向を表す。 FIG. 2 is a schematic cross-sectional view showing how a punch is press-fitted into a substrate (FIGS. 2A and 2B). In this embodiment, for example, by press-fitting the punch 120 into the substrate 100 placed on the die 110, a nozzle hole 210 (described later) having a shape corresponding to the shape of the punch 120 press-fitted into the substrate 100 is formed. (Figure 2C). Note that arrow A in FIG. 2 represents the press-fitting direction of the punch 120.
 パンチ120は、ビッカース硬さが780HV以上である金属製であることが好ましい。このようなパンチ120を用いることで、基板100への圧入時の、パンチ120の破損を抑制することができる。ビッカース硬さが780HV以上である金属の例には、ハイス鋼、超硬合金などが含まれる。 The punch 120 is preferably made of metal with a Vickers hardness of 780 HV or more. By using such a punch 120, damage to the punch 120 when press-fitting into the substrate 100 can be suppressed. Examples of metals having a Vickers hardness of 780 HV or higher include high speed steel, cemented carbide, and the like.
 パンチ120の圧入速度は、1μm/s以上であることが好ましく、3μm/s以上であることがより好ましい。上記圧入速度が1μm/s以上であると、ノズル孔の生産効率をより高めることができる。また、上記圧入速度の上限値は、特に限定されないが、例えば、50μm/s以下が好ましい。500μm/s以下であると、パンチ120の形状が対応した形状を有するノズル孔を形成しやすい。また、500μm/s以下であると、パンチがより破損しにくくなる。 The press-fitting speed of the punch 120 is preferably 1 μm/s or more, more preferably 3 μm/s or more. When the press-fitting speed is 1 μm/s or more, the production efficiency of the nozzle hole can be further improved. Further, the upper limit of the press-fitting speed is not particularly limited, but is preferably 50 μm/s or less, for example. When the speed is 500 μm/s or less, it is easy to form a nozzle hole having a shape corresponding to the shape of the punch 120. Further, when the speed is 500 μm/s or less, the punch becomes less likely to be damaged.
 本工程では、隣接するノズル孔間の距離が170μm以下となる複数のノズル孔を形成することが好ましい。このようにノズル孔を形成することで、製造されたノズルプレートをインクジェットヘッドに用いたとき、より高精細な画像を形成することができる。本明細書では、「隣接するノズル孔間の距離」は、隣接するノズル孔の中心間の距離のことをいう。 In this step, it is preferable to form a plurality of nozzle holes in which the distance between adjacent nozzle holes is 170 μm or less. By forming the nozzle holes in this way, when the manufactured nozzle plate is used in an inkjet head, a higher definition image can be formed. In this specification, "the distance between adjacent nozzle holes" refers to the distance between the centers of adjacent nozzle holes.
 従来は、隣接するノズル孔間の距離を小さくすると、ノズル孔間の上記接合面の幅が小さくなりやすかった。そのため、ダレの幅が大きいと、上記接合面の確保がより困難になりやすかった。これに対して、本実施の形態に係るノズルプレートの製造方法では、ビッカース硬さが250HV以上である金属製の基板を用いることで、ダレの幅を低減することができるため、隣接するノズル孔間の距離を小さくしても、上記接合面を確保しやすくすることができる。 Conventionally, when the distance between adjacent nozzle holes is reduced, the width of the joint surface between the nozzle holes tends to become smaller. Therefore, when the width of the sag is large, it tends to become more difficult to secure the above-mentioned bonding surface. On the other hand, in the method for manufacturing a nozzle plate according to the present embodiment, the width of the sag can be reduced by using a metal substrate having a Vickers hardness of 250 HV or more. Even if the distance between them is made small, the above-mentioned bonding surface can be easily secured.
 上記隣接するノズル孔間の距離の下限値は、特に限定されないが、例えば、85μm以上である。 The lower limit of the distance between the adjacent nozzle holes is not particularly limited, but is, for example, 85 μm or more.
 図3は、パンチ120の形状を表す模式断面図である。本工程では、壁面がパンチ120の圧入方向(図3の矢印A)に対する傾きを有する第1圧入部121を有するパンチ120を液滴の吐出方向と同じ方向に基板100に圧入することが好ましい。特に、本実施形態では、第1圧入部121と、パンチ120の圧入方向に対して、第1圧入部121よりも下手側で第1圧入部121と連続する第2圧入部122と、を有し、第2圧入部122の壁面122aの上記圧入方向に対する傾き(図3のθ)は、第1圧入部121の壁面121aの上記圧入方向に対する傾き(図3のθ)よりも小さい形状を有する、パンチ120を、液滴の吐出方向と同じ方向に、基板100に圧入することが好ましい。このような形状に対応するノズル孔が形成されることで、ノズルプレートを用いたインクジェットヘッドを使用した際、インク液滴の吐出安定性をより向上させることができる。これについての理由は以下のように考えられる。 FIG. 3 is a schematic cross-sectional view showing the shape of the punch 120. In this step, it is preferable that a punch 120 having a first press-fitting part 121 whose wall surface is inclined with respect to the press-fitting direction of the punch 120 (arrow A in FIG. 3) is press-fitted into the substrate 100 in the same direction as the droplet ejection direction. In particular, this embodiment includes a first press-fitting part 121 and a second press-fitting part 122 that is continuous with the first press-fitting part 121 on the downstream side of the first press-fitting part 121 with respect to the press-fitting direction of the punch 120. However, the slope of the wall surface 122a of the second press-fitting part 122 with respect to the press-fitting direction (θ b in FIG. 3) is smaller than the slope of the wall surface 121a of the first press-fitting part 121 with respect to the press-fitting direction (θ a in FIG. 3). It is preferable that the punch 120 having the above-mentioned shape be press-fitted into the substrate 100 in the same direction as the droplet ejection direction. By forming nozzle holes corresponding to such a shape, when an inkjet head using a nozzle plate is used, the ejection stability of ink droplets can be further improved. The reason for this is thought to be as follows.
 インクを連続吐出する場合、インクを吐出させる直前にノズル孔に残存するインクが、インクジェットヘッドの内部に引き込まれる。これに伴い、インクジェットヘッド内部(液滴の吐出方向に対してノズルプレートよりも上流側)に、インクと共に空気が引き込まれてしまうため、次にインクを吐出する際に、インク内に気泡が含まれてしまい、吐出安定性が低下しやすくなる。これに対して、ノズル孔が第1圧入部121に対応した形状を有することで、ノズル孔の、液滴の吐出方向に直交する断面の面積が、上記吐出方向の上流側に向かうにつれて拡大するため、圧力損失によって、引き込まれる空気がインクジェットヘッド内部に到達しにくくなる。また、ノズル孔が第2圧入部122の形状に対応する形状を有することで、インクの射出曲がりをより抑制することができる。これらの理由により、上記形状を有するパンチを用いることで、製造されたノズルプレートをインクジェットヘッドに使用した際に、インクの吐出安定性をより向上させることができる。 When ink is continuously ejected, the ink remaining in the nozzle hole is drawn into the inkjet head immediately before the ink is ejected. As a result, air is drawn into the inkjet head (upstream of the nozzle plate with respect to the droplet ejection direction) along with the ink, so the next time the ink is ejected, air bubbles may be included in the ink. As a result, the ejection stability tends to deteriorate. On the other hand, since the nozzle hole has a shape corresponding to the first press-fitting part 121, the area of the cross section of the nozzle hole perpendicular to the droplet ejection direction increases as it goes upstream in the ejection direction. Therefore, due to pressure loss, it becomes difficult for the drawn air to reach the inside of the inkjet head. Moreover, since the nozzle hole has a shape corresponding to the shape of the second press-fitting part 122, bending of ink ejection can be further suppressed. For these reasons, by using a punch having the above-mentioned shape, it is possible to further improve ink ejection stability when the manufactured nozzle plate is used in an inkjet head.
 なお、本明細書では、パンチの圧入方向に平行な直線P1と、第1圧入部121の壁面121aとのなす角度のうち、鋭角である角度のことを、「第1圧入部121の壁面121aの傾きθ」とする。また、パンチの圧入方向に平行な直線P2と、第2圧入部122の壁面122aとのなす角のうち鋭角となる角度を「第2圧入部122の壁面122aの傾きθ」とする。 In addition, in this specification, among the angles formed by the straight line P1 parallel to the press-fitting direction of the punch and the wall surface 121a of the first press-fitting part 121, an acute angle is referred to as "the wall surface 121a of the first press-fitting part 121". The slope of θ a is ``. Furthermore, an acute angle between the straight line P2 parallel to the press-fitting direction of the punch and the wall surface 122a of the second press-fitting section 122 is defined as "the inclination θ b of the wall surface 122a of the second press-fitting section 122."
 第1圧入部121の上記傾きθは、15°以上であることが好ましく、30°以上であることがより好ましく、45°以上であることがさらに好ましい。上記傾きθが15°以上であると、形成されるノズル孔の、液滴の吐出方向に対する壁面の傾きがより大きくなる。これにより、製造されたノズルプレートをインクジェットヘッドに使用した際に、上記引き込まれる空気をインクジェットヘッド内部により到達させにくくして、吐出安定性をより向上させることができる。上記傾きθが45°以上であると、吐出安定性をより十分に向上させることができる上、インクの吐出時における流体抵抗を低下させて吐出安定性をより高めることができる。さらに、製造・加工時による、形状や寸法のばらつきに起因する、ノズルプレートのロバスト性の低下をより抑制することができる。 The above-mentioned inclination θ a of the first press-fitting portion 121 is preferably 15° or more, more preferably 30° or more, and even more preferably 45° or more. When the above-mentioned inclination θ a is 15° or more, the inclination of the wall surface of the formed nozzle hole with respect to the droplet ejection direction becomes larger. Thereby, when the manufactured nozzle plate is used in an inkjet head, it is possible to make it more difficult for the drawn-in air to reach the inside of the inkjet head, thereby further improving ejection stability. When the inclination θ a is 45° or more, the ejection stability can be improved more fully, and the fluid resistance during ink ejection can be lowered to further improve the ejection stability. Furthermore, it is possible to further suppress a decrease in the robustness of the nozzle plate due to variations in shape and dimensions during manufacturing and processing.
 ダレの幅をより低減する観点から、上記傾きθは50°以下であることが好ましい。 From the viewpoint of further reducing the width of the sag, the above-mentioned inclination θ a is preferably 50° or less.
 第1圧入部121の、パンチ120の圧入方向における最上手側の最大幅(図3のW)は、100μm以上200μm以下であることが好ましい。上記最大幅Wが上記範囲にあることで、パンチ120をより簡易的に作製することができる。 The maximum width (W a in FIG. 3 ) of the first press-fitting part 121 on the uppermost side in the press-fitting direction of the punch 120 is preferably 100 μm or more and 200 μm or less. By setting the maximum width W a within the above range, the punch 120 can be manufactured more easily.
 第1圧入部121の、パンチ120の圧入方向の長さ(図3のL)は、40μm以上55μm以下であることが好ましい。上記Lが40μm以上であると、形成されるノズル孔の長さをより十分に確保して、インクジェットヘッド内部への空気の引き込みをより抑制することができる。これにより吐出安定性をより向上させることができる。また、上記Lが55μm以下であると、インクジェットヘッドにおけるノズルプレートの省スペース化をより達成しやすくすることができる。 The length of the first press-fitting portion 121 in the press-fitting direction of the punch 120 (L a in FIG. 3) is preferably 40 μm or more and 55 μm or less. When the above-mentioned L a is 40 μm or more, the length of the nozzle hole to be formed can be more sufficiently ensured, and the drawing of air into the inside of the inkjet head can be further suppressed. Thereby, the ejection stability can be further improved. Moreover, when the above-mentioned L a is 55 μm or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
 第2圧入部122の上記傾きθは、0°以上9°以下であることが好ましく、0°以上5°以下であることがより好ましく、0°以上3°以下であることがさらに好ましく、0°以上1°以下であることが特に好ましい。上記傾きθが9°以下であることで、製造されたノズルプレートをインクジェットヘッドに使用した際に、インクの射出曲がりをより抑制して、インクの吐出安定性をより向上させることができる。 The above-mentioned inclination θ b of the second press-fitting part 122 is preferably 0° or more and 9° or less, more preferably 0° or more and 5° or less, and even more preferably 0° or more and 3° or less, It is particularly preferable that the angle is 0° or more and 1° or less. When the above-mentioned inclination θ b is 9° or less, when the manufactured nozzle plate is used in an inkjet head, ink ejection bending can be further suppressed and ink ejection stability can be further improved.
 第2圧入部122の、パンチ120の圧入方向における最下手側の最大幅(図3のW)は、18μm以上50μm以下であることが好ましい。上記最大幅Wが18μm以上であることで、基板100への圧入時にパンチ120の破損をより生じにくくさせることができる。上記最大幅Wが50μm以下であることで、形成されるノズル孔の、液滴の吐出口の幅をより小さくして、より高精細な画像を形成することができる。 The maximum width (W b in FIG. 3 ) of the second press-fitting portion 122 on the lowermost side in the press-fitting direction of the punch 120 is preferably 18 μm or more and 50 μm or less. By setting the maximum width W b to 18 μm or more, the punch 120 is less likely to be damaged during press-fitting into the substrate 100 . When the maximum width W b is 50 μm or less, the width of the droplet ejection opening of the formed nozzle hole can be made smaller, and a higher definition image can be formed.
 第2圧入部122の、パンチ120の圧入方向の長さ(図3のL)は、10μm以上25μm以下であることが好ましい。上記Lが10μm以上であると、製造されたノズルプレートをインクジェットヘッドに使用した際に、インクの射出曲がりをより抑制して、インクの吐出安定性をより向上させることができる。また、上記Lが25μm以下であると、インクジェットヘッドにおけるノズルプレートの省スペース化をより達成しやすくすることができる。 The length of the second press-fitting portion 122 in the press-fitting direction of the punch 120 (L b in FIG. 3) is preferably 10 μm or more and 25 μm or less. When the above-mentioned L b is 10 μm or more, when the manufactured nozzle plate is used in an inkjet head, ink ejection bending can be further suppressed and ink ejection stability can be further improved. Moreover, when the above-mentioned L b is 25 μm or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
 パンチ120は、基板100の材料である金属のビッカース硬さをHとしたとき、第1圧入部121の上記傾きθが、式(1)の関係を満たすことが好ましい。
 θ≦0.0234×H+38.67   (1)
In the punch 120, it is preferable that the above-mentioned inclination θa of the first press-fitting portion 121 satisfies the relationship of equation (1), where HA is the Vickers hardness of the metal that is the material of the substrate 100.
θ a ≦0.0234×H A +38.67 (1)
 図4は、下記式(a)の各符号の内容を示すノズルプレートの模式図である。式(1)は以下のようにして導出することができる。 FIG. 4 is a schematic diagram of a nozzle plate showing the contents of each symbol in the following formula (a). Equation (1) can be derived as follows.
 (1)基板のビッカース硬さ(250HV以上)と、形成されるダレの幅(図4におけるW、以下、ダレ幅という)との関係について、相関式を作成し、任意のビッカース硬さにおけるダレ幅Wを求める。(2)求めたダレ幅Wを式(a)に代入し、接合面の幅(図4におけるx)の最小値(xmin)が50μmとなるためのθを求める。(3)上記(1)、(2)の操作を、ビッカース硬さを変えて行い、ビッカース硬さとθとの関係について、相関式を作成することで導出することができる。なお、式(1)の導出にあたり、式(a)における、θ、W以外の値は、以下に示した固定の値を用いる。
 xmin=P-(n+2L・tanθ+2L・tanθ+2W)   (a)
 (P=170μm、n=20μm、L=40μm、L=5μm、θ=0°)
(1) Create a correlation formula for the relationship between the Vickers hardness of the substrate (250 HV or more) and the width of the sag formed (W in Fig. 4, hereinafter referred to as sag width), and calculate the sag at a given Vickers hardness. Find the width W. (2) Substitute the calculated sag width W into equation (a) to find θ a for the minimum value (x min ) of the width of the joint surface (x in FIG. 4) to be 50 μm. (3) The above operations (1) and (2) are performed while changing the Vickers hardness, and the relationship between the Vickers hardness and θ a can be derived by creating a correlation equation. Note that in deriving equation (1), the fixed values shown below are used for values other than θ a and W in equation (a).
x min =P-(n+2L a・tanθ a +2L b・tanθ b +2W) (a)
(P=170 μm, n=20 μm, L a =40 μm, L b =5 μm, θ b =0°)
 式(a)において、Pは隣接するノズル孔間距離(ノズル孔の中心間の距離)を示し、nは形成されるノズル孔の、液滴の吐出方向(図4における矢印B)における最下流側の最大幅を示す。 In formula (a), P indicates the distance between adjacent nozzle holes (the distance between the centers of the nozzle holes), and n indicates the most downstream distance in the droplet ejection direction (arrow B in FIG. 4) of the nozzle holes to be formed. Indicates the maximum width of the side.
 このようにして導出された、式(1)は、P、n、L、L、θが上記値であるときに、接合幅xを50μm以上確保するための、θとHとの関係を表す。そのため、式(1)を満たすように、θとHとを調整したとき、接合幅xが、少なくとも50μmとなるように、L、L、θが上記値である限りにおいて、式(a)からP、nをそれぞれ適宜調整することができる。これにより、隣接するノズル孔間の距離およびノズルの上記最大幅を所望の値に調整しつつ、接合幅を十分に確保することができる。 Equation (1) derived in this way is based on θ a and H in order to secure the junction width x of 50 μm or more when P, n, L a , L b , and θ b are the above values. represents the relationship between Therefore, as long as L a , L b , and θ b have the above values, when θ a and H are adjusted to satisfy formula (1), the junction width x is at least 50 μm, From (a), P and n can be adjusted as appropriate. Thereby, a sufficient bonding width can be ensured while adjusting the distance between adjacent nozzle holes and the maximum width of the nozzle to desired values.
 また、式(1)の関係を満たすとき、基板100の材料のビッカース硬さの値が大きいほど、θの値を大きくすることができる。そのため、ノズルプレートを用いたインクジェットヘッドにおいて、ノズル孔からの空気の引き込みをより抑制して、吐出安定性をより向上させつつ、接合面を確保しやすくすることができる。 Furthermore, when the relationship of equation (1) is satisfied, the larger the Vickers hardness value of the material of the substrate 100, the larger the value of θ a can be. Therefore, in an inkjet head using a nozzle plate, it is possible to further suppress the drawing of air from the nozzle holes, further improve ejection stability, and make it easier to secure a bonding surface.
 本工程は、形成されるノズル孔の、液滴の吐出方向の最下流側の最大幅nと、基板100の材料である金属のビッカース硬さHとが、式(2)の関係を満たすノズル孔を、パンチ120を、液滴の吐出方向と同じ方向に圧入して、形成することが好ましい。
 n≦0.0672×H+2.01   (2)
In this step, the maximum width n of the nozzle hole to be formed on the most downstream side in the droplet ejection direction and the Vickers hardness HA of the metal that is the material of the substrate 100 satisfy the relationship of formula (2). Preferably, the nozzle hole is formed by press-fitting the punch 120 in the same direction as the droplet ejection direction.
n≦0.0672×H A +2.01 (2)
 式(2)は以下のようにして導出することができる。 Equation (2) can be derived as follows.
 (1)基板のビッカース硬さ(250HV以上)と、形成されるダレの幅(図4におけるW、以下、ダレ幅という)との関係について、相関式を作成し、任意のビッカース硬さにおけるダレ幅Wを求める。(2)求めたダレ幅Wを式(a)に代入し、接合面の幅の最小値(xmin)が50μmとなるためのnを求める。(3)上記(1)、(2)の操作を、ビッカース硬さを変えて行い、ビッカース硬さとnとの関係について、相関式を作成することで導出することができる。なお、式(1)の導出にあたり、式(a)における、n、W以外の値は、θ=45°、および上述のP、L、Lb、θの値を用いる。 (1) Create a correlation formula for the relationship between the Vickers hardness of the substrate (250 HV or more) and the width of the sag formed (W in Fig. 4, hereinafter referred to as sag width), and calculate the sag at a given Vickers hardness. Find the width W. (2) Substitute the obtained sag width W into equation (a) to find n for the minimum width (x min ) of the joint surface to be 50 μm. (3) The above operations (1) and (2) are performed while changing the Vickers hardness, and the relationship between the Vickers hardness and n can be derived by creating a correlation equation. Note that in deriving equation (1), for values other than n and W in equation (a), θ a =45° and the above-mentioned values of P, L a , L b, and θ b are used.
 このようにして導出された、式(2)は、P、L、L、θ、θが上記値であるときに、接合幅xを50μm以上確保するための、nとHとの関係を表す。そのため、式(2)を満たすように、nとHとを調整したとき、接合幅xが、少なくも50μmとなるように、L、L、θが上記値である限りにおいて、P、nをそれぞれ適宜調整することができる。これにより、隣接するノズル孔間の距離およびパンチの上記傾きを所望の値に調整しつつ、接合幅を十分に確保することができる。 Equation (2) derived in this way is based on n and H in order to ensure the junction width x of 50 μm or more when P, L a , L b , θ a , and θ b are the above values. represents the relationship between Therefore, as long as L a , L b , and θ b have the above values, P , n can be adjusted as appropriate. Thereby, a sufficient bonding width can be ensured while adjusting the distance between adjacent nozzle holes and the above-mentioned inclination of the punch to desired values.
 また、式(2)の関係を満たすとき、基板100のビッカース硬さの値が大きいほど、nの値を大きくすることができる。そのため、ノズルプレートを用いたインクジェットヘッドにおいて、インク吐出時にかかる流体抵抗をより低下させて、吐出安定性をより向上させつつ、接合面を確保しやすくすることができる。 Further, when the relationship of formula (2) is satisfied, the value of n can be increased as the value of the Vickers hardness of the substrate 100 is larger. Therefore, in an inkjet head using a nozzle plate, it is possible to further reduce fluid resistance during ink ejection, further improve ejection stability, and make it easier to secure a bonding surface.
 本実施の形態では、例えば、第2圧入部122の、パンチ120の圧入方向における最下手側の最大幅Wが、W≦0.0672×H+2.01を満たす、パンチ120を基板100に圧入することで、式(2)を満たすノズル孔を形成することができる。 In this embodiment, for example, the punch 120 is attached to the substrate 100 such that the maximum width W b of the second press-fitting part 122 on the lowest side in the press-fitting direction of the punch 120 satisfies W b ≦0.0672×H+2.01. By press-fitting, a nozzle hole that satisfies formula (2) can be formed.
 第1圧入部121および第2圧入部122の、上記圧入方向に直交する方向の断面の形状は、例えば、円形および楕円形であるが、インクの吐出安定性をより高める観点から円形であることが好ましい。 The shapes of the cross sections of the first press-fitting part 121 and the second press-fitting part 122 in the direction orthogonal to the press-fitting direction are, for example, circular or oval, but from the viewpoint of further increasing ink ejection stability, they should be circular. is preferred.
 本工程を、ダイ110を用いて行う場合、上記形成されるノズル孔の、上記パンチの圧入方向の最下手側の最大幅をn、上記ダイ110の開口部の最大幅をd、上記基板の厚さをtとしたとき、式(A)の関係を満たす、上記ノズル孔を形成する(図2参照)。
 t+n<d≦2t+n   (A)
When this step is performed using the die 110, the maximum width of the nozzle hole to be formed on the lowest side in the press-fitting direction of the punch is n, the maximum width of the opening of the die 110 is d, and the maximum width of the opening of the die 110 is d. When the thickness is t, the above-mentioned nozzle hole is formed that satisfies the relationship of formula (A) (see FIG. 2).
t+n<d≦2t+n (A)
 ダイ110の開口部の最大幅dが、ノズル孔の上記最大幅nと基板の厚さtとの和(t+n)よりも大きいことで、基板100に対してパンチ120をより貫通させやすくすることができる。これにより、パンチ120の形状に対応してノズル孔がより形成されやすくなる。また、パンチ120に係る負荷を低減して、パンチ120の劣化をより抑制することができる。 The maximum width d of the opening of the die 110 is larger than the sum (t+n) of the maximum width n of the nozzle hole and the thickness t of the substrate, thereby making it easier for the punch 120 to penetrate the substrate 100. Can be done. This makes it easier to form the nozzle hole in accordance with the shape of the punch 120. Further, the load on the punch 120 can be reduced, and deterioration of the punch 120 can be further suppressed.
 また、ダイ110の開口部の最大幅dが、2t+n以下であることで、基板100にかかるパンチ120の圧入圧力が分散されづらくなり、基板100に対してパンチ120をより圧入しやすくすることができる。 Further, since the maximum width d of the opening of the die 110 is 2t+n or less, the press-fitting pressure of the punch 120 applied to the substrate 100 is difficult to be dispersed, and the punch 120 can be press-fitted into the substrate 100 more easily. can.
 本実施の形態では、パンチ120は、パンチ120の圧入方向に対して、第2圧入部122よりも下手側で第2圧入部122と連続する第3圧入部を有してもよい。第3圧入部は、上記圧入方向に対する壁面の傾きが、第2圧入部の壁面の上記傾きとは異なり、上記圧入方向の下手側に向かうにつれて最大幅が小さくなる形状を有することが好ましい。 In the present embodiment, the punch 120 may have a third press-fitting part that is continuous with the second press-fitting part 122 on the downstream side of the second press-fitting part 122 with respect to the press-fitting direction of the punch 120. It is preferable that the third press-fitting part has a shape in which the inclination of the wall surface with respect to the press-fitting direction is different from the above-mentioned inclination of the wall surface of the second press-fitting part, and the maximum width becomes smaller toward the downstream side in the press-fitting direction.
 1-3.基板表面を研磨加工する工程(工程S30)
 本実施の形態に係るノズルプレートの製造方法は、上記工程S20でノズル孔が形成された基板の、パンチの圧入方向のおける最下手側の表面を研磨加工する工程を有してもよい。
1-3. Process of polishing the substrate surface (process S30)
The method for manufacturing a nozzle plate according to the present embodiment may include a step of polishing the surface of the substrate in which the nozzle holes are formed in step S20 on the lowermost side in the press-fitting direction of the punch.
 本工程では、上記工程S20で、基板100にパンチ120を圧入したことで生じる突起130を除去するために、基板100のパンチの圧入方向のおける最下手側の表面を研磨加工する(図2B、C)。 In this step, in order to remove the protrusion 130 caused by press-fitting the punch 120 into the substrate 100 in step S20, the surface of the substrate 100 on the lowermost side in the press-fitting direction of the punch is polished (FIG. 2B, C).
 研磨加工する方法は、特に限定されないが、例えば、平行平面ホーニング研削盤(FS-35AN、富士産機株式会社製)を用いて行うことができる。 The method of polishing is not particularly limited, but can be performed using, for example, a parallel plane honing grinder (FS-35AN, manufactured by Fuji Sanki Co., Ltd.).
 なお、本実施の形態に係るノズルプレートの製造方法は、上記工程S20の後、基板の、パンチ120の圧入方向における最上手側の表面に、溝を形成する工程を有してもよい。上記溝を形成することで、製造されたノズルプレートと、インクジェットヘッドを製造するために流路部材とを、接着剤を用いて接合するときに、接着剤が接合部からはみ出ることを十分に抑制することができる。 Note that the method for manufacturing a nozzle plate according to the present embodiment may include a step of forming a groove on the uppermost surface of the substrate in the press-fitting direction of the punch 120 after the above step S20. By forming the above-mentioned grooves, when the manufactured nozzle plate and the channel member for manufacturing the inkjet head are joined using adhesive, it is sufficiently suppressed that the adhesive protrudes from the joint part. can do.
 上記溝を形成する方法は、特に限定されないが、例えば、溝の形状に対応するパンチを基板に圧入して溝を形成することができる。 The method for forming the groove is not particularly limited, but, for example, the groove may be formed by press-fitting a punch corresponding to the shape of the groove into the substrate.
 なお、本実施の形態では、形成されるノズル孔の液滴の吐出方向とは逆向きに、パンチを基板に圧入してもよい。 Note that in this embodiment, the punch may be press-fitted into the substrate in the opposite direction to the direction in which droplets are ejected from the nozzle hole to be formed.
 2.ノズルプレート
 本実施の形態に係る、ノズルプレートは、液滴を吐出するためにノズル孔を有し、ビッカース硬さが250HV以上の金属製である。上記ノズルプレートは、上述のノズルプレートの製造方法によって得ることができる。
2. Nozzle Plate The nozzle plate according to this embodiment has a nozzle hole for ejecting droplets, and is made of metal with a Vickers hardness of 250 HV or more. The above-mentioned nozzle plate can be obtained by the above-mentioned nozzle plate manufacturing method.
 ノズルプレートの材料は、ビッカース硬さが250HV以上である金属であれば特に限定されない。ビッカース硬さが250HV以上である金属の種類については、ノズルプレートの製造方法で説明したものと同様とすることができる。インクジェットヘッドに用いたとき、使用中にノズルプレートが変形することを抑制する観点から、上記ビッカース硬さは、300HV以上であることがより好ましく、400HV以上であることがさらに好ましい。 The material of the nozzle plate is not particularly limited as long as it is a metal with a Vickers hardness of 250 HV or more. The type of metal having a Vickers hardness of 250 HV or more can be the same as that described in the nozzle plate manufacturing method. When used in an inkjet head, the Vickers hardness is more preferably 300 HV or more, and even more preferably 400 HV or more, from the viewpoint of suppressing deformation of the nozzle plate during use.
 ノズルプレートの厚さは、30μm以上45μm以下であることが好ましく、35μm以上45μm以下であることがより好ましい。上記厚さが30μm以上であると、ノズル孔の長さをより十分に確保して、インクジェットヘッド内部への空気の引き込みをより抑制することができる。これにより吐出安定性をより向上させることができる。また、上記厚さが45μm以下であることで、ノズルプレートをインクジェットヘッドに用いた際、省スペース化をより達成しやすくすることができる。 The thickness of the nozzle plate is preferably 30 μm or more and 45 μm or less, more preferably 35 μm or more and 45 μm or less. When the thickness is 30 μm or more, a sufficient length of the nozzle hole can be ensured, and the drawing of air into the inside of the inkjet head can be further suppressed. Thereby, the ejection stability can be further improved. Further, since the thickness is 45 μm or less, space saving can be more easily achieved when the nozzle plate is used in an inkjet head.
 ノズルプレートは、隣接するノズル孔間の距離が170μm以下となる複数のノズル孔を有することが好ましい。このような複数のノズル孔を有することで、製造されたノズルプレートをインクジェットヘッドに用いたとき、より高精細な画像を形成することができる。上記隣接するノズル孔間の距離の下限値は、特に限定されないが、例えば、85μm以上である。 It is preferable that the nozzle plate has a plurality of nozzle holes in which the distance between adjacent nozzle holes is 170 μm or less. By having such a plurality of nozzle holes, when the manufactured nozzle plate is used in an inkjet head, a higher definition image can be formed. The lower limit of the distance between the adjacent nozzle holes is not particularly limited, but is, for example, 85 μm or more.
 図5は、ノズルプレート200の例を示す模式断面図である。ノズル孔210は、壁面が液滴の吐出方向(図5の矢印B)に対する傾きを有する第1流路211を有することが好ましい。特に、本実施形態では、ノズル孔210は、第1流路211と、液滴の吐出方向に対して、第1流路211よりも下流側で第1流路211と連続する第2流路212と、を有し、第2流路212の壁面の上記吐出方向に対する傾き(図5のθ)は、第1流路211の壁面の上記圧入方向に対する傾き(図5のθ)よりも小さい形状を有することが好ましい。ノズルプレート200が、このようなノズル孔210を有することでで、ノズルプレートを用いたインクジェットヘッドを使用した際、インク液滴の吐出安定性をより向上させることができる。 FIG. 5 is a schematic cross-sectional view showing an example of the nozzle plate 200. It is preferable that the nozzle hole 210 has a first channel 211 whose wall surface is inclined with respect to the droplet ejection direction (arrow B in FIG. 5). In particular, in this embodiment, the nozzle hole 210 is connected to the first flow path 211 and the second flow path that is continuous with the first flow path 211 on the downstream side of the first flow path 211 with respect to the droplet ejection direction. 212, and the slope of the wall surface of the second flow path 212 with respect to the discharge direction (θ 2 in FIG. 5) is smaller than the slope of the wall surface of the first flow path 211 with respect to the press-fitting direction (θ 1 in FIG. 5). It is also preferable to have a small shape. Since the nozzle plate 200 has such nozzle holes 210, the ejection stability of ink droplets can be further improved when an inkjet head using the nozzle plate is used.
 なお、本明細書では、液滴の吐出方向に平行な直線P3と、第1流路211の壁面211aとのなす角度のうち、鋭角である角度のことを、「第1流路211の壁面211aの傾きθ」とする。また、液滴の吐出方向に平行な直線P4と、第2流路212の壁面212aとのなす角のうち鋭角となる角度を「第2流路212の壁面212aの傾きθ」とする。 Note that, in this specification, among the angles formed by the straight line P3 parallel to the droplet ejection direction and the wall surface 211a of the first flow path 211, an acute angle is referred to as "the wall surface of the first flow path 211". 211a is assumed to be θ 1 . Furthermore, an acute angle between the straight line P4 parallel to the droplet ejection direction and the wall surface 212a of the second flow path 212 is defined as "the inclination θ 2 of the wall surface 212a of the second flow path 212."
 第1流路211の上記傾きθは、15°以上であることが好ましく、30°以上であることがより好ましく、45°以上であることがさらに好ましい。上記傾きθが15°以上であると、ノズルプレートをインクジェットヘッドに使用した際に、ノズル孔からの空気の引き込みをより抑制して、吐出安定性をより向上させることができる。上記傾きθが45°以上であると、吐出安定性をより十分に向上させることができる上、インクの吐出時における流体抵抗を低下させて吐出安定性をより高めることができる。ノズルプレートをインクジェットヘッドに使用した際に、インク液滴の吐出量をより適度に調整しやすくする観点から、上記傾きθは50°以下であることが好ましい。 The above-mentioned inclination θ 1 of the first flow path 211 is preferably 15° or more, more preferably 30° or more, and even more preferably 45° or more. When the above-mentioned inclination θ 1 is 15° or more, when the nozzle plate is used in an inkjet head, the drawing of air from the nozzle holes can be further suppressed, and the ejection stability can be further improved. When the above-mentioned inclination θ 1 is 45° or more, the ejection stability can be more fully improved, and the fluid resistance during ink ejection can be lowered to further improve the ejection stability. When the nozzle plate is used in an inkjet head, the above-mentioned slope θ 1 is preferably 50° or less, from the viewpoint of making it easier to adjust the amount of ink droplets to be ejected.
 第1流路211の、液滴の吐出方向の長さ(図5のL)は、40μm以上55μm以下であることが好ましい。上記Lが40μm以上であると、ノズル孔の長さをより十分に確保して、インクジェットヘッド内部への空気の引き込みをより抑制することができる。これにより、ノズルプレートをインクジェットヘッドに用いたとき、吐出安定性をより向上させることができる。また、上記Lが55μm以下であると、インクジェットヘッドにおけるノズルプレートの省スペース化をより達成しやすくすることができる。 The length of the first channel 211 in the droplet ejection direction (L 1 in FIG. 5) is preferably 40 μm or more and 55 μm or less. When L 1 is 40 μm or more, a sufficient length of the nozzle hole can be ensured, and the drawing of air into the inside of the inkjet head can be further suppressed. Thereby, when the nozzle plate is used in an inkjet head, ejection stability can be further improved. Further, when L1 is 55 μm or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
 第2流路212の上記傾きθは、0°以上9°以下であることが好ましく、0°以上5°以下であることがより好ましく、0°以上3°以下であることがさらに好ましく、0°以上1°以下であることが特に好ましい。上記傾きθが9°以下であることで、製造されたノズルプレートをインクジェットヘッドに使用した際に、インクの射出曲がりをより抑制して、インクの吐出安定性をより向上させることができる。 The above-mentioned inclination θ 2 of the second flow path 212 is preferably 0° or more and 9° or less, more preferably 0° or more and 5° or less, and even more preferably 0° or more and 3° or less, It is particularly preferable that the angle is 0° or more and 1° or less. When the above-mentioned inclination θ 2 is 9° or less, when the manufactured nozzle plate is used in an inkjet head, ink ejection bending can be further suppressed and ink ejection stability can be further improved.
 第2流路212の、液滴の吐出方向の長さ(図5のL)は、10μm以上25μm以下であることが好ましい。上記Lが10μm以上であると、製造されたノズルプレートをインクジェットヘッドに使用した際に、インクの射出曲がりをより抑制して、インクの吐出安定性をより向上させることができる。また、上記Lが25μm以下であると、インクジェットヘッドにおけるノズルプレートの省スペース化をより達成しやすくすることができる。 The length of the second flow path 212 in the droplet ejection direction (L 2 in FIG. 5) is preferably 10 μm or more and 25 μm or less. When the above-mentioned L2 is 10 μm or more, when the manufactured nozzle plate is used in an inkjet head, ink ejection bending can be further suppressed and ink ejection stability can be further improved. Moreover, when the above-mentioned L2 is 25 μm or less, space saving of the nozzle plate in the inkjet head can be more easily achieved.
 第2流路212の、液滴の吐出方向における最下流側の最大幅(図5のn)は、18μm以上50μm以下であることが好ましい。上記最大幅nが18μm以上であることで、ノズルプレートをインクジェットヘッドに用いたとき、吐出口付近でインク中の顔料などが凝集することによるインクの増粘をより抑制することができる。これにより、インクの吐出速度のバラツキがより生じにくくなり、吐出安定性をより向上させることができる。上記最大幅nが50μm以下であることで、液滴の吐出口の幅をより小さくして、より高精細な画像を形成することができる。 The maximum width (n in FIG. 5) of the second flow path 212 on the most downstream side in the droplet ejection direction is preferably 18 μm or more and 50 μm or less. When the maximum width n is 18 μm or more, when the nozzle plate is used in an inkjet head, thickening of the ink due to aggregation of pigments in the ink near the ejection ports can be further suppressed. As a result, variations in ink ejection speed are less likely to occur, and ejection stability can be further improved. When the maximum width n is 50 μm or less, the width of the droplet ejection opening can be made smaller and a higher definition image can be formed.
 第1流路211および第2流路212の、上記吐出方向に直交する方向の断面の形状は、例えば、円形および楕円形であるが、インクの吐出安定性をより高める観点から円形であることが好ましい。 The cross-sectional shapes of the first flow path 211 and the second flow path 212 in the direction perpendicular to the ejection direction are, for example, circular or oval, but from the viewpoint of further increasing ink ejection stability, the shape is circular. is preferred.
 ノズルプレート200は、液滴の吐出方向の最上流側の表面に、外部の部材に接合するための接合面220を有することが好ましい。接合面220の複数のノズル孔210が配列する方向の幅(図5におけるx)は、25μm以上であることが好ましく、50μm以上であることがより好ましい。 It is preferable that the nozzle plate 200 has a bonding surface 220 for bonding to an external member on the most upstream surface in the droplet ejection direction. The width of the joint surface 220 in the direction in which the plurality of nozzle holes 210 are arranged (x in FIG. 5) is preferably 25 μm or more, more preferably 50 μm or more.
 接合面220は、溝部を有していてもよい。接合面220が溝部を有することで、ノズルプレートと、インクジェットヘッドを製造するために流路部材とを、接着剤を用いて接合するときに、接着剤が接合面220からはみ出ることを十分に抑制することができる。 The bonding surface 220 may have a groove. Since the bonding surface 220 has the groove, when the nozzle plate and the channel member are bonded using adhesive to manufacture an inkjet head, the adhesive is sufficiently prevented from protruding from the bonding surface 220. can do.
 ノズル孔210は、ノズルプレートの材料である金属のビッカース硬さをHとしたとき、第1流路211の上記傾きθが、式(3)の関係を満たすことが好ましい。
 θ≦0.0234×H+38.67   (3)
In the nozzle hole 210, it is preferable that the above-mentioned inclination θ 1 of the first flow path 211 satisfies the relationship of equation (3), where HB is the Vickers hardness of the metal that is the material of the nozzle plate.
θ 1 ≦0.0234×H B +38.67 (3)
 式(3)は以下のようにして導出することができる。 Equation (3) can be derived as follows.
 (1)ノズルプレートの材料である金属のビッカース硬さ(250HV以上)と、ノズルプレートのダレの幅(図4におけるW)との関係について、相関式を作成し、任意のビッカース硬さにおけるダレ幅Wを求める。(2)求めたダレ幅Wを式(b)に代入し、接合面の幅の最小値(xmin)が50μmとなるためのθを求める。(3)上記(1)、(2)の操作を、ビッカース硬さを変えて行い、ビッカース硬さとθの最大値との関係について、相関式を作成することで導出することができる。なお、式(3)の導出にあたり、式(b)における、θ、W以外の値は、以下に示した固定の値を用いる。
 xmin=P-(n+2L・tanθ+2L・tanθ+2W)   (b)
 (P=170μm、n=20μm、L=40μm、L=5μm、θ=0°)
(1) Create a correlation formula for the relationship between the Vickers hardness of the metal that is the material of the nozzle plate (250 HV or more) and the width of the sag (W in Figure 4) of the nozzle plate, and calculate the sag at a given Vickers hardness. Find the width W. (2) Substitute the determined sagging width W into equation (b) to determine θ 1 for the minimum width (x min ) of the joint surface to be 50 μm. (3) The above operations (1) and (2) are performed while changing the Vickers hardness, and the relationship between the Vickers hardness and the maximum value of θ 1 can be derived by creating a correlation equation. In deriving equation (3), fixed values shown below are used for values other than θ 1 and W in equation (b).
x min =P-(n+2L 1・tanθ 1 +2L 2・tanθ 2 +2W) (b)
(P=170 μm, n=20 μm, L 1 =40 μm, L 1 =5 μm, θ 2 =0°)
 ノズルプレートが、式(3)の関係を満たすノズル孔を有することで、ノズルプレートの接合面の、ノズル孔が配列する方向の幅をより十分に確保することができる。また、式(3)の関係を満たすとき、ノズルプレートの材料である金属のビッカース硬さの値が大きいほど、θの値を大きくすることができる。そのため、ノズルプレートを用いたインクジェットヘッドにおいて、ノズル孔からの空気の引き込みをより抑制して、吐出安定性をより向上させつつ、接合面を確保しやすくすることができる。 When the nozzle plate has nozzle holes that satisfy the relationship of formula (3), a sufficient width of the joint surface of the nozzle plate in the direction in which the nozzle holes are arranged can be ensured. Further, when the relationship of equation (3) is satisfied, the value of θ 1 can be increased as the Vickers hardness value of the metal that is the material of the nozzle plate increases. Therefore, in an inkjet head using a nozzle plate, it is possible to further suppress the drawing of air from the nozzle holes, further improve ejection stability, and make it easier to secure a bonding surface.
 ノズル孔は、液滴の吐出方向における最下流側の最大幅nと、ノズルプレートの材料である金属のビッカース硬さHとが、式(4)の関係を満たすことが好ましい。
 n≦0.0672×H+2.01   (4)
It is preferable that the maximum width n of the nozzle hole on the most downstream side in the droplet ejection direction and the Vickers hardness HB of the metal that is the material of the nozzle plate satisfy the relationship of equation (4).
n≦0.0672×H B +2.01 (4)
 式(4)は以下のようにして導出することができる。 Equation (4) can be derived as follows.
 (1)ノズルプレートの材料である金属のビッカース硬さ(250HV以上)と、形成されるダレの幅(図4におけるW)との関係について、相関式を作成し、任意のビッカース硬さにおけるダレ幅Wを求める。(2)求めたダレ幅Wを式(b)に代入し、接合面の幅の最小値(xmin)が50μmとなるためのnの最大値を求める。(3)上記(1)、(2)の操作を、ビッカース硬さを変えて行い、ビッカース硬さとnの最大値との関係について、相関式を作成することで導出することができる。なお、式(4)の導出にあたり、式(b)における、n、W以外の値は、θ=45°、および上述のP、L、Lb、θの値を用いる。 (1) Create a correlation formula for the relationship between the Vickers hardness (250 HV or more) of the metal that is the material of the nozzle plate and the width of the sag (W in Figure 4) that is formed, and calculate the sag at a given Vickers hardness. Find the width W. (2) Substitute the calculated sagging width W into equation (b) to find the maximum value of n so that the minimum value (x min ) of the width of the joint surface is 50 μm. (3) The above operations (1) and (2) are performed while changing the Vickers hardness, and the relationship between the Vickers hardness and the maximum value of n can be derived by creating a correlation equation. Note that in deriving equation (4), for values other than n and W in equation (b), θ a =45° and the above-mentioned values of P, L a , L b, and θ b are used.
 ノズル孔が式(4)の関係を満たすことで、製造されるノズルプレートの接合面の、ノズル孔が配列する方向の幅をより十分に確保することができる。また、式(5)の関係を満たすとき、ノズルプレートの材料である金属のビッカース硬さの値が大きいほど、nの値を大きくすることができる。そのため、ノズルプレートを用いたインクジェットヘッドにおいて、インク吐出時にかかる流体抵抗をより低下させて、吐出安定性をより向上させつつ、接合面を確保しやすくすることができる。 When the nozzle holes satisfy the relationship of formula (4), a sufficient width of the joint surface of the manufactured nozzle plate in the direction in which the nozzle holes are arranged can be secured. Furthermore, when the relationship of formula (5) is satisfied, the value of n can be increased as the Vickers hardness value of the metal that is the material of the nozzle plate increases. Therefore, in an inkjet head using a nozzle plate, it is possible to further reduce fluid resistance during ink ejection, further improve ejection stability, and make it easier to secure a bonding surface.
 ノズルプレート200の、液滴の吐出方向に直交する方向のダレ幅Wは、14μm以下であることが好ましい。 The sagging width W of the nozzle plate 200 in the direction perpendicular to the droplet ejection direction is preferably 14 μm or less.
 3.インクジェットヘッドの製造方法
 本実施の形態に係るノズルプレートの製造方法は、上述のノズルプレートと、上記ノズルプレートのノズル孔にインクを供給するための流路部材とを接合させる工程を含む。
3. Method for Manufacturing an Inkjet Head The method for manufacturing a nozzle plate according to the present embodiment includes the step of joining the above-described nozzle plate and a channel member for supplying ink to the nozzle holes of the nozzle plate.
 ノズルプレートと、流路部材とを接合させる方法は、特に限定されないが、例えば、接着剤を用いて接合する方法、拡散接合法を用いて接合する方法などである。上記接合させる工程は、インクの使用による接着剤の劣化を抑制し、接合強度の低下をより抑制する観点から、接着剤の使用量が0.1g未満であることが好ましい。また、接着剤の使用量が0.1g未満であると、ノズルプレートの流路内などの接合に関与しない領域への接着剤の流出を抑制することができる。 The method of joining the nozzle plate and the flow path member is not particularly limited, and examples thereof include a method of joining using an adhesive, a method of joining using a diffusion bonding method, and the like. In the step of bonding, the amount of adhesive used is preferably less than 0.1 g from the viewpoint of suppressing deterioration of the adhesive due to the use of ink and further suppressing a decrease in bonding strength. Furthermore, when the amount of adhesive used is less than 0.1 g, it is possible to suppress the adhesive from flowing out into areas not involved in bonding, such as the flow path of the nozzle plate.
 上記接合する工程で用いる流路部材については、後述するインクジェットヘッドについての説明で詳述する。 The channel member used in the above bonding step will be described in detail in the explanation of the inkjet head described later.
 本実施の形態に係るインクジェットヘッドの製造方法は、ノズルプレートのノズル孔にインクを供給するための流路部材と、インクに圧力付与するための圧力室を有する圧力室形成基板とを、接合する工程を有してもよい。 The method for manufacturing an inkjet head according to the present embodiment includes bonding a channel member for supplying ink to nozzle holes of a nozzle plate and a pressure chamber forming substrate having pressure chambers for applying pressure to the ink. It may have a step.
 流路部材と圧力室形成基板とを接合する方法は、特に限定されず、ノズルプレートと流路部材とを接合する方法と同様とすることができる。 The method for joining the flow path member and the pressure chamber forming substrate is not particularly limited, and may be the same as the method for joining the nozzle plate and the flow path member.
 流路部材と接合させる圧力室形成基板については、後述するインクジェットヘッドについての説明で詳述する。 The pressure chamber forming substrate to be joined to the flow path member will be described in detail in the explanation of the inkjet head described later.
 4.インクジェットヘッド
 本実施の形態に係るインクジェットヘッドは、上述のノズルプレートを有する。以下、図5に示したノズルプレート200を有するインクジェットヘッドについて説明するが、本実施の形態に係るインクジェットヘッドは、これに限定されない。
4. Inkjet Head The inkjet head according to this embodiment has the above-described nozzle plate. Hereinafter, an inkjet head having the nozzle plate 200 shown in FIG. 5 will be described, but the inkjet head according to this embodiment is not limited to this.
 図6は、本実施の形態に係るインクジェットヘッド1の概要を示す分解斜視図である。図6に示されるように、インクジェットヘッド1は、筐体2と、回路基板3と、ヘッドベース4と、図7に示すヘッドチップ5と、を有する。 FIG. 6 is an exploded perspective view showing an overview of the inkjet head 1 according to the present embodiment. As shown in FIG. 6, the inkjet head 1 includes a housing 2, a circuit board 3, a head base 4, and a head chip 5 shown in FIG.
 筐体2は、下面が開放された矩形の箱体である。筐体2の上面には内部に繋がる切欠き2aが設けられ、この切欠き2aを介して回路基板3が筐体2に収納されている。回路基板2には、ヘッドチップ5(後述)内のアクチュエータを駆動するための駆動回路が実装されている。切欠き2aのX軸正側とX軸負側に、それぞれ、円形の穴部2bが設けられている。穴部2bは、インク供給用のチューブ(不図示)を筐体2の内部へと導くためのものである。また、筐体2内には共通インク室(不図示)が設けられている。 The housing 2 is a rectangular box with an open bottom surface. A notch 2a connected to the inside is provided on the top surface of the casing 2, and the circuit board 3 is housed in the casing 2 through this notch 2a. A drive circuit for driving an actuator in a head chip 5 (described later) is mounted on the circuit board 2. Circular holes 2b are provided on the X-axis positive side and the X-axis negative side of the notch 2a, respectively. The hole 2b is for guiding an ink supply tube (not shown) into the housing 2. Further, a common ink chamber (not shown) is provided within the housing 2.
 ヘッドベース4は、上下に貫通する矩形の開口4aを中央に有する枠体である。開口4aの下端に、図7に示すヘッドチップ5が設けられている。ヘッドチップ5には、開口4a内において回路基板3とFPC(フレキシブルプリント基板)が電気的に接続されている。 The head base 4 is a frame body that has a rectangular opening 4a in the center that passes through it vertically. A head chip 5 shown in FIG. 7 is provided at the lower end of the opening 4a. A circuit board 3 and an FPC (flexible printed circuit board) are electrically connected to the head chip 5 within the opening 4a.
 図8は、上述したインクジェットヘッド1が有するヘッドチップ4の概要を示す、図7における線A-Aに沿った断面図である。 FIG. 8 is a cross-sectional view taken along line AA in FIG. 7, showing an outline of the head chip 4 included in the above-described inkjet head 1.
 ヘッドチップ5は、ノズルプレート200と、流路部材10と、圧力室形成基板20と、駆動プレート30と、配線基板40とを有している。また、ヘッドチップ4は、インクの吐出面側から、ノズルプレート200、流路部材10、圧力室形成基板20、駆動プレート30、配線基板40の順に積層されている。 The head chip 5 includes a nozzle plate 200, a flow path member 10, a pressure chamber forming substrate 20, a drive plate 30, and a wiring board 40. Further, in the head chip 4, a nozzle plate 200, a channel member 10, a pressure chamber forming substrate 20, a drive plate 30, and a wiring board 40 are stacked in this order from the ink ejection surface side.
 ノズルプレート200のインク吐出側の表面には、撥液膜が形成されていてもよい。撥液膜に含まれる材料は、特に限定されないが、例えば、フッ素系樹脂である。また、撥液膜の厚さは、特に限定されないが、例えば、1nm以上100nm未満である。 A liquid-repellent film may be formed on the ink ejection side surface of the nozzle plate 200. The material contained in the liquid-repellent film is not particularly limited, but may be, for example, a fluororesin. Further, the thickness of the liquid-repellent film is not particularly limited, but is, for example, 1 nm or more and less than 100 nm.
 流路部材10は、ノズルプレートのノズル孔210にインクを供給するための部材である。流路部材10は、インレット形成基板11と、供給流路形成基板12と、空気室形成基板13とを有する。 The flow path member 10 is a member for supplying ink to the nozzle holes 210 of the nozzle plate. The flow path member 10 includes an inlet forming substrate 11, a supply flow path forming substrate 12, and an air chamber forming substrate 13.
 インレット形成基板11は、インレット11aを有する。インレット11aは、後述する圧力室21と、供給流路12aとの間に形成された貫通孔であり、圧力室21から供給流路12aへインクを供給する。インレット11aは、供給するインクの量を調整するための絞り機能を有していてもよい。 The inlet forming substrate 11 has an inlet 11a. The inlet 11a is a through hole formed between a pressure chamber 21, which will be described later, and a supply channel 12a, and supplies ink from the pressure chamber 21 to the supply channel 12a. The inlet 11a may have a throttle function for adjusting the amount of ink to be supplied.
 インレット形成基板11の厚さは、例えば、30μm以上100μm以下とすることができる。インレット11aの開口最大幅は、例えば、10μm以上80μm以下とすることができる。 The thickness of the inlet forming substrate 11 can be, for example, 30 μm or more and 100 μm or less. The maximum opening width of the inlet 11a can be, for example, 10 μm or more and 80 μm or less.
 インレット形成基板11は、第2連通孔11bを有する。第2連通孔11bは、後述する第3連通孔24および第1連通孔12bと連通する。 The inlet forming substrate 11 has a second communication hole 11b. The second communication hole 11b communicates with a third communication hole 24 and a first communication hole 12b, which will be described later.
 供給流路形成基板12は、供給流路12aを有する。供給流路12aは、外部から供給されるインクを圧力室21に供給するための流路である。 The supply channel forming substrate 12 has a supply channel 12a. The supply channel 12a is a channel for supplying ink supplied from the outside to the pressure chamber 21.
 供給流路形成基板12は、第1連通孔12bを有する。第1連通孔12bは、第2連通孔11bと連通し、供給流路12aと連通する。 The supply channel forming substrate 12 has a first communication hole 12b. The first communication hole 12b communicates with the second communication hole 11b, and communicates with the supply channel 12a.
 空気室形成基板13は、ダンパー13aと、空気室13bとを有する。ダンパー13aは、圧力室21の圧力変動に伴い塑性変形することができる可撓性の膜である。圧力室21の圧力変動により、供給流路12a内の圧力が上昇したとき、ダンパー13aは空気室13b側に塑性変形し、供給流路12a内の圧力が下降したときは、ダンパー13aは供給流路12a側に塑性変形する。これにより、供給流路12a内の圧力が急激に変動することをより抑制することができる。 The air chamber forming substrate 13 has a damper 13a and an air chamber 13b. The damper 13a is a flexible membrane that can be plastically deformed in response to pressure fluctuations in the pressure chamber 21. When the pressure in the supply channel 12a increases due to pressure fluctuations in the pressure chamber 21, the damper 13a is plastically deformed toward the air chamber 13b, and when the pressure in the supply channel 12a decreases, the damper 13a deforms the supply flow. It is plastically deformed toward the path 12a. Thereby, it is possible to further suppress sudden fluctuations in the pressure within the supply channel 12a.
 流路部材10は、サイロ14を有する。サイロ14は、圧力室21内のインクをノズル孔210に供給するための貫通孔である。 The flow path member 10 has a silo 14. The silo 14 is a through hole for supplying ink in the pressure chamber 21 to the nozzle hole 210.
 圧力室形成基板20は、複数の圧力室21と、振動板22とを有している。また、圧力室21は、圧力室形成基板20の一面から他面にかけて貫通している。圧力室21は、その体積変動によって、ノズル孔210から吐出するためのインクに吐出圧力を付与する。また、複数の圧力室21の間には、隔壁23が形成されている。本実施の形態において、隔壁23は、その全体がニッケル(Ni)などの電気メッキが可能な金属によって形成されている。これにより、隔壁23の剛性をより高くして、インクジェットヘッド1を振動によって破壊されにくく安定した構造とすることができる。圧力室形成基板20の厚さは、例えば、50μm以上300μmとすることができる。 The pressure chamber forming substrate 20 has a plurality of pressure chambers 21 and a diaphragm 22. Moreover, the pressure chamber 21 penetrates from one surface of the pressure chamber forming substrate 20 to the other surface. The pressure chamber 21 applies ejection pressure to the ink to be ejected from the nozzle hole 210 by changing its volume. Furthermore, partition walls 23 are formed between the plurality of pressure chambers 21 . In this embodiment, the partition wall 23 is entirely formed of a metal that can be electroplated, such as nickel (Ni). Thereby, the rigidity of the partition wall 23 can be increased, and the inkjet head 1 can have a stable structure that is less likely to be destroyed by vibration. The thickness of the pressure chamber forming substrate 20 can be, for example, 50 μm or more and 300 μm.
 振動板22は、圧力室21が有するノズルプレート200とは反対側の開口を覆うように配置されている。振動板22には、第3連通孔24が設けられている。振動板22における圧力室21側の一面と反対側の一面には、駆動プレート30が配置されている。振動板22の厚さは、例えば、1μm以上10μm以下である。なお、圧力室形成基板20と、駆動プレート30との間には、絶縁層が配置されていてもよい。 The diaphragm 22 is arranged to cover the opening of the pressure chamber 21 on the side opposite to the nozzle plate 200. The diaphragm 22 is provided with a third communication hole 24 . A drive plate 30 is arranged on one surface of the diaphragm 22 on the pressure chamber 21 side and one surface on the opposite side. The thickness of the diaphragm 22 is, for example, 1 μm or more and 10 μm or less. Note that an insulating layer may be disposed between the pressure chamber forming substrate 20 and the drive plate 30.
 駆動プレート30は、空間部31と、第3連通孔24と連通する第4連通孔32とを有している。空間部31は、振動板22を間に挟んで圧力室21と対向する位置に配置されている。空間部31には、アクチュエータ50が収容されている。 The drive plate 30 has a space 31 and a fourth communication hole 32 that communicates with the third communication hole 24 . The space portion 31 is arranged at a position facing the pressure chamber 21 with the diaphragm 22 in between. The actuator 50 is housed in the space 31 .
 アクチュエータ50は、圧電素子51と、第1電極52と、第2電極53とを有している。第1電極52は、振動板22の一面に積層されている。なお、第1電極52と振動板22との間には、絶縁層が配置されていてもよい。圧電素子51は、第1電極52に積層されて、振動板22および第1電極52を間に挟んで圧力室21と対向する位置に、圧力室21毎(チャネル毎)に配置される。第1電極52および第2電極53は、スパッタリングや蒸着などの方法により成膜され、フォトリソグラフィなどの方法によってパターニングされて形成されていてもよい。 The actuator 50 has a piezoelectric element 51, a first electrode 52, and a second electrode 53. The first electrode 52 is laminated on one surface of the diaphragm 22 . Note that an insulating layer may be disposed between the first electrode 52 and the diaphragm 22. The piezoelectric element 51 is stacked on the first electrode 52 and is arranged for each pressure chamber 21 (for each channel) at a position facing the pressure chamber 21 with the diaphragm 22 and the first electrode 52 in between. The first electrode 52 and the second electrode 53 may be formed by a method such as sputtering or vapor deposition, and patterned by a method such as photolithography.
 圧電素子51は、電圧が印加されることによって変形する材料で構成されており、たとえば、チタン酸ジルコン酸鉛(PZT)などの強誘電体材料で構成されている。また、圧電素子51における第1電極52とは反対側の面には、第2電極53が積層されている。第2電極53は、バンプ54を介して後述する配線基板40に設けられた配線層41と接続される。圧電素子51の膜厚は、たとえば10μm以下である。 The piezoelectric element 51 is made of a material that deforms when a voltage is applied, and is made of a ferroelectric material such as lead zirconate titanate (PZT), for example. Further, a second electrode 53 is laminated on the surface of the piezoelectric element 51 opposite to the first electrode 52 . The second electrode 53 is connected to a wiring layer 41 provided on a wiring board 40, which will be described later, via a bump 54. The thickness of the piezoelectric element 51 is, for example, 10 μm or less.
 配線基板40は、配線層41と、配線層41が一面に形成されたシリコン層42とを有している。配線層41は、第2電極53に設けたバンプ54と、半田41aを介して接続される。また、配線層41の外縁部は、フレキシブル配線基板に接続される。さらに、配線層41における駆動プレート30と反対側の一面には、シリコン層42が配置される。シリコン層42は、保持部3に接合される。 The wiring board 40 has a wiring layer 41 and a silicon layer 42 on which the wiring layer 41 is formed over one surface. The wiring layer 41 is connected to the bump 54 provided on the second electrode 53 via solder 41a. Further, the outer edge of the wiring layer 41 is connected to a flexible wiring board. Furthermore, a silicon layer 42 is arranged on one surface of the wiring layer 41 on the side opposite to the drive plate 30. The silicon layer 42 is bonded to the holding part 3.
 また、配線基板40には、配線層41およびシリコン層42を貫通する第5連通孔43が設けられている。この第5連通孔43は、駆動プレート30の第4連通孔32と、筐体内の共通インク室と連通する。 Further, the wiring board 40 is provided with a fifth communication hole 43 that penetrates the wiring layer 41 and the silicon layer 42. The fifth communication hole 43 communicates with the fourth communication hole 32 of the drive plate 30 and the common ink chamber within the housing.
 本実施の形態では、互いに連通された配線基板40の第5連通孔43、駆動プレート30の第4連通孔32、振動板22の第3連通孔24、インレット形成基板11の第2連通孔11b、供給流路形成基板12の第1連通孔12b、および供給流路12aにより、共通インク室2内のインクを圧力室21に供給する流路が構成される。また、ノズルプレート200のノズル孔210により、圧力室21内のインクを記録媒体に向けて吐出するためのアウトレットが構成される。 In the present embodiment, the fifth communication hole 43 of the wiring board 40, the fourth communication hole 32 of the drive plate 30, the third communication hole 24 of the diaphragm 22, and the second communication hole 11b of the inlet forming board 11 communicate with each other. , the first communication hole 12b of the supply flow path forming substrate 12, and the supply flow path 12a constitute a flow path for supplying ink in the common ink chamber 2 to the pressure chamber 21. Further, the nozzle holes 210 of the nozzle plate 200 constitute an outlet for ejecting ink within the pressure chamber 21 toward the recording medium.
 かかる構成を備えたインクジェットヘッド1では、筐体2内の共通インク室に収容されたインクは、第5連通孔43、第4連通孔32第3連通孔24、第2連通孔11b、および第1連通孔12bを通過して、供給流路12aに流れ込み、その後インレット11aを介して圧力室21に流れ込む。そして、第1電極52と第2電極53との間に電圧が印加されることで、圧電素子51が変形(振動)すると共に圧電素子51の変形に伴い、振動板22が変形(振動)する。この振動板22が変形(振動)することで、圧力室21内にインクを吐出するための圧力が発生する。かかる圧力の発生により、圧力室21内のインクは、サイロ14を介して、ノズル孔210に押し出され、ノズル孔210の先端(ノズル開口)から記録媒体に向けて吐出される。 In the inkjet head 1 with such a configuration, the ink stored in the common ink chamber in the housing 2 is distributed through the fifth communication hole 43, the fourth communication hole 32, the third communication hole 24, the second communication hole 11b, and the second communication hole 11b. It passes through the first communication hole 12b, flows into the supply channel 12a, and then flows into the pressure chamber 21 via the inlet 11a. Then, by applying a voltage between the first electrode 52 and the second electrode 53, the piezoelectric element 51 is deformed (vibrated), and along with the deformation of the piezoelectric element 51, the diaphragm 22 is deformed (vibrated). . The deformation (vibration) of the diaphragm 22 generates pressure within the pressure chamber 21 to eject ink. Due to the generation of this pressure, the ink in the pressure chamber 21 is pushed out through the silo 14 to the nozzle hole 210, and is ejected from the tip (nozzle opening) of the nozzle hole 210 toward the recording medium.
 なお、本実施の形態において、インクジェットヘッド1は、ノズルプレート200を含んでいればよく、圧電素子51が圧力室21の壁を構成する、圧電式のインクジェットヘッドでもよいし、サーマル式インクジェットヘッドでもよい。 In this embodiment, the inkjet head 1 only needs to include the nozzle plate 200, and may be a piezoelectric inkjet head in which the piezoelectric element 51 constitutes the wall of the pressure chamber 21, or a thermal inkjet head. good.
 5.画像形成装置
 図9は、本実施の形態に係る画像形成装置300の構成を模式的に示した図である。
5. Image Forming Apparatus FIG. 9 is a diagram schematically showing the configuration of an image forming apparatus 300 according to the present embodiment.
 画像形成装置300は、図9に示すように、上述したインクジェットヘッド1と、インク供給装置310と、搬送装置320と、メインタンク330とを有している。 As shown in FIG. 9, the image forming apparatus 300 includes the above-described inkjet head 1, an ink supply device 310, a transport device 320, and a main tank 330.
 インクジェットヘッド1は、例えば、スキャン方式により、画像を形成すべき記録媒体Mの搬送方向Dを横切る方向に走査自在に配置される。 The inkjet head 1 is arranged so as to be able to scan freely in a direction transverse to the transport direction D of the recording medium M on which an image is to be formed, for example, by a scanning method.
 本実施の形態において、インクジェットヘッド1が吐出するインクの種類は、特に限定されず、例えば、活性線硬化型インク、溶剤系インク、水系インク、ホットメルトインクである。 In this embodiment, the type of ink ejected by the inkjet head 1 is not particularly limited, and includes, for example, actinic radiation-curable ink, solvent-based ink, water-based ink, and hot-melt ink.
 搬送装置320は、インクジェットヘッド1に対して記録媒体Mを搬送するための装置である。搬送装置320は、例えば、ベルトコンベア321と、回転自在な送りローラー322とを備える。ベルトコンベア321は、回転自在な複数のプーリー321a、プーリー321aに張設されている無端状のベルト321bと、から構成される。送りローラー322は、記録媒体Mの搬送方向Dにおける上流側のプーリー321aに対向する位置に、ベルト321bと記録媒体Mを挟持してベルト321b上に記録媒体Mを送り出すように配置されている。 The transport device 320 is a device for transporting the recording medium M to the inkjet head 1. The conveyance device 320 includes, for example, a belt conveyor 321 and a rotatable feed roller 322. The belt conveyor 321 includes a plurality of rotatable pulleys 321a and an endless belt 321b stretched around the pulleys 321a. The feed roller 322 is disposed at a position facing the pulley 321a on the upstream side in the transport direction D of the recording medium M so as to sandwich the recording medium M between the belt 321b and feed the recording medium M onto the belt 321b.
 インク供給装置310は、インクジェットヘッド1と一体的に配置されている。インク供給装置310は、インクの種類ごとに配置されている。たとえば、Y(イエロー)、M(マゼンタ)、C(シアン)およびK(ブラック)の4色のインクを用いるときは、インク供給装置310は、インクジェットヘッド1に四つ配置される。 The ink supply device 310 is arranged integrally with the inkjet head 1. The ink supply devices 310 are arranged for each type of ink. For example, when using four color inks of Y (yellow), M (magenta), C (cyan), and K (black), four ink supply devices 310 are arranged in the inkjet head 1.
 各インク供給装置310は、メインタンク330に接続された管341および弁342を介して、メインタンク330内のインクを供給される。また、各インク供給装置310は、管344を介してインクジェットヘッド1の共通インク室と連通し、各色のインクを所望の共通インク室のインク供給口2aへ供給可能に接続されている。 Each ink supply device 310 is supplied with ink in the main tank 330 via a pipe 341 and a valve 342 connected to the main tank 330. Further, each ink supply device 310 communicates with the common ink chamber of the inkjet head 1 via a pipe 344, and is connected to be able to supply ink of each color to the ink supply port 2a of a desired common ink chamber.
 インクジェットヘッド1は、上記の管341から分岐するバイパス管343によってメインタンク330にも接続されている。管341とバイパス管343との分岐点には、これら管341およびバイパス管343の一方または両方にインクの流路を切換、設定可能な弁342が配置されている。管341、管344、およびバイパス管343は、例えばいずれも可撓性を有するチューブである。弁342は、例えば三方弁である。 The inkjet head 1 is also connected to the main tank 330 by a bypass pipe 343 branching from the pipe 341 described above. At the branching point between the pipe 341 and the bypass pipe 343, a valve 342 is arranged that can switch and set the ink flow path in one or both of the pipes 341 and the bypass pipe 343. The pipe 341, the pipe 344, and the bypass pipe 343 are all flexible tubes, for example. Valve 342 is, for example, a three-way valve.
 メインタンク330は、インクジェットヘッド1に供給されるべきインクを収容するためのタンクである。メインタンク330は、インクジェットヘッド1とは分離して配置されている。メインタンク330は、例えば、不図示の撹拌装置を有している。メインタンク330は、画像形成装置300の画像形成性能や大きさなどに応じて適宜に決めることが可能である。たとえば、画像形成装置の画像形成速度が1~3m/分である場合、メインタンク330の容量は、例えば1Lである。 The main tank 330 is a tank for storing ink to be supplied to the inkjet head 1. The main tank 330 is arranged separately from the inkjet head 1. The main tank 330 includes, for example, a stirring device (not shown). The main tank 330 can be appropriately determined depending on the image forming performance, size, etc. of the image forming apparatus 300. For example, when the image forming speed of the image forming apparatus is 1 to 3 m 2 /min, the capacity of the main tank 330 is, for example, 1 L.
 (実施の形態2)
 2.ノズルプレートの製造方法
 本発明の実施の形態2に係るノズルプレートの製造方法は、開口部を有するダイに載置された基板を用意する工程と、上記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する工程と、を有し、上記ノズル孔を形成する工程は、上記形成されるノズル孔の、上記パンチの圧入方向の最下流側の最大幅をn、上記ダイの開口部の最大幅をd、上記基板の厚さをtとしたとき、式(A)の関係を満たす、上記ノズル孔を形成する。
 t+n<d≦2t+n   (A)
(Embodiment 2)
2. Method for manufacturing a nozzle plate The method for manufacturing a nozzle plate according to Embodiment 2 of the present invention includes the steps of preparing a substrate placed on a die having an opening, and press-fitting a punch into the prepared substrate to form a liquid. forming a nozzle hole for discharging the droplet, and the step of forming the nozzle hole is such that the maximum width of the formed nozzle hole on the most downstream side in the press-fitting direction of the punch is n, When the maximum width of the opening of the die is d, and the thickness of the substrate is t, the nozzle hole is formed to satisfy the relationship of formula (A).
t+n<d≦2t+n (A)
 2-1.ダイに載置された基板を用意する工程
 本工程では、開口部を有するダイに載置された基板を用意する。
2-1. Step of preparing a substrate placed on a die In this step, a substrate placed on a die having an opening is prepared.
 ダイの種類は、式(A)を満たす開口部を有するものであれば、特に限定されない。基板の種類は、特に限定されないが、ビッカース硬さが250HV以上である金属製の基板であることが好ましい。ビッカース硬さが250HV以上である金属の種類については、上述したものと同様とすることができる。 The type of die is not particularly limited as long as it has an opening that satisfies formula (A). The type of substrate is not particularly limited, but it is preferably a metal substrate with a Vickers hardness of 250 HV or more. The type of metal having a Vickers hardness of 250 HV or more can be the same as described above.
 基板の厚さは、式(A)を満たすものであれば、特に限定されないが、30μm以上45μm以下であることが好ましく、35μm以上45μm以下であることがより好ましい。 The thickness of the substrate is not particularly limited as long as it satisfies formula (A), but it is preferably 30 μm or more and 45 μm or less, more preferably 35 μm or more and 45 μm or less.
 2-2.ノズル孔を形成する工程
 本工程では、上記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する。
2-2. Step of Forming Nozzle Holes In this step, a punch is press-fitted into the substrate prepared above to form nozzle holes for ejecting droplets.
 図10は、本実施の形態に係るノズルプレートの製造方法を示す模式断面図である。本工程では、上記形成されるノズル孔の、上記パンチの圧入方向の最下流側の最大幅をn、上記ダイの開口部の最大幅をd、上記基板の厚さをtとしたとき、式(A)の関係を満たす、上記ノズル孔を形成する。
 t+n<d≦2t+n   (A)
FIG. 10 is a schematic cross-sectional view showing a method of manufacturing a nozzle plate according to this embodiment. In this step, when the maximum width of the nozzle hole to be formed on the most downstream side in the press-fitting direction of the punch is n, the maximum width of the opening of the die is d, and the thickness of the substrate is t, the following formula is used: The nozzle hole is formed to satisfy the relationship (A).
t+n<d≦2t+n (A)
 ダイの開口部の最大幅dが、ノズル孔の上記最大幅nと基板の厚さtとの和(t+n)よりも大きいことで、基板100に対してパンチ120をより貫通させやすくすることができる。これにより、パンチ120の形状に対応してノズル孔がより形成されやすくなる。また、パンチ120に係る負荷を低減して、パンチ120の劣化をより抑制することができる。 By making the maximum width d of the opening of the die larger than the sum (t+n) of the maximum width n of the nozzle hole and the thickness t of the substrate, it is possible to make it easier for the punch 120 to penetrate the substrate 100. can. This makes it easier to form the nozzle hole in accordance with the shape of the punch 120. Further, the load on the punch 120 can be reduced, and deterioration of the punch 120 can be further suppressed.
 また、ダイの開口部の最大幅dが、2t+n以下であることで、基板100にかかるパンチ210の圧入圧力が分散されづらくなり、基板100に対してパンチ120をより圧入しやすくすることができる。また、パンチ210の形状を有するノズル孔をより形成しやすくすることができる。 Further, since the maximum width d of the opening of the die is 2t+n or less, the press-fitting pressure of the punch 210 applied to the substrate 100 is difficult to be dispersed, and the punch 120 can be press-fitted into the substrate 100 more easily. . Further, it is possible to more easily form a nozzle hole having the shape of the punch 210.
 本工程は、基板をより固定しやすくするための押さえ部材140を用いて行ってもよい。押さえ部材は、パンチ120を基板100に圧入するための開口部140aを有している。開口部140aの最小幅は、基板100に圧入するパンチ120の最大幅以上であればよく、パンチ120の上記最大幅よりも50μm以上大きいことが好ましい。これにより、パンチ120を基板100に圧入させやすくして、パンチ120の形状に対応したノズル孔をより形成しやすくすることができる。 This step may be performed using a holding member 140 to make it easier to fix the substrate. The holding member has an opening 140a for press-fitting the punch 120 into the substrate 100. The minimum width of the opening 140a may be at least the maximum width of the punch 120 press-fitted into the substrate 100, and is preferably larger than the maximum width of the punch 120 by 50 μm or more. This makes it easier to press-fit the punch 120 into the substrate 100, making it easier to form a nozzle hole corresponding to the shape of the punch 120.
 以下、実施例を参照して本発明を具体的に説明するが、本発明の範囲は実施例の記載に限定されない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the scope of the present invention is not limited to the description of Examples.
 (ノズルプレート1~10の作製)
 厚さ45μm、ビッカース硬さが180HVのステンレス(SUS304BA)製の金属板1を用意した。用意した金属板1をダイ(開口部の最大幅が85μm)に載置し、金属板1を上方から押さえ部材で固定した。そして、金属板1に対して、図3と同様の形状を有するパンチを、圧入速度3μm/sで圧入させた後、パンチを金属板1から取り出した。次いで、パンチの圧入によって形成された突起を、平行平面ホーニング研削盤(FS-35AN、富士産機株式会社製)を用いて研磨加工して除去し、ノズル孔を形成した。同様の方法により、隣接するノズル孔間の距離Pが170μmとなるように、金属板1に複数のノズルを形成し。これによりノズルプレート1を作製した。
(Preparation of nozzle plates 1 to 10)
A metal plate 1 made of stainless steel (SUS304BA) with a thickness of 45 μm and a Vickers hardness of 180 HV was prepared. The prepared metal plate 1 was placed on a die (the maximum width of the opening was 85 μm), and the metal plate 1 was fixed from above with a pressing member. Then, a punch having a shape similar to that shown in FIG. 3 was press-fitted into the metal plate 1 at a press-fitting speed of 3 μm/s, and then the punch was taken out from the metal plate 1. Next, the protrusion formed by press-fitting the punch was removed by polishing using a parallel plane honing grinder (FS-35AN, manufactured by Fuji Sanki Co., Ltd.) to form a nozzle hole. A plurality of nozzles were formed on the metal plate 1 using a similar method so that the distance P between adjacent nozzle holes was 170 μm. In this way, nozzle plate 1 was produced.
 用いたパンチは、第1圧入部の壁面の、パンチの圧入方向に対する傾きθは0°、第2流路の壁面の、上記吐出方向に対する傾きθは45°、第1圧入部の上記圧入方向の長さLは5μm、第2圧入部の上記圧入方向の長さLは45μmであった。 The punch used had an inclination θ a of the wall surface of the first press-fitting part with respect to the press-fitting direction of the punch of 0°, an inclination θ b of the wall surface of the second flow path with respect to the above-mentioned discharge direction of 45°, and The length L a in the press-fitting direction was 5 μm, and the length L b of the second press-fitting portion in the press-fitting direction was 45 μm.
 形成したノズル孔は、第1流路および第2流路を有しており、第1流路の壁面の、液滴の吐出方向に対する傾きθは0°、第2流路の壁面の、上記吐出方向に対する傾きθは45°、第1流路の上記吐出方向の長さLは5μm、第2流路の上記吐出方向の長さLは45μmであった。また、ノズル孔の上記吐出方向における最下流側の最大幅nは、20μmであった。なお、ノズル孔の、上記吐出方向に直交する方向の断面形状は、円形であった。 The formed nozzle hole has a first flow path and a second flow path, the inclination θ 1 of the wall surface of the first flow path with respect to the droplet ejection direction is 0°, and the wall surface of the second flow path is The inclination θ 2 with respect to the discharge direction was 45°, the length L 1 of the first channel in the discharge direction was 5 μm, and the length L 2 of the second flow channel in the discharge direction was 45 μm. Further, the maximum width n of the nozzle hole on the most downstream side in the above-mentioned ejection direction was 20 μm. Note that the cross-sectional shape of the nozzle hole in the direction orthogonal to the above-mentioned discharge direction was circular.
 用いた金属板を、表1に示した金属板2~4に変更した以外はノズルプレート1と同様にして、ノズルプレート2~4を作製した。各ノズルプレートにおいて、形成されたノズル孔の形状は、それぞれ同一であった。 Nozzle plates 2 to 4 were produced in the same manner as nozzle plate 1, except that the metal plates used were changed to metal plates 2 to 4 shown in Table 1. In each nozzle plate, the shapes of the nozzle holes formed were the same.
 ノズルプレート1~4について、ノズル孔の、液滴の吐出方向における最上流側の縁に形成された傾斜面の幅をダレ幅W[μm]として、ノズルプレートの断面をSEMで観察することにより測定した。各ノズルプレートにおけるダレ幅を表1に示し、金属板のビッカース硬さとダレ幅の関係を図11のグラフに示した。なお、図11における式は、グラフの近似直線を表す式である。 For nozzle plates 1 to 4, by observing the cross section of the nozzle plate with an SEM, the width of the slope formed at the most upstream edge of the nozzle hole in the droplet ejection direction is defined as the sagging width W [μm]. It was measured. The sag width in each nozzle plate is shown in Table 1, and the relationship between the Vickers hardness of the metal plate and the sag width is shown in the graph of FIG. Note that the equation in FIG. 11 is an equation representing an approximate straight line of the graph.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図11に示されるように、ビッカース硬さが250HV以上であるとき、ダレ幅が顕著に低下することがわかった。 As shown in Table 1 and FIG. 11, it was found that when the Vickers hardness was 250 HV or more, the sagging width was significantly reduced.
 (ノズルプレート5~10の作製)
 ノズルプレート1の作製において、金属板の種類、および厚さt[μm]を表2のように変更し、パンチ、および形成されるノズル孔の形状を以下の条件に変更するようにパンチの形状を変更した以外は、同様にしてノズルプレート5~10を作製した。
 θ、θ     :45°
 θ、θ     :0°
 L、L     :t-L
 L、L     :5μm
 n         :20μm
(Preparation of nozzle plates 5 to 10)
In producing the nozzle plate 1, the type of metal plate and the thickness t [μm] were changed as shown in Table 2, and the shape of the punch and the shape of the nozzle hole to be formed were changed to the following conditions. Nozzle plates 5 to 10 were produced in the same manner except that .
θ a , θ 1 :45°
θ b , θ 2 :0°
L a , L 1 :t-L 2
Lb , L2 : 5μm
n: 20μm
 (接着シロ評価)
 ノズルプレート5~10について、液滴の吐出方向の最上流側の表面に含まれる接合面の、複数のノズル孔が配列する方向の幅(接着シロ)x[μm]を、上述の式(b)により算出した。接着シロの測定結果について、以下の評価基準に沿って評価した。なお、式(b)におけるダレ幅Wは、図11のグラフにおける近似直線の式から、金属板のビッカース硬さを用いて算出した。
 x=P-(n+2L・tanθ+2L・tanθ+2W)   (b)
 ◎ 接着シロが50μm以上
 ○ 接着シロが40μm以上50μm未満
 △ 接着シロが25μm以上40μm未満
 × 接着シロが25μm未満
(Adhesion level evaluation)
For the nozzle plates 5 to 10, the width (adhesion white) x [μm] of the joint surface included in the most upstream surface in the droplet ejection direction in the direction in which a plurality of nozzle holes are arranged is calculated using the above formula (b ) was calculated. The measurement results of the adhesion margin were evaluated according to the following evaluation criteria. Note that the sag width W in equation (b) was calculated from the equation of the approximate straight line in the graph of FIG. 11 using the Vickers hardness of the metal plate.
x=P-(n+2L 1・tanθ 1 +2L 2・tanθ 2 +2W) (b)
◎ Adhesive margin is 50 μm or more ○ Adhesive margin is 40 μm or more and less than 50 μm △ Adhesive margin is 25 μm or more and less than 40 μm × Adhesive margin is less than 25 μm
 (変形評価)
 作製後のノズルプレート5~10について、作製前後で基板全体が塑性変形(湾曲)しているかどうかを観察した。また、ノズルプレート5~10を用いたインクジェットヘッドを使用してインクを射出し、射出方向がノズル孔の中心軸に対して曲がっているか否かを観察した。以下の基準に沿って評価した。
 ○ 変形が確認されなかった。
 △ わずかに変形が視認されたが、液滴の射出方向の曲がりが確認されなかった。
 × 変形が明確に視認でき、液滴の射出方向の曲がりが確認された。
(Deformation evaluation)
Regarding the nozzle plates 5 to 10 after fabrication, it was observed whether the entire substrate was plastically deformed (curved) before and after fabrication. Further, ink was ejected using an inkjet head using nozzle plates 5 to 10, and it was observed whether the ejection direction was bent with respect to the central axis of the nozzle hole. Evaluation was made according to the following criteria.
○ No deformation was confirmed.
△ Although slight deformation was observed, no bending in the droplet ejection direction was observed.
× Deformation was clearly visible, and bending in the droplet ejection direction was confirmed.
 評価結果を表2にまとめた。 The evaluation results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (ビッカース硬さと、傾きθの関係)
 金属板のビッカース硬さが250HVのときのダレ幅W[μm]を、図11のグラフの近似直線の式から求めた。次いで、以下の条件において、ノズルプレートの接着シロが50μm以上となるようなθ、θの最大値を上述の式(a)、(b)から求めた。同様にして、金属板のビッカース硬さが200HV、300HV、350HV、400HVのときの、θ、θの上記最大値を算出した。算出結果を表3に示し、ビッカース硬さとθ、θの上記最大値との関係を示したグラフを図12に示した。
 P        :170.0μm
 θ、θ    :0°
 L、L    :40.0μm
 L、L    :5.0μm
 n        :20.0μm
 W        :5.2μm
(Relationship between Vickers hardness and slope θ 1 )
The sag width W [μm] when the Vickers hardness of the metal plate was 250 HV was determined from the equation of the approximate straight line in the graph of FIG. Next, under the following conditions, the maximum values of θ a and θ 1 such that the adhesion margin of the nozzle plate was 50 μm or more were determined from the above equations (a) and (b). Similarly, the maximum values of θ a and θ 1 were calculated when the Vickers hardness of the metal plate was 200 HV, 300 HV, 350 HV, and 400 HV. The calculation results are shown in Table 3, and a graph showing the relationship between the Vickers hardness and the above maximum values of θ a and θ 1 is shown in FIG.
P: 170.0μm
θ b , θ 2 :0°
L a , L 1 :40.0 μm
Lb , L2 : 5.0 μm
n: 20.0μm
W: 5.2μm
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図12に示されるように、ビッカース硬さが250HV以上の金属板を用いた条件において、式(1)(式(3))が導出された。 As shown in FIG. 12, Equation (1) (Equation (3)) was derived under the condition that a metal plate with a Vickers hardness of 250 HV or more was used.
 表3および図12に示される様に、ビッカース硬さが250HV以上のとき、接着シロを50μm以上にするための、θ(θ1)の最大値を顕著に高くすることができることがわかった。これにより、θ(θ1)を大きくしつつ接着シロを十分に確保できることがわかった。ビッカース硬さが250HV以上であることで、テーパー角度をより大きくしても、ダレが生じにくくなったと考えられる。 As shown in Table 3 and Figure 12, it has been found that when the Vickers hardness is 250 HV or more, the maximum value of θ a1 ) can be significantly increased in order to make the adhesive margin 50 μm or more. . It was found that by doing this, it was possible to sufficiently secure the adhesive margin while increasing θ a1 ). It is thought that because the Vickers hardness was 250 HV or more, sagging was less likely to occur even if the taper angle was made larger.
 (ビッカース硬さと、ノズル孔の最下流側の最大幅nの関係)
 金属板のビッカース硬さが250HVのときのダレ幅W[μm]を、図11のグラフの近似直線の式から求めた。次いで、以下の条件において、ノズルプレートの接着シロが50μm以上となるようなnの最大値を式(a)から求めた。同様にして、金属板のビッカース硬さが200HV、300HV、350HV、400HVのときの、nの上記最大値を算出した。算出結果を表4に示し、ビッカース硬さとnの上記最大値との関係を示したグラフを図13に示した。
 P        :170.0μm
 θ、θ    :45°
 θ、θ    :0°
 L、L    :40.0μm
 L、L    :5.0μm
 W        :5.2μm
(Relationship between Vickers hardness and maximum width n of the most downstream side of the nozzle hole)
The sag width W [μm] when the Vickers hardness of the metal plate was 250 HV was determined from the equation of the approximate straight line in the graph of FIG. Next, under the following conditions, the maximum value of n such that the adhesion margin of the nozzle plate was 50 μm or more was determined from equation (a). Similarly, the maximum value of n was calculated when the Vickers hardness of the metal plate was 200HV, 300HV, 350HV, and 400HV. The calculation results are shown in Table 4, and a graph showing the relationship between the Vickers hardness and the above maximum value of n is shown in FIG.
P: 170.0μm
θ a , θ 1 :45°
θ b , θ 2 :0°
L a , L 1 :40.0 μm
Lb , L2 : 5.0 μm
W: 5.2μm
 図13に示されるように、ビッカース硬さが250HV以上の金属板を用いた条件において、式(2)(式(4))が導出された。 As shown in FIG. 13, Equation (2) (Equation (4)) was derived under the condition that a metal plate with a Vickers hardness of 250 HV or more was used.
 表4および図13に示される様に、ビッカース硬さが250HV以上のとき、接着シロを50μm以上にするための、nの最大値を顕著に高くすることができることがわかった。これにより、nを大きくしつつ接着シロを十分に確保できることがわかった。ビッカース硬さが250HV以上であることで、ノズル径をより大きくしても、ダレが生じにくくなったと考えられる。 As shown in Table 4 and FIG. 13, it was found that when the Vickers hardness was 250 HV or more, the maximum value of n to make the adhesive margin 50 μm or more could be significantly increased. It has been found that this allows a sufficient adhesion margin to be secured while increasing n. It is thought that because the Vickers hardness was 250 HV or more, sagging was less likely to occur even if the nozzle diameter was made larger.
 本出願は、2022年8月12日出願の特願2022-128845に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、全て本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2022-128845 filed on August 12, 2022. All contents described in the application specification and drawings are incorporated herein by reference.
 本発明のノズルプレートの製造方法を用いることにより、より簡易的な構成で、ダレの幅を低減することができ、基板全体が塑性変形することをより抑制できる。そのため、本発明は、例えば、パンチ加工法を用いたノズルプレートの製造方法に有用である。 By using the nozzle plate manufacturing method of the present invention, the width of the sag can be reduced with a simpler configuration, and plastic deformation of the entire substrate can be further suppressed. Therefore, the present invention is useful, for example, in a method for manufacturing a nozzle plate using a punching method.
 1 インクジェットヘッド
 2 筐体
 3 回路基板
 4 ヘッドベース
 5 ヘッドチップ
 10 流路形成基板
 20 圧力室形成基板
 30 駆動プレート
 40 配線基板
 50 アクチュエータ
 100 基板
 110 ダイ
 120 パンチ
 130 突起
 140 押さえ部材
 200 ノズルプレート
 210 流路
 220 接合面
 300 画像形成装置
 

 
1 Inkjet head 2 Housing 3 Circuit board 4 Head base 5 Head chip 10 Channel forming board 20 Pressure chamber forming board 30 Drive plate 40 Wiring board 50 Actuator 100 Board 110 Die 120 Punch 130 Projection 140 Holding member 200 Nozzle plate 210 Channel 220 Joint surface 300 Image forming device

Claims (26)

  1.  厚さが25μmよりも大きく、ビッカース硬さが250HV以上である金属製の基板を用意する工程と、
     前記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する工程と、
     を有する、ノズルプレートの製造方法。
    preparing a metal substrate having a thickness of more than 25 μm and a Vickers hardness of 250 HV or more;
    press-fitting a punch into the prepared substrate to form a nozzle hole for ejecting droplets;
    A method for manufacturing a nozzle plate, comprising:
  2.  前記ノズル孔を形成する工程は、隣接する前記ノズル孔間の距離が170μm以下となる複数の前記ノズル孔を形成する、
     請求項1に記載のノズルプレートの製造方法。
    The step of forming the nozzle holes includes forming a plurality of nozzle holes in which the distance between adjacent nozzle holes is 170 μm or less.
    A method for manufacturing a nozzle plate according to claim 1.
  3.  前記基板の厚さは、30μm以上45μm以下である、請求項1または2に記載のノズルプレートの製造方法。 The method for manufacturing a nozzle plate according to claim 1 or 2, wherein the thickness of the substrate is 30 μm or more and 45 μm or less.
  4.  前記基板の厚さは、35μm以上45μm以下である、請求項1または2に記載のノズルプレートの製造方法。 The method for manufacturing a nozzle plate according to claim 1 or 2, wherein the thickness of the substrate is 35 μm or more and 45 μm or less.
  5.  前記ノズル孔を形成する工程は、壁面が前記パンチの圧入方向に対する傾きを有する第1圧入部を有する、前記パンチを前記基板に圧入する、
     請求項1または2に記載のノズルプレートの製造方法。
    The step of forming the nozzle hole includes press-fitting the punch into the substrate, the punch having a first press-fitting part whose wall surface is inclined with respect to the press-fitting direction of the punch.
    The method for manufacturing a nozzle plate according to claim 1 or 2.
  6.  前記パンチは、前記パンチの圧入方向に対して、前記第1圧入部よりも下手側で前記第1圧入部と連続する第2圧入部を有し、前記第2圧入部の壁面の前記圧入方向に対する傾きは、前記第1圧入部の壁面の前記圧入方向に対する傾きよりも小さい、
     請求項5に記載のノズルプレートの製造方法。
    The punch has a second press-fitting part that is continuous with the first press-fitting part on a downstream side of the first press-fitting part with respect to the press-fitting direction of the punch, and the second press-fitting part is continuous with the first press-fitting part, and the wall surface of the second press-fitting part is arranged in the press-fitting direction. the inclination with respect to the press-fitting direction is smaller than the inclination of the wall surface of the first press-fitting part with respect to the press-fitting direction;
    The method for manufacturing a nozzle plate according to claim 5.
  7.  前記パンチは、前記第1圧入部の壁面の前記圧入方向に対する傾きが45°以上である、
     請求項5に記載のノズルプレートの製造方法。
    In the punch, the wall surface of the first press-fitting part has an inclination of 45° or more with respect to the press-fitting direction.
    The method for manufacturing a nozzle plate according to claim 5.
  8.  前記パンチは、
     前記パンチの、前記第1圧入部の壁面の前記圧入方向に対する傾きをθとし、前記金属のビッカース硬さをHとしたとき、
     式(1)の関係を満たす、
     請求項5に記載のノズルプレートの製造方法。
     θ≦0.0234×H+38.67   (1)
    The punch is
    When the inclination of the wall surface of the first press-fitting part of the punch with respect to the press-fitting direction is θ a , and the Vickers hardness of the metal is H A ,
    satisfies the relationship of formula (1),
    The method for manufacturing a nozzle plate according to claim 5.
    θ a ≦0.0234×H A +38.67 (1)
  9.  前記ノズル孔を形成する工程は、
     前記形成されるノズル孔の、液滴の吐出方向の最下流側の最大幅をnとし、前記金属のビッカース硬さをHとしたとき、
     式(2)の関係を満たす、前記ノズル孔を形成する、
     請求項1または2に記載のノズルプレートの製造方法。
     n≦0.0672×H+2.01   (2)
    The step of forming the nozzle hole includes:
    When the maximum width of the formed nozzle hole on the most downstream side in the droplet ejection direction is n, and the Vickers hardness of the metal is H A ,
    forming the nozzle hole that satisfies the relationship of formula (2);
    The method for manufacturing a nozzle plate according to claim 1 or 2.
    n≦0.0672×H A +2.01 (2)
  10.  開口部を有するダイに載置された基板を用意する工程と、
     前記用意した基板にパンチを圧入して、液滴を吐出するためのノズル孔を形成する工程と、を有し、
     前記ノズル孔を形成する工程は、前記形成されるノズル孔の、前記パンチの圧入方向の最下手側の最大幅をn、前記ダイの開口部の最大幅をd、前記基板の厚さをtとしたとき、式(A)の関係を満たす、前記ノズル孔を形成する、
     ノズルプレートの製造方法。
     t+n<d≦2t+n   (A)
    providing a substrate mounted on a die having an opening;
    press-fitting a punch into the prepared substrate to form a nozzle hole for ejecting droplets,
    In the step of forming the nozzle hole, the maximum width of the nozzle hole to be formed on the lowermost side in the press-fitting direction of the punch is n, the maximum width of the opening of the die is d, and the thickness of the substrate is t. When, the nozzle hole is formed so as to satisfy the relationship of formula (A),
    Method of manufacturing a nozzle plate.
    t+n<d≦2t+n (A)
  11.  液滴を吐出するためのノズル孔を有するノズルプレートであって、
     厚さが25μmよりも大きく、
     ビッカース硬さが250HV以上の金属製である、
     ノズルプレート。
    A nozzle plate having a nozzle hole for discharging droplets,
    The thickness is greater than 25 μm,
    Made of metal with a Vickers hardness of 250HV or more,
    nozzle plate.
  12.  前記ノズルプレートは複数の前記ノズル孔を有し、
     隣接する前記複数の前記ノズル孔間の距離は、170μm以下である、
     請求項11に記載のノズルプレート。
    The nozzle plate has a plurality of nozzle holes,
    The distance between the plurality of adjacent nozzle holes is 170 μm or less,
    The nozzle plate according to claim 11.
  13.  厚さが30μm以上45μm以下である、請求項11または12に記載のノズルプレート。 The nozzle plate according to claim 11 or 12, having a thickness of 30 μm or more and 45 μm or less.
  14.  厚さが35μm以上45μm以下である、請求項11または12に記載のノズルプレート。 The nozzle plate according to claim 11 or 12, having a thickness of 35 μm or more and 45 μm or less.
  15.  前記ノズル孔は、壁面が前記液滴の吐出方向に対する傾きを有する第1流路を有する、
     請求項11または12に記載のノズルプレート。
    The nozzle hole has a first flow path whose wall surface is inclined with respect to the ejection direction of the droplet.
    The nozzle plate according to claim 11 or 12.
  16.  前記ノズル孔は、
     前記液滴の吐出方向に対して、前記第1流路よりも下流側で前記第1流路と連通するように配置された第2流路と、を有し、
     前記第2流路の壁面の前記吐出方向に対する傾きは、前記第1流路の壁面の前記吐出方向に対する傾きよりも小さい、
     請求項15に記載のノズルプレート。
    The nozzle hole is
    a second flow path arranged to communicate with the first flow path on the downstream side of the first flow path with respect to the ejection direction of the droplets;
    The inclination of the wall surface of the second flow path with respect to the discharge direction is smaller than the slope of the wall surface of the first flow path with respect to the discharge direction.
    The nozzle plate according to claim 15.
  17.  前記第1流路の壁面の前記吐出方向に対する傾きは、45°以上である、請求項15に記載のノズルプレート。 The nozzle plate according to claim 15, wherein the wall surface of the first flow path has an inclination of 45° or more with respect to the discharge direction.
  18.  前記金属のビッカース硬さをHとし、前記ノズル孔の前記第1流路の壁面の前記液滴の吐出方向に対する傾きをθとしたとき、
     式(3)の関係を満たす、請求項15に記載のノズルプレート。
     θ≦0.0234×H+38.67   (3)
    When the Vickers hardness of the metal is HB , and the inclination of the wall surface of the first flow path of the nozzle hole with respect to the ejection direction of the droplet is θ1 ,
    The nozzle plate according to claim 15, which satisfies the relationship of formula (3).
    θ 1 ≦0.0234×H B +38.67 (3)
  19.  前記金属のビッカース硬さをHとし、前記ノズル孔の、前記液滴の吐出方向における最下流側の最大幅をnとしたとき、式(4)の関係を満たす、請求項11または12に記載のノズルプレート。
     n≦0.0672×H+2.01   (4)
    Claim 11 or 12, wherein the metal satisfies the relationship of formula (4), where the Vickers hardness of the metal is HB and the maximum width of the nozzle hole on the most downstream side in the droplet ejection direction is n. Nozzle plate as described.
    n≦0.0672×H B +2.01 (4)
  20.  前記ノズルプレートは、前記液滴の吐出方向の最上流側の表面に、外部の部材に接合するための接合面を有し、
     前記接合面の、前記複数のノズル孔が配列する方向の幅は、50μm以上である、
     請求項12に記載のノズルプレート。
    The nozzle plate has a bonding surface for bonding to an external member on the most upstream surface in the droplet ejection direction,
    The width of the joint surface in the direction in which the plurality of nozzle holes are arranged is 50 μm or more,
    The nozzle plate according to claim 12.
  21.  前記接合面は、溝部を有する、請求項20に記載のノズルプレート。 The nozzle plate according to claim 20, wherein the joint surface has a groove.
  22.  前記ノズルプレートの、前記液滴の吐出方向に直交する方向のダレの幅は、14μm以下である、請求項11または12に記載のノズルプレート。 The nozzle plate according to claim 11 or 12, wherein the width of the sagging of the nozzle plate in a direction perpendicular to the ejection direction of the droplets is 14 μm or less.
  23.  請求項11または12に記載のノズルプレートと、前記ノズルプレートの前記ノズル孔にインクを供給するための流路部材とを接合させる工程を含む、インクジェットヘッドの製造方法。 A method for manufacturing an inkjet head, comprising the step of joining the nozzle plate according to claim 11 or 12 and a flow path member for supplying ink to the nozzle holes of the nozzle plate.
  24.  前記接合させる工程は、接着剤の使用量が0.1g未満である、請求項23に記載のインクジェットヘッドの製造方法。 The method for manufacturing an inkjet head according to claim 23, wherein the amount of adhesive used in the bonding step is less than 0.1 g.
  25.  請求項11または12に記載のノズルプレートを有する、インクジェットヘッド。 An inkjet head comprising the nozzle plate according to claim 11 or 12.
  26.  請求項25に記載のインクジェットヘッドを有する画像形成装置。 An image forming apparatus comprising the inkjet head according to claim 25.
PCT/JP2023/019121 2022-08-12 2023-05-23 Manufacturing method for nozzle plate, nozzle plate, manufacturing method for inkjet head, inkjet head, and image forming device WO2024034219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128845 2022-08-12
JP2022128845 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024034219A1 true WO2024034219A1 (en) 2024-02-15

Family

ID=89851530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019121 WO2024034219A1 (en) 2022-08-12 2023-05-23 Manufacturing method for nozzle plate, nozzle plate, manufacturing method for inkjet head, inkjet head, and image forming device

Country Status (1)

Country Link
WO (1) WO2024034219A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105607A (en) * 1999-10-12 2001-04-17 Canon Inc Ink jet recording head
JP2002321373A (en) * 2001-04-26 2002-11-05 Brother Ind Ltd Recording head unit and method for manufacturing it
JP2003251810A (en) * 2002-02-28 2003-09-09 Sharp Corp Inkjet recording head and its manufacturing method
JP2004066652A (en) * 2002-08-07 2004-03-04 Ricoh Co Ltd Liquid droplet jetting head, ink cartridge, and ink jet recorder
JP2006341506A (en) * 2005-06-09 2006-12-21 Canon Inc Nozzle plate and its manufacturing method
JP2009226586A (en) * 2008-03-19 2009-10-08 Seiko Epson Corp Method for manufacturing nozzle plate, and liquid jet head
JP2011056692A (en) * 2009-09-07 2011-03-24 Ricoh Co Ltd Liquid ejection head, manufacturing method thereof, and image forming apparatus
JP2012254531A (en) * 2011-06-07 2012-12-27 Ricoh Co Ltd Nozzle plate, liquid droplet ejection head, liquid cartridge, liquid droplet ejection recording device, and method for manufacturing nozzle plate
JP2017047674A (en) * 2015-09-04 2017-03-09 株式会社リコー Flow passage forming member, method for manufacturing flow passage forming member, liquid discharge head, ink cartridge, and device for discharging liquid
JP2018126953A (en) * 2017-02-09 2018-08-16 株式会社リコー Apparatus for discharging liquid
WO2019202723A1 (en) * 2018-04-20 2019-10-24 コニカミノルタ株式会社 Method for manufacturing nozzle plate, and ink jet head
JP2021013934A (en) * 2019-07-10 2021-02-12 コニカミノルタ株式会社 Method for manufacturing metal molding and apparatus for manufacturing metal molding
US20210178759A1 (en) * 2019-03-14 2021-06-17 Ricoh Company, Ltd. Nozzle geometry for printheads
JP2021154614A (en) * 2020-03-27 2021-10-07 セイコーエプソン株式会社 Maintenance method and recording device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105607A (en) * 1999-10-12 2001-04-17 Canon Inc Ink jet recording head
JP2002321373A (en) * 2001-04-26 2002-11-05 Brother Ind Ltd Recording head unit and method for manufacturing it
JP2003251810A (en) * 2002-02-28 2003-09-09 Sharp Corp Inkjet recording head and its manufacturing method
JP2004066652A (en) * 2002-08-07 2004-03-04 Ricoh Co Ltd Liquid droplet jetting head, ink cartridge, and ink jet recorder
JP2006341506A (en) * 2005-06-09 2006-12-21 Canon Inc Nozzle plate and its manufacturing method
JP2009226586A (en) * 2008-03-19 2009-10-08 Seiko Epson Corp Method for manufacturing nozzle plate, and liquid jet head
JP2011056692A (en) * 2009-09-07 2011-03-24 Ricoh Co Ltd Liquid ejection head, manufacturing method thereof, and image forming apparatus
JP2012254531A (en) * 2011-06-07 2012-12-27 Ricoh Co Ltd Nozzle plate, liquid droplet ejection head, liquid cartridge, liquid droplet ejection recording device, and method for manufacturing nozzle plate
JP2017047674A (en) * 2015-09-04 2017-03-09 株式会社リコー Flow passage forming member, method for manufacturing flow passage forming member, liquid discharge head, ink cartridge, and device for discharging liquid
JP2018126953A (en) * 2017-02-09 2018-08-16 株式会社リコー Apparatus for discharging liquid
WO2019202723A1 (en) * 2018-04-20 2019-10-24 コニカミノルタ株式会社 Method for manufacturing nozzle plate, and ink jet head
US20210178759A1 (en) * 2019-03-14 2021-06-17 Ricoh Company, Ltd. Nozzle geometry for printheads
JP2021013934A (en) * 2019-07-10 2021-02-12 コニカミノルタ株式会社 Method for manufacturing metal molding and apparatus for manufacturing metal molding
JP2021154614A (en) * 2020-03-27 2021-10-07 セイコーエプソン株式会社 Maintenance method and recording device

Similar Documents

Publication Publication Date Title
JP5750753B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5962935B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5668482B2 (en) Liquid ejecting head and liquid ejecting apparatus
WO2017047533A1 (en) Ink jet head and ink jet recording apparatus
JP2006130916A (en) Inkjet printing head of piezoelectric system with one-way shutter
US7401897B2 (en) Inkjet head
JP2012171255A (en) Ink jet head, and recording device
JP6269215B2 (en) Liquid ejecting head and liquid ejecting apparatus
KR20080054169A (en) Piezo-electric type page width inkjet printhead
WO2024034219A1 (en) Manufacturing method for nozzle plate, nozzle plate, manufacturing method for inkjet head, inkjet head, and image forming device
JP6380731B2 (en) Channel forming member, liquid ejecting head, and liquid ejecting apparatus
JP2007106016A (en) Inkjet head and is manufacturing method
US11104134B2 (en) Liquid ejecting head and liquid ejecting system
US6592216B2 (en) Ink jet print head acoustic filters
JP5082224B2 (en) Filter manufacturing method
JP2009083262A (en) Liquid transferring apparatus
JPWO2018061543A1 (en) Ink jet head and method of manufacturing the same, ink jet printer
JP2014172295A (en) Droplet discharge head and image formation device
JP2006306073A (en) Liquid transporting apparatus, and manufacturing method for liquid transporting apparatus
WO2023276009A1 (en) Nozzle plate, inkjet head, and image formation device
JP7417831B2 (en) inkjet head
JP4947259B2 (en) Inkjet head
JP2005297557A (en) Inkjet head
JP5013042B2 (en) Inkjet head
JP2004114477A (en) Ink jet head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852204

Country of ref document: EP

Kind code of ref document: A1