WO2024029205A1 - Mooring line tension monitoring system - Google Patents

Mooring line tension monitoring system Download PDF

Info

Publication number
WO2024029205A1
WO2024029205A1 PCT/JP2023/021877 JP2023021877W WO2024029205A1 WO 2024029205 A1 WO2024029205 A1 WO 2024029205A1 JP 2023021877 W JP2023021877 W JP 2023021877W WO 2024029205 A1 WO2024029205 A1 WO 2024029205A1
Authority
WO
WIPO (PCT)
Prior art keywords
mooring
tension
drum
hardware
mooring line
Prior art date
Application number
PCT/JP2023/021877
Other languages
French (fr)
Japanese (ja)
Inventor
英輝 風間
嵩 野田
啓司 大江
篤志 森下
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2024029205A1 publication Critical patent/WO2024029205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/04Fastening or guiding equipment for chains, ropes, hawsers, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/16Tying-up; Shifting, towing, or pushing equipment; Anchoring using winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • B66D1/58Safety gear responsive to excess of load

Definitions

  • the present disclosure relates to a mooring line tension monitoring system.
  • a mooring line When mooring a ship to a fixed structure such as a quay or a sea base, a mooring line is strung around at least one mooring hardware on the ship's hull, and the tip of the mooring line is anchored to a mooring post of the fixed structure. .
  • the mooring line is wound up or unwound by a mooring machine (mooring winch) installed on the hull.
  • Patent Document 1 discloses that a mooring machine includes a drum around which a mooring line is wound, and a band brake that can be switched between a restrained state that prohibits rotation of the drum and an open state that allows rotation of the drum. It is described that when the brake is in a restrained state, the tension in the mooring line is calculated from the detected value of a load cell provided in the band brake and the tension action radius on the drum.
  • Patent Document 2 describes that a fiber rope is used as a mooring rope, an elongation rate sensor is twisted at the tip of the fiber rope, and the tension of the mooring rope is calculated from the detected value of the elongation rate sensor. There is.
  • the tension of the mooring line is calculated from the detected value of the load cell installed in the band brake and the radius of tension action on the drum, the calculated tension is based on the tension of the portion of the mooring line near the drum. It is tension.
  • the tension of the mooring line is different before and after the mooring hardware. That is, with the configuration described in Patent Document 1, it is not possible to detect the most important tension on the mooring pole side, which is the tension in the portion of the mooring line between the mooring hardware and the mooring pole.
  • an object of the present disclosure is to provide a mooring line tension monitoring system that can detect the mooring pole side tension of a mooring line without using an elongation rate sensor.
  • the present disclosure is a system for monitoring the tension of a mooring line that is stretched around at least one mooring hardware on a ship's hull and whose tip is moored to a mooring post of a fixed structure, the system comprising: a drum around which the mooring line is wound; and a drum-side tension that is the tension in a portion of the mooring line between the mooring machine and the at least one mooring hardware, and the mooring line is stretched over the at least one mooring hardware.
  • a mooring line tension monitoring system comprising: a control device that calculates a mooring column side tension that is a tension in a portion between the mooring line and the column.
  • a mooring line tension monitoring system that can detect the mooring pole side tension of a mooring line without using an elongation rate sensor.
  • FIG. 1 is a schematic configuration diagram of a mooring line tension monitoring system according to an embodiment. It is a front view of a mooring machine. It is a schematic block diagram of a band brake.
  • FIG. 1 shows a mooring line tension monitoring system 1 according to one embodiment.
  • This mooring line tension monitoring system 1 monitors the tension of a mooring line 10 when a ship 2 is moored by the mooring line 10 to a fixed structure 3 such as a quay or a sea base.
  • the mooring line tension monitoring system 1 includes a plurality of mooring machines 4 provided on the hull 21 of the ship 2 and a control device 9 that controls these mooring machines 4.
  • Each mooring machine 4 winds up and unwinds the corresponding mooring line 10.
  • four mooring machines 4 are arranged on the port and starboard sides of the bow side and the port and starboard sides of the stern side, but the number and position of the mooring machines 4 can be changed as appropriate.
  • a plurality of mooring hardware 22 are provided on the hull 21, and a plurality of mooring columns 31 are provided on the fixed structure 3.
  • each mooring line 10 is wrapped around at least one mooring hardware 22, and the tip of the mooring line 10 is anchored to a mooring post 31.
  • all the mooring lines 10 are strung around two mooring hardware 22, but the number of mooring hardware 22 over which each mooring line 10 is strung is one or three or more. Good too.
  • the mooring hardware 22 is, for example, a stand roller, a fairlead, a deck roller, a chock, etc.
  • the mooring bollard 31 is, for example, a bit, a bollard, a quick release hook, or the like.
  • the mooring line 10 may be a fiber rope or a metal wire. Examples of the material for the fiber rope include nylon and ultra-high molecular weight polyethylene (HMPE).
  • the mooring line 10 may have a distal end portion made of a fiber rope, and a majority of the remaining portion made of wire.
  • each mooring machine 4 includes a drum 7 around which the mooring line 10 is wound, and a motor 51 that rotates the drum 7.
  • the drum 7 is rotatably supported by a support base 25.
  • a reducer 52 is provided between the motor 51 and the drum 7, and a clutch 53 and a band brake 6 are provided between the reducer 52 and the drum 7. That is, the motor 51 rotates the drum 7 via the reducer 52 and the clutch 53.
  • the motor 51 rotates in a first direction in which the mooring line 10 is wound around the drum 7 and in a second direction in which the mooring line 10 is unwound from the drum 7.
  • the motor 51 is a hydraulic motor, and hydraulic oil is supplied to and discharged from the hydraulic motor via a control valve 55.
  • the control valve 55 By controlling the control valve 55 by the control device 9, the motor 51 is switched between stopping, rotating in the first direction, and rotating in the second direction.
  • the motor 51 may be an electric motor and may be directly controlled by the control device 9.
  • the motor 51 is provided with a torque detector 50 that detects the torque of the motor 51.
  • a torque detector 50 that detects the torque of the motor 51.
  • the motor 51 is a hydraulic motor
  • a pressure sensor that measures the inflow pressure of hydraulic oil supplied to the hydraulic motor is used as the torque detector 50, and the inflow pressure measured by the pressure sensor is used as the torque detector 50. This is converted to a torque of 51.
  • a torque sensor that directly measures the torque of the motor 51 may be used.
  • the motor 51 is an electric motor, the current flowing through the electric motor may be converted into torque.
  • the clutch 53 is switched between a engaged state in which the drum 7 is connected to the reducer 52 and a disengaged state in which the drum 7 is separated from the reducer 52.
  • the clutch 53 includes a hydraulic cylinder. This hydraulic cylinder is connected to a solenoid valve 81, and when the solenoid valve 81 is controlled by the control device 9, the clutch 53 can be switched from the engaged state to the disengaged state or vice versa.
  • the clutch 53 may include an electric cylinder instead of the hydraulic cylinder, and the electric cylinder may be directly controlled by the control device 9.
  • the band brake 6 is switched between a restrained state in which rotation of the drum 7 is prohibited and an open state in which rotation of the drum 7 is permitted.
  • the band brake 6 includes a hydraulic cylinder 66, as shown in FIG.
  • This hydraulic cylinder 66 is connected to a solenoid valve 82 (see FIG. 2), and when the solenoid valve 82 is controlled by the control device 9, the band brake 6 is switched from the restrained state to the released state or vice versa. I can do it.
  • the band brake 6 may include an electric cylinder instead of the hydraulic cylinder 66, and the electric cylinder may be directly controlled by the control device 9.
  • the band brake 6 includes a brake drum 61 that rotates together with the drum 7, and a pair of arcuate bands 62 and 63 that extend along the brake drum 61.
  • One ends of the bands 62 and 63 are connected to each other via a pin 64, and the other ends of the bands 62 and 63 are connected to the above-mentioned hydraulic cylinder 66 via a link mechanism 65.
  • the hydraulic cylinder 66 moves the other ends of the bands 62 and 63 away from each other via the link mechanism 65, a slight gap is formed between the bands 62 and 63 and the brake drum 61, and the band brake 6 becomes in an open state.
  • the hydraulic cylinder 66 brings the other ends of the bands 62, 63 closer to each other via the link mechanism 65, the bands 62, 63 tighten the brake drum 61, and the band brake 6 becomes in a restrained state.
  • the band brake 6 is provided with a load cell 60 that detects the band tension F acting on the bands 62 and 63 in a restrained state.
  • a pin-type load cell 60 is employed.
  • the link mechanism 65 includes a tension bar 67, and the tension bar 67 is connected to the bracket 23 provided on the hull 21 via the load cell 60.
  • An operation signal is input to the control device 9 for each mooring machine 4.
  • the control device 9 controls the control valve 55 and solenoid valves 81 and 82 of the corresponding mooring machine 4 based on the input operation signal. For example, since the control valve 55 includes an operating lever so that a sailor can manually operate the mooring machine 4, when the operating lever is tilted, an operating signal corresponding to the tilting direction is input to the control device 9. Alternatively, when automatic ship maneuvering is performed, the control device 9 may generate the operation signal by itself.
  • the functionality of the elements disclosed herein may include general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits configured or programmed to perform the disclosed functions, and/or a combination thereof.
  • Processors are considered processing circuits or circuits because they include transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, and the software is used to configure the hardware and/or the processor.
  • control device 9 is electrically connected to the torque detector 50 and load cell 60 described above.
  • control device 9 is also electrically connected to the winding layer number detector 70 and two cameras 91 (see FIG. 1).
  • the winding layer number detector 70 detects the winding layer number of the mooring line 10 on the drum 7 .
  • the winding layer number detector 70 converts the position of the outermost circumferential surface of the mooring line 10 wound around the drum 7 into the winding layer number.
  • One camera 91 among the two cameras 91 is an area that includes two mooring machines 4 arranged on the bow side and all the mooring hardware 22 over which the mooring lines 10 extending from these mooring machines 4 may be strung.
  • the other camera 91 photographs an area including the two mooring machines 4 arranged on the stern side and all the mooring hardware 22 over which the mooring lines 10 extending from these mooring machines 4 may be strung. do.
  • the control device 9 determines the portion of each mooring line 10 between the mooring hardware 22 and the mooring post 31 based on the detection results of the torque detector 50, load cell 60, winding layer number detector 70, and the image of the camera 91. Mooring pillar side tension P0, which is tension, is calculated.
  • the control device 9 calculates the drum-side tension P, which is the tension in the portion of each mooring line 10 between the mooring machine 4 and the mooring hardware 22. Specifically, when the band brake 6 is in the open state, the control device 9 operates based on the torque T of the motor 51 detected by the torque detector 50 and the number N of winding layers detected by the winding layer number detector 70. Calculate the drum side tension P. For example, the control device 9 calculates the drum side tension P using the following equation (1).
  • the control device 9 adjusts the drum side tension P based on the band tension F detected by the load cell 60 and the number N of winding layers detected by the winding layer number detector 70. Calculate. For example, the control device 9 calculates the drum side tension P using the following equation (2).
  • control device 9 determines, for each mooring line 10, the tension attenuation rate R due to the mooring line 10 being stretched over the mooring hardware 22.
  • the image of the camera 91 is used to determine this tension attenuation rate R.
  • the control device 9 determines which mooring hardware 22 each mooring line 10 is wrapped around and the winding angle of the mooring line 10 around each mooring hardware 22 from the image taken by the camera 91. Then, the control device 9 calculates an individual attenuation rate Ri for each of the mooring hardware 22 around which each mooring line 10 is stretched. In addition, "i" refers to the number of the mooring hardware 22 around which one mooring line 10 is stretched. For example, the control device 9 calculates the individual attenuation rate Ri using the following equation (3).
  • ⁇ i Friction coefficient regarding the i-th mooring hardware 22
  • ⁇ i Wrapping angle of the mooring line 10 around the i-th mooring hardware 22, that is, the individual damping rate Ri of the i-th mooring hardware 22 uses the friction coefficient ⁇ i and the wrapping angle ⁇ i It is calculated as follows.
  • the friction coefficient ⁇ i is a coefficient depending on the type of the i-th mooring hardware 22 and the type of the mooring line 10 stretched over the i-th mooring hardware 22.
  • the control device 9 stores in advance a friction coefficient table that defines the correspondence between the type of mooring hardware 22 and the type (material and diameter) of the mooring line 10 and the coefficient of friction. Based on the type of mooring line 10 and the image taken by the camera 91, the friction coefficient ⁇ i of the i-th mooring hardware 22 is determined using the friction coefficient table. For example, Table 1 shows a friction coefficient table when the mooring hardware 22 is a chock.
  • the control device 9 determines the individual attenuation rate Ri of the mooring hardware 22 based on the tension attenuation due to the mooring rope 10 being stretched over the mooring hardware 22. The rate is determined as R.
  • the control device 9 multiplies the individual attenuation rates Ri of those mooring hardware 22 and causes the mooring line 10 to multiply those mooring hardware 22 by the multiplication value. It is determined as the tension attenuation rate R due to passing. That is, the control device 9 determines the tension attenuation rate R of the entire mooring line 10 using the following equation (4).
  • n Total number of mooring hardware 22 over which one mooring line 10 is stretched
  • the drum side tension P is converted into the mooring column side tension P0 using the tension attenuation rate R, so the mooring line tension monitoring system 1 of the present embodiment converts the drum side tension P into the mooring column side tension P0 without using an elongation rate sensor.
  • the mooring column side tension P0 of the cable 10 can be detected.
  • the tension attenuation rate R is determined using equation (4), so the tension attenuation rate R of the entire mooring line 10 can be calculated by simply calculating the individual attenuation rate Ri of each mooring hardware 22. be able to.
  • the individual damping rate Ri of each mooring hardware 22 is calculated using the friction coefficient ⁇ i and the wrapping angle ⁇ i, the individual damping rate Ri can be calculated using the same formula.
  • a split drum including a storage drum and a tension drum is used as the drum 7, and when mooring a ship, the mooring line 10 is wound around the tension drum, and the line of action of tension is applied from the center of the drum 7.
  • the radius may be constant. However, in this case, it is necessary to wind the mooring line 10 around the tension drum when mooring the vessel.
  • the number of winding layers of the mooring line 10 on the drum 7 is detected by the winding layer number detector 70, there is no need for special work at the time of mooring, which is required when a split drum is used.
  • the mooring hardware 22 over which the mooring line 10 is stretched may be determined in advance.
  • the camera 91 is not necessary, and the winding angle of the mooring line 10 around each mooring hardware 22 other than the mooring hardware 22 located near the outline of the ship 2 may be stored in advance in the control device 9.
  • the control device 9 determines whether the ship is moored based on the GPS information (latitude and longitude) of the ship 2 and the topographic information of the fixed structure 3 (including the latitude and longitude of the mooring pier 31) stored in the control device 9 in advance.
  • the angle at which the mooring line 10 is wrapped around the mooring hardware 22 located closest to the pillar 31 may be calculated.
  • the present disclosure is a system for monitoring the tension of a mooring line that is stretched over at least one mooring hardware on a ship's hull and whose tip is moored to a mooring post of a fixed structure,
  • a mooring machine including a drum around which a rope is wound, and a drum-side tension that is a tension in a portion of the mooring line between the mooring machine and the at least one mooring hardware,
  • the at least one of the mooring ropes is determined by determining the tension attenuation rate due to the mooring rope being stretched over two mooring hardware, and multiplying the drum side tension by the tension attenuation rate or dividing the drum side tension by the tension attenuation rate.
  • a mooring line tension monitoring system is provided, comprising: a control device that calculates a mooring pole side tension that is a tension in a portion between two mooring hardware and the mooring pole.
  • the drum side tension is converted to the mooring column side tension using the tension attenuation rate, the mooring column side tension of the mooring line can be detected without using an elongation rate sensor.
  • the at least one mooring hardware includes a plurality of mooring hardware
  • the control device calculates an individual attenuation rate for each of the plurality of mooring hardware, and
  • the tension attenuation rate due to the mooring line being stretched across the plurality of mooring hardware may be determined by multiplying the individual attenuation rates of the mooring hardware.
  • the tension attenuation rate of the entire mooring line can be calculated by simply calculating the individual attenuation rate of each mooring hardware.
  • the control device uses a friction coefficient depending on the type of the mooring line and the mooring hardware, and a winding angle of the mooring line with respect to the mooring hardware to perform the individual damping.
  • a rate may also be calculated.
  • the individual attenuation rates can be calculated using the same formula.
  • the control device multiplies the drum side tension by the tension attenuation rate.
  • the mooring post side tension may be calculated by calculating the mooring post side tension, and dividing the drum side tension by the tension attenuation rate when the mooring line is unwound from the drum and when the drum is stopped. good. According to this configuration, by simply switching whether to multiply or divide the drum side tension by the tension attenuation rate, the mooring pole side tension when winding the mooring rope and the mooring pole side tension when the mooring rope is unwinding and when the drum is stopped can be changed. Side tension can be calculated.
  • the mooring machine includes a motor that rotates the drum, a restraint state that prohibits rotation of the drum, and a restraint state that prohibits rotation of the drum, and a state that allows rotation of the drum.
  • the control device includes a band brake that is switched between an open state and a band brake, and the control device calculates the drum side tension based on the torque of the motor when the band brake is in the open state, and when the band brake is in the open state, the control device calculates the drum side tension based on the torque of the motor. When in a restrained state, the drum side tension may be calculated based on the band tension of the band brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Abstract

A mooring line tension monitoring system (1) according to one embodiment monitors the tension of a mooring line (10), which is strung on at least one mooring fitting (22) on a vessel (21) and has been fastened, at the tip end thereof, to a mooring post (31) of a fixing structure (3), and includes a control device (9) and a mooring apparatus (4) including a drum on which the mooring line (10) is wound. The control device (9) calculates the drum-side tension P of the mooring line (10), determines the tension attenuation factor R due to the mooring line (10) being strung on the at least one mooring fitting (22), and calculates the mooring post-side tension P0 of the mooring line (10) by multiplying the tension attenuation factor R by the drum-side tension P, or by dividing the drum-side tension P by the tension attenuation factor R.

Description

係船索張力監視システムMooring line tension monitoring system
 本開示は、係船索張力監視システムに関する。 The present disclosure relates to a mooring line tension monitoring system.
 船舶を岸壁や海上基地などの固定構造物に係留する際には、係船索が船体上の少なくとも1つの係船金物に掛け渡されるとともに係船索の先端が固定構造物の係船柱に係止される。係船索は、船体上に設けられた係船機(ムアリングウインチ)により巻き取られたり巻き出されたりする。 When mooring a ship to a fixed structure such as a quay or a sea base, a mooring line is strung around at least one mooring hardware on the ship's hull, and the tip of the mooring line is anchored to a mooring post of the fixed structure. . The mooring line is wound up or unwound by a mooring machine (mooring winch) installed on the hull.
 係船時には、潮位、積載量、風および潮流などにより係船索の張力が変化するため、係船索の張力を監視することが望まれる。例えば、特許文献1には、係船機が、係船索が巻き付けられたドラムと、ドラムの回転を禁止する拘束状態とドラムの回転を許容する開放状態との間で切り換えられるバンドブレーキを含み、バンドブレーキが拘束状態にあるときに、バンドブレーキに設けられたロードセルの検出値とドラム上の張力作用半径とから係船索の張力を算出することが記載されている。 When mooring a ship, it is desirable to monitor the tension of the mooring line because it changes depending on the tide level, load, wind, current, etc. For example, Patent Document 1 discloses that a mooring machine includes a drum around which a mooring line is wound, and a band brake that can be switched between a restrained state that prohibits rotation of the drum and an open state that allows rotation of the drum. It is described that when the brake is in a restrained state, the tension in the mooring line is calculated from the detected value of a load cell provided in the band brake and the tension action radius on the drum.
 また、特許文献2には、係船索として繊維ロープを用い、その繊維ロープの先端部分に伸長率センサを撚り込み、その伸長率センサの検出値から係船索の張力を算出することが記載されている。 Further, Patent Document 2 describes that a fiber rope is used as a mooring rope, an elongation rate sensor is twisted at the tip of the fiber rope, and the tension of the mooring rope is calculated from the detected value of the elongation rate sensor. There is.
特開2002-211478号公報Japanese Patent Application Publication No. 2002-211478 国際公開第2020/110902号International Publication No. 2020/110902
 特許文献1に記載されたように、バンドブレーキに設けられたロードセルの検出値とドラム上の張力作用半径とから係船索の張力を算出した場合、算出される張力は係船索におけるドラム近傍部分の張力である。上述したように係船索は船体上の少なくとも1つの係船金物に掛け渡されるため、係船索の張力は係船金物の前後で異なる。すなわち、特許文献1に記載された構成では、最も重要である係船索における係船金物と係船柱の間の部分の張力である係船柱側張力を検知することができない。 As described in Patent Document 1, when the tension of the mooring line is calculated from the detected value of the load cell installed in the band brake and the radius of tension action on the drum, the calculated tension is based on the tension of the portion of the mooring line near the drum. It is tension. As described above, since the mooring line is wrapped around at least one mooring hardware on the hull, the tension of the mooring line is different before and after the mooring hardware. That is, with the configuration described in Patent Document 1, it is not possible to detect the most important tension on the mooring pole side, which is the tension in the portion of the mooring line between the mooring hardware and the mooring pole.
 これに対し、特許文献2に記載された構成では、係船索の係船柱側張力を検知することができるが、伸長率センサを繊維ロープに撚り込む必要がある。 On the other hand, in the configuration described in Patent Document 2, it is possible to detect the tension of the mooring line on the mooring column side, but it is necessary to twist the elongation rate sensor into the fiber rope.
 そこで、本開示は、伸長率センサを用いることなく係船索の係船柱側張力を検知することができる係船索張力監視システムを提供することを目的とする。 Therefore, an object of the present disclosure is to provide a mooring line tension monitoring system that can detect the mooring pole side tension of a mooring line without using an elongation rate sensor.
 本開示は、船体上の少なくとも1つの係船金物に掛け渡されるとともに先端が固定構造物の係船柱に係止された係船索の張力を監視するシステムであって、前記係船索が巻き付けられたドラムを含む係船機と、前記係船索における前記係船機と前記少なくとも1つの係船金物との間の部分の張力であるドラム側張力を算出するとともに、前記係船索が前記少なくとも1つの係船金物に掛け渡されることによる張力減衰率を決定し、前記ドラム側張力に前記張力減衰率を乗算するか前記ドラム側張力を前記張力減衰率で除算することで前記係船索における前記少なくとも1つの係船金物と前記係船柱との間の部分の張力である係船柱側張力を算出する制御装置と、を備える、係船索張力監視システムを提供する。 The present disclosure is a system for monitoring the tension of a mooring line that is stretched around at least one mooring hardware on a ship's hull and whose tip is moored to a mooring post of a fixed structure, the system comprising: a drum around which the mooring line is wound; and a drum-side tension that is the tension in a portion of the mooring line between the mooring machine and the at least one mooring hardware, and the mooring line is stretched over the at least one mooring hardware. determining a tension attenuation rate by multiplying the drum side tension by the tension attenuation rate or dividing the drum side tension by the tension attenuation rate to reduce the at least one mooring hardware in the mooring line and the mooring vessel. A mooring line tension monitoring system is provided, comprising: a control device that calculates a mooring column side tension that is a tension in a portion between the mooring line and the column.
 本開示によれば、伸長率センサを用いることなく係船索の係船柱側張力を検知することができる係船索張力監視システムが提供される。 According to the present disclosure, a mooring line tension monitoring system is provided that can detect the mooring pole side tension of a mooring line without using an elongation rate sensor.
一実施形態に係る係船索張力監視システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a mooring line tension monitoring system according to an embodiment. 係船機の正面図である。It is a front view of a mooring machine. バンドブレーキの概略構成図である。It is a schematic block diagram of a band brake.
 図1に、一実施形態に係る係船索張力監視システム1を示す。この係船索張力監視システム1は、船舶2が係船索10によって岸壁や海上基地などの固定構造物3に係留されているときに、係船索10の張力を監視するものである。 FIG. 1 shows a mooring line tension monitoring system 1 according to one embodiment. This mooring line tension monitoring system 1 monitors the tension of a mooring line 10 when a ship 2 is moored by the mooring line 10 to a fixed structure 3 such as a quay or a sea base.
 具体的に、係船索張力監視システム1は、船舶2の船体21上に設けられた複数の係船機4と、これらの係船機4を制御する制御装置9を含む。各係船機4は、対応する係船索10の巻き取りおよび巻き出しを行う。本実施形態では、船首側の左舷および右舷ならびに船尾側の左舷および右舷に4つの係船機4が配置されているが、係船機4の数および位置は適宜変更可能である。 Specifically, the mooring line tension monitoring system 1 includes a plurality of mooring machines 4 provided on the hull 21 of the ship 2 and a control device 9 that controls these mooring machines 4. Each mooring machine 4 winds up and unwinds the corresponding mooring line 10. In this embodiment, four mooring machines 4 are arranged on the port and starboard sides of the bow side and the port and starboard sides of the stern side, but the number and position of the mooring machines 4 can be changed as appropriate.
 船体21上には複数の係船金物22が設けられており、固定構造物3には複数の係船柱31が設けられている。係船時、各係船索10が少なくとも1つの係船金物22に掛け渡されるとともに、係船索10の先端が係船柱31に係止される。図1では、全ての係船索10が2つの係船金物22に掛け渡されているが、各係船索10が掛け渡される係船金物22の数は、1つであっても3つ以上であってもよい。 A plurality of mooring hardware 22 are provided on the hull 21, and a plurality of mooring columns 31 are provided on the fixed structure 3. At the time of mooring, each mooring line 10 is wrapped around at least one mooring hardware 22, and the tip of the mooring line 10 is anchored to a mooring post 31. In FIG. 1, all the mooring lines 10 are strung around two mooring hardware 22, but the number of mooring hardware 22 over which each mooring line 10 is strung is one or three or more. Good too.
 係船金物22は、例えば、スタンドローラ、フェアリーダ、デッキローラ、チョックなどである。係船柱31は、例えば、ビット、ボラード、クイックリリースフックなどである。係船索10は、繊維ロープであってもよいし、金属製のワイヤーであってもよい。繊維ロープの材質としては、例えば、ナイロン、超高分子量ポリエチレン(HMPE)などが挙げられる。係船索10は、先端部分が繊維ロープで構成され、残りの大部分がワイヤーで構成されたものであってもよい。 The mooring hardware 22 is, for example, a stand roller, a fairlead, a deck roller, a chock, etc. The mooring bollard 31 is, for example, a bit, a bollard, a quick release hook, or the like. The mooring line 10 may be a fiber rope or a metal wire. Examples of the material for the fiber rope include nylon and ultra-high molecular weight polyethylene (HMPE). The mooring line 10 may have a distal end portion made of a fiber rope, and a majority of the remaining portion made of wire.
 図2に示すように、各係船機4は、係船索10が巻き付けられたドラム7と、ドラム7を回転させるモータ51を含む。なお、図2では、図面の簡略化のために係船索10の作図を省略する。ドラム7は、支持台25により回転可能に支持されている。本実施形態では、モータ51とドラム7の間に減速機52が設けられており、減速機52とドラム7との間にクラッチ53およびバンドブレーキ6が設けられている。つまり、モータ51は、減速機52およびクラッチ53を介してドラム7を回転させる。 As shown in FIG. 2, each mooring machine 4 includes a drum 7 around which the mooring line 10 is wound, and a motor 51 that rotates the drum 7. In addition, in FIG. 2, the drawing of the mooring line 10 is omitted for the sake of simplification of the drawing. The drum 7 is rotatably supported by a support base 25. In this embodiment, a reducer 52 is provided between the motor 51 and the drum 7, and a clutch 53 and a band brake 6 are provided between the reducer 52 and the drum 7. That is, the motor 51 rotates the drum 7 via the reducer 52 and the clutch 53.
 モータ51は、係船索10がドラム7に巻き取られる第1方向と、係船索10がドラム7から巻き出される第2方向に回転する。本実施形態では、モータ51が油圧モータであり、制御弁55を介して油圧モータに対する作動油の供給および排出が行われる。制御弁55が制御装置9によって制御されることで、モータ51の停止、第1方向への回転および第2方向への回転が切り換えられる。ただし、モータ51が電動モータであり、制御装置9によって直接的に制御されてもよい。 The motor 51 rotates in a first direction in which the mooring line 10 is wound around the drum 7 and in a second direction in which the mooring line 10 is unwound from the drum 7. In this embodiment, the motor 51 is a hydraulic motor, and hydraulic oil is supplied to and discharged from the hydraulic motor via a control valve 55. By controlling the control valve 55 by the control device 9, the motor 51 is switched between stopping, rotating in the first direction, and rotating in the second direction. However, the motor 51 may be an electric motor and may be directly controlled by the control device 9.
 また、モータ51には、当該モータ51のトルクを検出するトルク検出器50が設けられている。本実施形態では、モータ51が油圧モータであるので、トルク検出器50として、油圧モータに供給される作動油の流入圧を計測する圧力センサが用いられ、圧力センサで計測された流入圧がモータ51のトルクに換算される。ただし、圧力センサに代えて、モータ51のトルクを直接的に計測するトルクセンサが採用されてもよい。あるいは、モータ51が電動モータである場合は、電動モータに流れる電流がトルクに換算されてもよい。 Further, the motor 51 is provided with a torque detector 50 that detects the torque of the motor 51. In this embodiment, since the motor 51 is a hydraulic motor, a pressure sensor that measures the inflow pressure of hydraulic oil supplied to the hydraulic motor is used as the torque detector 50, and the inflow pressure measured by the pressure sensor is used as the torque detector 50. This is converted to a torque of 51. However, instead of the pressure sensor, a torque sensor that directly measures the torque of the motor 51 may be used. Alternatively, if the motor 51 is an electric motor, the current flowing through the electric motor may be converted into torque.
 クラッチ53は、ドラム7を減速機52と連結する嵌状態と、ドラム7を減速機52から切り離す脱状態との間で切り換えられる。本実施形態では、クラッチ53が油圧シリンダを含む。この油圧シリンダは電磁弁81と接続されており、電磁弁81が制御装置9によって制御されることで、クラッチ53が嵌状態から脱状態へまたはそれとは逆に切り換えらえる。ただし、クラッチ53が油圧シリンダの代わりに電動シリンダを含み、その電動シリンダが制御装置9によって直接的に制御されてもよい。 The clutch 53 is switched between a engaged state in which the drum 7 is connected to the reducer 52 and a disengaged state in which the drum 7 is separated from the reducer 52. In this embodiment, the clutch 53 includes a hydraulic cylinder. This hydraulic cylinder is connected to a solenoid valve 81, and when the solenoid valve 81 is controlled by the control device 9, the clutch 53 can be switched from the engaged state to the disengaged state or vice versa. However, the clutch 53 may include an electric cylinder instead of the hydraulic cylinder, and the electric cylinder may be directly controlled by the control device 9.
 バンドブレーキ6は、ドラム7の回転を禁止する拘束状態と、ドラム7の回転を許容する開放状態との間で切り換えられる。本実施形態では、図3に示すように、バンドブレーキ6が油圧シリンダ66を含む。この油圧シリンダ66は電磁弁82(図2参照)と接続されており、電磁弁82が制御装置9によって制御されることで、バンドブレーキ6が拘束状態から開放状態へまたはそれとは逆に切り換えらえる。ただし、バンドブレーキ6が油圧シリンダ66の代わりに電動シリンダを含み、その電動シリンダが制御装置9によって直接的に制御されてもよい。 The band brake 6 is switched between a restrained state in which rotation of the drum 7 is prohibited and an open state in which rotation of the drum 7 is permitted. In this embodiment, the band brake 6 includes a hydraulic cylinder 66, as shown in FIG. This hydraulic cylinder 66 is connected to a solenoid valve 82 (see FIG. 2), and when the solenoid valve 82 is controlled by the control device 9, the band brake 6 is switched from the restrained state to the released state or vice versa. I can do it. However, the band brake 6 may include an electric cylinder instead of the hydraulic cylinder 66, and the electric cylinder may be directly controlled by the control device 9.
 より詳しくは、バンドブレーキ6は、ドラム7と共に回転するブレーキドラム61と、このブレーキドラム61に沿う円弧状の一対のバンド62,63を含む。バンド62,63の一端同士はピン64を介して連結されており、バンド62,63の他端がリンク機構65を介して上述した油圧シリンダ66に接続されている。油圧シリンダ66がリンク機構65を介してバンド62,63の他端同士を互いに遠ざけると、バンド62,63とブレーキドラム61との間に僅かな隙間が形成され、バンドブレーキ6が開放状態となる。逆に、油圧シリンダ66がリンク機構65を介してバンド62,63の他端同士を互いに近づけると、バンド62,63がブレーキドラム61を締め付け、バンドブレーキ6が拘束状態となる。 More specifically, the band brake 6 includes a brake drum 61 that rotates together with the drum 7, and a pair of arcuate bands 62 and 63 that extend along the brake drum 61. One ends of the bands 62 and 63 are connected to each other via a pin 64, and the other ends of the bands 62 and 63 are connected to the above-mentioned hydraulic cylinder 66 via a link mechanism 65. When the hydraulic cylinder 66 moves the other ends of the bands 62 and 63 away from each other via the link mechanism 65, a slight gap is formed between the bands 62 and 63 and the brake drum 61, and the band brake 6 becomes in an open state. . Conversely, when the hydraulic cylinder 66 brings the other ends of the bands 62, 63 closer to each other via the link mechanism 65, the bands 62, 63 tighten the brake drum 61, and the band brake 6 becomes in a restrained state.
 バンドブレーキ6には、拘束状態でバンド62,63に作用するバンド張力Fを検出するロードセル60が設けられている。本実施形態では、ピン型のロードセル60が採用されている。リンク機構65はテンションバー67を含み、このテンションバー67が、船体21上に設けられたブラケット23とロードセル60を介して連結されている。 The band brake 6 is provided with a load cell 60 that detects the band tension F acting on the bands 62 and 63 in a restrained state. In this embodiment, a pin-type load cell 60 is employed. The link mechanism 65 includes a tension bar 67, and the tension bar 67 is connected to the bracket 23 provided on the hull 21 via the load cell 60.
 制御装置9には係船機4ごとに操作信号が入力される。制御装置9は、入力される操作信号に基づいて、対応する係船機4の制御弁55および電磁弁81,82を制御する。例えば、制御弁55は船員が係船機4を手動で操作できるように操作レバーを含むため、操作レバーが傾倒されたときにその傾倒方向に応じた操作信号が制御装置9へ入力される。あるいは、自動操船が行われる場合は、制御装置9が自ら操作信号を生成してもよい。 An operation signal is input to the control device 9 for each mooring machine 4. The control device 9 controls the control valve 55 and solenoid valves 81 and 82 of the corresponding mooring machine 4 based on the input operation signal. For example, since the control valve 55 includes an operating lever so that a sailor can manually operate the mooring machine 4, when the operating lever is tilted, an operating signal corresponding to the tilting direction is input to the control device 9. Alternatively, when automatic ship maneuvering is performed, the control device 9 may generate the operation signal by itself.
 制御装置9に関し、本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウエアであるか、または、列挙された機能を実行するようにプログラムされたハードウエアである。ハードウエアは、本明細書に開示されているハードウエアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウエアであってもよい。ハードウエアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウエアとソフトウエアの組み合わせであり、ソフトウエアはハードウエアおよび/またはプロセッサの構成に使用される。 With respect to the control device 9, the functionality of the elements disclosed herein may include general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits configured or programmed to perform the disclosed functions, and/or a combination thereof. Processors are considered processing circuits or circuits because they include transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions. The hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, and the software is used to configure the hardware and/or the processor.
 さらに、制御装置9は、上述したトルク検出器50およびロードセル60と電気的に接続されている。本実施形態では、制御装置9が、巻層数検出器70および2つのカメラ91(図1参照)とも電気的に接続されている。巻層数検出器70は、ドラム7上の係船索10の巻層数を検出する。例えば、巻層数検出器70は、ドラム7に巻き付けられた係船索10の最外周面の位置を巻層数に換算する。 Furthermore, the control device 9 is electrically connected to the torque detector 50 and load cell 60 described above. In this embodiment, the control device 9 is also electrically connected to the winding layer number detector 70 and two cameras 91 (see FIG. 1). The winding layer number detector 70 detects the winding layer number of the mooring line 10 on the drum 7 . For example, the winding layer number detector 70 converts the position of the outermost circumferential surface of the mooring line 10 wound around the drum 7 into the winding layer number.
 2つのカメラ91のうち一方のカメラ91は、船首側に配置された2つの係船機4およびこれらの係船機4から延びる係船索10が掛け渡される可能性のある全ての係船金物22を含む領域を撮影し、他方のカメラ91は、船尾側に配置された2つの係船機4およびこれらの係船機4から延びる係船索10が掛け渡される可能性のある全ての係船金物22を含む領域を撮影する。 One camera 91 among the two cameras 91 is an area that includes two mooring machines 4 arranged on the bow side and all the mooring hardware 22 over which the mooring lines 10 extending from these mooring machines 4 may be strung. The other camera 91 photographs an area including the two mooring machines 4 arranged on the stern side and all the mooring hardware 22 over which the mooring lines 10 extending from these mooring machines 4 may be strung. do.
 制御装置9は、トルク検出器50、ロードセル60および巻層数検出器70の検出結果、ならびにカメラ91の映像に基づいて、各係船索10における係船金物22と係船柱31との間の部分の張力である係船柱側張力P0を算出する。 The control device 9 determines the portion of each mooring line 10 between the mooring hardware 22 and the mooring post 31 based on the detection results of the torque detector 50, load cell 60, winding layer number detector 70, and the image of the camera 91. Mooring pillar side tension P0, which is tension, is calculated.
 まず、制御装置9は、各係船索10における係船機4と係船金物22との間の部分の張力であるドラム側張力Pを算出する。具体的に、制御装置9は、バンドブレーキ6が開放状態にあるときは、トルク検出器50で検出されるモータ51のトルクTおよび巻層数検出器70で検出される巻層数Nに基づいてドラム側張力Pを算出する。例えば、制御装置9は、以下の式(1)を使用してドラム側張力Pを算出する。 First, the control device 9 calculates the drum-side tension P, which is the tension in the portion of each mooring line 10 between the mooring machine 4 and the mooring hardware 22. Specifically, when the band brake 6 is in the open state, the control device 9 operates based on the torque T of the motor 51 detected by the torque detector 50 and the number N of winding layers detected by the winding layer number detector 70. Calculate the drum side tension P. For example, the control device 9 calculates the drum side tension P using the following equation (1).
Figure JPOXMLDOC01-appb-M000001
   r:減速機52の減速比[-]
   ηW:係船機4の機械効率[-]
   dR:係船索10の直径「mm」
   dD:ドラム7の直径[mm]
Figure JPOXMLDOC01-appb-M000001
r: Reduction ratio of reducer 52 [-]
ηW: Mechanical efficiency of mooring machine 4 [-]
dR: Diameter of mooring line 10 “mm”
dD: Diameter of drum 7 [mm]
 逆に、バンドブレーキ6が拘束状態にあるときは、制御装置9は、ロードセル60で検出されるバンド張力Fおよび巻層数検出器70で検出される巻層数Nに基づいてドラム側張力Pを算出する。例えば、制御装置9は、以下の式(2)を使用してドラム側張力Pを算出する。 Conversely, when the band brake 6 is in a restrained state, the control device 9 adjusts the drum side tension P based on the band tension F detected by the load cell 60 and the number N of winding layers detected by the winding layer number detector 70. Calculate. For example, the control device 9 calculates the drum side tension P using the following equation (2).
Figure JPOXMLDOC01-appb-M000002
   L:ドラム7の中心からロードセル60までの水平距離[mm]
Figure JPOXMLDOC01-appb-M000002
L: Horizontal distance from the center of the drum 7 to the load cell 60 [mm]
 次に、制御装置9は、係船索10ごとに、当該係船索10が係船金物22に掛け渡されることによる張力減衰率Rを決定する。この張力減衰率Rの決定に、カメラ91の映像が使用される。 Next, the control device 9 determines, for each mooring line 10, the tension attenuation rate R due to the mooring line 10 being stretched over the mooring hardware 22. The image of the camera 91 is used to determine this tension attenuation rate R.
 制御装置9は、カメラ91で撮影された映像から、各係船索10がどの係船金物22に掛け渡されているかと、各係船金物22に対する係船索10の巻き付け角度を判定する。そして、制御装置9は、各係船索10が掛け渡された係船金物22のそれぞれに対して個別減衰率Riを算出する。なお、「i」は、1つの係船索10が掛け渡された係船金物22の番号を指す。例えば、制御装置9は、以下の式(3)を使用して個別減衰率Riを算出する。 The control device 9 determines which mooring hardware 22 each mooring line 10 is wrapped around and the winding angle of the mooring line 10 around each mooring hardware 22 from the image taken by the camera 91. Then, the control device 9 calculates an individual attenuation rate Ri for each of the mooring hardware 22 around which each mooring line 10 is stretched. In addition, "i" refers to the number of the mooring hardware 22 around which one mooring line 10 is stretched. For example, the control device 9 calculates the individual attenuation rate Ri using the following equation (3).
Figure JPOXMLDOC01-appb-M000003
   μi:i番目の係船金物22に関する摩擦係数
   θi:i番目の係船金物22に対する係船索10の巻き付け角度
つまり、i番目の係船金物22の個別減衰率Riは、摩擦係数μiおよび巻き付け角度θiを使用して算出される。
Figure JPOXMLDOC01-appb-M000003
μi: Friction coefficient regarding the i-th mooring hardware 22 θi: Wrapping angle of the mooring line 10 around the i-th mooring hardware 22, that is, the individual damping rate Ri of the i-th mooring hardware 22 uses the friction coefficient μi and the wrapping angle θi It is calculated as follows.
 摩擦係数μiは、i番目の係船金物22の種類およびi番目の係船金物22に掛け渡された係船索10の種類に応じた係数である。制御装置9には、係船金物22の種類および係船索10の種類(材質および直径)と摩擦係数との対応関係を規定した摩擦係数テーブルが予め格納されており、制御装置9は、予め格納された係船索10の種類およびカメラ91の映像に基づき、その摩擦係数テーブルを使用してi番目の係船金物22の摩擦係数μiを決定する。例えば、係船金物22がチョックである場合の摩擦係数テーブルは表1の通りである。 The friction coefficient μi is a coefficient depending on the type of the i-th mooring hardware 22 and the type of the mooring line 10 stretched over the i-th mooring hardware 22. The control device 9 stores in advance a friction coefficient table that defines the correspondence between the type of mooring hardware 22 and the type (material and diameter) of the mooring line 10 and the coefficient of friction. Based on the type of mooring line 10 and the image taken by the camera 91, the friction coefficient μi of the i-th mooring hardware 22 is determined using the friction coefficient table. For example, Table 1 shows a friction coefficient table when the mooring hardware 22 is a chock.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 制御装置9は、係船索10が掛け渡される係船金物22が1つである場合は、その係船金物22の個別減衰率Riを、係船索10がその係船金物22に掛け渡されることによる張力減衰率Rとして決定する。係船索10が掛け渡される係船金物22が複数である場合、制御装置9は、それらの係船金物22の個別減衰率Riを乗算し、その乗算値を係船索10がそれらの係船金物22に掛け渡されることによる張力減衰率Rとして決定する。つまり、制御装置9は、以下の式(4)を使用して係船索10全体の張力減衰率Rを決定する。 When there is only one mooring hardware 22 over which the mooring line 10 is stretched, the control device 9 determines the individual attenuation rate Ri of the mooring hardware 22 based on the tension attenuation due to the mooring rope 10 being stretched over the mooring hardware 22. The rate is determined as R. When there are a plurality of mooring hardware 22 to which the mooring line 10 is stretched, the control device 9 multiplies the individual attenuation rates Ri of those mooring hardware 22 and causes the mooring line 10 to multiply those mooring hardware 22 by the multiplication value. It is determined as the tension attenuation rate R due to passing. That is, the control device 9 determines the tension attenuation rate R of the entire mooring line 10 using the following equation (4).
Figure JPOXMLDOC01-appb-M000005
   n:1つの係船索10が掛け渡される係船金物22の総数
Figure JPOXMLDOC01-appb-M000005
n: Total number of mooring hardware 22 over which one mooring line 10 is stretched
 その後、制御装置9は、ドラム7への係船索10の巻き取り時には、ドラム側張力Pに張力減衰率Rを乗算することで係船柱側張力P0を算出し(P0=P×R)、ドラム7からの係船索10の巻き出し時およびドラム7の停止時には、ドラム側張力Pを張力減衰率Rで除算することで係船柱側張力P0を算出する(P0=P÷R)。このため、ドラム側張力Pに対して張力減衰率Rを乗算するか除算するかを切り換えるだけで、係船索巻き取り時の係船柱側張力P0と係船索巻き出し時およびドラム停止時の係船柱側張力P0を算出することができる。 Thereafter, when winding the mooring line 10 onto the drum 7, the control device 9 calculates the mooring pillar side tension P0 by multiplying the drum side tension P by the tension attenuation rate R (P0=P×R), When the mooring line 10 is unwound from the mooring line 10 from the mooring line 10 and when the drum 7 is stopped, the mooring column side tension P0 is calculated by dividing the drum side tension P by the tension attenuation rate R (P0=P÷R). Therefore, by simply switching whether to multiply or divide the drum side tension P by the tension attenuation rate R, it is possible to change the mooring column side tension P0 when winding the mooring rope and the mooring column when the mooring rope is unwinding and when the drum is stopped. Side tension P0 can be calculated.
 以上説明したように、本実施形態の係船索張力監視システム1では、張力減衰率Rを使用してドラム側張力Pが係船柱側張力P0に換算されるので、伸長率センサを用いることなく係船索10の係船柱側張力P0を検知することができる。 As explained above, in the mooring line tension monitoring system 1 of this embodiment, the drum side tension P is converted into the mooring column side tension P0 using the tension attenuation rate R, so the mooring line tension monitoring system 1 of the present embodiment converts the drum side tension P into the mooring column side tension P0 without using an elongation rate sensor. The mooring column side tension P0 of the cable 10 can be detected.
 しかも、本実施形態では式(4)を使用して張力減衰率Rが決定されるので、各係船金物22の個別減衰率Riを算出するだけで係船索10全体の張力減衰率Rを算出することができる。 Moreover, in this embodiment, the tension attenuation rate R is determined using equation (4), so the tension attenuation rate R of the entire mooring line 10 can be calculated by simply calculating the individual attenuation rate Ri of each mooring hardware 22. be able to.
 さらには、各係船金物22の個別減衰率Riが摩擦係数μiおよび巻き付け角度θiを使用して算出されるので、同じ数式を用いて個別減衰率Riを算出することができる。 Furthermore, since the individual damping rate Ri of each mooring hardware 22 is calculated using the friction coefficient μi and the wrapping angle θi, the individual damping rate Ri can be calculated using the same formula.
 (変形例)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Modified example)
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the present invention.
 例えば、巻層数検出器70を用いる代わりに、ドラム7としてストレージドラムとテンションドラムを含むスプリットドラムが用いられ、係船時にはテンションドラムに係船索10が巻き付けられてドラム7の中心から張力の作用線までの半径が一定とされもよい。しかし、この場合には、係船時に係船索10をテンションドラムに巻き付ける作業が必要である。これに対し、巻層数検出器70によりドラム7上の係船索10の巻層数が検出されれば、スプリットドラムを用いた場合のような係船時の特別な作業が不要である。 For example, instead of using the winding layer number detector 70, a split drum including a storage drum and a tension drum is used as the drum 7, and when mooring a ship, the mooring line 10 is wound around the tension drum, and the line of action of tension is applied from the center of the drum 7. The radius may be constant. However, in this case, it is necessary to wind the mooring line 10 around the tension drum when mooring the vessel. On the other hand, if the number of winding layers of the mooring line 10 on the drum 7 is detected by the winding layer number detector 70, there is no need for special work at the time of mooring, which is required when a split drum is used.
 また、船舶2によっては、係船索10が掛け渡される係船金物22が予め決まっていることがある。この場合、カメラ91は不要であり、制御装置9に、船舶2の輪郭近くに位置する係船金物22以外の各係船金物22に対する係船索10の巻き付け角度が予め格納されてもよい。 Further, depending on the ship 2, the mooring hardware 22 over which the mooring line 10 is stretched may be determined in advance. In this case, the camera 91 is not necessary, and the winding angle of the mooring line 10 around each mooring hardware 22 other than the mooring hardware 22 located near the outline of the ship 2 may be stored in advance in the control device 9.
 また、船舶2の輪郭近くに位置する係船金物22、換言すれば係船索10が掛け渡される係船金物22のうちで係船柱31の最も近くに位置する係船金物22に対する係船索10の巻き付け角度に関しては、制御装置9が、船舶2のGPS情報(緯度および経度)、ならびに予め制御装置9に格納された固定構造物3の地形情報(係船柱31の緯度および経度を含む)に基づいて、係船柱31の最も近くに位置する係船金物22に対する係船索10の巻き付け角度を算出してもよい。 Also, regarding the winding angle of the mooring line 10 on the mooring hardware 22 located near the outline of the vessel 2, in other words, the mooring hardware 22 located closest to the mooring post 31 among the mooring hardware 22 around which the mooring line 10 is wrapped. In this case, the control device 9 determines whether the ship is moored based on the GPS information (latitude and longitude) of the ship 2 and the topographic information of the fixed structure 3 (including the latitude and longitude of the mooring pier 31) stored in the control device 9 in advance. The angle at which the mooring line 10 is wrapped around the mooring hardware 22 located closest to the pillar 31 may be calculated.
 (まとめ)
 第1の態様として、本開示は、船体上の少なくとも1つの係船金物に掛け渡されるとともに先端が固定構造物の係船柱に係止された係船索の張力を監視するシステムであって、前記係船索が巻き付けられたドラムを含む係船機と、前記係船索における前記係船機と前記少なくとも1つの係船金物との間の部分の張力であるドラム側張力を算出するとともに、前記係船索が前記少なくとも1つの係船金物に掛け渡されることによる張力減衰率を決定し、前記ドラム側張力に前記張力減衰率を乗算するか前記ドラム側張力を前記張力減衰率で除算することで前記係船索における前記少なくとも1つの係船金物と前記係船柱との間の部分の張力である係船柱側張力を算出する制御装置と、を備える、係船索張力監視システムを提供する。
(summary)
As a first aspect, the present disclosure is a system for monitoring the tension of a mooring line that is stretched over at least one mooring hardware on a ship's hull and whose tip is moored to a mooring post of a fixed structure, A mooring machine including a drum around which a rope is wound, and a drum-side tension that is a tension in a portion of the mooring line between the mooring machine and the at least one mooring hardware, The at least one of the mooring ropes is determined by determining the tension attenuation rate due to the mooring rope being stretched over two mooring hardware, and multiplying the drum side tension by the tension attenuation rate or dividing the drum side tension by the tension attenuation rate. A mooring line tension monitoring system is provided, comprising: a control device that calculates a mooring pole side tension that is a tension in a portion between two mooring hardware and the mooring pole.
 上記の構成によれば、張力減衰率を使用してドラム側張力が係船柱側張力に換算されるので、伸長率センサを用いることなく係船索の係船柱側張力を検知することができる。 According to the above configuration, since the drum side tension is converted to the mooring column side tension using the tension attenuation rate, the mooring column side tension of the mooring line can be detected without using an elongation rate sensor.
 第2の態様として、第1の態様において、前記少なくとも1つの係船金物は複数の係船金物を含み、前記制御装置は、前記複数の係船金物のそれぞれに対して個別減衰率を算出し、前記複数の係船金物の前記個別減衰率を乗算することで、前記係船索が前記複数の係船金物に掛け渡されることによる前記張力減衰率を決定してもよい。この構成によれば、各係船金物の個別減衰率を算出するだけで係船索全体の張力減衰率を算出することができる。 As a second aspect, in the first aspect, the at least one mooring hardware includes a plurality of mooring hardware, and the control device calculates an individual attenuation rate for each of the plurality of mooring hardware, and The tension attenuation rate due to the mooring line being stretched across the plurality of mooring hardware may be determined by multiplying the individual attenuation rates of the mooring hardware. According to this configuration, the tension attenuation rate of the entire mooring line can be calculated by simply calculating the individual attenuation rate of each mooring hardware.
 第3の態様として、第2の態様において、前記制御装置は、前記係船索および前記係船金物の種類に応じた摩擦係数と、前記係船金物に対する前記係船索の巻き付け角度を使用して前記個別減衰率を算出してもよい。この構成によれば、同じ数式を用いて個別減衰率を算出することができる。 As a third aspect, in the second aspect, the control device uses a friction coefficient depending on the type of the mooring line and the mooring hardware, and a winding angle of the mooring line with respect to the mooring hardware to perform the individual damping. A rate may also be calculated. According to this configuration, the individual attenuation rates can be calculated using the same formula.
 第4の態様として、第1乃至第3の態様の何れかにおいて、前記制御装置は、前記ドラムへの前記係船索の巻き取り時、前記ドラム側張力に前記張力減衰率を乗算することで前記係船柱側張力を算出し、前記ドラムからの前記係船索の巻き出し時および前記ドラムの停止時、前記ドラム側張力を前記張力減衰率で除算することで前記係船柱側張力を算出してもよい。この構成によれば、ドラム側張力に対して張力減衰率を乗算するか除算するかを切り換えるだけで、係船索巻き取り時の係船柱側張力と係船索巻き出し時およびドラム停止時の係船柱側張力を算出することができる。 As a fourth aspect, in any one of the first to third aspects, when the mooring line is wound around the drum, the control device multiplies the drum side tension by the tension attenuation rate. The mooring post side tension may be calculated by calculating the mooring post side tension, and dividing the drum side tension by the tension attenuation rate when the mooring line is unwound from the drum and when the drum is stopped. good. According to this configuration, by simply switching whether to multiply or divide the drum side tension by the tension attenuation rate, the mooring pole side tension when winding the mooring rope and the mooring pole side tension when the mooring rope is unwinding and when the drum is stopped can be changed. Side tension can be calculated.
 第5の態様として、第1乃至第4の態様の何れかにおいて、例えば、前記係船機は、前記ドラムを回転させるモータと、前記ドラムの回転を禁止する拘束状態と前記ドラムの回転を許容する開放状態との間で切り換えられるバンドブレーキを含み、前記制御装置は、前記バンドブレーキが前記開放状態にあるときは、前記モータのトルクに基づいて前記ドラム側張力を算出し、前記バンドブレーキが前記拘束状態にあるときは、前記バンドブレーキのバンド張力に基づいて前記ドラム側張力を算出してもよい。
 
As a fifth aspect, in any of the first to fourth aspects, for example, the mooring machine includes a motor that rotates the drum, a restraint state that prohibits rotation of the drum, and a restraint state that prohibits rotation of the drum, and a state that allows rotation of the drum. The control device includes a band brake that is switched between an open state and a band brake, and the control device calculates the drum side tension based on the torque of the motor when the band brake is in the open state, and when the band brake is in the open state, the control device calculates the drum side tension based on the torque of the motor. When in a restrained state, the drum side tension may be calculated based on the band tension of the band brake.

Claims (5)

  1.  船体上の少なくとも1つの係船金物に掛け渡されるとともに先端が固定構造物の係船柱に係止された係船索の張力を監視するシステムであって、
     前記係船索が巻き付けられたドラムを含む係船機と、
     前記係船索における前記係船機と前記少なくとも1つの係船金物との間の部分の張力であるドラム側張力を算出するとともに、前記係船索が前記少なくとも1つの係船金物に掛け渡されることによる張力減衰率を決定し、前記ドラム側張力に前記張力減衰率を乗算するか前記ドラム側張力を前記張力減衰率で除算することで前記係船索における前記少なくとも1つの係船金物と前記係船柱との間の部分の張力である係船柱側張力を算出する制御装置と、
    を備える、係船索張力監視システム。
    A system for monitoring the tension of a mooring line that is stretched over at least one mooring hardware on a ship's hull and whose tip is moored to a mooring post of a fixed structure, the system comprising:
    a mooring machine including a drum around which the mooring line is wound;
    Calculating the drum side tension, which is the tension in the portion of the mooring line between the mooring machine and the at least one mooring hardware, and the tension attenuation rate due to the mooring line being stretched over the at least one mooring hardware. and multiplying the drum side tension by the tension attenuation rate or dividing the drum side tension by the tension attenuation rate to determine the part of the mooring line between the at least one mooring hardware and the mooring post. a control device that calculates the mooring column side tension, which is the tension of the
    A mooring line tension monitoring system equipped with:
  2.  前記少なくとも1つの係船金物は複数の係船金物を含み、
     前記制御装置は、前記複数の係船金物のそれぞれに対して個別減衰率を算出し、前記複数の係船金物の前記個別減衰率を乗算することで、前記係船索が前記複数の係船金物に掛け渡されることによる前記張力減衰率を決定する、請求項1に記載の係船索張力監視システム。
    the at least one mooring hardware includes a plurality of mooring hardware;
    The control device calculates an individual attenuation rate for each of the plurality of mooring hardware, and multiplies it by the individual attenuation rate of the plurality of mooring hardware, so that the mooring line is stretched over the plurality of mooring hardware. 2. The mooring line tension monitoring system according to claim 1, wherein the mooring line tension monitoring system determines the tension decay rate due to a change in tension.
  3.  前記制御装置は、前記係船索および前記係船金物の種類に応じた摩擦係数と、前記係船金物に対する前記係船索の巻き付け角度を使用して前記個別減衰率を算出する、請求項2に記載の係船索張力監視システム。 The mooring vessel according to claim 2, wherein the control device calculates the individual attenuation rate using a friction coefficient depending on the type of the mooring line and the mooring hardware, and a winding angle of the mooring line with respect to the mooring hardware. Cable tension monitoring system.
  4.  前記制御装置は、前記ドラムへの前記係船索の巻き取り時、前記ドラム側張力に前記張力減衰率を乗算することで前記係船柱側張力を算出し、前記ドラムからの前記係船索の巻き出し時および前記ドラムの停止時、前記ドラム側張力を前記張力減衰率で除算することで前記係船柱側張力を算出する、請求項1~3の何れか一項に記載の係船索張力監視システム。 The control device calculates the mooring pole side tension by multiplying the drum side tension by the tension attenuation rate when winding the mooring line onto the drum, and calculates the mooring pole side tension by multiplying the drum side tension by the tension attenuation rate, and unwinds the mooring line from the drum. The mooring line tension monitoring system according to any one of claims 1 to 3, wherein the mooring pole side tension is calculated by dividing the drum side tension by the tension attenuation rate when the drum is stopped.
  5.  前記係船機は、前記ドラムを回転させるモータと、前記ドラムの回転を禁止する拘束状態と前記ドラムの回転を許容する開放状態との間で切り換えられるバンドブレーキを含み、
     前記制御装置は、前記バンドブレーキが前記開放状態にあるときは、前記モータのトルクに基づいて前記ドラム側張力を算出し、前記バンドブレーキが前記拘束状態にあるときは、前記バンドブレーキのバンド張力に基づいて前記ドラム側張力を算出する、請求項1~3の何れか一項に記載の係船索張力監視システム。
    The mooring machine includes a motor that rotates the drum, and a band brake that can be switched between a restrained state that prohibits rotation of the drum and an open state that allows rotation of the drum,
    The control device calculates the drum side tension based on the torque of the motor when the band brake is in the open state, and calculates the band tension of the band brake when the band brake is in the restrained state. The mooring line tension monitoring system according to any one of claims 1 to 3, wherein the drum side tension is calculated based on.
PCT/JP2023/021877 2022-08-04 2023-06-13 Mooring line tension monitoring system WO2024029205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022125071A JP2024021895A (en) 2022-08-04 2022-08-04 Tension monitoring system of mooring rope
JP2022-125071 2022-08-04

Publications (1)

Publication Number Publication Date
WO2024029205A1 true WO2024029205A1 (en) 2024-02-08

Family

ID=89848778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021877 WO2024029205A1 (en) 2022-08-04 2023-06-13 Mooring line tension monitoring system

Country Status (2)

Country Link
JP (1) JP2024021895A (en)
WO (1) WO2024029205A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259186A (en) * 1985-09-06 1987-03-14 Nippon Kokan Kk <Nkk> Method of detecting anchor cable tension of ship
JPH10109686A (en) * 1996-10-03 1998-04-28 Mitsubishi Heavy Ind Ltd Mooring rope tension monitoring device
WO2020110902A1 (en) * 2018-11-26 2020-06-04 帝人株式会社 Mooring line monitoring system, mooring management system, mooring line monitoring method, and mooring management method
JP2020537755A (en) * 2017-10-20 2020-12-24 ウィルヘルムセン・シップス・サーヴィス・アーエスWilhelmsen Ships Service As Smart line sensor
WO2022030533A1 (en) * 2020-08-05 2022-02-10 川崎重工業株式会社 Mooring line tension monitoring system
WO2022118541A1 (en) * 2020-12-02 2022-06-09 川崎重工業株式会社 Mooring line tension control system
WO2022118753A1 (en) * 2020-12-04 2022-06-09 川崎重工業株式会社 Ship steering system and ship steering method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259186A (en) * 1985-09-06 1987-03-14 Nippon Kokan Kk <Nkk> Method of detecting anchor cable tension of ship
JPH10109686A (en) * 1996-10-03 1998-04-28 Mitsubishi Heavy Ind Ltd Mooring rope tension monitoring device
JP2020537755A (en) * 2017-10-20 2020-12-24 ウィルヘルムセン・シップス・サーヴィス・アーエスWilhelmsen Ships Service As Smart line sensor
WO2020110902A1 (en) * 2018-11-26 2020-06-04 帝人株式会社 Mooring line monitoring system, mooring management system, mooring line monitoring method, and mooring management method
WO2022030533A1 (en) * 2020-08-05 2022-02-10 川崎重工業株式会社 Mooring line tension monitoring system
WO2022118541A1 (en) * 2020-12-02 2022-06-09 川崎重工業株式会社 Mooring line tension control system
WO2022118753A1 (en) * 2020-12-04 2022-06-09 川崎重工業株式会社 Ship steering system and ship steering method

Also Published As

Publication number Publication date
JP2024021895A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP3869843B2 (en) Troll netting device and method
CN109070976B (en) Method for operating deck equipment on a ship and winch for deck equipment of a ship
US20130082223A1 (en) Tension control device for an anchor line rope
US4846446A (en) Rope tension damper
WO2022118541A1 (en) Mooring line tension control system
JP2019509941A5 (en)
WO2024029205A1 (en) Mooring line tension monitoring system
JP7538868B2 (en) Mooring line tension monitoring system
NO346340B1 (en) Release system for a supply or tug boat.
RU2143368C1 (en) Mooring unit
EP2217521B1 (en) Ship&#39;s winch, ship provided with ship&#39;s winch
KR102322167B1 (en) Mooring rope tension monitoring system
KR101702515B1 (en) Mooring apparatus and floating offshore structure having the same
JP3148744U (en) Mooring equipment
JP7296103B2 (en) Control device for electric motor winch for ships
CN112378621A (en) Floating body test system device
JP2002003178A (en) On the sea supply winch
JP2017144851A (en) Mooring rope restriction mechanism and mooring structure body
WO2024034251A1 (en) Mooring line state monitoring system
NO143058B (en) SHIP EXTENSION SYSTEM.
JPS62198594A (en) Emergency tow rope device
KR20220048186A (en) Arrangement structure to prevent damage caused by breaking of mooring rope and vessel or offshore structure including the same
EP3478564A1 (en) Vessel anchor assembly
JPH10109686A (en) Mooring rope tension monitoring device
CA3168768A1 (en) Spooling device and vessel comprising the spooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849765

Country of ref document: EP

Kind code of ref document: A1