WO2024024307A1 - Fin-type field effect transistor - Google Patents

Fin-type field effect transistor Download PDF

Info

Publication number
WO2024024307A1
WO2024024307A1 PCT/JP2023/021931 JP2023021931W WO2024024307A1 WO 2024024307 A1 WO2024024307 A1 WO 2024024307A1 JP 2023021931 W JP2023021931 W JP 2023021931W WO 2024024307 A1 WO2024024307 A1 WO 2024024307A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
fins
source electrode
finfet
field effect
Prior art date
Application number
PCT/JP2023/021931
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 脇本
広信 宮本
Original Assignee
株式会社ノベルクリスタルテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノベルクリスタルテクノロジー filed Critical 株式会社ノベルクリスタルテクノロジー
Publication of WO2024024307A1 publication Critical patent/WO2024024307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a fin field effect transistor.
  • Non-Patent Document 1 a fin field effect transistor (FinFET) using Ga 2 O 3 as a semiconductor layer is known (see Non-Patent Document 1).
  • FinFET fin field effect transistor
  • Non-Patent Document 1 fins are formed using lithography and dry etching, similar to a general FinFET manufacturing method.
  • the outermost fin when forming fins by processing a semiconductor layer by dry etching, the outermost fin is generally thicker than the other fins, or the outermost fin is thicker than the other fins. Problems such as roughened side surfaces and reduced thickness uniformity tend to occur. Since the thickness of the fin, including the channel region, affects the magnitude of the FinFET's threshold voltage, any deviation or non-uniformity in the thickness of the outermost fin will result in a deviation in the FinFET's threshold voltage.
  • an inverted MOS channel FET is formed in which a portion corresponding to the trench portion between the fins of a FinFET is a p-type semiconductor region as an inverted MOS channel. can do.
  • a p-type semiconductor region as an inversion MOS channel is formed by implanting acceptor impurities into a semiconductor material, and the threshold voltage of the inversion MOS channel FET can be adjusted by adjusting the concentration of the acceptor impurities.
  • gallium oxide semiconductors such as Ga 2 O 3 into p-type semiconductors
  • An object of the present invention is to provide a FinFET using a gallium oxide-based semiconductor in the semiconductor layer, in which the influence on the threshold voltage due to thickness deviation or non-uniformity of the outermost fin is suppressed. be.
  • one embodiment of the present invention provides the following fin-type field effect transistor.
  • a semiconductor layer made of a gallium oxide-based semiconductor and having a plurality of fins, a gate electrode formed on each side surface of the plurality of fins via a gate insulating film, and the plurality of fins of the semiconductor layer.
  • a source electrode connected to one side of the semiconductor layer, and a drain electrode connected to an opposite side of the plurality of fins of the semiconductor layer, the outermost fin of the plurality of fins being connected to the source electrode electrically.
  • a fin-type field effect transistor which is a dummy fin that is not connected to the fin.
  • a FinFET that uses a gallium oxide-based semiconductor as a semiconductor layer, and in which the influence on the threshold voltage due to thickness deviation or non-uniformity of the outermost fin is suppressed. can.
  • FIG. 1A is a vertical cross-sectional view of a fin field effect transistor (FinFET) according to a first embodiment of the present invention.
  • FIG. 1B is a schematic diagram showing an example of the positional relationship in the planar direction between the fin and the source electrode in the FinFET according to the first embodiment of the present invention.
  • FIG. 1C is a schematic diagram showing an example of the positional relationship in the planar direction between the fin and the source electrode in the FinFET according to the first embodiment of the present invention.
  • FIG. 2 is an image observed by a scanning electron microscope (SEM) of a cross section of the epitaxial layer immediately after fins have been formed by dry etching.
  • SEM scanning electron microscope
  • FIG. 3A is a graph showing gate current Ig and drain current Id versus gate voltage in a comparative sample.
  • FIG. 3B is a graph showing gate current I g and drain current I d versus gate voltage in a FinFET having a source electrode having the shape shown in FIG. 1B.
  • FIG. 4 is a schematic diagram showing an example of the positional relationship in the planar direction between the fin and the source electrode in a modified example of the FinFET according to the first embodiment of the present invention.
  • FIG. 5A is a vertical cross-sectional view of a FinFET according to a second embodiment of the invention.
  • FIG. 5B is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the insulating film in the FinFET according to the second embodiment of the present invention.
  • FIG. 5C is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the insulating film in the FinFET according to the second embodiment of the present invention.
  • FIG. 6 is a vertical sectional view of a modification of the FinFET according to the second embodiment of the invention.
  • FIG. 7A is a vertical cross-sectional view of a FinFET according to a third embodiment of the present invention.
  • FIG. 7B is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the high resistance region in the FinFET according to the third embodiment of the present invention.
  • FIG. 7C is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the high resistance region in the FinFET according to the third embodiment of the present invention.
  • FIG. 1A is a vertical cross-sectional view of a fin field effect transistor (FinFET) 1 according to a first embodiment of the present invention.
  • the FinFET 1 is a vertical FinFET including a semiconductor layer made of a gallium oxide semiconductor.
  • the gallium oxide semiconductor refers to Ga 2 O 3 or Ga 2 O 3 to which elements such as Al and In are added.
  • a gallium oxide semiconductor has a composition expressed as (Ga x Al y In (1-x-y) ) 2 O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1). have When Al is added to Ga 2 O 3 , the band gap is widened, and when In is added, the band gap is narrowed.
  • the FinFET 1 is made of a gallium oxide based semiconductor, and includes a semiconductor layer 10 having a plurality of fins 120, a gate electrode 14 formed on the side surface of each of the plurality of fins 120 via a gate insulating film 13, and a gate electrode 14 of the semiconductor layer 10.
  • an interlayer insulating film 17 is formed between and around the plurality of fins 120 .
  • the outermost one of the plurality of fins 120 is called a fin 120b, and the innermost one of the fins 120b is called a fin 120a.
  • the source electrode 15 does not cover the top of the fin 120b and is not in contact with the fin 120b. That is, in the FinFET 1, the outermost fin 120b is a dummy fin to which the source electrode 15 is not electrically connected.
  • each of the plurality of fins 120 has a linear pattern and is arranged parallel to each other.
  • the semiconductor layer 10 is typically composed of a substrate 11 made of a gallium oxide semiconductor and an epitaxial layer 12 made of a gallium oxide semiconductor formed on the substrate 11, as shown in FIG. 1A. In this case, a plurality of fins 120 are formed in the epitaxial layer 12.
  • the semiconductor layer 10 is an n-type layer containing donor impurities such as Si and Sn.
  • An n + region 121 having a particularly high concentration of donor impurities is formed at the upper end of the fin 120a, and the source electrode 15 is connected to the n + region 121.
  • an n + region 121 with a high concentration of donor impurities may be formed also at the upper end of the fin 120b, which is a dummy fin, but the source electrode 15 is not connected to the n + region 121 of the fin 120b.
  • the fin 120 is formed by processing the semiconductor layer 10 using lithography such as electron beam lithography or photolithography and dry etching. As described above, when the fins 120 are formed by dry etching, the outermost fins 120b may become thicker than the inner fins 120a, and the outer side surfaces of the fins 120b may become rough, reducing the uniformity of the thickness. Problems are likely to occur.
  • FIG. 2 is an image observed by a scanning electron microscope (SEM) of a cross section of the epitaxial layer 12 immediately after the fin 120 is formed by dry etching.
  • the mask 50 on the fin 120 is an etching mask used for patterning the epitaxial layer 12 by dry etching.
  • the thickness of the outermost fin 120b of the fins 120 is larger than the thickness of the inner fin 120a, and the outer side surface 122 of the fin 120b is roughened to form unevenness, and the thickness of the fin 120b is larger than that of the inner fin 120a.
  • the uniformity of the thickness of the fins 120a is lower than that of the fins 120a.
  • FinFETs unlike inverted MOS channel FETs manufactured using semiconductor materials that can be converted to p-type, such as Si, it is difficult to adjust the threshold voltage using a p-type semiconductor region. Therefore, in order to obtain the desired threshold voltage in FinFETs that can be manufactured using gallium oxide semiconductors, the thickness of the fins must be accurately controlled, and the thickness of the outermost fin must be controlled accurately. Misalignment and non-uniformity become major obstacles to obtaining the desired threshold voltage.
  • the outermost fin 120b as a dummy fin to which the source electrode 15 is not electrically connected, deviations in the threshold voltage of the FinFET 1 due to deviations or non-uniformity in the thickness of the fin 120b can be avoided. Prevents defects.
  • 1B and 1C are schematic diagrams each showing an example of the positional relationship in the planar direction between the fin 120 and the source electrode 15 in the FinFET 1.
  • 1B and 1C show the shapes and positions of the fin 120 and the source electrode 15 when viewed from above the FinFET 1.
  • the source electrode 15 does not cover the top of the fin 120b and is not in contact with the fin 120b.
  • the region 151 of the source electrode 15 is a region provided at a position apart from the region covering the upper part of the fin 120 for connecting a contact plug or a lead wire from above.
  • the source electrode 15 does not cover part of the planar end portions of the fin 120a (that is, the right end and left end in FIG. 1C), and does not contact there. Therefore, even if the thickness of the fin 120a is increased or the side surface is rough, the source electrode 15 is not electrically connected to this portion, so that the end of the fin 120a in the planar direction is not electrically connected. It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 1 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 does not cover at least a portion of the end portion of the fin 120a in the planar direction and is not electrically connected.
  • the length L1 in the planar direction of the region at the end of the fin 120a in the planar direction to which the source electrode 15 is not connected is set within a range of 1 to 10 ⁇ m, for example.
  • the source electrode 15 shown in FIGS. 1B and 1C does not need to include the region 151.
  • a contact plug or a lead wire is connected to a region of the source electrode 15 that covers the upper part of the fin 120.
  • the gate insulating film 13 is made of an insulator such as HfO 2 , Al 2 O 3 , or SiO 2 .
  • the gate electrode 14 is preferably made of a metal with a high work function, such as Cr, Pt, or Ni.
  • the source electrode 15 and the drain electrode 16 are made of an electrode stacked structure made of, for example, Ti/Au, Ti/Al, etc. and in ohmic contact with the semiconductor layer 10 .
  • the interlayer insulating film 17 is made of an insulator such as SiO 2 , SiN, HfO 2 , or the like.
  • the FinFET 1 may have either normally-off characteristics or normally-on characteristics.
  • normally-off characteristics when the FinFET 1 has normally-off characteristics, when a voltage is applied to the gate electrode 14, a channel is formed in each of the fins 120 sandwiched by the gate electrode 14 from both sides, and a channel is formed between the source electrode 15 and the drain electrode 16. Current will begin to flow.
  • the donor concentration of the substrate 11 is 5 ⁇ 10 17 cm ⁇ 3 or more
  • the donor concentration of the n + region 121 is 1 ⁇ 10 18 cm ⁇ 3 or more
  • the height of the fin 120 is 1 ⁇ m or more.
  • the donor concentration of the epitaxial layer 12 is 1 ⁇ 10 16 cm ⁇ 3 or less
  • the gate insulating film 13 is an HfO 2 film with a thickness of 100 nm or less
  • the gate electrode 14 is made of Cr
  • the thickness of the fin 120a is 500 nm or less.
  • the threshold voltage V th of the FinFET 1 is determined by the following equation (1).
  • ⁇ B is the barrier height determined by the material of the gate electrode 14 and the gate insulating film 13
  • VOX is the donor concentration of the fin 120, the material of the gate insulating film 13, and the thickness of the gate insulating film 13.
  • ⁇ EC is the amount of band discontinuity on the conductor side determined by the material of the gate insulating film 13 and the material of the fin 120
  • ⁇ S is the voltage of the gate insulating film 13 determined by the donor concentration, thickness, and dielectric value of the fin 120.
  • E F is the Fermi energy determined by the donor concentration and temperature of the fin 120.
  • the distance between the fins 120a and 120b is small to some extent, for example, 10 ⁇ m or less.
  • the fins 120 are all equally spaced. In this case, it is preferable that the interval between the fins 120 is 10 ⁇ m or less.
  • the characteristics of a FinFET 1 in which the fin 120b is a dummy fin and a FinFET as a comparative example (hereinafter referred to as a comparative sample) in which the source electrode 15 covers the upper part of the fin 120b and is connected to the fin 120b were measured and compared.
  • the configuration of the comparative sample is similar to the configuration of FinFET 1 except that the fin 120b is connected to the source electrode 15.
  • FIG. 3A is a graph showing gate current Ig and drain current Id versus gate voltage in a comparative sample.
  • FIG. 3B is a graph showing the gate current I g and drain current I d with respect to the gate voltage in the FinFET 1 having the source electrode 15 having the shape shown in FIG. 1B.
  • FIG. 3A from when the drain current I d starts to increase until it is saturated, there is a large step that is considered to be due to a deviation or non-uniformity in the thickness of the fin 120b.
  • FIG. 3B there is no step between the time when the drain current I d starts to increase and the time when it is saturated. This is considered to be because the source electrode 15 is not connected to the fin 120b, so there is no influence from deviation or non-uniformity in the thickness of the fin 120b.
  • FIG. 4 is a schematic diagram showing an example of the positional relationship in the planar direction between the fin 120 and the source electrode 15 in a modified example of the FinFET 1.
  • FIG. 4 shows the shapes of the fin 120 and the source electrode 15 when viewed from above the FinFET 1.
  • a fin 120b which is a dummy fin, may be arranged to surround the inner fin 120a from all sides.
  • the fins 120b so as to surround the fins 120a from all sides, it is possible to suppress an increase in thickness and roughness of the side surfaces at the ends of the fins 120a in the planar direction (that is, the right and left ends in FIG. 4).
  • the fins 120b surrounding the fins 120a from all sides are composed of one continuous dummy fin, but they may be composed of a plurality of dummy fins.
  • the second embodiment of the present invention differs from the first embodiment in the structure for avoiding electrical connection between the source electrode 15 and the fin 120b. Descriptions of the same points as in the first embodiment will be omitted or simplified.
  • FIG. 5A is a vertical cross-sectional view of the FinFET 2 according to the second embodiment of the present invention.
  • the FinFET 2 is a vertical FinFET including a semiconductor layer made of a gallium oxide semiconductor.
  • FinFET2 like FinFET1, is made of a gallium oxide semiconductor and includes a semiconductor layer 10 having a plurality of fins 120, and a gate electrode 14 formed on the side surface of each of the plurality of fins 120 via a gate insulating film 13. , a source electrode 15 connected to the side of the plurality of fins 120 of the semiconductor layer 10, and a drain electrode 16 connected to the side of the semiconductor layer 10 opposite to the plurality of fins 120. Furthermore, an interlayer insulating film 17 is formed between and around the plurality of fins 120 .
  • the source electrode 15 covers the top of the fin 120b, but an insulating film 21 is formed between the upper end of the fin 120b and the source electrode 15, and the insulating film 21 insulates the source electrode 15 and the fin 120b.
  • the outermost fin 120b is a dummy fin to which the source electrode 15 is not electrically connected.
  • the insulating film 21 is made of an insulator such as SiO 2 , SiN, HfO 2 , Al 2 O 3 or the like.
  • FinFET2 similarly to FinFET1, by using the outermost fin 120b as a dummy fin to which the source electrode 15 is not electrically connected, the threshold voltage of FinFET2 due to deviation or non-uniformity in the thickness of the fin 120b can be reduced. This prevents defects such as misalignment.
  • FIGS. 5B and 5C are schematic diagrams showing an example of the positional relationship in the planar direction of the fin 120, the source electrode 15, and the insulating film 21 in the FinFET 2.
  • FIG. 5B shows the shapes and positions of the fin 120, the source electrode 15, and the insulating film 21 when viewed from above the FinFET 2.
  • the source electrode 15 covers the fin 120b, but the source electrode 15 and the fin 120b are insulated by the insulating film 21.
  • an insulating film 21 is also formed between the upper end of the fin 120a in the planar direction (that is, the right end and left end in FIG. 5C) and the source electrode 15 to insulate them. There is. Therefore, even if the end portion of the fin 120a in the planar direction has an increased thickness or roughened side surface, the source electrode 15 is not electrically connected to this portion, so that the end portion of the fin 120a in the planar direction is It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 2 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 is not electrically connected to at least a portion of the end portion of the fin 120a in the planar direction by the insulating film 21.
  • the length L2 in the planar direction of the region at the end of the fin 120a in the planar direction to which the source electrode 15 is not connected is set, for example, within a range of 1 to 10 ⁇ m.
  • the source electrode 15 shown in FIGS. 5B and 5C has a region 151 provided at a position apart from the region covering the upper part of the fin 120 for connecting a contact plug or a lead wire from above. Good too.
  • FIG. 6 is a vertical cross-sectional view of a modification of the FinFET 2.
  • the height of the fin 120b may be lower than the height of the fin 120a.
  • an interlayer insulating film 17 is formed between the upper end of the fin 120b and the source electrode 15 covering the upper end of the fin 120b, and the interlayer insulating film 17 insulates the source electrode 15 and the fin 120b.
  • the height of at least a portion of the end portion of the fin 120a in the planar direction may be lowered similarly to the height of the fin 120b.
  • the interlayer insulating film 17 is also formed between the upper end of the lower end of the fin 120a in the planar direction and the source electrode 15 covering the upper end. Therefore, even if the thickness of the fin 120a is increased or the side surface is rough, the source electrode 15 is not electrically connected to this portion, so that the end of the fin 120a in the planar direction is not electrically connected. It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 2 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 is not electrically connected to at least a portion of the end portion of the fin 120a in the planar direction by the interlayer insulating film 17.
  • the third embodiment of the present invention differs from the first embodiment in the structure for avoiding electrical connection between the source electrode 15 and the fin 120b. Descriptions of the same points as in the first embodiment will be omitted or simplified.
  • FIG. 7A is a vertical cross-sectional view of the FinFET 3 according to the third embodiment of the present invention.
  • the FinFET 3 is a vertical FinFET including a semiconductor layer made of a gallium oxide semiconductor.
  • the FinFET 3 is made of a gallium oxide semiconductor, and includes a semiconductor layer 10 having a plurality of fins 120, and a gate electrode 14 formed on the side surface of each of the plurality of fins 120 via a gate insulating film 13. , a source electrode 15 connected to the side of the plurality of fins 120 of the semiconductor layer 10, and a drain electrode 16 connected to the side of the semiconductor layer 10 opposite to the plurality of fins 120. Furthermore, an interlayer insulating film 17 is formed between and around the plurality of fins 120 .
  • a high resistance region 123 containing acceptor impurities is formed at the upper end of the fin 120b, and the source electrode 15 is in contact with the high resistance region 123. Therefore, although the source electrode 15 is in contact with the fin 120b, it is insulated by the high resistance region 123. That is, in FinFET3, like FinFET1, the outermost fin 120b is a dummy fin to which the source electrode 15 is not electrically connected.
  • the high resistance region 123 is formed, for example, by ion implantation of acceptor impurities such as N and Mg.
  • FinFET3 similarly to FinFET1, by using the outermost fin 120b as a dummy fin to which the source electrode 15 is not electrically connected, the threshold voltage of FinFET3 due to deviation or non-uniformity in the thickness of the fin 120b can be reduced. This prevents defects such as misalignment.
  • 7B and 7C are schematic diagrams showing an example of the positional relationship in the planar direction of the fin 120, the source electrode 15, and the high resistance region 123 in the FinFET 3.
  • 7B and 7C show the shapes and positions of the fin 120, the source electrode 15, and the high resistance region 123 when viewed from above the FinFET 3.
  • the source electrode 15 covers the fin 120b, but the source electrode 15 and the fin 120b are insulated by the high resistance region 123.
  • high resistance regions 123 that insulate the fin 120a and the source electrode 15 are also formed at the upper ends of the planar ends of the fin 120a (i.e., the right and left ends in FIG. 7C). . Therefore, even if the thickness of the fin 120a is increased or the side surface is rough, the source electrode 15 is not electrically connected to this portion, so that the end of the fin 120a in the planar direction is not electrically connected. It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 3 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 is not electrically connected to at least a portion of the end portion of the fin 120a in the planar direction by the high resistance region 123.
  • the length L3 in the planar direction of the region at the end of the fin 120a in the planar direction to which the source electrode 15 is not connected is set within a range of 1 to 10 ⁇ m, for example. Note that the length L3 is equal to the length of the high resistance region 123 in the fin 120a in the planar direction.
  • the source electrode 15 shown in FIGS. 7B and 7C does not need to include the region 151.
  • a contact plug or a lead wire is connected to a region of the source electrode 15 that covers the upper part of the fin 120.
  • the outermost fin 120b of the plurality of fins 120 is used as a dummy fin to which the source electrode 15 is not electrically connected.
  • the influence on the threshold voltage due to thickness deviation or non-uniformity can be suppressed.
  • the influence on the threshold voltage due to deviation or non-uniformity in the thickness of the end portion of the fin 120a in the planar direction can be avoided. can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Provided is a fin-type field effect transistor 1 comprising: a semiconductor layer 10 made of a gallium oxide based semiconductor and having a plurality of fins 120; a gate electrode 14 formed on the side surface of each of the plurality of fins 120 with a gate insulating film 13 interposed therebetween; a source electrode 15 connected to the semiconductor layer 10 on the side of the plurality of fins 120; and a drain electrode 16 connected to the semiconductor layer 10 on the side opposite to that of the plurality of fins 120, wherein an outermost fin 120b of the plurality of fins 120 is a dummy fin to which the source electrode 15 is not electrically connected.

Description

フィン型電界効果トランジスタFin field effect transistor
 本発明は、フィン型電界効果トランジスタに関する。 The present invention relates to a fin field effect transistor.
 従来、Gaを半導体層に用いたフィン型電界効果トランジスタ(FinFET)が知られている(非特許文献1を参照)。非特許文献1によれば、一般的なFinFETの製造方法と同様に、リソグラフィーとドライエッチングを用いてフィンを形成している。 Conventionally, a fin field effect transistor (FinFET) using Ga 2 O 3 as a semiconductor layer is known (see Non-Patent Document 1). According to Non-Patent Document 1, fins are formed using lithography and dry etching, similar to a general FinFET manufacturing method.
 しかしながら、FinFETの製造工程においては、ドライエッチングにより半導体層を加工してフィンを形成する場合、一般的に、最も外側のフィンが他のフィンに比べて厚くなったり、最も外側のフィンの外側の側面が荒れて厚さの均一性が低下したりという問題が生じやすい。チャネル領域を含むフィンの厚さはFinFETの閾値電圧の大きさに影響を与えるため、最も外側のフィンの厚さのずれや不均一性は、FinFETの閾値電圧のずれを生む。 However, in the FinFET manufacturing process, when forming fins by processing a semiconductor layer by dry etching, the outermost fin is generally thicker than the other fins, or the outermost fin is thicker than the other fins. Problems such as roughened side surfaces and reduced thickness uniformity tend to occur. Since the thickness of the fin, including the channel region, affects the magnitude of the FinFET's threshold voltage, any deviation or non-uniformity in the thickness of the outermost fin will result in a deviation in the FinFET's threshold voltage.
 ここで、Siなどのp型化が可能な半導体材料を用いる場合は、FinFETのフィン間のトレンチ部分に相当する部分が反転MOSチャネルとしてのp型半導体領域で構成される反転MOSチャネルFETを形成することができる。反転MOSチャネルとしてのp型半導体領域は、半導体材料にアクセプター不純物を注入することにより形成され、アクセプター不純物の濃度により反転MOSチャネルFETの閾値電圧を調整することができる。 Here, when using a semiconductor material that can be converted to p-type, such as Si, an inverted MOS channel FET is formed in which a portion corresponding to the trench portion between the fins of a FinFET is a p-type semiconductor region as an inverted MOS channel. can do. A p-type semiconductor region as an inversion MOS channel is formed by implanting acceptor impurities into a semiconductor material, and the threshold voltage of the inversion MOS channel FET can be adjusted by adjusting the concentration of the acceptor impurities.
 一方、Gaなどの酸化ガリウム系半導体はp型化が不可能又は非常に困難であるため、酸化ガリウム系半導体を用いる場合は、p型半導体領域で構成される反転MOSチャネルFETを備えた反転MOSチャネルFETを製造することが難しく、p型半導体領域を利用した閾値電圧の調整が難しい。このため、酸化ガリウム系半導体を用いて製造することができるFinFETにおいて目的の閾値電圧を得るためには、フィンの厚さを正確に制御しなくてはならず、最も外側のフィンの厚さのずれや不均一性が目的の閾値電圧を得るための大きな障害になる。 On the other hand, since it is impossible or extremely difficult to convert gallium oxide semiconductors such as Ga 2 O 3 into p-type semiconductors, when using gallium oxide semiconductors, it is necessary to provide an inverted MOS channel FET consisting of a p-type semiconductor region. It is difficult to manufacture an inverted MOS channel FET, and it is difficult to adjust the threshold voltage using a p-type semiconductor region. Therefore, in order to obtain the desired threshold voltage in FinFETs that can be manufactured using gallium oxide semiconductors, the thickness of the fins must be precisely controlled, and the thickness of the outermost fin must be controlled accurately. Misalignment and non-uniformity become major obstacles to obtaining the desired threshold voltage.
 本発明の目的は、酸化ガリウム系半導体を半導体層に用いたFinFETであって、最も外側のフィンの厚さのずれや不均一性による閾値電圧への影響が抑えられたFinFETを提供することにある。 An object of the present invention is to provide a FinFET using a gallium oxide-based semiconductor in the semiconductor layer, in which the influence on the threshold voltage due to thickness deviation or non-uniformity of the outermost fin is suppressed. be.
 本発明の一態様は、上記目的を達成するために、下記のフィン型電界効果トランジスタを提供する。 In order to achieve the above object, one embodiment of the present invention provides the following fin-type field effect transistor.
[1]酸化ガリウム系半導体からなり、複数のフィンを有する半導体層と、前記複数のフィンの各々の側面上にゲート絶縁膜を介して形成されたゲート電極と、前記半導体層の前記複数のフィン側に接続されたソース電極と、前記半導体層の前記複数のフィンの反対側に接続されたドレイン電極と、を備え、前記複数のフィンのうちの最も外側のフィンが、前記ソース電極が電気的に接続されないダミーフィンである、フィン型電界効果トランジスタ。
[2]前記ソース電極が、前記複数のフィンのうちの前記ダミーフィンの内側のフィンの平面方向の端部の少なくとも一部に電気的に接続されない、上記[1]に記載のフィン型電界効果トランジスタ。
[3]前記ソース電極が前記ダミーフィンの上方を覆い、前記ダミーフィンの上端と前記ソース電極との間に絶縁膜が形成された、上記[1]又は[2]に記載のフィン型電界効果トランジスタ。
[4]前記ダミーフィンの高さが、前記複数のフィンのうちのその他のフィンの高さよりも低い、上記[3]に記載のフィン型電界効果トランジスタ。
[5]前記ダミーフィンの上端にアクセプター不純物を含む高抵抗領域が形成され、前記高抵抗領域に前記ソース電極が接触している、上記[1]又は[2]に記載のフィン型電界効果トランジスタ。
[6]前記ソース電極が前記ダミーフィンの上方を覆わない、上記[1]又は[2]に記載のフィン型電界効果トランジスタ。
[7]前記ダミーフィンが、前記複数のフィンのうちの前記ダミーフィンの内側のフィンを四方から囲むように配置された、上記[6]に記載のフィン型電界効果トランジスタ。
[1] A semiconductor layer made of a gallium oxide-based semiconductor and having a plurality of fins, a gate electrode formed on each side surface of the plurality of fins via a gate insulating film, and the plurality of fins of the semiconductor layer. a source electrode connected to one side of the semiconductor layer, and a drain electrode connected to an opposite side of the plurality of fins of the semiconductor layer, the outermost fin of the plurality of fins being connected to the source electrode electrically. A fin-type field effect transistor, which is a dummy fin that is not connected to the fin.
[2] The fin-type field effect according to [1] above, wherein the source electrode is not electrically connected to at least a part of an end in a planar direction of a fin inside the dummy fin of the plurality of fins. transistor.
[3] The fin-type field effect according to [1] or [2] above, wherein the source electrode covers above the dummy fin, and an insulating film is formed between the upper end of the dummy fin and the source electrode. transistor.
[4] The fin-type field effect transistor according to [3] above, wherein the height of the dummy fin is lower than the height of other fins among the plurality of fins.
[5] The fin type field effect transistor according to [1] or [2] above, wherein a high resistance region containing an acceptor impurity is formed at the upper end of the dummy fin, and the source electrode is in contact with the high resistance region. .
[6] The fin-type field effect transistor according to [1] or [2] above, wherein the source electrode does not cover above the dummy fin.
[7] The fin-type field effect transistor according to [6], wherein the dummy fin is arranged to surround from all sides an inner fin of the dummy fin of the plurality of fins.
 本発明によれば、酸化ガリウム系半導体を半導体層に用いたFinFETであって、最も外側のフィンの厚さのずれや不均一性による閾値電圧への影響が抑えられたFinFETを提供することができる。 According to the present invention, it is possible to provide a FinFET that uses a gallium oxide-based semiconductor as a semiconductor layer, and in which the influence on the threshold voltage due to thickness deviation or non-uniformity of the outermost fin is suppressed. can.
図1Aは、本発明の第1の実施の形態に係るフィン型電界効果トランジスタ(FinFET)の垂直断面図である。FIG. 1A is a vertical cross-sectional view of a fin field effect transistor (FinFET) according to a first embodiment of the present invention. 図1Bは、本発明の第1の実施の形態に係るFinFETにおけるフィンとソース電極の平面方向の位置関係の例を示す模式図である。FIG. 1B is a schematic diagram showing an example of the positional relationship in the planar direction between the fin and the source electrode in the FinFET according to the first embodiment of the present invention. 図1Cは、本発明の第1の実施の形態に係るFinFETにおけるフィンとソース電極の平面方向の位置関係の例を示す模式図である。FIG. 1C is a schematic diagram showing an example of the positional relationship in the planar direction between the fin and the source electrode in the FinFET according to the first embodiment of the present invention. 図2は、ドライエッチングによってフィンが形成された直後のエピタキシャル層の断面の走査電子顕微鏡(SEM)による観察画像である。FIG. 2 is an image observed by a scanning electron microscope (SEM) of a cross section of the epitaxial layer immediately after fins have been formed by dry etching. 図3Aは、比較試料における、ゲート電圧に対するゲート電流Iとドレイン電流Iを示すグラフである。FIG. 3A is a graph showing gate current Ig and drain current Id versus gate voltage in a comparative sample. 図3Bは、図1Bに示される形状のソース電極を備えたFinFETにおける、ゲート電圧に対するゲート電流Iとドレイン電流Iを示すグラフである。FIG. 3B is a graph showing gate current I g and drain current I d versus gate voltage in a FinFET having a source electrode having the shape shown in FIG. 1B. 図4は、本発明の第1の実施の形態に係るFinFETの変形例におけるフィンとソース電極の平面方向の位置関係の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the positional relationship in the planar direction between the fin and the source electrode in a modified example of the FinFET according to the first embodiment of the present invention. 図5Aは、本発明の第2の実施の形態に係るFinFETの垂直断面図である。FIG. 5A is a vertical cross-sectional view of a FinFET according to a second embodiment of the invention. 図5Bは、本発明の第2の実施の形態に係るFinFETにおけるフィン、ソース電極、及び絶縁膜の平面方向の位置関係の例を示す模式図である。FIG. 5B is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the insulating film in the FinFET according to the second embodiment of the present invention. 図5Cは、本発明の第2の実施の形態に係るFinFETにおけるフィン、ソース電極、及び絶縁膜の平面方向の位置関係の例を示す模式図である。FIG. 5C is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the insulating film in the FinFET according to the second embodiment of the present invention. 図6は、本発明の第2の実施の形態に係るFinFETの変形例の垂直断面図である。FIG. 6 is a vertical sectional view of a modification of the FinFET according to the second embodiment of the invention. 図7Aは、本発明の第3の実施の形態に係るFinFETの垂直断面図である。FIG. 7A is a vertical cross-sectional view of a FinFET according to a third embodiment of the present invention. 図7Bは、本発明の第3の実施の形態に係るFinFETにおけるフィン、ソース電極、及び高抵抗領域の平面方向の位置関係の例を示す模式図である。FIG. 7B is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the high resistance region in the FinFET according to the third embodiment of the present invention. 図7Cは、本発明の第3の実施の形態に係るFinFETにおけるフィン、ソース電極、及び高抵抗領域の平面方向の位置関係の例を示す模式図である。FIG. 7C is a schematic diagram showing an example of the positional relationship in the planar direction of the fin, the source electrode, and the high resistance region in the FinFET according to the third embodiment of the present invention.
〔第1の実施の形態〕
(フィン型電界効果トランジスタの構成)
 図1Aは、本発明の第1の実施の形態に係るフィン型電界効果トランジスタ(FinFET)1の垂直断面図である。FinFET1は、酸化ガリウム系半導体からなる半導体層を備えた縦型のFinFETである。
[First embodiment]
(Configuration of fin field effect transistor)
FIG. 1A is a vertical cross-sectional view of a fin field effect transistor (FinFET) 1 according to a first embodiment of the present invention. The FinFET 1 is a vertical FinFET including a semiconductor layer made of a gallium oxide semiconductor.
 酸化ガリウム系半導体とは、Ga、又は、Al、Inなどの元素が添加されたGaをいう。例えば、酸化ガリウム系半導体は、(GaAlIn(1-x-y)(0<x≦1、0≦y≦1、0<x+y≦1)で表される組成を有する。GaにAlを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。 The gallium oxide semiconductor refers to Ga 2 O 3 or Ga 2 O 3 to which elements such as Al and In are added. For example, a gallium oxide semiconductor has a composition expressed as (Ga x Al y In (1-x-y) ) 2 O 3 (0<x≦1, 0≦y≦1, 0<x+y≦1). have When Al is added to Ga 2 O 3 , the band gap is widened, and when In is added, the band gap is narrowed.
 FinFET1は、酸化ガリウム系半導体からなり、複数のフィン120を有する半導体層10と、複数のフィン120の各々の側面上にゲート絶縁膜13を介して形成されたゲート電極14と、半導体層10の複数のフィン120側(すなわち、図1Aの上側)に接続されたソース電極15と、半導体層10の複数のフィン120の反対側(すなわち、図1Aの下側)に接続されたドレイン電極16と、を備える。また、複数のフィン120の間及び周囲に層間絶縁膜17が形成される。 The FinFET 1 is made of a gallium oxide based semiconductor, and includes a semiconductor layer 10 having a plurality of fins 120, a gate electrode 14 formed on the side surface of each of the plurality of fins 120 via a gate insulating film 13, and a gate electrode 14 of the semiconductor layer 10. A source electrode 15 connected to the side of the plurality of fins 120 (that is, the upper side of FIG. 1A), and a drain electrode 16 connected to the side of the semiconductor layer 10 opposite to the plurality of fins 120 (that is, the lower side of FIG. 1A). , is provided. Furthermore, an interlayer insulating film 17 is formed between and around the plurality of fins 120 .
 ここで、複数のフィン120のうちの最も外側のものをフィン120b、フィン120bの内側のものをフィン120aとする。FinFET1においては、ソース電極15がフィン120bの上方を覆っておらず、フィン120bに接触していない。すなわち、FinFET1においては、最も外側のフィン120bが、ソース電極15が電気的に接続されないダミーフィンである。典型的には、複数のフィン120の各々は直線状のパターンを有し、互いに平行に並べられる。 Here, the outermost one of the plurality of fins 120 is called a fin 120b, and the innermost one of the fins 120b is called a fin 120a. In the FinFET 1, the source electrode 15 does not cover the top of the fin 120b and is not in contact with the fin 120b. That is, in the FinFET 1, the outermost fin 120b is a dummy fin to which the source electrode 15 is not electrically connected. Typically, each of the plurality of fins 120 has a linear pattern and is arranged parallel to each other.
 半導体層10は、典型的には、図1Aに示されるように、酸化ガリウム系半導体からなる基板11と、基板11上に形成される酸化ガリウム系半導体からなるエピタキシャル層12から構成される。この場合、複数のフィン120はエピタキシャル層12に形成される。 The semiconductor layer 10 is typically composed of a substrate 11 made of a gallium oxide semiconductor and an epitaxial layer 12 made of a gallium oxide semiconductor formed on the substrate 11, as shown in FIG. 1A. In this case, a plurality of fins 120 are formed in the epitaxial layer 12.
 半導体層10は、Si、Snなどのドナー不純物を含むn型の層である。フィン120aの上端には、特にドナー不純物の濃度が高いn領域121が形成され、n領域121にソース電極15が接続される。なお、製造工程上、ダミーフィンであるフィン120bの上端にもドナー不純物の濃度が高いn領域121が形成されてもよいが、フィン120bのn領域121にはソース電極15が接続されない。 The semiconductor layer 10 is an n-type layer containing donor impurities such as Si and Sn. An n + region 121 having a particularly high concentration of donor impurities is formed at the upper end of the fin 120a, and the source electrode 15 is connected to the n + region 121. Note that, due to the manufacturing process, an n + region 121 with a high concentration of donor impurities may be formed also at the upper end of the fin 120b, which is a dummy fin, but the source electrode 15 is not connected to the n + region 121 of the fin 120b.
 フィン120は、電子線リソグラフィーやフォトリソグラフィーなどのリソグラフィーとドライエッチングを用いて半導体層10を加工することにより形成される。上述のように、ドライエッチングによりフィン120を形成すると、最も外側のフィン120bが内側のフィン120aに比べて厚くなったり、フィン120bの外側の側面が荒れて厚さの均一性が低下したりという問題が生じやすい。 The fin 120 is formed by processing the semiconductor layer 10 using lithography such as electron beam lithography or photolithography and dry etching. As described above, when the fins 120 are formed by dry etching, the outermost fins 120b may become thicker than the inner fins 120a, and the outer side surfaces of the fins 120b may become rough, reducing the uniformity of the thickness. Problems are likely to occur.
 図2は、ドライエッチングによってフィン120が形成された直後のエピタキシャル層12の断面の走査電子顕微鏡(SEM)による観察画像である。フィン120上のマスク50は、ドライエッチングによるエピタキシャル層12のパターン加工に用いられたエッチングマスクである。図2は、フィン120のうちの最も外側のフィン120bの厚さが内側のフィン120aの厚さよりも大きく、また、フィン120bの外側の側面122が荒れて凹凸が形成され、フィン120bの厚さの均一性がフィン120aの厚さの均一性よりも低いことを示している。 FIG. 2 is an image observed by a scanning electron microscope (SEM) of a cross section of the epitaxial layer 12 immediately after the fin 120 is formed by dry etching. The mask 50 on the fin 120 is an etching mask used for patterning the epitaxial layer 12 by dry etching. In FIG. 2, the thickness of the outermost fin 120b of the fins 120 is larger than the thickness of the inner fin 120a, and the outer side surface 122 of the fin 120b is roughened to form unevenness, and the thickness of the fin 120b is larger than that of the inner fin 120a. The uniformity of the thickness of the fins 120a is lower than that of the fins 120a.
 上述のように、FinFETにおいては、Siなどのp型化が可能な半導体材料を用いて製造する反転MOSチャネルFETと異なり、p型半導体領域を利用した閾値電圧の調整が難しい。このため、酸化ガリウム系半導体を用いて製造することができるFinFETにおいて目的の閾値電圧を得るためには、フィンの厚さを正確に制御しなくてはならず、最も外側のフィンの厚さのずれや不均一性が目的の閾値電圧を得るための大きな障害になる。 As described above, in FinFETs, unlike inverted MOS channel FETs manufactured using semiconductor materials that can be converted to p-type, such as Si, it is difficult to adjust the threshold voltage using a p-type semiconductor region. Therefore, in order to obtain the desired threshold voltage in FinFETs that can be manufactured using gallium oxide semiconductors, the thickness of the fins must be accurately controlled, and the thickness of the outermost fin must be controlled accurately. Misalignment and non-uniformity become major obstacles to obtaining the desired threshold voltage.
 そこで、FinFET1においては、最も外側のフィン120bをソース電極15が電気的に接続されないダミーフィンとすることにより、フィン120bの厚さのずれや不均一性に起因するFinFET1の閾値電圧のずれなどの不良を防いでいる。 Therefore, in the FinFET 1, by using the outermost fin 120b as a dummy fin to which the source electrode 15 is not electrically connected, deviations in the threshold voltage of the FinFET 1 due to deviations or non-uniformity in the thickness of the fin 120b can be avoided. Prevents defects.
 図1B、図1Cは、それぞれFinFET1におけるフィン120とソース電極15の平面方向の位置関係の例を示す模式図である。図1B、図1Cは、FinFET1の上方から視たときのフィン120とソース電極15の形状と位置を示している。図1B、図1Cの例で示されるように、FinFET1においては、ソース電極15がフィン120bの上方を覆っておらず、フィン120bに接触していない。なお、ソース電極15の領域151は、上方からコンタクトプラグや引き出し用ワイヤーを接続するための、フィン120の上方を覆う領域から外れた位置に設けられる領域である。 1B and 1C are schematic diagrams each showing an example of the positional relationship in the planar direction between the fin 120 and the source electrode 15 in the FinFET 1. 1B and 1C show the shapes and positions of the fin 120 and the source electrode 15 when viewed from above the FinFET 1. As shown in the examples of FIGS. 1B and 1C, in the FinFET 1, the source electrode 15 does not cover the top of the fin 120b and is not in contact with the fin 120b. Note that the region 151 of the source electrode 15 is a region provided at a position apart from the region covering the upper part of the fin 120 for connecting a contact plug or a lead wire from above.
 また、図1Cに示される例では、ソース電極15がフィン120aの平面方向の端部(すなわち図1Cの右端と左端)の一部の上方も覆っておらず、そこに接触していない。このため、フィン120aの平面方向の端部において厚さの増加や側面の荒れが生じている場合であっても、この部分にソース電極15が電気的に接続されないため、フィン120aの平面方向の端部の厚さのずれや不均一性に起因するFinFET1の閾値電圧のずれなどの不良を防ぐことができる。したがって、ソース電極15が、フィン120aの平面方向の端部の少なくとも一部の上方を覆っておらず、電気的に接続されていないことが好ましい。 Furthermore, in the example shown in FIG. 1C, the source electrode 15 does not cover part of the planar end portions of the fin 120a (that is, the right end and left end in FIG. 1C), and does not contact there. Therefore, even if the thickness of the fin 120a is increased or the side surface is rough, the source electrode 15 is not electrically connected to this portion, so that the end of the fin 120a in the planar direction is not electrically connected. It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 1 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 does not cover at least a portion of the end portion of the fin 120a in the planar direction and is not electrically connected.
 図1Cに示されるように、フィン120aの平面方向の端部にソース電極15が接続されない領域を設ける場合、この領域が小さすぎるとこの領域を設けることによる上記の効果が不十分になり、大きすぎるとFinFET1の動作への影響が生じるおそれがある。このため、このフィン120aの平面方向の端部のソース電極15が接続されない領域の、平面方向の長さL1は、例えば、1~10μmの範囲内に設定される。 As shown in FIG. 1C, when a region to which the source electrode 15 is not connected is provided at the end of the fin 120a in the planar direction, if this region is too small, the above effect of providing this region will be insufficient, If it is too high, the operation of the FinFET 1 may be affected. Therefore, the length L1 in the planar direction of the region at the end of the fin 120a in the planar direction to which the source electrode 15 is not connected is set within a range of 1 to 10 μm, for example.
 なお、図1B、図1Cに示されるソース電極15は、領域151を含まなくてもよい。この場合、ソース電極15のフィン120の上方を覆う領域にコンタクトプラグや引き出し用ワイヤーを接続する。 Note that the source electrode 15 shown in FIGS. 1B and 1C does not need to include the region 151. In this case, a contact plug or a lead wire is connected to a region of the source electrode 15 that covers the upper part of the fin 120.
 ゲート絶縁膜13は、HfO、Al、SiOなどの絶縁体からなる。ゲート電極14は、Cr、Pt、Niなどの仕事関数が高い金属からなることが好ましい。ソース電極15、ドレイン電極16は、例えば、Ti/Au、Ti/Alなどの半導体層10とオーミック接触する電極積層構造からなる。また、層間絶縁膜17は、SiO、SiN、HfOなどの絶縁体からなる。 The gate insulating film 13 is made of an insulator such as HfO 2 , Al 2 O 3 , or SiO 2 . The gate electrode 14 is preferably made of a metal with a high work function, such as Cr, Pt, or Ni. The source electrode 15 and the drain electrode 16 are made of an electrode stacked structure made of, for example, Ti/Au, Ti/Al, etc. and in ohmic contact with the semiconductor layer 10 . Furthermore, the interlayer insulating film 17 is made of an insulator such as SiO 2 , SiN, HfO 2 , or the like.
 FinFET1は、ノーマリーオフ特性とノーマリーオン特性のいずれを有してもよい。例えば、FinFET1がノーマリーオフ特性を有する場合は、ゲート電極14に電圧を印加すると、ゲート電極14に両側から挟まれたフィン120の各々にチャネルが形成され、ソース電極15とドレイン電極16の間に電流が流れるようになる。 The FinFET 1 may have either normally-off characteristics or normally-on characteristics. For example, when the FinFET 1 has normally-off characteristics, when a voltage is applied to the gate electrode 14, a channel is formed in each of the fins 120 sandwiched by the gate electrode 14 from both sides, and a channel is formed between the source electrode 15 and the drain electrode 16. Current will begin to flow.
 FinFET1において、例えば、基板11のドナー濃度は5×1017cm-3以上であり、n領域121のドナー濃度は1×1018cm-3以上であり、フィン120の高さは1μm以上である。また、FinFET1がノーマリーオフ特性を有する場合には、例えば、エピタキシャル層12のドナー濃度が1×1016cm-3以下であり、ゲート絶縁膜13が厚さ100nm以下のHfO膜であり、ゲート電極14がCrからなり、フィン120aの厚さが500nm以下である。 In the FinFET 1, for example, the donor concentration of the substrate 11 is 5×10 17 cm −3 or more, the donor concentration of the n + region 121 is 1×10 18 cm −3 or more, and the height of the fin 120 is 1 μm or more. be. Further, when the FinFET 1 has normally-off characteristics, for example, the donor concentration of the epitaxial layer 12 is 1×10 16 cm −3 or less, the gate insulating film 13 is an HfO 2 film with a thickness of 100 nm or less, The gate electrode 14 is made of Cr, and the thickness of the fin 120a is 500 nm or less.
 FinFET1の閾値電圧Vthは、次の式(1)により求められる。ここで、φはゲート電極14の材料及びゲート絶縁膜13の材料により決まる障壁高さであり、VOXはフィン120のドナー濃度、ゲート絶縁膜13の材料、及びゲート絶縁膜13の厚さにより決まるゲート絶縁膜13の電圧であり、ΔEはゲート絶縁膜13の材料及びフィン120の材料により決まる伝導体側のバンド不連続量であり、φはフィン120のドナー濃度、厚さ、誘電率により決まるフィン120の仕事関数であり、Eはフィン120のドナー濃度及び温度により決まるフェルミエネルギーである。 The threshold voltage V th of the FinFET 1 is determined by the following equation (1). Here, φB is the barrier height determined by the material of the gate electrode 14 and the gate insulating film 13, and VOX is the donor concentration of the fin 120, the material of the gate insulating film 13, and the thickness of the gate insulating film 13. ΔEC is the amount of band discontinuity on the conductor side determined by the material of the gate insulating film 13 and the material of the fin 120, and φS is the voltage of the gate insulating film 13 determined by the donor concentration, thickness, and dielectric value of the fin 120. is the work function of the fin 120 determined by the rate, and E F is the Fermi energy determined by the donor concentration and temperature of the fin 120.
 なお、フィン120aとフィン120bの間隔が大きすぎると、フィン120aにもフィン120bと同様の厚さの増加や表面の荒れが発生する。本発明のフィン120bをダミーフィンとすることによる効果は、厚さの増加や表面の荒れがほぼフィン120bにのみ生じる場合に、特に大きくなる。このため、フィン120aとフィン120bの間隔は、ある程度小さい、例えば、10μm以下であることが好ましい。典型的には、フィン120は全て等間隔で形成される。この場合、フィン120の間隔が10μm以下であることが好ましい。 Note that if the distance between the fins 120a and 120b is too large, the thickness of the fins 120a will increase and the surface will become rough, similar to that of the fins 120b. The effect of using the fins 120b of the present invention as dummy fins becomes particularly large when an increase in thickness or surface roughness occurs almost only on the fins 120b. Therefore, it is preferable that the distance between the fins 120a and the fins 120b is small to some extent, for example, 10 μm or less. Typically, the fins 120 are all equally spaced. In this case, it is preferable that the interval between the fins 120 is 10 μm or less.
(フィン型電界効果トランジスタの評価)
 フィン120bがダミーフィンであるFinFET1と、ソース電極15がフィン120bの上方を覆い、フィン120bに接続された、比較例としてのFinFET(以下、比較試料と呼ぶ)の特性を測定し、比較した。比較試料の構成は、フィン120bがソース電極15に接続されている点以外は、FinFET1の構成と同様である。
(Evaluation of fin field effect transistor)
The characteristics of a FinFET 1 in which the fin 120b is a dummy fin and a FinFET as a comparative example (hereinafter referred to as a comparative sample) in which the source electrode 15 covers the upper part of the fin 120b and is connected to the fin 120b were measured and compared. The configuration of the comparative sample is similar to the configuration of FinFET 1 except that the fin 120b is connected to the source electrode 15.
 図3Aは、比較試料における、ゲート電圧に対するゲート電流Iとドレイン電流Iを示すグラフである。図3Bは、図1Bに示される形状のソース電極15を備えたFinFET1における、ゲート電圧に対するゲート電流Iとドレイン電流Iを示すグラフである。 FIG. 3A is a graph showing gate current Ig and drain current Id versus gate voltage in a comparative sample. FIG. 3B is a graph showing the gate current I g and drain current I d with respect to the gate voltage in the FinFET 1 having the source electrode 15 having the shape shown in FIG. 1B.
 図3Aによれば、ドレイン電流Iが増加し始めてから飽和するまでに、フィン120bの厚さのずれや不均一性によると考えられる大きな段差が存在する。一方、図3Bによれば、ドレイン電流Iが増加し始めてから飽和するまでに段差が存在しない。これは、フィン120bにソース電極15が接続されていないため、フィン120bの厚さのずれや不均一性による影響がないことによると考えられる。 According to FIG. 3A, from when the drain current I d starts to increase until it is saturated, there is a large step that is considered to be due to a deviation or non-uniformity in the thickness of the fin 120b. On the other hand, according to FIG. 3B, there is no step between the time when the drain current I d starts to increase and the time when it is saturated. This is considered to be because the source electrode 15 is not connected to the fin 120b, so there is no influence from deviation or non-uniformity in the thickness of the fin 120b.
(変形例)
 図4は、FinFET1の変形例におけるフィン120とソース電極15の平面方向の位置関係の例を示す模式図である。図4は、FinFET1の上方から視たときのフィン120とソース電極15の形状を示している。
(Modified example)
FIG. 4 is a schematic diagram showing an example of the positional relationship in the planar direction between the fin 120 and the source electrode 15 in a modified example of the FinFET 1. FIG. 4 shows the shapes of the fin 120 and the source electrode 15 when viewed from above the FinFET 1.
 図4に示されるように、FinFET1においては、ダミーフィンであるフィン120bが、その内側のフィン120aを四方から囲むように配置されていてもよい。フィン120bがフィン120aを四方から囲むように配置されることにより、フィン120aの平面方向の端部(すなわち図4の右端と左端)における厚さの増加や側面の荒れを抑えることができる。 As shown in FIG. 4, in the FinFET 1, a fin 120b, which is a dummy fin, may be arranged to surround the inner fin 120a from all sides. By arranging the fins 120b so as to surround the fins 120a from all sides, it is possible to suppress an increase in thickness and roughness of the side surfaces at the ends of the fins 120a in the planar direction (that is, the right and left ends in FIG. 4).
 なお、図4に示される例では、フィン120aを四方から囲むフィン120bが連続した1つのダミーフィンで構成されているが、複数のダミーフィンで構成されていてもよい。 Note that in the example shown in FIG. 4, the fins 120b surrounding the fins 120a from all sides are composed of one continuous dummy fin, but they may be composed of a plurality of dummy fins.
〔第2の実施の形態〕
 本発明の第2の実施の形態は、ソース電極15とフィン120bの電気的な接続を避けるための構造において第1の実施の形態と異なる。第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Second embodiment]
The second embodiment of the present invention differs from the first embodiment in the structure for avoiding electrical connection between the source electrode 15 and the fin 120b. Descriptions of the same points as in the first embodiment will be omitted or simplified.
 図5Aは、本発明の第2の実施の形態に係るFinFET2の垂直断面図である。FinFET2は、酸化ガリウム系半導体からなる半導体層を備えた縦型のFinFETである。 FIG. 5A is a vertical cross-sectional view of the FinFET 2 according to the second embodiment of the present invention. The FinFET 2 is a vertical FinFET including a semiconductor layer made of a gallium oxide semiconductor.
 FinFET2は、FinFET1と同様に、酸化ガリウム系半導体からなり、複数のフィン120を有する半導体層10と、複数のフィン120の各々の側面上にゲート絶縁膜13を介して形成されたゲート電極14と、半導体層10の複数のフィン120側に接続されたソース電極15と、半導体層10の複数のフィン120の反対側に接続されたドレイン電極16と、を備える。また、複数のフィン120の間及び周囲に層間絶縁膜17が形成される。 FinFET2, like FinFET1, is made of a gallium oxide semiconductor and includes a semiconductor layer 10 having a plurality of fins 120, and a gate electrode 14 formed on the side surface of each of the plurality of fins 120 via a gate insulating film 13. , a source electrode 15 connected to the side of the plurality of fins 120 of the semiconductor layer 10, and a drain electrode 16 connected to the side of the semiconductor layer 10 opposite to the plurality of fins 120. Furthermore, an interlayer insulating film 17 is formed between and around the plurality of fins 120 .
 FinFET2においては、ソース電極15がフィン120bの上方を覆っているが、フィン120bの上端とソース電極15との間に絶縁膜21が形成され、絶縁膜21によりソース電極15とフィン120bが絶縁されている。すなわち、FinFET2においては、FinFET1と同様に、最も外側のフィン120bが、ソース電極15が電気的に接続されないダミーフィンである。絶縁膜21は、SiO、SiN、HfO、Alなどの絶縁体からなる。 In the FinFET 2, the source electrode 15 covers the top of the fin 120b, but an insulating film 21 is formed between the upper end of the fin 120b and the source electrode 15, and the insulating film 21 insulates the source electrode 15 and the fin 120b. ing. That is, in FinFET2, like FinFET1, the outermost fin 120b is a dummy fin to which the source electrode 15 is not electrically connected. The insulating film 21 is made of an insulator such as SiO 2 , SiN, HfO 2 , Al 2 O 3 or the like.
 FinFET2においても、FinFET1と同様に、最も外側のフィン120bをソース電極15が電気的に接続されないダミーフィンとすることにより、フィン120bの厚さのずれや不均一性に起因するFinFET2の閾値電圧のずれなどの不良を防いでいる。 In FinFET2, similarly to FinFET1, by using the outermost fin 120b as a dummy fin to which the source electrode 15 is not electrically connected, the threshold voltage of FinFET2 due to deviation or non-uniformity in the thickness of the fin 120b can be reduced. This prevents defects such as misalignment.
 図5B、図5Cは、FinFET2におけるフィン120、ソース電極15、及び絶縁膜21の平面方向の位置関係の例を示す模式図である。図5Bは、FinFET2の上方から視たときのフィン120、ソース電極15、及び絶縁膜21の形状と位置を示している。図5B、図5Cの例で示されるように、FinFET2においては、ソース電極15がフィン120bの上方を覆っているが、ソース電極15とフィン120bは絶縁膜21により絶縁されている。 5B and 5C are schematic diagrams showing an example of the positional relationship in the planar direction of the fin 120, the source electrode 15, and the insulating film 21 in the FinFET 2. FIG. 5B shows the shapes and positions of the fin 120, the source electrode 15, and the insulating film 21 when viewed from above the FinFET 2. As shown in the examples of FIGS. 5B and 5C, in the FinFET 2, the source electrode 15 covers the fin 120b, but the source electrode 15 and the fin 120b are insulated by the insulating film 21.
 また、図5Cに示される例では、フィン120aの平面方向の端部(すなわち図5Cの右端と左端)の上端とソース電極15との間にも、これらを絶縁する絶縁膜21が形成されている。このため、フィン120aの平面方向の端部において厚さの増加や側面の荒れが生じている場合であっても、この部分にソース電極15が電気的に接続されないため、フィン120aの平面方向の端部の厚さのずれや不均一性に起因するFinFET2の閾値電圧のずれなどの不良を防ぐことができる。したがって、ソース電極15が、絶縁膜21により、フィン120aの平面方向の端部の少なくとも一部に電気的に接続されていないことが好ましい。 In the example shown in FIG. 5C, an insulating film 21 is also formed between the upper end of the fin 120a in the planar direction (that is, the right end and left end in FIG. 5C) and the source electrode 15 to insulate them. There is. Therefore, even if the end portion of the fin 120a in the planar direction has an increased thickness or roughened side surface, the source electrode 15 is not electrically connected to this portion, so that the end portion of the fin 120a in the planar direction is It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 2 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 is not electrically connected to at least a portion of the end portion of the fin 120a in the planar direction by the insulating film 21.
 図5Cに示されるように、フィン120aの平面方向の端部にソース電極15が接続されない領域を設ける場合、この領域が小さすぎるとこの領域を設けることによる上記の効果が不十分になり、大きすぎるとFinFET1の動作への影響が生じるおそれがある。このため、このフィン120aの平面方向の端部のソース電極15が接続されない領域の、平面方向の長さL2は、例えば、1~10μmの範囲内に設定される。 As shown in FIG. 5C, when a region to which the source electrode 15 is not connected is provided at the end of the fin 120a in the planar direction, if this region is too small, the above effect of providing this region will be insufficient, and If it is too high, the operation of the FinFET 1 may be affected. Therefore, the length L2 in the planar direction of the region at the end of the fin 120a in the planar direction to which the source electrode 15 is not connected is set, for example, within a range of 1 to 10 μm.
 なお、図5B、図5Cに示されるソース電極15は、上方からコンタクトプラグや引き出し用ワイヤーを接続するための、フィン120の上方を覆う領域から外れた位置に設けられる領域151を有していてもよい。 Note that the source electrode 15 shown in FIGS. 5B and 5C has a region 151 provided at a position apart from the region covering the upper part of the fin 120 for connecting a contact plug or a lead wire from above. Good too.
(変形例)
 図6は、FinFET2の変形例の垂直断面図である。FinFET2においては、図6に示されるように、フィン120bの高さがフィン120aの高さよりも低くてもよい。この場合、例えば、フィン120bの上端とその上方を覆うソース電極15との間に層間絶縁膜17が形成され、層間絶縁膜17によりソース電極15とフィン120bが絶縁される。
(Modified example)
FIG. 6 is a vertical cross-sectional view of a modification of the FinFET 2. FIG. In the FinFET 2, as shown in FIG. 6, the height of the fin 120b may be lower than the height of the fin 120a. In this case, for example, an interlayer insulating film 17 is formed between the upper end of the fin 120b and the source electrode 15 covering the upper end of the fin 120b, and the interlayer insulating film 17 insulates the source electrode 15 and the fin 120b.
 また、フィン120aの平面方向の端部の少なくとも一部の高さが、フィン120bと同様に低くなっていてもよい。この場合、フィン120aの平面方向の端部の低くなっている部分の上端とその上方を覆うソース電極15との間にも層間絶縁膜17が形成される。このため、フィン120aの平面方向の端部において厚さの増加や側面の荒れが生じている場合であっても、この部分にソース電極15が電気的に接続されないため、フィン120aの平面方向の端部の厚さのずれや不均一性に起因するFinFET2の閾値電圧のずれなどの不良を防ぐことができる。したがって、ソース電極15が、層間絶縁膜17により、フィン120aの平面方向の端部の少なくとも一部に電気的に接続されていないことが好ましい。 Furthermore, the height of at least a portion of the end portion of the fin 120a in the planar direction may be lowered similarly to the height of the fin 120b. In this case, the interlayer insulating film 17 is also formed between the upper end of the lower end of the fin 120a in the planar direction and the source electrode 15 covering the upper end. Therefore, even if the thickness of the fin 120a is increased or the side surface is rough, the source electrode 15 is not electrically connected to this portion, so that the end of the fin 120a in the planar direction is not electrically connected. It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 2 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 is not electrically connected to at least a portion of the end portion of the fin 120a in the planar direction by the interlayer insulating film 17.
〔第3の実施の形態〕
 本発明の第3の実施の形態は、ソース電極15とフィン120bの電気的な接続を避けるための構造において第1の実施の形態と異なる。第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Third embodiment]
The third embodiment of the present invention differs from the first embodiment in the structure for avoiding electrical connection between the source electrode 15 and the fin 120b. Descriptions of the same points as in the first embodiment will be omitted or simplified.
 図7Aは、本発明の第3の実施の形態に係るFinFET3の垂直断面図である。FinFET3は、酸化ガリウム系半導体からなる半導体層を備えた縦型のFinFETである。 FIG. 7A is a vertical cross-sectional view of the FinFET 3 according to the third embodiment of the present invention. The FinFET 3 is a vertical FinFET including a semiconductor layer made of a gallium oxide semiconductor.
 FinFET3は、FinFET1と同様に、酸化ガリウム系半導体からなり、複数のフィン120を有する半導体層10と、複数のフィン120の各々の側面上にゲート絶縁膜13を介して形成されたゲート電極14と、半導体層10の複数のフィン120側に接続されたソース電極15と、半導体層10の複数のフィン120の反対側に接続されたドレイン電極16と、を備える。また、複数のフィン120の間及び周囲に層間絶縁膜17が形成される。 Like the FinFET 1, the FinFET 3 is made of a gallium oxide semiconductor, and includes a semiconductor layer 10 having a plurality of fins 120, and a gate electrode 14 formed on the side surface of each of the plurality of fins 120 via a gate insulating film 13. , a source electrode 15 connected to the side of the plurality of fins 120 of the semiconductor layer 10, and a drain electrode 16 connected to the side of the semiconductor layer 10 opposite to the plurality of fins 120. Furthermore, an interlayer insulating film 17 is formed between and around the plurality of fins 120 .
 FinFET3においては、フィン120bの上端にアクセプター不純物を含む高抵抗領域123が形成され、高抵抗領域123にソース電極15が接触している。このため、ソース電極15はフィン120bに接触しているが、高抵抗領域123により絶縁されている。すなわち、FinFET3においては、FinFET1と同様に、最も外側のフィン120bが、ソース電極15が電気的に接続されないダミーフィンである。高抵抗領域123は、例えば、N、Mgなどのアクセプター不純物をイオン注入することにより形成される。 In the FinFET 3, a high resistance region 123 containing acceptor impurities is formed at the upper end of the fin 120b, and the source electrode 15 is in contact with the high resistance region 123. Therefore, although the source electrode 15 is in contact with the fin 120b, it is insulated by the high resistance region 123. That is, in FinFET3, like FinFET1, the outermost fin 120b is a dummy fin to which the source electrode 15 is not electrically connected. The high resistance region 123 is formed, for example, by ion implantation of acceptor impurities such as N and Mg.
 FinFET3においても、FinFET1と同様に、最も外側のフィン120bをソース電極15が電気的に接続されないダミーフィンとすることにより、フィン120bの厚さのずれや不均一性に起因するFinFET3の閾値電圧のずれなどの不良を防いでいる。 In FinFET3, similarly to FinFET1, by using the outermost fin 120b as a dummy fin to which the source electrode 15 is not electrically connected, the threshold voltage of FinFET3 due to deviation or non-uniformity in the thickness of the fin 120b can be reduced. This prevents defects such as misalignment.
 図7B、図7Cは、FinFET3におけるフィン120、ソース電極15、及び高抵抗領域123の平面方向の位置関係の例を示す模式図である。図7B、図7Cは、FinFET3の上方から視たときのフィン120、ソース電極15、及び高抵抗領域123の形状と位置を示している。図7B、図7Cの例で示されるように、FinFET3においては、ソース電極15がフィン120bの上方を覆っているが、ソース電極15とフィン120bは高抵抗領域123により絶縁されている。 7B and 7C are schematic diagrams showing an example of the positional relationship in the planar direction of the fin 120, the source electrode 15, and the high resistance region 123 in the FinFET 3. 7B and 7C show the shapes and positions of the fin 120, the source electrode 15, and the high resistance region 123 when viewed from above the FinFET 3. As shown in the examples of FIGS. 7B and 7C, in the FinFET 3, the source electrode 15 covers the fin 120b, but the source electrode 15 and the fin 120b are insulated by the high resistance region 123.
 また、図7Cに示される例では、フィン120aの平面方向の端部(すなわち図7Cの右端と左端)の上端にも、フィン120aとソース電極15を絶縁する高抵抗領域123が形成されている。このため、フィン120aの平面方向の端部において厚さの増加や側面の荒れが生じている場合であっても、この部分にソース電極15が電気的に接続されないため、フィン120aの平面方向の端部の厚さのずれや不均一性に起因するFinFET3の閾値電圧のずれなどの不良を防ぐことができる。したがって、ソース電極15が、高抵抗領域123により、フィン120aの平面方向の端部の少なくとも一部に電気的に接続されていないことが好ましい。 Furthermore, in the example shown in FIG. 7C, high resistance regions 123 that insulate the fin 120a and the source electrode 15 are also formed at the upper ends of the planar ends of the fin 120a (i.e., the right and left ends in FIG. 7C). . Therefore, even if the thickness of the fin 120a is increased or the side surface is rough, the source electrode 15 is not electrically connected to this portion, so that the end of the fin 120a in the planar direction is not electrically connected. It is possible to prevent defects such as a shift in the threshold voltage of the FinFET 3 due to a thickness shift or non-uniformity of the end portion. Therefore, it is preferable that the source electrode 15 is not electrically connected to at least a portion of the end portion of the fin 120a in the planar direction by the high resistance region 123.
 図7Cに示されるように、フィン120aの平面方向の端部にソース電極15が接続されない領域を設ける場合、この領域が小さすぎるとこの領域を設けることによる上記の効果が不十分になり、大きすぎるとFinFET1の動作への影響が生じるおそれがある。このため、このフィン120aの平面方向の端部のソース電極15が接続されない領域の、平面方向の長さL3は、例えば、1~10μmの範囲内に設定される。なお、長さL3は、フィン120aにおける高抵抗領域123の平面方向の長さに等しい。 As shown in FIG. 7C, when providing a region to which the source electrode 15 is not connected at the end of the fin 120a in the planar direction, if this region is too small, the above effect of providing this region will be insufficient, If it is too high, the operation of the FinFET 1 may be affected. Therefore, the length L3 in the planar direction of the region at the end of the fin 120a in the planar direction to which the source electrode 15 is not connected is set within a range of 1 to 10 μm, for example. Note that the length L3 is equal to the length of the high resistance region 123 in the fin 120a in the planar direction.
 なお、図7B、図7Cに示されるソース電極15は、領域151を含まなくてもよい。この場合、ソース電極15のフィン120の上方を覆う領域にコンタクトプラグや引き出し用ワイヤーを接続する。 Note that the source electrode 15 shown in FIGS. 7B and 7C does not need to include the region 151. In this case, a contact plug or a lead wire is connected to a region of the source electrode 15 that covers the upper part of the fin 120.
(実施の形態の効果)
 上記第1~3の実施の形態に係るFinFET1~3によれば、複数のフィン120のうちの最も外側のフィン120bをソース電極15が電気的に接続されないダミーフィンとすることにより、フィン120bの厚さのずれや不均一性による閾値電圧への影響を抑えることができる。また、フィン120aの平面方向の端部の少なくとも一部にソース電極15が接続されないようにすることにより、フィン120aの平面方向の端部の厚さのずれや不均一性よる閾値電圧への影響を抑えることができる。
(Effects of embodiment)
According to the FinFETs 1 to 3 according to the first to third embodiments, the outermost fin 120b of the plurality of fins 120 is used as a dummy fin to which the source electrode 15 is not electrically connected. The influence on the threshold voltage due to thickness deviation or non-uniformity can be suppressed. Furthermore, by preventing the source electrode 15 from being connected to at least a portion of the end portion of the fin 120a in the planar direction, the influence on the threshold voltage due to deviation or non-uniformity in the thickness of the end portion of the fin 120a in the planar direction can be avoided. can be suppressed.
 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. Moreover, the constituent elements of the embodiments described above can be arbitrarily combined without departing from the spirit of the invention. Furthermore, the embodiments described above do not limit the claimed invention. Furthermore, it should be noted that not all combinations of features described in the embodiments are essential for solving the problems of the invention.
 酸化ガリウム系半導体を半導体層に用いたFinFETであって、最も外側のフィンの厚さのずれや不均一性による閾値電圧への影響が抑えられたFinFETを提供する。 To provide a FinFET using a gallium oxide-based semiconductor as a semiconductor layer, in which the influence on the threshold voltage due to thickness deviation or non-uniformity of the outermost fin is suppressed.
1、2、3…FinFET、 10…半導体層、 11…基板、 12…エピタキシャル層、 120、120a、120b…フィン、 121…n領域、 123…高抵抗領域、 13…ゲート絶縁膜、 14…ゲート電極、 15…ソース電極、 16…ドレイン電極、 17…層間絶縁膜、 21…絶縁膜
 
DESCRIPTION OF SYMBOLS 1, 2, 3...FinFET, 10...Semiconductor layer, 11...Substrate, 12...Epitaxial layer, 120, 120a, 120b...Fin, 121...n + region, 123...High resistance region, 13...Gate insulating film, 14... Gate electrode, 15... Source electrode, 16... Drain electrode, 17... Interlayer insulating film, 21... Insulating film

Claims (7)

  1.  酸化ガリウム系半導体からなり、複数のフィンを有する半導体層と、
     前記複数のフィンの各々の側面上にゲート絶縁膜を介して形成されたゲート電極と、
     前記半導体層の前記複数のフィン側に接続されたソース電極と、
     前記半導体層の前記複数のフィンの反対側に接続されたドレイン電極と、
     を備え、
     前記複数のフィンのうちの最も外側のフィンが、前記ソース電極が電気的に接続されないダミーフィンである、
     フィン型電界効果トランジスタ。
    a semiconductor layer made of a gallium oxide-based semiconductor and having a plurality of fins;
    a gate electrode formed on a side surface of each of the plurality of fins with a gate insulating film interposed therebetween;
    a source electrode connected to a side of the plurality of fins of the semiconductor layer;
    a drain electrode connected to the opposite side of the plurality of fins of the semiconductor layer;
    Equipped with
    The outermost fin of the plurality of fins is a dummy fin to which the source electrode is not electrically connected.
    Fin field effect transistor.
  2.  前記ソース電極が、前記複数のフィンのうちの前記ダミーフィンの内側のフィンの平面方向の端部の少なくとも一部に電気的に接続されない、
     請求項1に記載のフィン型電界効果トランジスタ。
    the source electrode is not electrically connected to at least a portion of an end in a planar direction of a fin inside the dummy fin of the plurality of fins;
    The fin field effect transistor according to claim 1.
  3.  前記ソース電極が前記ダミーフィンの上方を覆い、
     前記ダミーフィンの上端と前記ソース電極との間に絶縁膜が形成された、
     請求項1又は2に記載のフィン型電界効果トランジスタ。
    the source electrode covers above the dummy fin;
    an insulating film is formed between an upper end of the dummy fin and the source electrode;
    The fin field effect transistor according to claim 1 or 2.
  4.  前記ダミーフィンの高さが、前記複数のフィンのうちのその他のフィンの高さよりも低い、
     請求項3に記載のフィン型電界効果トランジスタ。
    The height of the dummy fin is lower than the height of other fins among the plurality of fins.
    The fin field effect transistor according to claim 3.
  5.  前記ダミーフィンの上端にアクセプター不純物を含む高抵抗領域が形成され、
     前記高抵抗領域に前記ソース電極が接触している、
     請求項1又は2に記載のフィン型電界効果トランジスタ。
    a high resistance region containing acceptor impurities is formed at the upper end of the dummy fin;
    the source electrode is in contact with the high resistance region;
    The fin field effect transistor according to claim 1 or 2.
  6.  前記ソース電極が前記ダミーフィンの上方を覆わない、
     請求項1又は2に記載のフィン型電界効果トランジスタ。
    the source electrode does not cover above the dummy fin;
    The fin field effect transistor according to claim 1 or 2.
  7.  前記ダミーフィンが、前記複数のフィンのうちの前記ダミーフィンの内側のフィンを四方から囲むように配置された、
     請求項6に記載のフィン型電界効果トランジスタ。
    The dummy fin is arranged to surround an inner fin of the dummy fin from all sides among the plurality of fins,
    The fin field effect transistor according to claim 6.
PCT/JP2023/021931 2022-07-26 2023-06-13 Fin-type field effect transistor WO2024024307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118998 2022-07-26
JP2022118998A JP2024016694A (en) 2022-07-26 2022-07-26 Fin field effect transistor

Publications (1)

Publication Number Publication Date
WO2024024307A1 true WO2024024307A1 (en) 2024-02-01

Family

ID=89706175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021931 WO2024024307A1 (en) 2022-07-26 2023-06-13 Fin-type field effect transistor

Country Status (2)

Country Link
JP (1) JP2024016694A (en)
WO (1) WO2024024307A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275212A (en) * 1996-04-04 1997-10-21 Hitachi Ltd Voltage-driven semiconductor device
JP2005116969A (en) * 2003-10-10 2005-04-28 Toshiba Corp Semiconductor device and its manufacturing method
JP2010267677A (en) * 2009-05-12 2010-11-25 Shindengen Electric Mfg Co Ltd Trench gate power semiconductor device and method of manufacturing the same
JP2017069419A (en) * 2015-09-30 2017-04-06 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor device manufacturing method
JP2020036041A (en) * 2014-05-08 2020-03-05 株式会社Flosfia Crystalline laminated structure and semiconductor device
JP2022023829A (en) * 2020-07-27 2022-02-08 台湾積體電路製造股▲ふん▼有限公司 Method for manufacturing semiconductor device and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275212A (en) * 1996-04-04 1997-10-21 Hitachi Ltd Voltage-driven semiconductor device
JP2005116969A (en) * 2003-10-10 2005-04-28 Toshiba Corp Semiconductor device and its manufacturing method
JP2010267677A (en) * 2009-05-12 2010-11-25 Shindengen Electric Mfg Co Ltd Trench gate power semiconductor device and method of manufacturing the same
JP2020036041A (en) * 2014-05-08 2020-03-05 株式会社Flosfia Crystalline laminated structure and semiconductor device
JP2017069419A (en) * 2015-09-30 2017-04-06 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor device manufacturing method
JP2022023829A (en) * 2020-07-27 2022-02-08 台湾積體電路製造股▲ふん▼有限公司 Method for manufacturing semiconductor device and semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI W.; NOMOTO K.; HU Z.; NAKAMURA T.; JENA D.; XING H. G.: "Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV", 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), IEEE, 7 December 2019 (2019-12-07), XP033714446, DOI: 10.1109/IEDM19573.2019.8993526 *

Also Published As

Publication number Publication date
JP2024016694A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN107591442B (en) Field effect transistor with contact to 2D material active region
US11715774B2 (en) Vertical gallium oxide (GA2O3) power FETs
CN105702734B (en) Semiconductor device and method of manufacturing semiconductor device
US8431459B2 (en) Semiconductor wafer, semiconductor device, and method of manufacturing a semiconductor device
US8525274B2 (en) Semiconductor device and method of manufacturing the same
KR100696197B1 (en) Multiple-gate MOS transistor using the Si substrate and a method for manufacturing the same
JP6401053B2 (en) Semiconductor device and manufacturing method of semiconductor device
US10868164B2 (en) Nitride semiconductor device
JP2016028447A (en) Nonplanar germanium quantum well device
US10243045B2 (en) Semiconductor device
CN106257687B (en) Semiconductor device and manufacturing method thereof
US11557652B2 (en) Metal source/drain-based MOSFET and method for fabricating the same
JP7317936B2 (en) Nitride semiconductor device
WO2009119479A1 (en) Semiconductor device, and method for manufacturing the same
US20230290836A1 (en) Nitride semiconductor device comprising layered structure of active region and method for manufacturing the same
TWI830172B (en) GaN VERTICAL TRENCH MOSFETS AND METHODS OF MANUFACTURING THE SAME
JP6639593B2 (en) Semiconductor device and method of manufacturing semiconductor device
TW201519446A (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
WO2024024307A1 (en) Fin-type field effect transistor
US20210005741A1 (en) Nitride semiconductor apparatus and manufacturing method thereof
JP2021009989A (en) Nitride semiconductor device
JP2019009462A (en) Semiconductor device
US20240038849A1 (en) Semiconductor device
US11715796B2 (en) High frequency transistor
US12027599B2 (en) Single structure CASCODE device and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846042

Country of ref document: EP

Kind code of ref document: A1