WO2024023926A1 - 表面実装機及び表面実装方法 - Google Patents

表面実装機及び表面実装方法 Download PDF

Info

Publication number
WO2024023926A1
WO2024023926A1 PCT/JP2022/028779 JP2022028779W WO2024023926A1 WO 2024023926 A1 WO2024023926 A1 WO 2024023926A1 JP 2022028779 W JP2022028779 W JP 2022028779W WO 2024023926 A1 WO2024023926 A1 WO 2024023926A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting work
mounting
board
wafer
unit
Prior art date
Application number
PCT/JP2022/028779
Other languages
English (en)
French (fr)
Inventor
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/028779 priority Critical patent/WO2024023926A1/ja
Priority to TW111137817A priority patent/TWI822377B/zh
Publication of WO2024023926A1 publication Critical patent/WO2024023926A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a surface mounting technique for mounting dies picked up by a nozzle from a wafer composed of a plurality of dies onto a substrate.
  • Patent Document 1 discloses a component mounting machine that mounts components having a package such as a QFP (Quad Flat Package) on a board.
  • a nozzle detachably attached to a mounting head is used for mounting components.
  • the order in which components are mounted on the board is controlled.
  • a surface mounter performs a loading operation in which a board is transported to a mounting work position, a mounting work in which components are mounted on a board at the mounting work position, and an unloading work in which the board after the mounting work is carried out from the mounting work position. By repeating the board production performed on the board, a plurality of mounted boards are produced.
  • a surface mount machine that mounts dies picked up by a nozzle from a wafer consisting of multiple dies onto a substrate, it is possible to mount multiple wafers by changing the wafer as appropriate according to the progress of mounting the dies on the substrate during the mounting work. types of dies are mounted on the substrate.
  • the condition of tools such as nozzles or wafers may be different at the beginning and end of substrate production. Therefore, when completing board production for one board and starting board production for the next board, it is necessary to return the tool state from the state at the time of completion of board production to the state at the beginning, improving production efficiency. There was room for improvement from this perspective.
  • This invention was made in view of the above problem, and the time required to return the tool state to change the target board for board production, which carries out board loading work, die mounting work, and board unloading work, reduces the production time.
  • the purpose is to suppress a decrease in efficiency.
  • a surface mounter includes a wafer storage unit that stores a plurality of wafers, a wafer supply unit that supplies wafers from the wafer storage unit to a wafer supply position, and a substrate transport unit that transports target substrates to a predetermined mounting work position.
  • a mounting section that mounts the dies constituting the wafer supplied to the wafer supply position onto a target board at a mounting work position using a removably attached nozzle; and a board transport unit that transports the target board to the mounting work position.
  • control for controlling the execution of board production including carrying-in work, mounting work in which a die is mounted by a mounting section on a target board at a mounting work position, and unloading work, in which the target board on which the mounting work has been completed is carried out from the mounting work position;
  • the mounting work includes a plurality of mounting work units, the plurality of mounting work units mounts die from mutually different types of wafers onto the target substrate, and the wafer supply unit executes the plurality of mounting work units.
  • the type of wafer supplied to the wafer supply position is changed according to the wafer supply position, and in each of the plurality of mounting work units, the type of nozzle corresponding to the wafer supplied to the wafer supply position for execution of the mounting work unit is changed.
  • control section completes the mounting work on the first board when starting board production using the second board as the target board after completing the board production using the first board as the target board. executing a plurality of mounting work units on the second substrate in an execution order according to a final tool state indicating at least one of the type of wafer located at the wafer supply position and the type of nozzle attached to the mounting section at the time when .
  • the surface mounting method includes a step of transporting a first board to a mounting work position, a step of performing a mounting work using the first board as a target board, and a step of removing the first board after the mounting work is completed from the mounting work position. a step of transporting the second board to the mounting work position; a step of performing the mounting work using the second board as a target board; and a step of transporting the second board on which the mounting work has been completed from the mounting work position.
  • the dies constituting the wafers supplied to the wafer supply position from the wafer storage unit that stores multiple wafers are mounted onto the target board at the mounting work position using a nozzle to which the mounting unit is removably attached.
  • the mounting work includes a plurality of mounting work units, and the plurality of mounting work units mounts die from different types of wafers onto the target substrate, and the types of wafers supplied to the wafer supply position are different from each other.
  • the change is made according to the execution of the work unit, and in each of the plurality of mounting work units, a type of nozzle corresponding to the wafer to be supplied to the wafer supply position for the execution of the mounting work unit is attached to the mounting section,
  • multiple tests are performed on the second board in an execution order according to the final tool state indicating at least one of the type of wafer located at the wafer supply position and the type of nozzle attached to the mounting section. Execute the implementation unit of work.
  • the carrying-in work of transporting the target board to the mounting work position, the mounting work of mounting the die on the target board at the mounting work position, and the mounting work are performed.
  • a carry-out operation for carrying out the completed target board from the mounting work position is performed on the target board (board production).
  • the mounting work includes a plurality of mounting work units, and the plurality of mounting work units mount dies from mutually different types of wafers onto a target substrate.
  • the type of wafers supplied to the wafer supply position is changed depending on the execution of multiple mounting work units.
  • each of the plurality of mounting work units a type of nozzle corresponding to the wafer to be supplied to the wafer supply position is attached to the mounting section for execution of the mounting work unit. Therefore, the state of the tool, such as the type of wafer supplied to the wafer supply position or the type of nozzle attached to the mounting section, may differ between when the mounting operation on the first substrate is started and when it is completed. Therefore, if multiple mounting work units for the first board and multiple mounting work units for the second board following the first board are performed in the same order, the mounting work for the first board will be It may be necessary to restore the tool state upon completion.
  • a plurality of units of mounting work on the second board are executed in an execution order according to the final tool state that is the tool state at the time when the mounting work on the first board is completed. This makes it possible to suppress a reduction in production efficiency due to the time required to return the tool state to change the substrate to be produced from the first substrate to the second substrate.
  • the final tool state may indicate a combination of the type of wafer located at the wafer supply position and the type of nozzle attached to the mounting section at the time when the mounting work on the first substrate is completed.
  • control unit executes the plurality of mounting work units on the first board in a predetermined first order, and executes the plurality of mounting work units on the second board in a second order opposite to the first order.
  • a plurality of mounting work units for the second substrate are started from a mounting work unit in which the combination of the wafer type located at the wafer supply position and the nozzle type installed in the mounting section matches the combination indicated by the final tool state.
  • a surface mounter may be configured. With such a configuration, when the mounting work on the first board is completed, there is no need to return the tool state to start the mounting work on the second board. Therefore, it is possible to suppress a decrease in production efficiency due to the time required to return the tool state in order to change the target substrate for substrate production from the first substrate to the second substrate.
  • the control unit also executes a search process to search for a mounting work unit that satisfies a predetermined first search condition between the final tool state and the second board, from among the plurality of mounting work units for the second board.
  • the surface mounter may be configured to start a plurality of mounting work units for a corresponding mounting work unit.
  • the first search condition is that the combination of the type of wafer located at the wafer supply position and the type of nozzle attached to the mounting section for execution of the corresponding mounting work unit matches the combination indicated by the final tool state.
  • the surface mounter may be configured as required. With such a configuration, when the mounting work on the first board is completed, there is no need to return the tool state to start the mounting work on the second board. Therefore, it is possible to suppress a decrease in production efficiency due to the time required to return the tool state in order to change the target substrate for substrate production from the first substrate to the second substrate.
  • the search process may further include a storage unit that stores a first order indicating the order of the plurality of implementation work units, and the search process may search for an implementation work unit that satisfies the first search condition from among the plurality of implementation work units in the first order.
  • the control unit searches for the corresponding mounting work unit, and after performing the execution from the corresponding mounting work unit to the last mounting work unit of the plurality of mounting work units in the first order in board production for the second board.
  • the surface mounter may be configured to execute from the first mounting work unit of a plurality of mounting work units to the previous mounting work unit.
  • the storage unit further includes a storage unit that stores a first order indicating the order of the plurality of implementation work units, and the search process selects the mounting work units that satisfy the first search condition from among the plurality of implementation work units in the reverse order of the first order.
  • the control unit searches for the corresponding mounting work unit, and in the board production for the second board, the control unit searches the last mounting work of the plurality of mounting work units from the corresponding mounting work unit in the second order.
  • the surface mounter may be configured to execute the mounting work unit from the first mounting work unit of a plurality of mounting work units to the mounting work unit immediately before the relevant mounting work unit after executing the mounting work unit up to the mounting work unit.
  • a plurality of nozzles are removably attached to the mounting section, and in the search process, if there is no corresponding mounting work unit that satisfies the first search condition, the type of each of the plurality of nozzles indicated by the final tool state is searched for.
  • the corresponding mounting work unit that satisfies the second search condition that the number of nozzles that need to be replaced in order to change the type of each of the plurality of nozzles that must be attached to the mounting section to execute the mounting work unit is the minimum.
  • the surface mounter may be configured to search among a plurality of mounting work units for the second board.
  • the control unit performs a pre-inspection before the mounting work and a post-inspection after the mounting work.
  • a mounting machine may also be configured. With such a configuration, pre-inspection and post-inspection of the board can be performed at appropriate timing.
  • the device further includes a component supply unit that supplies components to the component supply position, and the mounting work unit is a die mounting period in which the die is mounted from the wafer onto the target board, and a component mounting period in which the component is mounted on the target board from the component supply position.
  • the type of nozzle attached to the mounting section is common, and the wafer supply section does not replace the wafer supplied to the wafer supply position.
  • the surface mounter may be configured to run in parallel with the mounting period. With this configuration, it is possible to effectively utilize the component mounting period to change the type of wafer, thereby improving production efficiency.
  • production efficiency is suppressed from decreasing due to the time required to return the tool state in order to change the target board for board production in which board loading work, die mounting work, and board unloading work are performed. It becomes possible to do so.
  • FIG. 1 is a plan view schematically showing an example of a surface mounter according to the present invention.
  • FIG. 2 is a block diagram showing the electrical configuration of the surface mounter of FIG. 1.
  • FIG. 5 is a flowchart illustrating an example of an execution mode of a production plan. 12 is a flowchart showing a modified example of board production.
  • FIG. 5 is a diagram showing in table format the execution order of mounting work units in board production in FIG. 4; 10 is a flowchart illustrating an example of order determination. A flowchart showing another example of order determination.
  • FIG. 5 is a diagram showing in table format the execution order of mounting work units in board production in FIG. 4;
  • FIG. 8B is a diagram showing, in a table format, an example of operations executed according to the execution order of FIG. 8A. 5 is a flowchart showing another variation of board production.
  • FIG. 1 is a plan view schematically showing an example of a surface mounter according to the present invention
  • FIG. 2 is a block diagram showing an electrical configuration of the surface mounter of FIG. 1.
  • XYZ orthogonal coordinate axes including a conveyance direction X, a width direction Y, and a vertical direction Z are used as appropriate.
  • the conveyance direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the conveyance direction X and the width direction Y.
  • the controller 100 includes a control unit 110 that is a processor that executes calculations to control the entire surface mounter 10, and an image processing unit 120 that executes image processing based on commands from the control unit 110. , a drive control section 130 that controls the operations of a substrate transfer section 2, die supply mechanism 3, mounting section 4, component supply mechanism 6, and nozzle exchanger 7, which will be described later, based on instructions from a control section 110. Further, the controller 100 includes a storage unit 140 configured with an SSD (Solid State Drive), an HDD (Hard Disk Drive), or the like.
  • SSD Solid State Drive
  • HDD Hard Disk Drive
  • This storage unit 140 stores an implementation program 150 and the like for causing the control unit 110 to execute control to be described later.
  • the implementation program 150 is provided recorded on a recording medium 170 such as a DVD (Digital Versatile Disc) or a USB (Universal Serial Bus) memory, and the control unit 110 stores the implementation program 150 read from the recording medium 170 into the storage unit 140. Save to.
  • the provision form of the implementation program 150 is not limited to this, and the implementation program 150 may be provided in a form that is downloaded from an Internet server that records the implementation program 150, for example.
  • This surface mounter 10 includes a substrate transport section 2 that transports the substrate B in the transport direction X.
  • This board transport section 2 has a mounting work position 21, and carries the board B into the mounting work position 21 from the upstream side in the transport direction X. Further, the board transport unit 2 transports the board B on which the die Wp and the component P are mounted at the mounting work position 21 to the downstream side in the transport direction X from the mounting work position 21 .
  • the surface mounter 10 includes a die supply mechanism 3 that supplies the die Wp included in the wafer W.
  • the wafer W is composed of a plurality of dies Wp (bare chips) that are made independent by dicing.
  • the die supply mechanism 3 includes a wafer storage section 31 that can store a plurality of wafers W, and a wafer drawer section 33 that pulls out the wafers W from the wafer storage section 31 to the wafer supply position 32.
  • the wafer storage unit 31 raises and lowers in the vertical direction Z a rack in which a plurality of wafer holders Wh each holding a wafer W are arranged and stored therein, to a height at which the wafer drawer unit 33 can receive the wafers W. By positioning one wafer holder Wh, this wafer holder Wh can be pushed out to the wafer drawer portion 33.
  • the wafer drawer 33 includes a wafer support table 331 that supports the wafer holder Wh, a fixed rail 332 that supports the wafer support table 331 movably in the width direction Y, and a wafer support table 332 that is provided in the width direction Y and is attached to the wafer support table 331.
  • the Y-axis motor 334 has a ball screw 333 and a Y-axis motor 334 that drives the ball screw 333. Therefore, the drive control unit 130 can move the wafer support table 331 in the width direction Y along the fixed rail 332 by rotating the ball screw 333 with the Y-axis motor 334. As shown in FIG.
  • the wafer storage section 31 and the wafer supply position 32 are arranged to sandwich the substrate transport section 2 from the width direction Y, and the wafer support table 331 passes below the substrate transport section 2. do.
  • the wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at a reception position adjacent to the wafer storage unit 31, and moves from the reception position to the wafer supply position 32, thereby transferring the wafer W to the wafer supply position 32. bring out.
  • the die supply mechanism 3 includes a die takeout section 35 that takes out the die Wp from the wafer supply position 32.
  • the die take-out section 35 has a take-out head 36 that takes out the die Wp from the wafer supply position 32, and this take-out head 36 is movable in the XY directions. That is, the die takeout section 35 includes a support member 351 that supports the takeout head 36 movably in the transport direction X, and an X-axis motor 352 that is provided in the transport direction X and drives a ball screw attached to the takeout head 36. have Therefore, the drive control unit 130 can move the take-out head 36 in the transport direction X by rotating the X-axis motor 352.
  • the die take-out section 35 also includes a fixed rail 353 that supports the support member 351 movably in the width direction Y, a ball screw 354 provided in the width direction Y and attached to the fixed rail 353, and a Y that drives the ball screw 354. It has a shaft motor 355. Therefore, the drive control unit 130 can move the take-out head 36 in the width direction Y together with the support member 351 by rotating the Y-axis motor 355.
  • the take-out head 36 has a bracket 361 extending in the transport direction X, and two nozzles 362 rotatably supported by the bracket 361.
  • Each nozzle 362 rotates around a rotation axis parallel to the conveyance direction X, and is positioned at either a suction position facing downward or a delivery position facing upward (the position in FIG. 1). Further, the bracket 361 can be moved up and down together with each nozzle 362.
  • the die take-out unit 35 has a moving camera 356 that images the die Wp at the wafer supply position 32 from above, and this moving camera 356 is movable in the XY directions. That is, in the die take-out section 35, the movable camera 356 is supported by the support member 351 so as to be movable in the transport direction X. Furthermore, the die takeout section 35 includes an X-axis motor 357 that is provided in the transport direction X and drives a ball screw attached to a moving camera 356. Therefore, by rotating the X-axis motor 357, the drive control unit 130 can move the moving camera 356 in the transport direction It can be moved in direction Y.
  • the die Wp is supplied in the following manner. That is, the drive control unit 130 moves the moving camera 356 above the die Wp to be supplied among the plurality of dies Wp of the wafer W supplied to the wafer supply position 32 .
  • the moving camera 356 images the die Wp and transfers the captured image to the image processing unit 120, and the image processing unit 120 recognizes the position of the die Wp from this captured image.
  • the drive control unit 130 causes the nozzle 362 located at the suction position to face the die Wp from above, and then lowers the nozzle 362 to face the die Wp. contact with.
  • the drive control unit 130 picks up the die Wp from the wafer supply position 32 by raising the nozzle 362 while applying negative pressure to the nozzle 362.
  • the drive control unit 130 then supplies the die Wp by positioning the nozzle 362 at the delivery position.
  • the surface mounter 10 includes a mounting section 4 that mounts the die Wp supplied by the die supply mechanism 3 onto the substrate B.
  • This mounting section 4 includes a support member 41 that is movable along a fixed rail provided in the width direction Y on the ceiling of the surface mounter 10, and a head unit 42 that is supported movably in the transport direction X by the support member 41. and has. Furthermore, an X-axis motor 43 provided in the transport direction X and driving a ball screw attached to the head unit 42, and a Y-axis motor 44 provided in the width direction Y and attached to the support member 41 are provided.
  • the drive control section 130 can move the head unit 42 in the transport direction X by rotating the X-axis motor 43, and can move the head unit 42 along with the support member 41 by rotating the Y-axis motor 44. can be moved in the width direction Y.
  • the head unit 42 includes two mounting heads 421 and two nozzles N that are detachably attached to the lower ends of the two mounting heads 421, respectively.
  • the head unit 42 moves above the take-out head 36 and causes the nozzle N to face the die Wp held by the nozzle 362 located at the delivery position from above. It is lowered and brought into contact with the die Wp.
  • the die supply mechanism 3 releases the negative pressure in the nozzle 362, and the mounting unit 4 applies negative pressure to the nozzle N, causing the nozzle N to adsorb the die Wp, and raises the nozzle N while applying negative pressure. In this way, the head unit 42 picks up the die Wp with the nozzle N.
  • the die supply mechanism 3 has two nozzles 362, and these nozzles 362 can supply two dies Wp at the same time.
  • the head unit 42 has two nozzles N corresponding to the two nozzles 362 of the die supply mechanism 3, and the two nozzles N correspond to the two nozzles 362 of the die supply mechanism 3. N allows you to pick up at the same time. However, it is not essential to supply and pick up two dies Wp at the same time.
  • the mounting section 4 includes a moving camera 45 facing downward.
  • the moving camera 45 images the die Wp supplied by the die supply mechanism 3 and the die Wp mounted on the substrate B from above.
  • This moving camera 45 is attached to the head unit 42, and the drive control section 130 rotates the X-axis motor 43 and the Y-axis motor 44 to move the moving camera 45 in the X and Y directions similarly to the head unit 42. Can be done.
  • the surface mounter 10 includes a component supply mechanism 6 provided on the opposite side of the die supply mechanism 3 in the width direction Y.
  • a plurality of feeders F are arranged in the transport direction X.
  • Each feeder F has a component supply position Fs at the tip end on the mounting work position 21 side in the width direction Y, and supplies a component P (packaged component) having a package such as an integrated circuit, a capacitor, or a resistor to the component supply position Fs. do.
  • a component storage tape having a plurality of pockets each storing a component P is attached to a feeder F, and the feeder F adjusts the component supply position by intermittently feeding the component storage tape in the width direction Y. Supply part P to Fs.
  • the plurality of feeders F1, F2, F3, and F4 supply mutually different types of components P to the component supply position Fs.
  • the head unit 42 of the mounting section 4 uses the nozzle N to adsorb the component P supplied to the component supply position Fs, and mounts it on the board B at the mounting work position 21.
  • the surface mounter 10 includes a fixed camera 5.
  • the fixed camera 5 faces upward and is fixed to a base, and images the die Wp or the component P that is attracted by the nozzle N from below.
  • the image (recognized image) of the die Wp or the part P captured by the fixed camera 5 is transmitted to the image processing unit 120, and the image processing unit 120 adsorbs the die Wp or the part P to the nozzle N based on the recognized image of the die Wp or the part P. The position of die Wp or part P is confirmed.
  • the surface mounter 10 also includes a nozzle exchanger 7 that exchanges the nozzle N attached to the head unit 42 of the mounting section 4.
  • This nozzle exchanger 7 is used to attach a nozzle N to a head unit 42 to which no nozzle N is attached, to remove a nozzle N attached to a head unit 42 from the head unit 42 for storage, and to attach a nozzle N to a head unit 42 that is not attached.
  • An operation such as exchanging the nozzle N is performed on the head unit 42 facing the nozzle exchanger 7 from above.
  • the board carrying section 2 carries the board B (target board) to the mounting work position 21, and the mounting section 4 mounts the die Wp and the component P on the board B at the mounting work position 21.
  • Board production including mounting work and carrying out work of carrying out the board B on which the mounting work has been completed from the mounting work position 21 is executed under the control of the control unit 110.
  • a plurality of substrates B mounted substrates each having a die Wp and a component P mounted thereon are produced.
  • a description will be given of an execution mode of a production plan for producing a plurality of such mounted boards.
  • FIG. 3 is a flowchart showing an example of how the production plan is executed.
  • the flowchart in FIG. 3 is executed under the control of the control unit 110.
  • This flowchart shows the board production for the first board B ("Steps S101 to S116" on the left end), the board production for the even numbered board B ("Steps S201 to S214" in the middle), and the board production for the third and subsequent boards. (“Steps S101, S104 to S116" on the right end) for the odd-numbered board B (“Steps S101, S104 to S116" at the right end).
  • wafers W1, W2, W3, and W4 are different types of wafers W from each other.
  • different types of wafers W correspond to different types of dies Wp constituting the wafers W.
  • the nozzles N1 and N2 are different types of nozzles N from each other.
  • step S101 the board B(1) is carried into the mounting work position 21 by the board transport section 2. Then, the nozzle N1 is attached to the head unit 42 by the nozzle exchanger 7 (step S102), and the wafer W1 is supplied to the wafer supply position 32 by the wafer drawer 33 (step S103).
  • step S104 the die Wp taken out from the wafer W1 supplied to the wafer supply position 32 is mounted on the substrate B(1) at the mounting work position 21 by the nozzle N1 of the mounting section 4.
  • step S105 the component P supplied to the component supply position Fs by the feeder F1 is mounted on the board B(1) at the mounting work position 21 by the nozzle N1 of the mounting section 4.
  • step S106 the wafer W supplied to the wafer supply position 32 is changed from wafer W1 to wafer W2 (step S106).
  • step S107 the die Wp taken out from the wafer W2 supplied to the wafer supply position 32 is mounted on the substrate B(1) at the mounting work position 21 by the nozzle N1 of the mounting section 4.
  • step S108 the component P supplied to the component supply position Fs by the feeder F2 is mounted on the board B(1) at the mounting work position 21 by the nozzle N1 of the mounting section 4.
  • the wafer W2 and feeder F2 used for mounting in steps S107 and S108 are different from the wafer W1 and feeder F1 used for mounting in steps S104 and S105.
  • the nozzle N used for mounting in steps S107 and S108 and the nozzle N used for mounting in steps S104 and S105 are both nozzles N1.
  • step S109 the wafer W supplied to the wafer supply position 32 is changed from wafer W2 to wafer W3 (step S109).
  • step S110 the nozzle N installed in the head unit 42 is changed from nozzle N1 to nozzle N2 by the nozzle exchanger 7.
  • step S111 the die Wp taken out from the wafer W3 supplied to the wafer supply position 32 is mounted on the substrate B(1) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • step S112 the component P supplied to the component supply position Fs by the feeder F3 is mounted on the board B(1) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • the wafer W3 and feeder F3 used for mounting in steps S111 and S112 are different from the wafer W2 and feeder F2 used for mounting in steps S107 and S108.
  • the nozzle N1 used for mounting in steps S111 and S112 is different from the nozzle N2 used for mounting in S107 and S108.
  • step S113 the wafer W supplied to the wafer supply position 32 is changed from wafer W3 to wafer W4 (step S113).
  • step S114 the die Wp taken out from the wafer W4 supplied to the wafer supply position 32 is mounted on the substrate B(1) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • step S115 the component P supplied to the component supply position Fs by the feeder F4 is mounted on the board B(1) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • the wafer W4 and feeder F4 used for mounting in steps S114 and S115 are different from the wafer W3 and feeder F3 used for mounting in steps S111 and S112.
  • the nozzle N used for mounting in steps S114 and S114 and the nozzle N used for mounting in steps S111 and S112 are both nozzles N2.
  • step S116 the board B(1) is carried out from the mounting work position 21 by the board transport section 2.
  • step S101 the loading work (step S101), the mounting work (steps S104, S105, S107, S108, S111, S112, S114, S115), and the unloading work (step S116) are performed on the board B(1). Ru.
  • step S104, S105, S107, S108, S111, S112, S114, S115 the unloading work (step S116) are performed on the board B(1). Ru.
  • step S201 the board B(2) is carried into the mounting work position 21 by the board transport section 2.
  • step S202 the component P supplied to the component supply position Fs by the feeder F4 is mounted on the board B(2) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • step S203 the die Wp taken out from the wafer W4 supplied to the wafer supply position 32 is mounted on the substrate B(2) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • step S204 the component P shared by the feeder F3 at the component supply position Fs is mounted on the board B(2) at the mounting work position 21 by the nozzle N2 of the mounting section 4. Further, in parallel with step S204, the wafer W supplied to the wafer supply position 32 is changed from wafer W4 to wafer W3 (step S205). In the subsequent step S206, the die Wp taken out from the wafer W3 supplied to the wafer supply position 32 is mounted on the substrate B(2) at the mounting work position 21 by the nozzle N2 of the mounting section 4.
  • step S207 the nozzle N installed in the head unit 42 is changed from nozzle N2 to nozzle N1 by the nozzle exchanger 7.
  • step S208 the component P shared by the feeder F2 at the component supply position Fs is mounted on the board B(2) at the mounting work position 21 by the nozzle N1 of the mounting section 4. Further, in parallel with step S208, the wafer W supplied to the wafer supply position 32 is changed from wafer W3 to wafer W2 (step S209). In the subsequent step S210, the die Wp taken out from the wafer W2 supplied to the wafer supply position 32 is mounted on the substrate B(2) at the mounting work position 21 by the nozzle N1 of the mounting section 4.
  • step S211 the component P shared by the feeder F1 at the component supply position Fs is mounted on the board B(2) at the mounting work position 21 by the nozzle N1 of the mounting section 4. Further, in parallel with step S211, the wafer W supplied to the wafer supply position 32 is changed from wafer W2 to wafer W1 (step S212). In the subsequent step S213, the die Wp taken out from the wafer W1 supplied to the wafer supply position 32 is mounted on the substrate B(2) at the mounting work position 21 by the nozzle N1 of the mounting section 4.
  • step S214 the board B(2) is carried out from the mounting work position 21 by the board transport section 2.
  • step S201 the loading work (step S201), the mounting work (steps S202, S203, S204, S206, S208, S210, S211, S213), and the unloading work (step S214) are performed on the board B(2). Ru.
  • - Mounting work unit U (4)...Mounting of die Wp constituting wafer W4 and mounting of component P supplied by feeder F4 (steps S202, S203) - Mounting work unit U (3)...Mounting of die Wp constituting wafer W3 and mounting of component P supplied by feeder F3 (steps S204, S206) - Mounting work unit U (2)...Mounting of die Wp constituting wafer W2 and mounting of component P supplied by feeder F2 (steps S208, S210) - Mounting work unit U (1)...Mounting of die Wp constituting wafer W1 and mounting of component P supplied by feeder F1 (steps S211, S213) are executed in this order.
  • step S301 the board B(3) is carried into the mounting work position 21 by the board transport section 2. Subsequently, steps S304 to S316 are performed on the substrate B(2) in the same manner as steps S104 to S116.
  • carrying-in work step S301
  • mounting work step S304, S305, S307, S308, S311, S312, S314, S315)
  • carrying-out work step S316
  • step S316 carrying-out work
  • step S304, S305 Mounting of die Wp that constitutes wafer W1 and mounting of component P supplied by feeder F1 (steps S304, S305) - Mounting work unit U (2)...Mounting of die Wp constituting wafer W2 and mounting of component P supplied by feeder F2 (steps S307, S308) ⁇ Mounting work unit U (3)...Mounting of die Wp constituting wafer W3 and mounting of component P supplied by feeder F3 (steps S311, S312) - Mounting work unit U (4)...Mounting of die Wp constituting wafer W4 and mounting of component P supplied by feeder F4 (steps S314, S315) are executed in this order.
  • steps S201 to S214 are executed for even-numbered substrates B (even numbers), and steps S301 to S316 are executed for odd-numbered substrates B (odd numbers).
  • the loading work of transporting the board B (target board) to the mounting work position 21, the mounting work of mounting the die Wp on the board B at the mounting work position 21, and the mounting work are completed.
  • An unloading operation for unloading the board B from the mounting operation position 21 is performed on the board B (board production).
  • the mounting work includes a plurality of mounting work units U(1), U(2), U(3), and U(4), and includes a plurality of mounting work units U(1), U(2), and U( 3), U(4) mounts die Wp on substrate B from mutually different types of wafers W1, W2, W3, and W4.
  • the type of wafer W supplied to the wafer supply position 32 is changed according to the execution of the plurality of mounting work units U(1), U(2), U(3), and U(4). (for example, steps S103, S106, S109, S113). Furthermore, in each of the plurality of mounting work units U(1), U(2), U(3), and U(4), the types of wafers W1, W2, W3, and W4 supplied to the wafer supply position 32 are Nozzles N1 and N2 are attached to the mounting head 421. Therefore, the tool state, which is a combination of the type of wafer W supplied to the wafer supply position 32 and the type of nozzle N attached to the mounting head 421, is set at the time of starting the mounting work on the substrate B(1) (first substrate). and when completed.
  • the execution order for the substrate B (2) is determined according to the final tool state (wafer W4 and nozzle N2), which is the tool state at the time when the mounting work for the board B (1) is completed.
  • a plurality of implementation work units U(4), U(3), U(2), and U(1) are executed. This makes it possible to suppress the reduction in production efficiency due to the time required to return the tool state to change the target board B for board production from board B (1) to board B (2). There is.
  • control unit 110 arranges the plurality of mounting work units U on the board B(1) (first board) in a predetermined first order (U(1), U(2), U(3), U(4)). ), and the multiple mounting work units U for the board B(2) (second board) are executed in a second order U(4), U(3), U(2), U(1), which is the reverse of the first order. ).
  • the mounting work unit U in which the combination of the type of wafer W located at the wafer supply position 32 and the type of nozzle N mounted on the mounting head 421 matches the combination (wafer W4 and nozzle N2) indicated by the final tool state. From (4), a plurality of mounting work units U(4), U(3), U(2), and U(1) for the board B(2) are started.
  • Each of the mounting work units U(1), U(2), U(3), and U(4) includes a die mounting period (for example, steps S104, S107, and S111) for mounting the die Wp from the wafer W onto the substrate B. , S114) and a component mounting period (for example, steps S105, S108, S112, and S115) in which the component P is mounted on the board B from the component supply position Fs. Further, during the die mounting period and the component mounting period belonging to the same mounting work unit U, the type of nozzle N mounted on the mounting head 421 is common.
  • the wafer drawer unit 33 (wafer supply unit) exchanges the wafer W supplied to the wafer supply position 32 in parallel with the component mounting period (for example, steps S103, S106, S109, and S113).
  • the component mounting period can be effectively used to change the type of wafer W, thereby improving production efficiency.
  • the feeder The component P supplied from F may be mounted.
  • the same effects as above can be achieved.
  • FIG. 4 is a flowchart showing a modification of board production
  • FIG. 5 is a table showing the execution order of mounting work units in board production in FIG. 4.
  • the flowchart in FIG. 4 is executed under the control of the control unit 110.
  • the execution order O1 shown in FIG. 5 is stored in the recording medium 170, for example.
  • This execution order O1 indicates that the implementation work units U(1), U(2), U(3), and U(4) are executed in this order.
  • the execution order O1 is supplied from the feeder F after the mounting of the die Wp constituting the wafer W in each of the mounting work units U(1), U(2), U(3), and U(4). Indicates that component P is to be mounted (intra-unit order).
  • step S401 the board B(1) is carried into the mounting work position 21.
  • the mounting work units U(1), U(2), U(3), and U(4) are executed according to the execution order O1 (steps S402 and S403). Note that the timing of supplying the wafer W to the wafer supply position 32, replacing the nozzle N, etc. are the same as described above.
  • step S403 the implementation work units U(1), U(2), U(3), and U(4) are completed (“YES” in step S403), the implementation work units U(1), U(2), and U (3) In U(4), it is confirmed whether there is a die Wp or component P that has failed in mounting (step S404).
  • the state of the die Wp or component P that is attracted to the nozzle N before mounting on the board B(1), and the state of the nozzle N after mounting on the board B(1) is determined. Based on the image captured by the fixed camera 5, it is possible to determine whether there is a failure in mounting. That is, if the suction posture of the die Wp or the component P by the nozzle N before mounting is tilted, or if the die Wp or the component P is attached to the nozzle N after mounting, it is determined that the mounting has failed.
  • step S404 If there is no mounting failure (“NO” in step S404), the process advances to step S406, and the board B(1) is carried out from the mounting work position 21. On the other hand, if there is a mounting failure ("YES" in step S404), step S405 is executed, and then step S406 is executed.
  • step S405 the mounting of the die Wp or component P that failed in mounting is re-executed.
  • the mounting work unit U(2) is incomplete, the mounting of the die Wp is re-executed.
  • the wafer W4 is not supplied to the wafer supply position 32.
  • a nozzle N2 is attached to the mounting head 421.
  • step S405 the wafer W supplied to the wafer supply position 32 is changed from wafer W4 to wafer W2, and the nozzle N attached to the mounting head 421 is changed from nozzle N2 to nozzle N1.
  • the mounting work unit U(2) is completed.
  • all the dies Wp and components P to be mounted by the mounting work units U(1), U(2), U(3), and U(4) have been successfully mounted on the board B(1). Mounting work units U(1), U(2), U(3), and U(4) are completed.
  • FIG. 6 is a flowchart showing an example of order determination. The flowchart in FIG. 6 is executed under the control of the control unit 110.
  • the final tool state is the tool state at the time when the mounting work units U(1), U(2), U(3), and U(4) for the board B(1) are completed, that is, the time when the mounting work is completed. is confirmed.
  • the time when the implementation work is completed is not the time when the implementation work units U(1), U(2), U(3), and U(4) are finished (the time when "YES" in step S403);
  • step S405 this is the time when the mounting of the die Wp or the component P is successfully re-executed.
  • the final tool state confirmed in step S501 indicates the combination of wafer W3 and nozzle N2.
  • steps S503 and S504 are repeated until a mounting work unit U(J) having a tool state that matches the final tool state is found (until "YES" is obtained in step S504).
  • the implementation work unit U(2) will be searched.
  • step S505 mounting work units U(1), U(2), U(3), and U(4) for board B(2) are extracted from the corresponding mounting work unit U(2) searched in step S504. It is determined that the execution is performed cyclically according to the execution order O1.
  • to execute cyclically according to the execution order O1 means to sequentially execute from the corresponding implementation work unit U(2) to the last in the execution order O1, and then execute in order from the first implementation work unit U(1). indicates that implementation work units U(1), U(2), U(3), and U(4) are to be executed. Therefore, in the execution order O1, after the implementation work unit U(2) to the last implementation work unit U(4) is executed, the first implementation work unit U(1) is executed, and the implementation work unit U(1 ), U(2), U(3), and U(4) will be executed.
  • the control unit 110 selects a plurality of mounting work units U(1), U(2), U(3), U(4) for the board B(2) (second board).
  • a search process is executed to search for a corresponding mounting work unit U(2) whose tool state matches the final tool state (first search condition) (steps S501 to S504).
  • a plurality of mounting work units U(1), U(2), U(3), and U(4) for the board B(2) are started from the corresponding mounting work unit U(2).
  • the type of wafer W located at the wafer supply position 32 (wafer W2) and the type of nozzle N attached to the mounting head 421 (nozzle N1) for execution of the corresponding mounting work unit U(2) are determined.
  • a mounting work unit U(2) whose combination matches the combination (wafer W2 and nozzle N1) indicated by the final tool state is searched for.
  • the specific search when searching for the corresponding implementation work unit U(2) that satisfies the search condition from among the multiple implementation work units U(1), U(2), U(3), and U(4) is performed in the order O1 (first order), and it is determined that the execution order O1 is to be executed cyclically from the corresponding implementation work unit U(2).
  • the order determination may be performed as shown in FIG.
  • FIG. 7 is a flowchart showing another example of order determination.
  • the flowchart in FIG. 7 is executed under the control of the control unit 110.
  • the final tool state is the tool state at the time when the mounting work units U(1), U(2), U(3), and U(4) for the board B(1) are completed, that is, the time when the mounting work is completed. is confirmed.
  • the identifier J is decremented by 1.
  • Step S604 it is determined whether the tool state, which is a combination of the type of wafer W and the type of nozzle N used in the mounting work unit U(J), matches the final tool state (wafer W2, nozzle N1) ( Step S604).
  • the tool state (wafer W4 and nozzle N2) when executing the mounting work unit U(4) is different from the final tool state ("NO” in step S604), so the process returns to step S603 and the identifier Decrement J by 1.
  • steps S603 and S604 are repeated until a mounting work unit U(J) having a tool state that matches the final tool state is found (until "YES” is obtained in step S604).
  • the implementation work unit U(2) will be searched.
  • step S605 the mounting work units U(1), U(2), U(3), and U(4) for the board B(2) are extracted from the corresponding mounting work unit U(2) searched in step S604. It is determined that the execution is performed cyclically in the reverse order of execution order O1.
  • executing cyclically in the reverse order of the execution order O1 means to perform execution in the reverse order from the corresponding implementation work unit U(2) to the first in the execution order O1, and then in the reverse order from the last implementation work unit U(1).
  • implementation work units U(1), U(2), U(3), and U(4) are executed. Therefore, in the execution order O1, after executing in reverse order from the corresponding mounting work unit U(2) to the first mounting work unit U(1), from the last mounting work unit U(4) to mounting work unit U(3).
  • the corresponding implementation work unit U(2) that satisfies the search condition is executed from among the multiple implementation work units U(1), U(2), U(3), and U(4).
  • the search is performed in the reverse order (second order) of the order O1 (first order), and it is determined to cyclically execute the execution order in the reverse order of the execution order O1 starting from the corresponding implementation work unit U(2).
  • FIG. 8A is a diagram showing, in a table format, the execution order of the mounting work units in the board production of FIG. 4, and FIG. 8B is a diagram showing, in a table format, an example of operations executed according to the execution order of FIG. 8A.
  • the execution order O2 shown in FIG. 8A indicates that the implementation work units U(1) and U(2) are executed in this order. Furthermore, the execution order O2 indicates that the component P supplied from the feeder F is mounted after the die Wp constituting the wafer W is mounted in the mounting work unit U(1) (intra-unit order).
  • the head unit 42 is provided with three mounting heads 421, and the three mounting heads 421 are identified by head numbers H1, H2, and H3. According to this execution order O2, the nozzle N1 is attached to each mounting head 421 in the mounting work unit U(1), and the nozzle N2 is attached to each mounting head 421 in the mounting work unit U(2).
  • the mounting work units U(1) and U(2) on the board B(2) are completed.
  • the execution order of In particular, suppose that the mounting head 421 with head number H2 fails to mount the component P when the nozzle N1 mounts the component P supplied by the feeder F1 in the mounting work unit U(1) on the board B(1).
  • Step S405 the mounting work units U(1) and U(2) for the board B(1) are completed.
  • the wafer W2 is located at the wafer supply position 32, and the three mounting heads 421 are each equipped with nozzles N2, N1, and N2 (FIG. 8B).
  • the control unit 110 selects the types of the plurality of nozzles N2, N1, and N2 indicated by the final tool state among the mounting work units U(1) and U(2) for the execution of the corresponding mounting work unit U.
  • the mounting work unit U that satisfies the search condition (second search condition) that the number of nozzles N that need to be replaced in order to change the type of plural nozzles N to be attached to the mounting head 421 of is the minimum is found.
  • the implementation work units U(1) and U(2) is found.
  • the state of the nozzle N is required to return to the state in order to start the mounting work on the board B(2) (the second board). You can save time. As a result, it is possible to suppress the decrease in production efficiency due to the time required to return the tool state in order to change the target board for board production from board B (1) to board B (2). .
  • FIG. 9 is a flowchart showing another modification of board production.
  • a preliminary inspection is performed (step S307).
  • the control unit 110 inspects whether there is any abnormality in the substrate B based on the image of the substrate B taken by the moving camera 45.
  • a post-inspection is performed after the mounting work (steps S302 to S305) on the board B is completed and before the board B is carried out from the mounting work position 21 (step S308). ).
  • the control unit 110 inspects whether there is any abnormality in the die Wp or the component P mounted on the board B based on the image of the die Wp or the component P captured by the moving camera 356.
  • the substrate production shown in FIG. 9 is performed on a plurality of substrates B.
  • the order in which the multiple mounting work units U for board B(2) are executed is , is determined according to the final tool state in which the mounting work for the board B(1) has been completed.
  • the order of performing a pre-inspection (step S307) and then executing multiple mounting work units U, and the order of performing a plurality of mounting work units U and then performing a post-inspection are different from the order in which the board B (1) and substrate B (2).
  • board production includes a preliminary inspection (step S307) in which the state of the board B carried into the mounting work position 21 by the carry-in work (step S301) is inspected before the mounting work (steps S302 to S305), and a mounting work (step S307).
  • the process includes a post-inspection (step S308) in which the state of the substrate B for which steps S302 to S305) have been completed is inspected before the unloading operation (step S306).
  • the control unit 110 performs a preliminary inspection (step S307) before the mounting work (steps S302 to S305) in both board production for board B (1) and board production for board B (2).
  • step S308 is executed after the mounting work (steps S302 to S305).
  • the pre-inspection (step S307) and the post-inspection (step S308) of the board B can be performed at appropriate timing.
  • the surface mounter 10 corresponds to an example of the "surface mounter” of the present invention
  • the control section 110 corresponds to an example of the "control section” of the present invention
  • the storage section 140 corresponds to an example of the "control section” of the present invention.
  • This corresponds to an example of the "storage section” of the present invention
  • the board transfer section 2 corresponds to an example of the "substrate transfer section” of the present invention
  • the mounting work position 21 corresponds to an example of the "mounting work position" of the present invention.
  • the wafer storage section 31 corresponds to an example of the "wafer storage section" of the present invention
  • the wafer supply position 32 corresponds to an example of the "wafer supply position” of the present invention
  • the wafer drawer section 33 corresponds to an example of the "wafer supply section” of the present invention.
  • the mounting section 4 corresponds to an example of the “mounting section” of the present invention
  • the component supply mechanism 6 corresponds to an example of the “component supply section” of the present invention
  • the board B corresponds to an example of the "component supply section" of the present invention.
  • the nozzle N corresponds to an example of the "nozzle” of the present invention
  • the mounting work unit U corresponds to an example of the “mounting work unit” of the present invention
  • the wafer W corresponds to an example of the "target substrate” of the present invention.
  • the die Wp corresponds to an example of a "wafer”
  • the die Wp corresponds to an example of a "die” of the present invention.
  • the present invention is not limited to the embodiments described above, and various changes can be made to what has been described above without departing from the spirit thereof.
  • the content indicated by the tool state is not limited to the combination of the type of wafer W and the type of nozzle N, but may be either one of these types.
  • the surface mounter 10 functions as a flip chip die bonder, but it may function as a die bonder that does not flip the die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Coating With Molten Metal (AREA)

Abstract

実装作業は、複数の実装作業単位U(1)、U(2)、U(3)、U(4)を含み、複数の実装作業単位U(1)、U(2)、U(3)、U(4)は、互いに異なる種類のウェハW1、W2、W3、W4からダイWpを基板Bに実装する。複数の実装作業単位U(1)、U(2)、U(3)、U(4)のそれぞれでは、ウェハ供給位置32に供給されるウェハW1、W2、W3、W4に応じた種類のノズルN1、N2が実装ヘッド421に装着される。基板B(1)に対する実装作業が完了した時点におけるツール状態である最終ツール状態(ウェハW4およびノズルN2)に応じた実行順序で、基板B(2)に対する複数の実装作業単位U(4)、U(3)、U(2)、U(1)が実行される。

Description

表面実装機及び表面実装方法
 この発明は、複数のダイで構成されるウェハからノズルによって吸着したダイを基板に実装する表面実装技術に関する。
 特許文献1では、QFP(Quad Flat Package)等のパッケージを有する部品を基板に実装する部品実装機が開示されている。この部品実装機では、装着ヘッドに着脱可能に取り付けられたノズルが部品の実装に用いられる。特にノズルの交換回数を抑制するために、基板に部品を実装する順序が制御される。
特開2004-111998号公報
 ところで、表面実装機では、実装作業位置に基板を搬入する搬入作業と、実装作業位置の基板に部品を実装する実装作業と、実装作業が完了した基板を実装作業位置から搬出する搬出作業とを基板に実行する基板生産が繰り返されることで、複数の実装済み基板が生産される。また、複数のダイで構成されるウェハからノズルによって吸着したダイを基板に実装する表面実装機では、実装作業において、基板へのダイの実装の進捗に応じてウェハを適宜交換することで、複数の種類のダイが基板に実装される。したがって、ノズルあるいはウェハといったツールの状態が、基板生産の開始時と完了時とで異なり得る。そのため、一の基板に対する基板生産を完了して、次の基板に対する基板生産を開始するにあたっては、ツール状態を基板生産の完了時の状態から開始時の状態に戻す必要があり、生産効率の向上の観点から改善すべき余地があった。
 この発明は上記課題に鑑みなされたものであり、基板の搬入作業、ダイの実装作業および基板の搬出作業を実行する基板生産の対象基板を変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制可能とすることを目的とする。
 本発明に係る表面実装機は、複数のウェハを収納するウェハ収納部と、ウェハ収納部からウェハ供給位置にウェハを供給するウェハ供給部と、所定の実装作業位置に対象基板を搬入する基板搬送部と、ウェハ供給位置に供給されたウェハを構成するダイを、着脱可能に装着されたノズルによって実装作業位置の対象基板に実装する実装部と、基板搬送部によって対象基板を実装作業位置に搬入する搬入作業と、実装作業位置の対象基板に実装部によりダイを実装する実装作業と、実装作業が完了した対象基板を実装作業位置から搬出する搬出作業とを含む基板生産の実行を制御する制御部とを備え、実装作業は、複数の実装作業単位を含み、複数の実装作業単位は、互いに異なる種類のウェハからダイを対象基板に実装し、ウェハ供給部は、複数の実装作業単位の実行に応じてウェハ供給位置に供給されるウェハの種類を変更し、複数の実装作業単位のそれぞれでは、当該実装作業単位の実行のためにウェハ供給位置に供給されるウェハに応じた種類のノズルが実装部に装着され、制御部は、第1基板を対象基板とする基板生産を完了したのに続いて第2基板を対象基板とする基板生産を開始するにあたって、第1基板に対する実装作業が完了した時点における、ウェハ供給位置に位置するウェハの種類および実装部に装着されるノズルの種類の少なくとも一方を示す最終ツール状態に応じた実行順序で、第2基板に対する複数の実装作業単位を実行する。
 本発明に係る表面実装方法は、第1基板を実装作業位置に搬入する工程と、第1基板を対象基板として実装作業を実行する工程と、実装作業が完了した第1基板を実装作業位置から搬出する工程と、第2基板を実装作業位置に搬入する工程と、第2基板を対象基板として実装作業を実行する工程と、実装作業が完了した第2基板を実装作業位置から搬出する工程とを備え、実装作業では、複数のウェハを収納するウェハ収納部からウェハ供給位置に供給されたウェハを構成するダイを、実装部が着脱可能に装着されたノズルによって実装作業位置の対象基板に実装し、実装作業は、複数の実装作業単位を含み、複数の実装作業単位は、互いに異なる種類のウェハからダイを対象基板に実装し、ウェハ供給位置に供給されるウェハの種類は、複数の実装作業単位の実行に応じて変更され、複数の実装作業単位のそれぞれでは、当該実装作業単位の実行のためにウェハ供給位置に供給されるウェハに応じた種類のノズルが実装部に装着され、第1基板に対する実装作業が完了した時点における、ウェハ供給位置に位置するウェハの種類および実装部に装着されるノズルの種類の少なくとも一方を示す最終ツール状態に応じた実行順序で、第2基板に対する複数の実装作業単位を実行する。
 このように構成された本発明(表面実装機および表面実装方法)では、対象基板を実装作業位置に搬入する搬入作業と、実装作業位置の対象基板にダイを実装する実装作業と、実装作業が完了した対象基板を実装作業位置から搬出する搬出作業とが、当該対象基板に実行される(基板生産)。また、実装作業は、複数の実装作業単位を含み、複数の実装作業単位は、互いに異なる種類のウェハからダイを対象基板に実装する。これに対応して、ウェハ供給位置に供給されるウェハの種類は、複数の実装作業単位の実行に応じて変更される。また、複数の実装作業単位のそれぞれでは、当該実装作業単位の実行のためにウェハ供給位置に供給されるウェハに応じた種類のノズルが実装部に装着される。したがって、ウェハ供給位置に供給されるウェハの種類あるいは実装部に装着されるノズルの種類といったツール状態が第1基板に対する実装作業の開始時と完了時とで異なり得る。そのため、第1基板に対する実装作業での複数の実装作業単位と、第1基板に続く第2基板に対する実装作業での複数の実装作業単位とを同じ順序で実行すると、第1基板に対する実装作業の完了時においてツール状態を戻す必要が生じうる。これに対して、本発明では、第1基板に対する実装作業が完了した時点におけるツール状態である最終ツール状態に応じた実行順序で、第2基板に対する複数の実装作業単位が実行される。これによって、基板生産の対象基板を第1基板から第2基板に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 なお、最終ツール状態は、第1基板に対する実装作業が完了した時点における、ウェハ供給位置に位置するウェハの種類および実装部に装着されるノズルの種類の組み合わせを示すものであってもよい。
 また、制御部は、第1基板に対する複数の実装作業単位を所定の第1順序で実行し、第2基板に対する複数の実装作業単位を第1順序の逆の第2順序で実行することで、ウェハ供給位置に位置するウェハの種類および実装部に装着されるノズルの種類の組み合わせが、最終ツール状態が示す組み合わせと一致する実装作業単位から、第2基板に対する複数の実装作業単位を開始するように、表面実装機を構成してもよい。かかる構成では、第1基板に対する実装作業の完了時において、第2基板に対する実装作業の開始のためにツール状態を戻す必要がない。よって、基板生産の対象基板を第1基板から第2基板に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 また、制御部は、第2基板に対する複数の実装作業単位のうちから、最終ツール状態との間に所定の第1検索条件を満たす該当実装作業単位を検索する検索処理を実行し、第2基板に対する複数の実装作業単位を、該当実装作業単位から開始するように、表面実装機を構成してもよい。このような探索処理の結果に基づき第2基板に対する複数の実装作業単位の実行順序を制御することで、基板生産の対象基板を第1基板から第2基板に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することができる。
 また、第1検索条件は、該当実装作業単位の実行のためにウェハ供給位置に位置するウェハの種類および実装部に装着されるノズルの種類の組み合わせが、最終ツール状態が示す組み合わせと一致するという条件であるように、表面実装機を構成してもよい。かかる構成では、第1基板に対する実装作業の完了時において、第2基板に対する実装作業の開始のためにツール状態を戻す必要がない。よって、基板生産の対象基板を第1基板から第2基板に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 なお、複数の実装作業単位のうちから探索条件を満たす実装作業単位を探索する際の具体的な探索順序は種々考えられる。
 例えば、複数の実装作業単位の順序を示す第1順序を記憶する記憶部をさらに備え、検索処理は、複数の実装作業単位のうちから第1検索条件を満たす実装作業単位を第1順序で検索することで、該当実装作業単位を検索し、制御部は、第2基板に対する基板生産において、第1順序において、該当実装作業単位から複数の実装作業単位の最後の実装作業単位まで実行した後に、複数の実装作業単位の最初の実装作業単位から該当実装作業単位より1つ前の実装作業単位まで実行するように、表面実装機を構成してもよい。
 あるいは、複数の実装作業単位の順序を示す第1順序を記憶する記憶部をさらに備え、検索処理は、複数の実装作業単位のうちから第1検索条件を満たす実装作業単位を第1順序と逆の第2順序で検索することで、該当実装作業単位を検索し、制御部は、第2基板に対する基板生産において、第2順序において、該当実装作業単位から複数の実装作業単位の最後の実装作業単位まで実行した後に、複数の実装作業単位の最初の実装作業単位から該当実装作業単位より1つ前の実装作業単位まで実行するように、表面実装機を構成してもよい。
 また、実装部には、複数のノズルが着脱自在に装着され、検索処理では、第1検索条件を満たす該当実装作業単位が存在しない場合、最終ツール状態が示す複数のノズルそれぞれの種類を、該当実装作業単位の実行のために実装部に装着すべき複数のノズルそれぞれの種類に変更するために交換が必要となるノズルの個数が最小であるとの第2検索条件を満たす該当実装作業単位が第2基板に対する複数の実装作業単位のうちから探索されるように、表面実装機を構成してもよい。かかる構成では、第1基板に対する実装作業の完了時において、第2基板に対する実装作業の開始のためにノズルの状態を戻すのに要する時間を抑えることができる。その結果、基板生産の対象基板を第1基板から第2基板に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 また、基板生産は、搬入作業により実装作業位置に搬入された対象基板の状態を実装作業の前に検査する事前検査と、実装作業が完了した対象基板の状態を搬出作業の前に検査する事後検査とを含み、制御部は、第1基板に対する基板生産および第2基板に対する基板生産の両方において、事前検査を実装作業の前に実行し、事後検査を実装作業の後に実行するように、表面実装機を構成してもよい。かかる構成では、基板の事前検査および事後検査を適切なタイミングで実行することができる。
 また、部品供給位置に部品を供給する部品供給部をさらに備え、実装作業単位は、ウェハからダイを対象基板に実装するダイ実装期間と、部品供給位置から部品を対象基板に実装する部品実装期間とを含み、同一の実装作業単位に属するダイ実装期間および部品実装期間では、実装部に装着されるノズルの種類は共通し、ウェハ供給部は、ウェハ供給位置に供給されるウェハの交換を部品実装期間に並行して実行するように、表面実装機を構成してもよい。かかる構成では、部品実装期間をウェハの種類の変更に有効活用して、生産効率の向上を図ることができる。
 本発明によれば、基板の搬入作業、ダイの実装作業および基板の搬出作業を実行する基板生産の対象基板を変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となる。
本発明に係る表面実装機の一例を模式的に示す平面図。 図1の表面実装機が備える電気的構成を示すブロック図。 生産計画の実行態様の一例を示すフローチャート。 基板生産の一の変形例を示すフローチャート。 図4の基板生産における実装作業単位の実行順序を表形式で示す図。 順序決定の一例を示すフローチャート。 順序決定の別の例を示すフローチャート。 図4の基板生産における実装作業単位の実行順序を表形式で示す図。 図8Aの実行順序に従って実行される動作の一例を表形式で示す図。 基板生産の別の変形例を示すフローチャート。
 図1は本発明に係る表面実装機の一例を模式的に示す平面図であり、図2は図1の表面実装機が備える電気的構成を示すブロック図である。図1に示すように、本明細書では、搬送方向X、幅方向Yおよび鉛直方向Zで構成されるXYZ直交座標軸を適宜用いる。搬送方向Xおよび幅方向Yは水平方向に平行であるとともに互いに直交し、鉛直方向Zは搬送方向Xおよび幅方向Yに直交する。
 この表面実装機10は、搬送方向Xの上流側から搬入された基板BにダイWpを実装して、当該基板Bを搬送方向Xの下流側に搬出する。図2に示すように、コントローラー100は、表面実装機10全体を制御するための演算を実行するプロセッサーである制御部110と、制御部110の指令に基づき画像処理を実行する画像処理部120と、後述する基板搬送部2、ダイ供給機構3、実装部4、部品供給機構6およびノズル交換機7の動作を制御部110の指令に基づき制御する駆動制御部130とを有する。さらに、コントローラー100は、SSD(Solid State Drive)あるいはHDD(Hard Disk Drive)等で構成された記憶部140を有する。この記憶部140には、後述する制御を制御部110に実行させるための実装プログラム150等を記憶する。実装プログラム150は、例えばDVD(Digital Versatile Disc)やUSB(Universal Serial Bus)メモリ等の記録媒体170に記録されて提供され、制御部110は、記録媒体170から読み出した実装プログラム150を記憶部140に保存する。なお、実装プログラム150の提供形態はこれに限られず、実装プログラム150は、例えば当該実装プログラム150を記録するインターネットサーバーからダウンロードする形態で提供されてもよい。
 この表面実装機10は搬送方向Xに基板Bを搬送する基板搬送部2を備える。この基板搬送部2は実装作業位置21を有し、搬送方向Xの上流側から実装作業位置21に基板Bを搬入する。また、基板搬送部2は、実装作業位置21でダイWpおよび部品Pが実装された基板Bを、実装作業位置21から搬送方向Xの下流側へ搬出する。
 また、表面実装機10は、ウェハWに含まれるダイWpを供給するダイ供給機構3を備える。ウェハWは、ダイシングによって独立化された複数のダイWp(ベアチップ)によって構成される。これに対して、ダイ供給機構3は、複数のウェハWを収納可能なウェハ収納部31と、ウェハ収納部31からウェハ供給位置32までウェハWを引き出すウェハ引出部33とを有する。ウェハ収納部31は、それぞれウェハWを保持する複数のウェハホルダーWhを鉛直方向Zに並べて収納するラックを鉛直方向Zに昇降させることで、ウェハ引出部33がウェハWを受取可能な高さに一のウェハホルダーWhを位置させて、このウェハホルダーWhをウェハ引出部33に押し出すことができる。
 ウェハ引出部33は、ウェハホルダーWhを支持するウェハ支持テーブル331と、ウェハ支持テーブル331を幅方向Yに移動可能に支持する固定レール332と、幅方向Yに設けられてウェハ支持テーブル331に取り付けられたボールネジ333と、ボールネジ333を駆動するY軸モーター334とを有する。したがって、駆動制御部130は、Y軸モーター334によりボールネジ333を回転させることで、ウェハ支持テーブル331を固定レール332に沿って幅方向Yに移動させることができる。なお、図1に示すように、ウェハ収納部31とウェハ供給位置32とは基板搬送部2を幅方向Yから挟むように配置されており、ウェハ支持テーブル331は基板搬送部2の下方を通過する。かかるウェハ支持テーブル331は、ウェハ収納部31に隣接する受取位置でウェハ収納部31からウェハホルダーWhを受け取って、受取位置からウェハ供給位置32へと移動することで、ウェハ供給位置32にウェハWを引き出す。
 さらに、ダイ供給機構3は、ウェハ供給位置32からダイWpを取り出すダイ取出部35を有する。ダイ取出部35は、ウェハ供給位置32からダイWpを取り出す取出ヘッド36を有し、この取出ヘッド36はXY方向に移動可能である。つまり、ダイ取出部35は、取出ヘッド36を搬送方向Xに移動可能に支持する支持部材351と、搬送方向Xに設けられて取出ヘッド36に取り付けられたボールネジを駆動するX軸モーター352とを有する。したがって、駆動制御部130は、X軸モーター352を回転させることで、取出ヘッド36を搬送方向Xに移動させることができる。また、ダイ取出部35は、支持部材351を幅方向Yに移動可能に支持する固定レール353と、幅方向Yに設けられて固定レール353に取り付けられたボールネジ354と、ボールネジ354を駆動するY軸モーター355とを有する。したがって、駆動制御部130は、Y軸モーター355を回転させることで、支持部材351とともに取出ヘッド36を幅方向Yに移動させることができる。
 取出ヘッド36は、搬送方向Xに延設されたブラケット361と、ブラケット361に回転可能に支持された2個のノズル362とを有する。各ノズル362は、搬送方向Xに平行な回転軸を中心に回転することで、下方を向く吸着位置および上方を向く受渡位置(図1の位置)のいずれかに位置する。また、ブラケット361は、各ノズル362を伴って昇降可能である。
 さらに、ダイ取出部35は、ウェハ供給位置32のダイWpを上方から撮像する移動カメラ356を有し、この移動カメラ356はXY方向に移動可能である。つまり、ダイ取出部35では、移動カメラ356が支持部材351によって搬送方向Xに移動可能に支持されている。また、ダイ取出部35は、搬送方向Xに設けられて移動カメラ356に取り付けられたボールネジを駆動するX軸モーター357を有する。したがって、駆動制御部130は、X軸モーター357を回転させることで移動カメラ356を搬送方向Xに移動させることができるとともに、Y軸モーター355を回転させることで支持部材351とともに移動カメラ356を幅方向Yに移動させることができる。
 かかるダイ供給機構3では、次のようにして、ダイWpが供給される。つまり、駆動制御部130は、ウェハ供給位置32に供給されたウェハWの複数のダイWpのうち供給対象のダイWpの上方に移動カメラ356を移動させる。移動カメラ356は、ダイWpを撮像して、撮像画像を画像処理部120に転送し、画像処理部120はこの撮像画像からダイWpの位置を認識する。そして、駆動制御部130は、画像処理部120による認識結果に基づきノズル362を駆動することで、吸着位置に位置するノズル362をダイWpに上方から対向させると、ノズル362を下降させてダイWpに接触させる。さらに、駆動制御部130は、ノズル362に負圧を与えつつノズル362を上昇させることで、ウェハ供給位置32からダイWpをピックアップする。そして、駆動制御部130は、ノズル362を受渡位置に位置させることで、ダイWpを供給する。
 表面実装機10は、こうしてダイ供給機構3によって供給されたダイWpを基板Bに実装する実装部4を備える。この実装部4は、表面実装機10の天井に幅方向Yに設けられた固定レールに沿って移動可能な支持部材41と、支持部材41によって搬送方向Xに移動可能に支持されたヘッドユニット42とを有する。さらに、搬送方向Xに設けられてヘッドユニット42に取り付けられたボールネジを駆動するX軸モーター43と、幅方向Yに設けられて支持部材41に取り付けられたY軸モーター44が具備されている。したがって、駆動制御部130は、X軸モーター43を回転させることでヘッドユニット42を搬送方向Xに移動させることができるとともに、Y軸モーター44を回転させることで支持部材41に伴ってヘッドユニット42を幅方向Yに移動させることができる。
 ヘッドユニット42は、2本の実装ヘッド421と、2本の実装ヘッド421の下端にそれぞれ着脱可能に装着された2個のノズルNとを有する。ダイWpのピックアップに際しては、ヘッドユニット42は、取出ヘッド36の上方に移動して、受渡位置に位置するノズル362に保持されるダイWpに対してノズルNを上方から対向させると、ノズルNを下降させてダイWpに接触させる。続いて、ダイ供給機構3がノズル362の負圧を解除するとともに、実装部4がノズルNに負圧を与え、ノズルNによりダイWpを吸着させ、負圧を与えつつノズルNを上昇させる。こうして、ヘッドユニット42はノズルNによってダイWpをピックアップする。
 なお、ダイ供給機構3は、2個のノズル362を有しており、これらノズル362によって2個のダイWpを同時に供給できる。一方、ヘッドユニット42は、ダイ供給機構3の2個のノズル362に対応して2個のノズルNを有しており、ダイ供給機構3により供給された2個のダイWpを2個のノズルNによって同時にピックアップすることができる。ただし、2個のダイWpを同時に供給およびピックアップすることは必須ではない。
 さらに、実装部4は、下方を向いて設けられた移動カメラ45を有する。移動カメラ45は、ダイ供給機構3により供給されたダイWpや、基板Bに実装されたダイWpを上方から撮像する。この移動カメラ45はヘッドユニット42に取り付けられており、駆動制御部130はX軸モーター43およびY軸モーター44を回転させることで、ヘッドユニット42と同様に移動カメラ45をXY方向に移動させることができる。
 さらに、表面実装機10は、幅方向Yにおいてダイ供給機構3の逆側に設けられた部品供給機構6を備える。部品供給機構6では、複数のフィーダFが搬送方向Xに配列されている。各フィーダFは、幅方向Yにおいて実装作業位置21側の先端部に部品供給位置Fsを有し、集積回路、コンデンサあるいは抵抗といったパッケージを有する部品P(パッケージ部品)を、部品供給位置Fsに供給する。具体的には、それぞれ部品Pを収納する複数のポケットを有する部品収納テープがフィーダFに装着されており、フィーダFは、部品収納テープを幅方向Yに間欠的に送ることで、部品供給位置Fsに部品Pを供給する。特に複数のフィーダF1、F2、F3、F4は互いに異なる種類の部品Pを部品供給位置Fsに供給する。これに対して、実装部4のヘッドユニット42は、部品供給位置Fsに供給された部品PをノズルNにより吸着して、実装作業位置21の基板Bに実装する。
 また、表面実装機10は固定カメラ5を備える。固定カメラ5は上方を向いて基台に固定されており、ノズルNによって吸着されるダイWpあるいは部品Pを下方から撮像する。固定カメラ5によって撮像されたダイWpあるいは部品Pの画像(認識画像)は、画像処理部120に送信され、画像処理部120はダイWpあるいは部品Pの認識画像に基づき、ノズルNに吸着されるダイWpあるいは部品Pの位置を確認する。
 また、表面実装機10は、実装部4のヘッドユニット42に装着するノズルNを交換するノズル交換機7を備える。このノズル交換機7は、ノズルNが未装着のヘッドユニット42にノズルNを装着したり、ヘッドユニット42に装着されたノズルNをヘッドユニット42から取り外して保管したり、ヘッドユニット42の装着されるノズルNを交換したりといった動作を、当該ノズル交換機7に上方から対向するヘッドユニット42に対して実行する。
 かかる表面実装機10では、基板搬送部2によって基板B(対象基板)を実装作業位置21に搬入する搬入作業と、実装作業位置21の基板Bに実装部4によりダイWpおよび部品Pを実装する実装作業と、実装作業が完了した基板Bを実装作業位置21から搬出する搬出作業とを含む基板生産が制御部110の制御によって実行される。特に、複数の基板Bに対して基板生産を実行することで、ダイWpおよび部品Pがそれぞれ実装された複数の基板B(実装済み基板)が生産される。続いては、このような複数の実装済み基板を生産する生産計画の実行態様について説明する。
 図3は生産計画の実行態様の一例を示すフローチャートである。図3のフローチャートは、制御部110の制御によって実行される。このフローチャートは、1枚目の基板Bに対する基板生産(左端の「ステップS101~S116」)と、偶数枚目の基板Bに対する基板生産(真ん中の「ステップS201~S214」)と、3枚目以後の奇数枚目の基板Bに対する基板生産(右端の「ステップS101、S104~S116」)とを含む。
 以下では、複数の基板Bを区別するために、基板生産の実行順序を示すカウント値Iを併記した基板B(I)との表記を適宜用いる。また、図3において、ウェハW1、W2、W3、W4は互いに異なる種類のウェハWである。ここで、ウェハWの種類が異なるとは、ウェハWを構成するダイWpの種類が異なることに相当する。さらに、ノズルN1、N2は互いに異なる種類のノズルNである。
 ステップS101では、基板B(1)が基板搬送部2によって実装作業位置21に搬入される。そして、ノズル交換機7によってノズルN1がヘッドユニット42に装着されるとともに(ステップS102)、ウェハ引出部33によってウェハW1がウェハ供給位置32に供給される(ステップS103)。
 ステップS104では、ウェハ供給位置32に供給されたウェハW1から取り出されたダイWpが実装部4のノズルN1によって実装作業位置21の基板B(1)に実装される。続くステップS105では、フィーダF1によって部品供給位置Fsに供給された部品Pが実装部4のノズルN1によって実装作業位置21の基板B(1)に実装される。また、ステップS105と並行して、ウェハ供給位置32に供給されるウェハWがウェハW1からウェハW2に変更される(ステップS106)。
 ステップS107では、ウェハ供給位置32に供給されたウェハW2から取り出されたダイWpが実装部4のノズルN1によって実装作業位置21の基板B(1)に実装される。続くステップS108では、フィーダF2によって部品供給位置Fsに供給された部品Pが実装部4のノズルN1によって実装作業位置21の基板B(1)に実装される。このように、ステップS107、S108で実装に使用されるウェハW2およびフィーダF2は、ステップS104、S105で実装に使用されるウェハW1およびフィーダF1と異なる。一方、ステップS107、S108で実装に使用されるノズルNと、ステップS104、S105で実装に使用されるノズルNは、いずれもノズルN1である。また、ステップS108と並行して、ウェハ供給位置32に供給されるウェハWがウェハW2からウェハW3に変更される(ステップS109)。
 ステップS110では、ヘッドユニット42に装着されるノズルNがノズル交換機7によってノズルN1からノズルN2に変更される。
 ステップS111では、ウェハ供給位置32に供給されたウェハW3から取り出されたダイWpが実装部4のノズルN2によって実装作業位置21の基板B(1)に実装される。続くステップS112では、フィーダF3によって部品供給位置Fsに供給された部品Pが実装部4のノズルN2によって実装作業位置21の基板B(1)に実装される。このように、ステップS111、S112で実装に使用されるウェハW3およびフィーダF3は、ステップS107、S108で実装に使用されるウェハW2およびフィーダF2と異なる。また、ステップS111、S112で実装に使用されるノズルN1は、S107、S108で実装に使用されるノズルN2と異なる。また、ステップS112と並行して、ウェハ供給位置32に供給されるウェハWがウェハW3からウェハW4に変更される(ステップS113)。
 ステップS114では、ウェハ供給位置32に供給されたウェハW4から取り出されたダイWpが実装部4のノズルN2によって実装作業位置21の基板B(1)に実装される。続くステップS115では、フィーダF4によって部品供給位置Fsに供給された部品Pが実装部4のノズルN2によって実装作業位置21の基板B(1)に実装される。このように、ステップS114、S115で実装に使用されるウェハW4およびフィーダF4は、ステップS111、S112で実装に使用されるウェハW3およびフィーダF3と異なる。一方、ステップS114、S114で実装に使用されるノズルNと、ステップS111、S112で実装に使用されるノズルNは、いずれもノズルN2である。
 ステップS116では、基板B(1)が基板搬送部2によって実装作業位置21にから搬出される。
 このように、基板B(1)に対しては搬入作業(ステップS101)、実装作業(ステップS104、S105、S107、S108、S111、S112、S114、S115)および搬出作業(ステップS116)が実行される。また、基板B(1)に対する実装作業では、
・実装作業単位U(1)…ウェハW1を構成するダイWpの実装およびフィーダF1が供給する部品Pの実装(ステップS104、S105)
・実装作業単位U(2)…ウェハW2を構成するダイWpの実装およびフィーダF2が供給する部品Pの実装(ステップS107、S108)
・実装作業単位U(3)…ウェハW3を構成するダイWpの実装およびフィーダF3が供給する部品Pの実装(ステップS111、S112)
・実装作業単位U(4)…ウェハW4を構成するダイWpの実装およびフィーダF4が供給する部品Pの実装(ステップS114、S115)
がこの順序で実行される。
 ステップS201では、基板B(2)が基板搬送部2によって実装作業位置21に搬入される。
 ステップS202では、フィーダF4によって部品供給位置Fsに供給された部品Pが実装部4のノズルN2によって実装作業位置21の基板B(2)に実装される。続くステップS203では、ウェハ供給位置32に供給されたウェハW4から取り出されたダイWpが実装部4のノズルN2によって実装作業位置21の基板B(2)に実装される。
 ステップS204では、フィーダF3によって部品供給位置Fsに共有された部品Pが実装部4のノズルN2によって実装作業位置21の基板B(2)に実装される。また、ステップS204と並行して、ウェハ供給位置32に供給されるウェハWがウェハW4からウェハW3に変更される(ステップS205)。続くステップS206では、ウェハ供給位置32に供給されたウェハW3から取り出されたダイWpが実装部4のノズルN2によって実装作業位置21の基板B(2)に実装される。
 ステップS207では、ヘッドユニット42に装着されるノズルNがノズル交換機7によってノズルN2からノズルN1に変更される。
 ステップS208では、フィーダF2によって部品供給位置Fsに共有された部品Pが実装部4のノズルN1によって実装作業位置21の基板B(2)に実装される。また、ステップS208と並行して、ウェハ供給位置32に供給されるウェハWがウェハW3からウェハW2に変更される(ステップS209)。続くステップS210では、ウェハ供給位置32に供給されたウェハW2から取り出されたダイWpが実装部4のノズルN1によって実装作業位置21の基板B(2)に実装される。
 ステップS211では、フィーダF1によって部品供給位置Fsに共有された部品Pが実装部4のノズルN1によって実装作業位置21の基板B(2)に実装される。また、ステップS211と並行して、ウェハ供給位置32に供給されるウェハWがウェハW2からウェハW1に変更される(ステップS212)。続くステップS213では、ウェハ供給位置32に供給されたウェハW1から取り出されたダイWpが実装部4のノズルN1によって実装作業位置21の基板B(2)に実装される。
 ステップS214では、基板B(2)が基板搬送部2によって実装作業位置21にから搬出される。
 このように、基板B(2)に対しては搬入作業(ステップS201)、実装作業(ステップS202、S203、S204、S206、S208、S210、S211、S213)および搬出作業(ステップS214)が実行される。また、基板B(2)に対する実装作業では、
・実装作業単位U(4)…ウェハW4を構成するダイWpの実装およびフィーダF4が供給する部品Pの実装(ステップS202、S203)
・実装作業単位U(3)…ウェハW3を構成するダイWpの実装およびフィーダF3が供給する部品Pの実装(ステップS204、S206)
・実装作業単位U(2)…ウェハW2を構成するダイWpの実装およびフィーダF2が供給する部品Pの実装(ステップS208、S210)
・実装作業単位U(1)…ウェハW1を構成するダイWpの実装およびフィーダF1が供給する部品Pの実装(ステップS211、S213)
がこの順序で実行される。
 ステップS301では、基板B(3)が基板搬送部2によって実装作業位置21に搬入される。続いて、ステップS104~S116と同様にしてステップS304~316が基板B(2)に実行される。
 つまり、基板B(3)に対しては搬入作業(ステップS301)、実装作業(ステップS304、S305、S307、S308、S311、S312、S314、S315)および搬出作業(ステップS316)が実行される。また、基板B(3)に対する実装作業では、
・実装作業単位U(1)…ウェハW1を構成するダイWpの実装およびフィーダF1が供給する部品Pの実装(ステップS304、S305)
・実装作業単位U(2)…ウェハW2を構成するダイWpの実装およびフィーダF2が供給する部品Pの実装(ステップS307、S308)
・実装作業単位U(3)…ウェハW3を構成するダイWpの実装およびフィーダF3が供給する部品Pの実装(ステップS311、S312)
・実装作業単位U(4)…ウェハW4を構成するダイWpの実装およびフィーダF4が供給する部品Pの実装(ステップS314、S315)
がこの順序で実行される。
 その後は、偶数番目の基板B(偶数)に対してはステップS201~S214が実行され、奇数番目の基板B(奇数)に対してはステップS301~S316が実行される。
 このように図3に示す実施例では、基板B(対象基板)を実装作業位置21に搬入する搬入作業と、実装作業位置21の基板BにダイWpを実装する実装作業と、実装作業が完了した基板Bを実装作業位置21から搬出する搬出作業とが、基板Bに実行される(基板生産)。また、実装作業は、複数の実装作業単位U(1)、U(2)、U(3)、U(4)を含み、複数の実装作業単位U(1)、U(2)、U(3)、U(4)は、互いに異なる種類のウェハW1、W2、W3、W4からダイWpを基板Bに実装する。これに対応して、ウェハ供給位置32に供給されるウェハWの種類は、複数の実装作業単位U(1)、U(2)、U(3)、U(4)の実行に応じて変更される(例えば、ステップS103、S106、S109、S113)。また、複数の実装作業単位U(1)、U(2)、U(3)、U(4)のそれぞれでは、ウェハ供給位置32に供給されるウェハW1、W2、W3、W4に応じた種類のノズルN1、N2が実装ヘッド421に装着される。したがって、ウェハ供給位置32に供給されるウェハWの種類および実装ヘッド421に装着されるノズルNの種類の組み合わせであるツール状態が、基板B(1)(第1基板)に対する実装作業の開始時と完了時とで異なる。そのため、基板B(1)に対する実装作業での複数の実装作業単位U(1)、U(2)、U(3)、U(4)と、基板B(2)に続く基板B(2)(第2基板)に対する実装作業での複数の実装作業単位U(1)、U(2)、U(3)、U(4)とを同じ順序で実行すると、基板B(1)に対する実装作業の完了時においてツール状態を戻す必要が生じる。これに対して、本実施例では、基板B(1)に対する実装作業が完了した時点におけるツール状態である最終ツール状態(ウェハW4およびノズルN2)に応じた実行順序で、基板B(2)に対する複数の実装作業単位U(4)、U(3)、U(2)、U(1)が実行される。これによって、基板生産の対象基板Bを基板B(1)から基板B(2)に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 また、同様の制御が、基板B(偶数)から基板B(奇数)への変更および基板B(奇数)から基板B(偶数)への変更に対しても実行される。これによって、基板生産の対象基板Bを基板B(偶数)から基板B(奇数)へ変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となるとともに、基板生産の対象基板Bを基板B(奇数)から基板B(偶数)へ変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となる。
 特に、制御部110は、基板B(1)(第1基板)に対する複数の実装作業単位Uを所定の第1順序(U(1)、U(2)、U(3)、U(4))で実行し、基板B(2)(第2基板)に対する複数の実装作業単位Uを第1順序の逆の第2順序U(4)、U(3)、U(2)、U(1)で実行する。これによって、ウェハ供給位置32に位置するウェハWの種類および実装ヘッド421に装着されるノズルNの種類の組み合わせが、最終ツール状態が示す組み合わせ(ウェハW4およびノズルN2)と一致する実装作業単位U(4)から、基板B(2)に対する複数の実装作業単位U(4)、U(3)、U(2)、U(1)を開始する。かかる構成では、基板B(1)に対する実装作業の完了時において、基板B(2)に対する実装作業の開始のためにツール状態を戻す必要がない。よって、基板生産の対象基板を基板B(1)から基板B(2)に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 また、同様の制御が、基板B(偶数)から基板B(奇数)への変更および基板B(奇数)から基板B(偶数)への変更に対しても実行される。これによって、基板生産の対象基板Bを基板B(偶数)から基板B(奇数)へ変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となるとともに、基板生産の対象基板Bを基板B(奇数)から基板B(偶数)へ変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となる。
 また、部品供給位置Fsに部品Pを供給する部品供給機構6(フィーダF1~F4)が具備されている。そして、実装作業単位U(1)、U(2)、U(3)、U(4)のそれぞれは、ウェハWからダイWpを基板Bに実装するダイ実装期間(例えばステップS104、S107、S111、S114)と、部品供給位置Fsから部品Pを基板Bに実装する部品実装期間(例えばステップS105、S108、S112、S115)とを含む。また、同一の実装作業単位Uに属するダイ実装期間および部品実装期間では、実装ヘッド421に装着されるノズルNの種類は共通する。そして、ウェハ引出部33(ウェハ供給部)は、ウェハ供給位置32に供給されるウェハWの交換を部品実装期間に並行して実行する(例えばステップS103、S106、S109、S113)。かかる構成では、部品実装期間をウェハWの種類の変更に有効活用して、生産効率の向上を図ることができる。
 ちなみに、図3の例では、奇数枚目の基板B(奇数)に対する実装作業単位U(1)、U(2)、U(3)、U(4)のそれぞれでは、ウェハWを構成するダイWpの実装の後にフィーダFから供給される部品Pの実装を実行する。また、偶数枚目の基板B(偶数)に対する実装作業単位U(4)、U(3)、U(2)、U(1)のそれぞれでは、フィーダFから供給される部品Pの実装の後にウェハWを構成するダイWpの実装を実行する。しかしながら、これらの実行順序は適宜変更できる。例えば、偶数枚目の基板B(偶数)に対する実装作業単位U(4)、U(3)、U(2)、U(1)のそれぞれで、ウェハWを構成するダイWpの実装の後にフィーダFから供給される部品Pの実装を実行してもよい。この例においても、上記と同様の効果を奏しうる。
 図4は基板生産の一の変形例を示すフローチャートであり、図5は図4の基板生産における実装作業単位の実行順序を表形式で示す図である。図4のフローチャートは制御部110の制御によって実行される。図5に示す実行順序O1は例えば記録媒体170に記憶されている。この実行順序O1は、実装作業単位U(1)、U(2)、U(3)、U(4)の順番でこれらを実行することを示す。さらに、実行順序O1は、実装作業単位U(1)、U(2)、U(3)、U(4)のそれぞれにおいて、ウェハWを構成するダイWpの実装の後にフィーダFから供給される部品Pの実装を実行することを示す(単位内順序)。
 図4のフローチャートでは、ステップS401において、基板B(1)が実装作業位置21に搬入される。そして、実行順序O1に従って実装作業単位U(1)、U(2)、U(3)、U(4)が実行される(ステップS402、S403)。なお、ウェハWのウェハ供給位置32への供給や、ノズルNの交換のタイミング等は上述と同様である。実装作業単位U(1)、U(2)、U(3)、U(4)を実行し終えると(ステップS403で「YES」)、実装作業単位U(1)、U(2)、U(3)、U(4)において実装に失敗したダイWpあるいは部品Pが存在するかが確認される(ステップS404)。
 具体的には、基板B(1)への実装を行う前のノズルNに吸着されるダイWpあるいは部品Pの状態や、基板B(1)への実装を行った後のノズルNの状態を、固定カメラ5によって撮像した画像に基づき、実装の失敗の有無を判定できる。つまり、実装前のノズルNによるダイWpあるいは部品Pの吸着姿勢が傾いていたり、実装後のノズルNにダイWpあるいは部品Pが付着していたりすると、実装の失敗があったと判定される。
 実装失敗がない場合(ステップS404で「NO」の場合)には、ステップS406に進んで、基板B(1)が実装作業位置21から搬出される。一方、実装失敗があった場合(ステップS404で「YES」の場合)には、ステップS405を実行してからステップS406が実行される。
 このステップS405では、実装に失敗したダイWpあるいは部品Pの実装が再実行される。ここの例では、実装作業単位U(2)においてウェハW2を構成するダイWpの実装に失敗したとする。この際、実装作業単位U(2)が未完であることから、当該ダイWpの実装が再実行される。なお、ステップS403で実装作業単位U(1)、U(2)、U(3)、U(4)を実行し終えたのを確認した時点では、ウェハ供給位置32にはウェハW4が供給され、実装ヘッド421にはノズルN2が装着されている。したがって、ステップS405では、ウェハ供給位置32に供給されるウェハWがウェハW4からウェハW2に変更され、実装ヘッド421に装着されるノズルNがノズルN2からノズルN1に変更される。そして、ウェハW2を構成するダイWpの実装に成功すると、実装作業単位U(2)が完了したこととなる。その結果、実装作業単位U(1)、U(2)、U(3)、U(4)によって実装すべき全てのダイWpおよび部品Pの基板B(1)への実装が成功して、実装作業単位U(1)、U(2)、U(3)、U(4)が完了する。
 そして、基板B(1)に続いて基板B(2)に図4の基板生産を実行するにあたっては、基板B(2)に対して実装作業単位Uを実行する順序が決定される(図6)。図6は順序決定の一例を示すフローチャートである。図6のフローチャートは、制御部110の制御によって実行される。
 ステップS501では、基板B(1)に対する実装作業単位U(1)、U(2)、U(3)、U(4)が完了した時点、すなわち実装作業完了時点におけるツール状態である最終ツール状態が確認される。ここで、実装作業完了時点は、実装作業単位U(1)、U(2)、U(3)、U(4)を実行し終えた時点(ステップS403で「YES」の時点)ではなく、ステップS405において、ダイWpあるいは部品Pの実装の再実行に成功した時点である。つまり、前者の時点では、実装に失敗した実装作業単位U(2)は未完であるため、実装作業が完了したとは判定できず、実装作業単位U(1)、U(2)、U(3)、U(4)で実装すべきダイWpおよび部品Pの全ての実装に成功した時点が実装作業完了時点となる。したがって、ステップS501で確認される最終ツール状態は、ウェハW3およびノズルN2の組み合わせを示す。
 ステップS502では、実装作業単位U(J)を識別する識別子J(J=1、2、3、4)がゼロにリセットされ、ステップS503では、識別子Jが1だけインクリメントされる。そして、実装作業単位U(J)で使用されるウェハWの種類およびノズルNの種類の組み合わせであるツール状態が最終ツール状態(ウェハW2、ノズルN1)に一致するか否かが判定される(ステップS504)。実行順序O1において、実装作業単位U(1)を実行する際のツール状態(ウェハW1およびノズルN1)は、最終ツール状態と異なるため(ステップS504で「NO」)、ステップS503に戻って、識別子Jを1だけインクリメントする。こうして、最終ツール状態と一致するツール状態を有する実装作業単位U(J)が見つかるまで(ステップS504で「YES」となるまで)、ステップS503、S504が繰り返される。その結果、ここの例では、実装作業単位U(2)が検索されることとなる。
 ステップS505では、基板B(2)に対する実装作業単位U(1)、U(2)、U(3)、U(4)を、ステップS504で検索された該当実装作業単位U(2)から、実行順序O1に従って循環的に実行すると決定される。ここで、実行順序O1に従って循環的に実行するとは、実行順序O1において該当実装作業単位U(2)から最後まで順番に実行した後に、最初の実装作業単位U(1)から順番に実行することで、実装作業単位U(1)、U(2)、U(3)、U(4)を実行することを示す。したがって、実行順序O1において、該当実装作業単位U(2)から最後の実装作業単位U(4)まで実行した後に、最初の実装作業単位U(1)が実行されて、実装作業単位U(1)、U(2)、U(3)、U(4)が実行されることとなる。
 このように図6の順序決定では、制御部110は、基板B(2)(第2基板)に対する複数の実装作業単位U(1)、U(2)、U(3)、U(4)のうちから、そのツール状態が最終ツール状態と一致するという探索条件(第1検索条件)を満たす該当実装作業単位U(2)を検索する検索処理が実行される(ステップS501~S504)。そして、基板B(2)に対する複数の実装作業単位U(1)、U(2)、U(3)、U(4)を、該当実装作業単位U(2)から開始する。このような探索処理の結果に基づき基板B(2)に対する複数の実装作業単位U(1)、U(2)、U(3)、U(4)の実行順序を制御することで、基板生産の対象基板を基板B(1)から基板B(2)に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することができる。
 具体的には、該当実装作業単位U(2)の実行のためにウェハ供給位置32に位置するウェハWの種類(ウェハW2)および実装ヘッド421に装着されるノズルNの種類(ノズルN1)の組み合わせが、最終ツール状態が示す組み合わせ(ウェハW2およびノズルN1)と一致するという探索条件を満たす実装作業単位U(2)が探索される。これによって、基板B(1)に対する実装作業の完了時において、基板B(2)に対する実装作業の開始のためにウェハWおよびノズルNの組み合わせを戻す必要がない。よって、基板生産の対象基板を基板B(1)から基板B(2)に変更するためにウェハWおよびノズルNの組み合わせを戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 なお、複数の実装作業単位U(1)、U(2)、U(3)、U(4)のうちから探索条件を満たす該当実装作業単位U(2)を探索する際の具体的な探索順序は種々考えられる。つまり、図6の例では、複数の実装作業単位U(1)、U(2)、U(3)、U(4)のうちから、探索条件を満たす該当実装作業単位U(2)を実行順序O1(第1順序)で検索して、該当実装作業単位U(2)から実行順序O1を循環的に実行すると決定される。しかし、図7のように順序決定を実行してもよい。
 図7は順序決定の別の例を示すフローチャートである。図7のフローチャートは、制御部110の制御によって実行される。ステップS601では、基板B(1)に対する実装作業単位U(1)、U(2)、U(3)、U(4)が完了した時点、すなわち実装作業完了時点におけるツール状態である最終ツール状態が確認される。ステップS602では、実装作業単位U(J)を識別する識別子J(J=1、2、3、4)がJx+1に設定される。ここで、Jxは、実装作業単位U(J)の個数、すなわち識別子Jの最大値=4である。また、ステップS603では、識別子Jが1だけデクリメントされる。
 そして、実装作業単位U(J)で使用されるウェハWの種類およびノズルNの種類の組み合わせであるツール状態が最終ツール状態(ウェハW2、ノズルN1)に一致するか否かが判定される(ステップS604)。実行順序O1において、実装作業単位U(4)を実行する際のツール状態(ウェハW4およびノズルN2)は、最終ツール状態と異なるため(ステップS604で「NO」)、ステップS603に戻って、識別子Jを1だけデクリメントする。こうして、最終ツール状態と一致するツール状態を有する実装作業単位U(J)が見つかるまで(ステップS604で「YES」となるまで)、ステップS603、S604が繰り返される。その結果、ここの例では、実装作業単位U(2)が検索されることとなる。
 ステップS605では、基板B(2)に対する実装作業単位U(1)、U(2)、U(3)、U(4)を、ステップS604で検索された該当実装作業単位U(2)から、実行順序O1の逆順で循環的に実行すると決定される。ここで、実行順序O1の逆の順序で循環的に実行するとは、実行順序O1において該当実装作業単位U(2)から最初まで逆順に実行した後に、最後の実装作業単位U(1)から逆順に実行することで、実装作業単位U(1)、U(2)、U(3)、U(4)を実行することを示す。したがって、実行順序O1において、該当実装作業単位U(2)から最初の実装作業単位U(1)まで逆順に実行した後に、最後の実装作業単位U(4)から実装作業単位U(3)までが逆順に実行されて、実装作業単位U(1)、U(2)、U(3)、U(4)が実行されることとなる。この際、図3の例におけるステップS202~S213と同様に、単位内順序も逆転し、フィーダFにより供給された部品Pの実装の後に、ウェハWを構成するダイWpの実装が実行される。
 つまり、図7の例では、複数の実装作業単位U(1)、U(2)、U(3)、U(4)のうちから、探索条件を満たす該当実装作業単位U(2)を実行順序O1(第1順序)の逆の順序(第2順序)で検索して、該当実装作業単位U(2)から実行順序O1の逆の順序を循環的に実行すると決定される。
 図8Aは図4の基板生産における実装作業単位の実行順序を表形式で示す図であり、図8Bは図8Aの実行順序に従って実行される動作の一例を表形式で示す図である。図8Aに示す実行順序O2は、実装作業単位U(1)、U(2)の順番でこれらを実行することを示す。さらに、実行順序O2は、実装作業単位U(1)においてウェハWを構成するダイWpの実装の後にフィーダFから供給される部品Pの実装を実行することを示す(単位内順序)。また、図8Aの例では、ヘッドユニット42には、3本の実装ヘッド421が設けられており、3本の実装ヘッド421がヘッド番号H1、H2、H3により識別されている。この実行順序O2によれば、実装作業単位U(1)では、各実装ヘッド421にノズルN1が装着され、実装作業単位U(2)では、各実装ヘッド421にノズルN2が装着される。
 ここの例では、基板B(1)に対する実装作業単位U(1)、U(2)を実行順序O2に従って完了した後に、基板B(2)に対する実装作業単位U(1)、U(2)の実行順序を決定する場面を想定する。特に、基板B(1)に対する実装作業単位U(1)においてフィーダF1が供給する部品PをノズルN1で実装する際に、ヘッド番号H2の実装ヘッド421が部品Pの実装に失敗したとする。
 この実装失敗によって、実装作業単位U(2)の実行の後に、実装作業単位U(1)におけるヘッド番号H2の実装ヘッド421によるノズルN1を用いた部品Pの実装が基板Bに対して再実行される(ステップS405)。こうして、基板B(1)に対する実装作業単位U(1)、U(2)が完了する。その結果、最終ツール状態においては、ウェハ供給位置32にウェハW2が位置するとともに、3本の実装ヘッド421のそれぞれには、ノズルN2、N1、N2が装着されている(図8B)。
 したがって、図6の順序決定においては、実行順序O2に示される実装作業単位U(1)、U(2)のうち、最終ツール状態と一致するツール状態を有する該当実装作業単位Uが存在しない。そこで、制御部110は、実装作業単位U(1)、U(2)のうち、最終ツール状態が示す複数のノズルN2、N1、N2の種類を、該当実装作業単位Uの実行のために複数の実装ヘッド421に装着すべき複数のノズルNの種類に変更するために交換が必要となるノズルNの個数が最小であるとの検索条件(第2検索条件)を満たす当該実装作業単位Uを、実装作業単位U(1)、U(2)のうちから検索する。
 図8Aの例では、実装作業単位U(1)の実行のために装着すべきノズルN1、N1、N1に最終ツール状態(図8B)から変更するためには、ヘッド番号H1、H3の2個のノズルNをノズルN2からノズルN1に変更しなければならない。これに対して、実装作業単位U(2)の実行のために装着すべきノズルN2、N2、N2に最終ツール状態(図8B)から変更するためには、ヘッド番号H2の1個のノズルNをノズルN1からノズルN2に変更すればよい。そこで、実装作業単位U(2)が検索条件を満たすと判定される。その結果、基板B(2)に対する実装作業単位U(1)、U(2)の実行は、該当実装作業単位U(2)から開始すると決定される。
 かかる実施例では、基板B(1)(第1基板)に対する実装作業の完了時において、基板B(2)(第2基板)に対する実装作業の開始のためにノズルNの状態を戻すのに要する時間を抑えることができる。その結果、基板生産の対象基板を基板B(1)から基板B(2)に変更するためにツール状態を戻すのに要する時間によって生産効率が低下するのを抑制することが可能となっている。
 図9は基板生産の別の変形例を示すフローチャートである。図9の基板生産においては、ステップS301で基板Bを実装作業位置21に搬入してから、当該基板Bに対する実装作業(ステップS302~S305)を開始するまでに、事前検査が実行される(ステップS307)。この事前検査では、例えば制御部110は、移動カメラ45によって撮像した基板Bの画像に基づき、基板Bに異常がないかを検査する。さらに、図9の基板生産においては、基板Bに対する実装作業(ステップS302~S305)を完了してから、当該基板Bを実装作業位置21から搬出するまでに、事後検査が実行される(ステップS308)。この事後検査では、例えば制御部110は、移動カメラ356によって撮像したダイWpあるいは部品Pの画像に基づき、基板Bに実装されたダイWpあるいは部品Pに異常がないかを検査する。
 そして、図9の基板生産が複数の基板Bに実行される。この際、基板B(1)への基板生産が完了して、基板B(2)への基板生産を開始する際には、基板B(2)に対する複数の実装作業単位Uを実行する順序は、基板B(1)の実装作業が完了した最終ツール状態に応じて決定される。ただし、事前検査(ステップS307)を実行してから複数の実装作業単位Uを実行するという順序と、複数の実装作業単位Uを実行してから事後検査(ステップS308)という順序とは、基板B(1)と基板B(2)とで維持される。
 つまり、基板生産は、搬入作業(ステップS301)により実装作業位置21に搬入された基板Bの状態を実装作業(ステップS302~S305)の前に検査する事前検査(ステップS307)と、実装作業(ステップS302~S305)が完了した基板Bの状態を搬出作業(ステップS306)の前に検査する事後検査(ステップS308)とを含む。これに対して、制御部110は、基板B(1)に対する基板生産および基板B(2)に対する基板生産の両方において、事前検査(ステップS307)を実装作業(ステップS302~S305)の前に実行し、事後検査(ステップS308)を実装作業(ステップS302~S305)の後に実行する。かかる構成では、基板Bの事前検査(ステップS307)および事後検査(ステップS308)を適切なタイミングで実行することができる。
 このように上記の実施形態では、 表面実装機10が本発明の「表面実装機」の一例に相当し、制御部110が本発明の「制御部」の一例に相当し、記憶部140が本発明の「記憶部」の一例に相当し、基板搬送部2が本発明の「基板搬送部」の一例に相当し、実装作業位置21が本発明の「実装作業位置」の一例に相当し、ウェハ収納部31が本発明の「ウェハ収納部」の一例に相当し、ウェハ供給位置32が本発明の「ウェハ供給位置」の一例に相当し、ウェハ引出部33が本発明の「ウェハ供給部」の一例に相当し、実装部4が本発明の「実装部」の一例に相当し、部品供給機構6が本発明の「部品供給部」の一例に相当し、基板Bが本発明の「対象基板」の一例に相当し、ノズルNが本発明の「ノズル」の一例に相当し、実装作業単位Uが本発明の「実装作業単位」の一例に相当し、ウェハWが本発明の「ウェハ」の一例に相当し、ダイWpが本発明の「ダイ」の一例に相当する。
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、ツール状態が示す内容は、ウェハWの種類およびノズルNの種類の組み合わせに限られず、これらの種類の一方でも構わない。
 また、上記の例において、表面実装機10は、フリップチップダイボンダーとして機能するものであるが、ダイをフリップさせないダイボンダーとして機能するものでもよい。
 10…表面実装機
 110…制御部
 140…記憶部
 2…基板搬送部
 21…実装作業位置
 31…ウェハ収納部
 32…ウェハ供給位置
 33…ウェハ引出部(ウェハ供給部)
 4…実装部
 6…部品供給機構(部品供給部)
 B…基板(対象基板)
 N…ノズル
 U…実装作業単位
 W…ウェハ
 Wp…ダイ
 
 

Claims (11)

  1.  複数のウェハを収納するウェハ収納部と、
     前記ウェハ収納部からウェハ供給位置に前記ウェハを供給するウェハ供給部と、
     所定の実装作業位置に対象基板を搬入する基板搬送部と、
     前記ウェハ供給位置に供給された前記ウェハを構成するダイを、着脱可能に装着されたノズルによって前記実装作業位置の前記対象基板に実装する実装部と、
     前記基板搬送部によって前記対象基板を前記実装作業位置に搬入する搬入作業と、前記実装作業位置の前記対象基板に前記実装部により前記ダイを実装する実装作業と、前記実装作業が完了した前記対象基板を前記実装作業位置から搬出する搬出作業とを含む基板生産の実行を制御する制御部と
    を備え、
     前記実装作業は、複数の実装作業単位を含み、前記複数の実装作業単位は、互いに異なる種類の前記ウェハから前記ダイを前記対象基板に実装し、
     前記ウェハ供給部は、前記複数の実装作業単位の実行に応じて前記ウェハ供給位置に供給される前記ウェハの種類を変更し、
     前記複数の実装作業単位のそれぞれでは、当該実装作業単位の実行のために前記ウェハ供給位置に供給される前記ウェハに応じた種類の前記ノズルが前記実装部に装着され、
     前記制御部は、第1基板を前記対象基板とする前記基板生産を完了したのに続いて第2基板を前記対象基板とする前記基板生産を開始するにあたって、前記第1基板に対する前記実装作業が完了した時点における、前記ウェハ供給位置に位置する前記ウェハの種類および前記実装部に装着される前記ノズルの種類の少なくとも一方を示す最終ツール状態に応じた実行順序で、前記第2基板に対する前記複数の実装作業単位を実行する表面実装機。
  2.  前記最終ツール状態は、前記第1基板に対する前記実装作業が完了した時点における、前記ウェハ供給位置に位置する前記ウェハの種類および前記実装部に装着される前記ノズルの種類の組み合わせを示す請求項1に記載の表面実装機。
  3.  前記制御部は、前記第1基板に対する前記複数の実装作業単位を所定の第1順序で実行し、前記第2基板に対する前記複数の実装作業単位を前記第1順序の逆の第2順序で実行することで、前記ウェハ供給位置に位置する前記ウェハの種類および前記実装部に装着される前記ノズルの種類の組み合わせが、前記最終ツール状態が示す組み合わせと一致する前記実装作業単位から、前記第2基板に対する前記複数の実装作業単位を開始する請求項2に記載の表面実装機。
  4.  前記制御部は、前記第2基板に対する前記複数の実装作業単位のうちから、前記最終ツール状態との間に所定の第1検索条件を満たす該当実装作業単位を検索する検索処理を実行し、前記第2基板に対する前記複数の実装作業単位を、前記該当実装作業単位から開始する請求項2に記載の表面実装機。
  5.  前記第1検索条件は、前記該当実装作業単位の実行のために前記ウェハ供給位置に位置する前記ウェハの種類および前記実装部に装着される前記ノズルの種類の組み合わせが、前記最終ツール状態が示す組み合わせと一致するという条件である請求項4に記載の表面実装機。
  6.  前記複数の実装作業単位の順序を示す第1順序を記憶する記憶部をさらに備え、
     前記検索処理は、前記複数の実装作業単位のうちから前記第1検索条件を満たす前記実装作業単位を前記第1順序で検索することで、前記該当実装作業単位を検索し、
     前記制御部は、前記第2基板に対する前記基板生産において、前記第1順序において、前記該当実装作業単位から前記複数の実装作業単位の最後の実装作業単位まで実行した後に、前記複数の実装作業単位の最初の実装作業単位から前記該当実装作業単位より1つ前の実装作業単位まで実行する請求項5に記載の表面実装機。
  7.  前記複数の実装作業単位の順序を示す第1順序を記憶する記憶部をさらに備え、
     前記検索処理は、前記複数の実装作業単位のうちから前記第1検索条件を満たす前記実装作業単位を前記第1順序と逆の第2順序で検索することで、前記該当実装作業単位を検索し、
     前記制御部は、前記第2基板に対する前記基板生産において、前記第2順序において、前記該当実装作業単位から前記複数の実装作業単位の最後の実装作業単位まで実行した後に、前記複数の実装作業単位の最初の実装作業単位から前記該当実装作業単位より1つ前の実装作業単位まで実行する請求項5に記載の表面実装機。
  8.  前記実装部には、複数のノズルが着脱自在に装着され、
     前記検索処理では、前記第1検索条件を満たす前記該当実装作業単位が存在しない場合、前記最終ツール状態が示す前記複数のノズルそれぞれの種類を、前記該当実装作業単位の実行のために前記実装部に装着すべき前記複数のノズルそれぞれの種類に変更するために交換が必要となるノズルの個数が最小であるとの第2検索条件を満たす前記該当実装作業単位が前記第2基板に対する複数の実装作業単位のうちから探索される請求項5ないし7のいずれか一項に記載の表面実装機。
  9.  前記基板生産は、前記搬入作業により前記実装作業位置に搬入された前記対象基板の状態を前記実装作業の前に検査する事前検査と、前記実装作業が完了した前記対象基板の状態を前記搬出作業の前に検査する事後検査とを含み、
     前記制御部は、前記第1基板に対する前記基板生産および前記第2基板に対する前記基板生産の両方において、前記事前検査を前記実装作業の前に実行し、前記事後検査を前記実装作業の後に実行する請求項1ないし8のいずれか一項に記載の表面実装機。
  10.  部品供給位置に部品を供給する部品供給部をさらに備え、
     前記実装作業単位は、前記ウェハから前記ダイを前記対象基板に実装するダイ実装期間と、前記部品供給位置から前記部品を前記対象基板に実装する部品実装期間とを含み、
     同一の前記実装作業単位に属する前記ダイ実装期間および前記部品実装期間では、前記実装部に装着される前記ノズルの種類は共通し、
     前記ウェハ供給部は、前記ウェハ供給位置に供給される前記ウェハの交換を前記部品実装期間に並行して実行する請求項1ないし9のいずれか一項に記載の表面実装機。
  11.  第1基板を実装作業位置に搬入する工程と、
     前記第1基板を対象基板として実装作業を実行する工程と、
     前記実装作業が完了した前記第1基板を前記実装作業位置から搬出する工程と、
     第2基板を実装作業位置に搬入する工程と、
     前記第2基板を対象基板として前記実装作業を実行する工程と、
     前記実装作業が完了した前記第2基板を前記実装作業位置から搬出する工程と
    を備え、
     前記実装作業では、複数のウェハを収納するウェハ収納部からウェハ供給位置に供給されたウェハを構成するダイを、実装部が着脱可能に装着されたノズルによって前記実装作業位置の前記対象基板に実装し、
     前記実装作業は、複数の実装作業単位を含み、前記複数の実装作業単位は、互いに異なる種類の前記ウェハから前記ダイを前記対象基板に実装し、
     前記ウェハ供給位置に供給される前記ウェハの種類は、前記複数の実装作業単位の実行に応じて変更され、
     前記複数の実装作業単位のそれぞれでは、当該実装作業単位の実行のために前記ウェハ供給位置に供給される前記ウェハに応じた種類の前記ノズルが前記実装部に装着され、
     前記第1基板に対する前記実装作業が完了した時点における、前記ウェハ供給位置に位置する前記ウェハの種類および前記実装部に装着される前記ノズルの種類の少なくとも一方を示す最終ツール状態に応じた実行順序で、前記第2基板に対する前記複数の実装作業単位を実行する表面実装方法。
     
PCT/JP2022/028779 2022-07-26 2022-07-26 表面実装機及び表面実装方法 WO2024023926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/028779 WO2024023926A1 (ja) 2022-07-26 2022-07-26 表面実装機及び表面実装方法
TW111137817A TWI822377B (zh) 2022-07-26 2022-10-05 表面安裝機及表面安裝方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028779 WO2024023926A1 (ja) 2022-07-26 2022-07-26 表面実装機及び表面実装方法

Publications (1)

Publication Number Publication Date
WO2024023926A1 true WO2024023926A1 (ja) 2024-02-01

Family

ID=89705626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028779 WO2024023926A1 (ja) 2022-07-26 2022-07-26 表面実装機及び表面実装方法

Country Status (2)

Country Link
TW (1) TWI822377B (ja)
WO (1) WO2024023926A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111998A (ja) * 1999-09-27 2004-04-08 Matsushita Electric Ind Co Ltd 部品実装方法及び部品実装装置
WO2007108352A1 (ja) * 2006-03-22 2007-09-27 Matsushita Electric Industrial Co., Ltd. 電子部品実装装置および電子部品実装方法
JP2008098229A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 電子部品実装装置および電子部品実装方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129547A1 (ja) * 2005-05-31 2006-12-07 Toray Engineering Co., Ltd. ボンディング装置
TWI673805B (zh) * 2017-01-30 2019-10-01 日商新川股份有限公司 安裝裝置以及安裝系統
JP7149143B2 (ja) * 2018-09-20 2022-10-06 ファスフォードテクノロジ株式会社 実装装置および半導体装置の製造方法
TWI734434B (zh) * 2019-04-11 2021-07-21 日商新川股份有限公司 接合裝置
JPWO2020235535A1 (ja) * 2019-05-21 2020-11-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111998A (ja) * 1999-09-27 2004-04-08 Matsushita Electric Ind Co Ltd 部品実装方法及び部品実装装置
WO2007108352A1 (ja) * 2006-03-22 2007-09-27 Matsushita Electric Industrial Co., Ltd. 電子部品実装装置および電子部品実装方法
JP2008098229A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 電子部品実装装置および電子部品実装方法

Also Published As

Publication number Publication date
TW202406446A (zh) 2024-02-01
TWI822377B (zh) 2023-11-11

Similar Documents

Publication Publication Date Title
JP6300808B2 (ja) 対基板作業システム、およびフィーダ移し替え方法
JP4796461B2 (ja) 実装機の部品管理装置および部品管理方法
JP4811073B2 (ja) 電子部品実装装置および電子部品実装方法
JP2006339388A (ja) 実装作業の管理方法、実装ラインおよび実装機
KR20110137374A (ko) 실장 장치 및 실장 방법
JP4995745B2 (ja) 部品実装装置
JP4622980B2 (ja) 電子部品実装装置および電子部品実装方法
JPWO2004064473A1 (ja) 実装ラインにおける基板搬入方法、基板生産システムおよび基板生産システムにおける基板生産方法
JP4493810B2 (ja) 電子部品実装方法及び電子部品実装装置
WO2024023926A1 (ja) 表面実装機及び表面実装方法
JP6413081B2 (ja) 部品供給方法および部品供給装置
JP6855148B2 (ja) 部品実装機、部品検査方法、部品検査プログラム、記録媒体
JP5690791B2 (ja) 基板処理装置
JP4356796B2 (ja) 電子部品の実装方法
JP4165927B2 (ja) 部品の移載装置
JP2003289200A (ja) 部品実装方法、部品実装機および実装順序決定プログラム
JP2017163004A (ja) 部品供給装置および部品供給方法
JP2017208367A (ja) 部品実装システムおよび部品実装方法
JP2004363634A (ja) 電子部品装着装置
JP2020123630A (ja) 部品実装方法、及び、部品実装装置
JP2002026592A (ja) 電子部品の実装装置および実装方法
WO2018163388A1 (ja) 部品装着機
WO2024084703A1 (ja) 部品装着作業機及び装着ライン
WO2023228322A1 (ja) ダイピックアップ方法および装置
JP3943361B2 (ja) 部品実装方法及び部品実装装置、並びに実装データ作成プログラム及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953023

Country of ref document: EP

Kind code of ref document: A1