WO2024013854A1 - 搬送装置および搬送方法 - Google Patents

搬送装置および搬送方法 Download PDF

Info

Publication number
WO2024013854A1
WO2024013854A1 PCT/JP2022/027424 JP2022027424W WO2024013854A1 WO 2024013854 A1 WO2024013854 A1 WO 2024013854A1 JP 2022027424 W JP2022027424 W JP 2022027424W WO 2024013854 A1 WO2024013854 A1 WO 2024013854A1
Authority
WO
WIPO (PCT)
Prior art keywords
cart
guide mechanism
frame
transport device
drive
Prior art date
Application number
PCT/JP2022/027424
Other languages
English (en)
French (fr)
Inventor
浩 坂之上
知 山本
大輔 森本
光生 下谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/027424 priority Critical patent/WO2024013854A1/ja
Publication of WO2024013854A1 publication Critical patent/WO2024013854A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G1/00Couplings comprising interengaging parts of different shape or form and having links, bars, pins, shackles, or hooks as coupling means
    • B61G1/32Couplings comprising interengaging parts of different shape or form and having links, bars, pins, shackles, or hooks as coupling means with horizontal bolt or pin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/02Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor involving parts being adjustable, collapsible, attachable, detachable or convertible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/04Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor involving means for grappling or securing in place objects to be carried; Loading or unloading equipment

Definitions

  • the present disclosure relates to a conveying device and a conveying method for conveying a cart containing articles.
  • the cart for storing articles includes a front frame, a rear frame opposite to the front frame, a center frame connecting the front frame and the rear frame, and a plurality of casters provided on the bottom mechanism, It is used in various situations. Recently, in order to save labor, the method of moving carts has evolved from manual movement to automatic movement.
  • Patent Document 1 The method of fixing the center frame with a holding arm as disclosed in Patent Document 1 allows the cart to be transported without any problem if the floor surface on which the transport device that transports the cart runs is horizontal. I can do it.
  • the present disclosure has been made to solve such problems, and aims to provide a transportation device and a transportation method that can transport carts in facilities where horizontal floors and sloped floors coexist. shall be.
  • a conveyance device includes a front frame, a rear frame that faces the front frame, a center frame that connects the front frame and the rear frame, and an extension of the center frame.
  • a device drive section that drives the conveyance device; a guide mechanism that has a shape that can fit into the cart fitting section that includes a center frame and a connecting fitting; and a guide mechanism drive that drives the guide mechanism in the height direction.
  • a sensor group that detects the surrounding situation of the conveyance device
  • a control section that controls the device drive section and the guide mechanism drive section, and the control section controls the cart fitting section based on the detection results of the sensor group.
  • the device drive section and the guide mechanism drive section are controlled so that the guide mechanism fits, and when the guide mechanism fits into the cart fitting section, a predetermined gap is created between the cart fitting section and the guide mechanism. exists.
  • FIG. 1 is a block diagram showing an example of the configuration of a conveying device according to Embodiment 1.
  • FIG. 1 is a block diagram showing an example of the configuration of a conveying device according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of the configuration of a cart according to Embodiment 1.
  • FIG. 1 is a diagram showing the appearance of a conveying device according to Embodiment 1.
  • FIG. 3 is a diagram showing an example of the configuration of a cart fitting portion according to the first embodiment.
  • FIG. 3 is a diagram showing the appearance of a cart fitting portion according to the first embodiment.
  • FIG. 7 is a block diagram showing an example of the configuration of a conveying device according to Embodiment 1.
  • FIG. 1 is a block diagram showing an example of the configuration of a conveying device according to Embodi
  • FIG. 8 is a side view of the guide mechanism shown in FIG. 7.
  • FIG. 8 is a sectional view taken along line A1-A1 of the guide mechanism shown in FIG. 7.
  • FIG. 8 is a sectional view taken along line A2-A2 of the guide mechanism shown in FIG. 7.
  • FIG. 8 is a sectional view taken along A3-A3 of the guide mechanism shown in FIG. 7.
  • FIG. 3 is a diagram showing the configuration of a guide mechanism according to the first embodiment.
  • FIG. 3 is a plan view showing a state in which the cart fitting portion and the guide mechanism are fitted together according to the first embodiment.
  • 15 is a front view of the cart fitting portion and guide mechanism shown in FIG. 14.
  • FIG. 14 is a front view of the cart fitting portion and guide mechanism shown in FIG. 14.
  • FIG. 15 is a sectional view taken along the line B2-B2 of the cart fitting portion and guide mechanism shown in FIG. 14.
  • FIG. 15 is a sectional view taken along line B1-B1 of the cart fitting portion and guide mechanism shown in FIG. 14.
  • FIG. 7 is a diagram for explaining the allowable elevation angle between the center frame and the center frame groove according to the first embodiment.
  • FIG. 3 is a plan view showing an example of the main body mechanism according to the first embodiment.
  • FIG. 2 is a side view showing an example of the conveyance device in a normal height state according to the first embodiment.
  • FIG. 2 is a side view showing an example of a low-floor conveyance device according to the first embodiment.
  • 5 is a flowchart illustrating an example of the operation of the transport device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the movement of the conveying device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the movement of the conveying device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the movement of the conveying device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the movement of the conveying device according to the first embodiment. It is a figure for explaining the problem of the conventional conveyance device. It is a figure for explaining the problem of the conventional conveyance device.
  • FIG. 3 is a diagram for explaining the effects of the conveying device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the effects of the conveying device according to the first embodiment.
  • 7 is a plan view showing an example of a guide mechanism according to Modifications 1 and 2 of Embodiment 1.
  • FIG. 1 is a plan view showing an example of a guide mechanism according to Modifications 1 and 2 of Embodiment 1.
  • FIG. 32 is a side view of the guide mechanism shown in FIG. 31.
  • FIG. 32 is a C2-C2 and C3-C3 sectional view of the guide mechanism shown in FIG. 31.
  • FIG. 32 is a sectional view taken along line C1-C1 of the guide mechanism shown in FIG. 31.
  • FIG. 7 is a cross-sectional view showing an example of a guide mechanism according to a third modification of the first embodiment.
  • FIG. 7 is a plan view showing an example of a guide mechanism according to a fourth modification of the first embodiment.
  • FIG. 37 is a front view of the guide mechanism shown in FIG. 36.
  • FIG. 37 is a sectional view taken along line D1-D1 of the guide mechanism shown in FIG. 36.
  • FIG. 7 is a plan view showing an example of a guide mechanism according to a fifth modification of the first embodiment.
  • FIG. 7 is a block diagram showing an example of the configuration of a conveying device according to a seventh modification of the first embodiment.
  • 12 is a cross-sectional view showing an example of a configuration in which a sensor is provided in a guide mechanism according to Modification 8 of Embodiment 1.
  • FIG. 12 is a cross-sectional view showing an example of a configuration in which a sensor is provided in a guide mechanism according to Modification 8 of Embodiment 1.
  • FIG. FIG. 2 is a block diagram showing an example of the configuration of a conveying device according to a second embodiment. 7 is a flowchart illustrating an example of the operation of the conveying device according to the second embodiment.
  • FIG. 7 is a diagram showing a bumper mechanism in a stored state according to a second embodiment.
  • FIG. 7 is a diagram showing a bumper mechanism in an extended state according to a second embodiment.
  • FIG. 7 is a diagram showing a bumper mechanism in an extended state according to a second embodiment.
  • 7 is a block diagram showing an example of the configuration of a conveyance device according to a first modification of the second embodiment.
  • FIG. FIG. 7 is a diagram showing a contact sensor according to Modification 1 of Embodiment 2;
  • FIG. 3 is a block diagram illustrating an example of the configuration of a conveying device according to a second modification of the second embodiment.
  • 7 is a diagram showing a magnetic sensor according to a second modification of the second embodiment.
  • FIG. 7 is a block diagram illustrating an example of the configuration of a conveying device according to a third embodiment. 7 is a flowchart illustrating an example of the operation of the conveyance device according to Embodiment 3.
  • FIG. 7 is a diagram for explaining a storage situation of a cart according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. 12
  • FIG. 12 is a diagram for explaining a cart removal situation according to Embodiment 3;
  • FIG. FIG. 7 is a diagram showing a hook mechanism in a stored state according to a second modification of the third embodiment.
  • FIG. 7 is a diagram showing a hook mechanism in an extended state according to a second modification of the third embodiment.
  • 1 is a diagram showing an example of a hardware configuration of a transport device according to Embodiments 1 to 3.
  • FIG. 1 is a diagram showing an example of a hardware configuration of a transport device according to Embodiments 1 to 3.
  • FIG. 1 is a block diagram showing an example of the configuration of a transport device 1 according to the first embodiment.
  • the transport device 1 includes a main body mechanism 2 and a guide mechanism 4.
  • the main body mechanism 2 includes a device drive section 3, a guide mechanism drive section 5, a sensor group 6, and a control section 7.
  • the guide mechanism 4 has a shape that can be fitted into a cart fitting portion made up of a front frame 16 and a connecting fitting 23 that constitute a cart, which will be described later.
  • the main body mechanism 2 supports the entire transport device 1.
  • the device drive section 3 drives the transport device 1 .
  • the guide mechanism drive section 5 drives the guide mechanism 4 in the height direction.
  • the sensor group 6 detects the surrounding situation of the transport device 1 .
  • the control section 7 controls the device drive section 3 and the guide mechanism drive section 5 based on the detection results of the sensor group 6 so that the guide mechanism 4 fits into the cart fitting section. When the guide mechanism 4 fits into the cart fitting part, a predetermined gap exists between the cart fitting part and the guide mechanism 4.
  • FIG. 2 is a block diagram showing an example of the configuration of the conveying device 8 according to another configuration.
  • FIG. 3 is a diagram showing an example of the configuration of a cart transported by the transport device 8. As shown in FIG. below, the configuration of the cart will be described first, and then the configuration of the transport device 8 will be described.
  • the cart includes a front frame 16, a rear frame 17, a center frame 18, casters 19, caster brakes 20, a support frame 21, and a tray 22.
  • the front frame 16 is a frame provided at the front of the cart.
  • the rear frame 17 is a frame provided at the rear of the cart, facing the front frame 16.
  • the center frame 18 is a frame that connects the front frame 16 and the rear frame 17.
  • the connecting fitting 23 is provided on the center frame 18 so as to project in a direction different from the direction in which the center frame 18 extends. Details of the connecting fitting 23 will be described later.
  • the casters 19 are provided one each on the left and right ends of the front frame 16 and one each on the left and right ends of the rear frame 17.
  • the caster brakes 20 are for fixing the casters 19 so that they do not move, and when the user operates the caster brakes 20, the casters 19 are fixed and the cart can be prevented from moving.
  • the support frame 21 is provided vertically on each of the front frame 16 and the rear frame 17.
  • the tray 22 is placed on the support frame 21, and articles can be placed on the tray 22.
  • center frame 18 may have a structure in which it protrudes from either or both of the front frame 16 and the rear frame 17.
  • the conveyance device 8 includes a guide mechanism 4, a main body mechanism 9, casters 13, and drive wheels 14.
  • the main body mechanism 9 includes a device drive section 3 , a guide mechanism drive section 5 , a sensor group 6 , a control section 7 , and a communication section 12 .
  • the sensor group 6 includes a lidar 10 and a depth camera 11. Furthermore, the sensor group 6 detects each part of the cart.
  • the Lidar 10 detects obstacles in the space around the transport device 8 and detects its own position for SLAM (Simultaneous Localization and Mapping) travel.
  • SLAM Simultaneous Localization and Mapping
  • the depth camera 11 photographs the area around the transport device 8 to obtain a distance image, and calculates the distance to obstacles existing around the transport device 8 by performing image processing on the acquired distance image.
  • the range of the depth camera 11 is approximately 10 cm.
  • the depth cameras 11 are, for example, one at each of the four corners of the transport device 8 (four in total), one each downward at the front and back of the transport device 8 (two in total), and one at the front and rear of the transport device 8 facing upward. Each (two in total) has been installed. Depth cameras 11 installed at the four corners of the transport device 8 are used to detect obstacles that exist diagonally when viewed from the transport device 8.
  • Depth cameras 11, which are installed facing downward at the front and rear of the transport device 8, are used for precision guidance of the transport device 8, for detecting obstacles in front of the transport device 8, and for detecting obstacles on the floor surface on which the transport device 8 runs. This is for detecting obstacles that exist in the area.
  • the depth cameras 11 which are installed upwardly at the front and rear of the transport device 8 , are used to detect obstacles that exist in front of the transport device 8 and to detect obstacles that exist above the transport device 8 . It is desirable that the depth cameras 11 be installed at positions that are symmetrical in the front, back, right, and left directions of the transport device 8 .
  • CNN Convolution Neural Networks
  • the guide mechanism drive section 5 drives the guide mechanism 4 and changes the height of the guide mechanism 4 from the floor surface. Details of the guide mechanism 4 will be described later.
  • the control unit 7 controls the entire transport device 8 including the device drive unit 3 and the guide mechanism drive unit 5.
  • the communication unit 12 communicates with an instruction center 15 provided outside the transport device 8.
  • the instruction center 15 monitors the transport device 8 and instructs the transport device 8 to transport the cart.
  • FIG. 4 is a diagram showing the appearance of the transport device 8. Casters 13 are provided at the four corners of the main body mechanism 9.
  • the device drive unit 3 is a motor that rotationally drives the drive wheels 14 according to instructions from the control unit 7.
  • One drive wheel 14 is provided on each side of the main body mechanism 9.
  • the device drive section 3 may be provided for each drive wheel 14.
  • the drive wheels 14 are wheels, but other forms of movement such as caterpillars may be used.
  • the drive wheels 14 are not limited to a configuration in which one pair is provided on the left and right sides of the main body mechanism 9, but may be in any configuration such as a plurality of pairs.
  • FIG. 5 is a diagram showing an example of the configuration of the cart fitting section 24.
  • FIG. 6 is a diagram showing the appearance of the cart fitting part 24.
  • the cart fitting portion 24 has a cross shape in which the center frame 18 and the connecting fitting 23 are perpendicular to each other.
  • the connecting fittings 23 are attached to both sides of the center frame 18 with mounting fittings.
  • the mounting fittings it becomes possible to firmly fix the connecting fittings 23 to the center frame 18 without machining the cart.
  • the center frame 18 may be drilled and the connecting fittings 23 may be screwed to the center frame 18.
  • FIG. 7 is a plan view showing an example of the guide mechanism 4.
  • FIG. 8 is a front view (view from the right side of FIG. 7) of the guide mechanism 4 shown in FIG. 7
  • FIG. 9 is a side view of the guide mechanism 4 shown in FIG. 7
  • FIG. 10 is a front view of the guide mechanism 4 shown in FIG. 11 is a sectional view taken along A1-A1 of the mechanism
  • FIG. 11 is a sectional view taken along A2-A2 of the guide mechanism shown in FIG. 7
  • FIG. 12 is a sectional view taken along A3-A3 of the guide mechanism shown in FIG.
  • FIG. 13 is a diagram showing the configuration of the guide mechanism 4.
  • the guide mechanism 4 is provided at the top of the main body mechanism 9.
  • the guide mechanism 4 has a concave center frame groove 25 that can be fitted with the center frame 18 of the cart in the longitudinal direction, and a connecting fitting 23 of the cart in the lateral direction. It has a concave connecting fitting groove 26.
  • the guide mechanism 4 has a cross-shaped shape in which the center frame groove 25 and the connecting fitting groove 26 are perpendicular to each other so that the guide mechanism 4 can be engaged with the cart fitting portion 24 .
  • FIG. 14 is a plan view showing a state in which the cart fitting portion 24 and the guide mechanism 4 are fitted.
  • 15 is a front view (view from the right side of FIG. 14) of the cart fitting portion 24 and guide mechanism 4 shown in FIG. 14, and
  • FIG. 16 is a B2 of the cart fitting portion 24 and guide mechanism 4 shown in FIG. -B2 sectional view, and
  • FIG. 17 is a B1-B1 sectional view of the cart fitting portion 24 and guide mechanism 4 shown in FIG.
  • the cart fitting part 24 is composed of the center frame 18 and the connecting fittings 23. As shown in FIGS. 14-17, the guide mechanism 4 mates with the cart fitting portion 24 of the cart.
  • FIG. 18 is a diagram for explaining the allowable elevation angle ⁇ between the center frame 18 and the center frame groove 25.
  • a wheelchair ramp is installed so that the slope is less than 5%, so if the transport device 8 needs to transport a cart through a wheelchair ramp, it must be set to a slope of 5%. Design the elevation angle ⁇ . Furthermore, if the transport device 8 that transports the cart needs to move on a steeper slope, the allowable elevation angle ⁇ is designed to be larger accordingly.
  • the cart fitting part 24 and the guide mechanism 4 may fit together gently, allowing a slope of 5%.
  • the vertical (height) gap between the cart fitting part 24 and the guide mechanism 4 should be about 2.5 cm.
  • the center frame groove 25 and the connecting fitting groove 26 that constitute the guide mechanism 4 are arranged so that the gap in the vertical direction (height direction) between the cart fitting part 24 and the guide mechanism 4 is about 2.5 cm.
  • the depth of each groove can be designed in advance.
  • FIG. 19 is a diagram for explaining the elevating mechanism.
  • FIG. 20 is a side view showing an example of the conveyance device in a normal height state.
  • FIG. 21 is a side view showing an example of a transport device in a low-floor state. Although illustration of the guide mechanism 4 is omitted in FIG. 19, it is assumed that the guide mechanism 4 is provided integrally with the main body mechanism 9.
  • the part surrounded by the broken line in FIG. 19 is a lifting motor for raising and lowering the main body mechanism 9.
  • This lifting motor corresponds to the guide mechanism drive section 5.
  • the guide mechanism drive unit 5 pushes down the drive wheel 14 from the main body mechanism 9 or accommodates the drive wheel 14 in the main body mechanism 9 according to instructions from the control unit 7 .
  • the main body mechanism 9 When the drive wheel 14 is pushed down from the main body mechanism 9 by the guide mechanism drive unit 5, the main body mechanism 9 is correspondingly pushed up from the floor surface and becomes the normal height state. At this time, the position of the guide mechanism 4, which is integrated with the main body mechanism 9, also rises to a normal height state.
  • the main body mechanism 9 when the drive wheel 14 is accommodated in the main body mechanism 9 by the guide mechanism drive section 5, the main body mechanism 9 correspondingly becomes a low floor state lower than the normal height state. At this time, the position of the guide mechanism 4 integrated with the main body mechanism 9 is also lowered, resulting in a low-floor state.
  • components other than the drive wheels 14 and casters 13 are raised and lowered using lifting motors placed on the left and right sides of the conveyance device 8. Then, the posture is maintained by the holding force of the electromagnetic brake (non-excited type) that constitutes the lifting motor and the worm gear used for driving the lift.
  • the elevating mechanism is not limited to the example shown in FIG. 19, and may be realized using hydraulic pressure or other mechanisms.
  • the transport device 8 is provided with a lidar lifting mechanism (portion surrounded by a broken line in FIGS. 20 and 21) that interlocks and lowers the lidar 10 when it becomes a low floor state.
  • Lidar 10 is provided at two places on the left and right of the conveyance device 8 and used at a high position in order to cover a 360-degree detection range, but if the lidar is configured to be used at a low position, There is no need for a mechanism to lower lidar located at a high position.
  • the transport device 8 is waiting at a predetermined standby position Prest in the building, and upon receiving an instruction from the instruction center 15, it detects a cart stopped at a point Pa, and transports the cart to a destination Pb. The operation of transporting will be explained.
  • control unit 7 is equipped with an SoC (System On a Chip), and has a built-in program that causes the entire transport device 8 to travel autonomously.
  • SoC System On a Chip
  • FIG. 22 is a flowchart showing an example of the operation of the transport device 8.
  • step S101 the control unit 7 receives a movement command sent from the instruction center 15 via the communication unit 12.
  • the movement command is a command indicating that the cart stopped at point Pa is to be transported to destination Pb.
  • the movement command includes position information of the cart (position information of point Pa) and position information of the destination of the cart (position information of destination Pb).
  • step S102 the control unit 7 calculates a route from the standby position Prest of the transport device 8 to the point Pa where the cart is located, based on map information inside the building (not shown). Based on the surrounding situation detected by the sensor group 6 including the lidar 10 and the depth camera 11, the control unit 7 causes the transport device 8 to autonomously travel to the point Pa while avoiding moving objects or obstacles around the transport device 8. Controls the device drive unit 3. When the control unit 7 discovers the cart near the point Pa, the control unit 7 controls the device drive unit 3 to stop the transport device 8. The conveyance device 8 travels from the standby position Prest to the point Pa in a normal height state (see FIG. 20).
  • control unit 7 calculates the route from the standby position Prest to the point Pa
  • present invention is not limited to this.
  • the instruction center 15 may calculate the route from the standby position Prest to the point Pa and notify the transport device 8 of the calculated route.
  • the map information inside the building may be held by the control unit 7, or may be obtained from outside, such as the instruction center 15, as necessary.
  • step S103 the control unit 7 formulates a movement plan for moving the transport device 8 into the cart. Then, the control unit 7 controls the device drive unit 3 so that the transport device 8 sneaks into the cart based on the formulated movement plan and the surrounding situation detected by the Lidar 10 and the depth camera 11. 23 and 24 show how the transport device 8 slips into the cart. At this time, the transport device 8 enters the cart after being in a low floor state (see FIG. 21).
  • step S104 the control section 7 controls the device drive section 3 so that the shape of the guide mechanism 4 matches the shape of the cart fitting section 24, based on the position of the cart fitting section 24 detected by the lidar 10 and the depth camera 11.
  • FIG. 25 shows the state after the conveyance device 8 has been rotated so that the shape of the guide mechanism 4 matches the shape of the cart fitting part 24.
  • step S105 the control unit 7 controls the guide mechanism drive unit 5 so that the conveyance device 8 is in the normal height state.
  • the conveyance device 8 is in the normal height state, the cart fitting portion 24 and the guide mechanism 4 are loosely fitted.
  • step S106 the control unit 7 calculates a route from point Pa to destination Pb based on map information inside the building (not shown). Based on the surrounding conditions detected by the Lidar 10 and the depth camera 11, the control unit 7 causes the device drive unit 3 to autonomously travel to the destination Pb while avoiding moving objects or obstacles existing around the transport device 8. control. Thereby, the cart is transported from point Pa to destination Pb.
  • FIG. 26 shows how the transport device 8 transports the cart.
  • control unit 7 calculates the route from the point Pa to the destination Pb
  • present invention is not limited to this.
  • the instruction center 15 may calculate the route from the point Pa to the destination Pb and notify the transport device 8 of the calculated route.
  • the control unit 7 of the transport device 8 controls the device drive unit 3 to autonomously travel from the destination Pb to the standby position Prest.
  • the movement command received by the control unit 7 from the instruction center 15 in step S101 may include a command to autonomously travel to the standby position Prest after the transport device 8 arrives at the destination Pb.
  • Applications of the transport device 8 include, for example, the delivery or distribution of medicine within a hospital, the distribution of meals at a school, the distribution of meals or goods in an office, or the transportation of parts within a manufacturing factory.
  • the guide mechanism 4 and the cart fitting part 24 are configured to fit loosely, so that the gap in the height direction between the guide mechanism 4 and the connecting fitting 23 of the cart changes.
  • the difference in elevation between the center frame groove 25 of the guide mechanism 4 and the center frame 18 of the cart is allowed. Therefore, on an upslope, as shown in FIG. 29, the gap in the height direction between the guide mechanism 4 and the connecting fitting 23 of the cart becomes long, and in order to allow for a difference in elevation angle, the drive wheels 14 of the conveyance device 8 It doesn't float. Further, on a down slope, as shown in FIG.
  • the gap in the height direction between the guide mechanism 4 and the connecting fitting 23 of the cart is shortened and a difference in elevation angle is allowed, so the casters 19 of the cart do not float.
  • the transport device 8 according to the first embodiment can stably transport a cart in a facility where horizontal floors and sloped floors coexist.
  • the shape of the guide mechanism 4 is not limited to the shape of the guide mechanism 4 shown in FIGS. 7 to 12, but may be any shape as long as it has the groove 25 for the center frame and the groove 26 for the connecting fitting. Good too.
  • the guide mechanism 4 may be composed of four convex mechanisms 27 to 30 provided on the upper part of the main body mechanism 9.
  • 32 is a side view of the guide mechanism 4 shown in FIG. 31
  • FIG. 33 is a C2-C2, C3-C3 sectional view of the guide mechanism 4 shown in FIG. 31, and
  • FIG. 34 is a side view of the guide mechanism 4 shown in FIG. FIG. 4 is a cross-sectional view taken along C1-C1 of No. 4.
  • the groove sandwiched between the protrusion mechanism 27 and the protrusion mechanism 29 and the groove sandwiched between the protrusion mechanism 28 and the protrusion mechanism 30 constitute the center frame groove 25. Further, as shown in FIGS. 31 and 32, the groove sandwiched between the convex mechanism 27 and the convex mechanism 28 and the groove sandwiched between the convex mechanism 29 and the convex mechanism 30 constitute the coupling groove 26.
  • the distance d which is the distance between the convex mechanism 27 and the convex mechanism 29 and the distance between the convex mechanism 28 and the convex mechanism 30 in FIGS. 31 to 34, may be configured to change depending on a specific mechanism drive unit (not shown). . In this case, either one of the convex mechanisms 27 and 28 or the convex mechanisms 29 and 30 may move, or all of the convex mechanisms 27 to 30 may move.
  • the convex mechanisms 27 to 30 shown in FIGS. 31 to 34 may have a tapered shape as shown in FIG. 35.
  • FIG. 35 shows the convex mechanisms 28 and 30 having a tapered shape, the convex mechanisms 27 and 29 also have a similar tapered shape.
  • FIG. 35 shows a case where the convex mechanisms 27 to 30 forming the center frame groove 25 have a tapered shape
  • the convex mechanisms 27 to 30 forming the connecting fitting groove 26 have a tapered shape. It may be made to have.
  • the center frame groove 25 and the connecting fitting groove 26 shown in FIGS. 7 to 12 may have a tapered shape.
  • ⁇ Modification 4 of Embodiment 1> There are various types of cart undercarriages (front frame 16, rear frame 17, and center frame 18).
  • the front frame 16 and the rear frame 17 serve as short axes, and the center of the front frame 16 and the center of the rear frame 17 are fixed by the center frame 18 of the long axis. It may be a structure.
  • two center frame grooves 25 may be provided. In this case, even a cart having two center frames 18 can be transported.
  • FIG. 37 is a front view (view from the right side of FIG. 36) of the guide mechanism 4 shown in FIG. 36
  • FIG. 38 is a sectional view taken along D1-D1 of the guide mechanism 4 shown in FIG. 36.
  • the distance D may be changed by moving either the convex mechanisms 27, 28 or the convex mechanisms 29, 30, or may be changed by moving all of the convex mechanisms 27 to 30.
  • the cart fitting portion 24 has a cross shape in which the center frame 18 and the connecting fitting 23 intersect at 90 degrees, but the shape of the cart fitting portion 24 is different from this. It is not limited.
  • the shape of the connecting fitting 23 can be any shape, such as a curved shape, a shape in which the cart fitting portion 24 is shaped like an X, a shape in which the cart fitting portion 24 is shaped like a V, etc. Good too.
  • the guide mechanism 4 may have any shape as long as it can fit into the cart fitting portion 24.
  • the main body mechanism 9 and the guide mechanism 4 are integrally configured as shown in FIG. Although the case has been described, the configuration for adjusting the height of the guide mechanism 4 is not limited to this.
  • the conveying device 31 separately includes the guide mechanism 4 and the main body mechanism 32, and the guide mechanism driving section 5 drives the guide mechanism 4 to lift it from the main body mechanism 32, thereby driving the guide mechanism 4. You may adjust the height of 4.
  • a sensor for checking the presence or absence of the center frame 18 may be provided on the lower surface (bottom surface of the recess) of the center frame groove 25 constituting the guide mechanism 4.
  • FIG. 41 and 42 are diagrams showing an example of a configuration in which a sensor 33 is provided in the center frame groove 25.
  • FIG. 41 shows a state in which the center frame groove 25 is not fitted into the center frame 18.
  • FIG. 42 shows a state in which the center frame groove 25 is fitted into the center frame 18.
  • the sensor 33 detects whether the center frame 18 is present above the guide mechanism 4 and whether the center frame groove 25 is properly fitted into the center frame 18.
  • Examples of the sensor 33 include a set of an infrared laser and a light receiving element, a magnetic sensor, and the like.
  • Embodiment 1 has been described assuming that the transport device 8 transports a cart in a location on the same floor in a building where there is no door or the like. However, the transport device 8 can also transport the cart where there is a door or transport the cart to another floor using an elevator.
  • the instruction center 15 is configured to have the functions of controlling the opening and closing of elevators and doors provided in the building and monitoring the status of the transport device 8. Then, the instruction center 15 may perform door opening/closing control, elevator opening/closing control, or elevator ascending/descending control according to the movement of the transport device 8, so that the transport device 8 can autonomously travel to the destination. .
  • the control unit 7 of the transport device 8 may communicate with the elevator control unit and the door opening/closing control unit via the communication unit 12, so that the transport device 8 can autonomously travel to the destination.
  • FIG. 43 is a block diagram showing an example of the configuration of the transport device 34 according to the second embodiment.
  • the conveyance device 34 is characterized by comprising a bumper mechanism 36 and a bumper mechanism drive section 37.
  • the bumper mechanism drive section 37 is provided in the main body mechanism 35. The rest of the configuration is the same as that of the transport device 8 described in Embodiment 1, so detailed description will be omitted here.
  • the bumper mechanism 36 is a mechanism that can be extended to a position protruding outward from at least the front frame 16 and the rear frame 17. If a situation arises in which the transport device 34 comes into contact with an obstacle while transporting the cart, the bumper mechanism 36 comes into contact with the obstacle before the cart.
  • the bumper mechanism drive unit 37 drives the bumper mechanism 36 to slide so that the bumper mechanism 36 extends to a position that protrudes outward from at least the front frame 16 and the rear frame 17.
  • the depth cameras 11 are provided, for example, one at each of the four corners of the transport device 34 (four in total), one each downward at the front and back of the transport device 34 (two in total), and One each is installed upwardly at the front and rear of the transport device 34 (two in total).
  • FIG. 44 is a flowchart showing an example of the operation of the transport device 34. Steps S201 to S205 and step S207 in FIG. 44 are the same as steps S101 to S105 and step S106 in FIG. 22 described in Embodiment 1, so their description will be omitted here. Below, step S206 will be explained.
  • step S206 the control unit 7 controls the bumper mechanism drive unit 37 so that the bumper mechanism 36 protrudes from the front frame 16 and rear frame 17 of the cart.
  • FIG. 45 is a diagram showing the bumper mechanism in the stored state.
  • FIGS. 46 and 47 are diagrams showing the bumper mechanism in an extended state.
  • the part surrounded by a broken line in FIG. 47 is a bumper drive motor, and corresponds to the bumper mechanism drive section 37.
  • the bumper mechanism 36 extends outward by, for example, about 170 mm as shown in FIGS. 46 and 47 from the initial position of the bumper mechanism 36 shown in FIG. 45.
  • the bumper mechanism 36 absorbs the impact at the time of contact, which has the effect of alleviating the impact on the cart.
  • FIG. 48 is a block diagram illustrating an example of the configuration of the transport device 34 according to the first modification of the second embodiment.
  • the conveyance device 34 according to the first modification is characterized by providing a contact sensor 38 on the bumper mechanism 36.
  • the rest of the configuration is the same as the transport device 34 described in Embodiment 2, so detailed description will be omitted here.
  • the contact sensor 38 is provided at the tip of the bumper mechanism 36.
  • the contact sensor 38 is also referred to as a pressure sensor or a tape switch.
  • the control unit 7 While the transport device 34 is transporting the cart in step S207 in FIG. 44, when the control unit 7 detects that the bumper mechanism 36 has come into contact with an obstacle based on the detection result of the contact sensor 38, it stops the transport device 34. . At this time, the control unit 7 may send a notification to a predetermined device (for example, the instruction center 15) that the transport device 34 has been stopped via the communication unit 12, or send an alert notification (not shown) provided in the transport device 34. The device may be actuated, or alternatively, an alternative route avoiding obstacles may be planned and the cart may be transported along that route.
  • a predetermined device for example, the instruction center 15
  • an alert notification not shown
  • the transport device 34 can be effectively operated against obstacles that cannot be detected by the lidar 10 and the depth camera 11.
  • FIG. 50 is a block diagram illustrating an example of the configuration of a transport device 34 according to a second modification of the second embodiment.
  • the conveyance device 34 according to the second modification is characterized in that a magnetic sensor 39 is provided in the bumper mechanism 36.
  • the rest of the configuration is the same as the transport device 34 described in Embodiment 2, so detailed description will be omitted here.
  • the magnetic sensor 39 is provided near the tip of the bumper mechanism.
  • the magnetic sensor 39 is a non-contact peripheral detection sensor that detects the presence of a magnetic tape.
  • a magnetic tape is pasted in front of a prohibited area (prohibited marker) where the transport device 34 is prohibited from entering, and when the magnetic sensor 39 (prohibited area detection sensor) detects the magnetic tape, the emergency stop safety system is activated. and stops the transport device 34 from running.
  • the control unit 7 may send a notification to a predetermined device (for example, the instruction center 15) that the transport device 34 has been stopped via the communication unit 12, or send an alert notification (not shown) provided in the transport device 34.
  • the device may be actuated, or alternatively, an alternative route avoiding obstacles may be planned and the cart may be transported along that route.
  • a magnetic sensor when a magnetic sensor is provided in the transport device 8 described in the first embodiment, it may be provided at an appropriate position before and after the main body mechanism 9. Further, the magnetic tape is not limited to being placed in front of the prohibited area, but may be placed so as to define the prohibited area.
  • FIG. 52 is a block diagram showing an example of the configuration of the transport device 40 according to the third embodiment.
  • the conveyance device 40 is characterized by comprising a hook mechanism drive section 42 and a hook mechanism 43.
  • the hook mechanism drive section 42 is provided in the main body mechanism 41.
  • the rest of the configuration is the same as the transport device 34 described in Embodiment 2, so detailed description will be omitted here.
  • conveyance device 40 may include both or one of the contact sensor 38 described in the first modification of the second embodiment and the magnetic sensor 39 described in the second modification of the second embodiment. .
  • the hook mechanism drive section 42 and the hook mechanism 43 can also be applied to the transport device 8 described in the first embodiment.
  • the hook mechanism 43 is a mechanism that is hooked onto a frame (constituent frame) that constitutes the cart including the front frame 16, rear frame 17, and center frame 18 in order to pull out the stored cart, and is extendable.
  • the hook mechanism driving section 42 drives the hook mechanism 43 to expand and contract the hook mechanism 43 between the stored state and the extended state.
  • FIG. 53 is a flowchart showing an example of the operation of the transport device 40. Steps S301, S302, and S308 to S311 in FIG. 53 are the same as steps S201, S202, and S204 to S207 in FIG. 44 described in Embodiment 2, so their description will be omitted here. . Below, steps S303 to S307 will be explained. Note that in FIGS. 54 to 60 described below, illustration of the connecting fitting 23 provided on the cart is omitted.
  • FIG. 54 is a diagram showing an example of the cart storage situation. As shown in FIG. 54, when the conveyance device conveys the stored cart, the conveyance device cannot rotate or move in the front-back direction, so the cart cannot be taken out. Embodiment 3 is intended to solve this problem.
  • FIG. 55 is a diagram showing the positional relationship between the cart and the transport device 40 in step S302 of FIG. 53.
  • step S303 the control unit 7 formulates a movement plan for moving the transport device 40 into the cart and moving the cart to a position where it can be pulled out.
  • the control unit 7 controls the device drive unit 3 so that the transport device 40 moves to a position where the cart can be pulled out, based on the created movement plan and the surrounding situation detected by the lidar 10 and the depth camera 11.
  • FIG. 56 shows how the transport device 40 slips into the cart. At this time, the transport device 40 enters the cart after being in a low floor state (see FIG. 21).
  • step S304 the control unit 7 controls the hook mechanism drive unit 42 so that the hook mechanism 43 is in the extended state. Then, the control unit 7 controls the guide mechanism drive unit 5 so that the conveying device 40 is in the normal height state.
  • FIG. 57 shows the hook mechanism 43 in the extended state.
  • step S305 the control unit 7 controls the device drive unit 3 to pull out the cart with the hook mechanism 43 hooked to the center frame 18 of the cart.
  • FIG. 58 shows how the transport device 40 pulls out the cart.
  • step S306 the control unit 7 controls the guide mechanism drive unit 5 so that the conveyance device 40 is in a low-floor state.
  • the control unit 7 then controls the hook mechanism drive unit 42 so that the hook mechanism 43 is in the stored state.
  • FIG. 59 shows the hook mechanism 43 in the stored state.
  • step S307 the control unit 7 formulates a movement plan for making the transport device 40 slip into the cart. Then, the control unit 7 controls the device drive unit 3 so that the transport device 40 sneaks into the cart based on the formulated movement plan and the surrounding situation detected by the lidar 10 and the depth camera 11.
  • FIG. 60 shows the transport device 40 being inserted into the cart.
  • FIG. 62 is a block diagram illustrating an example of the configuration of the conveying device 44 according to the second modification of the third embodiment.
  • the conveyance device 44 is characterized in that a bumper mechanism drive section 37 drives the bumper mechanism 36 and the hook mechanism 43.
  • the bumper mechanism drive section 37 is provided in the main body mechanism 45.
  • the other configurations are the same as the conveying device 40 described in Embodiment 3, so detailed description will be omitted here.
  • the bumper mechanism drive section 37 has the function of the hook mechanism drive section 42 shown in FIG. 52. Thereby, the number of drive units in the transport device 44 can be reduced.
  • FIG. 63 is a diagram showing the hook mechanism in the stored state.
  • FIG. 64 is a diagram showing the hook mechanism in an extended state.
  • the hook mechanism 43 is linked to the movement of the bumper mechanism 36. Note that the conveyance device 44 is equipped with a solenoid lock, and by controlling the solenoid lock, the hook mechanism 43 can be moved only when the cart is pulled out.
  • Each function of the control section 7 and the communication section 12 in the transport device 8 shown in FIG. 2 is realized by a processing circuit. That is, the transport device 8 controls the device drive unit 3 and the guide mechanism drive unit 5 so that the guide mechanism 4 fits into the cart fitting portion 24 based on the detection results of the sensor group 6, and It includes a processing circuit for communicating with an instruction center 15 provided outside.
  • the processing circuit may be dedicated hardware, and may be a processor (CPU, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP (Digital Signal Processor)) that executes a program stored in memory. ).
  • the processing circuit 46 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). , FPGA (Field Programmable Gate Array), or a combination of these.
  • Each function of the control section 7 and the communication section 12 may be realized by a processing circuit 46, or each function may be realized by a single processing circuit 46.
  • each function of the control section 7 and the communication section 12 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 48.
  • the processor 47 implements each function by reading and executing programs recorded in the memory 48. That is, the transport device 8 performs a step of controlling the device drive unit 3 and the guide mechanism drive unit 5 so that the guide mechanism 4 fits into the cart fitting portion 24 based on the detection results of the sensor group 6;
  • a memory 48 is provided for storing a program that results in the execution of the step of communicating with an instruction center 15 provided externally. It can also be said that these programs cause the computer to execute the procedures or methods of the control section 7 and the communication section 12.
  • memory refers to nonvolatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrical Erasable Programmable Read Only Memory
  • the storage medium may be a flexible semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a DVD (Digital Versatile Disc), or any storage medium that will be used in the future.
  • control unit 7 and the communication unit 12 may be realized by dedicated hardware, and other functions may be realized by software or firmware.
  • the processing circuit can realize each of the above functions using hardware, software, firmware, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本開示は、水平床面およびスロープ床面が混在する施設においてカートを搬送することが可能な搬送装置を提供することを目的とする。本開示による搬送装置は、センタフレームと、センタフレームに設けられた連結金具とを有するカートを搬送する搬送装置であって、搬送装置の全体を支持する本体機構と、本体機構に設けられ、搬送装置を駆動する装置駆動部と、センタフレームおよび連結金具で構成されるカート嵌合部に嵌合可能な形状を有するガイド機構と、ガイド機構を高さ方向に駆動するガイド機構駆動部と、搬送装置の周辺状況を検出するセンサ群と、装置駆動部およびガイド機構駆動部を制御する制御部とを備え、制御部は、センサ群の検出結果に基づいて、カート嵌合部にガイド機構が嵌合するように装置駆動部およびガイド機構駆動部を制御し、カート嵌合部にガイド機構が嵌合する際、カート嵌合部とガイド機構との間には予め定められた間隙が存在する。

Description

搬送装置および搬送方法
 本開示は、物品を収容したカートを搬送する搬送装置および搬送方法に関する。
 物品を収容するカートは、前部フレームと、前部フレームに対向する後部フレームと、前部フレームと後部フレームとを結合するセンタフレームと、底部機構に設けられた複数のキャスタと備えており、種々の場面で用いられている。昨今、省力化のために、カートの移動方法が手動移動から自動移動へと進化している。
 従来、カートを自動移動させる種々の技術が開発されている。例えば、センタフレームを保持アームで挟み込んだ状態でカートを移動させる技術が開示されている(例えば、特許文献1参照)。
国際公開第2005/105620号
 特許文献1で開示されているような保持アームでセンタフレームを固定する方法は、カートを搬送する搬送装置が走行する床面が水平である水平床面であれば、問題なくカートを搬送することができる。
 一方、水平床面と、当該水平床面に対して傾斜したスロープ床面とが混在する施設でもカートを自動的に搬送したいという要望がある。この場合、カートを搬送する搬送装置が、水平床面との傾斜角度が180度よりも小さいスロープ床面を走行する際に、カートの前後に設けられたキャスタは床面に接触するが、搬送装置の駆動輪が床面から浮いてしまうため、カートを搬送することができないという問題がある。
 また、カートを搬送する搬送装置が、水平床面との傾斜角度が180度よりも大きいスロープ床面を走行する際に、搬送装置の駆動輪は床面に接触するが、カートの前後に設けられたキャスタの一方または双方が床面から浮いてしまい、カートが不安定になるという問題がある。
 本開示は、このような問題を解決するためになされたものであり、水平床面およびスロープ床面が混在する施設においてカートを搬送することが可能な搬送装置および搬送方法を提供することを目的とする。
 上記の課題を解決するために、本開示による搬送装置は、前部フレームと、前部フレームに対向する後部フレームと、前部フレームと後部フレームとを結合するセンタフレームと、センタフレームの延在方向とは異なる方向に張り出すようにセンタフレームに設けられた連結金具と、複数のキャスタとを有するカートを搬送する搬送装置であって、搬送装置の全体を支持する本体機構と、本体機構に設けられ、搬送装置を駆動する装置駆動部と、センタフレームおよび連結金具で構成されるカート嵌合部に嵌合可能な形状を有するガイド機構と、ガイド機構を高さ方向に駆動するガイド機構駆動部と、搬送装置の周辺状況を検出するセンサ群と、装置駆動部およびガイド機構駆動部を制御する制御部とを備え、制御部は、センサ群の検出結果に基づいて、カート嵌合部にガイド機構が嵌合するように装置駆動部およびガイド機構駆動部を制御し、カート嵌合部にガイド機構が嵌合する際、カート嵌合部とガイド機構との間には予め定められた間隙が存在する。
 本開示によれば、水平床面およびスロープ床面が混在する施設においてカートを搬送することが可能となる。
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1による搬送装置の構成の一例を示すブロック図である。 実施の形態1による搬送装置の構成の一例を示すブロック図である。 実施の形態1によるカートの構成の一例を示す図である。 実施の形態1による搬送装置の外観を示す図である。 実施の形態1によるカート嵌合部の構成の一例を示す図である。 実施の形態1によるカート嵌合部の外観を示す図である。 実施の形態1によるガイド機構の一例を示す平面図である。 図7に示すガイド機構の正面図である。 図7に示すガイド機構の側面図である。 図7に示すガイド機構のA1-A1断面図である。 図7に示すガイド機構のA2-A2断面図である。 図7に示すガイド機構のA3-A3断面図である。 実施の形態1によるガイド機構の構成を示す図である。 実施の形態1によるカート嵌合部とガイド機構とが嵌合している状態を示す平面図である。 図14に示すカート嵌合部およびガイド機構の正面図である。 図14に示すカート嵌合部およびガイド機構のB2-B2断面図である。 図14に示すカート嵌合部およびガイド機構のB1-B1断面図である。 実施の形態1によるセンタフレームとセンタフレーム用溝との仰角の許容を説明するための図である。 実施の形態1による本体機構の一例を示す平面図である。 実施の形態1による通常高さ状態の搬送装置の一例を示す側面図である。 実施の形態1による低床状態の搬送装置の一例を示す側面図である。 実施の形態1による搬送装置の動作の一例を示すフローチャートである。 実施の形態1による搬送装置の動きを説明するための図である。 実施の形態1による搬送装置の動きを説明するための図である。 実施の形態1による搬送装置の動きを説明するための図である。 実施の形態1による搬送装置の動きを説明するための図である。 従来の搬送装置の問題点を説明するための図である。 従来の搬送装置の問題点を説明するための図である。 実施の形態1による搬送装置の効果を説明するための図である。 実施の形態1による搬送装置の効果を説明するための図である。 実施の形態1の変形例1,2によるガイド機構の一例を示す平面図である。 図31に示すガイド機構の側面図である。 図31に示すガイド機構のC2-C2およびC3-C3断面図である。 図31に示すガイド機構のC1-C1断面図である。 実施の形態1の変形例3によるガイド機構の一例を示す断面図である。 実施の形態1の変形例4によるガイド機構の一例を示す平面図である。 図36に示すガイド機構の正面図である。 図36に示すガイド機構のD1-D1断面図である。 実施の形態1の変形例5によるガイド機構の一例を示す平面図である。 実施の形態1の変形例7による搬送装置の構成の一例を示すブロック図である。 実施の形態1の変形例8によるガイド機構にセンサを設けた構成の一例を示す断面図である。 実施の形態1の変形例8によるガイド機構にセンサを設けた構成の一例を示す断面図である。 実施の形態2による搬送装置の構成の一例を示すブロック図である。 実施の形態2による搬送装置の動作の一例を示すフローチャートである。 実施の形態2による収納状態のバンパー機構を示す図である。 実施の形態2による張り出し状態のバンパー機構を示す図である。 実施の形態2による張り出し状態のバンパー機構を示す図である。 実施の形態2の変形例1による搬送装置の構成の一例を示すブロック図である。 実施の形態2の変形例1による接触センサを示す図である。 実施の形態2の変形例2による搬送装置の構成の一例を示すブロック図である。 実施の形態2の変形例2による磁気センサを示す図である。 実施の形態3による搬送装置の構成の一例を示すブロック図である。 実施の形態3による搬送装置の動作の一例を示すフローチャートである。 実施の形態3によるカートの収納状況を説明するための図である。 実施の形態3によるカートの取り出し状況を説明するための図である。 実施の形態3によるカートの取り出し状況を説明するための図である。 実施の形態3によるカートの取り出し状況を説明するための図である。 実施の形態3によるカートの取り出し状況を説明するための図である。 実施の形態3によるカートの取り出し状況を説明するための図である。 実施の形態3によるカートの取り出し状況を説明するための図である。 実施の形態3の変形例1によるカートの取り出し状況を説明するための図である。 実施の形態3の変形例2による搬送装置の構成の一例を示すブロック図である。 実施の形態3の変形例2による収納状態のフック機構を示す図である。 実施の形態3の変形例2による伸長状態のフック機構を示す図である。 実施の形態1~3による搬送装置のハードウェア構成の一例を示す図である。 実施の形態1~3による搬送装置のハードウェア構成の一例を示す図である。
 <実施の形態1>
 <構成>
 図1は、実施の形態1による搬送装置1の構成の一例を示すブロック図である。
 搬送装置1は、本体機構2と、ガイド機構4とを備えている。本体機構2は、装置駆動部3と、ガイド機構駆動部5と、センサ群6と、制御部7とを備えている。
 ガイド機構4は、後述するカートを構成する前部フレーム16と連結金具23とで構成されるカート嵌合部に嵌合可能な形状を有する。
 本体機構2は、搬送装置1の全体を支持する。装置駆動部3は、搬送装置1を駆動する。ガイド機構駆動部5は、ガイド機構4を高さ方向に駆動する。センサ群6は、搬送装置1の周辺状況を検出する。制御部7は、センサ群6の検出結果に基づいて、カート嵌合部にガイド機構4が嵌合するように装置駆動部3およびガイド機構駆動部5を制御する。カート嵌合部にガイド機構4が嵌合する際、カート嵌合部とガイド機構4との間には予め定められた間隙が存在する。
 次に、図1に示す搬送装置1を含む搬送装置の他の構成、および搬送装置が搬送するカートについて説明する。図2は、他の構成に係る搬送装置8の構成の一例を示すブロック図である。また、図3は、搬送装置8が搬送するカートの構成の一例を示す図である。以下では、まずカートの構成について説明した後、搬送装置8の構成について説明する。
 <カートの構成>
 図3に示すように、カートは、前部フレーム16と、後部フレーム17と、センタフレーム18と、キャスタ19と、キャスタブレーキ20と、支持フレーム21と、トレイ22とを備えている。
 前部フレーム16は、カートの前部に設けられたフレームである。後部フレーム17は、前部フレーム16に対向してカートの後部に設けられたフレームである。センタフレーム18は、前部フレーム16と後部フレーム17とを結合するフレームである。連結金具23は、センタフレーム18の延在方向とは異なる方向に張り出すようにセンタフレーム18に設けられている。連結金具23の詳細については後述する。
 キャスタ19は、前部フレーム16の左右端に1つずつ設けられ、後部フレーム17の左右端に1つずつ設けられている。キャスタブレーキ20は、キャスタ19が動かないように固定するためのものであり、使用者がキャスタブレーキ20を操作することによってキャスタ19が固定されてカートを動かないようにすることができる。
 支持フレーム21は、前部フレーム16および後部フレーム17のそれぞれに垂直方向に設けられている。トレイ22は、支持フレーム21に載置されており、トレイ22に物品を載せることができる。
 なお、図3の例では、2つのトレイ22が載置されているが、トレイ22の数はこれに限るものではない。また、センタフレーム18が、前部フレーム16および後部フレーム17の両方またはいずれか一方から突出した構造であってもよい。
 <搬送装置の構成>
 図2に示すように、搬送装置8は、ガイド機構4と、本体機構9と、キャスタ13と、駆動輪14とを備えている。本体機構9は、装置駆動部3と、ガイド機構駆動部5と、センサ群6と、制御部7と、通信部12とを備えている。
 センサ群6は、Lidar10およびデプスカメラ11を含む。また、センサ群6は、カートを構成する各部位を検出する。
 Lidar10は、搬送装置8の周辺空間における障害物の検知と、SLAM(Simultaneous Localization and Mapping)走行のための自己位置の検出とを行う。
 デプスカメラ11は、搬送装置8の周辺を撮影して距離画像を取得し、取得した距離画像に対して画像処理を行うことによって搬送装置8の周辺に存在する障害物との距離を求める。デプスカメラ11のレンジは、約10cm程度である。デプスカメラ11は、例えば、搬送装置8の四隅に1つずつ(計4つ)、搬送装置8の前後に下向きに1つずつ(計2つ)、および搬送装置8の前後に上向きに1つずつ(計2つ)設置されている。搬送装置8の四隅に設置されるデプスカメラ11は、搬送装置8から見て斜め方向に存在する障害物の検知用である。搬送装置8の前後に下向きに1つずつ設置されるデプスカメラ11は、搬送装置8の精密誘導用、搬送装置8の正面に存在する障害物の検知用、および搬送装置8が走行する床面に存在する障害物の検知用である。搬送装置8の前後に上向きに1つずつ設置されるデプスカメラ11は、搬送装置8の正面に存在する障害物の検知用、および搬送装置8の上方に存在する障害物の検知用である。デプスカメラ11は、搬送装置8の前後左右に対称となる位置に設置することが望ましい。デプスカメラ11を対称な位置に設置することによって、同一の画像処理を行うことによって搬送装置8の周辺に存在する障害物を検出することができるため、複数のソフトウェア検出ロジックを開発する必要がない。搬送装置8の周辺に存在する障害物を検出するために、CNN(Convolution Neural Networks)を用いてもよい。
 ガイド機構駆動部5は、ガイド機構4を駆動し、ガイド機構4の床面からの高さを変える。ガイド機構4の詳細は後述する。
 制御部7は、装置駆動部3およびガイド機構駆動部5を含む搬送装置8の全体の制御を行う。
 通信部12は、搬送装置8の外部に設けられた指示センタ15と通信を行う。指示センタ15は、搬送装置8をモニタリングするとともに、搬送装置8に対してカートの搬送を指示する。
 図4は、搬送装置8の外観を示す図である。本体機構9の四隅には、キャスタ13が設けられている。
 装置駆動部3は、制御部7の指示に従って駆動輪14を回転駆動するモータである。駆動輪14は、本体機構9の左右に1つずつ設けられている。なお、装置駆動部3は、駆動輪14ごとに設けてもよい。また、図3の例では、駆動輪14は車輪であるが、キャタピラなどの他の移動形態であってもよい。また、駆動輪14は、本体機構9の左右に一対設ける構成に限らず、複数対設けるなど、どのような構成であってもよい。
 <カート嵌合部の構成>
 図5は、カート嵌合部24の構成の一例を示す図である。また、図6は、カート嵌合部24の外観を示す図である。
 図5に示すように、カート嵌合部24は、センタフレーム18と連結金具23とが直交するような十字型の形状を有する。
 図6に示すように、連結金具23は、センタフレーム18の両側面に取付金具によって取り付けられている。取付金具を用いることによって、カートを加工することなく、センタフレーム18に連結金具23を強固に固定することが可能となる。なお、センタフレーム18に穴あけ加工を施し、センタフレーム18に連結金具23をねじ止めしてもよい。
 <ガイド機構の構成>
 図7は、ガイド機構4の一例を示す平面図である。図8は図7に示すガイド機構4の正面図(図7の右側から見た図)であり、図9は図7に示すガイド機構4の側面図であり、図10は図7に示すガイド機構のA1-A1断面図であり、図11は図7に示すガイド機構のA2-A2断面図であり、図12は図7に示すガイド機構のA3-A3断面図である。図13は、ガイド機構4の構成を示す図である。ガイド機構4は、本体機構9の上部に設けられている。
 図7~13に示すように、ガイド機構4は、長手方向にカートのセンタフレーム18と篏合可能な凹形状のセンタフレーム用溝25と、短手方向にカートの連結金具23と篏合可能な凹形状の連結金具用溝26とを有する。このように、ガイド機構4は、カート嵌合部24と篏合可能なように、センタフレーム用溝25と連結金具用溝26とが直交するような十字型の形状を有する。
 <カート嵌合部とガイド機構との篏合>
 図14は、カート嵌合部24とガイド機構4とが嵌合している状態を示す平面図である。図15は図14に示すカート嵌合部24およびガイド機構4の正面図(図14の右側から見た図)であり、図16は図14に示すカート嵌合部24およびガイド機構4のB2-B2断面図であり、図17は図14に示すカート嵌合部24およびガイド機構4のB1-B1断面図である。
 上述の通り、カート嵌合部24は、センタフレーム18と連結金具23とで構成されている。図14~17に示すように、ガイド機構4は、カートのカート嵌合部24に篏合する。
 図18は、センタフレーム18とセンタフレーム用溝25との仰角αの許容を説明するための図である。例えば、車いす用のスロープは勾配が5%未満となるように設置されるため、車いす用のスロープを通るように搬送装置8がカートを搬送する必要がある場合は、5%の勾配に合わせた仰角αを設計する。また、カートを搬送する搬送装置8がもっと急なスロープを移動する必要がある場合は、それに応じて許容する仰角αを大きく設計する。
 一例として、カート嵌合部24とガイド機構4とは、5%の勾配を許容する緩やかな篏合をすればよい。この場合、カートの前後方向の寸法が1mであるとすると、5%の勾配では、カート嵌合部24とガイド機構4との上下方向(高さ方向)の間隙は2.5cm程度あればよい。すなわち、カート嵌合部24とガイド機構4との上下方向(高さ方向)の間隙が2.5cm程度となるように、ガイド機構4を構成するセンタフレーム用溝25および連結金具用溝26のそれぞれの溝の深さを設計しておけばよい。
 <昇降機構>
 図19は、昇降機構を説明するための図である。図20は、通常高さ状態の搬送装置の一例を示す側面図である。図21は、低床状態の搬送装置の一例を示す側面図である。なお、図19では、ガイド機構4の図示を省略しているが、ガイド機構4は本体機構9と一体に設けられているものとする。
 図19の破線で囲まれた部品は、本体機構9を昇降させるための昇降用モータである。この昇降用モータは、ガイド機構駆動部5に相当する。ガイド機構駆動部5は、制御部7の指示に従って駆動輪14を本体機構9から押し下げる、または駆動輪14を本体機構9に収容する。
 ガイド機構駆動部5によって駆動輪14が本体機構9から押し下げられると、それに応じて本体機構9が床面から押し上げられて通常高さ状態となる。このとき、本体機構9と一体に構成されたガイド機構4の位置も高くなり通常高さ状態となる。
 一方、ガイド機構駆動部5によって駆動輪14が本体機構9に収容されると、それに応じて本体機構9が通常高さ状態よりも低い低床状態となる。このとき、本体機構9と一体に構成されたガイド機構4の位置も低くなり低床状態となる。
 図19の例では、搬送装置8の左右に配置した昇降用モータを用いて、駆動輪14およびキャスタ13以外の構成要素を昇降させる。そして、昇降用モータを構成する電磁ブレーキ(無励磁型)の保持力と、昇降駆動用に使用したウォームギアで姿勢を保持する。なお、昇降機構は図19の例に限るものではなく、油圧その他の機構を用いて実現してもよい。
 また、搬送装置8が低床状態のときにLidar10の高さがカートのセンタフレーム18よりも高いと、Lidar10がセンタフレーム18に衝突する可能性がある。この対策として、搬送装置8は、低床状態になるときに連動してLidar10が低くするLidar昇降機構(図20,21中の破線で囲まれた部分)を設けている。実施の形態1では、360度の検知範囲をカバーするためにLidar10を搬送装置8の左右2か所に設けて高い位置で使用するが、低い位置でLidarを使用するような構成であれば、高い位置にあるLidarを低くするような機構は必要ない。
 <動作>
 以下では、建屋内において、搬送装置8は予め定められた待機位置Prestに待機しており、指示センタ15からの指示を受けると地点Paに停止しているカートを検出し、目的地Pbまでカートを搬送する動作について説明する。
 なお、制御部7は、SoC(System On a Chip)を備えており、搬送装置8全体を自律走行させるプログラムが内蔵されている。
 図22は、搬送装置8の動作の一例を示すフローチャートである。
 ステップS101において、制御部7は、通信部12を介して、指示センタ15から送信された移動コマンドを受け付ける。移動コマンドは、地点Paに停止しているカートを目的地Pbまで搬送する旨を示すコマンドである。移動コマンドは、カートの位置情報(地点Paの位置情報)およびカートの搬送先の位置情報(目的地Pbの位置情報)を含む。
 ステップS102において、制御部7は、図示しない建屋内の地図情報に基づいて、搬送装置8の待機位置Prestからカートが存在する地点Paまでの経路を算出する。そして、制御部7は、Lidar10およびデプスカメラ11を含むセンサ群6が検出した周辺状況に基づいて、搬送装置8の周辺に存在する移動体または障害物を避けながら地点Paまで自律走行するように装置駆動部3を制御する。制御部7は、地点Pa近傍でカートを発見すると、搬送装置8を停止するように装置駆動部3を制御する。搬送装置8は、待機位置Prestから地点Paまで通常高さ状態(図20参照)で走行する。
 なお、ここでは、制御部7が待機位置Prestから地点Paまでの経路を算出する場合について説明したが、これに限るものではない。指示センタ15が待機位置Prestから地点Paまでの経路を算出して搬送装置8に通知してもよい。
 建屋内の地図情報は、制御部7が保持してもよく、必要に応じて指示センタ15などの外部から取得してもよい。
 ステップS103において、制御部7は、搬送装置8をカートに潜り込ませるための移動計画を策定する。そして、制御部7は、策定した移動計画と、Lidar10およびデプスカメラ11が検出した周辺状況とに基づいて、搬送装置8がカートに潜り込むように装置駆動部3を制御する。図23,24は、搬送装置8がカートに潜り込む様子を示している。このとき、搬送装置8は、低床状態(図21参照)になってからカートに潜り込む。
 ステップS104において、制御部7は、Lidar10およびデプスカメラ11が検出したカート嵌合部24の位置に基づいて、カート嵌合部24の形状にガイド機構4の形状が合うように装置駆動部3を制御する。図25は、搬送装置8が、カート嵌合部24の形状にガイド機構4の形状が合うように回転した後の様子を示している。
 ステップS105において、制御部7は、搬送装置8が通常高さ状態となるようにガイド機構駆動部5を制御する。搬送装置8が通常高さ状態になると、カート嵌合部24とガイド機構4とが緩く嵌合する。
 ステップS106において、制御部7は、図示しない建屋内の地図情報に基づいて、地点Paから目的地Pbまでの経路を算出する。そして、制御部7は、Lidar10およびデプスカメラ11が検出した周辺状況に基づいて、搬送装置8の周辺に存在する移動体または障害物を避けながら目的地Pbまで自律走行するように装置駆動部3を制御する。これにより、カートは、地点Paから目的地Pbまで搬送される。図26は、搬送装置8がカートを搬送する様子を示している。
 なお、ここでは、制御部7が地点Paから目的地Pbまでの経路を算出する場合について説明したが、これに限るものではない。指示センタ15が地点Paから目的地Pbまでの経路を算出して搬送装置8に通知してもよい。
 カートが目的地Pbに到着すると、建屋内のスタッフがカートのトレイ22に載置された物品を回収する。その後、搬送装置8の制御部7は、通信部12経由で指示センタ15から待機位置Prestまで戻る旨のコマンドを受けると、目的地Pbから待機位置Prestまで自律走行するように装置駆動部3を制御する。あるいは、ステップS101において制御部7が指示センタ15から受け付けた移動コマンドに、搬送装置8が目的地Pbに到着した後に待機位置Prestまで自律走行する旨のコマンドを含めてもよい。
 搬送装置8の用途としては、例えば、病院内での薬の配送または配膳、学校での配膳、オフィスでの配膳または物品の配送、あるいは製造工場内における部品の運搬などが挙げられる。
 <効果>
 従来の搬送装置は、カートと搬送装置とが一体化して強固に固定されているため、図27に示すように上りスロープで搬送装置の駆動輪が浮いてカートを搬送することができない状況、または、図28に示すように下りスロープでカートのキャスタが浮いてカートが不安定になるという状況が生じていた。
 一方、実施の形態1による搬送装置8では、ガイド機構4とカート嵌合部24とが緩く嵌合する構成としているため、ガイド機構4とカートの連結金具23との高さ方向の間隙の変化を許容し、ガイド機構4のセンタフレーム用溝25とカートのセンタフレーム18とがなす仰角の差異を許容する。従って、上りスロープでは、図29に示すようにガイド機構4とカートの連結金具23との高さ方向の間隙が長くなり、かつ、仰角の差異を許容するため、搬送装置8の駆動輪14は浮かない。また、下りスロープでは、図30に示すようにガイド機構4とカートの連結金具23との高さ方向の間隙が短くなり、かつ、仰角の差異を許容するため、カートのキャスタ19は浮かない。このように、実施の形態1による搬送装置8は、水平床面およびスロープ床面が混在する施設において、カートを安定して搬送することが可能となる。
 <実施の形態1の変形例1>
 ガイド機構4の形状は、図7~12に示すガイド機構4の形状に限るものではなく、機能的にセンタフレーム用溝25および連結金具用溝26を有するものであれば、いかなる形状であってもよい。
 例えば、図31~34に示すように、ガイド機構4は、本体機構9の上部に設けられた4つの凸機構27~30で構成されてもよい。なお、図32は図31に示すガイド機構4の側面図であり、図33は図31に示すガイド機構4のC2-C2,C3-C3断面図であり、図34は図31に示すガイド機構4のC1-C1断面図である。
 図31,34に示すように、凸機構27と凸機構29とで挟まれた溝、および凸機構28と凸機構30とで挟まれた溝が、センタフレーム用溝25を構成する。また、図31,32に示すように、凸機構27と凸機構28とで挟まれた溝、および凸機構29と凸機構30とで挟まれた溝が、連結金具用溝26を構成する。
 <実施の形態1の変形例2>
 図31~34における凸機構27と凸機構29との間隔、および凸機構28と凸機構30との間隔である間隔dは、図示しない特定の機構駆動部によって変化するように構成されてもよい。この場合、凸機構27,28または凸機構29,30のいずれか一方が動いてもよく、凸機構27~30の全てが動いてもよい。
 これにより、センタフレーム18の横幅(太さ)が異なるカートであっても、搬送装置8で搬送することができる。
 <実施の形態1の変形例3>
 図31~34に示す凸機構27~30は、図35に示すようにテーパ形状を有してもよい。図35では、凸機構28,30のテーパ形状を示しているが、凸機構27,29も同様のテーパ形状を有している。
 なお、図35では、センタフレーム用溝25を構成する凸機構27~30がテーパ形状を有している場合を示しているが、連結金具用溝26を構成する凸機構27~30がテーパ形状を有するようにしてもよい。また、図7~12に示すセンタフレーム用溝25および連結金具用溝26がテーパ形状を有してもよい。
 <実施の形態1の変形例4>
 カートの下部構造(前部フレーム16、後部フレーム17、およびセンタフレーム18)には種々の種類がある。図3の例では、前部フレーム16および後部フレーム17が短軸となり、前部フレーム16の中心と後部フレーム17の中心とを長軸のセンタフレーム18で固定する構造であったが、他の構造であってもよい。
 例えば、図36~38に示すように、センタフレーム用溝25を2つ設けてもよい。この場合、2つのセンタフレーム18を有するカートであっても搬送することができる。
 なお、図37は図36に示すガイド機構4の正面図(図36の右側から見た図)であり、図38は図36に示すガイド機構4のD1-D1断面図である。
 <実施の形態1の変形例5>
 変形例4で説明したような2つのセンタフレーム18を有するカートを搬送するために、図39に示すように、変形例1のような凸機構27~30を設け、横方向の間隔Dが可変となるようにしてもよい。この場合、搬送装置8がカートに潜り込んだ後、一方のセンタフレーム18にセンタフレーム用溝25が嵌合するように間隔Dを変えるようにしてもよい。
 なお、間隔Dは、凸機構27,28または凸機構29,30のいずれか一方が動くことによって変えてもよく、凸機構27~30の全てが動くことによって変えてもよい。
 <実施の形態1の変形例6>
 実施の形態1では、カート嵌合部24は、センタフレーム18と連結金具23とが90度で交わるような十字型の形状である場合について説明したが、カート嵌合部24の形状はこれに限るものではない。例えば、連結金具23の形状は、曲線形状、カート嵌合部24がX字型となるような形状、カート嵌合部24がV字型となるような形状など、どのような形状であってもよい。
 また、ガイド機構4の形状は、カート嵌合部24と嵌合可能な形状であればよい。
 <実施の形態1の変形例7>
 実施の形態1では、図2に示すように本体機構9とガイド機構4とが一体に構成され、駆動輪14を本体機構9から押し下げることによって本体機構9とともにガイド機構4を床面から上昇させる場合について説明したが、ガイド機構4の高さを調整する構成はこれに限るものではない。
 例えば、図40に示すように、搬送装置31がガイド機構4と本体機構32とを別個に備え、ガイド機構駆動部5がガイド機構4を本体機構32から持ち上げるように駆動することによって、ガイド機構4の高さを調整してもよい。
 <実施の形態1の変形例8>
 ガイド機構4を構成するセンタフレーム用溝25の下面(凹部の底面)に、センタフレーム18の有無を確認するためのセンサを設けてもよい。
 図41,42は、センタフレーム用溝25にセンサ33を設けた構成の一例を示す図である。図41は、センタフレーム用溝25がセンタフレーム18に嵌合していない状態を示している。図42は、センタフレーム用溝25がセンタフレーム18に嵌合している状態を示している。
 センサ33は、ガイド機構4の上方にセンタフレーム18が存在しているか否か、およびセンタフレーム用溝25がセンタフレーム18に正しく嵌合しているか否かなどを検出する。センサ33としては、例えば、赤外線レーザと受光素子とのセット、あるいは磁気センサなどが挙げられる。
 <実施の形態1の変形例9>
 実施の形態1では、建屋内の同一フロアでドアなどがない場所において、搬送装置8がカートを搬送する場合を想定して説明した。しかし、搬送装置8は、ドアが存在する場所においてカートを搬送したり、エレベータを使用して他の階にカートを搬送したりすることも可能である。
 例えば、指示センタ15は、建屋内に設けられたエレベータおよびドアの開閉を制御し、搬送装置8の状況をモニタリングする機能を有するように構成されている。そして、指示センタ15は、搬送装置8の移動に応じて、ドアの開閉制御、エレベータの開閉制御、またはエレベータの上昇下降制御を行い、搬送装置8が目的地まで自律走行できるようにしてもよい。あるいは、搬送装置8の制御部7が、通信部12を介してエレベータ制御部およびドア開閉制御部と通信を行うことによって、搬送装置8が目的地まで自律走行できるようにしてもよい。
 <実施の形態2>
 <構成>
 図43は、実施の形態2による搬送装置34の構成の一例を示すブロック図である。
 図43に示すように、搬送装置34は、バンパー機構36およびバンパー機構駆動部37を備えることを特徴としている。バンパー機構駆動部37は、本体機構35に設けられている。その他の構成は、実施の形態1で説明した搬送装置8と同様であるため、ここでは詳細な説明を省略する。
 バンパー機構36は、少なくとも前部フレーム16および後部フレーム17よりも外側に突出する位置に伸長可能な機構である。搬送装置34がカートを搬送中に障害物と接触するような状況が生じた場合、カートよりも先にバンパー機構36が障害物と接触する。
 バンパー機構駆動部37は、少なくとも前部フレーム16および後部フレーム17よりも外側に突出する位置にバンパー機構36が伸長するように、バンパー機構36をスライドさせるように駆動する。
 なお、デプスカメラ11は、実施の形態1と同様に、例えば、搬送装置34の四隅に1つずつ(計4つ)、搬送装置34の前後に下向きに1つずつ(計2つ)、および搬送装置34の前後に上向きに1つずつ(計2つ)設置されている。
 <動作>
 図44は、搬送装置34の動作の一例を示すフローチャートである。図44のステップS201~ステップS205、およびステップS207は、実施の形態1で説明した図22のステップS101~ステップS105、およびステップS106と同様であるため、ここでは説明を省略する。以下では、ステップS206について説明する。
 ステップS206において、制御部7は、カートの前部フレーム16および後部フレーム17からバンパー機構36が張り出すようにバンパー機構駆動部37を制御する。
 図45は、収納状態のバンパー機構を示す図である。また、図46,47は、張り出し状態のバンパー機構を示す図である。図47中の破線で囲まれた部品は、バンパー駆動用モータであり、バンパー機構駆動部37に相当する。バンパー機構36は、図45に示すバンパー機構36の初期位置から、図46,47に示すように例えば170mm程度外側に張り出す。
 ステップS207において搬送装置34がカートを搬送中に、仮に障害物と接触した場合は、バンパー機構36が接触時の衝撃を吸収するため、カートへの衝撃を緩和する効果がある。
 <実施の形態2の変形例1>
 図48は、実施の形態2の変形例1による搬送装置34の構成の一例を示すブロック図である。
 図48に示すように、変形例1による搬送装置34は、バンパー機構36に接触センサ38を設けることを特徴としている。その他の構成は、実施の形態2で説明した搬送装置34と同様であるため、ここでは詳細な説明を省略する。
 図49に示すように、接触センサ38は、バンパー機構36の先端部に設けられている。接触センサ38は、感圧センサまたはテープスイッチとも称する。
 図44のステップS207において搬送装置34がカートを搬送中において、制御部7は、接触センサ38の検出結果に基づいてバンパー機構36が障害物と接触したことを検知すると、搬送装置34を停止する。このとき、制御部7は、通信部12を介して搬送装置34を停止した旨を予め定められた装置(例えば、指示センタ15)に発信してもよく、搬送装置34が備える図示しないアラート報知装置を作動してもよく、あるいは、障害物を避けた別の経路を計画して当該経路でカートを搬送するようにしてもよい。
 接触センサ38を設けることによって、Lidar10およびデプスカメラ11では検出することができない障害物に対して搬送装置34を有効に動作させることができる。
 <実施の形態2の変形例2>
 図50は、実施の形態2の変形例2による搬送装置34の構成の一例を示すブロック図である。
 図50に示すように、変形例2による搬送装置34は、バンパー機構36に磁気センサ39を設けることを特徴としている。その他の構成は、実施の形態2で説明した搬送装置34と同様であるため、ここでは詳細な説明を省略する。
 図51に示すように、磁気センサ39は、バンパー機構の先端付近に設けられている。磁気センサ39は、非接触の周辺検出センサであり、磁気テープの存在を検出する。
 例えば、搬送装置34の進入が禁止されている進入禁止エリア(進入禁止マーカ)の手前に磁気テープを貼り、磁気センサ39(進入禁止エリア検出センサ)が磁気テープを検出したら非常停止安全系を作動させ、搬送装置34の走行を停止させる。このとき、制御部7は、通信部12を介して搬送装置34を停止した旨を予め定められた装置(例えば、指示センタ15)に発信してもよく、搬送装置34が備える図示しないアラート報知装置を作動してもよく、あるいは、障害物を避けた別の経路を計画して当該経路でカートを搬送するようにしてもよい。
 なお、実施の形態1で説明した搬送装置8に磁気センサを設ける場合は、本体機構9の前後の適当な位置に設ければよい。また、磁気テープは、進入禁止エリアの手前に限らず、進入禁止エリアを規定するように張られていればよい。
 <実施の形態3>
 <構成>
 図52は、実施の形態3による搬送装置40の構成の一例を示すブロック図である。
 図52に示すように、搬送装置40は、フック機構駆動部42およびフック機構43を備えることを特徴としている。フック機構駆動部42は、本体機構41に設けられている。その他の構成は、実施の形態2で説明した搬送装置34と同様であるため、ここでは詳細な説明を省略する。
 なお、搬送装置40は、実施の形態2の変形例1で説明した接触センサ38、および実施の形態2の変形例2で説明した磁気センサ39の両方、またはいずれか一方を備える構成としてもよい。
 フック機構駆動部42およびフック機構43は、実施の形態1で説明した搬送装置8にも適用可能である。
 フック機構43は、収納されたカートを引き出すために、前部フレーム16、後部フレーム17、およびセンタフレーム18を含むカートを構成するフレーム(構成フレーム)に引っ掛ける機構であり、伸長可能である。
 フック機構駆動部42は、フック機構43を駆動し、フック機構43を収納状態と伸長状態との間で伸縮させる。
 <動作>
 図53は、搬送装置40の動作の一例を示すフローチャートである。図53のステップS301、ステップS302、およびステップS308~ステップS311は、実施の形態2で説明した図44のステップS201、ステップS202、ステップS204~ステップS207と同様であるため、ここでは説明を省略する。以下では、ステップS303~ステップS307について説明する。なお、以下で説明する図54~60では、カートに設けられた連結金具23の図示を省略している。
 図54は、カートの収納状況の一例を示す図である。図54に示すように、収納されているカートを搬送装置が搬送する際、搬送装置は回転することができず、また、前後方向にも移動することができないため、カートを取り出すことができない。実施の形態3では、このような問題を解決するためのものである。図55は、図53のステップS302におけるカートと搬送装置40との位置関係を示す図である。
 ステップS303において、制御部7は、搬送装置40をカートに潜り込ませて、カートを引き出せる位置まで移動する移動計画を策定する。制御部7は、策定した移動計画と、Lidar10およびデプスカメラ11が検出した周辺状況とに基づいて、搬送装置40がカートを引き出せる位置まで移動するように装置駆動部3を制御する。図56は、搬送装置40がカートに潜り込む様子を示している。このとき、搬送装置40は、低床状態(図21参照)になってからカートに潜り込む。
 ステップS304において、制御部7は、フック機構43が伸長状態となるようにフック機構駆動部42を制御する。そして、制御部7は、搬送装置40が通常高さ状態となるようにガイド機構駆動部5を制御する。図57は、フック機構43が伸長状態である様子を示している。
 ステップS305において、制御部7は、フック機構43をカートのセンタフレーム18に引っ掛けた状態でカートを引き出すように装置駆動部3を制御する。図58は、搬送装置40がカートを引き出す様子を示している。
 ステップS306において、制御部7は、搬送装置40が低床状態となるようにガイド機構駆動部5を制御する。そして、制御部7は、フック機構43が収納状態となるようにフック機構駆動部42を制御する。図59は、フック機構43が収納状態である様子を示している。
 ステップS307において、制御部7は、搬送装置40をカートに潜り込ませるための移動計画を策定する。そして、制御部7は、策定した移動計画と、Lidar10およびデプスカメラ11が検出した周辺状況とに基づいて、搬送装置40がカートに潜り込むように装置駆動部3を制御する。図60は、搬送装置40がカートに潜り込んでいる様子を示している。
 <効果>
 実施の形態3の搬送装置40によれば、カートが収納スペースに収納されている場合であっても、カートを取り出して搬送することが可能となる。
 <実施の形態3の変形例1>
 実施の形態3では、フック機構43をカートのセンタフレーム18に引っ掛けて取り出す場合について説明したが、これに限るものではない。
 例えば、図61に示すようにカートが収納されている場合は、フック機構43をカートの前部フレーム16または後部フレーム17に引っ掛けて取り出すことが可能である。
 <実施の形態3の変形例2>
 図62は、実施の形態3の変形例2による搬送装置44の構成の一例を示すブロック図である。
 図62に示すように、搬送装置44は、バンパー機構駆動部37がバンパー機構36およびフック機構43を駆動することを特徴としている。バンパー機構駆動部37は、本体機構45に設けられている。その他の構成は、実施の形態3で説明した搬送装置40と同様であるため、ここでは詳細な説明を省略する。
 バンパー機構駆動部37は、図52に示すフック機構駆動部42の機能を有している。これにより、搬送装置44における駆動部の点数を削減することができる。
 図63は、収納状態のフック機構を示す図である。図64は、伸長状態のフック機構を示す図である。フック機構43は、バンパー機構36の動きに連動する。なお、搬送装置44はソレノイドロックを備えており、当該ソレノイドロックを制御することによってカートの引き出し時のみにフック機構43を動かせるようにしている。
 <ハードウェア構成>
 図2に示す搬送装置8における制御部7および通信部12の各機能は、処理回路により実現される。すなわち、搬送装置8は、センサ群6の検出結果に基づいて、カート嵌合部24にガイド機構4が嵌合するように装置駆動部3およびガイド機構駆動部5を制御し、搬送装置8の外部に設けられた指示センタ15と通信を行うための処理回路を備える。処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサ(CPU、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)ともいう)であってもよい。
 処理回路が専用のハードウェアである場合、図65に示すように、処理回路46は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御部7および通信部12の各機能をそれぞれ処理回路46で実現してもよく、各機能をまとめて1つの処理回路46で実現してもよい。
 処理回路46が図66に示すプロセッサ47である場合、制御部7および通信部12の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアは、プログラムとして記述され、メモリ48に格納される。プロセッサ47は、メモリ48に記録されたプログラムを読み出して実行することにより、各機能を実現する。すなわち、搬送装置8は、センサ群6の検出結果に基づいて、カート嵌合部24にガイド機構4が嵌合するように装置駆動部3およびガイド機構駆動部5を制御するステップ、搬送装置8の外部に設けられた指示センタ15と通信を行うステップが結果的に実行されることになるプログラムを格納するためのメモリ48を備える。また、これらのプログラムは、制御部7および通信部12の手順または方法をコンピュータに実行させるものであるともいえる。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、DVD(Digital Versatile Disc)等、または、今後使用されるあらゆる記憶媒体であってもよい。
 なお、制御部7および通信部12の各機能について、一部の機能を専用のハードウェアで実現し、他の機能をソフトウェアまたはファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 なお、上記では、図2に示す搬送装置8のハードウェア構成について説明したが、図40に示す搬送装置31、図43,48,50に示す搬送装置34、図52に示す搬送装置40、および図62に示す搬送装置44のハードウェア構成についても同様である。
 なお、本開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本開示は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、限定的なものではない。例示されていない無数の変形例が想定され得るものと解される。
 1 搬送装置、2 本体機構、3 装置駆動部、4 ガイド機構、5 ガイド機構駆動部、6 センサ群、7 制御部、8 搬送装置、9 本体機構、10 Lidar、11 デプスカメラ、12 通信部、13 キャスタ、14 駆動輪、15 指示センタ、16 前部フレーム、17 後部フレーム、18 センタフレーム、19 キャスタ、20 キャスタブレーキ、21 支持フレーム、22 トレイ、23 連結金具、24 カート嵌合部、25 センタフレーム用溝、26 連結金具用溝、27 凸機構、28 凸機構、29 凸機構、30 凸機構、31 搬送装置、32 本体機構、33 センサ、34 搬送装置、35 本体機構、36 バンパー機構、37 バンパー機構駆動部、38 接触センサ、39 磁気センサ、40 搬送装置、41 本体機構、42 フック機構駆動部、43 フック機構、44 搬送装置、45 本体機構、46 処理回路、47 プロセッサ、48 メモリ。

Claims (14)

  1.  前部フレームと、前記前部フレームに対向する後部フレームと、前記前部フレームと前記後部フレームとを結合するセンタフレームと、前記センタフレームの延在方向とは異なる方向に張り出すように前記センタフレームに設けられた連結金具と、複数のキャスタとを有するカートを搬送する搬送装置であって、
     前記搬送装置の全体を支持する本体機構と、
     前記本体機構に設けられ、前記搬送装置を駆動する装置駆動部と、
     前記センタフレームおよび前記連結金具で構成されるカート嵌合部に嵌合可能な形状を有するガイド機構と、
     前記ガイド機構を高さ方向に駆動するガイド機構駆動部と、
     前記搬送装置の周辺状況を検出するセンサ群と、
     前記装置駆動部および前記ガイド機構駆動部を制御する制御部と、
    を備え、
     前記制御部は、前記センサ群の検出結果に基づいて、前記カート嵌合部に前記ガイド機構が嵌合するように前記装置駆動部および前記ガイド機構駆動部を制御し、
     前記カート嵌合部に前記ガイド機構が嵌合する際、前記カート嵌合部と前記ガイド機構との間には予め定められた間隙が存在する、搬送装置。
  2.  前記カート嵌合部は、前記センタフレームと前記連結金具とが直交して構成され、
     前記ガイド機構は、前記センタフレームに嵌合可能なセンタフレーム用溝と、前記連結金具に嵌合可能な連結金具用溝とで構成される、請求項1に記載の搬送装置。
  3.  前記搬送装置は、前記装置駆動部によって回転駆動される駆動輪をさらに備え、
     前記ガイド機構は、前記本体機構と一体に構成され、
     前記制御部は、前記駆動輪を前記本体機構の底面から突出させることによって前記本体機構および前記ガイド機構を通常高さ状態とし、または前記駆動輪を前記本体機構に収容することによって前記本体機構および前記ガイド機構を低床状態とするように前記ガイド機構駆動部を制御する、請求項1に記載の搬送装置。
  4.  前記制御部は、前記ガイド機構が前記本体機構の上方に移動するように前記ガイド機構駆動部を制御する、請求項1に記載の搬送装置。
  5.  少なくとも前記前部フレームおよび前記後部フレームよりも外側に突出する位置に伸長可能なバンパー機構と、
     前記バンパー機構を駆動するバンパー機構駆動部と、
    をさらに備え、
     前記制御部は、前記バンパー機構が少なくとも前記前部フレームおよび前記後部フレームよりも外側に突出する位置までスライドするように前記バンパー機構駆動部を制御する、請求項1に記載の搬送装置。
  6.  前記バンパー機構は、外側に突出する側に接触センサを有し、
     前記制御部は、前記接触センサが接触を検出すると前記搬送装置の移動を停止するように前記装置駆動部を制御する、請求項5に記載の搬送装置。
  7.  前記バンパー機構は、前記搬送装置の進入禁止エリアを規定する磁気テープを検出する磁気センサを有し、
     前記制御部は、前記磁気センサの検出結果に基づいて、前記搬送装置が前記進入禁止エリアに進入しないように前記装置駆動部を制御する、請求項5に記載の搬送装置。
  8.  前記本体機構は、前記搬送装置の進入禁止エリアを規定する進入禁止マーカの存在を検出する進入禁止エリア検出センサを有し、
     前記制御部は、前記進入禁止エリア検出センサの検出結果に基づいて、前記搬送装置が前記進入禁止エリアに進入しないように前記装置駆動部を制御する、請求項1に記載の搬送装置。
  9.  前記搬送装置の周辺を撮影する少なくとも1つのデプスカメラをさらに備え、
     前記制御部は、前記デプスカメラが撮影した画像に基づいて前記搬送装置の周辺に存在する障害物を検出し、前記搬送装置が前記障害物を避けて移動するように前記装置駆動部を制御する、請求項1に記載の搬送装置。
  10.  前記搬送装置の周辺状況を検出する一対のLidarと、
     前記本体機構が前記通常高さ状態である場合は各前記Lidarを前記本体機構の上方に突出する位置に移動させ、前記本体機構が前記低床状態である場合は各前記Lidarを前記本体機構の上方に突出しない位置に移動させるLidar昇降機構と、
    をさらに備える、請求項3に記載の搬送装置。
  11.  前記前部フレーム、前記後部フレーム、および前記センタフレームを含む前記カートを構成する構成フレームに引っ掛ける伸長可能なフック機構と、
     前記フック機構を駆動するフック機構駆動部と、
    をさらに備え、
     前記制御部は、前記搬送装置が前記低床状態で前記カートの前記構成フレームまで移動するように前記ガイド機構駆動部および前記装置駆動部を制御し、前記搬送装置を前記通常高さ状態にして前記フック機構が前記構成フレームに引っかかるように前記ガイド機構駆動部および前記フック機構駆動部を制御し、前記カートを引き出す方向に移動するように前記装置駆動部を制御する、請求項3に記載の搬送装置。
  12.  少なくとも前記前部フレームおよび前記後部フレームよりも外側に突出する位置に伸長可能なバンパー機構と、
     前記前部フレーム、前記後部フレーム、および前記センタフレームを含む前記カートを構成する構成フレームに引っ掛ける伸長可能なフック機構と、
     前記バンパー機構の伸長に連動して前記フック機構を伸長するように前記バンパー機構および前記フック機構を駆動するバンパー機構駆動部と、
    をさらに備え、
     前記制御部は、前記搬送装置が前記低床状態で前記カートの前記構成フレームまで移動するように前記ガイド機構駆動部および前記装置駆動部を制御し、前記搬送装置を前記通常高さ状態にして前記フック機構が前記構成フレームに引っかかるように前記ガイド機構駆動部および前記バンパー機構駆動部を制御し、前記カートを引き出す方向に移動するように前記装置駆動部を制御する、請求項3に記載の搬送装置。
  13.  前記搬送装置に対して前記カートの搬送を指示する指示センタと通信を行う通信部をさらに備え、
     前記通信部は、前記指示センタから、前記カートの位置情報、および前記カートの搬送先の位置情報を含む移動コマンドを取得し、
     前記制御部は、前記通信部が取得した前記移動コマンドに基づいて、前記搬送装置を前記カートの位置まで自律走行させるように前記装置駆動部を制御し、前記カート嵌合部に前記ガイド機構が嵌合するように前記装置駆動部および前記ガイド機構駆動部を制御し、前記カート嵌合部と前記ガイド機構とが嵌合した状態で前記搬送装置を前記カートの搬送先まで自律走行させるように前記装置駆動部を制御する、請求項1に記載の搬送装置。
  14.  前部フレームと、前記前部フレームに対向する後部フレームと、前記前部フレームと前記後部フレームとを結合するセンタフレームと、前記センタフレームの延在方向とは異なる方向に張り出すように前記センタフレームに設けられた連結金具と、複数のキャスタとを有するカートを搬送装置によって搬送する搬送方法であって、
     前記搬送装置が備えるセンサ群の検出結果に基づいて、前記センタフレームおよび前記連結金具で構成されるカート嵌合部に、前記搬送装置が備えるガイド機構を嵌合させ、
     前記カート嵌合部に前記ガイド機構が嵌合する際、前記カート嵌合部と前記ガイド機構との間には予め定められた間隙が存在する、搬送方法。
PCT/JP2022/027424 2022-07-12 2022-07-12 搬送装置および搬送方法 WO2024013854A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027424 WO2024013854A1 (ja) 2022-07-12 2022-07-12 搬送装置および搬送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027424 WO2024013854A1 (ja) 2022-07-12 2022-07-12 搬送装置および搬送方法

Publications (1)

Publication Number Publication Date
WO2024013854A1 true WO2024013854A1 (ja) 2024-01-18

Family

ID=89536146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027424 WO2024013854A1 (ja) 2022-07-12 2022-07-12 搬送装置および搬送方法

Country Status (1)

Country Link
WO (1) WO2024013854A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127957A (ja) * 1998-10-22 2000-05-09 Shinko Electric Co Ltd 台車搬送装置
JP2007209544A (ja) * 2006-02-09 2007-08-23 Okamura Corp ステージカート搬送システム、並びにそれに使用するステージカート、およびその連結具
JP2016150692A (ja) * 2015-02-18 2016-08-22 株式会社シンテックホズミ 自動搬送車、及び自動搬送車用の連結部材
JP2019091770A (ja) * 2017-11-13 2019-06-13 Juki株式会社 部品搬送装置
JP2020044859A (ja) * 2018-09-14 2020-03-26 オムロン株式会社 無人搬送システムおよび輪止め装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127957A (ja) * 1998-10-22 2000-05-09 Shinko Electric Co Ltd 台車搬送装置
JP2007209544A (ja) * 2006-02-09 2007-08-23 Okamura Corp ステージカート搬送システム、並びにそれに使用するステージカート、およびその連結具
JP2016150692A (ja) * 2015-02-18 2016-08-22 株式会社シンテックホズミ 自動搬送車、及び自動搬送車用の連結部材
JP2019091770A (ja) * 2017-11-13 2019-06-13 Juki株式会社 部品搬送装置
JP2020044859A (ja) * 2018-09-14 2020-03-26 オムロン株式会社 無人搬送システムおよび輪止め装置

Similar Documents

Publication Publication Date Title
JP7229563B2 (ja) 家庭用自律式アイテム回収及び輸送ロボットシステム
WO2021121069A1 (zh) 配送机器人及其控制方法、装置和系统、存储介质
JP7466109B2 (ja) 移動体
JP3375907B2 (ja) 天井走行搬送装置
SG173002A1 (en) Automated storage system and transport vehicle
CN110589505A (zh) 配送物到位检测装置、方法、机器人、配送设备和控制器
WO2024013854A1 (ja) 搬送装置および搬送方法
US5281069A (en) Lift device and automated high-raised parking system having the lift device
US11370398B2 (en) Mover and method for controlling the mover
JP2007001692A (ja) 搬送設備
CN111924675B (zh) 自主移动装置控制系统、控制方法及计算机可读存储介质
JP6336502B2 (ja) 車幅検知装置、これを備えた機械式駐車場設備
JP2005200892A (ja) 立体駐車場の場内監視システム
EP3793883B1 (en) Load carrier with lift device
KR102128087B1 (ko) 지능형 차량이송로봇이 구비된 주차시스템 및 지능형 차량이송로봇이 구비된 주차시스템의 주차방법
CN216406326U (zh) 一种带缓存区的双托盘式立体停车库
JP7113260B2 (ja) 移動装置及び移動装置の制御方法
WO2023209771A1 (ja) 搬送装置および搬送方法
JP7352485B2 (ja) 台車および自動搬送システム
KR20230005195A (ko) 제한된 공간에서 진공 시스템 구성요소를 이동하는 운송 장치 및 방법
JP4314780B2 (ja) 無人搬送車システム
CN113605761A (zh) 一种带缓存区的双托盘式立体停车库及控制方法
US20230234778A1 (en) Cart alignment device, delivery system, and control method
EP4400453A1 (en) Automatic movement device and delivery system
KR20240083052A (ko) 가이드 태그를 이용하여 이동 로봇이 정확한 위치에 정차하도록 하는 물류 운송 시스템 및 이의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024533372

Country of ref document: JP

Kind code of ref document: A