WO2024010020A1 - 培養細胞シートおよびその製造方法、化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法 - Google Patents

培養細胞シートおよびその製造方法、化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法 Download PDF

Info

Publication number
WO2024010020A1
WO2024010020A1 PCT/JP2023/024866 JP2023024866W WO2024010020A1 WO 2024010020 A1 WO2024010020 A1 WO 2024010020A1 JP 2023024866 W JP2023024866 W JP 2023024866W WO 2024010020 A1 WO2024010020 A1 WO 2024010020A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression level
gene
cell sheet
cultured
day
Prior art date
Application number
PCT/JP2023/024866
Other languages
English (en)
French (fr)
Inventor
由紀子 八塚
秀雄 早乙女
治 美野輪
勝晴 土田
康司 岡▲崎▼
寿子 得能
紘太郎 大
啓 篠塚
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2024010020A1 publication Critical patent/WO2024010020A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination

Definitions

  • the present invention relates to a cultured cell sheet composed of cardiomyocytes, a method for producing the same, a method for evaluating compounds or drugs using the cultured cell sheet, and a method for evaluating the quality of the cultured cell sheet.
  • stem cell-derived cardiomyocytes such as human iPS cells
  • stem cell-derived cardiomyocytes such as human iPS cells have physiological activities and motor functions similar to those of fetal myocardium and are immature. Therefore, it has been reported that there is a difference in reactivity to drugs from that of a living body, and a method for maturing cardiomyocytes derived from stem cells such as human iPS cells is required.
  • U.S. Pat. With the aim of overcoming major limitations in the art by providing a method for producing adult-like cardiomyocytes in in vitro culture that facilitates large-scale production of adult-like cardiomyocytes that meet the general requirements for clinical applications.
  • aqueous media compositions that are serum-free and include a thyroid hormone-like compound, a lipid mixture, and a carnitine compound.
  • Patent Document 1 uses a specific medium to mature into adult-like cardiomyocytes, and it cannot be denied that the components contained in the medium may have an effect other than maturation on the cardiomyocytes. .
  • ⁇ 1> A cultured cell sheet composed of cardiomyocytes, in which the cardiomyocytes are arranged with orientation, and the cultured cell sheet is subjected to immunostaining using an anti- ⁇ -actinin antibody and then subjected to microscopy.
  • a cultured cell sheet having an orientation degree of 23% or more, where the frequency of rod-shaped structures included within ⁇ 15° of the mode is determined by the following formula (1).
  • Orientation degree (%) (number of rod-like structures included within ⁇ 15° of the mode) / (total number of rod-like structures) ⁇ 100 (1)
  • ⁇ 2> The cultured cell sheet according to ⁇ 1>, wherein the number of vectors (orientation degree) showing an angle of ⁇ 5° from the mode angle of the motion vector in live cell imaging is 12% or more.
  • ⁇ 3> The cultured cell sheet according to ⁇ 1> or ⁇ 2>, wherein the cardiomyocytes are stem cell-derived cardiomyocytes.
  • Requirement A1 The ratio of the expression level of the MYL3 (Myosin Light Chain 3) gene to the expression level of the ACTB (Actin Beta) gene (MYL3/ACTB) is 12.0 or more.
  • Requirement A2 The ratio (MYH7/MYH6) between the expression level of the MYH7 (Myosin Heavy Chain 7) gene and the expression level of the MYH6 (Myosin Heavy Chain 6) gene is 6.0 or more.
  • ⁇ 5> The cultured cell sheet according to any one of ⁇ 1> to ⁇ 4>, which satisfies at least one of the following requirements B1 and B2.
  • Requirement B1 The ratio of the gene expression level of CKM (Creatin Kinase, M-type) to the gene expression level of ACTB (Actin Beta) (CKM/ACTB) is 1.80 or more.
  • Requirement B2 The ratio of the gene expression level of LDHA (Lactate Dehydrogenase A subunit) to the gene expression level of ACTB (LDHA/ACTB) is 0.80 or more.
  • ⁇ 6> The cultured cell sheet according to any one of ⁇ 1> to ⁇ 5>, which satisfies at least one of the following requirements C1 to C4.
  • Requirement C1 Gene expression level of CACNA2D1 (Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1) and ATP1A1 (ATPase Na+/K+ Transporting Subunit A) lpha 1) to the gene expression level (CACNA2D1/ATP1A1) from day 15 of culture. It is 0.085 or more on any day of the 30th day.
  • Requirement C2 Gene expression level of KCNJ2 (Potassium Inwardly Rectifying Channel Subfamily J Member 2) and ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) ) to the gene expression level (KCNJ2/ATP1A1) from day 15 of culture to 45 days.
  • Requirement C3 Gene expression level of KCNE1 (Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1) and ATP1A1 (ATPase Na+/K+ Transporting Subunit) The ratio of Alpha 1) to the gene expression level (KCNE1/ATP1A1) on day 15 of culture It is 0.003 or more on any day from day 45 to day 45.
  • Requirement C4 Ratio between the gene expression level of SCN5A (Sodium Voltage-Gated Channel Alpha Subunit 5) and the gene expression level of ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) (SCN5 A/ATP1A1) from the 15th day of culture It is 0.87 or more on any day of the 45th day.
  • SCN5A sodium Voltage-Gated Channel Alpha Subunit 5
  • ATP1A1 ATPase Na+/K+ Transporting Subunit Alpha 1
  • SCN5 A/ATP1A1 ATPase Na+/K+ Transporting Subunit Alpha 1
  • Requirement D1 The ratio of the gene expression level of LPL (Lipoprotein Lipase) to the gene expression level of ACTB (Actin Beta) (LPL/ACTB) is 0.45 on any day from day 15 to day 45 of culture. That's all.
  • Requirement D2 The ratio of the gene expression level of ACAT1 (Acetyl-CoA Acetyltransferase 1) to the gene expression level of ACTB (Actin Beta) (ACAT1/ACTB) is on any day from day 15 to day 30 of culture. It is 0.43 or more.
  • Requirement D3 Ratio between the gene expression level of HADHA (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha) and the gene expression level of ACTB (Actin Beta) (HAD HA/ACTB) at any time from day 15 to day 30 of culture. 0.75 or more on that day.
  • Requirement D4 Ratio between the gene expression level of HADHB (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta) and the gene expression level of ACTB (Actin Beta) (HADH B/ACTB) at any time from day 15 to day 30 of culture. It is 0.95 or more on that day.
  • ⁇ 8> The cultured cell sheet according to any one of ⁇ 1> to ⁇ 7>, which satisfies at least one of the following requirements E1 to E8.
  • Requirement E2 The ratio of the gene expression level of ESRRA (Estrogen Related Receptor Alpha) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (ESRRA/HIF1A) is 0.55 or more on any day of culture.
  • Requirement E3 The ratio of the gene expression level of VEGFA (Vascular Endothelial Growth Factor A) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (VEGFA/HIF1A) is 0.6 on any day of culture. 5 or more It is.
  • Requirement E4 The ratio of the gene expression level of APLN (Apelin) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (APLN/HIF1A) is 0.005 or more on any day of culture.
  • Requirement E5 The ratio of the gene expression level of FABP3 (Fatty Acid Binding Protein 3) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (FABP3/HIF1A) is 5.0 or more on any day of culture. It is.
  • Requirement E6 The ratio of the gene expression level of ESM1 (Endothelial Cell Specific Molecule 1) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (ESM1/HIF1A) is 0.002 on any day of culture. That's all It is.
  • Requirement E7 The ratio of the gene expression level of EMCN (Endomucin) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (EMCN/HIF1A) is 0.002 on any day after the 7th day of culture. That's all.
  • Requirement E8 The ratio of the gene expression level of BCL2 (BCL2 Apoptosis Regulator) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (BCL2/HIF1A) is 0. 013 or higher.
  • BCL2 Apoptosis Regulator BCL2 Apoptosis Regulator
  • HIF1A Hypoxia Inducible Factor 1 Alpha
  • BCL2/HIF1A The cultured cell sheet according to any one of ⁇ 1> to ⁇ 8>, wherein the area of mitochondria per cell is 200 ⁇ m 2 or more.
  • the contraction speed detected in live cell imaging is CV (m/sec) and the relaxation speed is RV (m/sec)
  • the following formula (2) is satisfied, ⁇ 1> to ⁇ 9>.
  • ⁇ 13> In oxygen consumption rate measurement, which measures the rate at which cells use oxygen contained in the culture medium, the addition of a ⁇ -oxidation inhibitor that inhibits the ⁇ -oxidation activity of fatty acids reduces the oxygen consumption rate by adding the ⁇ -oxidation inhibitor.
  • the cultured cell sheet according to any one of ⁇ 1> to ⁇ 12> which is reduced to 20% or less compared to the previous one.
  • ⁇ 15> The method for producing a cultured cell sheet according to any one of ⁇ 1> to ⁇ 14>, comprising a surface for forming a cultured cell sheet, the surface comprising a plurality of flat parts and a plurality of flat parts. an uneven portion, each flat portion has a shape extending in a first direction, and the plurality of flat portions are arranged on the entire surface in a second direction intersecting the first direction, and each of the uneven portions
  • the portion includes a plurality of step structures that fill in spaces between the flat portions adjacent to each other, the pitch of the step structures is 100 nm or more and 10 ⁇ m or less, the step structure is a convex portion, and the uneven portions are mutually adjacent to each other.
  • a plurality of convex portions are provided on the bottom surface of the concave portion sandwiched between the flat portions adjacent to each other, and the height of the tip surface of the concave and convex portions is equal to the height of the flat portion in the thickness direction of the cell sheet forming member.
  • a method for producing a cultured cell sheet comprising culturing myocardial cells using a cell sheet forming member having a difference of 0.5 ⁇ m or less.
  • ⁇ 17> The method for evaluating a compound or drug according to ⁇ 16>, which evaluates at least one change selected from changes in physiological properties and changes in motor function of the cultured cell sheet.
  • the compound or drug to be evaluated is an INa blocker, Ikr blocker, Iks blocker, ICa blocker, 5-HT4 receptor agonist, ⁇ receptor blocker, ⁇ receptor blocker, ⁇ At least one existing compound or candidate compound thereof selected from the group consisting of receptor agonists, ⁇ receptor agonists, toxic substances, anticancer agents, lipid metabolism inhibitors, and other physiologically active substances. , a method for evaluating the compound or drug according to ⁇ 16> or ⁇ 17>.
  • a quality evaluation method for a cultured cell sheet composed of cardiomyocytes which evaluates any of the following (i) to (xii).
  • the cultured cell sheet is subjected to immunostaining using an anti- ⁇ -actinin antibody, and when the horizontal direction of the screen is set to 0° in the image obtained by microscopic observation, the measurement range (71.6 ⁇ m ⁇ 71.
  • the angle in the longitudinal direction of the rod-like structures detected by the ⁇ -actinin antibody within 6 ⁇ m) is measured, and the frequency of rod-like structures included within ⁇ 15° of the mode is calculated using the following formula (1).
  • the desired degree of orientation is 23% or more.
  • Orientation degree (%) (number of rod-like structures included within ⁇ 15° of the mode) / (total number of rod-like structures) ⁇ 100 (1)
  • the number of vectors (orientation degree) showing an angle of ⁇ 5° from the angle of the mode of the motion vector is 12% or more.
  • At least one of the following requirements A1 and A2 is satisfied.
  • Requirement A1 The ratio of the expression level of the MYL3 (Myosin Light Chain 3) gene to the expression level of the ACTB (Actin Beta) gene (MYL3/ACTB) is 12.0 or more.
  • Requirement A2 The ratio (MYH7/MYH6) between the expression level of the MYH7 (Myosin Heavy Chain 7) gene and the expression level of the MYH6 (Myosin Heavy Chain 6) gene is 6.0 or more. (iv) At least one of the following requirements B1 and B2 is satisfied.
  • Requirement B1 The ratio of the gene expression level of CKM (Creatin Kinase, M-type) to the gene expression level of ACTB (Actin Beta) (CKM/ACTB) is 1.80 or more.
  • Requirement B2 The ratio of the gene expression level of LDHA (Lactate Dehydrogenase A subunit) to the gene expression level of ACTB (LDHA/ACTB) is 0.80 or more. (v) At least one of the following requirements C1 to C4 is satisfied.
  • Requirement C1 Gene expression level of CACNA2D1 (Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1) and ATP1A1 (ATPase Na+/K+ Transporting Subunit A) lpha 1) to the gene expression level (CACNA2D1/ATP1A1) from day 15 of culture. It is 0.085 or more on any day of the 30th day.
  • Requirement C2 Gene expression level of KCNJ2 (Potassium Inwardly Rectifying Channel Subfamily J Member 2) and ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) ) to the gene expression level (KCNJ2/ATP1A1) from day 15 of culture to 45 days. It is 0.038 or more on any day.
  • Requirement C3 Gene expression level of KCNE1 (Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1) and ATP1A1 (ATPase Na+/K+ Transporting Subunit) The ratio of Alpha 1) to the gene expression level (KCNE1/ATP1A1) on day 15 of culture It is 0.003 or more on any day from day 45 to day 45.
  • Requirement C4 Ratio between the gene expression level of SCN5A (Sodium Voltage-Gated Channel Alpha Subunit 5) and the gene expression level of ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) (SCN5 A/ATP1A1) from the 15th day of culture It is 0.87 or more on any day of the 45th day. (vi) At least one of the following requirements D1 to D4 is satisfied.
  • Requirement D1 The ratio of the gene expression level of LPL (Lipoprotein Lipase) to the gene expression level of ACTB (Actin Beta) (LPL/ACTB) is 0.45 on any day from day 15 to day 45 of culture. That's all.
  • Requirement D2 The ratio of the gene expression level of ACAT1 (Acetyl-CoA Acetyltransferase 1) to the gene expression level of ACTB (Actin Beta) (ACAT1/ACTB) is on any day from day 15 to day 30 of culture. It is 0.43 or more.
  • Requirement D3 Ratio between the gene expression level of HADHA (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha) and the gene expression level of ACTB (Actin Beta) (HAD HA/ACTB) at any time from day 15 to day 30 of culture. 0.75 or more on that day.
  • Requirement D4 Ratio between the gene expression level of HADHB (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta) and the gene expression level of ACTB (Actin Beta) (HADH B/ACTB) at any time from day 15 to day 30 of culture. It is 0.95 or more on that day. (vii) Meets at least one of the following requirements E1 to E8.
  • Requirement E1 Gene expression level of PPARGC1A (PPARG (Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha) and HIF1A (Hypoxia Inducible Fact) or 1 Alpha) to the gene expression level (PPARGC1A/HIF1A) in either culture. It is 0.80 or more on the day of .
  • Requirement E2 The ratio of the gene expression level of ESRRA (Estrogen Related Receptor Alpha) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (ESRRA/HIF1A) is 0.55 or more on any day of culture. be.
  • Requirement E3 The ratio of the gene expression level of VEGFA (Vascular Endothelial Growth Factor A) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (VEGFA/HIF1A) is 0.6 on any day of culture. 5 or more It is.
  • Requirement E4 The ratio of the gene expression level of APLN (Apelin) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (APLN/HIF1A) is 0.005 or more on any day of culture.
  • Requirement E5 The ratio of the gene expression level of FABP3 (Fatty Acid Binding Protein 3) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (FABP3/HIF1A) is 5.0 or more on any day of culture. It is.
  • Requirement E6 The ratio of the gene expression level of ESM1 (Endothelial Cell Specific Molecule 1) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (ESM1/HIF1A) is 0.002 on any day of culture. That's all It is.
  • Requirement E7 The ratio of the gene expression level of EMCN (Endomucin) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (EMCN/HIF1A) is 0.002 on any day after the 7th day of culture. That's all.
  • Requirement E8 The ratio of the gene expression level of BCL2 (BCL2 Apoptosis Regulator) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (BCL2/HIF1A) is 0. 013 or higher.
  • the area of mitochondria per cell is 200 ⁇ m 2 or more.
  • the present invention it is possible to provide a mature cultured cell sheet made of cardiomyocytes and a method for producing the same without using any specific drugs. Further, according to the present invention, it is possible to provide a method for evaluating a compound or a drug using the cultured cell sheet. Furthermore, according to the present invention, it is possible to provide a method for evaluating the quality of a cultured cell sheet made of cardiomyocytes.
  • FIG. 1 is a diagram showing the configuration of a cell sheet forming member in an embodiment, (a) is a perspective view showing the structure of the cell sheet forming member together with a Petri dish, and (b) is a part of the surface of the cell sheet forming member. (c) is a plan view showing an enlarged part of the surface of the cell sheet forming member; (d) is an enlarged perspective view showing a part of the cell sheet forming member.
  • FIG. It is a process diagram for demonstrating an example of the manufacturing method of a cell sheet forming member.
  • (a) to (c) are schematic diagrams for explaining the manufacturing process of a cell sheet. It is a graph showing the degree of orientation on the 15th, 30th, 45th, and 60th day of culture.
  • CKM Creating Kinase, M-type gene
  • COX6A2 Cytochrome C Oxidase Subunit 6A2
  • CKMT2 Creating Kinase Mitochondrial 2
  • LDHA Low Density Dehydrogenase A subunit
  • CACNA2D1 Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1 gene
  • KCNJ2 Pitassium Inwardly Rectifying Channel Subfamily J Member 2 gene
  • KCNE1 Pitassium Voltage-Gated Channel Subfamily E Regulation Subunit 1 gene
  • CN5A sodium Voltage-Gated Channel Alpha Subunit 5
  • CACNA2D1/ATP1A1 ATPase Na+/K+ Transporting Subunit Alpha 1 gene
  • K CNJ2/ATP1A1 ATPase Na+/K+ Transporting Subunit Alpha 1
  • KCNE1/ATP1A1 the ratio between the expression level of the KCNE1 gene and the expression level of the ATP1A1 gene
  • SCN5A/ATP1A1 the ratio of the expression level of the SCN5A gene to the expression level of the ATP1A1 gene
  • LPL Lipoprotein Lipase
  • ACAT1 Alcohol-CoA Acetyltransferase 1
  • HADHA Hydrophilic acid
  • HADHB Hydrophilic acid-CoA Dehydrogenase Trifunctional Multienzyme Complex
  • x Subunit Beta Changes in the expression level of the gene over time This is a graph showing.
  • the ratio of the expression level of the LPL gene to the expression level of the ACTB (Actin Beta) gene (LPL/ACTB), the ratio of the expression level of the ACAT1 gene to the expression level of the ACTB gene (ACAT1/ACTB), the expression level of the HADHA gene. It is a graph showing changes over time in the ratio between the expression level of the ACTB gene (HADHA/ACTB) and the ratio between the expression level of the HADHB gene and the expression level of the ACTB gene (HADHB/ACTB).
  • PPARGC1A Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha
  • ESRRA Estrogen Related
  • VEGFA Vascular Endothelial Growth Factor A
  • APLN Apelin
  • Ratio of expression level of PPARGC1A gene to HIF1A (Hypoxia Inducible Factor 1 Alpha) gene expression level (PPARGC1A/HIF1A), ratio of expression level of ESRRA gene to expression level of HIF1A gene (ESRRA/HIF1A), VEG FA gene
  • HIF1A Hydrophila Inducible Factor 1 Alpha
  • ESRRA/HIF1A ratio of expression level of ESRRA gene to expression level of HIF1A gene
  • VEG FA gene VEG FA gene It is a graph showing changes over time in the ratio between the expression level of the HIF1A gene (VEGFA/HIF1A) and the ratio between the expression level of the APLN gene and the HIF1A gene (APLN/HIF1A).
  • FABP3 Fatty Acid Binding Protein 3 gene
  • ESM1 Endothelial Cell Specific Molecule 1 gene
  • EMCN Endothelial Cell Specific Molecule 1
  • BCL2 BCL2 2 is a graph showing changes over time in the expression level of the Apoptosis Regulator
  • Ratio between the expression level of FABP3 gene and HIF1A gene (FABP3/HIF1A), ratio between the expression level of ESM1 gene and HIF1A gene (ESM1/HIF1A), expression level of EMCN gene and expression of HIF1A gene
  • FBP3/HIF1A ratio between the expression level of ESM1 gene and HIF1A gene
  • ESM1/HIF1A expression level of ESM1 gene and HIF1A gene
  • ESM1/HIF1A expression level of ESM1 gene and HIF1A gene
  • ESM1/HIF1A expression level of EMCN gene and expression of HIF1A gene
  • 3
  • X to Y indicating a range means "more than or equal to X and less than or equal to Y.”
  • the cultured cell sheet of the present invention is a cultured cell sheet composed of cardiomyocytes, in which the cardiomyocytes are arranged in an oriented manner, and the cultured cell sheet is treated with an anti- ⁇ -actinin antibody.
  • the horizontal direction of the screen is set to 0° in the image obtained by immunostaining and microscopic observation, rod-shaped structures (myofibrils) detected by ⁇ -actinin antibodies within a measurement range of 71.6 ⁇ m x 71.6 ⁇ m
  • the degree of orientation determined by the following formula (1) which is the frequency of rod-shaped structures included within ⁇ 15° of the mode, is 23% or more when the angle in the longitudinal direction (Z band) is measured.
  • Rod-like structures refer to the Z band of myofibrils detected by ⁇ -actinin. The Z band exists orthogonally to the myofibril orientation. When cardiomyocytes are oriented in one direction with their long axes aligned, the Z band shows an angle of 90° with respect to the long axis direction of the cells.
  • the rod-like structures on the image are detected by using angular distribution analysis such as image analysis software (Azo-kun, manufactured by Asahi Kasei Engineering Co., Ltd.), and the rod-like structures detected by ⁇ -actinin are detected in the horizontal direction of the image. Assuming 0°, the angular distribution (0 to 180°) of the rod-like structures detected by ⁇ -actinin can be determined.
  • image analysis software e.g. Photoshop, manufactured by Adobe
  • mark the rod-shaped structure with a straight line then save only the marked straight line as an image
  • the angular distribution was expressed as a frequency of every 10° between 0 and 180°.
  • the term "cultured cell sheet” means that the cell sheet does not exist in a living body but is manufactured in vitro.
  • the degree of orientation expressed by the above formula (1) is 23% or more, preferably 24% or more, more preferably 25% or more, and even more preferably 26%, from the viewpoint of promoting the maturation of cardiomyocytes.
  • the upper limit is not particularly limited, but from the viewpoint of ease of manufacture, it is 50% or less. Note that it is sufficient that the degree of orientation expressed by the above formula (1) satisfies the above range for any number of days of culture.
  • the cultured cell sheet of this embodiment is composed of cardiomyocytes.
  • the cardiomyocytes include invertebrates, vertebrates including humans and non-humans, and vertebrates include fish, amphibians, reptiles, birds, and mammals.
  • mammals include rodents such as mice, rats, ferrets, hamsters, guinea pigs, and rabbits, dogs, cats, sheep, pigs, cows, horses, rhesus monkeys, chimpanzees, orangutans, and humans. Primates, etc. may also be used.
  • it also includes fish, birds including poultry, reptiles, etc.
  • cardiomyocytes of mammals including humans and mice are preferable, and human cardiomyocytes are more preferable.
  • the cardiomyocytes may be cardiomyocytes induced to differentiate from pluripotent stem cells (stem cells) by a method using various mesodermal differentiation-inducing factors.
  • the cardiomyocytes may be induced cardiomyocytes (iCM, cardiomyocytes obtained by direct reprogramming) that are induced by introducing transcription factors into fibroblasts or blood cells of a patient, etc. good.
  • the cardiomyocytes of this embodiment may be primary cultured cardiomyocytes obtained from the heart of a patient or the like. Among these, it is preferable that the cardiomyocytes are stem cell-derived cardiomyocytes.
  • the stem cells include, for example, multipotent stem cells that can differentiate into various cells in organisms such as primates including humans and mammals other than primates. It is preferable that the stem cells have properties such that they can be passaged, maintain a state in which differentiation does not proceed even after passage, and have a property that their karyotype or the like is not easily changed, or their epigenetic phenotype is not easily changed. In this regard, it is also preferred that the stem cells have sufficient ability to proliferate in vitro. Specific examples of such stem cells include embryonic stem cells (hereinafter referred to as "ES cells”), induced pluripotent stem cells (hereinafter referred to as "iPS cells”), and others. Examples include artificially generated or selected pluripotent stem cells.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • stem cells may be stem cells produced by reprogramming somatic cells with various vectors such as retroviruses, adenoviruses, and plasmids containing specific genes, RNA, low-molecular compounds, and the like.
  • the stem cells do not necessarily have to be cells with multipotency close to totipotency, it is possible to use cells with multipotency that are higher than normal. is preferred.
  • stem cells include cells produced from cells obtained from patients with diseases, cells that serve as models for other diseases, cells with reporter genes inserted (reporter cells), cells that can be conditionally knocked out, and other types of stem cells. Genetically modified cells may also be used.
  • This genetic recombination includes addition, modification, or deletion of genes within chromosomes, addition of genes using various vectors or artificial chromosomes, changes in epigenetic control, addition of artificial genetic materials such as PNA, and other genetic recombinations.
  • the cardiomyocytes are ES cells or iPS cell-derived cardiomyocytes from the viewpoint of availability and differentiation-inducing ability into cardiomyocytes.
  • RNA expression information is measured by RNA expression information, and the method for obtaining RNA expression information is not particularly limited, but for example, after converting RNA contained in a sample into cDNA by reverse transcription, For example, it can be obtained by measuring the cDNA or its amplification product.
  • Means for measuring the expression level include microarrays, quantitative RT-PCR, RNA-Seq, etc., and RNA-Seq is preferred.
  • the amount of RNA expression is quantified by the signal intensity ratio when using microarray analysis, and by the number of sequence reads mapped to the genome (read count value) when using RNA-seq analysis.
  • the number of reads mapped to each transcript is corrected by the length of the transcript, the total number of reads obtained in the analysis, etc., which is called normalization, before being used for analysis.
  • Specific normalization methods include, for example, CPM (Counts Per Million), in which the total number of reads is corrected to 1 million in order to correct for differences in the total number of reads between samples, and further, the length of the transcript is adjusted to 1 kb, Assuming that the total number of reads is 1 million, the Reads Per Kilobase of exon per Million mapped sequence reads (RPKM) value, which is the number of reads corrected by the gene length of each gene, can be cited. Similarly, the total number of reads was set to 1 million, and the Fragments Per Kilobase of exon per Million mapped sequence reads (FPKM) value, which is the number of fragments corrected by the gene length of each gene, and the number of reads of each transcript were corrected by the gene length. However, the Transcripts Per Million (TPM) value, which represents the number of transcripts when the total number of reads is 1 million, is also commonly used. Although CPM and TPM are used in this embodiment, the present invention is not limited to this.
  • the cultured cell sheet of this embodiment preferably has a high expression level of the MYL3 (Myosin Light Chain 3) gene, and the ACTB (Actin Beta) gene, which is expected to have a constant gene expression level regardless of the tissue or culture period.
  • the ratio to the expression level (MYL3/ACTB) is preferably 12.0 or more, more preferably 12.5 or more. Further, although it depends on the number of days of culture, it is more preferably 15.0 or more.
  • the upper limit is not particularly limited, but is generally 30.0 or less, preferably 25.0 or less. Note that in the cultured cell sheet of this embodiment, changes in gene expression levels are observed depending on the number of culture days, but it is sufficient that the above ratio of gene expression levels is achieved for any number of culture days.
  • the ratio of the expression level of the MYH7 gene to the expression level of the MYH6 gene is preferably 6.0 or more, more preferably 7.0 or more.
  • the upper limit is not particularly limited, but is generally 15.0 or less, preferably 10.0 or less. Note that in the cultured cell sheet of this embodiment, changes in gene expression levels are observed depending on the number of culture days, but it is sufficient that the above ratio of gene expression levels is achieved for any number of culture days.
  • the gene expression level of CKM (Creatin Kinase, M-type), which is associated with myocardial contraction, increases.
  • the expression level of the CKM gene is preferably 900 TPM (Transcript Per Kilobase Million) or more, more preferably 1000 TPM or more, and still more preferably 1100 TPM or more in any number of culture days.
  • the upper limit is not particularly limited, but is generally 1500 TPM or less.
  • the ratio of the expression levels of the CKM gene and the ACTB gene is preferably 1.80 or more, more preferably 2.00 or more, even more preferably 2.10 or more in any number of culture days,
  • the upper limit is not particularly limited, but is generally 5.0 or less, preferably 4.5 or less.
  • the gene expression level of COX6A2 (Cytochrome C Oxidase Subunit 6A2), which is a protein localized in mitochondria, increases.
  • the expression level of the COX6A2 gene is preferably 850 TPM or more, more preferably 875 TPM or more, and still more preferably 900 TPM or more in any number of culture days, and the upper limit is not particularly limited. , for example, 2000 TPM or less, preferably 1500 TPM or less.
  • the ratio of the expression levels of the COX6A2 gene and the ACTB gene is preferably 1.95 or more, more preferably 2.20 or more, and even more preferably 2.40 or more in any number of culture days,
  • the upper limit is not particularly limited, but is generally 5.00 or less, preferably 3.50 or less.
  • the gene expression level of CKMT2 (Creatine Kinase, Mitochondrial 2), which is a protein localized in mitochondria, increases.
  • the expression level of the CKMT2 gene is preferably 330 TPM or more, more preferably 350 TPM or more, and the upper limit is not particularly limited, for example, 1000 TPM or less, preferably is 800 TPM or less.
  • the ratio of the expression levels of the CKMT2 gene and the ACTB gene (CKMT2/ACTB) is preferably 0.60 or more, more preferably 0.65 or more on days 15 to 30 of culture, and the upper limit is not particularly limited. is generally 3.0 or less, preferably 1.5 or less. Further, CKMT2/ACTB is preferably 0.80 or more for any number of days of culture.
  • the gene expression level of LDHA (Lactate Dehydrogenase A subunit), which is a glycolytic enzyme, increases. It is thought that LDHA gene expression level increases as energy production increases with cell activation.
  • the expression level of the LDHA gene is preferably 550 TPM or more, more preferably 600 TPM or more, and still more preferably 650 TPM or more in any number of culture days, and the upper limit is not particularly limited. , for example, 2000 TPM or less, preferably 1500 TPM or less.
  • the ratio of the expression levels of the LDHA gene and the ACTB gene is preferably 0.80 or more, more preferably 1.00 or more, and even more preferably 1.20 or more, and the upper limit is not particularly limited. is generally 5.0 or less, preferably 4.0 or less.
  • CACNA2D1 Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1
  • KCNJ2 Pitassium Inwardly Rect
  • SCN5A sodium Voltage-Gated Channel Alpha Subunit 5
  • ATP1A1 ATPase Na+/K+ Transporting Subunit Alpha 1
  • ATP1A1 is said to be a cardiomyocyte membrane protein that is constantly expressed, and it was selected because it has been reported that there is little variation in the expression level in iPS cell-derived cardiomyocytes, fetal myocardium, and adult myocardium. (See Okai, et al., Video-based assessment of drug-induced effects on contractile motion properties using human induced pluripotent stem cell-derived cardiomyocytes, Journal of Pharmacological and Toxicological Methods, Volume 105, September 2020, 106893).
  • the expression level of the CACNA2D1 gene related to myocardial calcium ion channel formation is preferably 2100 CPM or more, more preferably 2200 CPM or more, even more preferably 2300 CPM or more, in any number of culture days. More preferably, it is 2400 CPM or more, and the upper limit is not particularly limited, but is, for example, 3500 CPM or less, preferably 3000 CPM or less.
  • the ratio of the expression levels of the CACNA2D1 gene and the ATP1A1 gene (CACNA2D1/ATP1A1) is preferably 0.08 or more, more preferably 0.085 or more, and even more preferably 0.08 or more on any of the 15th to 30th days of culture. is 0.09 or more, more preferably 0.095 or more, and although the upper limit is not particularly limited, it is generally 0.50 or less, preferably 0.20 or less.
  • the expression level of the KCNJ2 gene is preferably 950 CPM or more, more preferably 1000 CPM or more, and still more preferably 1200 CPM or more in any number of culture days, and the upper limit is not particularly limited. , for example, 3000 CPM or less, preferably 2000 CPM or less.
  • the ratio of the expression levels of the KCNJ2 gene and the ATP1A1 gene (KCNJ2/ATP1A1) is preferably 0.038 or more, more preferably 0.040 or more, and even more preferably 0.038 or more on any day from the 15th to 45th day of culture. is 0.045 or more, and although the upper limit is not particularly limited, it is generally 0.15 or less, preferably 0.10 or less.
  • the expression level of the KCNE1 gene is preferably 50 CPM or more, more preferably 60 CPM or more, still more preferably 70 CPM or more, and even more preferably on any day from the 15th to 45th day of culture. It is preferably 75 CPM or more, and the upper limit is not particularly limited, but is, for example, 200 CPM or less, preferably 150 CPM or less.
  • the ratio of the expression levels of the KCNE1 gene and the ATP1A1 gene (KCNE1/ATP1A1) is preferably 0.0025 or more, more preferably 0.003 or more, and even more preferably is 0.0035 or more, and although the upper limit is not particularly limited, it is generally 0.01 or less, preferably 0.007 or less.
  • the expression level of the SCN5A gene is preferably 22,000 CPM or more, more preferably 23,000 CPM or more, and still more preferably 23,500 CPM or more on any day from the 15th day to the 45th day of culture,
  • the upper limit is not particularly limited, but is, for example, 50,000 CPM or less, preferably 40,000 CPM or less.
  • the ratio of the expression levels of the SCN5A gene and the ATP1A1 gene (SCN5A/ATP1A1) is preferably 0.85 or more, more preferably 0.90 or more, and even more preferably 0.85 or more on any day from the 15th to 45th day of culture. is 0.95 or more, and although the upper limit is not particularly limited, it is generally 5.0 or less, preferably 2.0 or less.
  • LPL Lipoprotein Lipase
  • ACAT1 Alcohol-CoA Acetyltransferase 1
  • HADHA Hydrophilic acid
  • HADHB Hydrophilic acid-binding protein-CoA Dehydrogenase Trifunctional Multizyme Complex Subunit Alpha
  • Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta increases over time. As cardiomyocytes mature, motor function improves and ATP consumption increases. It is believed that the expression of these genes increases due to more efficient ATP production.
  • the expression level of the LPL gene is preferably 3100 CPM or more, more preferably 3500 CPM or more, still more preferably 4000 CPM or more, and even more preferably on any day from the 15th day to the 45th day of culture. It is preferably 4,500 CPM or more, and the upper limit is not particularly limited, but is, for example, 9,000 CPM or less, preferably 7,500 CPM or less.
  • the ratio of the expression levels of the LPL gene and the ACTB gene is preferably 0.45 or more, more preferably 0.50 or more, and even more preferably is 0.60 or more, and although the upper limit is not particularly limited, it is generally 2.0 or less, preferably 1.5 or less, and more preferably 1.0 or less.
  • the expression level of the ACAT1 gene is preferably 3500 CPM or more, more preferably 3800 CPM or more, on any day from the 30th to 45th day of culture, and the upper limit is particularly limited. However, it is, for example, 8000 CPM or less, preferably 6000 CPM or less.
  • the ratio of the expression levels of the ACAT1 gene and the ACTB gene is preferably 0.43 or more, more preferably 0.45 or more, and even more preferably 0.43 or more on any day from the 15th to the 30th day of culture is 0.50 or more, and although the upper limit is not particularly limited, it is generally 2.0 or less, preferably 1.5 or less, and more preferably 1.0 or less.
  • the expression level of the HADHA gene is preferably 6000 CPM or more, more preferably 6200 CPM or more, and even more preferably 6500 CPM or more on any of the 30th to 45th days of culture,
  • the upper limit is not particularly limited, but is, for example, 12,000 CPM or less, preferably 10,000 CPM or less.
  • the ratio of the expression levels of the HADHA gene and the ACTB gene is preferably 0.75 or more, more preferably 0.80 or more, and even more preferably is 0.90 or more, and although the upper limit is not particularly limited, it is generally 2.5 or less, preferably 2.0 or less, and more preferably 1.5 or less.
  • the expression level of the HADHB gene is preferably 8200 CPM or more, more preferably 8300 CPM or more, and still more preferably 8500 CPM or more on any day from the 15th day to the 45th day of culture,
  • the upper limit is not particularly limited, but is, for example, 20,000 CPM or less, preferably 15,000 CPM or less.
  • the ratio of the expression levels of the HADHB gene to the ACTB gene is preferably 0.95 or more, more preferably 1.00 or more, and even more preferably is 1.10 or more, more preferably 1.20 or more, and although the upper limit is not particularly limited, it is generally 2.5 or less, preferably 2.0 or less, and more preferably 1.8 or less.
  • the PPARGC1A gene (PPARG (Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha), which encodes the transcription factor PGC-1 ⁇ that acts as a master regulator of mitochondrial biogenesis, is an estrogen-related receptor related to cardiomyocyte maturation.
  • the ESRRA gene (Estrogen Related Receptor Alpha) encodes ERR- ⁇
  • the VEGFA gene (Vascular Endothelial Growth Factor A) encodes a vascular growth factor
  • the APLN gene (Ape) encodes a myokine that stimulates cardiac contraction in the myocardium.
  • the FABP3 gene (Fatty Acid Binding Protein 3) encodes a myokine that controls the uptake of long-chain fatty acids in the human body, the ESM1 gene (Endothelial Cell Specific Molecule 1), which is expressed specifically in endothelial cells, and the mucin-like protein secreted from epithelial cells. It is preferable that the expression level of the EMCN gene (Endomucin), which encodes a glycoprotein, increases over time, and it is also preferable that the expression level of the BCL2 gene (BCL2 Apoptosis Regulator), which is involved in cardiomyocyte differentiation, is maintained.
  • the expression level of the PPARGC1A gene is preferably 4500 CPM or more, more preferably 4700 CPM or more, and even more preferably 5000 CPM or more on any day from the 15th day to the 45th day of culture,
  • the upper limit is not particularly limited, but is, for example, 20,000 CPM or less, preferably 15,000 CPM or less, more preferably 8,000 CPM or less.
  • the ratio of the expression levels of the PPARGC1A gene and the HIF1A gene is preferably 0.80 or more, more preferably 0.85 or more, and even more preferably 0.90 or more on any day of culture.
  • the upper limit is not particularly limited, it is generally 2.5 or less, preferably 2.0 or less, and more preferably 1.5 or less.
  • a transcription factor that is induced under hypoxic conditions of the cell is used.
  • a certain HIF1A Hydrophilicity Inducible Factor 1 Alpha
  • the reason for this is that the enhancement of angiogenesis described in this section has been reported to be induced by hypoxia or exercise stimulation.
  • the expression level of the ESRRA gene is preferably 2750 CPM or more, more preferably 2900 CPM or more, and even more preferably 3000 CPM or more on any day from the 15th day to the 45th day of culture,
  • the upper limit is not particularly limited, but is, for example, 10,000 CPM or less, preferably 6,000 CPM or less, and more preferably 4,000 CPM or less.
  • the ratio of the expression levels of the ESRRA gene and the HIF1A gene (ESRRA/HIF1A) is preferably 0.55 or more, more preferably 0.57 or more, and even more preferably 0.60 or more on any day of culture.
  • the upper limit is not particularly limited, it is generally 2.0 or less, preferably 1.5 or less, and more preferably 1.0 or less.
  • the expression level of the VEGFA gene is preferably 3300 CPM or more, more preferably 3700 CPM or more, still more preferably 4500 CPM or more, even more preferably 6000 CPM or more,
  • the upper limit is not particularly limited, but is, for example, 25,000 CPM or less, preferably 15,000 CPM or less, and more preferably 10,000 CPM or less.
  • the ratio of the expression levels of the VEGFA gene and the HIF1A gene is preferably 0.65 or more, more preferably 0.70 or more, even more preferably 0.90 or more, on any day of culture. More preferably it is 1.2 or more, particularly preferably 1.5 or more, and although the upper limit is not particularly limited, it is generally 5.0 or less, preferably 3.0 or less, and more preferably 2.0 or less.
  • the expression level of the APLN gene on any day of culture is preferably 100 CPM or more, more preferably 150 CPM or more, and even more preferably 200 CPM or more, and the upper limit is not particularly limited. , for example, 50,000 CPM or less, preferably 3,000 CPM or less, more preferably 2,000 CPM or less.
  • the ratio of the expression levels of the APLN gene and the HIF1A gene is preferably 0.005 or more, more preferably 0.020 or more, even more preferably 0.030 or more, on any day of culture. More preferably, it is 0.040 or more, and although the upper limit is not particularly limited, it is generally 1.0 or less, preferably 0.50 or less, and more preferably 0.30 or less.
  • the expression level of the FABP3 gene on any day of culture is preferably 30,000 CPM or more, more preferably 31,000 CPM or more, and even more preferably 32,000 CPM or more, and the upper limit is not particularly limited. , for example, 100,000 CPM or less, preferably 60,000 CPM or less, more preferably 40,000 CPM or less.
  • the ratio of the expression levels of the FABP3 gene and the HIF1A gene is preferably 5.0 or more, more preferably 5.5 or more, and still more preferably 6.0 or more on any day of culture.
  • the upper limit is not particularly limited, it is generally 15.0 or less, preferably 12.0 or less, and more preferably 8.0 or less.
  • the expression level of the ESM1 gene is preferably 5 CPM or more, more preferably 25 CPM or more, even more preferably 40 CPM or more, even more preferably 100 CPM or more, particularly preferably
  • the upper limit is not particularly limited, but is, for example, 3000 CPM or less, preferably 1000 CPM or less, and more preferably 500 CPM or less.
  • the ratio of the expression levels of the ESM1 gene and the HIF1A gene is preferably 0.002 or more, more preferably 0.005 or more, and even more preferably 0.010 or more on any day of culture.
  • the upper limit is not particularly limited, it is generally 0.200 or less, preferably 0.150 or less, and more preferably 0.100 or less.
  • the expression level of the EMCN gene is preferably 10 CPM or more, more preferably 20 CPM or more, still more preferably 40 CPM or more, even more preferably 60 CPM, on any day after the 7th day of culture.
  • the upper limit is not particularly limited, but is, for example, 1000 CPM or less, preferably 500 CPM or less, more preferably 300 CPM or less.
  • the ratio of the expression levels of the EMCN gene and the HIF1A gene (EMCN/HIF1A) is preferably 0.002 or more, more preferably 0.004 or more, and even more preferably 0 on any day after the 7th day of culture. It is .005 or more, more preferably 0.010 or more, and although the upper limit is not particularly limited, it is generally 0.100 or less, preferably 0.070 or less, and more preferably 0.050 or less.
  • the expression level of the BCL2 gene is preferably 60 CPM or more, more preferably 70 CPM or more, even more preferably 80 CPM or more, even more preferably 90 CPM, on any day after the 7th day of culture.
  • the upper limit is not particularly limited, but is, for example, 1000 CPM or less, preferably 500 CPM or less, more preferably 300 CPM or less.
  • the ratio of the expression levels of the BCL2 gene and the HIF1A gene (BCL2/HIF1A) is preferably 0.013 or more, more preferably 0.015 or more, and even more preferably 0 on any day after the 7th day of culture. .017 or more, and the upper limit is not particularly limited, but is generally 0.100 or less, preferably 0.070 or less, more preferably 0.050 or less.
  • a fluorescent dye that selectively labels mitochondria and a fluorescent dye that selectively labels nuclei based on membrane potential By staining the cultured cell sheet of this embodiment with a fluorescent dye that selectively labels mitochondria and a fluorescent dye that selectively labels nuclei based on membrane potential, and acquiring fluorescent images, mitochondria and The area and brightness of the nucleus are measured.
  • fluorescent dyes that selectively label mitochondria based on membrane potential include the Mito-tracker series manufactured by Thermo Fisher Scientific.
  • examples of fluorescent dyes that selectively label the nucleus include Hoechst 33342 and the like. At this time, the area and brightness (Intensity) of mitochondria per cell are calculated by dividing by the number of nuclei, that is, the number of cells.
  • the area per cell reflects the number of mitochondria, and the brightness per cell reflects mitochondrial activity.
  • the area of mitochondria per cell is preferably 200 ⁇ m 2 or more, more preferably 300 ⁇ m 2 or more, even more preferably 400 ⁇ m 2 or more, even more preferably 450 ⁇ m 2 or more, and although the upper limit is not particularly limited, generally It is 1000 ⁇ m 2 or less, preferably 800 ⁇ m 2 or less.
  • the brightness (Intensity) of mitochondria per cell is preferably 2 x 10 6 or more, more preferably 3 x 10 6 or more, even more preferably 4 x 10 6 or more, and the upper limit is not particularly limited, but Generally it is 10 ⁇ 10 6 or less, preferably 8 ⁇ 10 6 or less.
  • the brightness per cell is the brightness measured by the method described in Examples.
  • the cell seeding conditions for measuring the mitochondrial area and mitochondrial brightness per cell mentioned above are 6 ⁇ 10 4 cells/well, culture days 9 days (from day 5 onwards), and area of 96 wells. (0.33 cm 2 ).
  • ⁇ Live cell imaging> In a cultured cell sheet composed of cardiomyocytes, changes in movement due to contraction and relaxation of the cardiomyocytes can be detected. In vivo, cardiac muscle cells are oriented in one direction, and are observed to contract and relax in the oriented direction. Using a live cell imaging device (for example, SI8000, manufactured by Sony Corporation), a cultured cell sheet (living cells) is photographed under culture conditions. From video data obtained, the contraction and relaxation of myocardial cells can be detected. By detecting motion vectors (speed, direction, quantity), heart rate (BR), contraction velocity (CV), relaxation velocity (RV), and contraction-relaxation time (CRD) can be determined. Duration) and degree of orientation can be analyzed. For measurements of BR, CV, RV, CRD, etc.
  • BR heart rate
  • CV contraction velocity
  • RV relaxation velocity
  • CRD contraction-relaxation time
  • the degree of orientation is the sum of the number of vectors that are ⁇ 5° from the mode of the vector angle and the number of detected vectors when the angle of the motion vector is calculated when the horizontal direction of the screen is 0°. It is calculated by finding the ratio of The degree of orientation obtained from the live cell imaging device is determined by the following formula.
  • Orientation degree (%) (Number of vectors included in the range of ⁇ 5° of the mode) / (Total number of vectors) x 100
  • the degree of orientation measured using live cell imaging of the cultured cell sheet of this embodiment is preferably 10% or more, more preferably 12% or more, still more preferably 16% or more, even more preferably 18% or more, especially Preferably it is 20% or more.
  • the upper limit of the degree of orientation is not particularly limited.
  • the average heart rate in adults is 60 beats/min, and those with a heart rate (BR) closer to 60 beats/min are closer to normal mature cardiomyocytes, and those with a faster contraction velocity (CV) Those with a faster relaxation rate (RV) tend to be closer to normal matured cardiomyocytes, and those with a shorter beating time (CRD) tend to be closer to normal matured cardiomyocytes.
  • the ratio of contraction velocity (CV) to relaxation velocity (RV) (CV/RV) is preferably smaller.
  • the cultured cell sheet of this embodiment has a CV/RV of preferably 2.8 or less, more preferably 2.6 or less, and preferably 1.0 or more. That is, it is preferable that CV/RV satisfies the following formula (2). 1.0 ⁇ CV/RV ⁇ 2.8 (2)
  • ⁇ Ca-imaging analysis> In cardiomyocytes, a phenomenon called calcium transient is observed in which the Ca concentration in the entire cytoplasm caused by an action potential increases almost simultaneously with myocardial contraction.
  • a fluorescent Ca indicator By treating the cultured cell sheet of this embodiment with a fluorescent Ca indicator and observing it with confocal quantitative image cytometry (Ca-imaging analysis), it is possible to observe calcium transients over time.
  • Ca-imaging analysis To create a waveform graph from the calcium transient signal information and analyze the parameters described below, special analysis software is used.
  • the line width (duration) at 20% height of the waveform peak of a calcium transient tends to be longer than in normal mature cardiomyocytes.
  • the relationship between Duration (seconds) and Interval (seconds) to the 1/2 power preferably satisfies the following equation (3).
  • Duration/(Interval) 1/2 ⁇ 0.68 (3) It has been reported that there is a correlation between the 20% height line width (duration) that reflects the calcium transient duration and the action potential duration. In cardiomyocytes, the more mature they are, the longer the action potential duration tends to be. Interval is affected by heartbeat. Normally, in electrocardiogram analysis, a value corrected by heart rate is used as the action potential duration, so Duration/(Interval) 1/2 was adopted as in equation (3).
  • the cells constituting the cultured cell sheet have an action potential 80% repolarization duration of 600 msec or more in a patch clamp test in a 25°C solution, and a maximum diastolic potential of -60 mV or less. It is preferable.
  • a current of 20 pA to 100 pA is injected into the cells at 0.2 Hz under current clamping of myocardial cells in Tyrode's solution at 25°C to generate an action potential, and the change in potential is measured. .
  • the current may be appropriately selected within a range that can generate an appropriate action potential.
  • the action potential 80% repolarization duration was used as an index of the action potential duration.
  • the action potential 80% repolarization duration of the cells constituting the cultured cell sheet of this embodiment is preferably 600 msec or more, more preferably 650 msec or more, still more preferably 700 msec or more, even more preferably 750 msec or more, and,
  • the upper limit is not particularly limited, but from the viewpoint that the action potential duration is preferably comparable to that of in-vivo cardiac muscle cells, it is preferably 1200 msec or less, more preferably 1050 msec or less, and even more preferably 900 msec or less.
  • the maximum diastolic potential of the cells constituting the cultured cell sheet of this embodiment is preferably a value closer to new cells in vivo, it is preferably -60 mV or less, more preferably -62.5 mV or less. , more preferably ⁇ 65 mV or less, even more preferably ⁇ 67.5 mV or less.
  • the lower limit is not particularly limited, but since adult ventricular cardiomyocytes are about -80 mV, a value close to -80 mV is preferable.
  • ⁇ Decrease in oxygen consumption rate by ⁇ -oxidation inhibitor in the oxygen consumption rate measurement that measures the rate at which the cells constituting the cultured cell sheet use oxygen contained in the culture medium, the addition of a ⁇ -oxidation inhibitor that inhibits ⁇ -oxidation activity of fatty acids allows Preferably, the consumption rate is reduced to 20% or less compared to before addition of the ⁇ -oxidation inhibitor.
  • OCR oxygen consumption rate
  • Mitochondrial metabolism mainly involves pathways that use glucose, fatty acids, and glutamine, and it is possible to infer the metabolic pathways by adding inhibitors of enzymes involved in each metabolism.
  • Oxygen consumption can be measured using a commercially available oxygen consumption rate plate assay kit (manufactured by Dojindo Chemical Co., Ltd.). Mature cardiomyocytes are more dependent on fatty acid metabolism than immature cardiomyocytes.
  • the oxygen consumption rate is determined by adding a ⁇ -oxidation inhibitor that inhibits the ⁇ -oxidation activity of fatty acids. is preferably 30% or less, more preferably 20% or less, even more preferably 15% or less, when the value before addition of the ⁇ -oxidation inhibitor is taken as 100%.
  • the cultured cell sheet of this embodiment can be used for various purposes, for example, for regenerative medicine.
  • the cultured cell sheet may be a single layer sheet formed from one layer of cells, or a multilayer sheet formed from two or more layers of cells.
  • ischemic disease such as myocardial infarction or angina pectoris (hereinafter also referred to as a "faulty heart")
  • myocardial tissue is damaged in the same direction as the heart tissue contracts.
  • methods include directly pasting the cultured cell sheet, suturing and inserting the sheet after pasting.
  • several single-layer cell sheets or multi-layer cell sheets may be stacked and laminated, and then used for regenerative medicine.
  • the cultured cell sheets may be stacked with the shrinkage direction or orientation direction aligned.
  • the cultured cell sheet of this embodiment may be used to evaluate the effect of a compound or drug on cardiomyocytes by allowing the compound or drug to act on the cell sheet, as described below.
  • the method for manufacturing a cultured cell sheet composed of cardiomyocytes of the present embodiment includes culturing cardiomyocytes using a specific cell sheet forming member, and the cell sheet forming member forms a cultured cell sheet.
  • the surface includes a plurality of flat parts and a plurality of uneven parts, each flat part has a shape extending in the first direction, and the plurality of flat parts cover the entire surface.
  • Each uneven portion is arranged in a second direction intersecting the first direction, and each uneven portion includes a plurality of step structures that fill in spaces between the flat portions adjacent to each other, and the pitch of the step structure is 100 nm or more and 10 ⁇ m or less, and
  • the step structure is a convex portion, and the concave and convex portion includes a plurality of convex portions on the bottom surface of a concave portion sandwiched between the mutually adjacent flat portions, and the convex and convex portions are arranged in the thickness direction of the cell sheet forming member.
  • the difference between the height of the tip end surface at the portion and the height of the flat portion is 0.5 ⁇ m or less. As shown in FIG.
  • the cell sheet forming member 100 is, for example, a sheet material placed on a culture dish 110 of a petri dish.
  • the petri dish holds a cell suspension in a space surrounded by a culture dish 110 and a lid 120.
  • the bottom of the petri dish may be processed into the above-described surface shape having a specific flat part and uneven parts, and in that case, the petri dish itself is a cell sheet forming member.
  • the surface 111 of the cell sheet forming member 100 includes a plurality of flat portions 130 and a plurality of uneven portions 140.
  • the uneven portion 140 is composed of a plurality of step structures, and the plurality of step structures fill the spaces between the flat portions 130 that are adjacent to each other.
  • the step structure is a convex portion.
  • the uneven portion 140 includes a recessed portion sandwiched between mutually adjacent flat portions 130 and a plurality of protrusions 141 located on the bottom surface of the recessed portion.
  • each flat portion 130 is a flat surface extending in one direction, a first direction (vertical direction in FIG. 1(c)).
  • the flat portions 130 are arranged on the entire surface 111 in a second direction (left-right direction in FIG. 1(c)) orthogonal to the first direction.
  • Each uneven portion 140 also extends in the first direction and is aligned in the second direction over the entire surface 111.
  • Each convex portion 141 constituting the concavo-convex portion 140 is located, for example, at each vertex of a triangular lattice when viewed from the direction facing the surface 111. Each concavo-convex portion 140 repeats this arrangement of convex portions 141 in the first direction and the second direction. If the uneven portion 140 has a convex portion 141 located at each vertex of a triangular lattice, the master for forming the convex portion 141 may be masked with a mask suitable for forming a minute repeating structure, such as a single particle film. This makes it possible to form the film using an etching method.
  • each convex portion 141 When viewed from the direction facing the surface 111, each convex portion 141 has, for example, a circular shape.
  • the mode of the distance between the centers of adjacent convex portions 141 is the pitch of the convex portions 141 .
  • the maximum width of the convex portion 141 in the plan view shape is the diameter of the convex portion 141 .
  • a configuration in which the pitch of the convex portions 141 satisfies (A) and (B) below is suitable from the viewpoint of aligning the elongation direction of the cardiac muscle cells with the first direction. That is, a configuration in which the pitch of the convex portions 141 satisfies (A) and (B) below is suitable from the viewpoint that the adhesion of cardiac muscle cells is clearly divided between the flat portion 130 and the uneven portion 140. .
  • Diameter of the convex portions 141 50% or more and 100% or less of the pitch of the convex portions 141
  • the length of each flat portion 130 in the second direction (short side direction) is the width of the flat portion 130. Further, the length in the second direction (short side direction) between the flat portions 130 adjacent to each other is the width of the uneven portion 140.
  • the width of the flat portion 130 and the width of the uneven portion 140 are, for example, 1/10 or more and 10 times or less of the size of the cells to be cultured (5 ⁇ m or more and 100 ⁇ m or less).
  • a configuration in which the width of the flat portion 130 and the width of the uneven portion 140 satisfy the following (C) and (D) is suitable from the viewpoint of making it easy to align the elongation direction of the cardiac muscle cells in the first direction. .
  • D) Width of uneven portion 140 10 ⁇ m or more and 50 ⁇ m or less
  • the uneven portion 140 may include a concave portion 142 between the convex portions 141 adjacent to each other, and between the flat portion 130 and the convex portion 141 adjacent thereto. Since the plurality of convex portions 141 are scattered in the uneven portion 140, the concave portions 142, which are spaces between the convex portions 141, are continuous in the first direction and the second direction in the uneven portion 140.
  • the length between the bottom surface of the recess 142 and the flat portion 130 is the height of the flat portion 130.
  • the height difference between the tip surface of each convex portion 141 and the flat portion 130 is a boundary step.
  • the height difference between the bottom surface of the concave portion 142 and the tip surface of each convex portion 141 is the height of the convex portion 141 .
  • the height of the flat portion 130 and the height of the convex portion 141 are equal to each other.
  • the ratio of the pitch of the protrusions 141 to the height of the protrusions 141 is the aspect ratio of the protrusions 141.
  • a configuration in which the boundary step satisfies the following (E) is suitable from the viewpoint of improving the flatness of the cell sheet.
  • a configuration in which the height of the convex portion 141 satisfies the following (F), and a configuration in which the aspect ratio of the convex portion 141 satisfies the following (G) are from the viewpoint of increasing the structural stability of the concavo-convex portion 140, and, This is suitable from the viewpoint of facilitating the formation of the uneven portion 140.
  • the elongation direction of the cells is aligned in the first direction, which is the direction in which both structures extend.
  • a configuration that satisfies the above (E), particularly a configuration in which the tip surface of each convex portion 141 and the flat portion 130 are flush with each other, is a cell sheet formed so as to cover the uneven portion 140 and the flat portion 130. , making it possible to increase its flatness. Furthermore, a configuration that satisfies the above (F) can further improve the flatness of the cell sheet.
  • the surface 111 of the cell sheet forming member 100 includes the flat portion 130 and the uneven portions 140, both cells that adhere predominantly to the flat portion 130 and cells that predominantly adhere to the uneven portion 140 It also becomes possible to apply a common cell sheet forming member 100. That is, it is also possible to increase the versatility of the cell sheet forming member 100.
  • the surface 111 of the cell sheet forming member 100 is made of, for example, extracellular matrices such as laminin, collagen, gelatin, fibronectin, polylysine (PDL or PLL), hyaluronic acid, polymers, etc., for the purpose of increasing cell adhesion.
  • the surface may be coated with an organic material containing an adhesion factor such as a gel, or may be made of metal.
  • the surface 111 of the cell sheet forming member 100 may have hydrophilicity or hydrophobicity for the purpose of improving cell adhesion and flatness of the cell sheet.
  • a stimulus-responsive material may be applied after the cell sheet is formed to facilitate peeling and recovery of the cell sheet.
  • the stimulus-responsive material is preferably a temperature-responsive polymer whose water affinity changes with temperature changes. Specifically, poly-N-isopropylacrylamide (PIPAAm) is preferred.
  • PIPAAm poly-N-isopropylacrylamide
  • the stimulus-responsive material may be applied to the substrate using conventional application methods, or the structure may be fabricated on the substrate treated with the stimulus-responsive material using the methods described below.
  • the method for manufacturing the cell sheet forming member includes a step of forming an intaglio 150, and a step of forming the surface 111 of the cell sheet forming member 100 by transferring the intaglio 150.
  • the lower surface of the intaglio 150 has a shape that extends in a first direction (a direction perpendicular to the paper surface), and has a plurality of flat portions arranged in a second direction (horizontal direction of the paper surface) that intersects the first direction. It includes a concavo-convex portion composed of a plurality of step structures that fill the space between adjacent flat portions.
  • the flat portion of the intaglio 150 is a portion for forming the flat portion 130 of the cell sheet forming member 100 by transfer.
  • the uneven portion of the intaglio 150 is a portion for forming the uneven portion 140 of the cell sheet forming member 100 by transfer.
  • the stepped structure of the intaglio 150 is a convex portion or a concave portion.
  • the step structure of the intaglio plate 150 in this embodiment is a recess 151 for forming the projection 141, and the pitch of the recess 151 is 100 nm or more and 10 ⁇ m or less.
  • uneven portions are formed using at least one of a photolithography method, a colloidal lithography method, an anodizing method, and an interference exposure method on a silicon substrate for forming the intaglio plate 150. be done.
  • the intaglio 150 itself may be obtained by one or more transfers from a master.
  • a shape corresponding to the surface shape of the intaglio plate 150 is formed on the master using at least one of photolithography, colloidal lithography, anodic oxidation, and interference exposure on a silicon substrate, for example.
  • the lower surface of the intaglio 150 is made to face the surface 111 of the base material 160 for forming the cell sheet forming member 100.
  • the material for forming the base material 160 is, for example, a thermoplastic resin or a photocurable resin.
  • the lower surface of the intaglio 150 is pressed against the surface 111 of the base material 160 while the base material 160 has fluidity.
  • the intaglio 150 is released from the surface 111 of the base material 160 while the fluidity of the base material 160 is suppressed.
  • the recessed portions 151 of the intaglio 150 are transferred to the surface 111 of the base material 160, and the flat portion 130 and the uneven portion 140 are formed.
  • laminin, collagen, gelatin, fibronectin, polylysine (PDL or PLL), hyaluronic acid, etc. are added to the surface of the thermoplastic resin or photocurable resin that is the forming material of the base material 160.
  • An organic substance containing an adhesive factor such as an extracellular matrix, a polymer, or a gel may be applied.
  • biomaterials such as polysaccharides and proteins may be used.
  • FIG. 1 A cell sheet manufactured using the cell sheet forming member 100 will be explained.
  • This cell S1 is a cell S1 that adheres to the uneven portion 140, and is also a cell S2 that is allowed to adhere to the uneven portion 140, although it is inferior to the flat portion 130.
  • the cells of the cell suspension held in the cell sheet forming member 100 are cells S2 that adhere preferentially to the uneven portion 140, and adhere to the flat portion 130, although less so than the uneven portion 140. It is also the cell S1 that has been allowed to. In this case, as shown in FIG.
  • the flat portion 130 and the uneven portions 140 extend in the first direction and are arranged alternately in the second direction. Therefore, on the surface 111 of the cell sheet forming member, for example, the orientation of cells S1 preferentially adhered to the flat part 130 is controlled by the structure of the flat part 130 and the structure of the uneven parts 140 that partition it. be done. In the uneven portion 140 sandwiched between mutually adjacent flat portions 130, the control of orientation by the flat portion 130 is reflected in the cells S2 adhered to the uneven portion 140, although this is inferior to the flat portion 130. be done. As a result, as shown in FIG. 3(c), cells S1 and S2 whose orientation is controlled in the first direction form a cultured cell sheet SA that spreads over the entire surface 111.
  • the orientation of the cells S2 preferentially adhered to the uneven portion 140 is controlled by the structure of the uneven portion 140 and the structure of the flat portion 130 that partitions it.
  • the control of orientation by the uneven part 140 is reflected in the cells S1 adhered to the flat part 130, although it is inferior to the uneven part 140. be done.
  • cells S1 and S2 whose orientation is controlled in the first direction form a cultured cell sheet SA that spreads over the entire surface 111.
  • the compound or drug to be evaluated acts on the cultured cell sheet described above. Evaluating the compound or drug by applying the compound or drug to be evaluated to the cultured cell sheet and evaluating at least one change selected from changes in physiological properties and changes in motor function of the cultured cell sheet. is preferred. Examples of changes in physiological characteristics include changes in BR, Duration, Interval, and peak height (Intensity) of calcium transients in the observation of calcium transients, and changes in motor function include changes in the live cell imaging observation described above. Examples include changes in BR, CV, RV, CRD, contraction duration, relaxation time, etc.
  • the number of days the cultured cell sheet is cultured when performing the evaluation is not particularly limited, but it is preferable to perform the evaluation using a cultured cell sheet that has been cultured for about 15 days because the degree of maturity of the cardiomyocytes is higher. .
  • the compound or drug to be evaluated is not particularly limited, but is preferably a known compound known to have an effect on cardiac muscle cells or a candidate compound thereof, such as an INa blocker, an Ikr blocker, etc.
  • INa blockers include Quinidine and Propranolol.
  • Existing Ikr blockers include E-4031, Quinidine, Sotarol, Cisapride, and Bepridil.
  • Existing Iks blockers include Bepridil and Chromanol.
  • Existing ⁇ -blockers include Sotarol, Propranolol, and Carvedilol.
  • An example of an existing ⁇ -blocker is Carvedilol.
  • Isoproterenol is exemplified as an existing ⁇ receptor agonist.
  • An example of an existing phosphodiesterase 3 inhibitor is Milrinone.
  • the cultured cell sheet composed of cardiomyocytes is matured and can be suitably used as a cultured cell sheet for regenerative medicine or in a method for evaluating compounds or drugs.
  • a method for evaluating the quality of a cultured cell sheet is provided.
  • a cultured cell sheet with higher quality can be provided. That is, in this embodiment, it is also preferable to incorporate the above quality evaluation method as one step of the method for producing a cultured cell sheet.
  • the angle in the longitudinal direction of the rod-like structures detected by the ⁇ -actinin antibody within 6 ⁇ m) is measured, and the frequency of rod-like structures included within ⁇ 15° of the mode is calculated using the following formula (1).
  • the desired degree of orientation is 23% or more.
  • Orientation degree (%) (number of rod-like structures included within ⁇ 15° of the mode) / (total number of rod-like structures) ⁇ 100 (1)
  • the number of vectors (orientation degree) showing an angle of ⁇ 5° from the angle of the mode of the motion vector is 12% or more.
  • At least one of the following requirements A1 and A2 is satisfied.
  • Requirement A1 The ratio of the expression level of the MYL3 (Myosin Light Chain 3) gene to the expression level of the ACTB (Actin Beta) gene (MYL3/ACTB) is 12.0 or more. It is preferable that MYL3/ACTB is 12.0 or more after the 7th day of culture.
  • Requirement A2 The ratio (MYH7/MYH6) between the expression level of the MYH7 (Myosin Heavy Chain 7) gene and the expression level of the MYH6 (Myosin Heavy Chain 6) gene is 6.0 or more. After the 7th day of culture, MYH7/MYH6 is preferably 6.0 or more. (iv) At least one of the following requirements B1 and B2 is satisfied.
  • Requirement B1 The ratio of the gene expression level of CKM (Creatin Kinase, M-type) to the gene expression level of ACTB (Actin Beta) (CKM/ACTB) is 1.80 or more. It is preferable that CKM/ACTB is 1.80 or more on the 15th to 45th day of culture.
  • Requirement B2 The ratio of the gene expression level of LDHA (Lactate Dehydrogenase A subunit) to the gene expression level of ACTB (LDHA/ACTB) is 0.80 or more. After the 7th day of culture, LDHA/ACTB is preferably 0.80 or more, more preferably 1.2 or more. (v) At least one of the following requirements C1 to C4 is satisfied.
  • Requirement C1 Gene expression level of CACNA2D1 (Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1) and ATP1A1 (ATPase Na+/K+ Transporting Subunit A) lpha 1) to the gene expression level (CACNA2D1/ATP1A1) from day 15 of culture. It is 0.085 or more on any day of the 30th day.
  • Requirement C2 Gene expression level of KCNJ2 (Potassium Inwardly Rectifying Channel Subfamily J Member 2) and ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) ) to the gene expression level (KCNJ2/ATP1A1) from day 15 to day 30 of culture.
  • Requirement C3 Gene expression level of KCNE1 (Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1) and ATP1A1 (ATPase Na+/K+ Transporting Subunit) The ratio of Alpha 1) to the gene expression level (KCNE1/ATP1A1) on day 15 of culture It is 0.003 or more on any day from day 30 to day 30.
  • Requirement C4 Ratio between the gene expression level of SCN5A (Sodium Voltage-Gated Channel Alpha Subunit 5) and the gene expression level of ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) (SCN5 A/ATP1A1) from the 15th day of culture It is 0.87 or more on any day of the 30th day. (vi) At least one of the following requirements D1 to D4 is satisfied.
  • Requirement D1 The ratio of the gene expression level of LPL (Lipoprotein Lipase) to the gene expression level of ACTB (Actin Beta) (LPL/ACTB) is 0.45 on any day from day 15 to day 45 of culture. That's all.
  • Requirement D2 The ratio of the gene expression level of ACAT1 (Acetyl-CoA Acetyltransferase 1) to the gene expression level of ACTB (Actin Beta) (ACAT1/ACTB) is on any day from day 15 to day 30 of culture. It is 0.43 or more.
  • Requirement D3 Ratio between the gene expression level of HADHA (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha) and the gene expression level of ACTB (Actin Beta) (HAD HA/ACTB) at any time from day 15 to day 30 of culture. 0.75 or more on that day.
  • Requirement D4 Ratio between the gene expression level of HADHB (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta) and the gene expression level of ACTB (Actin Beta) (HADH B/ACTB) at any time from day 15 to day 30 of culture. It is 0.95 or more on that day. (vii) At least one of the following requirements E1 to E8 is satisfied.
  • Requirement E1 Gene expression level of PPARGC1A (PPARG (Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha) and HIF1A (Hypoxia Inducible Fact) or 1 Alpha) to the gene expression level (PPARGC1A/HIF1A) in either culture. It is 0.80 or more on the day of .
  • Requirement E2 The ratio of the gene expression level of ESRRA (Estrogen Related Receptor Alpha) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (ESRRA/HIF1A) is 0.55 or more on any day of culture. be.
  • Requirement E3 The ratio of the gene expression level of VEGFA (Vascular Endothelial Growth Factor A) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (VEGFA/HIF1A) is 0.6 on any day of culture. 5 or more It is.
  • Requirement E4 The ratio of the gene expression level of APLN (Apelin) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (APLN/HIF1A) is 0.005 or more on any day of culture.
  • Requirement E5 The ratio of the gene expression level of FABP3 (Fatty Acid Binding Protein 3) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (FABP3/HIF1A) is 5.0 or more on any day of culture. It is.
  • Requirement E6 The ratio of the gene expression level of ESM1 (Endothelial Cell Specific Molecule 1) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (ESM1/HIF1A) is 0.002 on any day of culture. That's all It is.
  • Requirement E7 The ratio of the gene expression level of EMCN (Endomucin) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (EMCN/HIF1A) is 0.002 on any day after the 7th day of culture. That's all.
  • Requirement E8 The ratio of the gene expression level of BCL2 (BCL2 Apoptosis Regulator) to the gene expression level of HIF1A (Hypoxia Inducible Factor 1 Alpha) (BCL2/HIF1A) is 0. 013 or higher.
  • the area of mitochondria per cell is 200 ⁇ m 2 or more.
  • CM1 iPS cell-derived cardiomyocytes-1 (CM1) iCell Cardiomyocytes (iCell Cardiomyocytes v1.0, manufactured by FUJIFILM Cellular Dynamics) (hereinafter referred to as CM1) were used as cardiomyocytes derived from human iPS cells. Culture was carried out according to the following procedure. Frozen cell samples were lysed by warming in a 37°C water bath for 3 minutes. The cell solution was transferred to a 50 mL centrifuge tube, and 9 mL of plating medium (iCell cardiomyocyte thawing medium, manufactured by FUJIFILM Cellular Dynamics) preheated to 37° C. was added and mixed to dilute the cell solution.
  • plating medium iCell cardiomyocyte thawing medium, manufactured by FUJIFILM Cellular Dynamics
  • a portion of the diluted cell suspension was collected, mixed with an equal volume of trypan blue, and the number of viable cells was determined using a hemocytometer.
  • a sterilized 0.1% gelatin solution was added to the container (2 mL/well) and left at 37° C. for 1 hour. The gelatin solution was removed and cells were seeded before use.
  • the cells after seeding were left standing in a CO 2 incubator at 37° C., and the medium was replaced on the third day of culture, with the day of seeding as day 0.
  • fibronectin 0.05 mg/mL added in advance.
  • the 96-well plate used was ND Cell Aligner (orientation plate, 96-well plate type), and as a control, a commercially available 96-well plate (flat plate) with a flat culture surface was used.
  • the cells were left standing in a CO 2 incubator at 37°C for 4 hours, and the medium was replaced every 2 days using Maintenance Medium (iCell cardiomyocyte maintenance medium, manufactured by FUJIFILM Cellular Dynamics) for a predetermined period of time. Maintenance culture was performed.
  • Maintenance Medium iCell cardiomyocyte maintenance medium, manufactured by FUJIFILM Cellular Dynamics
  • CM2 iPS cell-derived cardiomyocytes-2
  • CM2 iCell Cardiomyocytes v2.0, manufactured by FUJIFILM Cellular Dynamics
  • Culture was carried out according to the following procedure. Frozen cell samples were lysed by warming in a 37°C water bath for 3 minutes. The cell solution was transferred to a 50 mL centrifuge tube, and 9 mL of plating medium preheated to 37° C. was added and mixed to dilute the cell solution. A portion of the diluted cell suspension was collected, mixed with an equal volume of trypan blue, and the number of viable cells was determined using a hemocytometer.
  • the cell concentration was adjusted using plating medium, and the cells were seeded in a 96-well plate coated with fibronectin in advance at a concentration of 6 ⁇ 10 4 cells/well.
  • the 96-well plate was an ND Cell Aligner (orientation plate, 96-well plate type), and as a control, a commercially available 96-well plate (flat plate) with a flat culture surface was used.
  • the medium was replaced using Maintenance Medium. After the medium was replaced, the cells were maintained and cultured for a predetermined period of time, with the medium being replaced every two days.
  • the ND Cell Aligner used in (1) and (2) above has a flat part and an uneven part, each flat part has a shape extending in the first direction, and the entire surface has a shape extending in the first direction.
  • the width (length in the second direction) of each flat portion was 10 ⁇ m.
  • Each uneven portion is composed of a plurality of step structures that fill in the space between adjacent flat portions, and the length between each flat portion in the second direction is 10 ⁇ m, and the pitch of the convex portions in the uneven portion is 300 nm. there were.
  • the average height from the bottom of the concave part to the tip of the convex part was 446 nm. Further, the average height of the flat portion from the bottom of the recess was 455 nm.
  • anti- ⁇ -actinin antibody (abcam, Anti-Sarcomeric Alpha Actinin antibody [EA-53]) was added as a primary antibody, and the cells were allowed to react overnight at 4°C. Ta.
  • the secondary antibody Alexa Fluor 647 labeled, manufactured by Life Technologies, Alexa Fluor (R) 647 F ⁇ ab ⁇ 2 fragment of goat antibody
  • IgG( H+L) was added to react.
  • diluted Hoechst 33342 was added to stain the nucleus.
  • Fluorescence images were acquired at a magnification of 60 times (objective lens), and sarcomeres were detected at an excitation wavelength of 640 nm/fluorescence wavelength of 685 nm, and nuclei were detected at an excitation wavelength of 405 nm/fluorescence wavelength of 461 nm.
  • image analysis software A-zo-kun, manufactured by Asahi Kasei Engineering Co., Ltd.
  • the rod-like shape detected by ⁇ -actinin was determined.
  • the structure was detected, and the angular distribution (0 to 180°) of the rod-like structure was determined with the horizontal direction of the image set at 0°.
  • the degree of orientation was determined by the following formula from the number of rod-like structures included in the range of ⁇ 15° of the mode angle of the angular distribution and the total number of rod-like structures included in the measurement range.
  • Orientation degree (%) (number of rod-like structures included within ⁇ 15° of the mode) / (total number of rod-like structures) ⁇ 100
  • the image obtained from one well was divided into 9 equal parts, and analysis was performed using 3 sections (upper left, center, and lower right sections).
  • the results of the angular distribution analysis were shown as the degrees of orientation of the rod-like structures included in every 10 degrees, and the degrees of orientation in a range of ⁇ 15 degrees including the highest value of the oriented plate and the plane plate were compared.
  • a T-test was performed on the degree of orientation between the oriented plate and the flat plate, and it was confirmed that after 30 days of culture, there was a significant difference in the degree of orientation between the oriented plate and the flat plate at a risk rate of 5%. .
  • CM1 iCell cardiomyocytes
  • CM1 iCell cardiomyocytes
  • RNA sequencing was a mixture of equal amounts (by RNA mass) of RNA extracted from 5 wells and used in the experiment. The results of gene expression analysis by RNA sequencing are considered to be the average value of 5 wells.
  • RNA sequencing was performed on each RNA extracted from 3 wells, and the average value of the expression level (CPM) was calculated. .
  • CPM expression level
  • a T-test was performed to detect the difference in gene expression level between the flat plate and the oriented plate for each culture day. * is written inside, and when the P value is P ⁇ 0.01, ** is written in the figure.
  • MYL3/ACTB CM1 cultured on oriented plates had increased gene expression level of MYL3 (Myosin Light Chain 3), which is expressed in mature myocardium, compared to CM1 cultured on flat plates.
  • MYL3 Myosin Light Chain 3
  • ACTB Actin- ⁇
  • the ratio of the expression level of the MYL3 gene/the expression level of the ACTB gene after the 7th day of culture was 12.5 or more for the oriented plate and 11.4 or less for the flat plate (FIG. 5).
  • CKM creatine kinase, M-type
  • COX6A2 Cytochrome C Oxidase Subunit 6A2
  • CKMT2 Creatine Kinase, Mitochondrial 2
  • LDHA Lactate Dehydrogenase A subunit
  • the expression level of the CKM gene was more than 1161 TPM (transcripts per kilobase million) in CM1 cultured on an oriented plate, while it was less than 824 TPM in CM1 cultured on a flat plate ( Figure 7 -1(A)).
  • the expression level of the COX6A2 gene was 875 TPM or more in CM1 cultured on an oriented plate, while it was 842 TPM or less in CM1 cultured on a flat plate ( Figure 7-1 (B)).
  • the expression level of the CMKT2 gene was 377 TPM or more in CM1 cultured on an oriented plate, while it was 325 TPM or less in CM1 cultured on a flat plate ( Figure 7-1 (C)). Furthermore, after the 7th day of culture, the expression level of the LDHA gene was 682 TPM or more in CM1 cultured on an oriented plate, while it was 372 TPM or less in CM1 cultured on a flat plate ( Figure 7-1 (D )).
  • the ratio of the expression level of the CKMT2 gene to the expression level of the ACTB gene was 0.68 or more in CM1 cultured on an oriented plate, and 0.57 in CM1 cultured on a flat plate. It was as follows ( Figure 7-2 (C)). Furthermore, after the 7th day of culture, the ratio of the expression level of the LDHA gene to the expression level of the ACTB gene was 1.3 or more for CM1 cultured on an oriented plate, and 0.6 or less for CM1 cultured on a flat plate. ( Figure 7-2(D)).
  • CM1 cultured on oriented plates showed higher levels of CACNA2D1 (Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1), which is associated with myocardial calcium ion channel formation, and myocardial potassium ion channel formation.
  • KCNJ2 (Potassium Inwardly Rectifying Channel Subfamily J Member 2)
  • KCNE1 (Potassium Voltage-Gated Channel Subfamily E Regulation ry Subunit 1)
  • SCN5A sodium Voltage-Gated Channel Alpha Subunit 5
  • the expression level of the CACNA2D1 gene was 2469 CPM (count per million) or more in CM1 cultured on an oriented plate from day 15 to day 30 of culture, while it was less than 2004 CPM in CM1 cultured on a flat plate ( Figure 7-3(A)).
  • the expression level of the KCNJ2 gene was 1026 CPM or more in CM1 cultured on an oriented plate, while it was 926 CPM or less in CM1 cultured on a flat plate ( Figure 7-3 (B)).
  • the expression level of the KCNE1 gene was 79 CPM or more in CM1 cultured on an oriented plate, while it was 42 CPM or less in CM1 cultured on a flat plate from day 15 to day 45 of culture ( Figure 7-3 (C )).
  • the expression level of the SCN5A gene was 23,580 CPM or more in CM1 cultured on an oriented plate, while it was 21,571 CPM or less in CM1 cultured on a flat plate from day 15 to day 45 of culture ( Figure 7- 3(D)).
  • the ratio of CACNA2D1 gene expression level/ATP1A1 gene expression level from day 15 to day 30 of culture was 0.085 or more for CM1 cultured on oriented plates and 0.085 for CM1 cultured on flat plates. It was .23 or less ( Figure 7-4 (A)). From day 15 to day 30 of culture, the ratio of KCNJ2 gene expression level/ATP1A1 gene expression level was 0.038 or more for CM1 cultured on an oriented plate and 0.115 or less for CM1 cultured on a flat plate. ( Figure 7-4 (B)).
  • LPL Lipoprotein Lipase
  • ACAT1 Alcohol-CoA Acetyltransferase 1
  • HADHA Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha
  • HADHB Hydrophilyl-CoA Dehydrogenase The expression level of Trifunctional Multienzyme Complex Subunit Beta) increased over time ( Figures 7-5 and 7-6).
  • the expression level of the LPL gene was 3832 CPM (count per million) or more in CM1 cultured on an oriented plate, while it was 3024 CPM or less in CM1 cultured on a flat plate ( Figure 7- 5(A)).
  • the expression level of the ACAT1 gene was 3663 CPM or more in CM1 cultured on an oriented plate, while it was 3357 CPM or less in CM1 cultured on a flat plate ( Figure 7-5 (B)) .
  • the expression level of the HADHA gene was 6240 CPM or more in CM1 cultured on oriented plates, while it was 5920 CPM or less in CM1 cultured on flat plates ( Figure 7-5 (C )). Furthermore, after the 15th day of culture, the expression level of the HADHB gene was 8505 CPM or more in CM1 cultured on an oriented plate, whereas it was 8072 CPM or less in CM1 cultured on a flat plate ( Figure 7-5 (D )).
  • the ratio of HADHA gene expression level to ACTB gene expression level was 0.79 or more in CM1 cultured on an oriented plate, and 0.74 in CM1 cultured on a flat plate. It was as follows ( Figure 7-6(C)). Furthermore, from day 15 to day 30 of culture, the ratio of HADHB gene expression level to ACTB gene expression level was 1.00 or more for CM1 cultured on oriented plates and 0.91 for CM1 cultured on flat plates. It was as follows ( Figure 7-6 (D)).
  • PARG Coactivator 1 Alpha which encodes PGC-1 ⁇ , which is involved in mitochondrial biogenesis and functionalization, and is associated with cardiomyocyte maturation.
  • the ESRRA gene (Estrogen Related Receptor Alpha) encodes the estrogen-related receptor ERR
  • the VEGFA gene (Vascular Endothelial Growth Factor A) encodes a vascular growth factor
  • the APLN gene encodes a myokine associated with cardiac contraction in myocardial tissue.
  • the FABP3 gene Fatty Acid Binding Protein 3
  • the ESM1 gene Endothelial Cell Specific Molecule 1
  • the expression levels of the EMCN gene (Endomucin), which encodes a mucin-like glycoprotein
  • the BCL2 gene (BCL2 Apoptosis Regulator), which is associated with mitochondrial function regulation, increased over time ( Figures 7-7 to 7-10).
  • the expression level of the PPARGC1A gene was 4577 CPM (count per million) or more in CM1 cultured on an oriented plate, while it was 4282 CPM or less in CM1 cultured on a flat plate ( Figure 7- 7(A)).
  • the expression level of the ESRRA gene was 3081 CPM or more in CM1 cultured on an oriented plate, while it was 3061 CPM or less in CM1 cultured on a flat plate ( Figure 7-7 (B)).
  • the expression level of the VEGFA gene was 3737 CPM or more in CM1 cultured on an oriented plate, while it was 3237 CPM or less in CM1 cultured on a flat plate ( Figure 7-7 (C)). Furthermore, after the 7th day of culture, the expression level of the APLN gene was 28.7 CPM or more in CM1 cultured on an oriented plate, whereas it was 20.7 CPM or less in CM1 cultured on a flat plate ( Figure 7 -7(D)).
  • the expression level of the FABP3 gene was 28,788 CPM or more in CM1 cultured on an oriented plate, while it was 28,529 CPM or less in CM1 cultured on a flat plate ( Figure 7-9 (A)) .
  • the expression level of the ESM1 gene was 40 CPM or more in CM1 cultured on an oriented plate, while it was 1.3 CPM or less in CM1 cultured on a flat plate ( Figure 7-9 (B )).
  • the expression level of the EMCN gene was 24.6 CPM or more in CM1 cultured on an oriented plate, while it was less than 1 CPM in CM1 cultured on a flat plate ( Figure 7-9 (C )).
  • the expression level of the BCL2 gene was 83.3 CPM or more in CM1 cultured on an oriented plate, while it was 58.3 CPM or less in CM1 cultured on a flat plate ( Figure 7-9 (D)).
  • the ratio of PPARGC1A gene expression level/HIF1 gene expression level after the 7th day of culture was 0.86 or more for CM1 cultured on an oriented plate and 0.80 or less for CM1 cultured on a flat plate.
  • Figure 7-8(A) After the 7th day of culture, the ratio of ESRRA gene expression/HIF1 gene expression was 0.57 or more for CM1 cultured on oriented plates and 0.54 or less for CM1 cultured on flat plates.
  • the ratio of VEGFA gene expression level to HIF1 gene expression level was 0.71 or more for CM1 cultured on an oriented plate, and 0.64 or less for CM1 cultured on a flat plate.
  • the ratio of ESM1 gene expression level to HIF1 gene expression level was 0.001 or more for CM1 cultured on oriented plates and 0.0003 or less for CM1 cultured on flat plates.
  • Figure 7-10(B) Furthermore, after the 7th day of culture, the ratio of EMCN gene expression level to HIF1 gene expression level was 0.003 or more for CM1 cultured on oriented plates and 0.001 or less for CM1 cultured on flat plates.
  • Figure 7-10(C) Furthermore, from day 7 to day 30 of culture, the ratio of BCL2 gene expression level to HIF1 gene expression level was 0.018 or more for CM1 cultured on oriented plates and 0.012 for CM1 cultured on flat plates. It was as follows ( Figure 7-10 (D)).
  • Maturation confirmation test Confirmation of mitochondrial activity Using maintained cultured iCell cardiomyocytes CM2, cells on day 9 were treated with Mito-tracker Red (manufactured by Thermo Fisher Scientific, M7510), a membrane voltage dependent fluorescent dye. ) and the nucleus was stained using Hoechst 33342. For staining, remove the medium from the well plate, add Mito-tracker Red diluted to a predetermined concentration with maintenance medium, and leave it in a CO 2 incubator at 37°C for 30 minutes, then add Hoechst 33342 diluted to a predetermined concentration with maintenance medium. The mixture was then left standing in a CO 2 incubator at 37° C. for 30 minutes.
  • the cells were washed with a medium and a fluorescence image was obtained using a confocal fluorescence microscope (Confocal Quantitative Image Cytometer CQ1, manufactured by Yokogawa Electric Corporation). Images were acquired at a magnification of 60 times (objective lens), and mitochondria were detected at an excitation wavelength of 561 nm/fluorescence wavelength of 617 nm, and nuclei were detected at an excitation wavelength of 405 nm/fluorescence wavelength of 461 nm. Analysis software (CellPathfinder, manufactured by Yokogawa Electric Corporation) was used for image analysis.
  • the area and intensity detected at a fluorescence wavelength of 617 nm were measured from the measurement range of the visual field (size: 215 ⁇ m x 215 ⁇ m area) observed at a magnification of 60 times with an objective lens, and the number of nuclei detected at a fluorescence wavelength of 461 nm was measured.
  • the detection value of the fluorescence wavelength of 617 nm is the value detected by the detector of the CQ1 camera
  • the area (Area) is the total area (unit: ⁇ m 2 ) where the fluorescence wavelength of 617 nm was detected
  • the brightness (Intensity) is the value detected by the detector of the CQ1 camera. is the sum of the detected brightness values.
  • FIG. 9 shows fluorescence images of CM2 cultured on the oriented plate on the 9th day of culture and CM2 cultured on the flat plate on the 9th day of culture. Blue indicates nuclei and red indicates mitochondria. It is clear from the photographs that the number of mitochondria and mitochondrial activity are increased in CM2 cultured on the oriented plate.
  • the motion vectors (velocity, direction, quantity) associated with contraction and relaxation of myocardial cells are detected from the video data, and each parameter (beating rate (BR), contractile velocity (CV), relaxation rate The velocity (RV), the contraction-relaxation duration (CRD), and the degree of orientation) were analyzed.
  • the degree of orientation is determined by calculating the angle of the motion vector when the horizontal direction of the screen is set to 0 degrees Celsius, and calculating the number of vectors that are within ⁇ 5 degrees from the mode of the vector angle, and the sum of the number of detected vectors. It was calculated based on the following formula by determining the ratio of .
  • Orientation degree (%) (Number of vectors included in the ⁇ 5° range of the mode) / (Total number of vectors) x 100
  • FIG. 10 shows an example of measurement results of motion vector angles and their frequencies. The results of CM2, in which cells were seeded onto each culture plate and maintained in culture, are shown in Figure 11-1.
  • CM2 cultured on oriented plates showed significantly increased heart rate (BR) and relaxation rate (RV) from day 15 to day 61 of culture compared to CM2 cultured on flat plates, and after day 31 of culture It was confirmed that the heart rate duration (CRD) tended to shorten from the second stage onwards.
  • the degree of vector direction distribution ( ⁇ 5° of the mode), which indicates the degree of cell orientation, remained significantly high from day 15 to day 61 of culture.
  • the ratio of contraction velocity (CV) to relaxation velocity (RV) at this time is shown in FIG. 11-2.
  • the ratio of contraction velocity (CV) to relaxation velocity (RV) was 1.8 to 2.5 from day 15 to day 45 of culture. Ta.
  • the ratio of contraction velocity (CV) to relaxation velocity (RV) (CV/RV) in CM2 cultured on an oriented plate falls within the following range. (Formula) 1.0 ⁇ CV/RV ⁇ 2.8
  • Table 1 shows the degrees of orientation at the mode values of ⁇ 1.25°, ⁇ 5°, and ⁇ 10° on the 15th day.
  • the ratio of the oriented plate/plane plate is the highest, but the ratio of the plane plate to the theoretical value is the highest, and when the orientation angle to be analyzed is small, the influence of noise is considered to be large. It was done. Comparing the mode values ⁇ 5° and ⁇ 10°, the ratio of the plane plate to the theoretical value is ⁇ 5°> ⁇ 10°, but the ratio of the oriented plate/plane plate is ⁇ 5°> ⁇ 10°. Therefore, the degree of orientation within the mode ⁇ 5° was evaluated as the range in which the tendency of the degree of orientation tends to appear.
  • Maturation confirmation test Ca-imaging analysis using a confocal imaging device CQ1 (Confocal fluorescence microscope, manufactured by Yokogawa Electric Corporation) Measured at In order to visualize Ca ion flux, a fluorescent Ca indicator (EarlyTox cardiotoxicity kit, manufactured by Molecular Devices) was added to CM2, and the mixture was allowed to stand at 37°C for 15 minutes.
  • the CQ1 measurement conditions were an excitation wavelength of 488 nm/fluorescence wavelength of 525 nm, and a data acquisition time of 60 seconds.
  • Cell Pathfinder was used for analysis. The cells used were CM2 cells, which were maintained and cultured until day 5, with the day of seeding being day 0.
  • CM2 was seeded on an oriented plate and a flat plate at a concentration of 6 ⁇ 10 4 cells/well. At this time, each plate was not a 96-well plate, but a small piece of bottom film cut into a size of 4 mm x 4 mm was placed on the bottom of a commercially available 96-well plate.
  • an action potential was generated by injecting a current of 20 pA to 100 pA into the cell at 0.2 Hz under current clamping of CM2 in Tyrode's solution at 25°C.
  • CM2 cultured on an oriented plate is the result of using cells on the 8th day of culture
  • CM2 cultured on the flat plate is the result of using cells on the 22nd day of culture.
  • the intracellular potential of CM2 cultured on oriented plates had longer action potential duration and deeper maximum diastolic potential than CM2 cultured on flat plates.
  • the action potential 80% repolarization duration of CM2 cultured on oriented plates was 791 ms, and the maximum diastolic potential was ⁇ 68.6 mV.
  • the action potential 80% repolarization duration of CM2 cultured on a flat plate was 478 ms, and the maximum diastolic potential was -57.9 mV.
  • Action potentials in normal isolated ventricular myocytes from humans are as long in duration as in CM2 cultured on oriented plates, and the maximum diastolic potential (resting membrane potential) is deeper than in CM2 cultured on oriented plates ( Circulation, 2013; 127:575-584). From this, it can be said that the action potential of CM2 cultured on oriented plates is closer to that of normal cardiomyocytes than CM2 cultured on flat plates.
  • CM2 Drug safety test-1 Using iCell cardiomyocytes CM2, we investigated the dose-dependent effects of four drugs that are often used to induce side effects in myocardium. According to the above procedure, CM2 was seeded on an alignment plate (96 well plate, ND Cell Aligner) and a flat plate (96 well plate) at a concentration of 5 ⁇ 10 4 cells/well. Maintenance culture was performed in a CO 2 incubator at 37° C., and the drug was administered on the 5th or 6th day, with the day of seeding taken as day 0. The drugs used were E-4031, Quinidine, Cisapride, and Isoproterenol. Drugs were dissolved in DMSO and administered cumulatively. First, measurement was performed at dose 0 without adding any drug.
  • a drug dissolved in DMSO was added to each well at a concentration of dose 1, and the measurement was performed 15 minutes later. Subsequently, immediately after the measurement, the drug was added to each well in the same well so that the drug concentration was dose 2, and the measurement was performed 15 minutes later. The same procedure was performed for dose3.
  • the types of drugs, mechanisms of action and concentrations are shown in the table below.
  • EAD early afterdepolarization
  • DAD delayed afterdepolarization
  • VT-like small regular waveforms
  • waveform waveform disappearance. Recorded. Waveform changes not classified as EAD or DAD were described as arrhythmia. Furthermore, "-" in the table indicates a state in which no arrhythmia or the like has occurred. The degree of arrhythmia is mild in EAD, moderate in DAD, and severe in VT-like. Those listed as "arrhythmia” are mild.
  • E-4031 (Ikr blocker) Addition of E-4031 to both CM2 cultured on flat plates and CM2 cultured on oriented plates decreased the beat rate (BR), contraction velocity (CV), and relaxation velocity (RV). CRD (corrected by heart rate) was significantly shortened at medium concentration (Dose 2, 0.3 ⁇ M) and high concentration (Dose 3, 1 ⁇ M) on the oriented plate and the flat plate (FIG. 14(A)). In the flat plate, the shortening was more noticeable. In CM2 cultured on a flat plate, arrhythmia occurred in 6 out of 6 wells, but in CM2 cultured on an oriented plate, arrhythmia occurred in 1 out of 6 wells (Table 3-1, Table 3-2 ).
  • CM2 cultured on oriented plates In CM2 cultured on oriented plates, the incidence of arrhythmia was 1/6 at low concentration (Dose 1, 0.1 ⁇ M), 1/6 at medium concentration (Dose 2, 0.3 ⁇ M), and 1/6 at high concentration (Dose 3, 1 ⁇ M). It was 1/6.
  • CM2 cultured on a flat plate 3/6 at low concentration (Dose1, 0.1 ⁇ M), 5/6 at medium concentration (Dose2, 0.3 ⁇ M), and 6/6 at high concentration (Dose3, 1 ⁇ M).
  • Dose1, 0.1 ⁇ M 3/6 at low concentration
  • Dose2, 0.3 ⁇ M 5/6 at medium concentration
  • Dose3, 1 ⁇ M There was a tendency for CM2 cultured on oriented plates to be lower, and CM2 cultured on flat plates to be higher.
  • Isoproterenol (beta receptor agonist) Isoproterenol 1, 3, 10 ⁇ M was applied.
  • BR and RV tended to increase in CM2 cultured on oriented plates and CM2 cultured on flat plates, and CV remained unchanged for both CM2 cultured on flat plates and CM2 cultured on oriented plates.
  • CRD corrected for heart rate
  • the oriented plate showed a similar variation as the solvent (DMSO), but the flat plate showed a large difference from the solvent (DMSO), which is considered to be due to the influence of the drug (FIG. 14(B)). Furthermore, no arrhythmia was observed at any concentration.
  • E-4031 (Ikr blocker) When the Duration of Ca transient is 0 ⁇ M, CM2 cultured on an oriented plate is slightly longer (significantly) than CM2 cultured on a flat plate, at 0.1 ⁇ M, CM2 cultured on a flat plate is slightly longer; CM2 cultured on plates was significantly longer than CM2 cultured on oriented plates, and although not significant at 1 ⁇ M, it was significantly longer in CM2 cultured on flat plates. From these results, it can be concluded that the effect of IKr blockade due to the addition of E-4031 is more likely to be expressed in CM2 cultured on flat plates, and less on CM2 cultured on oriented plates ( Figure 15-1).
  • the incidence of moderate to severe arrhythmias was 0/6 at low concentration (Dose1, 0.1 ⁇ M) and 0/6 at medium concentration (Dose2, 0.3 ⁇ M) in CM2 cultured on oriented plates. It was 1/6, and 4/6 at high concentration (Dose 3, 1 ⁇ M). In CM2 cultured on a flat plate, it was 3/6 at low concentration (Dose1, 0.1 ⁇ M), 6/6 at medium concentration (Dose2, 0.3 ⁇ M), and 6/6 at high concentration (Dose3, 1 ⁇ M), It tended to be low in CM2 cultured on oriented plates and high in CM2 cultured on flat plates (Table 4-1, Table 4-2).
  • the incidence of moderate to severe arrhythmia was 0/6 at low concentration (Dose 1, 3 ⁇ M), 0/6 at medium concentration (Dose 2, 10 ⁇ M) in CM2 cultured on oriented plates; It was 6/6 at high concentration (Dose 3, 30 ⁇ M).
  • DAD moderate to severe arrhythmia
  • CM2 cultured on a flat plate it was 0/6 at low concentration (Dose 1, 3 ⁇ M), 0/6 at medium concentration (Dose 2, 10 ⁇ M), 4/6 at high concentration (Dose 3, 30 ⁇ M), and slightly higher at orientation.
  • Table 5-1, Table 5-2 Although the incidence of arrhythmia tended to be slightly higher on the oriented plate, the changes in Duration and Interval were smaller in CM2 cultured on the oriented plate, so it is thought that the influence of the drug is less likely to appear.
  • Cisapride (blocker of Ikr, 5-HT4 receptor agonist)
  • the effects of Cisapride 0.01, 0.03, and 0.1 ⁇ M were investigated. Both Duration and Interval were prolonged in a dose-dependent manner ( Figure 15-3).
  • CM2 cultured on an oriented plate the difference between the value indicated by Dose0 and the value indicated by Dose3 was smaller than that in CM2 cultured on a flat plate.
  • CM2 cultured on oriented plates appeared to be more resistant to Cisapride than CM2 cultured on flat plates.
  • the occurrence of arrhythmia was 1/6 from the low concentration (Dose 1, 0.01 ⁇ M) to the high concentration (Dose 3, 0.1 ⁇ M) of the orientation plate.
  • Isoproterenol (beta receptor agonist) The effects of Isoproterenol 1, 3, and 10 ⁇ M were investigated. A decrease was observed in both Duration and Interval ( Figure 15-4). However, the decrease in Duration on the plane was small. This Duration decreasing effect is a typical response seen in ⁇ receptor stimulation. Isoproterenol did not cause arrhythmia even at a high concentration (Dose 3, 10 ⁇ M). The same tendency was observed for CM2 cultured on oriented plates and CM2 cultured on flat plates.
  • E-4031 Focusing on E-4031, an IKr blocker whose most typical effect is prolongation of action potential duration, and similar effects, we find that the duration prolongation effect of high doses of E-4031 is similar to that of CM2 cultured on oriented plates and CM2 cultured on flat plates. It is thought that side effects tend to appear more easily in CM2 cultured on flat plates and less likely to appear in CM2 cultured on oriented plates. In most test systems, the Ca transient duration before drug adaptation was longer in CM2 cultured on oriented plates and shorter in CM2 cultured on flat plates, suggesting that the action potential durations were similar. This extension of duration is generally correlated with the maturation of cardiomyocytes, and even on day 6, functional changes (promotion of differentiation in oriented plates) occur between CM2 cultured on oriented plates and CM2 cultured on flat plates. That is clear.
  • CM2 Drug safety test-2 iCell cardiomyocytes CM2 were cultured for 15 days, and in a more mature state, the dose-dependent effects of two drugs that are often used to induce cardiac side effects were examined. According to the above procedure, CM2 was seeded on an alignment plate (96 well plate, ND Cell Aligner) and a flat plate (96 well plate) at a concentration of 6 ⁇ 10 4 cells/well. Maintenance culture was performed in a CO 2 incubator at 37° C., and the drug was administered on the 15th day, with the day of seeding taken as day 0. The drugs used were Isoproterenol and Milrinone. The drug was dissolved in DMSO and administered. First, measurement was performed at dose 0 without adding any drug.
  • a drug dissolved in DMSO was added to each well to reach the concentration of each dose, and the measurement was performed after a certain period of time had elapsed.
  • the types of drugs, mechanisms of action and concentrations are shown in the table below.
  • the responsiveness of cells after drug administration was determined by a movement test method using a live cell imaging device (SI8000, manufactured by Sony Corporation), and the effects on pulsation rate, contraction rate, and relaxation rate were investigated.
  • SI8000 manufactured by Sony Corporation
  • the pulsation rate (BR), contraction velocity (CV), and relaxation velocity (RV) were analyzed from the SI8000 video data, and the effects of drugs on cell movement were compared.
  • the measurement data was corrected with the average value of dose0 without adding any drug (each measured value/measured value of dose0), and a relative value was calculated with the measured value of dose0 set as 1.
  • a significant difference test was performed by comparing the results of the flat plate and the oriented plate at each drug addition concentration with the results of dose 0 and performing a T-test. Furthermore, a T-test was conducted between the flat plate and the oriented plate in the drug-added group. Comparison groups with P values of 0.01 or less are marked on the graph.
  • Isoproterenol (beta receptor agonist)
  • Addition of isoproterenol increased the beat rate (BR) and relaxation rate (RV) of both CM2 cultured on a flat plate and CM2 cultured on an oriented plate.
  • BR beat rate
  • RV relaxation rate
  • doses 2 and 3 of the oriented plate increased compared to the flat plate.
  • Contraction velocity (CV) increased in CM2 cultured on oriented plates, but tended to decrease on flat plates.
  • Dose2 of the oriented plate significantly increased compared to before addition of the drug, and in comparison with the flat plate, dose2 and dose3 of the oriented plate significantly increased (FIG. 16-1).
  • CM2 Drug safety test-3 (anticancer drugs) iCell cardiomyocytes CM2 were cultured for 15 days, and the dose-dependent effects of anticancer drugs that cause side effects on the myocardium (toxic myocarditis, hypersensitivity myocarditis) were investigated.
  • CM2 was seeded at a concentration of 6 ⁇ 10 4 cells/well on an oriented plate (96 well plate, ND Cell Aligner) and a flat plate (96 well plate) in the same manner as in (10) above. Maintenance culture was performed in a CO 2 incubator at 37° C., and the drug was administered on the 15th day, with the day of seeding taken as day 0.
  • Doxorubicin an anthracycline anticancer drug
  • the drug was dissolved in DMSO and administered.
  • a measurement was performed without adding any drug.
  • a drug dissolved in DMSO was added to each well at a concentration of 3 ⁇ M, and measurements were performed after 24 and 48 hours.
  • the measurement was carried out in the same manner as the above (10-1) measurement by the movement test method using a live cell imaging device.
  • the measurement data is the measured value at a concentration of 3 ⁇ M, corrected by the average value of the pre-measurement without adding the drug (measured value at 3 ⁇ M / measured value of the pre-measurement), and the rate of change with the measured value of the pre-measurement as 1.
  • Doxorubicin (anticancer drug)
  • doxorubicin increased the beat rate (BR) of both CM2 cultured on flat plates and CM2 cultured on oriented plates.
  • the measurement result after 48 hours was higher than the measurement result after 24 hours, and the number of beats increased with time.
  • the addition of 3 ⁇ M significantly increased the beat rate compared to the flat plate.
  • Addition of DMSO tended to decrease the beat rate for both the planar plate and the oriented plate (FIG. 17).
  • CV contraction velocity
  • CM2 was seeded on an oriented plate (96 well plate, ND Cell Aligner) and a flat plate (96 well plate) at a concentration of 6 ⁇ 10 4 cells/well. Maintenance culture was performed in a CO 2 incubator at 37° C., and the oxygen consumption rate was measured on the 27th day, with the day of seeding taken as day 0.
  • an oxygen consumption rate plate assay kit manufactured by Dojindo Chemical Co., Ltd., E297
  • Oxygen Probe diluted with a medium was added to the well plate in which CM2 had been cultured, and the well plate was allowed to stand for 30 minutes in a plate reader kept at 37°C in advance.
  • Oxygen concentration (pmol) was calculated using the calculation sheet attached to the oxygen consumption rate plate assay kit, and oxygen consumption rate (pmol/min) was calculated from the decrease in oxygen concentration over 60 minutes 10 to 70 minutes after the start of measurement. .
  • oxygen consumption rate (pmol/min) was calculated from the decrease in oxygen concentration over 60 minutes 10 to 70 minutes after the start of measurement. .
  • the OCR without the addition of Etomoxir was 79.1 pmol/min
  • the OCR with the addition of Etomoxir was 77.8 pmol/min
  • the OCR was 98.3 compared to the OCR before addition. %Met.
  • the OCR without Etomoxir was 63.6 pmol/min, and the OCR with Etomoxir was 7.0 pmol/min. With the addition of Etomoxir, the OCR was 11.0% compared to the OCR before addition. decreased.
  • the results are shown in FIG. In FIG. 16, the vertical axis indicates OCR without addition of Etomoxir as 1.0.
  • the cultured cell sheet of this embodiment has progressed in maturation compared to conventional cultured cell sheets, and as a result, by using the cultured cell sheet, it is possible to detect the compound or drug to be evaluated. As an evaluation method, it is thought that evaluation closer to in vivo evaluation is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明の課題は、特定の薬剤を使用することなく、心筋細胞から構成された成熟化した培養細胞シートおよびその製造方法を提供することである。また、該培養細胞シートを使用した化合物または薬物の評価方法を提供すること、さらに、心筋細胞から構成された培養細胞シートの品質評価方法を提供することである。 本発明の培養細胞シートは、心筋細胞から構成される培養細胞シートであって、心筋細胞が配向性を有して配置され、前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲(71.6μm×71.6μm)内にあるα-アクチニン抗体で検出される棒状構造体の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度を、下記式(1)により求める配向度が23%以上である。 配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)

Description

培養細胞シートおよびその製造方法、化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法
 本発明は、心筋細胞から構成される培養細胞シートおよびその製造方法、該培養細胞シートを用いた化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法に関する。
 薬剤開発のコスト削減や期間短縮、動物実験代替の視点から、ヒトiPS細胞等の幹細胞から分化誘導された細胞を創薬開発に利用することが期待されている。開発の初期段階からこれらのヒト細胞を対象とした試験が可能であり、従来、動物実験で実施されてきた試験をヒトiPS細胞等の幹細胞由来細胞による試験に置き換え、種差による薬剤応答性の差異を解消できることが利点である。特に、生体由来の細胞の入手が難しい、心筋細胞等において、ヒトiPS細胞等の幹細胞由来心筋細胞の利用が求められている。
 しかし、現在、入手可能なヒトiPS細胞等の幹細胞由来心筋細胞は、生理活性や運動機能が胎児心筋に近く、未成熟であることがわかっている。そのため、薬剤への反応性に関しても、生体とは乖離があることが報告されており、ヒトiPS細胞等の幹細胞由来心筋細胞を成熟化させる手法が求められている。
 例えば、特許文献1には、それ自体インビトロ培養で多能性胚性幹細胞に由来する胎児様(未熟)心筋細胞の成熟を促進させる既知組成培地組成物、およびより効率的であり、心臓研究および臨床用途に対する一般的要件を満たす成体様心筋細胞の大規模産生を助けるインビトロ培養で成体様心筋細胞を作製するための方法を提供することにより当業界の主要な制限を解消することを目的として、水性培地組成物が無血清であり、甲状腺ホルモン様化合物、脂質混合物およびカルニチン化合物を含む、前記水性培地組成物が開示されている。
特開2020-022460号公報
 特許文献1は、特定の培地を使用することで、成体様心筋細胞に成熟させるものであり、当該培地が含有する成分が、心筋細胞に対して、成熟以外の影響を与える可能性が否定できない。
 本発明の目的は、特定の薬剤を使用することなく、心筋細胞から構成された成熟化した培養細胞シートおよびその製造方法を提供することである。また、本発明は、該培養細胞シートを使用した化合物または薬物(タンパク質、ペプチド、抗体、DNA、RNA等)の評価方法を提供することを目的とする。さらに、本発明は、心筋細胞から構成された培養細胞シートの品質評価方法を提供することを目的とする。
 本発明の上記課題は、以下の<1>~<19>の構成によって解決することができる。
 <1> 心筋細胞から構成される培養細胞シートであって、心筋細胞が配向性を有して配置され、前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲(71.6μm×71.6μm)内にあるα-アクチニン抗体で検出される棒状構造体の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度を、下記式(1)により求める配向度が23%以上である、培養細胞シート。
 配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)
 <2> ライブセルイメージングにおいて、動きベクトルの最頻値の角度から±5°の角度を示すベクトルの数(配向度)が12%以上である、<1>に記載の培養細胞シート。
 <3> 前記心筋細胞が、幹細胞由来の心筋細胞である、<1>または<2>に記載の培養細胞シート。
 <4> 以下の要件A1および要件A2の少なくともいずれかを満たす、<1>~<3>のいずれか1つに記載の培養細胞シート。
 要件A1:MYL3(Myosin Light Chain 3)遺伝子の発現量と、ACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)が12.0以上である。
 要件A2:MYH7(Myosin Heavy Chain 7)遺伝子の発現量と、MYH6(Myosin Heavy Chain 6)遺伝子の発現量との比(MYH7/MYH6)が6.0以上である。
 <5> 以下の要件B1および要件B2の少なくともいずれかを満たす、<1>~<4>のいずれか1つに記載の培養細胞シート。
 要件B1:CKM(Creatin Kinase,M-type)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(CKM/ACTB)が、1.80以上である。
 要件B2:LDHA(Lactate Dehydrogenase A subunit)の遺伝子発現量と、ACTBの遺伝子発現量との比(LDHA/ACTB)が0.80以上である。
 <6> 以下の要件C1~要件C4の少なくともいずれかを満たす、<1>~<5>のいずれか1つに記載の培養細胞シート。
 要件C1:CACNA2D1(Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(CACNA2D1/ATP1A1)が、培養15日目~30日目のいずれかの日において0.085以上である。
 要件C2:KCNJ2(Potassium Inwardly Rectifying Channel Subfamily J Member2)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(KCNJ2/ATP1A1)が、培養15日目~45日目のいずれかの日において0.038以上である。
 要件C3:KCNE1(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(KCNE1/ATP1A1)が、培養15日目~45日目のいずれかの日において0.003以上である。
 要件C4:SCN5A(Sodium Voltage-Gated Channel Alpha Subunit 5)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(SCN5A/ATP1A1)が、培養15日目~45日目のいずれかの日において0.87以上である。
 <7> 以下の要件D1~要件D4の少なくともいずれかを満たす、<1>~<6>のいずれか1つに記載の培養細胞シート。
 要件D1:LPL(Lipoprotein Lipase)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(LPL/ACTB)が、培養15日目~45日目のいずれかの日において0.45以上である。
 要件D2:ACAT1(Acetyl-CoA Acetyltransferase 1)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(ACAT1/ACTB)が、培養15日目~30日目のいずれかの日において0.43以上である。
 要件D3:HADHA(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(HADHA/ACTB)が、培養15日目~30日目のいずれかの日において0.75以上である。
 要件D4:HADHB(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(HADHB/ACTB)が、培養15日目~30日目のいずれかの日において0.95以上である。
 <8> 以下の要件E1~要件E8の少なくともいずれかを満たす、<1>~<7>のいずれか1つに記載の培養細胞シート。
 要件E1:PPARGC1A(PPARG(Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(PPARGC1A/HIF1A)が、培養のいずれかの日において0.80以上である。
 要件E2:ESRRA(Estrogen Related Receptor Alpha)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(ESRRA/HIF1A)が、培養のいずれかの日において0.55以上である。
 要件E3:VEGFA(Vascular Endothelial Growth Factor A)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(VEGFA/HIF1A)が、培養のいずれかの日において0.65以上である。
 要件E4:APLN(Apelin)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(APLN/HIF1A)が、培養のいずれかの日において0.005以上である。
 要件E5:FABP3(Fatty Acid Binding Protein 3)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(FABP3/HIF1A)が、培養のいずれかの日において5.0以上である。
 要件E6:ESM1(Endothelial Cell Specific Molecule 1)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(ESM1/HIF1A)が、培養のいずれかの日において0.002以上である。
 要件E7:EMCN(Endomucin)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(EMCN/HIF1A)が、培養の7日目以降のいずれかの日において0.002以上である。
 要件E8:BCL2(BCL2 Apoptosis Regulator)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(BCL2/HIF1A)が、培養7日目以降のいずれかの日において0.013以上である。
 <9> 細胞1個あたりのミトコンドリアの面積が200μm以上である、<1>~<8>のいずれか1つに記載の培養細胞シート。
 <10> ライブセルイメージングにおいて検出された収縮速度をCV(m/sec)とし、弛緩速度をRV(m/sec)としたとき、下記式(2)を満たす、<1>~<9>のいずれか1つに記載の培養細胞シート。
  1.0≦CV/RV≦2.8     (2)
 <11> カルシウムイメージング解析において、カルシウムトランジェントの波形ピーク高さを100%としたとき、20%の高さの波形幅をDuration(秒)とし、ピーク間の間隔をInterval(秒)としたとき、下記式(3)を満たす、<1>~<10>のいずれか1つに記載の培養細胞シート。
  Duration/(Interval)1/2≧0.68   (3)
 <12> 培養細胞シートを構成する細胞が、25℃溶液中でのパッチクランプ試験における活動電位80%再分極持続時間が600msec以上であり、かつ、最大拡張期電位が-60mV以下である、<1>~<11>のいずれか1つに記載の培養細胞シート。
 <13> 細胞が培養液に含まれる酸素を使用する速度を測定する酸素消費速度測定において、脂肪酸のβ酸化活性を阻害するβ酸化阻害剤の添加により、酸素消費速度がβ酸化阻害剤の添加前と比較して20%以下に減少する<1>~<12>のいずれか1つに記載の培養細胞シート。
 <14> 再生医療用である、<1>~<13>のいずれか1つに記載の培養細胞シート。
 <15> <1>~<14>のいずれか1つに記載の培養細胞シートの製造方法であって、培養細胞シートを形成するための表面を備え、前記表面は、複数の平坦部と複数の凹凸部とを備え、各平坦部は、第1方向に延びる形状を有し、かつ、前記複数の平坦部は前記表面の全体で前記第1方向と交差する第2方向に並び、各凹凸部は、相互に隣り合う前記平坦部の間を埋める複数の段差構造を含み、前記段差構造のピッチが100nm以上10μm以下であり、前記段差構造は、凸部であり、前記凹凸部は、相互に隣り合う前記平坦部に挟まれた凹部の底面に複数の前記凸部を備えており、細胞シート形成部材の厚み方向において、前記凹凸部における先端面の高さと、前記平坦部の高さとの差が0.5μm以下である細胞シート形成部材を用いて、心筋細胞を培養することを含む、培養細胞シートの製造方法。
 <16> <1>~<14>のいずれか1つに記載の培養細胞シートに対して、評価対象である化合物または薬物を作用させる、化合物または薬物の評価方法。
 <17> 培養細胞シートの生理学的特性の変化および運動機能の変化から選択される少なくとも1つの変化を評価する、<16>に記載の化合物または薬物の評価方法。
 <18> 前記評価対象である化合物または薬物が、INa遮断薬、Ikr遮断薬、Iks遮断薬、ICa遮断薬、5-HT4受容体作動薬、α受容体遮断薬、β受容体遮断薬、α受容体作動薬、およびβ受容体作動薬、毒劇物、抗がん剤、脂質代謝阻害剤、およびその他の生理活性物質からなる群より選択される少なくとも1つの既存化合物またはその候補化合物である、<16>または<17>に記載の化合物または薬物の評価方法。
 <19> 心筋細胞から構成される培養細胞シートの品質評価方法であって、下記(i)~(xii)のいずれかを評価する、品質評価方法。
 (i) 前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲(71.6μm×71.6μm)内にあるα-アクチニン抗体で検出される棒状構造体の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度を、下記式(1)により求める配向度が23%以上である。
 配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)
 (ii) ライブセルイメージングにおいて、動きベクトルの最頻値の角度から±5°の角度を示すベクトルの数(配向度)が12%以上である。
 (iii) 以下の要件A1および要件A2の少なくともいずれかを満たす。
 要件A1:MYL3(Myosin Light Chain 3)遺伝子の発現量と、ACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)が12.0以上である。
 要件A2:MYH7(Myosin Heavy Chain 7)遺伝子の発現量と、MYH6(Myosin Heavy Chain 6)遺伝子の発現量との比(MYH7/MYH6)が6.0以上である。
 (iv) 以下の要件B1および要件B2の少なくともいずれかを満たす。
 要件B1:CKM(Creatin Kinase,M-type)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(CKM/ACTB)が、1.80以上である。
 要件B2:LDHA(Lactate Dehydrogenase A subunit)の遺伝子発現量と、ACTBの遺伝子発現量との比(LDHA/ACTB)が0.80以上である。
 (v) 以下の要件C1~要件C4の少なくともいずれかを満たす。
 要件C1:CACNA2D1(Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(CACNA2D1/ATP1A1)が、培養15日目~30日目のいずれかの日において0.085以上である。
 要件C2:KCNJ2(Potassium Inwardly Rectifying Channel Subfamily J Member2)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(KCNJ2/ATP1A1)が、培養15日目~45日目のいずれかの日において0.038以上である。
 要件C3:KCNE1(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(KCNE1/ATP1A1)が、培養15日目~45日目のいずれかの日において0.003以上である。
 要件C4:SCN5A(Sodium Voltage-Gated Channel Alpha Subunit 5)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(SCN5A/ATP1A1)が、培養15日目~45日目のいずれかの日において0.87以上である。
 (vi) 以下の要件D1~要件D4の少なくともいずれかを満たす。
 要件D1:LPL(Lipoprotein Lipase)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(LPL/ACTB)が、培養15日目~45日目のいずれかの日において0.45以上である。
 要件D2:ACAT1(Acetyl-CoA Acetyltransferase 1)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(ACAT1/ACTB)が、培養15日目~30日目のいずれかの日において0.43以上である。
 要件D3:HADHA(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(HADHA/ACTB)が、培養15日目~30日目のいずれかの日において0.75以上である。
 要件D4:HADHB(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(HADHB/ACTB)が、培養15日目~30日目のいずれかの日において0.95以上である。
 (vii) 以下の要件E1~要件E8の少なくともいずれかを満たす。
 要件E1:PPARGC1A(PPARG(Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(PPARGC1A/HIF1A)が、培養のいずれかの日において0.80以上である。
 要件E2:ESRRA(Estrogen Related Receptor Alpha)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(ESRRA/HIF1A)が、培養のいずれかの日において0.55以上である。
 要件E3:VEGFA(Vascular Endothelial Growth Factor A)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(VEGFA/HIF1A)が、培養のいずれかの日において0.65以上である。
 要件E4:APLN(Apelin)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(APLN/HIF1A)が、培養のいずれかの日において0.005以上である。
 要件E5:FABP3(Fatty Acid Binding Protein 3)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(FABP3/HIF1A)が、培養のいずれかの日において5.0以上である。
 要件E6:ESM1(Endothelial Cell Specific Molecule 1)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(ESM1/HIF1A)が、培養のいずれかの日において0.002以上である。
 要件E7:EMCN(Endomucin)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(EMCN/HIF1A)が、培養の7日目以降のいずれかの日において0.002以上である。
 要件E8:BCL2(BCL2 Apoptosis Regulator)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(BCL2/HIF1A)が、培養7日目以降のいずれかの日において0.013以上である。
 (viii) 細胞1個あたりのミトコンドリアの面積が200μm以上である。
 (ix) ライブセルイメージングにおいて検出された収縮速度をCV(m/sec)とし、弛緩速度をRV(m/sec)としたとき、下記式(2)を満たす。
  1.0≦CV/RV≦2.8     (2)
 (x) カルシウムイメージング解析において、カルシウムトランジェントの波形ピーク高さを100%としたとき、20%の高さの波形幅をDuration(秒)とし、ピーク間の間隔をInterval(秒)としたとき、下記式(3)を満たす。
  Duration/(Interval)1/2≧0.68   (3)
 (xi) 培養細胞シートを構成する細胞が、25℃溶液中でのパッチクランプ試験における活動電位80%再分極持続時間が600msec以上であり、かつ、最大拡張期電位が-60mV以下である。
 (xii) 細胞が培養液に含まれる酸素を使用する速度を測定する酸素消費速度測定において、脂肪酸のβ酸化活性を阻害するβ酸化阻害剤の添加により、酸素消費速度がβ酸化阻害剤の添加前と比較して20%以下に減少する。
 本発明によれば、特定の薬剤を使用することなく、心筋細胞から構成された成熟化した培養細胞シートおよびその製造方法を提供することができる。また、本発明によれば、該培養細胞シートを使用した化合物または薬物の評価方法を提供することができる。さらに、本発明によれば、心筋細胞から構成された培養細胞シートの品質評価方法を提供することができる。
細胞シート形成部材の一実施形態における同部材の構成を示す図であり、(a)は細胞シート形成部材の構造をシャーレとともに示す斜視図であり、(b)は細胞シート形成部材の表面の一部を拡大して示す斜視図であり、(c)は細胞シート形成部材の表面の一部を拡大して示す平面図であり、(d)は細胞シート形成部材の一部を拡大して示す部分断面図である。 細胞シート形成部材の製造方法の一例を説明するための工程図である。 (a)~(c)は、細胞シートの製造過程を説明するための模式図である。 培養日数15日目、30日目、45日目、60日目における配向度を示すグラフである。 MYL3(Myosin Light Chain 3)遺伝子の発現量と、ACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)の経時変化を示すグラフである。 MYH7(Myosin Heavy Chain 7)遺伝子の発現量と、MYH6(Myosin Heavy Chain 6)遺伝子の発現量との比(MYH7/MYH6)の経時変化を示すグラフである。 CKM(Creatin Kinase,M-type)遺伝子、COX6A2(Cytochrome C Oxidase Subunit 6A2)遺伝子、CKMT2(Creatine Kinase Mitochondrial 2)遺伝子、およびLDHA(Lactate Dehydrogenase A subunit)遺伝子の発現量の経時変化を示すグラフである。 CKM遺伝子の発現量とACTB(Actin Beta)遺伝子の発現量との比(CKM/ACTB)、COX6A2遺伝子の発現量とACTB遺伝子の発現量との比(COX6A2/ACTB)、CKMT2遺伝子の発現量とACTB遺伝子の発現量との比(CKMT2/ACTB)、およびLDHA遺伝子の発現量とACTB遺伝子の発現量との比(LDHA/ACTB)の経時変化を示すグラフである。 CACNA2D1(Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1)遺伝子、KCNJ2(Potassium Inwardly Rectifying Channel Subfamily J Member2)遺伝子、KCNE1(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1)遺伝子およびSCN5A(Sodium Voltage-Gated Channel Alpha Subunit 5)遺伝子の発現量の経時変化を示すグラフである。 CACNA2D1遺伝子の発現量とATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)遺伝子の発現量との比(CACNA2D1/ATP1A1)、KCNJ2遺伝子の発現量とATP1A1遺伝子の発現量との比(KCNJ2/ATP1A1)、KCNE1遺伝子の発現量とATP1A1遺伝子の発現量との比(KCNE1/ATP1A1)およびSCN5A遺伝子の発現量とATP1A1遺伝子の発現量との比(SCN5A/ATP1A1)の経時変化を示すグラフである。 LPL(Lipoprotein Lipase)遺伝子、ACAT1(Acetyl-CoA Acetyltransferase 1)遺伝子、HADHA(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha)遺伝子およびHADHB(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta)遺伝子の発現量の経時変化を示すグラフである。 LPL遺伝子の発現量とACTB(Actin Beta)遺伝子の発現量との比(LPL/ACTB)、ACAT1遺伝子の発現量とACTB遺伝子の発現量との比(ACAT1/ACTB)、HADHA遺伝子の発現量とACTB遺伝子の発現量との比(HADHA/ACTB)、およびHADHB遺伝子の発現量とACTB遺伝子の発現量との比(HADHB/ACTB)の経時変化を示すグラフである。 PPARGC1A(PPARG(Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha)遺伝子、ESRRA(Estrogen Related Receptor Alpha)遺伝子、VEGFA(Vascular Endothelial Growth Factor A)遺伝子およびAPLN(Apelin)遺伝子の発現量の経時変化を示すグラフである。 PPARGC1A遺伝子の発現量とHIF1A(Hypoxia Inducible Factor 1 Alpha)遺伝子の発現量との比(PPARGC1A/HIF1A)、ESRRA遺伝子の発現量とHIF1A遺伝子の発現量との比(ESRRA/HIF1A)、VEGFA遺伝子の発現量とHIF1A遺伝子の発現量との比(VEGFA/HIF1A)、およびAPLN遺伝子の発現量とHIF1A遺伝子の発現量との比(APLN/HIF1A)の経時変化を示すグラフである。 FABP3(Fatty Acid Binding Protein 3)遺伝子、ESM1(Endothelial Cell Specific Molecule 1)遺伝子、EMCN(Endomucin)遺伝子およびBCL2(BCL2 Apoptosis Regulator)遺伝子の発現量の経時変化を示すグラフである。 FABP3遺伝子の発現量とHIF1A遺伝子の発現量との比(FABP3/HIF1A)、ESM1遺伝子の発現量とHIF1A遺伝子の発現量との比(ESM1/HIF1A)、EMCN遺伝子の発現量とHIF1A遺伝子の発現量との比(EMCN/HIF1A)、およびBCL2遺伝子の発現量とHIF1A遺伝子の発現量との比(BCL2/HIF1A)の経時変化を示すグラフである。 細胞1つあたりのミトコンドリア面積およびミトコンドリア活性を示すグラフである。 核およびミトコンドリアを染色した蛍光画像である。 ライブセルイメージング装置における動きベクトルの角度による頻度を示すグラフである。 ライブセルイメージング装置を用いて測定した心拍数(BR)、収縮速度(CV)、弛緩速度(RV)、心拍時間(CRD)および配向度の経時変化を示すグラフである。 ライブセルイメージング装置を用いて測定した収縮速度と弛緩速度との比(CV/RV)の経時変化を示すグラフである。 カルシウムイメージング解析で測定した、培養5日目におけるDuration、Interval、およびDuration/(Interval)1/2を示すグラフである。 パッチクランプ試験の結果を示すグラフである。 ライブセルイメージング解析で測定した各化合物の培養細胞シートに対する影響を示すグラフである。 カルシウムイメージング解析で測定した化合物(E-4031)の培養細胞シートに対する影響を示すグラフである。 カルシウムイメージング解析で測定した化合物(Quinidine)の培養細胞シートに対する影響を示すグラフである。 カルシウムイメージング解析で測定した化合物(Cisapride)の培養細胞シートに対する影響を示すグラフである。 カルシウムイメージング解析で測定した化合物(Isoproterenol)の培養細胞シートに対する影響を示すグラフである。 カルシウムイメージング解析で測定した化合物(DMSO)の培養細胞シートに対する影響を示すグラフである。 ライブセルイメージング解析で測定した化合物(Isoproterenol)の培養15日目の培養細胞シートに対する影響を示すグラフである。 ライブセルイメージング解析で測定した化合物(Milrinone)の培養15日目の培養細胞シートに対する影響を示すグラフである。 ライブセルイメージング解析で測定した化合物(Doxorubicin)の培養15日目の培養細胞シートに対する影響を示すグラフである β酸化阻害剤であるEtomoxirの添加による酸素消費速度の変化を示すグラフである。
 以下、本発明の好ましい実施形態を説明する。なお、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限および下限は任意に組み合わせることができる。
[培養細胞シート]
 本発明の培養細胞シートは、心筋細胞から構成される培養細胞シートであって、心筋細胞が配向性を有して配置され、前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲 71.6μm×71.6μmの面積内にあるα-アクチニン抗体で検出される棒状構造体(筋原線維のZ帯)の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度である、下記式(1)により求める配向度が23%以上である。
 配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)
 棒状構造体とは、α-アクチニンによって検出される筋原線維のZ帯を指す。Z帯は、筋原線維の向きに対して直行して存在する。心筋細胞が、長軸方向を揃えて一方向に配向した場合、Z帯は細胞の長軸方向に対して90°の角度を示す。
 棒状構造体の画像解析は、取得した画像を縦に三等分、横に三等分の9区画に分け(1区画は71.6μm×71.6μmの面積)、3区画(左上、中央、右下の区画)を用いた。取得した画像が3個以上の場合は、それぞれの画像の左上の1区画を測定し(n=3以上)、取得した画像が2個以下の場合は、代表的な1個の画像から3区画(左上、中央、右下の区画)を測定した。1区画には細胞が平均して10個含まれる。画像上の棒状構造体は、画像解析ソフトウェア(A像くん、旭化成エンジニアリング株式会社製)等の角度分布解析を使用して、α-アクチニンで検出された棒状構造体を検出し、画像の水平方向を0°として、α-アクチニンで検出された棒状構造体の角度分布(0~180°)を求めることができる。また、画像解析ソフト(例えばPhotoshop、Adobe社製)等を使用して、棒状構造体を直線でマークし、次にマークした直線のみを画像として保存し、解析ソフトウェア(A像くん、旭化成エンジニアリング株式会社製)等を使用して、直線の角度分布を解析することもできる。
 角度分布は0~180°間の10°毎の頻度として表した。
 なお、培養細胞シートとは、細胞シートが生体内に存在するものではなく、in vitroにて製造されたものであることを意味する。
 心筋細胞を成熟化させる手段として、細胞を生体に近い状態で培養する方法が有効であると考えられている。生体内の心筋は、一方向に配向した状態で存在し、細胞間結合を介して細胞間の電気伝導が行われ、収縮・弛緩といった機能を発揮している。
 本実施形態では、配向性培養基材を使用し、心筋細胞を配向した状態で培養することで、心筋細胞の成熟化(生理活性や運動機能の改善)が促進されることを見出した。この方法で培養した細胞を使用することで、創薬分野での毒性試験や有効性試験へヒトiPS細胞等由来心筋細胞の利用が可能になることを見出した。また、当該培養細胞シートは、成熟化が進んでおり、より生体内に近い状態であることから、再生医療にも応用が期待される。
 上記式(1)で表される配向度は、心筋細胞の成熟化を促進させる観点から、23%以上であり、好ましくは24%以上、より好ましくは25%以上であり、さらに好ましくは26%以上であり、そして、上限は特に限定されないが、製造容易性の観点から、50%以下である。
 なお、いずれかの培養日数において、上記式(1)で表される配向度が上記の範囲を満たしていればよい。
<心筋細胞>
 本実施形態の培養細胞シートは、心筋細胞から構成される。
 前記心筋細胞としては、無脊椎動物、ヒトおよび非ヒトを含む脊椎動物の心筋細胞が例示され、脊椎動物としては、魚類、両生類、は虫類、鳥類、および哺乳類を含む。具体的には、例えば、哺乳類としては、マウス、ラット、フェレット、ハムスター、モルモット、またはウサギ等のげっ歯類、イヌ、ネコ、ヒツジ、ブタ、ウシ、ウマ、または、アカゲザル、チンパンジー、オランウータン、ヒト等を含む霊長類等であってもよい。また、哺乳類の他にも、魚類、家禽を含む鳥類、爬虫類等を含む。
 これらの中でも、ヒトやマウスを含む哺乳類の心筋細胞であることが好ましく、ヒトの心筋細胞であることがより好ましい。
 本実施形態において、心筋細胞は、各種の中胚葉系への分化誘導因子等を用いた手法により多能性幹細胞(幹細胞)から分化誘導された心筋細胞であってもよい。加えて、本実施形態において、心筋細胞は、患者等の線維芽細胞や血液細胞に転写因子を導入して誘導されるinduced cardiomyocyte(iCM、ダイレクトリプログラミングにより得られた心筋細胞)であってもよい。さらに加えて、本実施形態の心筋細胞は、患者等の心臓から得られた初代培養(Primary Cell Culture)心筋細胞であってもよい。
 これらの中でも、心筋細胞は、幹細胞由来の心筋細胞であることが好ましい。
 ここで、幹細胞は、例えば、ヒトを含む霊長類、霊長類以外のほ乳類等の生物で各種細胞に分化可能な、多分化能を備える幹細胞(Stem Cell)を含む。幹細胞は、継代可能であり、継代しても分化が進まない状態を保ち、核型等が変化しにくく、またはエピジェネティックな表現型が変化しにくい性質を有することが好適である。また、幹細胞は、これに関連して、生体外(in vitro)で十分な増殖能力を備えていることが好適である。このような幹細胞の具体例としては、胚性幹細胞(Embryonic Stem Cell、以下、「ES細胞」という。)、人工多能性幹細胞(Induced Pluripotent Stem Cell、以下、「iPS細胞」という。)、その他の人工的に生成され若しくは選択された多能性を備える幹細胞等が挙げられる。これらの幹細胞は、特定の遺伝子を含むレトロウイルスやアデノウイルスやプラスミド等の各種ベクター、RNA、低分子化合物等により、体細胞を再プログラミングして作製された幹細胞であってもよい。
 なお、幹細胞としては、必ずしも全能性(万能性、pluripotent)に近い多分化能を備えている細胞である必要はないものの、通常より多分化能が高い多能性(multipotency)な細胞を用いることが好ましい。また、幹細胞は、疾患の患者から得られた細胞から作製された細胞、その他の疾患のモデルとなる細胞、レポーター遺伝子が組み込まれた細胞(レポーター細胞)、コンディショナルノックアウトが可能な細胞、その他の遺伝子組み換えされた細胞等であってもよい。この遺伝子組み換えは、染色体内の遺伝子の追加や修飾や削除、各種ベクターや人工染色体による遺伝子等の付加、エピジェネティック制御の変更、PNA等の人工遺伝物質の付加、その他の遺伝子組み換えを含む。
 これらの中でも、本実施形態において、心筋細胞は、入手容易性および心筋細胞への分化誘導性の観点から、ES細胞またはiPS細胞由来の心筋細胞であることが好ましい。
<遺伝子発現>
 本実施形態の培養細胞シートは、心筋細胞の成熟化に伴う特徴的な遺伝子発現量の変化が生じていることが好ましい。当該特徴的な遺伝子発現量の変化は、例えば、参考文献1(Circ. Res. 2020 Apr 10: 126(8), 1086-1106)、参考文献2(Nat Rev Cardiol. 2020 Jun;17(6):341-359)に記載されている。
 本発明の方法において、遺伝子発現量は、RNAの発現情報によって測定され、RNAの発現情報の取得方法は特に限定されないが、例えば、試料中に含まれるRNAを逆転写によりcDNAに変換した後、該cDNAまたはその増幅産物を測定することにより取得することが挙げられる。発現レベルを測定する手段としては、マイクロアレイ、定量RT-PCR、RNA-Seq等が挙げられ、好ましくはRNA-Seqである。
 RNAの発現量は、マイクロアレイ解析を用いる場合にはシグナル強度比によって定量され、RNA-seq解析ではゲノムにマッピングされたシーケンスリードの数(リードカウント値)により定量される。各転写物にマッピングされたリード数を、転写物の長さや当該解析で得られた総リード数等により補正する正規化と呼ばれる作業を経て、解析に使用される。具体的な正規化の手法としては、例えばサンプル間で総リード数の違いを補正するため、総リード数を100万に補正した、CPM(Counts Per Million)、さらに転写物の長さを1kb、総リード数を100万とし、各遺伝子の遺伝子長で補正されたリード数であるReads Per Kilobase of exon per Million mapped sequence reads(RPKM)値を挙げることができる。同様に総リード数を100万とし、各遺伝子の遺伝子長で補正されたフラグメント数であるFragments Per Kilobase of exon per Million mapped sequence reads(FPKM)値や、各転写産物のリード数を遺伝子長で補正し、総リード数を100万とした場合の転写産物数を表すTranscripts Per Million(TPM)値等も汎用される。本実施形態では、CPMおよびTPMを使用しているが、これに限定されるものではない。
 本実施形態の培養細胞シートは、MYL3(Myosin Light Chain 3)の遺伝子発現量が多いことが好ましく、組織や培養期間に関わらず一定量の遺伝子発現量が想定されるACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)は、好ましくは12.0以上、より好ましくは12.5以上である。また、培養日数に依存するが、さらに好ましくは15.0以上である。上限は特に限定されないが、一般に30.0以下、好ましくは25.0以下である。なお、本実施形態の培養細胞シートにおいて、培養日数によって遺伝子発現量の変化が認められるが、いずれかの培養日数において、上記の遺伝子発現量の比が達成されていればよい。
 また、心筋細胞では、成熟化に伴うアイソフォームの変化が生じることが報告されている(上記参考文献1参照)、このようなアイソフォームの変化として、MYH6(Myosin Heavy Chain 6)からMYH7(Myosin Heavy Chain 7)へのアイソフォームスイッチングが知られている。
 本実施形態の培養細胞シートにおいて、MYH7遺伝子の発現量と、MYH6遺伝子の発現量との比(MYH7/MYH6)は、好ましくは6.0以上、より好ましくは7.0以上である。また、上限は特に限定されないが、一般に15.0以下、好ましくは10.0以下である。なお、本実施形態の培養細胞シートにおいて、培養日数によって遺伝子発現量の変化が認められるが、いずれかの培養日数において、上記の遺伝子発現量の比が達成されていればよい。
 さらに、培養細胞シートにおいて、心筋の収縮に関連するCKM(Creatin Kinase,M-type)の遺伝子発現量が増加することが好ましい。本実施形態の培養細胞シートにおいて、いずれかの培養日数において、CKM遺伝子の発現量が、好ましくは900TPM(Transcript Per Kilobase Million)以上、より好ましくは1000TPM以上、さらに好ましくは1100TPM以上である。また、その上限は特に限定されないが、一般に1500TPM以下である。
 CKM遺伝子とACTB遺伝子との発現量の比(CKM/ACTB)は、いずれかの培養日数において、好ましくは1.80以上、より好ましくは2.00以上、さらに好ましくは2.10以上であり、そして、上限は特に限定されないが、一般に5.0以下、好ましくは4.5以下である。
 培養細胞シートにおいて、ミトコンドリアに局在するタンパク質であるCOX6A2(Cytochrome C Oxidase Subunit 6A2)の遺伝子発現量が増加することが好ましい。本実施形態の培養細胞シートにおいて、いずれかの培養日数において、COX6A2遺伝子の発現量は、好ましくは850TPM以上、より好ましくは875TPM以上、さらに好ましくは900TPM以上であり、そして、上限は特に限定されないが、例えば2000TPM以下、好ましくは1500TPM以下である。
 COX6A2遺伝子とACTB遺伝子との発現量の比(COX6A2/ACTB)は、いずれかの培養日数において、好ましくは1.95以上、より好ましくは2.20以上、さらに好ましくは2.40以上であり、そして、上限は特に限定されないが、一般に5.00以下、好ましくは3.50以下である。
 培養細胞シートにおいて、ミトコンドリアに局在するタンパク質であるCKMT2(Creatine Kinase,Mitochondrial 2)の遺伝子発現量が増加することが好ましい。本実施形態の培養細胞シートにおいて、いずれかの培養日数において、CKMT2遺伝子の発現量は、好ましくは330TPM以上、より好ましくは350TPM以上であり、そして、上限は特に限定されないが、例えば1000TPM以下、好ましくは800TPM以下である。
 CKMT2遺伝子とACTB遺伝子との発現量の比(CKMT2/ACTB)は、培養15~30日目において、好ましくは0.60以上、より好ましくは0.65以上であり、そして、上限は特に限定されないが、一般に3.0以下、好ましくは1.5以下である。また、いずれかの培養日数において、CKMT2/ACTBは、好ましくは0.80以上である。
 培養細胞シートにおいて、解糖系の酵素であるLDHA(Lactate Dehydrogenase A subunit)の遺伝子発現量が増加することが好ましい。細胞の活性化に伴い、エネルギー生産量が高まることで、LDHAの遺伝子発現量が増加するものと考えられる。
 本実施形態の培養細胞シートにおいて、いずれかに培養日数において、LDHA遺伝子の発現量は、好ましくは550TPM以上、より好ましくは600TPM以上、さらに好ましくは650TPM以上であり、そして、上限は特に限定されないが、例えば2000TPM以下、好ましくは1500TPM以下である。
 LDHA遺伝子とACTB遺伝子との発現量の比(LDHA/ACTB)は、好ましくは0.80以上、より好ましくは1.00以上、さらに好ましくは1.20以上であり、そして、上限は特に限定されないが、一般に5.0以下、好ましくは4.0以下である。
 培養細胞シートにおいて、心筋のカルシウムイオンチャネル形成に関連するCACNA2D1(Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1)、心筋のカリウムイオンチャネル形成に関連するKCNJ2(Potassium Inwardly Rectifying Channel Subfamily J Member2)、KCNE1(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1)、心筋のナトリウムイオンチャネル形成に関連するSCN5A(Sodium Voltage-Gated Channel Alpha Subunit 5)の発現量が経時的に増加することが好ましい。心筋細胞の成熟に伴い、心筋細胞の収縮弛緩運動も活性化するが、これに伴い、イオンチャネルの形成に関連する遺伝子の発現量が増加するものと考えられる。
 なお、CACNA2D1遺伝子、KCNJ2遺伝子、KCNE1遺伝子、SCN5A遺伝子の場合には、前述のACTBの代わりに、細胞膜内外でのNa+およびK+勾配の生成に関与するATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)を使用する。その理由としては、ATP1A1は恒常的に発現する心筋細胞膜タンパク質であるとされており、iPS細胞由来心筋細胞、胎児心筋、成人心筋での発現量の変動が少ないことが報告されていることから選択した(Okai, et al., Video-based assessment of drug-induced effects on contractile motion properties using human induced pluripotent stem cell-derived cardiomyocytes, Journal of Pharmacological and Toxicological Methods, Volume 105, September 2020, 106893参照)。
 本実施形態の培養細胞シートにおいて、いずれかの培養日数において、心筋のカルシウムイオンチャネル形成に関連するCACNA2D1遺伝子の発現量は、好ましくは2100CPM以上、より好ましくは2200CPM以上、さらに好ましくは2300CPM以上、よりさらに好ましくは2400CPM以上であり、そして、上限は特に限定されないが、例えば、3500CPM以下、好ましくは3000CPM以下である。
 CACNA2D1遺伝子とATP1A1遺伝子との発現量の比(CACNA2D1/ATP1A1)は、培養15日目~30日目のいずれかの日において、好ましくは0.08以上、より好ましくは0.085以上、さらに好ましくは0.09以上、よりさらに好ましくは0.095以上であり、そして、上限は特に限定されないが、一般に0.50以下、好ましくは0.20以下である。
 本実施形態の培養細胞シートにおいて、いずれかの培養日数において、KCNJ2遺伝子の発現量は、好ましくは950CPM以上、より好ましくは1000CPM以上、さらに好ましくは1200CPM以上であり、そして、上限は特に限定されないが、例えば、3000CPM以下、好ましくは2000CPM以下である。
 KCNJ2遺伝子とATP1A1遺伝子との発現量の比(KCNJ2/ATP1A1)は、培養15日目~45日目のいずれかの日において、好ましくは0.038以上、より好ましくは0.040以上、さらに好ましくは0.045以上であり、そして、上限は特に限定されないが、一般に0.15以下、好ましくは0.10以下である。
 本実施形態の培養細胞シートにおいて、培養15日目~45日目のいずれかの日において、KCNE1遺伝子の発現量は、好ましくは50CPM以上、より好ましくは60CPM以上、さらに好ましくは70CPM以上、よりさらに好ましくは75CPM以上であり、そして、上限は特に限定されないが、例えば、200CPM以下、好ましくは150CPM以下である。
 KCNE1遺伝子とATP1A1遺伝子との発現量の比(KCNE1/ATP1A1)は、培養15日目~45日目のいずれかの日において、好ましくは0.0025以上、より好ましくは0.003以上、さらに好ましくは0.0035以上であり、そして、上限は特に限定されないが、一般に0.01以下、好ましくは0.007以下である。
 本実施形態の培養細胞シートにおいて、培養15日目~45日目のいずれかの日において、SCN5A遺伝子の発現量は、好ましくは22000CPM以上、より好ましくは23000CPM以上、さらに好ましくは23500CPM以上であり、そして、上限は特に限定されないが、例えば、50000CPM以下、好ましくは40000CPM以下である。
 SCN5A遺伝子とATP1A1遺伝子との発現量の比(SCN5A/ATP1A1)は、培養15日目~45日目のいずれかの日において、好ましくは0.85以上、より好ましくは0.90以上、さらに好ましくは0.95以上であり、そして、上限は特に限定されないが、一般に5.0以下、好ましくは2.0以下である。
 培養細胞シートにおいて、細胞表面に存在して細胞内への脂質の取り込みを促進するLPL(Lipoprotein Lipase)や細胞内ミトコンドリアに局在し、脂肪酸のβ酸化に関連するACAT1(Acetyl-CoA Acetyltransferase 1)、HADHA(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha)、HADHB(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta)の発現量が経時的に増加することが好ましい。心筋細胞の成熟に伴い、運動機能が向上し、ATP消費量が増大する。より効率のよいATP産生のため、これらの遺伝子の発現が増加すると考えられる。
 本実施形態の培養細胞シートにおいて、培養15日目~45日目のいずれかの日において、LPL遺伝子の発現量は、好ましくは3100CPM以上、より好ましくは3500CPM以上、さらに好ましくは4000CPM以上、よりさらに好ましくは4500CPM以上であり、そして、上限は特に限定されないが、例えば、9000CPM以下、好ましくは7500CPM以下である。
 LPL遺伝子とACTB遺伝子との発現量の比(LPL/ACTB)は、培養15日目~45日目のいずれかの日において、好ましくは0.45以上、より好ましくは0.50以上、さらに好ましくは0.60以上であり、そして、上限は特に限定されないが、一般に2.0以下、好ましくは1.5以下、より好ましくは1.0以下である。
 本実施形態の培養細胞シートにおいて、培養30日目~45日目のいずれかの日において、ACAT1遺伝子の発現量は、好ましくは3500CPM以上、より好ましくは3800CPM以上であり、そして、上限は特に限定されないが、例えば、8000CPM以下、好ましくは6000CPM以下である。
 ACAT1遺伝子とACTB遺伝子との発現量の比(ACAT1/ACTB)は、培養15日目~30日目のいずれかの日において、好ましくは0.43以上、より好ましくは0.45以上、さらに好ましくは0.50以上であり、そして、上限は特に限定されないが、一般に2.0以下、好ましくは1.5以下、より好ましくは1.0以下である。
 本実施形態の培養細胞シートにおいて、培養30日目~45日目のいずれかの日において、HADHA遺伝子の発現量は、好ましくは6000CPM以上、より好ましくは6200CPM以上、さらに好ましくは6500CPM以上であり、そして、上限は特に限定されないが、例えば、12000CPM以下、好ましくは10000CPM以下である。
 HADHA遺伝子とACTB遺伝子との発現量の比(HADHA/ACTB)は、培養15日目~30日目のいずれかの日において、好ましくは0.75以上、より好ましくは0.80以上、さらに好ましくは0.90以上であり、そして、上限は特に限定されないが、一般に2.5以下、好ましくは2.0以下、より好ましくは1.5以下である。
 本実施形態の培養細胞シートにおいて、培養15日目~45日目のいずれかの日において、HADHB遺伝子の発現量は、好ましくは8200CPM以上、より好ましくは8300CPM以上、さらに好ましくは8500CPM以上であり、そして、上限は特に限定されないが、例えば、20000CPM以下、好ましくは15000CPM以下である。
 HADHB遺伝子とACTB遺伝子との発現量の比(HADHB/ACTB)は、培養15日目~30日目のいずれかの日において、好ましくは0.95以上、より好ましくは1.00以上、さらに好ましくは1.10以上、よりさらに好ましくは1.20以上であり、そして、上限は特に限定されないが、一般に2.5以下、好ましくは2.0以下、より好ましくは1.8以下である。
 培養細胞シートにおいて、ミトコンドリア生合成のマスターレギュレーターとして働く転写因子PGC-1αをコードするPPARGC1A遺伝子(PPARG(Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha)、心筋細胞の成熟化に関連するエストロゲン関連受容体ERR-αをコードするESRRA遺伝子(Estrogen Related Receptor Alpha)、血管増殖因子をコードするVEGFA遺伝子(Vascular Endothelial Growth Factor A)、心筋において心臓の収縮を刺激するマイオカインをコードするAPLN遺伝子(Apelin)、心筋において長鎖脂肪酸の取込を制御するマイオカインをコードするFABP3遺伝子(Fatty Acid Binding Protein 3)、内皮細胞特異的に発現するESM1遺伝子(Endothelial Cell Specific Molecule 1)、上皮細胞などから分泌されるムチン様糖タンパク質をコードするEMCN遺伝子(Endomucin)の発現量が経時的に増加することが好ましく、また、心筋細胞の分化に関わるBCL2遺伝子(BCL2 Apoptosis Regulator)の発現量が維持されていることが好ましい。
 心筋細胞の成熟に伴い、運動機能が亢進することにより、ミトコンドリアの機能化に関与するPPARGC1A遺伝子や血管新生に関与するVEGFA遺伝子の発現量が増加すると考えられ、また、これに伴い、APLN、FABP3等のマイオカインをコードする遺伝子の発現量が増加すると考えられる。さらに、内皮細胞に特異的なESM1やEMCN等の遺伝子の発現量が増加すると考えられる。また、心筋細胞の分化に関わるBCL2遺伝子の発現が維持されると考えられる。
 本実施形態の培養細胞シートにおいて、培養15日目~45日目のいずれかの日において、PPARGC1A遺伝子の発現量は、好ましくは4500CPM以上、より好ましくは4700CPM以上、さらに好ましくは5000CPM以上であり、そして、上限は特に限定されないが、例えば、20000CPM以下、好ましくは15000CPM以下、より好ましくは8000CPM以下である。
 PPARGC1A遺伝子とHIF1A遺伝子との発現量の比(PPARGC1A/HIF1A)は、培養のいずれかの日において、好ましくは0.80以上、より好ましくは0.85以上、さらに好ましくは0.90以上であり、そして、上限は特に限定されないが、一般に2.5以下、好ましくは2.0以下、より好ましくは1.5以下である。
 なお、PPARGC1A遺伝子、ESRRA遺伝子、VEGF遺伝子、APLN遺伝子、FABP3遺伝子、ESM1遺伝子、EMCN遺伝子、BCL2遺伝子の場合には、前述のACTBの代わりに、細胞の低酸素状態下で誘導される転写因子であるHIF1A(Hypoxia Inducible Factor 1 Alpha)を使用する。その理由としては、本項目で述べる血管新生の亢進は、低酸素症または運動刺激によって誘導されることが報告されているためである。細胞培養条件下ではどちらの環境も取りうるが、状態のよい(機能的に成熟した)心筋細胞では、運動刺激による各因子の発現上昇が起きていると考えられる(Arany, et al., HIF-independent regulation of VEGF and angiogenesisby the transcriptional coactivator PGC-1a, Vol 451| 21 February 2008参照)。
 本実施形態の培養細胞シートにおいて、培養15日目~45日目のいずれかの日において、ESRRA遺伝子の発現量は、好ましくは2750CPM以上、より好ましくは2900CPM以上、さらに好ましくは3000CPM以上であり、そして、上限は特に限定されないが、例えば、10000CPM以下、好ましくは6000CPM以下、より好ましくは4000CPM以下である。
 ESRRA遺伝子とHIF1A遺伝子との発現量の比(ESRRA/HIF1A)は、培養のいずれかの日において、好ましくは0.55以上、より好ましくは0.57以上、さらに好ましくは0.60以上であり、そして、上限は特に限定されないが、一般に2.0以下、好ましくは1.5以下、より好ましくは1.0以下である。
 本実施形態の培養細胞シートにおいて、培養のいずれかの日において、VEGFA遺伝子の発現量は、好ましくは3300CPM以上、より好ましくは3700CPM以上、さらに好ましくは4500CPM以上、よりさらに好ましくは6000CPM以上であり、そして、上限は特に限定されないが、例えば、25000CPM以下、好ましくは15000CPM以下、より好ましくは10000CPM以下である。
 VEGFA遺伝子とHIF1A遺伝子との発現量の比(VEGFA/HIF1A)は、培養のいずれかの日において、好ましくは0.65以上、より好ましくは0.70以上、さらに好ましくは0.90以上、よりさらに好ましくは1.2以上、特に好ましくは1.5以上であり、そして、上限は特に限定されないが、一般に5.0以下、好ましくは3.0以下、より好ましくは2.0以下である。
 本実施形態の培養細胞シートにおいて、培養のいずれかの日において、APLN遺伝子の発現量は、好ましくは100CPM以上、より好ましくは150CPM以上、さらに好ましく200CPM以上であり、そして、上限は特に限定されないが、例えば、50000CPM以下、好ましくは3000CPM以下、より好ましくは2000CPM以下である。
 APLN遺伝子とHIF1A遺伝子との発現量の比(APLN/HIF1A)は、培養のいずれかの日において、好ましくは0.005以上、より好ましくは0.020以上、さらに好ましくは0.030以上、よりさらに好ましくは0.040以上であり、そして、上限は特に限定されないが、一般に1.0以下、好ましくは0.50以下、より好ましくは0.30以下である。
 本実施形態の培養細胞シートにおいて、培養のいずれかの日において、FABP3遺伝子の発現量は、好ましくは30000CPM以上、より好ましくは31000CPM以上、さらに好ましく32000CPM以上であり、そして、上限は特に限定されないが、例えば、100000CPM以下、好ましくは60000CPM以下、より好ましくは40000CPM以下である。
 FABP3遺伝子とHIF1A遺伝子との発現量の比(FABP3/HIF1A)は、培養のいずれかの日において、好ましくは5.0以上、より好ましくは5.5以上、さらに好ましくは6.0以上であり、そして、上限は特に限定されないが、一般に15.0以下、好ましくは12.0以下、より好ましくは8.0以下である。
 本実施形態の培養細胞シートにおいて、培養のいずれかの日において、ESM1遺伝子の発現量は、好ましくは5CPM以上、より好ましくは25CPM以上、さらに好ましく40CPM以上、よりさらに好ましくは100CPM以上、特に好ましくは200CPM以上であり、そして、上限は特に限定されないが、例えば、3000CPM以下、好ましくは1000CPM以下、より好ましくは500CPM以下である。
 ESM1遺伝子とHIF1A遺伝子との発現量の比(ESM1/HIF1A)は、培養のいずれかの日において、好ましくは0.002以上、より好ましくは0.005以上、さらに好ましくは0.010以上であり、そして、上限は特に限定されないが、一般に0.200以下、好ましくは0.150以下、より好ましくは0.100以下である。
 本実施形態の培養細胞シートにおいて、培養の7日目以降のいずれかの日において、EMCN遺伝子の発現量は、好ましくは10CPM以上、より好ましくは20CPM以上、さらに好ましく40CPM以上、よりさらに好ましくは60CPM以上であり、そして、上限は特に限定されないが、例えば、1000CPM以下、好ましくは500CPM以下、より好ましくは300CPM以下である。
 EMCN遺伝子とHIF1A遺伝子との発現量の比(EMCN/HIF1A)は、培養の7日目以降のいずれかの日において、好ましくは0.002以上、より好ましくは0.004以上、さらに好ましくは0.005以上、よりさらに好ましくは0.010以上であり、そして、上限は特に限定されないが、一般に0.100以下、好ましくは0.070以下、より好ましくは0.050以下である。
 本実施形態の培養細胞シートにおいて、培養の7日目以降のいずれかの日において、BCL2遺伝子の発現量は、好ましくは60CPM以上、より好ましくは70CPM以上、さらに好ましく80CPM以上、よりさらに好ましくは90CPM以上であり、そして、上限は特に限定されないが、例えば、1000CPM以下、好ましくは500CPM以下、より好ましくは300CPM以下である。
 BCL2遺伝子とHIF1A遺伝子との発現量の比(BCL2/HIF1A)は、培養の7日目以降のいずれかの日において、好ましくは0.013以上、より好ましくは0.015以上、さらに好ましくは0.017以上であり、そして、上限は特に限定されないが、一般に0.100以下、好ましくは0.070以下、より好ましくは0.050以下である。
<ミトコンドリア量>
 心筋細胞は、成熟に伴い、ミトコンドリア量およびミトコンドリア活性が増加する傾向にある。
 本実施形態の培養細胞シートを、膜電位に基づいてミトコンドリアを選択的に標識する蛍光色素、および核を選択的に標識する蛍光色素を用いて染色し、蛍光画像を取得することで、ミトコンドリアおよび核の面積と、輝度とが測定される。
 膜電位に基づいて、ミトコンドリアを選択的に標識する蛍光色素としては、サーモフィッシャーサイエンティフィック社製のMito-trackerシリーズ等が例示される。また、核を選択的に標識する蛍光色素としては、Hoechst33342等が例示される。
 この時、核数、すなわち、細胞数で除することにより、細胞1個あたりのミトコンドリアの面積(Area)および輝度(Intensity)が算出される。なお、細胞1個あたりの面積は、ミトコンドリアの数を反映しており、細胞1個あたりの輝度は、ミトコンドリア活性を反映している。
 細胞1個あたりのミトコンドリアの面積は、好ましくは200μm以上、より好ましくは300μm以上、さらに好ましくは400μm以上、よりさらに好ましくは450μm以上であり、そして、上限は特に限定されないが、一般に1000μm以下、好ましくは800μm以下である。
 細胞1個あたりのミトコンドリアの輝度(Intensity)は、好ましくは2×10以上、より好ましくは3×10以上、さらに好ましくは4×10以上であり、そして、上限は特に限定されないが、一般に10×10以下、好ましくは8×10以下である。なお、細胞1個あたりの輝度は、実施例に記載の方法により測定した輝度である。
 また、上記の細胞1個あたりのミトコンドリアの面積およびミトコンドリアの輝度を測定する際の細胞播種条件は、6×10cells/well、培養日数9日目(5日目以降)、96ウェルの面積(0.33cm)である。
<ライブセルイメージング>
 心筋細胞から構成される培養細胞シートは、心筋細胞の収縮・弛緩に伴う動き変化が検出可能である。生体内では、心筋細胞は一方向に配向しており、配向方向に収縮・弛緩を行うことが観察される。
 ライブセルイメージング装置(例えば、SI8000、ソニー株式会社製)を用いて、培養細胞シート(生細胞)を、培養条件下で撮影することで得られた動画データから、心筋細胞の収縮・弛緩に伴う動きベクトル(速度、方向、数量)を検出することで、心拍数(BR:beating rate)、収縮速度(CV:contractile velocity)、弛緩速度(RV:relaxation velocity)、心拍時間(CRD:contraction-relaxation duration)、および配向度の解析が可能である。ライブセルイメージングによるBR、CV、RV、CRD等の測定については、例えば、Methods in Molecular Biology,vol.2320,Chapter 15が参照される。
 また、これらの測定方法については、実施例に記載の方法が参照される。
 ここで、配向度は、画面水平方向を0°としたとき、動きベクトルの角度を求め、ベクトル角度の最頻値の角度から±5°を示すベクトルの数と、検出されたベクトル数の総和の比を求めることで算出される。ライブセルイメージング装置から得られた配向度は、下記式で求められる。
 配向度(%)
 =(最頻値の±5°の範囲に含まれるベクトルの数)/(ベクトルの総数)×100
 本実施形態の培養細胞シートのライブセルイメージングを用いて測定される配向度は、好ましくは10%以上、より好ましくは12%以上、さらに好ましくは16%以上、よりさらに好ましくは18%以上、特に好ましくは20%以上である。配向度の上限は特に限定されない。
 ライブセルイメージングにおいて、成人の心拍数は平均60回/分であり、心拍数(BR)が60回/分に近い方が正常の成熟化心筋細胞に近く、収縮速度(CV)が速い方が正常の成熟化心筋細胞に近く、弛緩速度(RV)が速い方が成熟化心筋細胞に近く、拍動時間(CRD)が短い方が正常の成熟化心筋細胞に近い傾向にある。
 また、収縮速度(CV)と弛緩速度(RV)の比(CV/RV)は、小さい方が好ましい。本実施形態の培養細胞シートは、CV/RVは、好ましくは2.8以下であり、より好ましくは2.6以下であり、そして、好ましくは1.0以上である。すなわち、CV/RVは、以下の式(2)を満たすことが好ましい。
  1.0≦CV/RV≦2.8   (2)
<Ca-イメージング解析>
 心筋細胞では、心筋収縮に伴い、活動電位によって惹起された全細胞質のCa濃度がほぼ同時に上昇する、カルシウムトランジェントという現象が観察される。本実施形態の培養細胞シートを蛍光Ca指示薬で処理し、共焦点定量イメージサイトメトリーで観察(Ca-イメージング解析)することで、カルシウムトランジェントを経時的に観察することが可能である。カルシウムトランジェントのシグナル情報から、波形グラフを作成し、下記に記すパラメータを解析する方法としては、専用の解析ソフトを使用する。
 未熟な心筋細胞や病気により何らかの異常が現れた心筋細胞では、正常な成熟化心筋細胞に比べて、カルシウムトランジェントの波形ピークの20%高さの線幅(Duration)が延長する傾向がある。20%高さの線幅(Duration)は心拍数により変動するため、Duration(秒)とInterval(秒)の1/2乗との関係は、以下の式(3)を満たすことが好ましい。
  Duration/(Interval)1/2≧0.68   (3)
 なお、カルシウムトランジェント持続時間を反映する20%高さの線幅(Duration)と、活動電位持続時間には相関があることが報告されている。心筋細胞では、成熟化が進むほど、活動電位持続時間は長い傾向にある。Intervalは、心拍によって影響を受ける。通常、心電図の解析では、活動電位持続時間は心拍数で補正した値が使用されることに従い、式(3)のように、Duration/(Interval)1/2を採用した。
 本実施形態において、培養細胞シートを構成する細胞が、25℃溶液中でのパッチクランプ試験における活動電位80%再分極持続時間が600msec以上であり、かつ、最大拡張期電位が-60mV以下であることが好ましい。
 パッチクランプ試験は、25℃のTyrode溶液中の心筋細胞をカレントクランプ下、0.2Hzで、20pA~100pAの電流を細胞内に投入して、活動電位を発生させて、電位の変化を測定する。なお、電流は、適切な活動電位を発生させることができる範囲で、適宜選択すればよい。
 なお、活動電位持続時間の指標として、活動電位80%再分極持続時間を採用した。これは、電流を与えてから、第1相として示される活動電位のピークの高さと、最大拡張期電位との差を100%とした場合に、80%再分極に相当する電位となるまでに必要な時間である。すなわち、活動電位の立ち上がり時間から、活動電位が80%再分極に相当する電位となるまでに必要な時間である。
 心筋細胞が成熟化すると、未成熟の心筋細胞に比べて、活動電位持続時間が長く、また、最大拡張期電位が深くなる傾向にある。
 本実施形態の培養細胞シートを構成する細胞の活動電位80%再分極持続時間は、好ましくは600msec以上、より好ましくは650msec以上、さらに好ましくは700msec以上、よりさらに好ましくは750msec以上であり、そして、上限は特に限定されないが、生体内の心筋細胞と同程度の活動電位持続時間であることが好ましい観点から、好ましくは1200msec以下、より好ましくは1050msec以下、さらに好ましくは900msec以下である。
 また、本実施形態の培養細胞シートを構成する細胞の最大拡張期電位は、生体内の新規細胞により近い値であることが好ましい観点から、好ましくは-60mV以下、より好ましくは-62.5mV以下、さらに好ましくは-65mV以下、よりさらに好ましくは-67.5mV以下である。また、下限は特に限定されないが、成人の心室心筋細胞は約-80mVのため、-80mVに近い値であることが好ましい。
 なお、ヒト由来の正常単離心室筋細胞での活動電位持続時間および最大拡張期電位(静止膜電位)については、Circulation,2013;127:575-584が参照される。
<酸素消費速度のβ酸化阻害剤による低下>
 本実施形態において、培養細胞シートを構成する細胞が、培養液に含まれる酸素を使用する速度を測定する酸素消費速度測定において、脂肪酸のβ酸化活性を阻害するβ酸化阻害剤の添加により、酸素消費速度がβ酸化阻害剤の添加前と比較して20%以下に減少することが好ましい。
 培養液に含まれる酸素は、細胞に取り込まれた後、ミトコンドリアの酸化的リン酸化によりATPが産出される経路で消費されるため、培養液の酸素消費速度(OCR:Oxygen Consumption Rate)はミトコンドリア機能解析の指標とすることができる。ミトコンドリアにおける代謝は、主にグルコース、脂肪酸、グルタミンを使用する経路があり、それぞれの代謝に関与する酵素の阻害薬剤を添加することで、代謝経路を推測することが可能である。
 酸素消費量の測定は、市販の酸素消費速度プレートアッセイキット(同仁化学株式会社製)等を使用して測定することができる。
 成熟化した心筋細胞は、未成熟の心筋細胞よりも脂肪酸代謝への依存度が高い。
 本実施形態の培養細胞シートを構成する細胞が、培養液に含まれる酸素を使用する速度を測定する酸素消費速度測定において、脂肪酸のβ酸化活性を阻害するβ酸化阻害剤の添加による酸素消費速度が、β酸化阻害剤の添加前を100%とした時に、好ましくは30%以下、より好ましくは20%以下、さらに好ましくは15%以下である。
<培養細胞シートの用途>
 本実施形態の培養細胞シートは、種々の用途に使用することができ、例えば、再生医療用途に使用できる。培養細胞シートは、1層の細胞から形成された単層シートでもよく、また、2層以上の細胞から形成された複層シートであってもよい。
 具体的には、心筋梗塞、狭心症等の虚血性疾患により障害を受けた心臓(以下、「障害心臓」ともいう)の心筋組織の障害部位へ心臓組織の収縮と同じ方向になるように培養細胞シートを直接貼付、貼付後に縫合、挿入等の方法が例示できる。再生医療に使用する際、単層の細胞シートまたは複層の細胞シートを数枚重ね合わせて積層化した後に、再生医療に使用してもよい。なお、積層する場合には、配向方向を揃えて積層することが好ましく、具体的には、培養細胞シートの収縮の方向、または配向の方向を揃えて積層すればよい。
 また、本実施形態の培養細胞シートは、後述するように、評価対象である化合物または薬物を作用させることで、心筋細胞に対する化合物または薬物の作用を評価するために使用してもよい。
[培養細胞シートの製造方法]
 本実施形態の心筋細胞から構成される培養細胞シートの製造方法は、特定の細胞シート形成部材を用いて、心筋細胞を培養することを含み、細胞シート形成部材が、培養細胞シートを形成するための表面を備え、前記表面は、複数の平坦部と複数の凹凸部とを備え、各平坦部は、第1方向に延びる形状を有し、かつ、前記複数の平坦部は前記表面の全体で前記第1方向と交差する第2方向に並び、各凹凸部は、相互に隣り合う前記平坦部の間を埋める複数の段差構造を含み、前記段差構造のピッチが100nm以上10μm以下であり、前記段差構造は、凸部であり、前記凹凸部は、相互に隣り合う前記平坦部に挟まれた凹部の底面に複数の前記凸部を備えており、細胞シート形成部材の厚み方向において、前記凹凸部における先端面の高さと、前記平坦部の高さとの差が0.5μm以下である。
 図1(a)が示すように、細胞シート形成部材100は、例えば、シャーレの培養皿110に載置されるシート材である。シャーレは、培養皿110と蓋120とに囲まれた空間に細胞懸濁液を保持する。なお、シャーレの底部が、上記した、特定の平坦部と凹凸部とを有する表面形状に加工されていてもよく、その場合には、シャーレ自体が、細胞シート形成部材である。
 図1(b)が示すように、細胞シート形成部材100の表面111は、複数の平坦部130と、複数の凹凸部140とを備える。凹凸部140は、複数の段差構造から構成され、複数の段差構造は、相互に隣り合う平坦部130の間を埋める。段差構造は、凸部である。なお、凹凸部140は、相互に隣り合う平坦部130に挟まれた凹部と、凹部の底面に位置する複数の凸部141とを備える。
 図1(c)が示すように、各平坦部130は、1つの方向である第1方向(図1(c)の上下方向)に延びる平坦面である。各平坦部130は、表面111の全体において、第1方向と直交する第2方向(図1(c)の左右方向)に並ぶ。各凹凸部140もまた、第1方向に延び、かつ、表面111の全体において、第2方向に並ぶ。
 凹凸部140を構成する各凸部141は、表面111と対向する方向から見て、例えば、三角格子の各頂点に位置する。各凹凸部140は、凸部141のこうした配列を、第1方向、および、第2方向に繰り返す。三角格子の各頂点に凸部141が位置する凹凸部140であれば、凸部141を形成するための原盤を、微小な繰り返し構造を形成することに適したマスク、例えば、単粒子膜をマスクとしたエッチング法によって形成することが可能となる。
 表面111と対向する方向から見て、各凸部141は、例えば円形状を有する。相互に隣り合う凸部141の中心間の距離の最頻値は、凸部141のピッチである。また、凸部141の平面視形状における凸部の最大幅は、凸部141の直径である。
 凸部141のピッチが下記(A)および(B)を満たす構成は、心筋細胞の伸長方向を第1方向に揃える観点において好適である。すなわち、凸部141のピッチが下記(A)および(B)を満たす構成は、心筋細胞の接着に対する優劣が、平坦部130と凹凸部140との間で明確に区画される観点において好適である。
 (A)凸部141のピッチ:100nm以上10μm以下
 (B)凸部141の直径:凸部141のピッチの50%以上100%以下
 各平坦部130の第2方向(短辺方向)での長さは、平坦部130の幅である。また、相互に隣り合う平坦部130間の第2方向(短辺方向)での長さは、凹凸部140の幅である。
 平坦部130の幅、および、凹凸部140の幅は、例えば、培養の対象となる細胞の大きさ(5μm以上100μm以下)の1/10倍以上10倍以下である。平坦部130の幅、および、凹凸部140の幅が下記(C)および(D)を満たす構成は、心筋細胞の伸長方向を第1方向に揃えることを容易なものとする観点において好適である。
 (C)平坦部130の幅:10μm以上50μm以下
 (D)凹凸部140の幅:10μm以上50μm以下
 図1(d)に示すように、凹凸部140は、相互に隣り合う凸部141、および、平坦部130とそれに隣接する凸部141との間に、凹部142を備えてもよい。複数の凸部141が凹凸部140に点在するため、凸部141間の空間である凹部142は、凹凸部140において、第1方向、および、第2方向に連なる。
 細胞シート形成部材100の厚み方向において、凹部142の底面と平坦部130との間の長さは、平坦部130の高さである。また、細胞シート形成部材100の厚み方向において、各凸部141の先端面と平坦部130との間の高低差は、境界段差である。凹部142の底面と各凸部141の先端面の高低差は、凸部141の高さである。各凸部141の先端面と平坦部130とが面一である構成では、平坦部130の高さと、凸部141の高さとが、相互に等しい。凸部141の高さに対する凸部141のピッチの比は、凸部141のアスペクト比である。
 境界段差が下記(E)を満たす構成は、細胞シートの平坦性を高める観点において好適である。凸部141の高さが下記(F)を満たす構成、また、凸部141のアスペクト比が下記(G)を満たす構成は、凹凸部140の構造上での安定性を高められる観点、また、凹凸部140の形成を容易なものとする観点において好適である。
 (E)境界段差:0.5μm以下、好ましくは0.3μm以下
 (F)凸部141の高さ:50nm以上5μm以下
 (G)凸部141のアスペクト比:0.1以上10以下
 そして、上記(A)(B)を満たす構成であれば、平坦部130に対する接着が優勢である細胞であれ、凹凸部140に対する接着が優勢である細胞であれ、一方の構造体に対して細胞が優先的に接着し、他方の構造体に対する接着の劣勢と相まって、双方の構造体の延在方向である第1方向に、細胞の伸長方向が揃えられる。結果として、表面111に沿った二次元方向に広がる細胞シートにおいて、細胞の伸長方向を一次元方向に揃えること、すなわち、細胞の配向性を向上させることが可能となる。
 また、上記(E)を満たす構成、特に、各凸部141の先端面と平坦部130とが面一である構成は、凹凸部140と平坦部130とを覆うように形成された細胞シートにおいて、それの平坦性を高めることを可能とする。さらに、上記(F)を満たす構成は、細胞シートの平坦性をより一層に高めることが可能である。
 なお、細胞シート形成部材100の表面111が、平坦部130と凹凸部140とを備えるため、平坦部130に対する接着が優勢である細胞と、凹凸部140に対する接着が優勢である細胞との両方に、共通する細胞シート形成部材100を適用することが可能ともなる。すなわち、細胞シート形成部材100の汎用性を高めることも可能となる。
 また、細胞シート形成部材100の表面111は、細胞の接着性を高めることを目的として、例えば、ラミニン、コラーゲン、ゼラチン、フィブロネクチン、ポリリシン(PDLまたはPLL)、ヒアルロン酸などの細胞外マトリックス、ポリマー、ゲル等の接着因子を含む有機物が塗布されてもよく、あるいは、金属から構成される面であってもよい。また、細胞シート形成部材100の表面111は、細胞の接着性や細胞シートの平坦性を高めることを目的として、親水性、あるいは、疎水性を有してもよい。
 また、細胞シート形成後に細胞シートの剥離・回収を容易にするために、刺激応答性材料を塗布してもよい。刺激応答性材料としては、温度変化によって水親和性が変化する温度応答性ポリマーが好ましい。具体的にはポリ-N-イソプロピルアクリルアミド(PIPAAm)が好ましい。刺激応答性材料は慣用の塗布方法を用いて基材に塗布してもよいし、刺激応答性材料を処理した基材に下記に記載した方法を用いて構造を加工してもよい。
<細胞シート形成部材の製造方法>
 細胞シート形成部材の製造方法の一例について説明する。なお、以下の説明では、ナノインプリント法を用いて、細胞シート形成部材の表面111を、凹版150の転写によって形成する例を説明する。
 図2が示すように、細胞シート形成部材の製造方法は、凹版150を形成する工程と、細胞シート形成部材100の表面111を凹版150の転写によって形成する工程とを含む。
 凹版150の下面は、第1方向(紙面と直交する方向)に延びる形状を有し、かつ、第1方向と交差する第2方向(紙面の左右方向)に並ぶ複数の平坦部と、相互に隣り合う平坦部の間を埋める複数の段差構造から構成された凹凸部とを備える。凹版150の平坦部は、細胞シート形成部材100の平坦部130を転写によって形成するための部分である。凹版150の凹凸部は、細胞シート形成部材100の凹凸部140を転写によって形成するための部分である。
 凹版150の段差構造は、凸部、または、凹部である。なお、本実施形態における凹版150の段差構造は、凸部141を形成するための凹部151であり、凹部151のピッチは、100nm以上10μm以下である。凹版150を形成する工程では、例えば、凹版150を形成するためのシリコン基板に対する、フォトリソグラフィー法、コロイダルリソグラフィー法、陽極酸化法、および、干渉露光法の少なくとも1種を用いて、凹凸部が形成される。また、凹版150自体を原盤からの1回、あるいは複数回の転写によって得てもよい。原盤には、例えば、シリコン基板に対するフォトリソグラフィー法、コロイダルリソグラフィー法、陽極酸化法、および、干渉露光法の少なくとも1種を用いて凹版150の表面形状に対応する形状が作り込まれている。
 次に、細胞シート形成部材100を形成するための基材160の表面111に、凹版150の下面を対向させる。基材160の形成材料は、例えば、熱可塑性樹脂や光硬化性樹脂である。そして、基材160が流動性を有する状態で、基材160の表面111に、凹版150の下面を押し付ける。次いで、基材160の流動性を抑えた状態で、凹版150を基材160の表面111から離型する。これによって、基材160の表面111に凹版150の凹部151が転写され、平坦部130と凹凸部140とが形成される。
 基材160の形成材料の熱可塑性樹脂や光硬化性樹脂の表面に、細胞の接着性を高めることを目的として、例えば、ラミニン、コラーゲン、ゼラチン、フィブロネクチン、ポリリシン(PDLまたはPLL)、ヒアルロン酸などの細胞外マトリックス、ポリマー、ゲルなどの接着因子を含む有機物が塗布されていてもよい。また、基材160の形成材料として、多糖類やタンパク質などの生体材料を用いてもよい。
<培養細胞シートの製造方法>
 細胞シート形成部材100を用いて製造される細胞シートについて説明する。
 上記(A)を満たす細胞シート形成基材では、図3(a)が示すように、細胞シート形成部材100に保持された細胞懸濁液の細胞が、平坦部130に対して優先的に接着する細胞S1であり、平坦部130よりも劣勢ではあるが、凹凸部140に対する接着を許容された細胞S2でもある。あるいは、細胞シート形成部材100に保持された細胞懸濁液の細胞が、凹凸部140に対して優先的に接着する細胞S2であり、凹凸部140よりも劣勢ではあるが、平坦部130に対する接着を許容された細胞S1でもある。
 この場合、図3(b)に示すように、平坦部130、および、凹凸部140は、第1方向に延び、第2方向に交互に配置される。そのため、細胞シート形成部材の表面111には、例えば、平坦部130に優先的に接着された細胞S1の配向性が、平坦部130の構造、および、それを区画する凹凸部140の構造によって制御される。
 そして、相互に隣り合う平坦部130に挟まれた凹凸部140においては、平坦部130よりも劣勢ではあるが、凹凸部140に接着した細胞S2にて、平坦部130による配向性の制御が反映される。結果として、図3(c)が示すように、第1方向に配向性の制御された細胞S1,S2が、表面111の全体に広がる培養細胞シートSAを形成する。
 あるいは、凹凸部140に優先的に接着された細胞S2の配向性が、凹凸部140の構造、および、それを区画する平坦部130の構造によって制御される。そして、相互に隣り合う凹凸部140に挟まれた平坦部130においては、凹凸部140よりも劣勢ではあるが、平坦部130に接着した細胞S1にて、凹凸部140による配向性の制御が反映される。結果として、図3(c)が示すように、第1方向に配向性の制御された細胞S1,S2が、表面111の全体に広がる培養細胞シートSAを形成する。
[化合物または薬物の評価方法]
 本実施形態の化合物または薬物の評価方法は、上述した培養細胞シートに対して、評価対象である化合物または薬物を作用させる。
 評価対象である化合物または薬物を培養細胞シートに作用させ、培養細胞シートの生理学的特性の変化および運動機能の変化から選択される少なくとも1つの変化を評価することにより、化合物または薬物を評価することが好ましい。生理学的特性の変化としては、上述したカルシウムトランジェントの観察におけるBR、Duration、Interval、カルシウムトランジェントのピーク高さ(Intensity)等の変化が例示され、運動機能の変化としては、上述したライブセルイメージング観察によるBR、CV、RV、CRD、収縮時間(Contraction duration)、弛緩時間(Relaxation duration)等の変化が例示される。
 評価を行う際の培養細胞シートの培養日数は特に限定されないが、15日程度の培養日数の培養細胞シートを用いて評価を行うことが、心筋細胞の成熟度がより高いことから、好適である。
 評価対象とする化合物または薬物としては、特に限定されないが、心筋細胞に対しての作用を有することが知られている既知化合物またはその候補化合物であることが好ましく、例えば、INa遮断薬、Ikr遮断薬、Iks遮断薬、ICa遮断薬、5-HT4受容体作動薬、α受容体遮断薬、β受容体遮断薬、α受容体作動薬、β受容体作動薬、毒劇物、抗がん剤、脂質代謝阻害剤、ホスホジエステラーゼ3阻害剤、およびその他の生理活性物質(例えば、タンパク質、ペプチド、抗体、DNA、RNA等)からなる群より選択される少なくとも1つの既存化合物またはその候補化合物であることが好ましい。
 既存のINa遮断薬としては、Quinidine、Propranololが例示される。
 既存のIkr遮断薬としては、E-4031、Quinidine、Sotarol、Cisapride、Bepridilが例示される。
 既存のIks遮断薬としては、Bepridil、Chromanolが例示される。
 既存のβ遮断薬としては、Sotarol、Propranolol、Carvedilolが例示される。
 既存のα遮断薬としては、Carvedilolが例示される。
 既存のβ受容体作動薬としては、Isoproterenolが例示される。
 既存のホスホジエステラーゼ3阻害剤としては、Milrinoneが例示される。
[培養細胞シートの品質評価方法]
 本実施形態の培養細胞シートの品質評価方法によれば、心筋細胞から構成される培養細胞シートが、成熟化が進み、再生医療用の培養細胞シートや、化合物または薬物の評価方法に好適に使用できる培養細胞シートであるのかについての品質評価方法が提供される。また、培養細胞シートの製造方法において、一工程として、上記品質評価方法を有することにより、より品質に優れた培養細胞シートが提供される。すなわち、本実施形態において、培養細胞シートの製造方法の一工程として、上記品質評価方法を組み入れることも好ましい。
 下記(i)~(xii)の少なくとも1つを満たすことが好ましく、少なくとも(i)と(ii)~(xii)の少なくとも1つとを満たすことがより好ましく、(i)~(xii)の全ても満たすことがさらに好ましい。
 (i) 前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲(71.6μm×71.6μm)内にあるα-アクチニン抗体で検出される棒状構造体の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度を、下記式(1)により求める配向度が23%以上である。
 配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)
 (ii) ライブセルイメージングにおいて、動きベクトルの最頻値の角度から±5°の角度を示すベクトルの数(配向度)が12%以上である。
 (iii) 以下の要件A1および要件A2の少なくともいずれかを満たす。
 要件A1:MYL3(Myosin Light Chain 3)遺伝子の発現量と、ACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)が12.0以上である。培養7日目以降においてMYL3/ACTBが12.0以上であることが好ましい。
 要件A2:MYH7(Myosin Heavy Chain 7)遺伝子の発現量と、MYH6(Myosin Heavy Chain 6)遺伝子の発現量との比(MYH7/MYH6)が6.0以上である。培養7日目以降において、MYH7/MYH6が6.0以上であることが好ましい。
 (iv) 以下の要件B1および要件B2の少なくともいずれかを満たす。
 要件B1:CKM(Creatin Kinase,M-type)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(CKM/ACTB)が、1.80以上である。培養15日目~45日目において、CKM/ACTBが1.80以上であることが好ましい。
 要件B2:LDHA(Lactate Dehydrogenase A subunit)の遺伝子発現量と、ACTBの遺伝子発現量との比(LDHA/ACTB)が0.80以上である。培養7日目以降において、LDHA/ACTBが0.80以上であることが好ましく、1.2以上であることがより好ましい。
 (v) 以下の要件C1~要件C4の少なくともいずれかを満たす。
 要件C1:CACNA2D1(Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(CACNA2D1/ATP1A1)が、培養15日目~30日目のいずれかの日において0.085以上である。
 要件C2:KCNJ2(Potassium Inwardly Rectifying Channel Subfamily J Member2)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(KCNJ2/ATP1A1)が、培養15日目~30日目のいずれかの日において0.038以上である。
 要件C3:KCNE1(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(KCNE1/ATP1A1)が、培養15日目~30日目のいずれかの日において0.003以上である。
 要件C4:SCN5A(Sodium Voltage-Gated Channel Alpha Subunit 5)の遺伝子発現量と、ATP1A1(ATPase Na+/K+ Transporting Subunit Alpha 1)の遺伝子発現量との比(SCN5A/ATP1A1)が、培養15日目~30日目のいずれかの日において0.87以上である。
 (vi) 以下の要件D1~要件D4の少なくともいずれかを満たす。
 要件D1:LPL(Lipoprotein Lipase)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(LPL/ACTB)が、培養15日目~45日目のいずれかの日において0.45以上である。
 要件D2:ACAT1(Acetyl-CoA Acetyltransferase 1)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(ACAT1/ACTB)が、培養15日目~30日目のいずれかの日において0.43以上である。
 要件D3:HADHA(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(HADHA/ACTB)が、培養15日目~30日目のいずれかの日において0.75以上である。
 要件D4:HADHB(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(HADHB/ACTB)が、培養15日目~30日目のいずれかの日において0.95以上である。
 (vii) 以下の要件E1~要件E8の少なくともいずれかを満たす。
 要件E1:PPARGC1A(PPARG(Peroxisome Proliferator-Activated Receptor Gamma) Coactivator 1 Alpha)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(PPARGC1A/HIF1A)が、培養のいずれかの日において0.80以上である。
 要件E2:ESRRA(Estrogen Related Receptor Alpha)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(ESRRA/HIF1A)が、培養のいずれかの日において0.55以上である。
 要件E3:VEGFA(Vascular Endothelial Growth Factor A)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(VEGFA/HIF1A)が、培養のいずれかの日において0.65以上である。
 要件E4:APLN(Apelin)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(APLN/HIF1A)が、培養のいずれかの日において0.005以上である。
 要件E5:FABP3(Fatty Acid Binding Protein 3)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(FABP3/HIF1A)が、培養のいずれかの日において5.0以上である。
 要件E6:ESM1(Endothelial Cell Specific Molecule 1)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(ESM1/HIF1A)が、培養のいずれかの日において0.002以上である。
 要件E7:EMCN(Endomucin)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(EMCN/HIF1A)が、培養の7日目以降のいずれかの日において0.002以上である。
 要件E8:BCL2(BCL2 Apoptosis Regulator)の遺伝子発現量と、HIF1A(Hypoxia Inducible Factor 1 Alpha)の遺伝子発現量との比(BCL2/HIF1A)が、培養7日目以降のいずれかの日において0.013以上である。
 (viii) 細胞1個あたりのミトコンドリアの面積が200μm以上である。
 (ix) ライブセルイメージングにおいて検出された収縮速度をCV(m/sec)とし、弛緩速度をRV(m/sec)としたとき、下記式(2)を満たす。
  1.0≦CV/RV≦2.8     (2)
 (x) カルシウムイメージング解析において、カルシウムトランジェントの波形ピーク高さを100%としたとき、20%の高さの波形幅をDuration(秒)とし、ピーク間の間隔をInterval(秒)としたとき、下記式(3)を満たす。
  Duration/(Interval)1/2≧0.68   (3)
 (xi) 培養細胞シートを構成する細胞が、25℃溶液中でのパッチクランプ試験における活動電位80%再分極持続時間が600msec以上であり、かつ、最大拡張期電位が-60mV以下である。
 (xii) 細胞が培養液に含まれる酸素を使用する速度を測定する酸素消費速度測定において、脂肪酸のβ酸化活性を阻害するβ酸化阻害剤の添加により、酸素消費速度がβ酸化阻害剤の添加前と比較して、20%以下に減少する。
 以下に、本発明を具体的に説明するために実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。
(1)iPS細胞由来心筋細胞の培養-1(CM1)
 ヒトiPS細胞由来の心筋細胞として、iCell心筋細胞(iCell Cardiomyocyte v1.0、FUJIFILM Cellular Dynamics社製)(以下CM1)を使用した。培養は以下の手順で実施した。
 凍結細胞サンプルは、37℃のウォーターバスで3分間加温し、溶解した。細胞液は、50mL遠沈管に移し、あらかじめ37℃に加温したplating medium(iCell 心筋細胞 解凍用培地、FUJIFILM Cellular Dynamics社製)を9mL加えて混合し、細胞液を希釈した。
 希釈した細胞懸濁液を一部採取し、等量のトリパンブルーと混合し、血球計算盤を使用して生細胞数を測定した。細胞はplating mediumを使用して1×10cells/2mL(=5×10/mL)に濃度調整して2mLずつあらかじめゼラチンでコーティングした6ウェルプレートに播種した。
 培養容器のゼラチンコーティングは、滅菌済みの0.1%ゼラチン溶液を容器に加え(2mL/ウェル)、37℃で一時間静置した。使用前にゼラチン溶液を除去して細胞を播種した。
 播種後の細胞は、37℃のCOインキュベーターに静置し、播種当日を0日として、培養3日目に培地交換を行った。
 培養5日目に再播種を行うため、細胞をトリプシンで剥がして回収した。回収した細胞懸濁液を一部採取し、等量のトリパンブルーと混合し、生細胞数を測定した。細胞はplating mediumを使用して濃度調整し、8×10cells/ウェルの濃度で、0.1mLずつ、あらかじめフィブロネクチン0.05mg/mLを40μL加えて2時間以上コーティングした96ウェルプレートに播種した。96ウェルプレートは、ND Cell Aligner(配向性プレート、96ウェルプレートタイプ)、対照として、培養面が平坦形状の市販96ウェルプレート(平面プレート)を使用した。
 播種後の細胞は、37℃のCOインキュベーターで4時間静置し2日毎に、Maintenance Medium(iCell 心筋細胞 維持用培地、FUJIFILM Cellular Dynamics社製)を使用して培地交換を行い、所定期間、維持培養を行った。
(2)iPS細胞由来心筋細胞の培養-2(CM2)
 ヒトiPS細胞由来の心筋細胞として、iCell心筋細胞(iCell Cardiomyocyte v2.0、FUJIFILM Cellular Dynamics社製)(以下CM2)を使用した。培養は以下の手順で実施した。
 凍結細胞サンプルは、37℃のウォーターバスで3分間加温し、溶解した。細胞液は、50mL遠沈管に移し、あらかじめ37℃に加温したplating mediumを9mL加えて混合し、細胞液を希釈した。希釈した細胞懸濁液を一部採取し、等量のトリパンブルーと混合し、血球計算盤を使用して生細胞数を測定した。
 細胞濃度をplating mediumを使用して調整し、6×10cells/wellの濃度で、あらかじめフィブロネクチンコーティングした96ウェルプレートに播種した。96ウェルプレートは、ND Cell Aligner(配向性プレート、96ウェルプレートタイプ)、対照として、培養面が平坦形状の市販96ウェルプレート(平面プレート)に播種した。
 37℃のCOインキュベーターで4時間静置した後、Maintenance Mediumを使用して培地交換を行った。培地交換後の細胞は、2日毎に培地交換を行い、所定期間、維持培養を行った。
 上記(1)および(2)で使用したND Cell Alignerは、平坦部および凹凸部を有し、各平坦部は、第1方向に伸びる形状を有し、かつ、表面における全体で、第1方向と交差する第2方向に並び、各平坦部の幅(第2方向での長さ)は10μmであった。各凹凸部は、相互に隣り合う平坦部の間を埋める複数の段差構造から構成され、各平坦部間の第2方向での長さは10μmであり、凹凸部における凸部のピッチは300nmであった。凹凸部における各凸部の高さをAFMを用いて測定した結果、凹部の底面から凸部の先端までの高さの平均は446nmであった。また、凹部の底面から平坦部の高さの平均は455nmであった。
(3)配向性の解析
 維持培養したiCell心筋細胞CM2を使用し、15日目、30日目、45日目、60日目の細胞を、抗α-アクチニン抗体でサルコメア構造を免疫染色し、Hoechst33342を使用して核を染色した。蛍光顕微鏡を使用し、蛍光画像を取得した。
 免疫染色は、次の手順で実施した。所定日数培養したウェルプレートから培地を除き、PBSで細胞を洗浄した。次に、4%-パラホルムアルデヒドを加えて固定した。PBST(0.1% tween20)で細胞を洗浄後に、一次抗体として抗α-アクチニン抗体(abcam社製、Anti-Sarcomeric Alpha Actinin antibody [EA-53])を加え、一晩、4℃で反応させた。PBST(0.1% tween20)で洗浄して一次抗体を除去後、二次抗体(Alexa Fluor 647標識、life technologies社製、Alexa Fluor(R) 647 F{ab} fragment of goat anti mouse IgG(H+L))を加えて反応させた。続いて、希釈したHoechst33342を添加して、核を染色した。
 蛍光画像の取得は60倍(対物レンズ)で行い、サルコメアは励起波長640nm/蛍光波長685nm、核は励起波長405nm/蛍光波長461nmで検出した。
 60倍の対物レンズで観察した画像(サイズ:215μm×215μmの面積)から画像解析ソフトウェア(A像くん、旭化成エンジニアリング株式会社製)の角度分布解析を使用して、α-アクチニンで検出された棒状構造体を検出し、画像の水平方向を0°として、棒状構造体の角度分布(0~180°)を求めた。
 角度分布の最頻値の角度の±15°の範囲に含まれる棒状構造体の数と測定範囲に含まれる棒状構造体の総数から、配向度を次の式で求めた。
 配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100
 画像解析はn=3~6で実施し、平均値を求めた。培養日数15日目と30日目は異なる複数のウェルから取得した画像(9等分した区画のうち、左上の区画)を用いて解析を実施した。培養日数45日目と60日目は1個のウェルから取得した画像を9等分し、3区画(左上、中央、右下の区画)を用いて解析を実施した。
 角度分布解析の結果は、10°毎に含まれる棒状構造体の配向度として示し、配向プレートと平面プレートの最高値を含む±15°の範囲の配向度を比較した。統計検定は、配向プレートと平面プレートの配向度に対して、T-testを行い、培養30日以降、配向プレートと平面プレートの配向度において、危険率5%で有意差があることを確認した。
 配向度の測定結果、培養15日目以降において、配向プレートで培養したCM2の配向度は、平面プレートで培養したCM2より高かった。培養日数30日目から60日目において、配向プレートの配向度は23%以上であった。一方、平面プレートの配向度は21%未満であった。結果を図4に示す。
(4)成熟化確認試験(遺伝子発現)
 配向性プレートと平面プレートで培養したiCell心筋細胞(CM1)の培養日数1、7、15、30、45日目における細胞を採取し、遺伝子発現解析を行った。
 採取した細胞は、破砕してRNAを抽出し(タカラバイオ株式会社製、NucleoSpin RNA Plus XSを使用)、逆転写とライブラリ作成はSMART-Seq v4 Low Input Kitを使用した。次に、RNAシーケンス(網羅的遺伝子発現解析)に供し、遺伝子発現データを得た。解析プログラムとしてRaNA-seqを使用した(参考文献3:Bioinformatics, 2020 Mar 10: 36(6), 1955-1956)。ヒトiPS細胞由来心筋の成熟段階における特徴的な遺伝子発現変化(参考文献4:Circ. Res. 2020 Apr 10: 126(8), 1086-1106)を評価指標として、配向性プレートと平面プレートで培養した心筋細胞の遺伝子発現量の経時的変化の比較を行った。
 下記(4-1)~(4-3)については、RNAシーケンスに使用したサンプルは、5ウェルから抽出したRNAを(RNAの質量で)等量混合して、実験に用いた。RNAシーケンスによる遺伝子発現解析の結果は、5ウェルの平均値と考えられる。
 また、下記(4-4)~(4-6)については、RNAシーケンスに使用したサンプルは、3ウェルから抽出したRNAについて、それぞれRNAシーケンスを行い、発現量(CPM)の平均値を求めた。各遺伝子の発現量(CPM)は各培養日数において、平面プレートと配向プレートにおける遺伝子発現量の差を検出するためT検定を行い、P値が0.01≦P<0.05の場合は図中に*を記し、P値がP<0.01の場合は、図中に**を記した。
 RNAシーケンスによる遺伝子発現解析の結果、次のような結果が得られた。
(4-1)MYL3/ACTB
 配向性プレートで培養したCM1は、平面プレートで培養したCM1と比較して、成熟型心筋で発現する、MYL3(Myosin Light Chain 3)の遺伝子発現量が増加した。一方で、組織や培養期間に関わらず一定量の発現が想定される、ACTB(Actin-β)遺伝子の発現量は配向性プレートで培養したCM1と平面プレートで培養したCM1とで同等レベルであった。
 各プレートにおいて、培養7日目以降における、MYL3遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートでは12.5以上、平面プレートは11.4以下であった(図5)。
(4-2)MYH7/MYH6
 胎児型心筋から成人型心筋への成熟に伴うアイソフォームの変化として、MYH6(Myosin Heavy Chain 6)からMYH7(Myosin Heavy Chain 7)へのアイソフォームスイッチングが顕著であることが確認された。各プレートにおいて、培養7日目以降における、MYH7遺伝子の発現量/MYH6遺伝子の発現量の比は、配向性プレートで培養したCM1では7.1以上、平面プレートで培養したCM1は5.4以下であった(図6)。
(4-3)CKM、CKM/ACTB、COX6A2、COX6A2/ACTB、CKMT2、CKMT2/ACTB、LDHA、LDHA/ACTB
 配向性プレートで培養したCM1は、平面プレートで培養したCM1と比較して、心筋の収縮に関連するCKM(Creatine kinase, M-type)、ミトコンドリアに局在するタンパク質のCOX6A2(Cytochrome C Oxidase Subunit 6A2)、CKMT2(Creatine Kinase, Mitochondrial 2)、解糖系の酵素であるLDHA(Lactate Dehydrogenase A subunit)の発現量が経時的に増加した(図7-1、図7-2)。
 CKM遺伝子の発現量は、培養15日目以降において、配向性プレートで培養したCM1では1161TPM(Transcripts Per Kilobase Million)以上であり、一方、平面プレートで培養したCM1では824TPM以下であった(図7-1(A))。
 COX6A2遺伝子の発現量は、培養15日目以降において、配向プレートで培養したCM1では875TPM以上、一方、平面プレートで培養したCM1では842TPM以下であった(図7-1(B))。
 CMKT2遺伝子の発現量は、培養30日目以降において、配向プレートで培養したCM1では377TPM以上であり、一方、平面プレートで培養したCM1では325TPM以下であった(図7-1(C))。
 また、LDHA遺伝子の発現量は、培養7日目以降において、配向性プレートで培養したCM1では682TPM以上であり、一方、平面プレートで培養したCM1では372TPM以下であった(図7-1(D))。
 各プレートにおいて、培養15日目以降における、CKM遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では2.1以上、平面プレートで培養したCM1では1.7以下であった(図7-2(A))。
 培養15日目以降における、COX6A2遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では1.95以上、平面プレートで培養したCM1では1.92以下であった(図7-2(B))。
 また、培養15日目~30日目における、CKMT2遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では0.68以上、平面プレートで培養したCM1では0.57以下であった(図7-2(C))。
 さらに、培養7日目以降における、LDHA遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では1.3以上、平面プレートで培養したCM1では0.6以下であった(図7-2(D))。
(4-4)CACNA2D1、CACNA2D1/ATP1A1、KCNJ2、KCNJ2/ATP1A1、KCNE1、KCNE1/ATP1A1、SCN5A、SCN5A/ATP1A1
 配向性プレートで培養したCM1は、平面プレートで培養したCM1と比較して、心筋のカルシウムイオンチャネル形成に関連するCACNA2D1(Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta1)、心筋のカリウムイオンチャネル形成に関連するKCNJ2(Potassium Inwardly Rectifying Channel Subfamily J Member2)、KCNE1(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1)、心筋のナトリウムイオンチャネル形成に関連するSCN5A(Sodium Voltage-Gated Channel Alpha Subunit 5)の発現量が経時的に増加した(図7-3、図7-4)。
 CACNA2D1遺伝子の発現量は、培養15日目~30日目において、配向性プレートで培養したCM1では2469CPM(count per million)以上であり、一方、平面プレートで培養したCM1では2004CPM以下であった(図7-3(A))。
 KCNJ2遺伝子の発現量は、培養15日目以降において、配向プレートで培養したCM1では1026CPM以上、一方、平面プレートで培養したCM1では926CPM以下であった(図7-3(B))。
 KCNE1遺伝子の発現量は、培養15日目~45日目において、配向プレートで培養したCM1では79CPM以上であり、一方、平面プレートで培養したCM1では42CPM以下であった(図7-3(C))。
 また、SCN5A遺伝子の発現量は、培養15日目~45日目において、配向性プレートで培養したCM1では23580CPM以上であり、一方、平面プレートで培養したCM1では21571CPM以下であった(図7-3(D))。
 各プレートにおいて、培養15日目~30日目における、CACNA2D1遺伝子の発現量/ATP1A1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.085以上、平面プレートで培養したCM1では0.23以下であった(図7-4(A))。
 培養15日目~30日目における、KCNJ2遺伝子の発現量/ATP1A1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.038以上、平面プレートで培養したCM1では0.115以下であった(図7-4(B))。
 また、培養15日目以降における、KCNE1遺伝子の発現量/ATP1A1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.003以上、平面プレートで培養したCM1では0.007以下であった(図7-4(C))。
 さらに、培養15日目~30日目における、SCN5A遺伝子の発現量/ATP1A1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.87以上、平面プレートで培養したCM1では2.6以下であった(図7-4(D))。
(4-5)LPL、LPL/ACTB、ACAT1、ACAT1/ACTB、HADHA、HADHA/ACTB、HADHB、HADHB/ACTB
 配向性プレートで培養したCM1は、平面プレートで培養したCM1と比較して、心筋のミトコンドリアに局在し、脂肪酸のβ酸化に関連するLPL(Lipoprotein Lipase)、ACAT1(Acetyl-CoA Acetyltransferase 1)、HADHA(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha)、HADHB(Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta)の発現量が経時的に増加した(図7-5、図7-6)。
 LPL遺伝子の発現量は、培養15日目以降において、配向性プレートで培養したCM1では3832CPM(count per million)以上であり、一方、平面プレートで培養したCM1では3024CPM以下であった(図7-5(A))。
 ACAT1遺伝子の発現量は、培養30日目~45日目において、配向プレートで培養したCM1では3663CPM以上、一方、平面プレートで培養したCM1では3357CPM以下であった(図7-5(B))。
 HADHA遺伝子の発現量は、培養30日目~45日目において、配向プレートで培養したCM1では6240CPM以上であり、一方、平面プレートで培養したCM1では5920CPM以下であった(図7-5(C))。
 また、HADHB遺伝子の発現量は、培養15日目以降において、配向性プレートで培養したCM1では8505CPM以上であり、一方、平面プレートで培養したCM1では8072CPM以下であった(図7-5(D))。
 各プレートにおいて、培養15日目以降における、LPL遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では0.46以上、平面プレートで培養したCM1では0.43以下であった(図7-6(A))。
 培養15日目~30日目における、ACAT1遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では0.47以上、平面プレートで培養したCM1では0.42以下であった(図7-6(B))。
 また、培養15日目~30日目における、HADHA遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では0.79以上、平面プレートで培養したCM1では0.74以下であった(図7-6(C))。
 さらに、培養15日目~30日目における、HADHB遺伝子の発現量/ACTB遺伝子の発現量の比は、配向性プレートで培養したCM1では1.00以上、平面プレートで培養したCM1では0.91以下であった(図7-6(D))。
(4-6)PPARGC1A、PPARGC1A/HIF1、ESRRA、ESRRA/HIF1、VEGFA、VEGFA/HIF1、APLN、APLN/HIF1、FABP3、FABP3/HIF1、ESM1、ESM1/HIF1、EMCN、EMCN/HIF1、BCL2、BCL2/ACTB
 配向性プレートで培養したCM1は、平面プレートで培養したCM1と比較して、ミトコンドリア生合成と機能化に関するPGC-1αをコードするPPARGC1A遺伝子(PPARG Coactivator 1 Alpha)、心筋細胞の成熟化に関連するエストロゲン関連受容体ERRをコードするESRRA遺伝子(Estrogen Related Receptor Alpha)、血管増殖因子をコードするVEGFA遺伝子(Vascular Endothelial Growth Factor A)、心筋組織で心臓の収縮に関連するマイオカインをコードするAPLN遺伝子(Apelin)、心筋において長鎖脂肪酸の取込を制御するマイオカインをコードするFABP3遺伝子(Fatty Acid Binding Protein 3)、内皮細胞特異的に発現するESM1遺伝子(Endothelial Cell Specific Molecule 1)、上皮細胞などから分泌されるムチン様糖タンパク質をコードするEMCN遺伝子(Endomucin)、ミトコンドリアの機能調整に関連するBCL2遺伝子(BCL2 Apoptosis Regulator)の発現量が経時的に増加した(図7-7~図7-10)。
 PPARGC1A遺伝子の発現量は、培養15日目以降において、配向性プレートで培養したCM1では4577CPM(count per million)以上であり、一方、平面プレートで培養したCM1では4282CPM以下であった(図7-7(A))。
 ESRRA遺伝子の発現量は、培養15日目以降において、配向プレートで培養したCM1では3081CPM以上、一方、平面プレートで培養したCM1では3061CPM以下であった(図7-7(B))。
 VEGFA遺伝子の発現量は、培養7日目以降において、配向プレートで培養したCM1では3737CPM以上であり、一方、平面プレートで培養したCM1では3237CPM以下であった(図7-7(C))。
 また、APLN遺伝子の発現量は、培養7日目以降において、配向性プレートで培養したCM1では28.7CPM以上であり、一方、平面プレートで培養したCM1では20.7CPM以下であった(図7-7(D))。
 FABP3遺伝子の発現量は、培養15日目以降において、配向性プレートで培養したCM1では28788CPM以上であり、一方、平面プレートで培養したCM1では28529CPM以下であった(図7-9(A))。
 ESM1遺伝子の発現量は、培養30日目以降において、配向性プレートで培養したCM1では40CPM以上であり、一方、平面プレートで培養したCM1では1.3CPM以下であった(図7-9(B))。
 EMCN遺伝子の発現量は、培養15日目以降において、配向性プレートで培養したCM1では24.6CPM以上であり、一方、平面プレートで培養したCM1では1CPM以下であった(図7-9(C))。
 BCL2遺伝子の発現量は、培養7日目以降において、配向性プレートで培養したCM1では83.3CPM以上であり、一方、平面プレートで培養したCM1では58.3CPM以下であった(図7-9(D))。
 各プレートにおいて、培養7日目以降における、PPARGC1A遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.86以上、平面プレートで培養したCM1では0.80以下であった(図7-8(A))。
 培養7日目以降における、ESRRA遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.57以上、平面プレートで培養したCM1では0.54以下であった(図7-8(B))。
 また、培養7日目以降における、VEGFA遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.71以上、平面プレートで培養したCM1では0.64以下であった(図7-8(C))。
 さらに、培養7日目以降における、APLN遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.013以上、平面プレートで培養したCM1では0.004以下であった(図7-8(D))。
 さらに、培養7日目以降における、FABP3遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では5.3以上、平面プレートで培養したCM1では5.2以下であった(図7-10(A))。
 さらに、培養7日目以降における、ESM1遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.001以上、平面プレートで培養したCM1では0.0003以下であった(図7-10(B))。
さらに、培養7日目以降における、EMCN遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.003以上、平面プレートで培養したCM1では0.001以下であった(図7-10(C))。
 さらに、培養7日目~30日目における、BCL2遺伝子の発現量/HIF1遺伝子の発現量の比は、配向性プレートで培養したCM1では0.018以上、平面プレートで培養したCM1では0.012以下であった(図7-10(D))。
(5)成熟化確認試験 ミトコンドリア活性の確認
 維持培養したiCell心筋細胞CM2を使用し、9日目の細胞を、膜電位依存性蛍光色素のMito-tracker Red(サーモフィッシャーサイエンティフィック社製、M7510)でミトコンドリア、Hoechst33342を使用して核を染色した。染色は、ウェルプレートから培地を除去し、維持培地で所定濃度に希釈したMito-tracker Redを加え、30分間37℃のCOインキュベーターに静置した後、維持培地で所定濃度に希釈したHoechst33342を加え、30分間37℃のCOインキュベーターに静置して行った。観察前に培地で洗浄し、共焦点蛍光顕微鏡(共焦点定量イメージサイトメーターCQ1、横河電機株式会社製)を使用し、蛍光画像を取得した。
 画像の取得は、倍率60倍(対物レンズ)で行い、ミトコンドリアは励起波長561nm/蛍光波長617nm、核は励起波長405nm/蛍光波長461nmで検出した。
 画像の解析は、解析ソフトウェア(CellPathfinderセルパスファインダー、横河電機株式会社製)を使用した。対物レンズの倍率60倍で観察した視野の測定範囲(サイズ:215μm×215μmの面積)から蛍光波長617nmで検出された面積と強度を測定し、蛍光波長461nmで検出された核数を測定した。
 なお、蛍光波長617nmの検出値は、CQ1のカメラのディテクターが検出した値であり、面積(Area)は蛍光波長617nmが検出された面積の総和(単位:μm)、輝度(Intensity)はディテクターが検出した明るさの値の総和である。輝度(明るさ)はフルスケールで、同一条件で測定した。
 解析はn=6~10で実施した。面積(Area)と輝度(Intensity)は核数で補正し、細胞1個あたりの面積(Area)と輝度(Intensity)を比較した。統計検定は、T-testを行い、危険率1%で有意差があることを確認した。
 なお、面積(Area)は、ミトコンドリアの数を表し、輝度(Intensity)は、ミトコンドリアの活性を表している。結果を図8に示す。エラーバーは標準誤差を示す。
 図8に示すように、培養9日目において、配向プレートで培養したCM2では、ミトコンドリア数、ミトコンドリア活性が平面プレートで培養したCM2より有意に上昇した。
 また、図9に、培養9日目の配向プレートで培養したCM2と、培養9日目の平面プレートで培養したCM2の蛍光画像を示す。青は核を示し、赤はミトコンドリアを示す。配向プレートで培養したCM2では、ミトコンドリア数およびミトコンドリア活性が上昇していることが、写真からも明らかである。
(6)成熟化確認試験 ライブセルイメージング装置を使用した動き試験法による解析
 各培養プレートに播種した心筋細胞の収縮・弛緩に伴う動き変化を検出するため、SI8000(ソニー株式会社製)にて動画データを取得した。測定条件は、位相差像、倍率10倍(対物レンズ)、150フレーム/秒、解像度2048×2048ピクセル、8ビット深度で行った。画像取得時間は、10秒で行った。細胞は、播種当日を0日目とし、15日目、31日目、45日目、61日目まで維持培養したCM2を使用した。
 動画データから、心筋細胞の収縮・弛緩に伴う動きベクトル(速度、方向、数量)を検出し、各パラメータ(心拍数(beating rate;BR)、収縮速度(contractile velocity;CV)、弛緩速度(relaxation velocity;RV)、心拍時間(contraction-relaxation duration;CRD)、配向度)を解析した。
 配向度は、画面水平方向を0℃とした場合の、動きベクトルの角度を求め、ベクトル角度の最頻値の角度から±5°の角度を示すベクトルの数と、検出されたベクトル数の総和の比を求めることで、下記式に基づき算出した。
 配向度(%)
 =(最頻値の±5°範囲に含まれるベクトルの数)/(ベクトルの総数)×100
 図10に、動きベクトルの角度と、その頻度の測定結果の一例を示した。
 細胞を各培養プレートに播種し、維持培養したCM2の結果を図11-1に示す。
 配向性プレートで培養したCM2は、平面プレートで培養したCM2と比較して、培養15日目から61日目において、心拍数(BR)、弛緩速度(RV)が有意に上昇し、培養31日目以降は、心拍時間(CRD)が短縮する傾向が確認された。細胞の配向度を示すベクトル方向分布度(最頻値の±5°)は、培養15日目から61日目において、有意に高く維持された。
 なお、心拍数(BR)が多いほど、成熟心筋細胞に近く、収縮速度(CV)および弛緩速度(RV)が速いほど、成熟心筋細胞に近く、拍動時間(CRD)が少ないほど、成熟心筋細胞に近い傾向にある。
 この時の、収縮速度(CV)と弛緩速度(RV)との比を図11-2に示す。配向プレートで培養したCM2において、培養15日目から培養45日目の期間で、収縮速度(CV)と弛緩速度(RV)の比(CV/RV)は、1.8~2.5であった。一方、平面プレートで培養したCM2では、3.1~3.5であった。
 以上の結果から、配向プレートで培養したCM2において収縮速度(CV)と弛緩速度(RV)との比(CV/RV)は次の範囲に含まれる。
 (式) 1.0≦CV/RV≦2.8
 なお、ベクトル方向分布度について、15日目における最頻値±1.25°、±5°、±10°における配向度を表1に示す。最頻値±1.25°では、配向プレート/平面プレートの比は最も高いが、理論値に対する平面プレートの比が最も高く、解析対象の配向角が小さい場合は、ノイズの影響が大きくなると考えられた。最頻値±5°と±10°の比較では、理論値に対する平面プレートの比は±5°>±10°であるが、配向プレート/平面プレートの比は、±5°>±10°であるため、配向度の傾向が現れやすい範囲として、最頻値±5°の配向度を評価した。
Figure JPOXMLDOC01-appb-T000001
(7)成熟化確認試験 共焦点イメージング装置を使用したCa-イメージング解析
 各培養プレートに播種した心筋細胞の収縮に伴うCa蛍光強度の変化をCQ1(共焦点蛍光顕微鏡、横河電機株式会社製)にて測定した。
 Caイオンフラックスを可視化するため、CM2に、蛍光Ca指示薬(EarlyTox carditotoxicity kit、Molecular Devices社製)を添加し、37℃で15分間静置した。CQ1の測定条件は、励起波長488nm/蛍光波長525nm、データ取得時間60秒で行った。また、解析には、セルパスファインダーを使用した。
 細胞は、播種当日を0日目とし、5日目まで維持培養したCM2を使用した。測定データから、パラメータとして、Caトランジェント波形ピークの20%高さの線幅(Duration)、波形ピークの間隔(Interval)を選び、解析を行った。
 配向性プレートで培養したCM2は、平面プレートで培養したCM2と比較して、Caトランジェントの波形ピークの20%高さの線幅(Duration)とCaトランジェントの波形の間隔(Interval)が有意に延長した(図12(A))。
 また、DurationとIntervalの平方根との関係ついて、図12(B)に示す。
 以上の結果から、配向プレートで培養したCM2において、ピークの20%高さの線幅(Duration)と波形の間隔(Interval)の平方根との比は以下の範囲に含まれる。
  Duration/(Interval)1/2≧0.68
 Caトランジェント持続時間(20%高さの線幅(Duration))と活動電位持続時間には相関があることが報告されている。一般に、培養された心筋細胞では、分化度が高いほど活動電位持続時間は長い傾向がある。したがって、配向プレートでは平面プレートより成熟化が進んでいると考えられる。
 Intervalの時間は、心拍によって影響を受けるため、通常心拍数に補正した値が使用されることに従い、Intervalは(Interval)1/2の数値を用いて計算した。
(8)成熟化確認試験 パッチクランプ法による細胞内電位の測定
 上記の手順で、CM2を配向プレート、平面プレートに6×10cells/wellの濃度で播種した。この時、各プレートは96ウェルプレートではなく、底面フィルムをサイズ4mm×4mmに切り取った小片を、市販の96ウェルプレートの底面に設置して使用した。パッチクランプ試験による細胞内電位の測定は、25℃のTyrode溶液中のCM2をカレントクランプ下、0.2Hzで20pAから100pAの電流を細胞内に投入して活動電位を発生させた。なお、与える電流は、正常な電位の変化が観察される電流を選択した。
 結果として、代表例2例を図13に示した。配向プレートで培養したCM2は培養8日目、平面プレートで培養したCM2は培養22日の細胞を使用した結果である。配向プレートで培養したCM2の細胞内電位は、平面プレートで培養したCM2と比べて、活動電位持続時間は長く、最大拡張期電位も深かった。
 配向プレートで培養したCM2の活動電位80%再分極持続時間は791ms、最大拡張期電位は-68.6mVであった。一方、平面プレートで培養したCM2の活動電位80%再分極持続時間は478ms、最大拡張期電位は-57.9mVであった。
 ヒト由来の正常単離心室筋細胞での活動電位は、持続時間が配向プレートで培養したCM2と同程度に長く、最大拡張期電位(静止膜電位)は配向プレートで培養したCM2よりさらに深い(Circulation,2013;127:575-584)。このことから、配向プレートで培養したCM2は平面プレートで培養したCM2より正常心筋細胞の活動電位により近いといえる。
(9)薬剤安全性試験-1
 iCell心筋細胞CM2を使用し、心筋の副作用惹起として多く使われている4薬剤の容量依存作用を検討した。
 上記の手順で、CM2を配向プレート(96well plate、ND Cell Aligner)、平面プレート(96well plate)に5×10cells/wellの濃度で播種した。37℃のCOインキュベーターで維持培養を行い、播種当日を0日目として、5日目または6日目に薬剤を投与した。
 薬剤は、E-4031、Quinidine(キニジン)、Cisapride(シサプリド)、Isoproterenol(イソプロテレノール)を使用した。薬剤はDMSOに溶解し、累積投与を行った。初めに、dose0として、薬剤を添加しない状態で測定を行った。測定後直ちに、dose1の濃度になるように、DMSOに溶解した薬剤を各ウェルに添加し、15分後に測定を行った。続いて、測定後直ちに、薬剤をdose2の濃度になるように、同じウェルに薬剤を各ウェルに添加し、15分後に測定を行った。dose3についても同様に行った。
 薬剤の種類、作用機序および濃度を以下の表に示す。
Figure JPOXMLDOC01-appb-T000002
 薬剤投与後の細胞の応答性は、共焦点イメージング装置(CQ1、横河電機株式会社製)を使用したCa-イメージングによる不整脈測定法、ライブセルイメージング装置(SI8000、ソニー株式会社製)を使用した動き試験法を実施し、拍動数および拍動ピークの線幅への影響を調べた。
(9-1)ライブセルイメージング装置を使用した動き試験法による測定
 以下の手順で行った。
 維持培養5日目のCM2を使用し、初めに、Dose0として、薬剤を添加しない状態で、SI8000(ソニー株式会社製)にて動画データを取得した。測定後直ちに、同じウェルプレートにdose1の濃度の各種薬剤を添加し、15分後に動画データを取得した。Dose2と Dose3についても、同様に薬剤を累積投与し、動画データを取得した。各薬剤の添加試験はn=6で行った。
 SI8000の動画データから拍動数(BR)、収縮速度(CV)、弛緩速度(RV)、収縮弛緩間隔(CRD)を解析し、薬剤による細胞の動きへの影響を比較した。収縮弛緩間隔(CRD)は拍動数(BR)による変動を補正するため、Fredericaの式を参考にして、次の式で補正した。
   CRD/(60/BR)1/3
 有意差検定は、平面プレートと配向プレートにおいてDMSOを添加した対象群と薬剤添加群間でT検定を行った。
 SI8000のパラメータの変化から見た副作用について、早期後脱分極(early afterdepolarization;EAD)と遅延後脱分極(delayed afterdepolarization;DAD)、小さな規則的な波形(VT-like)、反応(波形)消失を記録した。EAD、DADに分類されない波形の変化は、不整脈と記載した。また、表中の「-」は、不整脈等が発生していない状態を示す。
 不整脈の程度はEADが軽度、DADが中度、vt-likeが重度である。「不整脈」と記載されたものは軽度である。
E-4031(Ikrの遮断薬)
 平面プレートで培養したCM2、配向プレートで培養したCM2ともにE-4031の添加により、拍動数(BR)、収縮速度(CV)、弛緩速度(RV)が減少した。CRD(心拍数で補正)は、配向プレート、平面プレートで中濃度(Dose2、0.3μM)、高濃度(Dose3、1μM)で有意に短縮を示した(図14(A))。平面プレートでは、より顕著に短縮した。
 平面プレートで培養したCM2では、6ウェル中6ウェルで不整脈が発生しているが、配向プレートで培養したCM2では6ウェル中1ウェルの不整脈発生であった(表3-1、表3-2)。
 不整脈の発生率は、配向プレートで培養したCM2では、低濃度(Dose1、0.1μM)で1/6、中濃度(Dose2、0.3μM)で1/6、高濃度(Dose3、1μM)で1/6であった。一方、平面プレートで培養したCM2では、低濃度(Dose1、0.1μM)で3/6、中濃度(Dose2、0.3μM)で5/6、高濃度(Dose3、1μM)で6/6であり、配向プレートで培養したCM2で低く、平面プレートで培養したCM2で高い傾向であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Isoproterenol(β受容体作動薬)
 Isoproterenol 1、3、10μMを適用した。BRとRVは配向プレートで培養したCM2、平面プレートで培養したCM2で増加傾向であり、CVは平面プレートで培養したCM2、配向プレートで培養したCM2とも横ばいであった。CRD(心拍数で補正)は、配向プレート、平面プレートで低濃度(Dose1、1μM)、中濃度(Dose2、3μM)、高濃度(Dose3、10μM)で延長した。配向プレートでは、溶媒(DMSO)と似た変動を示したが、平面プレートは溶媒(DMSO)との差が大きく、薬剤の影響が現れたと考えられる(図14(B))。
 また、いずれの濃度においても、不整脈等は観察されなかった。
(9-2)Ca-イメージングによる不整脈測定
 以下の手順で行った。
 維持培養6日目のCM2に、蛍光Ca指示薬(EarlyTox carditotoxicity kit、Molecular Devices社製)を添加し、生細胞を染色した。初めに、Dose0として、薬剤を添加しない状態で、心筋細胞の収縮に伴うCa蛍光強度の変化をCQ1にて測定した。測定後直ちに、同じウェルプレートにDose1の濃度の各種薬剤を添加し、15分後にCa蛍光強度の変化を測定した。Dose2とDose3についても、同様に薬剤を累積投与し、Ca蛍光強度の変化を測定した。各薬剤の添加試験はn=6で行った。
 CQ1を用いてのCa transientの波形のピークを100%とした場合の20%の波形幅(Duration)、ピーク間の間隔(Interval)、ピーク高さ(Peak of Ca transient)のデータを使用し、平面プレートと配向プレートへ播種、6日間培養したCM2において、薬剤の作用を比較した。有意差検定は、平面プレートで培養したCM2と配向プレートで培養したCM2においてDMSOを添加した対象群と薬剤添加群間で行った。
 Ca transientの波形変化から見た副作用について、早期後脱分極(early afterdepolarization;EAD)と遅延後脱分極(delayed afterdepolarization;DAD)、小さな規則的な波形(VT-like)、反応(波形)消失を記録した。また、表中の「-」は、不整脈等が発生していない状態を示す。不整脈の程度はEADが軽度、DADが中度、vt-likeが重度である。
E-4031(Ikrの遮断薬)
 Ca transientのDurationは0μMでは、配向プレートで培養したCM2は平面プレートで培養したCM2よりやや長く(有意に)、0.1μMでは、平面プレートで培養したCM2でやや長く、0.3μMでは、平面プレートで培養したCM2で配向プレートで培養したCM2より有意に長く、1μMでは有意ではないものの平面プレートで培養したCM2で顕著に延長していた。
 これらの結果から、E-4031添加によるIKr遮断の影響は平面プレートで培養したCM2でより発現しやすく、配向プレートで培養したCM2で少ないということができる(図15-1)。
 中程度~重度の不整脈(DAD、VT-like)の発生率は、配向プレートで培養したCM2では、低濃度(Dose1、0.1μM)で0/6、中濃度(Dose2、0.3μM)で1/6、高濃度(Dose3、1μM)で4/6であった。平面プレートで培養したCM2では、低濃度(Dose1、0.1μM)で3/6、中濃度(Dose2、0.3μM)で6/6、高濃度(Dose3、1μM)で6/6であり、配向プレートで培養したCM2で低く、平面プレートで培養したCM2で高い傾向であった(表4-1、表4-2)。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Qinidine(INa遮断薬、Ikr遮断薬)
 Quinidine 3、10、30μMで同様な作用に関して検討した結果を下記の図15-2に示した。中濃度(Dose2、10μM)において、平面プレートで培養したCM2で配向プレートで培養したCM2より強いDuration、Intervalの延長、有意に弱いPeak高の低下が観察された。高濃度(Dose3、30μM)では収縮力が極度に低下し、頻度の高い波形に変化したため図中には示さなかった。
 中程度~重度の不整脈(DAD、VT-like)の発生率は、配向プレートで培養したCM2では、低濃度(Dose1、3μM)で0/6、中濃度(Dose2、10μM)で0/6、高濃度(Dose3、30μM)で6/6であった。平面プレートで培養したCM2では、低濃度(Dose1、3μM)で0/6、中濃度(Dose2、10μM)で0/6、高濃度(Dose3、30μM)で4/6であり、配向でやや高い傾向であった(表5-1、表5-2)。不整脈の発生率は、配向プレートでやや高い傾向であったが、Duration、Intervalの変化は、配向プレートで培養したCM2でより小さいことから、薬剤による影響が現れにくいと考えられる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Cisapride(Ikrの遮断薬、5-HT4受容体作動薬)
 Cisapride 0.01、0.03、0.1μMの作用を検討した。Duration、Intervalともに用量依存性に延長した(図15-3)。配向プレートで培養したCM2では、Dose0で示した値とDose3で示した値との差が平面プレートで培養したCM2より小さかった。配向プレートで培養したCM2は、平面プレートで培養したCM2よりCisaprideに対して耐性があると考えられた。
 不整脈の発生は、配向プレートの低濃度(Dose1、0.01μM)から高濃度(Dose3、0.1μM)で1/6であった。平面プレートでは不整脈は発生しなかった(表6-1、表6-2)。
 不整脈の発生率は、配向プレートでやや高い傾向であったが、Duration、Intervalの変化は、配向プレートで培養したCM2でより小さいことから、薬剤による影響が現れにくいと考えられる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Isoproterenol(β受容体作動薬)
 Isoproterenol 1、3、10μMの作用を検討した。Duration、Intervalとも減少が観察された(図15-4)。ただし平面でのDurationの減少は少なかった。このDurationの減少作用はβ受容体刺激でみられる典型的な反応である。
 Isoproterenolは高濃度(Dose3、10μM)においても不整脈は発生しなかった。配向プレートで培養したCM2と平面プレートで培養したCM2で同じ傾向であった。
DMSO(溶媒)
 溶媒では、Durationは軽度に延長した。薬物効果に著しい影響をもたらす作用ではなかった(図15-5)。
 活動電位のDurationの延長が最も典型的なIKr遮断薬のE-4031や類似の作用に注目すると、高用量のE-4031でのDuration延長作用が、配向プレートで培養したCM2では平面プレートで培養したCM2より認められにくいことから、副作用は平面プレートで培養したCM2でより現れやすく、配向プレートで培養したCM2では現れにくいと傾向があると考えられる。
 ほとんどの試験系で薬物適応前のCa transientのDurationは配向プレートで培養したCM2で長く平面プレートで培養したCM2で短く、活動電位持続時間も同様であることが示唆される。この持続時間の延長は一般に心筋細胞の成熟化とも相関しており6日目でも配向プレートで培養したCM2と平面プレートで培養したCM2とで、機能変化(配向プレートの分化促進)が起きていることは明白である。
(10)薬剤安全性試験-2
 iCell心筋細胞CM2を15日間培養し、より成熟した状態において、心筋の副作用惹起として多く使われている2薬剤の容量依存作用を検討した。
 上記の手順で、CM2を配向プレート(96well plate、ND Cell Aligner)、平面プレート(96well plate)に6×10cells/wellの濃度で播種した。37℃のCOインキュベーターで維持培養を行い、播種当日を0日目として、15日目に薬剤を投与した。
 薬剤は、Isoproterenol(イソプロテレノール)、Milrinone(ミルリノン)を使用した。薬剤はDMSOに溶解し、投与を行った。初めに、dose0として、薬剤を添加しない状態で測定を行った。測定後直ちに、各doseの濃度になるように、DMSOに溶解した薬剤を各ウェルに添加し、一定時間経過後に測定を行った。薬剤の種類、作用機序および濃度を以下の表に示す。
Figure JPOXMLDOC01-appb-T000011
 薬剤投与後の細胞の応答性は、ライブセルイメージング装置(SI8000、ソニー株式会社製)を使用した動き試験法を実施し、拍動数および収縮速度、弛緩速度への影響を調べた。
(10-1)ライブセルイメージング装置を使用した動き試験法による測定
 以下の手順で行った。
 維持培養15日目のCM2を使用し、初めに、dose0として、薬剤を添加しない状態で、SI8000(ソニー株式会社製)にて動画データを取得した。測定後直ちに、同じウェルプレートに各doseの濃度の各種薬剤を添加し、イソプロテレノールは120分後、ミルリノンは15分後に動画データを取得した。各薬剤の添加試験はn=5で行った。
 SI8000の動画データから拍動数(BR)、収縮速度(CV)、弛緩速度(RV)を解析し、薬剤による細胞の動きへの影響を比較した。
 測定データは、薬剤を添加しないdose0の平均値で補正し(各測定値/dose0の測定値)、dose0の測定値を1とした相対値を求めた。
 有意差検定は、各薬剤添加濃度における平面プレートと配向プレートの結果をdose0の結果と比較してT検定を行った。また、薬剤添加群における平面プレートと配向プレート間でT検定を行った。P値が0.01以下であった比較群に関して、グラフにマークを記した。
イソプロテレノール(β受容体作動薬)
 平面プレートで培養したCM2、配向プレートで培養したCM2ともにイソプロテレノールの添加により、拍動数(BR)、弛緩速度(RV)が増加した。弛緩速度は、配向プレートのdose2、dose3は平面プレートと比較して増加した。
収縮速度(CV)は、配向プレートで培養したCM2は増加したが、平面プレートでは減少する傾向であった。配向プレートのdose2は薬剤添加前と比較して優位に増加し、また、平面プレートとの比較では、配向プレートのdose2、dose3は有意に増加した(図16-1)。
ミルリノン(ホスホジエステラーゼ3阻害剤)
 配向プレートで培養したCM2はミルリノンの添加により、拍動数(BR)、収縮速度(CV)、弛緩速度(RV)が増加した。平面プレートで培養したCM2は、拍動数は薬剤投与によって変化はなかったが、収縮速度、弛緩速度は減少する傾向であった。
 配向プレートで培養したCM2の拍動数(BR)は、全てのdoseにおいて薬剤添加前と比較して優位に増加した。弛緩速度(RV)はdose3において、薬剤添加前と比較して優位に増加した。また、平面プレートと比較して有意に増加した。収縮速度(CV)はdose3において、平面プレートと比較して有意に増加した(図16-2)。
DMSO(溶媒)
 溶媒では、薬物効果に著しい影響をもたらす作用は確認されなかった。
 上記(10)に示すように、iCell心筋細胞CM2を15日間培養し、より成熟した状態において、心筋の副作用惹起として多く使われている2薬剤の容量依存作用を検討した結果から、配向プレートを使用することで、収縮速度の有意な増加が見られ、iCell心筋細胞では効果の検証が難しいとされてきた、陽性変力作用を配向プレートの使用により検出することが可能であることが示された。
(11)薬剤安全性試験-3(抗がん剤)
 iCell心筋細胞CM2を15日間培養し、心筋への副作用(中毒性心筋炎、過敏性心筋炎)が惹起される抗がん剤の容量依存作用を検討した。
 上記の(10)と同様の手順で、CM2を配向プレート(96well plate、ND Cell Aligner)、平面プレート(96well plate)に6×10cells/wellの濃度で播種した。37℃のCOインキュベーターで維持培養を行い、播種当日を0日目として、15日目に薬剤を投与した。
 薬剤は、Doxorubicin(ドキソルビシン、アントラサイクリン系抗がん剤)を使用した。薬剤はDMSOに溶解し、投与を行った。初めに、事前測定として、薬剤を添加しない状態で測定を行った。測定後直ちに、3μMの濃度になるように、DMSOに溶解した薬剤を各ウェルに添加し、24時間、48時間経過後に測定を行った。測定は、上記(10-1)ライブセルイメージング装置を使用した動き試験法による測定と同様に行った。
 測定データは、3μMの濃度での測定値を、薬剤を添加しない事前測定の平均値で補正し(3μMでの測定値/事前測定の測定値)、事前測定の測定値を1とした変化率を求めた。
 有意差検定は、各時間における薬剤添加群の平面プレートと配向プレートの結果を各時間におけるDMSO添加群と比較しT検定を行った。また、薬剤添加群における平面プレートと配向プレート間でT検定を行った。P値が0.01以下であった比較群に関して、グラフにマークを記した。
 溶媒として使用したDMSOは、最終濃度0.01%で添加した。DMSOによる影響は、DMSO0.01%添加群を24時間後、48時間後の測定を行うことにより確認した。測定データは薬剤投与群と同様に処理を行った。
ドキソルビシン(抗がん剤)
 平面プレートで培養したCM2、配向プレートで培養したCM2ともにドキソルビシンの添加により、拍動数(BR)が増加した。48時間後の測定結果は24時間後の測定結果より増加しており、時間経過とともに拍動数が増加した。特に、配向プレートで培養したCM2では、3μM添加により平面プレートと比較して拍動数が有意に増加した。DMSOの添加により、平面プレートと配向プレートともに拍動数は減少する傾向があった(図17)。
 CV(収縮速度)は、配向プレートで培養したCM2で増加が認められた。DMSO投与群と比較して、24時間後の測定では3μM添加により有意に増加し、24時間後、48時間後の測定では、平面プレートと比較して配向プレートで培養したCM2で有意に増加した。DMSOの添加により、平面は収縮速度が減少する傾向が見られたが、配向プレートは薬剤投与前と変化がなかった(図17)。
 RV(弛緩速度)は、平面プレートで培養したCM2、配向プレートで培養したCM2ともにドキソルビシンの添加により、増加した。配向プレートで培養したCM2では、
48時間後の測定で、平面プレートと比較してRVが有意に増加した。
DMSOの添加により、配向プレートでRVが増加傾向であったが、平面プレートは薬剤投与前と変化がなかった(図17)。
 上記(11)に示すように、抗がん剤のドキソルビシンを使用した容量依存作用を検討した結果から、配向プレートを使用することで、拍動数、収縮速度、弛緩速度で有意な増加が見られ、配向プレートの使用により、心筋に対する毒性の検出が可能であることが示された。
(12)酸素消費速度の測定
 上記の手順で、CM2を配向プレート(96well plate、ND Cell Aligner)、平面プレート(96well plate)に6×10cells/wellの濃度で播種した。37℃のCOインキュベーターで維持培養を行い、播種当日を0日目として、27日目に酸素消費速度を測定した。
 測定は、酸素消費速度プレートアッセイキット(同仁化学株式会社製、E297)を使用した。
 CM2を培養したウェルプレートに、培地で希釈したOxygen Probeを添加し、あらかじめ37℃に保温したプレートリーダー内で30分間静置した。次に脂肪酸代謝酵素を阻害するβ酸化阻害剤であるEtomoxirを終濃度で50μM含むSample Solutionを加え、直ちにMeneral Oilを滴下し、酸素の供給を遮断した。
 37℃に保温したプレートリーダー内で5分間静置した後、経時的に蛍光強度を測定した。蛍光プレートリーダーの測定条件は、励起波長495nm/蛍光波長650nm、データ取得は10分ごとに、少なくとも168分間行った。
 測定は、コントロールとしてEtomoxir未添加を6ウェル、Etomoxir50μM添加を3ウェルで行った。
 酸素濃度(pmol)は、酸素消費速度プレートアッセイキットに付属の計算シートによって算出し、酸素消費速度(pmol/min)は、測定開始10~70分後の60分間における酸素濃度減少量から算出した。
 測定の結果、平面プレートでは、Etomoxir未添加のOCRは79.1pmol/min、Etomoxir添加のOCRは77.8pmol/minであり、Etomoxir添加によって、添加前のOCRに比べて、OCRは98.3%であった。
 一方、配向プレートでは、Etomoxir未添加のOCRは63.6pmol/min、Etomoxir添加のOCRは7.0pmol/minであり、Etomoxir添加によって、添加前のOCRに比べて、OCRは11.0%に低下した。
 結果を図16に示す。図16中、縦軸は、Etomoxir未添加のOCRを1.0としている。
 上記結果から、本実施形態の培養細胞シートは、従来の培養細胞シートに比べて成熟化が進行しており、その結果、該培養細胞シートを使用することにより、評価対象である化合物または薬物の評価方法として、より生体内に近い評価が可能であると考えられる。

Claims (15)

  1.  心筋細胞から構成される培養細胞シートであって、
     心筋細胞が配向性を有して配置され、
     前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲(71.6μm×71.6μm)内にあるα-アクチニン抗体で検出される棒状構造体の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度を、下記式(1)により求める配向度が23%以上である、培養細胞シート。
     配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)
  2.  ライブセルイメージングにおいて、動きベクトルの最頻値の角度から±5°の角度を示すベクトルの数(配向度)が12%以上である、請求項1に記載の培養細胞シート。
  3.  前記心筋細胞が、幹細胞由来の心筋細胞である、請求項1に記載の培養細胞シート。
  4.  以下の要件A1および要件A2の少なくともいずれかを満たす、請求項1に記載の培養細胞シート。
     要件A1:MYL3(Myosin Light Chain 3)遺伝子の発現量と、ACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)が12.0以上である。
     要件A2:MYH7(Myosin Heavy Chain 7)遺伝子の発現量と、MYH6(Myosin Heavy Chain 6)遺伝子の発現量との比(MYH7/MYH6)が6.0以上である。
  5.  以下の要件B1および要件B2の少なくともいずれかを満たす、請求項1に記載の培養細胞シート。
     要件B1:CKM(Creatin Kinase,M-type)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(CKM/ACTB)が、1.80以上である。
     要件B2:LDHA(Lactate Dehydrogenase A subunit)の遺伝子発現量と、ACTBの遺伝子発現量との比(LDHA/ACTB)が0.80以上である。
  6.  細胞1個あたりのミトコンドリアの面積が200μm以上である、請求項1に記載の培養細胞シート。
  7.  ライブセルイメージングにおいて検出された収縮速度をCV(m/sec)とし、弛緩速度をRV(m/sec)としたとき、下記式(2)を満たす、請求項1に記載の培養細胞シート。
      1.0≦CV/RV≦2.8     (2)
  8.  カルシウムイメージング解析において、カルシウムトランジェントの波形ピーク高さを100%としたとき、20%の高さの波形幅をDuration(秒)とし、ピーク間の間隔をInterval(秒)としたとき、下記式(3)を満たす、請求項1に記載の培養細胞シート。
      Duration/(Interval)1/2≧0.68   (3)
  9.  培養細胞シートを構成する細胞が、25℃溶液中でのパッチクランプ試験における活動電位80%再分極持続時間が600msec以上であり、かつ、最大拡張期電位が-60mV以下である、請求項1に記載の培養細胞シート。
  10.  再生医療用である、請求項1に記載の培養細胞シート。
  11.  請求項1~10のいずれか1項に記載の培養細胞シートの製造方法であって、
     培養細胞シートを形成するための表面を備え、
     前記表面は、複数の平坦部と複数の凹凸部とを備え、
     各平坦部は、第1方向に延びる形状を有し、かつ、前記複数の平坦部は前記表面の全体で前記第1方向と交差する第2方向に並び、
     各凹凸部は、相互に隣り合う前記平坦部の間を埋める複数の段差構造を含み、前記段差構造のピッチが100nm以上10μm以下であり、
     前記段差構造は、凸部であり、
     前記凹凸部は、相互に隣り合う前記平坦部に挟まれた凹部の底面に複数の前記凸部を備えており、
     細胞シート形成部材の厚み方向において、前記凹凸部における先端面の高さと、前記平坦部の高さとの差が0.5μm以下である細胞シート形成部材を用いて、心筋細胞を培養することを含む、培養細胞シートの製造方法。
  12.  請求項1~10のいずれか1項に記載の培養細胞シートに対して、評価対象である化合物または薬物を作用させる、化合物または薬物の評価方法。
  13.  培養細胞シートの生理学的特性の変化および運動機能の変化から選択される少なくとも1つの変化を評価する、請求項12に記載の化合物または薬物の評価方法。
  14.  前記評価対象である化合物または薬物が、INa遮断薬、Ikr遮断薬、Iks遮断薬、ICa遮断薬、5-HT4受容体作動薬、α受容体遮断薬、β受容体遮断薬、α受容体作動薬、β受容体作動薬、毒劇物、抗がん剤、およびその他の生理活性物質からなる群より選択される少なくとも1つの既存化合物またはその候補化合物である、請求項12に記載の化合物または薬物の評価方法。
  15.  心筋細胞から構成される培養細胞シートの品質評価方法であって、
     下記(i)~(viii)のいずれかを評価する、
     品質評価方法。
     (i) 前記培養細胞シートに対して、抗α-アクチニン抗体を使用して免疫染色を行い顕微鏡観察で得られる画像において画面水平方向を0°とした際、測定範囲(71.6μm×71.6μm)内にあるα-アクチニン抗体で検出される棒状構造体の長手方向の角度を計測し、その最頻値の±15°以内に含まれる棒状構造体の頻度を、下記式(1)により求める配向度が23%以上である。
     配向度(%)=(最頻値の±15°以内に含まれる棒状構造体の数)/(棒状構造体の総数)×100 (1)
     (ii) ライブセルイメージングにおいて、動きベクトルの最頻値の角度から±5°の角度を示すベクトルの数(配向度)が12%以上である。
     (iii) 以下の要件A1および要件A2の少なくともいずれかを満たす。
     要件A1:MYL3(Myosin Light Chain 3)遺伝子の発現量と、ACTB(Actin Beta)遺伝子の発現量との比(MYL3/ACTB)が12.0以上である。
     要件A2:MYH7(Myosin Heavy Chain 7)遺伝子の発現量と、MYH6(Myosin Heavy Chain 6)遺伝子の発現量との比(MYH7/MYH6)が6.0以上である。
     (iv) 以下の要件B1および要件B2の少なくともいずれかを満たす。
     要件B1:CKM(Creatin Kinase,M-type)の遺伝子発現量と、ACTB(Actin Beta)の遺伝子発現量との比(CKM/ACTB)が、1.80以上である。
     要件B2:LDHA(Lactate Dehydrogenase A subunit)の遺伝子発現量と、ACTBの遺伝子発現量との比(LDHA/ACTB)が0.80以上である。
     (v) 細胞1個あたりのミトコンドリアの面積が200μm以上である。
     (vi) ライブセルイメージングにおいて検出された収縮速度をCV(m/sec)とし、弛緩速度をRV(m/sec)としたとき、下記式(2)を満たす。
      1.0≦CV/RV≦2.8     (2)
     (vii) カルシウムイメージング解析において、カルシウムトランジェントの波形ピーク高さを100%としたとき、20%の高さの波形幅をDuration(秒)とし、ピーク間の間隔をInterval(秒)としたとき、下記式(3)を満たす。
      Duration/(Interval)1/2≧0.68   (3)
     (viii) 培養細胞シートを構成する細胞が、25℃溶液中でのパッチクランプ試験における活動電位80%再分極持続時間が600msec以上であり、かつ、最大拡張期電位が-60mV以下である。
PCT/JP2023/024866 2022-07-08 2023-07-05 培養細胞シートおよびその製造方法、化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法 WO2024010020A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022110334 2022-07-08
JP2022-110334 2022-07-08
JP2023040170 2023-03-14
JP2023-040170 2023-03-14

Publications (1)

Publication Number Publication Date
WO2024010020A1 true WO2024010020A1 (ja) 2024-01-11

Family

ID=89453459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024866 WO2024010020A1 (ja) 2022-07-08 2023-07-05 培養細胞シートおよびその製造方法、化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法

Country Status (1)

Country Link
WO (1) WO2024010020A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125952A1 (en) * 2012-04-04 2015-05-07 University Of Washington Through Its Center For Commercialization Systems and method for engineering muscle tissue
WO2015162810A1 (ja) * 2013-09-12 2015-10-29 オリンパス株式会社 心筋細胞への分化をモニタリングする方法
WO2017169397A1 (ja) * 2016-03-29 2017-10-05 ソニー株式会社 画像処理装置、画像処理方法、及び画像処理システム
JP2018027048A (ja) * 2016-08-18 2018-02-22 国立大学法人 新潟大学 心不全患者に対する内科的治療が有効であるか否かを予測するためのデータを収集する方法
JP2019037220A (ja) * 2017-08-23 2019-03-14 王子ホールディングス株式会社 細胞シート形成部材、細胞シート形成部材の製造方法、および、細胞シートの製造方法
WO2019078278A1 (ja) * 2017-10-18 2019-04-25 国立大学法人京都大学 心筋細胞に分化させるための多能性幹細胞の製造方法
JP2019526255A (ja) * 2016-08-26 2019-09-19 ザ ユニバーシティ オブ クィーンズランド 心筋細胞の成熟
JP2020098199A (ja) * 2018-12-14 2020-06-25 国立大学法人 宮崎大学 プローブ、ミトコンドリアの状態判定用キット、ミトコンドリアの状態判定方法及びミトコンドリア機能改善剤のスクリーニング方法
WO2020158482A1 (ja) * 2019-01-28 2020-08-06 王子ホールディングス株式会社 細胞シート形成部材、細胞シート形成部材の製造方法、および、細胞シートの製造方法
WO2020158481A1 (ja) * 2019-01-28 2020-08-06 王子ホールディングス株式会社 細胞シートの製造方法および細胞シート
US20200407687A1 (en) * 2019-06-28 2020-12-31 University Health Network Mature Cardiomyocyte Compositions
WO2021112115A1 (ja) * 2019-12-03 2021-06-10 学校法人自治医科大学 心筋細胞の成熟方法、心筋細胞の成熟度評価方法、成熟心筋細胞の純化方法、創薬支援方法、心疾患の治療方法、成熟心筋細胞マーカー、レポーター細胞、成熟心筋細胞、心筋細胞成熟度評価装置、心筋細胞成熟度評価プログラム、心筋細胞成熟キット、及び心筋細胞純化キット

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125952A1 (en) * 2012-04-04 2015-05-07 University Of Washington Through Its Center For Commercialization Systems and method for engineering muscle tissue
WO2015162810A1 (ja) * 2013-09-12 2015-10-29 オリンパス株式会社 心筋細胞への分化をモニタリングする方法
WO2017169397A1 (ja) * 2016-03-29 2017-10-05 ソニー株式会社 画像処理装置、画像処理方法、及び画像処理システム
JP2018027048A (ja) * 2016-08-18 2018-02-22 国立大学法人 新潟大学 心不全患者に対する内科的治療が有効であるか否かを予測するためのデータを収集する方法
JP2019526255A (ja) * 2016-08-26 2019-09-19 ザ ユニバーシティ オブ クィーンズランド 心筋細胞の成熟
JP2019037220A (ja) * 2017-08-23 2019-03-14 王子ホールディングス株式会社 細胞シート形成部材、細胞シート形成部材の製造方法、および、細胞シートの製造方法
WO2019078278A1 (ja) * 2017-10-18 2019-04-25 国立大学法人京都大学 心筋細胞に分化させるための多能性幹細胞の製造方法
JP2020098199A (ja) * 2018-12-14 2020-06-25 国立大学法人 宮崎大学 プローブ、ミトコンドリアの状態判定用キット、ミトコンドリアの状態判定方法及びミトコンドリア機能改善剤のスクリーニング方法
WO2020158482A1 (ja) * 2019-01-28 2020-08-06 王子ホールディングス株式会社 細胞シート形成部材、細胞シート形成部材の製造方法、および、細胞シートの製造方法
WO2020158481A1 (ja) * 2019-01-28 2020-08-06 王子ホールディングス株式会社 細胞シートの製造方法および細胞シート
US20200407687A1 (en) * 2019-06-28 2020-12-31 University Health Network Mature Cardiomyocyte Compositions
WO2021112115A1 (ja) * 2019-12-03 2021-06-10 学校法人自治医科大学 心筋細胞の成熟方法、心筋細胞の成熟度評価方法、成熟心筋細胞の純化方法、創薬支援方法、心疾患の治療方法、成熟心筋細胞マーカー、レポーター細胞、成熟心筋細胞、心筋細胞成熟度評価装置、心筋細胞成熟度評価プログラム、心筋細胞成熟キット、及び心筋細胞純化キット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DU WENTAO, QI XIAOYONG, LIU GUIJING, ZHAO XINGQUAN, YUAN JIANGYONG, WEN JINPING: "Effects of target regulation of LDHA through the PDK1/Akt/mTOR pathway on myocardial apoptosis caused by ischemia/reperfusion injury in rats", INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE 2015, E-CENTURY PUBLISHING CORPORATION, US, vol. 10, no. 10, 30 October 2017 (2017-10-30), US , pages 14194 - 14202, XP093126544, ISSN: 1940-5901 *
IZUMI-NAKASEKO HIROKO, CHIBA KOKI, HAGIWARA-NAGASAWA MIHOKO, SATSUKA AYANO, GOTO AI, NUNOI YOSHIO, KAMBAYASHI RYUICHI, MATSUMOTO A: "Optimizing the Direction and Order of the Motion Unveiled the Ability of Conventional Monolayers of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes to Show Frequency-Dependent Enhancement of Contraction and Relaxation Motion", FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, FRONTIERS MEDIA, CH, vol. 8, CH , XP093126539, ISSN: 2296-634X, DOI: 10.3389/fcell.2020.542562 *
TOKUNO HISAKO, DAI KOTARO, SHINOTSUKA KEI: "Induction of Anisotropic Orientation and Enhancement of Gene Functional Expression of Human Pluripotent Stem Cell-Derived Cardiomyocytes Cultured on Nanofabricated Substrates Consisting of Micron Planar Lines and Nano Dot Structures.", RESEARCH SQUARE, 17 July 2021 (2021-07-17), XP093126538, Retrieved from the Internet <URL:https://assets.researchsquare.com/files/rs-727809/v1/12c913a1-435e-4974-ad20-628d1ba67df2.pdf?c=1631886684> DOI: 10.21203/rs.3.rs-727809/v1 *

Similar Documents

Publication Publication Date Title
JP6388537B2 (ja) 患者由来の人工多能性幹細胞由来の心筋細胞および使用方法
Smith et al. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening
Eder et al. Human engineered heart tissue as a model system for drug testing
AU2017314870B2 (en) Cardiomyocyte maturation
Brandao et al. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies
Andrysiak et al. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research
ES2770067T3 (es) Descubrimiento de fármacos basado en células diferenciadas in vitro
Liu et al. Developmental changes of Ca2+ handling in mouse ventricular cells from early embryo to adulthood
JP5074921B2 (ja) 非侵襲性生体外機能組織検定システム
US10369162B2 (en) Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to damage
Pesl et al. Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes
Li et al. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells
CN111246863A (zh) 用于增强健康的和病变的心肌细胞的成熟状态的组合物和方法
Hamledari et al. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation
WO2024010020A1 (ja) 培養細胞シートおよびその製造方法、化合物または薬物の評価方法、並びに培養細胞シートの品質評価方法
Macadangdang et al. Engineered developmental niche enables predictive phenotypic screening in human dystrophic cardiomyopathy
Bourque et al. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy
US11555179B2 (en) Identification of subpopulations of cardiomyocytes
WO2024070783A1 (ja) 積層心筋細胞シート付細胞培養基材およびその製造方法、並びに生体移植用正常心筋細胞シートの評価方法
EP2954322B1 (en) In vitro method for cardiovascular risk stratification
US20220017870A1 (en) Methods of identifying therapeutic targets for treating angiogenesis
WO2006021459A1 (en) Compositions and methods for modulating cell differentiation
Clark Characterizing the Impact of Microscale Heterogeneity on Macroscopic Mechanical Function in the Myocardium
Brandao Cardiom oc tes from human induced pluripotent stem cells: capturing disease se erit of LQT2 s ndrome and the impact of chromosome aberrations
Mureli Pathophysiological Cardiac Remodeling And The Potential Of Cellular And Molecular Therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835551

Country of ref document: EP

Kind code of ref document: A1