WO2024009361A1 - Power conversion device for railroad car - Google Patents

Power conversion device for railroad car Download PDF

Info

Publication number
WO2024009361A1
WO2024009361A1 PCT/JP2022/026619 JP2022026619W WO2024009361A1 WO 2024009361 A1 WO2024009361 A1 WO 2024009361A1 JP 2022026619 W JP2022026619 W JP 2022026619W WO 2024009361 A1 WO2024009361 A1 WO 2024009361A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
converter
conversion device
railway vehicle
Prior art date
Application number
PCT/JP2022/026619
Other languages
French (fr)
Japanese (ja)
Inventor
純吾 力武
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024531769A priority Critical patent/JPWO2024009361A1/ja
Priority to PCT/JP2022/026619 priority patent/WO2024009361A1/en
Publication of WO2024009361A1 publication Critical patent/WO2024009361A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a power conversion device for a railway vehicle that receives AC power supplied from an AC overhead wire and runs.
  • a railway line that has been electrified with AC is divided into feeding sections, which are the ranges in which power is supplied to each substation, and the voltage phase of AC power is different for each substation. For this reason, on railway lines that have been electrified with AC, there are sections where power cannot be supplied at the boundaries of feeder sections. This section is called the "dead section.” Therefore, in a railway vehicle running on an AC-electrified railway line, when passing through a dead section, there is a non-power supply period in which the power supply from the AC overhead wire is interrupted. On the other hand, for example, on railway lines built in tropical or subtropical regions, at least the air conditioner among the auxiliary equipment installed on the railway vehicle may be required to operate continuously even during periods when no power is supplied. be. Note that auxiliary equipment is a name used to refer to equipment other than the propulsion motor among equipment mounted on a railway vehicle and supplied with electric power. Power is supplied to the auxiliary equipment by a power conversion device called an auxiliary power supply device.
  • Patent Document 1 discloses that when passing through a dead section, a converter of a main converter converts regenerated power from a propulsion motor for driving a railway vehicle to an auxiliary power supply device via a main transformer.
  • a technology has been disclosed in which electric power is continuously supplied to auxiliary equipment mounted on a railway vehicle even when passing through a dead section, just as during normal running. This operation is called "pumpback.”
  • Patent Document 1 the power demand of the auxiliary power supply device during the non-power supply period is not considered.
  • the regenerative power may not be smoothly supplied to the auxiliary power supply.
  • the problem is that the voltage that cannot be regenerated to the auxiliary power supply device causes the voltage of the smoothing capacitor to jump, causing protection detection to work, or that the amount of regenerated power to the auxiliary power supply device is insufficient, causing the power to the auxiliary equipment to rise. Problems such as supply disruption may occur.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device for a railway vehicle that can smoothly supply power to auxiliary equipment even during a non-power supply period.
  • a power conversion device for a railway vehicle is mounted on a railway vehicle that includes a main transformer, a switch, and a voltage detector.
  • the primary winding of the main transformer is connected to the overhead wire via the power receiving part, the switch electrically disconnects or connects the main transformer and the overhead wire, and the voltage detector is installed between the overhead wire and the switch. , to detect the overhead line voltage applied from the overhead line.
  • the power conversion device for a railway vehicle includes a first power conversion device and a second power conversion device.
  • the first power conversion device includes a converter, a smoothing capacitor, and an inverter.
  • the converter is connected to the secondary winding of the main transformer and converts the alternating current voltage applied via the main transformer into direct current voltage.
  • a smoothing capacitor smoothes DC voltage.
  • the inverter converts the DC voltage applied from the converter via the smoothing capacitor into a drive voltage for a propulsion motor for driving a railway vehicle, and applies the drive voltage to the propulsion motor.
  • the second power converter is connected to the tertiary winding of the main transformer and supplies power to auxiliary equipment mounted on the railway vehicle. The converter operates to keep the capacitor voltage, which is the voltage of the smoothing capacitor, constant during the power supply period when power is supplied from the overhead line.
  • the converter operates to supply regenerated power generated by the propulsion motor to the second power converter via the main transformer.
  • the inverter outputs a driving torque for driving the propulsion motor during the power supply period, and operates according to a target value of regenerative power determined based on the required power of the auxiliary equipment during the non-power supply period.
  • the power conversion device for a railway vehicle According to the power conversion device for a railway vehicle according to the present disclosure, it is possible to smoothly supply power to auxiliary equipment even during a non-power supply period.
  • a diagram showing an example of the configuration of the main conversion device shown in FIG. A diagram for explaining the energy flow during the power supply period of the power conversion device for a railway vehicle according to the embodiment.
  • Time chart for explaining the operation of the main converter according to the embodiment during the power supply period and the non-power supply period A diagram for explaining the main points of the operation of the main converter according to the embodiment during the power supply period.
  • Operation flow diagram for explaining the operation of the inverter control unit according to the embodiment Operation flow diagram for explaining the operation of the converter control unit according to the embodiment
  • Operation flow diagram for explaining the operation of the converter control unit according to the embodiment A diagram showing an example of a configuration of a transmission system of a railway vehicle equipped with a power conversion device for a railway vehicle according to an embodiment.
  • Flowchart for explaining information transmission in the power conversion device for a railway vehicle according to an embodiment A block diagram illustrating an example of a hardware configuration that realizes the functions of a control device according to an embodiment.
  • connection includes both cases where components are directly connected to each other and cases where components are indirectly connected to each other via other components.
  • FIG. 1 is a diagram illustrating an example of the configuration of an electrical system of a railroad vehicle system including a railroad vehicle power conversion device according to an embodiment.
  • the railway vehicle system according to the embodiment includes a power receiving unit 101, an ACPT (Alternating Current Potential Transformer) 102 which is a voltage detector, a switch 103, a main transformer 104, a main converter 105, and a propulsion motor 106. and an auxiliary power supply device 107.
  • FIG. 1 shows a configuration in which there are four main conversion devices 105 and four propulsion motors 106, this is just an example, and the numbers may be different. Further, although FIG.
  • ACPT Alternating Current Potential Transformer
  • FIG. 1 shows a configuration in which one propulsion motor 106 is connected to one main conversion device 105, a configuration in which a plurality of propulsion motors 106 are connected to one main conversion device 105 may also be used. good.
  • FIG. 1 shows a configuration in which one auxiliary power supply device 107 is connected to the main transformer 104, a configuration in which a plurality of auxiliary power supply devices 107 are connected to the main transformer 104 may be used.
  • the main conversion device 105 and the auxiliary power supply device 107 constitute the power conversion device for a railway vehicle according to the embodiment.
  • the power receiving unit 101 is a device for the railway vehicle to receive AC power from the overhead wire 100.
  • Examples of the power receiving unit 101 are a pantograph, current collector shoes, and the like. Although it is assumed that power is supplied to the railway vehicle by a pantograph attached to the top of the railway vehicle, a third rail installed next to the track may also be used.
  • the switch 103 is a device that electrically opens and closes the main transformer 104 and the overhead wire 100.
  • An example of the switch 103 is a circuit breaker, and a vacuum circuit breaker (VCB) is often used for railway vehicles. Note that any device that can electrically open and close, that is, disconnect and connect between the main transformer 104 and the overhead line 100, may not be a circuit breaker.
  • the ACPT 102 is a device that measures the voltage received by the power receiving unit 101.
  • the ACPT 102 is provided between the overhead wire 100 and the switch 103 and detects the overhead wire voltage applied from the overhead wire 100.
  • the main transformer 104 includes a primary winding 141, a secondary winding 142, and a tertiary winding 143.
  • the primary winding 141 is connected to the overhead wire 100 via the power receiving section 101 and the switch 103.
  • the secondary winding 142 is connected to the main converter 105, and the tertiary winding 143 is connected to the auxiliary power supply 107.
  • An overhead wire voltage is applied to the primary winding 141, and a voltage determined by the turn ratio between the secondary winding 142 and the tertiary winding 143 is generated in the secondary winding 142 and the tertiary winding 143.
  • the basic idea is to install secondary windings 142 for the number of main converters 105, and install tertiary windings 143 for the number of auxiliary power supply devices 107, and connect each winding to each device on a one-to-one basis.
  • a configuration in which one winding and a plurality of devices are connected via a reactor may also be used.
  • the overhead line voltage applied to the primary winding 141 of the main transformer 104 is a reference voltage for current control of the converter 210, and may be referred to as a "reference voltage" in this paper. Note that the voltage generated in the secondary winding 142 may be used as the reference voltage.
  • the main conversion device 105 includes a converter 210 and an inverter 230.
  • Converter 210 is connected to secondary winding 142 of main transformer 104 and converts an alternating current voltage applied via main transformer 104 to a direct current voltage.
  • Inverter 230 has a DC side connected to converter 210 via intermediate link 153 and an AC side connected to propulsion motor 106 .
  • the inverter 230 converts the DC voltage applied from the intermediate link portion 153 into a drive voltage for the propulsion motor 106 and applies the drive voltage to the propulsion motor 106 .
  • the main converter 105 may be referred to as a "first power converter".
  • the propulsion motor 106 is a motor for driving a railway vehicle.
  • the railway vehicle travels by obtaining driving force through the rotation of the propulsion motor 106. Further, the railway vehicle is accelerated or decelerated by the torque generated by the propulsion motor 106.
  • the auxiliary power supply device 107 is connected to the tertiary winding 143 of the main transformer 104, and supplies power to the aforementioned auxiliary equipment.
  • auxiliary equipment include in-vehicle lighting devices, door opening/closing devices, air conditioners, security equipment, compressors, batteries, control power supplies, and the like. Note that in this paper, the auxiliary power supply device 107 may be referred to as a "second power conversion device.”
  • FIG. 2 is a diagram showing a configuration example of the main conversion device 105 shown in FIG. 1.
  • Main conversion device 105 includes a converter 210, a smoothing capacitor 220, an inverter 230, and a control device 240.
  • control device 240 includes a converter control section 242 and an inverter control section 244.
  • Converter control section 242 controls the operation of converter 210
  • inverter control section 244 controls the operation of inverter 230.
  • the control device 240 does not need to be configured separately into the converter control section 242 and the inverter control section 244, and the parts that can be shared may be shared and both may be configured integrally.
  • Converter 210 includes a primary terminal 211 and a secondary terminal 212.
  • Converter 210 can mutually convert a single-phase AC voltage applied to primary terminal 211 and a DC voltage applied to secondary terminal 212. This operation is controlled by converter control section 242.
  • Converter 210 controls the power transferred to inverter 230 by adjusting the voltage at primary terminal 211 .
  • a current sensor 213 is arranged at one of the primary side terminals 211. Current sensor 213 detects the current flowing to the primary side of converter 210.
  • FIG. 2 illustrates a three-level converter that has three secondary side terminals 212 and can output three types of potentials to the secondary side, the present invention is not limited to this example.
  • the number of secondary side terminals 212 may be two or four or more. A configuration in which the number of secondary terminals 212 is two is called a two-level converter.
  • the inverter 230 includes a primary terminal 231 and a secondary terminal 232.
  • the aforementioned portion between the secondary side terminal 212 of the converter 210 and the primary side terminal 231 of the inverter 230 constitutes the aforementioned intermediate link portion 153.
  • the inverter 230 can mutually convert the DC voltage applied to the primary side terminal 231 and the AC voltage applied to the secondary side terminal 232. This operation is controlled by the inverter control section 244.
  • Inverter 230 controls the output torque of propulsion motor 106 by adjusting the voltage at secondary terminal 232.
  • the propulsion motor 106 is a three-phase AC motor
  • the voltage output to the secondary terminal 232 is a three-phase AC voltage. Note that although FIG.
  • the number of primary side terminals 231 may be three or more. A configuration in which the number of primary side terminals 231 is three is called a three-level inverter.
  • Smoothing capacitor 220 is connected between secondary terminal 212 of converter 210 and primary terminal 231 of inverter 230, and has a function of suppressing fluctuations in DC voltage.
  • a voltage sensor 221 is arranged in parallel to the smoothing capacitor 220 .
  • Voltage sensor 221 detects a capacitor voltage that is the voltage across smoothing capacitor 220 .
  • the smoothing capacitor 220 is a component of the intermediate link section 153, and the capacitor voltage is also called "intermediate link voltage.”
  • FIG. 3 is a diagram for explaining the energy flow during the power supply period of the power conversion device for a railway vehicle according to the embodiment.
  • FIG. 4 is a diagram for explaining the energy flow during the non-power supply period of the power conversion device for a railway vehicle according to the embodiment.
  • the power supply period means a period during which power from the overhead line 100 is normally applied to the main transformer 104.
  • the non-power supply period includes a period during which the railway vehicle actually passes through a dead section, and a period during which the switch 103 is in an open state before and after the period. That is, the non-power period means a period in which the main transformer 104 and the overhead line 100 are electrically disconnected, and no power is supplied from the overhead line 100 to the main transformer 104.
  • the power necessary to drive the railway vehicle is supplied to the main converter 105 and the auxiliary power supply device 107 via the power receiving section 101, the switch 103, and the main transformer 104.
  • the main converter 105 converts the supplied electric power into driving electric power for the propulsion motor 106 and drives the propulsion motor 106 .
  • the auxiliary power supply device 107 converts the supplied power into driving power for the auxiliary equipment to operate the auxiliary equipment.
  • the converter control unit 242 included in the control device 240 regenerates the kinetic energy of the propulsion motor 106 and transfers the regenerated power to the auxiliary power supply device 107 via the main converter 105 and the main transformer 104.
  • Perform a pumpback to supply the
  • the main converter 105 when there is a description regarding the main converter 105, it refers to the main converter 105 that performs pump-back.
  • the main converter 105 there is one main converter 105 for each main transformer 104 that performs pump-back.
  • One main converter 105 that performs pumpback may be determined in advance, or may be designated by a train information management device that manages train information. The train information management device will be described later.
  • FIG. 5 is a time chart for explaining the operation of the main converter 105 according to the embodiment during the power supply period and the non-power supply period.
  • the horizontal axis in FIG. 5 represents time.
  • the railway vehicle travels from left to right.
  • a dead section passing signal is output before the railway vehicle passes through the dead section.
  • a dead section passing signal is output at time t1, and output of the dead section passing signal is canceled at time t10.
  • Regenerative power is determined at time t2, and pump-back is started at time t3.
  • Switch 103 is opened at time t4, and remains open until time t11.
  • the period from time t5 to time t6 is the period during which the vehicle actually passes through the dead section.
  • control is performed to match the output voltage waveform of converter 210 to the detected waveform of ACPT 102.
  • Pumpback ends at time t9, and regeneration shifts to power running at time t12.
  • converter 210 when power is supplied from overhead line 100, converter 210 operates so that the capacitor voltage becomes the capacitor voltage target value.
  • Main transformer 104 outputs a single-phase AC voltage to primary terminal 211 of converter 210 so that converter 210 can receive the necessary power.
  • Converter 210 outputs a DC voltage to secondary terminal 212 so that smoothing capacitor 220 can follow the voltage according to the command value.
  • the inverter 230 outputs a voltage to the secondary terminal 232 so that the propulsion motor 106 can output torque according to the command value.
  • a dead section passage signal is output at time t1, and upon receiving this signal, the inverter 230 reduces the power running power by reducing the power running torque and stops supplying current to the propulsion motor 106. After that, the propulsion motor 106 shifts to a regenerative state and generates regenerative power. At time t2, regenerated power is determined, and pump-back is started at time t3. The regenerated power is determined based on the auxiliary power required by the auxiliary power supply device 107.
  • the required power for the auxiliary machine is the power required for the auxiliary machine, which is the load of the auxiliary power supply device 107, during the non-power period associated with passing through the dead section.
  • this control is referred to as "regenerative power determination control.”
  • regenerative power determination control may be referred to as "first control.”
  • Information on the required power of the auxiliary equipment is transmitted to the control device 240 of the main conversion device 105.
  • Information on the required power for the auxiliary equipment can be transmitted from the control device of the auxiliary power supply device 107 (not shown) to the control device 240.
  • the required power for the auxiliary machine can be calculated by using the voltage output by the auxiliary power supply device 107 and the current that the auxiliary power supply device 107 supplies to the auxiliary machine.
  • information on the required power for auxiliary equipment may be transmitted to the control device 240 using a train information management device included in the railway vehicle system. Note that an embodiment in which the train information management device is used will be described later.
  • FIG. 5 shows an example in which regenerated power is determined before pump-back is started, the present invention is not limited to this example. The regenerated power may be determined after the start of pump-back.
  • the inverter 230 When switching to pump-back operation at time t3, the inverter 230 operates to regenerate the power necessary for maintaining the capacitor voltage from the propulsion motor 106. Since the regenerative power output from the main converter 105 is determined based on the information on the required power of the auxiliary equipment, the regenerative power from the main converter 105 and the power consumption of the auxiliary equipment connected to the auxiliary power supply 107 are combined. The current flowing through the switch 103 quickly approaches zero. This makes it possible to open the switch 103 at time t4.
  • the control switches to control that does not refer to the overhead line voltage.
  • converter 210 outputs a sine wave voltage with a constant amplitude and frequency to primary terminal 211 without referring to the overhead line voltage.
  • this control is referred to as "overhead line voltage non-reference control.”
  • overhead line voltage non-reference control may be referred to as "second control.” The overhead line voltage non-reference control is continued until time t7 after passing through the dead section.
  • the ACPT 102 After time t6 when the railway vehicle passes through the dead section, the ACPT 102 restarts measuring the overhead wire voltage.
  • the converter 210 controls the sine wave voltage being generated to gradually match the waveform detected by the ACPT 102 by the new overhead wire 100. Specifically, converter 210 performs control to match the zero cross of the sine wave voltage to the new waveform of the overhead wire voltage while continuing to supply power to auxiliary power supply device 107. Zero crossing can be controlled by changing the frequency of the sine wave voltage little by little.
  • the phase of the sine wave voltage follows the phase of the overhead line voltage, and the phases of the sine wave voltage and the overhead line voltage are synchronized.
  • this control is referred to as “overhead line voltage phase tracking control.”
  • the overhead line voltage phase follow-up control may be referred to as "third control.”
  • phase of the sine wave voltage and the phase of the overhead wire voltage are synchronized at time t8, the pump-back ends at the subsequent time t9, and the switch 103 is closed at the subsequent time t11.
  • time t11 power supply from the overhead wire 100 is restarted, and after time t12, normal power running control is resumed.
  • FIG. 6 is a diagram for explaining the main points of the operation of the main converter 105 according to the embodiment during the power supply period.
  • FIG. 7 is a diagram for explaining the main points of the operation of the main converter 105 according to the embodiment during the non-power supply period.
  • the operation during the power supply period will be explained.
  • the power supplied from the overhead line 100 is divided into two directions through the main transformer 104, one direction is supplied to the auxiliary power supply device 107, and the other direction is supplied to the auxiliary power supply device 107 via the converter 210, smoothing capacitor 220, and inverter 230. It is supplied to the propulsion motor 106.
  • the flow of electric power from converter 210 to propulsion motor 106 is a flow during power running that applies power running torque to propulsion motor 106 .
  • converter 210 performs an operation to adjust the amount of positive current so that the capacitor voltage becomes the capacitor voltage target value.
  • the positive amount of current is the amount of current in the first direction from converter 210 to smoothing capacitor 220.
  • the first direction referred to here is the direction in which converter 210 charges smoothing capacitor 220.
  • the inverter 230 controls the power running torque of the propulsion motor 106.
  • the flow of power from the propulsion motor 106 to the converter 210 is a flow during regeneration when the propulsion motor 106 generates regenerated power.
  • converter 210 adjusts the amount of negative current so that the capacitor voltage becomes the capacitor voltage target value.
  • the negative current amount is the amount of current in the second direction from smoothing capacitor 220 toward converter 210.
  • the second direction referred to here is the direction in which converter 210 discharges the charges accumulated in smoothing capacitor 220. At this time, inverter 230 controls the regenerative torque of propulsion motor 106.
  • Converter 210 operates so that the output voltage is a constant target overhead line voltage.
  • the target overhead wire voltage is the voltage that converter 210 applies to tertiary winding 143 during the non-power feeding period.
  • the target overhead line voltage is a voltage determined by the overhead line voltage and the turns ratio of the main transformer 104.
  • the turns ratio of the main transformer 104 referred to here is the turns ratio between the primary winding 141 and the tertiary winding 143.
  • the power that converter 210 supplies to auxiliary power supply device 107 via main transformer 104 depends on the power requirement of the auxiliary equipment that is the load of auxiliary power supply device 107, and it is necessary to supply power according to the required power. . For this reason, converter 210 cannot perform capacitor voltage constant control to keep the capacitor voltage constant. Therefore, the inverter 230 is responsible for constant capacitor voltage control at this time. Inverter 230 adjusts the negative current so that the capacitor voltage becomes the capacitor voltage target value.
  • the negative current here means a current flowing in the direction in which the inverter 230 charges the smoothing capacitor 220.
  • converter 210 returns to constant capacitor voltage control, and inverter 230 returns to drive torque control for controlling the drive torque of propulsion motor 106.
  • FIG. 8 is an operation flow diagram for explaining the operation of the inverter control section 244 according to the embodiment.
  • FIG. 9 is an operation flow diagram for explaining the operation of converter control section 242 according to the embodiment.
  • a control system for outputting a drive torque target value as an inverter torque target value and a control system for making the capacitor voltage match the capacitor voltage target value described above are performed inside the inverter control unit 244.
  • the outputs of the two control systems are switched by a regenerative power determination flag.
  • the regenerative power determination flag is output when regenerative power is determined by regenerative power determination control.
  • the time is determined at time t2.
  • this regenerated power is determined based on the required power of the auxiliary equipment.
  • the required power for the auxiliary equipment is transmitted from the train information management device to the control device 240. This transmission process will be further described later using some drawings.
  • the control system for making the capacitor voltage match the capacitor voltage target value is to perform PI (Proportional Integral) control on the difference between the capacitor voltage detection value and the capacitor voltage target value with the auxiliary equipment required power as the initial value, as shown in FIG. Calculate the control value. Then, by driving the inverter 230 using the calculated control value as the inverter torque target value, the capacitor voltage constant control by the inverter 230 described above is implemented.
  • PI Proportional Integral
  • the converter control section 242 As shown in FIG. 9, inside the converter control unit 242, there is a control system that takes in the detected value of the overhead line voltage and uses it for control calculations, and a control system that uses the sine wave voltage generated using the overhead line voltage as a trigger for control calculations. There is a system.
  • the outputs of the two control systems are switched by the waveform identity confirmation completion flag and the overhead line voltage non-reference control status flag.
  • the status flag of the overhead line voltage non-reference control is constantly output during the period when the overhead line voltage non-reference control is being performed.
  • the waveform identity confirmation completion flag is output when it is determined that the phase of the sine wave voltage and the phase of the overhead line voltage are synchronized in the overhead line voltage phase tracking control.
  • the sine wave voltage generated inside converter control unit 242 is used for control calculation. used for.
  • the period from time t4 to time t7 corresponds to this state.
  • the status flag of the overhead line voltage non-reference control is not output, or if the waveform identity confirmation completion flag is output, the detected value of the overhead line voltage is taken in and used for control calculations. Looking at the time chart of FIG. 5, the period up to time t4 and the period after time t8 correspond to this state.
  • FIG. 10 is a diagram illustrating an example of the configuration of a transmission system of a railway vehicle including a power conversion device for a railway vehicle according to an embodiment. Further, FIG. 11 is a flowchart for explaining information transmission in the power conversion device for a railway vehicle according to the embodiment.
  • FIG. 10 shows a train that is composed of one command car 80, at least two electric cars 82, and two accompanying cars 84.
  • the command vehicle 80 is a vehicle equipped with a driver's cab (not shown).
  • the electric vehicle 82 is a vehicle on which the above-mentioned propulsion motor 106 is mounted.
  • the accompanying vehicle 84 is a vehicle in which a driver's cab and a propulsion motor 106 are not mounted. Propulsion force is applied to the train by an electric vehicle 82 on which a propulsion motor 106 is mounted.
  • a train information management device 50 is mounted on the command vehicle 80.
  • the train information management device 50 is a device that manages train information transmitted within a train.
  • the electric vehicle 82 is equipped with the main conversion device 105 described above.
  • the train information management device 50 is a device that manages train information transmitted within a train.
  • the train information also includes operational information regarding the auxiliary power supply device 107, and the train information management device 50 also manages information on the above-mentioned auxiliary equipment power requirements. Therefore, it becomes possible to transmit information on the required power of the auxiliary equipment to the main conversion device 105 of each electric vehicle 82 through the transmission line 86.
  • the train information also includes the dead section passing signal described above.
  • step S11 upon receiving the dead section passing signal (step S11), the train information management device 50 transmits information on the required power of the auxiliary equipment to the main converter 105 of the designated electric vehicle 82 (step S12).
  • step S12 The process of step S12 is continued unless the dead section passing signal is canceled (step S13, No), and if the dead section passing signal is canceled (step S13, Yes), the processing flow of FIG. 11 is exited.
  • the operation of the main converter 105 after receiving the information on the required power for the auxiliary equipment is as described above.
  • the main converter 105 controls the regenerative power generated by the propulsion motor 106 during the no-power period based on the information on the power required for the auxiliary equipment, so that power can be smoothly supplied to the auxiliary equipment even during the no-power period. It becomes possible to do so.
  • the power conversion device for a railway vehicle includes a first power conversion device that includes a converter, a smoothing capacitor, and an inverter, and is connected to the secondary winding of the main transformer; and a second power converter device that is connected to the tertiary winding of the device and supplies power to auxiliary equipment mounted on the railway vehicle.
  • the converter operates to keep the capacitor voltage, which is the voltage of the smoothing capacitor, constant during the power supply period when power is supplied from the overhead line. Furthermore, during the non-power supply period when power is not supplied from the overhead wire, the converter operates to supply regenerated power generated by the propulsion motor to the second power converter via the main transformer.
  • the inverter outputs a driving torque for driving the propulsion motor during the power supply period, and operates according to a target value of regenerative power determined based on the required power of the auxiliary equipment during the non-power supply period.
  • the regenerative power supply amount of the propulsion motor and the power demand amount of the auxiliary power supply device match during the non-power supply period. This makes it possible to smoothly supply power to the auxiliary equipment even during the non-power supply period. Further, it is possible to avoid the problem that the voltage that cannot be regenerated to the auxiliary power supply device causes the voltage of the smoothing capacitor to jump, causing protection detection to work. Furthermore, it is possible to avoid a problem in which the power supply to the auxiliary equipment is stopped due to insufficient regenerated power to the auxiliary power supply device.
  • the converter matches the voltage applied to the tertiary winding with the target voltage determined by the overhead line voltage and the turns ratio of the main transformer.
  • the inverter operates to match the capacitor voltage to the target value of the capacitor voltage.
  • the converter performs an operation of adjusting the amount of current in the first direction from the converter to the smoothing capacitor.
  • the capacitor voltage is controlled by adjusting the amount of current in the second direction from the smoothing capacitor to the converter.
  • the control device performs first control to determine a target value of regenerative power based on the required power of the auxiliary equipment, and after performing the first control, A second control was performed to generate a sine wave voltage with a constant amplitude and frequency without reference to the overhead line voltage, and the zero crossing of the sine wave voltage generated by the second control was detected after the unpowered period had passed.
  • the control system can be configured to perform third control in accordance with the new overhead line voltage waveform.
  • Information regarding the target value of regenerative power required when implementing the first control may be received from the second power conversion device or from the train information management device installed on the railway vehicle. Good too.
  • the train information management device it is possible to instruct a desired electric vehicle to supply power to an auxiliary machine in a train in which a plurality of electric vehicles are arranged. Further, by instructing a plurality of electric vehicles, it is possible to reliably prevent a situation where regenerative power becomes insufficient.
  • FIG. 12 is a block diagram illustrating an example of a hardware configuration that implements the functions of control device 240 according to the embodiment.
  • FIG. 13 is a block diagram showing another example of the hardware configuration that implements the functions of the control device 240 according to the embodiment.
  • the configuration may include an interface 304 for inputting and outputting signals.
  • the processor 300 is a calculation means.
  • the processor 300 may be a calculation means called a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 also includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM); Examples include a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disc).
  • the memory 302 stores a program that executes the functions of the control device 240 in the embodiment.
  • the processor 300 performs the above-described processing by exchanging necessary information via the interface 304, executing the program stored in the memory 302, and referring to the table stored in the memory 302. It can be carried out.
  • the results of calculations by processor 300 can be stored in memory 302.
  • the processing circuit 303 shown in FIG. 13 can also be used.
  • the processing circuit 303 is a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • Information input to the processing circuit 303 and information output from the processing circuit 303 can be obtained via the interface 304.
  • control device 240 may be performed by the processing circuit 303, and processing that is not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302.
  • 50 train information management device 80 command vehicle, 82 electric vehicle, 84 accompanying vehicle, 86 transmission line, 100 overhead wire, 101 power receiving unit, 102 ACPT, 103 switch, 104 main transformer, 105 main converter, 106 propulsion motor, 107 Auxiliary power supply, 141 Primary winding, 142 Secondary winding, 143 Tertiary winding, 153 Intermediate link, 210 Converter, 211, 231 Primary terminal, 212, 232 Secondary terminal, 213 Current sensor, 220 Smoothing Capacitor, 221 Voltage sensor, 230 Inverter, 240 Control device, 242 Converter control unit, 244 Inverter control unit, 300 Processor, 302 Memory, 303 Processing circuit, 304 Interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In this power conversion device for a railroad car, a main conversion device (105) comprises a converter (210), a smoothing capacitor (220), and an inverter (230). The converter (210) operates so as to make a capacitor voltage that is the voltage of the smoothing capacitor (220) constant during a power supply period in which power is supplied from an aerial line (100), and operates to supply regenerated power generated by a propulsion motor (106) to an auxiliary power supply device (107) through a main transformer (104) in a non-power supply period in which the supply of power from the aerial line (100) is not performed. The inverter (230) outputs a drive torque for driving the propulsion motor (106) in the power supply period, and operates in accordance with a target value of the regeneration power determined on the basis of required power for auxiliary equipment in the non-power supply period.

Description

鉄道車両用電力変換装置Power converter for railway vehicles
 本開示は、交流架線から供給される交流電力を受電して走行する鉄道車両用電力変換装置に関する。 The present disclosure relates to a power conversion device for a railway vehicle that receives AC power supplied from an AC overhead wire and runs.
 交流電化された鉄道路線は、各変電所毎に電力を供給する範囲である、き電区間で区切られ、また、変電所毎に交流電力の電圧位相が異なっている。このため、交流電化された鉄道路線では、き電区間の境界において、給電ができない区間が設けられている。この区間は「デッドセクション」と呼ばれている。従って、交流電化された鉄道路線を走行する鉄道車両において、デッドセクションの通過時は、交流架線からの給電が途切れる無給電期間になる。一方、例えば熱帯又は亜熱帯地方に敷設される鉄道路線では、鉄道車両に搭載される補機のうち、少なくとも空調装置に関しては、無給電期間でも連続的に動作することが要求仕様とされることがある。なお、補機とは、鉄道車両に搭載されて電力が供給される機器のうち、推進モータ以外の機器を指して呼ぶ名称である。補機への電力供給は、補助電源装置と呼ばれる電力変換装置によって行われる。 A railway line that has been electrified with AC is divided into feeding sections, which are the ranges in which power is supplied to each substation, and the voltage phase of AC power is different for each substation. For this reason, on railway lines that have been electrified with AC, there are sections where power cannot be supplied at the boundaries of feeder sections. This section is called the "dead section." Therefore, in a railway vehicle running on an AC-electrified railway line, when passing through a dead section, there is a non-power supply period in which the power supply from the AC overhead wire is interrupted. On the other hand, for example, on railway lines built in tropical or subtropical regions, at least the air conditioner among the auxiliary equipment installed on the railway vehicle may be required to operate continuously even during periods when no power is supplied. be. Note that auxiliary equipment is a name used to refer to equipment other than the propulsion motor among equipment mounted on a railway vehicle and supplied with electric power. Power is supplied to the auxiliary equipment by a power conversion device called an auxiliary power supply device.
 上記のような技術的背景の下、下記特許文献1には、デッドセクションの通過時に、鉄道車両駆動用の推進モータからの回生電力を主変換装置のコンバータが主変圧器を介して補助電源装置に供給することにより、デッドセクションの通過時であっても、通常走行時と同じように、鉄道車両に搭載された補機に連続的に電力を供給する技術が開示されている。この動作は、「ポンプバック」と呼ばれる。 Under the above-mentioned technical background, Patent Document 1 below discloses that when passing through a dead section, a converter of a main converter converts regenerated power from a propulsion motor for driving a railway vehicle to an auxiliary power supply device via a main transformer. A technology has been disclosed in which electric power is continuously supplied to auxiliary equipment mounted on a railway vehicle even when passing through a dead section, just as during normal running. This operation is called "pumpback."
特許第6510060号公報Patent No. 6510060
 しかしながら、上記特許文献1では、無給電期間における補助電源装置の電力需要については、考慮されていない。無給電期間において、推進モータの回生電力供給量と補助電源装置の電力需要量とに不一致があると、補助電源装置への回生電力供給が円滑に行われない可能性がある。例えば、補助電源装置へ回生できなかった電圧が平滑コンデンサの電圧の跳ね上がりの要因となり、保護検知が働いてしまうという問題、或いは補助電源装置への回生電力量が足りずに、補機への電力供給が停止してしまうといった問題が生じ得る。 However, in Patent Document 1, the power demand of the auxiliary power supply device during the non-power supply period is not considered. During the non-power supply period, if there is a mismatch between the amount of regenerative power supplied to the propulsion motor and the amount of power demanded by the auxiliary power supply, the regenerative power may not be smoothly supplied to the auxiliary power supply. For example, the problem is that the voltage that cannot be regenerated to the auxiliary power supply device causes the voltage of the smoothing capacitor to jump, causing protection detection to work, or that the amount of regenerated power to the auxiliary power supply device is insufficient, causing the power to the auxiliary equipment to rise. Problems such as supply disruption may occur.
 本開示は、上記に鑑みてなされたものであって、無給電期間であっても、補機への電力供給を円滑に行うことができる鉄道車両用電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device for a railway vehicle that can smoothly supply power to auxiliary equipment even during a non-power supply period.
 上述した課題を解決し、目的を達成するため、本開示に係る鉄道車両用電力変換装置は、主変圧器と、開閉器と、電圧検出器とを備えた鉄道車両に搭載される。主変圧器は受電部を介して一次巻線が架線に接続され、開閉器は主変圧器と架線とを電気的に遮断又は接続し、電圧検出器は架線と開閉器との間に設けられ、架線から印加される架線電圧を検出する。鉄道車両用電力変換装置は、第1の電力変換装置と、第2の電力変換装置とを備える。第1の電力変換装置は、コンバータと、平滑コンデンサと、インバータとを備える。コンバータは、主変圧器の二次巻線に接続され、主変圧器を介して印加される交流電圧を直流電圧に変換する。平滑コンデンサは、直流電圧を平滑する。インバータは、平滑コンデンサを介してコンバータから印加される直流電圧を鉄道車両駆動用の推進モータへの駆動電圧に変換して推進モータに印加する。第2の電力変換装置は、主変圧器の三次巻線に接続され、鉄道車両に搭載された補機に電力を供給する。コンバータは、架線からの電力の供給が行われる給電期間においては、平滑コンデンサの電圧であるコンデンサ電圧を一定にするように動作する。また、コンバータは、架線からの電力の供給が行われない無給電期間においては、推進モータが発生する回生電力を主変圧器を介して第2の電力変換装置に供給する動作を行う。インバータは、給電期間においては、推進モータを駆動する駆動トルクを出力し、無給電期間においては、補機の所要電力に基づいて決定された回生電力の目標値に従って動作する。 In order to solve the above-mentioned problems and achieve the objectives, a power conversion device for a railway vehicle according to the present disclosure is mounted on a railway vehicle that includes a main transformer, a switch, and a voltage detector. The primary winding of the main transformer is connected to the overhead wire via the power receiving part, the switch electrically disconnects or connects the main transformer and the overhead wire, and the voltage detector is installed between the overhead wire and the switch. , to detect the overhead line voltage applied from the overhead line. The power conversion device for a railway vehicle includes a first power conversion device and a second power conversion device. The first power conversion device includes a converter, a smoothing capacitor, and an inverter. The converter is connected to the secondary winding of the main transformer and converts the alternating current voltage applied via the main transformer into direct current voltage. A smoothing capacitor smoothes DC voltage. The inverter converts the DC voltage applied from the converter via the smoothing capacitor into a drive voltage for a propulsion motor for driving a railway vehicle, and applies the drive voltage to the propulsion motor. The second power converter is connected to the tertiary winding of the main transformer and supplies power to auxiliary equipment mounted on the railway vehicle. The converter operates to keep the capacitor voltage, which is the voltage of the smoothing capacitor, constant during the power supply period when power is supplied from the overhead line. Furthermore, during the non-power supply period when power is not supplied from the overhead wire, the converter operates to supply regenerated power generated by the propulsion motor to the second power converter via the main transformer. The inverter outputs a driving torque for driving the propulsion motor during the power supply period, and operates according to a target value of regenerative power determined based on the required power of the auxiliary equipment during the non-power supply period.
 本開示に係る鉄道車両用電力変換装置によれば、無給電期間であっても、補機への電力供給を円滑に行うことができるという効果を奏する。 According to the power conversion device for a railway vehicle according to the present disclosure, it is possible to smoothly supply power to auxiliary equipment even during a non-power supply period.
実施の形態に係る鉄道車両用電力変換装置を含む鉄道車両システムの電気系統の構成例を示す図A diagram showing an example of the configuration of an electrical system of a railway vehicle system including a power conversion device for a railway vehicle according to an embodiment. 図1に示す主変換装置の構成例を示す図A diagram showing an example of the configuration of the main conversion device shown in FIG. 実施の形態に係る鉄道車両用電力変換装置の給電期間におけるエネルギーフローの説明に供する図A diagram for explaining the energy flow during the power supply period of the power conversion device for a railway vehicle according to the embodiment. 実施の形態に係る鉄道車両用電力変換装置の無給電期間におけるエネルギーフローの説明に供する図A diagram for explaining the energy flow during the non-power supply period of the power conversion device for a railway vehicle according to the embodiment. 実施の形態に係る主変換装置の給電期間及び無給電期間での動作説明に供するタイムチャートTime chart for explaining the operation of the main converter according to the embodiment during the power supply period and the non-power supply period 実施の形態に係る主変換装置の給電期間における動作の要点の説明に供する図A diagram for explaining the main points of the operation of the main converter according to the embodiment during the power supply period. 実施の形態に係る主変換装置の無給電期間における動作の要点の説明に供する図A diagram for explaining the main points of the operation of the main converter according to the embodiment during the non-power supply period. 実施の形態に係るインバータ制御部の動作説明に供する動作フロー図Operation flow diagram for explaining the operation of the inverter control unit according to the embodiment 実施の形態に係るコンバータ制御部の動作説明に供する動作フロー図Operation flow diagram for explaining the operation of the converter control unit according to the embodiment 実施の形態に係る鉄道車両用電力変換装置を備える鉄道車両の伝送系統の構成例を示す図A diagram showing an example of a configuration of a transmission system of a railway vehicle equipped with a power conversion device for a railway vehicle according to an embodiment. 実施の形態に係る鉄道車両用電力変換装置における情報伝送の説明に供するフローチャートFlowchart for explaining information transmission in the power conversion device for a railway vehicle according to an embodiment 実施の形態に係る制御装置の機能を実現するハードウェア構成の一例を示すブロック図A block diagram illustrating an example of a hardware configuration that realizes the functions of a control device according to an embodiment. 実施の形態に係る制御装置の機能を実現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of the hardware configuration that realizes the functions of the control device according to the embodiment.
 以下に添付図面を参照し、本開示の実施の形態に係る鉄道車両用電力変換装置について詳細に説明する。なお、以下では、物理的な接続と電気的な接続とを区別せずに、単に「接続」と称して説明する。即ち、「接続」という文言は、構成要素同士が直接的に接続される場合と、構成要素同士が他の構成要素を介して間接的に接続される場合との双方を含んでいる。 A power conversion device for a railway vehicle according to an embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that in the following description, physical connections and electrical connections are simply referred to as "connections" without distinguishing between them. That is, the word "connection" includes both cases where components are directly connected to each other and cases where components are indirectly connected to each other via other components.
実施の形態.
 図1は、実施の形態に係る鉄道車両用電力変換装置を含む鉄道車両システムの電気系統の構成例を示す図である。実施の形態に係る鉄道車両システムは、受電部101と、電圧検出器であるACPT(Alternating Current Potential Transformer)102と、開閉器103と、主変圧器104と、主変換装置105と、推進モータ106と、補助電源装置107とを備えて構成される。なお、図1は、主変換装置105を4台とし、推進モータ106を4台とする構成であるが、一例であり、台数は異なっていても構わない。また、図1は、主変換装置105の1台に推進モータ106が1台接続される構成であるが、主変換装置105の1台に複数の推進モータ106が接続される構成であってもよい。また、図1は、主変圧器104に1台の補助電源装置107が接続される構成であるが、主変圧器104に複数の補助電源装置107が接続される構成であってもよい。また、図1において、主変換装置105及び補助電源装置107は、実施の形態に係る鉄道車両用電力変換装置を構成する。
Embodiment.
FIG. 1 is a diagram illustrating an example of the configuration of an electrical system of a railroad vehicle system including a railroad vehicle power conversion device according to an embodiment. The railway vehicle system according to the embodiment includes a power receiving unit 101, an ACPT (Alternating Current Potential Transformer) 102 which is a voltage detector, a switch 103, a main transformer 104, a main converter 105, and a propulsion motor 106. and an auxiliary power supply device 107. Although FIG. 1 shows a configuration in which there are four main conversion devices 105 and four propulsion motors 106, this is just an example, and the numbers may be different. Further, although FIG. 1 shows a configuration in which one propulsion motor 106 is connected to one main conversion device 105, a configuration in which a plurality of propulsion motors 106 are connected to one main conversion device 105 may also be used. good. Further, although FIG. 1 shows a configuration in which one auxiliary power supply device 107 is connected to the main transformer 104, a configuration in which a plurality of auxiliary power supply devices 107 are connected to the main transformer 104 may be used. Moreover, in FIG. 1, the main conversion device 105 and the auxiliary power supply device 107 constitute the power conversion device for a railway vehicle according to the embodiment.
 受電部101は、鉄道車両が架線100からの交流電力を受電するための機器である。受電部101の例は、パンタグラフ、集電靴などである。鉄道車両への給電は、鉄道車両の上部に取り付けられるパンタグラフを想定しているが、線路の横に設置される第三軌条であっても構わない。 The power receiving unit 101 is a device for the railway vehicle to receive AC power from the overhead wire 100. Examples of the power receiving unit 101 are a pantograph, current collector shoes, and the like. Although it is assumed that power is supplied to the railway vehicle by a pantograph attached to the top of the railway vehicle, a third rail installed next to the track may also be used.
 開閉器103は、主変圧器104と架線100とを電気的に開閉する機器である。開閉器103の一例は遮断器であり、鉄道車両用としては、真空遮断器(Vacuum Circuit Breaker:VCB)がよく用いられる。なお、主変圧器104と架線100との間を電気的に開閉、即ち遮断及び接続できる機器であれば遮断器でなくてもよい。 The switch 103 is a device that electrically opens and closes the main transformer 104 and the overhead wire 100. An example of the switch 103 is a circuit breaker, and a vacuum circuit breaker (VCB) is often used for railway vehicles. Note that any device that can electrically open and close, that is, disconnect and connect between the main transformer 104 and the overhead line 100, may not be a circuit breaker.
 ACPT102は、受電部101の受電電圧を測定する機器である。ACPT102は、架線100と開閉器103との間に設けられ、架線100から印加される架線電圧を検出する。 The ACPT 102 is a device that measures the voltage received by the power receiving unit 101. The ACPT 102 is provided between the overhead wire 100 and the switch 103 and detects the overhead wire voltage applied from the overhead wire 100.
 主変圧器104は、一次巻線141と、二次巻線142と、三次巻線143とを備える。一次巻線141は、受電部101及び開閉器103を介して架線100に接続される。また、二次巻線142は主変換装置105に接続され、三次巻線143は補助電源装置107に接続される。一次巻線141には架線電圧が印加され、二次巻線142及び三次巻線143には、一次巻線141との間の巻数比によって決まる電圧が生じる。二次巻線142は主変換装置105の個数分を設置し、三次巻線143は補助電源装置107の個数分を設置し、それぞれの巻線と各装置とを一対一で接続するのを基本とするが、1つの巻線と複数の装置とをリアクトルを介して接続するような構成としても構わない。 The main transformer 104 includes a primary winding 141, a secondary winding 142, and a tertiary winding 143. The primary winding 141 is connected to the overhead wire 100 via the power receiving section 101 and the switch 103. Further, the secondary winding 142 is connected to the main converter 105, and the tertiary winding 143 is connected to the auxiliary power supply 107. An overhead wire voltage is applied to the primary winding 141, and a voltage determined by the turn ratio between the secondary winding 142 and the tertiary winding 143 is generated in the secondary winding 142 and the tertiary winding 143. The basic idea is to install secondary windings 142 for the number of main converters 105, and install tertiary windings 143 for the number of auxiliary power supply devices 107, and connect each winding to each device on a one-to-one basis. However, a configuration in which one winding and a plurality of devices are connected via a reactor may also be used.
 主変圧器104の一次巻線141に印加される架線電圧は、コンバータ210の電流制御の基準となる電圧であり、本稿では「基準電圧」と呼ぶことがある。なお、二次巻線142に生じる電圧を基準電圧としてもよい。 The overhead line voltage applied to the primary winding 141 of the main transformer 104 is a reference voltage for current control of the converter 210, and may be referred to as a "reference voltage" in this paper. Note that the voltage generated in the secondary winding 142 may be used as the reference voltage.
 主変換装置105は、コンバータ210と、インバータ230とを備える。コンバータ210は、主変圧器104の二次巻線142に接続され、主変圧器104を介して印加される交流電圧を直流電圧に変換する。インバータ230は、直流側が中間リンク部153を介してコンバータ210に接続され、交流側が推進モータ106に接続される。インバータ230は、中間リンク部153から印加される直流電圧を推進モータ106への駆動電圧に変換して推進モータ106に印加する。なお、本稿では、主変換装置105を「第1の電力変換装置」と呼ぶことがある。 The main conversion device 105 includes a converter 210 and an inverter 230. Converter 210 is connected to secondary winding 142 of main transformer 104 and converts an alternating current voltage applied via main transformer 104 to a direct current voltage. Inverter 230 has a DC side connected to converter 210 via intermediate link 153 and an AC side connected to propulsion motor 106 . The inverter 230 converts the DC voltage applied from the intermediate link portion 153 into a drive voltage for the propulsion motor 106 and applies the drive voltage to the propulsion motor 106 . Note that in this paper, the main converter 105 may be referred to as a "first power converter".
 推進モータ106は、鉄道車両駆動用のモータである。鉄道車両は、推進モータ106の回転によって駆動力を得て走行する。また、鉄道車両は、推進モータ106の発生するトルクによって、加速又は減速する。 The propulsion motor 106 is a motor for driving a railway vehicle. The railway vehicle travels by obtaining driving force through the rotation of the propulsion motor 106. Further, the railway vehicle is accelerated or decelerated by the torque generated by the propulsion motor 106.
 補助電源装置107は、主変圧器104の三次巻線143に接続され、前述した補機への電力供給を行う。補機の例は、車内照明装置、ドア開閉装置、空調装置、保安機器、コンプレッサ、バッテリ、制御電源などである。なお、本稿では、補助電源装置107を「第2の電力変換装置」と呼ぶことがある。 The auxiliary power supply device 107 is connected to the tertiary winding 143 of the main transformer 104, and supplies power to the aforementioned auxiliary equipment. Examples of auxiliary equipment include in-vehicle lighting devices, door opening/closing devices, air conditioners, security equipment, compressors, batteries, control power supplies, and the like. Note that in this paper, the auxiliary power supply device 107 may be referred to as a "second power conversion device."
 図2は、図1に示す主変換装置105の構成例を示す図である。主変換装置105は、コンバータ210と、平滑コンデンサ220と、インバータ230と、制御装置240とを備える。また、制御装置240は、コンバータ制御部242と、インバータ制御部244とを備える。コンバータ制御部242はコンバータ210の動作を制御し、インバータ制御部244はインバータ230の動作を制御する。なお、制御装置240は、コンバータ制御部242とインバータ制御部244とを区別して構成する必要はなく、共用できる部分は共用し、両者を一体的に構成してもよい。 FIG. 2 is a diagram showing a configuration example of the main conversion device 105 shown in FIG. 1. Main conversion device 105 includes a converter 210, a smoothing capacitor 220, an inverter 230, and a control device 240. Further, control device 240 includes a converter control section 242 and an inverter control section 244. Converter control section 242 controls the operation of converter 210, and inverter control section 244 controls the operation of inverter 230. Note that the control device 240 does not need to be configured separately into the converter control section 242 and the inverter control section 244, and the parts that can be shared may be shared and both may be configured integrally.
 コンバータ210は、一次側端子211と、二次側端子212とを備える。コンバータ210は、一次側端子211に印加される単相交流電圧と、二次側端子212に印加される直流電圧とを相互に変換することができる。この動作は、コンバータ制御部242によって制御される。コンバータ210は、一次側端子211の電圧を調整することで、インバータ230側に融通する電力を制御する。また、一次側端子211の1つには、電流センサ213が配置されている。電流センサ213は、コンバータ210の一次側に流れる電流を検出する。なお、図2では、3個の二次側端子212を有し、二次側に3種類の電位を出力することが可能な3レベルコンバータを例示しているが、この例に限定されない。二次側端子212の個数は2個でもよく、4個以上でも構わない。二次側端子212の個数が2個の構成は、2レベルコンバータと呼ばれる。 Converter 210 includes a primary terminal 211 and a secondary terminal 212. Converter 210 can mutually convert a single-phase AC voltage applied to primary terminal 211 and a DC voltage applied to secondary terminal 212. This operation is controlled by converter control section 242. Converter 210 controls the power transferred to inverter 230 by adjusting the voltage at primary terminal 211 . Furthermore, a current sensor 213 is arranged at one of the primary side terminals 211. Current sensor 213 detects the current flowing to the primary side of converter 210. Note that although FIG. 2 illustrates a three-level converter that has three secondary side terminals 212 and can output three types of potentials to the secondary side, the present invention is not limited to this example. The number of secondary side terminals 212 may be two or four or more. A configuration in which the number of secondary terminals 212 is two is called a two-level converter.
 インバータ230は、一次側端子231と、二次側端子232とを備える。前述した、コンバータ210の二次側端子212と、インバータ230の一次側端子231との間の部位は、前述した中間リンク部153を構成する。インバータ230は、一次側端子231に印加される直流電圧と、二次側端子232に印加される交流電圧とを相互に変換することができる。この動作は、インバータ制御部244によって制御される。インバータ230は、二次側端子232の電圧を調整することで推進モータ106の出力トルクを制御する。推進モータ106が三相交流モータの場合、二次側端子232に出力する電圧は三相交流電圧となる。なお、図2では、2個の一次側端子231を有し、一次側に2種類の電位を出力することが可能な2レベルインバータを例示しているが、この例に限定されない。一次側端子231の個数は3以上でも構わない。一次側端子231の個数が3個の構成は、3レベルインバータと呼ばれる。 The inverter 230 includes a primary terminal 231 and a secondary terminal 232. The aforementioned portion between the secondary side terminal 212 of the converter 210 and the primary side terminal 231 of the inverter 230 constitutes the aforementioned intermediate link portion 153. The inverter 230 can mutually convert the DC voltage applied to the primary side terminal 231 and the AC voltage applied to the secondary side terminal 232. This operation is controlled by the inverter control section 244. Inverter 230 controls the output torque of propulsion motor 106 by adjusting the voltage at secondary terminal 232. When the propulsion motor 106 is a three-phase AC motor, the voltage output to the secondary terminal 232 is a three-phase AC voltage. Note that although FIG. 2 illustrates a two-level inverter that has two primary side terminals 231 and is capable of outputting two types of potentials to the primary side, the present invention is not limited to this example. The number of primary side terminals 231 may be three or more. A configuration in which the number of primary side terminals 231 is three is called a three-level inverter.
 平滑コンデンサ220は、コンバータ210の二次側端子212と、インバータ230の一次側端子231との間に接続され、直流電圧の変動を抑制する機能を有する。コンバータ210及びインバータ230が共に2レベルの構成である場合、平滑コンデンサ220は1個だけでも構わない。また、平滑コンデンサ220には、並列に電圧センサ221が配置されている。電圧センサ221は、平滑コンデンサ220の両端の電圧であるコンデンサ電圧を検出する。なお、平滑コンデンサ220は中間リンク部153の構成要素であり、コンデンサ電圧は、「中間リンク電圧」とも呼ばれる。 Smoothing capacitor 220 is connected between secondary terminal 212 of converter 210 and primary terminal 231 of inverter 230, and has a function of suppressing fluctuations in DC voltage. When converter 210 and inverter 230 both have a two-level configuration, only one smoothing capacitor 220 may be used. Further, a voltage sensor 221 is arranged in parallel to the smoothing capacitor 220 . Voltage sensor 221 detects a capacitor voltage that is the voltage across smoothing capacitor 220 . Note that the smoothing capacitor 220 is a component of the intermediate link section 153, and the capacitor voltage is also called "intermediate link voltage."
 図3は、実施の形態に係る鉄道車両用電力変換装置の給電期間におけるエネルギーフローの説明に供する図である。また、図4は、実施の形態に係る鉄道車両用電力変換装置の無給電期間におけるエネルギーフローの説明に供する図である。なお、給電期間とは、架線100からの電力が正常に主変圧器104に印加されている期間を意味する。また、無給電期間には、鉄道車両が実際にデッドセクションを通過する期間と、当該期間の前後において開閉器103が開状態である期間とが含まれている。即ち、無給電期間とは、主変圧器104と架線100とが電気的に遮断され、主変圧器104に架線100からの電力が供給されない期間を意味する。 FIG. 3 is a diagram for explaining the energy flow during the power supply period of the power conversion device for a railway vehicle according to the embodiment. Moreover, FIG. 4 is a diagram for explaining the energy flow during the non-power supply period of the power conversion device for a railway vehicle according to the embodiment. Note that the power supply period means a period during which power from the overhead line 100 is normally applied to the main transformer 104. Further, the non-power supply period includes a period during which the railway vehicle actually passes through a dead section, and a period during which the switch 103 is in an open state before and after the period. That is, the non-power period means a period in which the main transformer 104 and the overhead line 100 are electrically disconnected, and no power is supplied from the overhead line 100 to the main transformer 104.
 通常時において、鉄道車両の駆動に必要な電力は受電部101、開閉器103及び主変圧器104を介して主変換装置105及び補助電源装置107に供給される。主変換装置105は、供給される電力を推進モータ106への駆動電力に変換して推進モータ106を駆動する。補助電源装置107は、供給される電力を補機への駆動電力に変換して補機を動作させる。 In normal times, the power necessary to drive the railway vehicle is supplied to the main converter 105 and the auxiliary power supply device 107 via the power receiving section 101, the switch 103, and the main transformer 104. The main converter 105 converts the supplied electric power into driving electric power for the propulsion motor 106 and drives the propulsion motor 106 . The auxiliary power supply device 107 converts the supplied power into driving power for the auxiliary equipment to operate the auxiliary equipment.
 無給電期間中においては、架線100から給電することができない。このため、制御装置240に備えられるコンバータ制御部242は、推進モータ106の運動エネルギーを回生させ、そのときの回生電力を主変換装置105と、主変圧器104とを介して、補助電源装置107に供給するポンプバックを行う。以降の説明において、主変換装置105に関する記載がある場合、ポンプバックを行う主変換装置105のことを指すものとする。なお、ポンプバックを行う主変換装置105は、主変圧器104毎に1台とする。1台の主変換装置105がポンプバックを行うことにより、主変圧器104に供給される回生電力が不安定になることを防止できる。ポンプバックを行う1台の主変換装置105は、予め決められていてもよいし、列車情報を管理する列車情報管理装置が、指定してもよい。列車情報管理装置については、後述する。 During the non-power supply period, power cannot be supplied from the overhead wire 100. Therefore, the converter control unit 242 included in the control device 240 regenerates the kinetic energy of the propulsion motor 106 and transfers the regenerated power to the auxiliary power supply device 107 via the main converter 105 and the main transformer 104. Perform a pumpback to supply the In the following description, when there is a description regarding the main converter 105, it refers to the main converter 105 that performs pump-back. Note that there is one main converter 105 for each main transformer 104 that performs pump-back. By having one main converter 105 perform pumpback, it is possible to prevent the regenerative power supplied to the main transformer 104 from becoming unstable. One main converter 105 that performs pumpback may be determined in advance, or may be designated by a train information management device that manages train information. The train information management device will be described later.
 図5は、実施の形態に係る主変換装置105の給電期間及び無給電期間での動作説明に供するタイムチャートである。図5の横軸は時間を表している。また、図5の縦軸方向には、上段側から順に、ACPT102の検出波形、デッドセクション通過信号、インバータ電力、ポンプバックの状態信号、開閉器103の状態信号、及びコンバータ制御に使用する電圧波形を示している。図5において、鉄道車両は左から右側に走行する。 FIG. 5 is a time chart for explaining the operation of the main converter 105 according to the embodiment during the power supply period and the non-power supply period. The horizontal axis in FIG. 5 represents time. In addition, in the vertical axis direction of FIG. 5, in order from the top side, the ACPT 102 detection waveform, dead section passing signal, inverter power, pumpback status signal, switch 103 status signal, and voltage waveform used for converter control. It shows. In FIG. 5, the railway vehicle travels from left to right.
 鉄道車両がデッドセクションを通過する前には、デッドセクション通過信号が出力される。時刻t1でデッドセクション通過信号が出力され、時刻t10でデッドセクション通過信号の出力が解除される。時刻t2で回生電力が決定され、時刻t3でポンプバックが開始される。時刻t4で開閉器103が開放され、開である状態は時刻t11まで継続される。時刻t5から時刻t6までが、実際にデッドセクションを通過している期間である。時刻t7から時刻t8の期間では、コンバータ210の出力電圧波形をACPT102の検出波形に合わせる制御が行われる。時刻t9でポンプバックが終了し、時刻t12で回生から力行に移行する。 A dead section passing signal is output before the railway vehicle passes through the dead section. A dead section passing signal is output at time t1, and output of the dead section passing signal is canceled at time t10. Regenerative power is determined at time t2, and pump-back is started at time t3. Switch 103 is opened at time t4, and remains open until time t11. The period from time t5 to time t6 is the period during which the vehicle actually passes through the dead section. During the period from time t7 to time t8, control is performed to match the output voltage waveform of converter 210 to the detected waveform of ACPT 102. Pumpback ends at time t9, and regeneration shifts to power running at time t12.
 次に、図5のタイムチャートを参照して、主変圧器104及び主変換装置105の挙動について説明する。まず、架線100からの給電があるとき、コンバータ210は、コンデンサ電圧がコンデンサ電圧目標値になるように動作する。主変圧器104は、コンバータ210が必要な電力を受電できるように、コンバータ210の一次側端子211に単相交流電圧を出力する。コンバータ210は、平滑コンデンサ220が指令値通りの電圧に追従できるように、二次側端子212に直流電圧を出力する。一方、インバータ230は、推進モータ106が指令値通りのトルクを出力できるように、二次側端子232に電圧を出力する。 Next, the behavior of the main transformer 104 and the main converter 105 will be described with reference to the time chart in FIG. First, when power is supplied from overhead line 100, converter 210 operates so that the capacitor voltage becomes the capacitor voltage target value. Main transformer 104 outputs a single-phase AC voltage to primary terminal 211 of converter 210 so that converter 210 can receive the necessary power. Converter 210 outputs a DC voltage to secondary terminal 212 so that smoothing capacitor 220 can follow the voltage according to the command value. On the other hand, the inverter 230 outputs a voltage to the secondary terminal 232 so that the propulsion motor 106 can output torque according to the command value.
 時刻t1でデッドセクション通過信号が出力され、この信号を受け取ると、インバータ230は、力行トルクを絞ることで力行電力を下げ、推進モータ106への電流の供給を停止する。その後、推進モータ106は回生状態に移行して回生電力を発生する。時刻t2では回生電力が決定され、時刻t3でポンプバックが開始される。回生電力は、補助電源装置107において必要とされる補機所要電力に基づいて決定される。補機所要電力は、デッドセクションの通過に伴う無給電期間において、補助電源装置107の負荷である補機に必要とされる電力である。本稿では、この制御を「回生電力決定制御」と呼ぶ。また、本稿では、回生電力決定制御を「第1の制御」と呼ぶことがある。 A dead section passage signal is output at time t1, and upon receiving this signal, the inverter 230 reduces the power running power by reducing the power running torque and stops supplying current to the propulsion motor 106. After that, the propulsion motor 106 shifts to a regenerative state and generates regenerative power. At time t2, regenerated power is determined, and pump-back is started at time t3. The regenerated power is determined based on the auxiliary power required by the auxiliary power supply device 107. The required power for the auxiliary machine is the power required for the auxiliary machine, which is the load of the auxiliary power supply device 107, during the non-power period associated with passing through the dead section. In this paper, this control is referred to as "regenerative power determination control." Furthermore, in this paper, regenerative power determination control may be referred to as "first control."
 補機所要電力の情報は、主変換装置105の制御装置240に伝送される。補機所要電力の情報伝送は、図示しない補助電源装置107の制御装置から制御装置240に伝送することができる。補機所要電力は、補助電源装置107が出力する電圧と、補助電源装置107が補機に供給する電流とによって、演算で求めることが可能である。また、これに代え、鉄道車両システムが備えている列車情報管理装置を使用して、補機所要電力の情報を制御装置240に伝送してもよい。なお、列車情報管理装置を使用する場合の実施例については、後述する。また、図5では、ポンプバックが開始される前に回生電力が決定される例を示しているが、この例に限定されない。ポンプバックの開始後に回生電力が決定されることでもよい。 Information on the required power of the auxiliary equipment is transmitted to the control device 240 of the main conversion device 105. Information on the required power for the auxiliary equipment can be transmitted from the control device of the auxiliary power supply device 107 (not shown) to the control device 240. The required power for the auxiliary machine can be calculated by using the voltage output by the auxiliary power supply device 107 and the current that the auxiliary power supply device 107 supplies to the auxiliary machine. Further, instead of this, information on the required power for auxiliary equipment may be transmitted to the control device 240 using a train information management device included in the railway vehicle system. Note that an embodiment in which the train information management device is used will be described later. Moreover, although FIG. 5 shows an example in which regenerated power is determined before pump-back is started, the present invention is not limited to this example. The regenerated power may be determined after the start of pump-back.
 時刻t3でポンプバックの動作に切り替わると、インバータ230は、コンデンサ電圧の維持に必要な電力を、推進モータ106から回生させるように動作する。主変換装置105から出力される回生電力は、補機所要電力の情報に基づいて決定されているので、主変換装置105からの回生電力と補助電源装置107に接続される補機での消費電力とはほぼ一致し、開閉器103に流れる電流は迅速にゼロに近づく。これにより、時刻t4で開閉器103を開放することが可能になる。 When switching to pump-back operation at time t3, the inverter 230 operates to regenerate the power necessary for maintaining the capacitor voltage from the propulsion motor 106. Since the regenerative power output from the main converter 105 is determined based on the information on the required power of the auxiliary equipment, the regenerative power from the main converter 105 and the power consumption of the auxiliary equipment connected to the auxiliary power supply 107 are combined. The current flowing through the switch 103 quickly approaches zero. This makes it possible to open the switch 103 at time t4.
 実際にデッドセクションを通過している時刻t5から時刻t6の期間は、架線電圧を計測できなくなる。このため、開閉器103の状態信号がOFFになる時刻t4、即ち時刻t5よりも前の時刻t4から、架線電圧を参照しない制御に切り替わる。具体的に、コンバータ210は、架線電圧を参照せずに、一定の振幅及び周波数の正弦波電圧を一次側端子211に出力する。本稿では、この制御を「架線電圧非参照制御」と呼ぶ。また、本稿では、架線電圧非参照制御を「第2の制御」と呼ぶことがある。架線電圧非参照制御は、デッドセクションを通過した後の時刻t7まで継続される。 During the period from time t5 to time t6 when the line actually passes through the dead section, the overhead line voltage cannot be measured. Therefore, from time t4 when the state signal of switch 103 turns OFF, that is, from time t4 before time t5, the control switches to control that does not refer to the overhead line voltage. Specifically, converter 210 outputs a sine wave voltage with a constant amplitude and frequency to primary terminal 211 without referring to the overhead line voltage. In this paper, this control is referred to as "overhead line voltage non-reference control." Furthermore, in this paper, overhead line voltage non-reference control may be referred to as "second control." The overhead line voltage non-reference control is continued until time t7 after passing through the dead section.
 鉄道車両がデッドセクションを通過した時点の時刻t6以降、ACPT102によって架線電圧の計測が再開される。ところが、架線電圧とコンバータ210が生成する電圧とは、位相が異なるので、仮にこの時点で開閉器103を閉じるとすると、主変圧器104に過大な突入電流が流れるおそれがある。この過大電流を防止するため、コンバータ210は、生成中の正弦波電圧を徐々に新たな架線100によるACPT102の検出波形に合わせる制御を行う。具体的に、コンバータ210は、補助電源装置107への電力供給を続けながら、正弦波電圧のゼロクロスを新たな架線電圧の波形に合わせる制御を行う。ゼロクロスの制御は、正弦波電圧の周波数を少しずつ変化させればよい。この制御により、正弦波電圧の位相が架線電圧の位相に追従して、正弦波電圧の位相と架線電圧の位相とが同期する。本稿では、この制御を「架線電圧位相追従制御」と呼ぶ。また、本稿では、架線電圧位相追従制御を「第3の制御」と呼ぶことがある。 After time t6 when the railway vehicle passes through the dead section, the ACPT 102 restarts measuring the overhead wire voltage. However, since the overhead line voltage and the voltage generated by converter 210 have different phases, if switch 103 were to be closed at this point, there is a risk that an excessive rush current would flow through main transformer 104. In order to prevent this excessive current, the converter 210 controls the sine wave voltage being generated to gradually match the waveform detected by the ACPT 102 by the new overhead wire 100. Specifically, converter 210 performs control to match the zero cross of the sine wave voltage to the new waveform of the overhead wire voltage while continuing to supply power to auxiliary power supply device 107. Zero crossing can be controlled by changing the frequency of the sine wave voltage little by little. With this control, the phase of the sine wave voltage follows the phase of the overhead line voltage, and the phases of the sine wave voltage and the overhead line voltage are synchronized. In this paper, this control is referred to as "overhead line voltage phase tracking control." Furthermore, in this paper, the overhead line voltage phase follow-up control may be referred to as "third control."
 時刻t8で正弦波電圧の位相と架線電圧の位相とが同期し、その後の時刻t9でポンプバックが終了し、更にその後の時刻t11で開閉器103が閉じられる。時刻t11以降、架線100からの給電が再開され、時刻t12以降、通常の力行制御に戻る。 The phase of the sine wave voltage and the phase of the overhead wire voltage are synchronized at time t8, the pump-back ends at the subsequent time t9, and the switch 103 is closed at the subsequent time t11. After time t11, power supply from the overhead wire 100 is restarted, and after time t12, normal power running control is resumed.
 次に、給電の有無による主変換装置105の動作の差異について図6及び図7を参照して説明する。図6は、実施の形態に係る主変換装置105の給電期間における動作の要点の説明に供する図である。また、図7は、実施の形態に係る主変換装置105の無給電期間における動作の要点の説明に供する図である。 Next, differences in the operation of the main converter 105 depending on whether or not power is supplied will be explained with reference to FIGS. 6 and 7. FIG. 6 is a diagram for explaining the main points of the operation of the main converter 105 according to the embodiment during the power supply period. Further, FIG. 7 is a diagram for explaining the main points of the operation of the main converter 105 according to the embodiment during the non-power supply period.
 まず、給電期間の動作について説明する。給電期間において、架線100から供給された電力は、主変圧器104を通じて2方向に分かれ、一方は補助電源装置107に供給され、他方は、コンバータ210、平滑コンデンサ220及びインバータ230を経由して、推進モータ106に供給される。コンバータ210から推進モータ106へ向かう電力の流れは、推進モータ106に力行トルクを付与する力行時の流れである。力行時において、コンバータ210は、コンデンサ電圧がコンデンサ電圧目標値になるようにプラスの電流量を調整する動作を行う。プラスの電流量とは、コンバータ210から平滑コンデンサ220に向かう第1の方向の電流量である。ここで言う第1の方向は、コンバータ210が平滑コンデンサ220を充電する方向である。このとき、インバータ230は、推進モータ106の力行トルクを制御する。また、推進モータ106からコンバータ210へ向かう電力の流れは、推進モータ106が回生電力を発生する回生時の流れである。回生時において、コンバータ210は、コンデンサ電圧がコンデンサ電圧目標値になるようにマイナスの電流量を調整する。マイナスの電流量とは、平滑コンデンサ220からコンバータ210に向かう第2の方向の電流量である。ここで言う第2の方向は、コンバータ210が平滑コンデンサ220に蓄積された電荷を放電させる方向である。このとき、インバータ230は、推進モータ106の回生トルクを制御する。 First, the operation during the power supply period will be explained. During the power supply period, the power supplied from the overhead line 100 is divided into two directions through the main transformer 104, one direction is supplied to the auxiliary power supply device 107, and the other direction is supplied to the auxiliary power supply device 107 via the converter 210, smoothing capacitor 220, and inverter 230. It is supplied to the propulsion motor 106. The flow of electric power from converter 210 to propulsion motor 106 is a flow during power running that applies power running torque to propulsion motor 106 . During power running, converter 210 performs an operation to adjust the amount of positive current so that the capacitor voltage becomes the capacitor voltage target value. The positive amount of current is the amount of current in the first direction from converter 210 to smoothing capacitor 220. The first direction referred to here is the direction in which converter 210 charges smoothing capacitor 220. At this time, the inverter 230 controls the power running torque of the propulsion motor 106. Furthermore, the flow of power from the propulsion motor 106 to the converter 210 is a flow during regeneration when the propulsion motor 106 generates regenerated power. During regeneration, converter 210 adjusts the amount of negative current so that the capacitor voltage becomes the capacitor voltage target value. The negative current amount is the amount of current in the second direction from smoothing capacitor 220 toward converter 210. The second direction referred to here is the direction in which converter 210 discharges the charges accumulated in smoothing capacitor 220. At this time, inverter 230 controls the regenerative torque of propulsion motor 106.
 次に、無給電期間の動作について説明する。無給電期間においては、推進モータ106で発生した回生電力が、インバータ230、平滑コンデンサ220、コンバータ210及び主変圧器104を経由して、補助電源装置107に供給される。電力の流れは、1方向である。コンバータ210は、出力電圧が一定の目標架線電圧になるように動作する。目標架線電圧は、無給電期間において、コンバータ210が三次巻線143に印加する電圧である。目標架線電圧は、架線電圧と主変圧器104の巻数比とによって定まる電圧である。ここで言う主変圧器104の巻数比は、一次巻線141と三次巻線143との巻数比である。 Next, the operation during the non-power supply period will be explained. During the non-power period, regenerated power generated by the propulsion motor 106 is supplied to the auxiliary power supply device 107 via the inverter 230, smoothing capacitor 220, converter 210, and main transformer 104. Power flow is unidirectional. Converter 210 operates so that the output voltage is a constant target overhead line voltage. The target overhead wire voltage is the voltage that converter 210 applies to tertiary winding 143 during the non-power feeding period. The target overhead line voltage is a voltage determined by the overhead line voltage and the turns ratio of the main transformer 104. The turns ratio of the main transformer 104 referred to here is the turns ratio between the primary winding 141 and the tertiary winding 143.
 コンバータ210が主変圧器104を介して補助電源装置107に供給する電力は、補助電源装置107の負荷である補機の所要電力に依存し、その所要電力に応じた電力を供給する必要がある。このため、コンバータ210は、コンデンサ電圧を一定にするコンデンサ電圧一定制御を実施することができない。そこで、このときのコンデンサ電圧一定制御は、インバータ230が担う。インバータ230は、コンデンサ電圧がコンデンサ電圧目標値になるようにマイナスの電流を調整する。ここで言うマイナスの電流とは、インバータ230が平滑コンデンサ220を充電する向きに流れる電流を意味している。 The power that converter 210 supplies to auxiliary power supply device 107 via main transformer 104 depends on the power requirement of the auxiliary equipment that is the load of auxiliary power supply device 107, and it is necessary to supply power according to the required power. . For this reason, converter 210 cannot perform capacitor voltage constant control to keep the capacitor voltage constant. Therefore, the inverter 230 is responsible for constant capacitor voltage control at this time. Inverter 230 adjusts the negative current so that the capacitor voltage becomes the capacitor voltage target value. The negative current here means a current flowing in the direction in which the inverter 230 charges the smoothing capacitor 220.
 なお、無給電期間が経過すると、再び給電期間に戻る。このときは、図6の動作となる。このとき、コンバータ210は、コンデンサ電圧一定制御に復帰し、インバータ230は、推進モータ106の駆動トルクを制御する駆動トルク制御に復帰する。 Note that once the non-power supply period has passed, the power supply period returns again. At this time, the operation is as shown in FIG. At this time, converter 210 returns to constant capacitor voltage control, and inverter 230 returns to drive torque control for controlling the drive torque of propulsion motor 106.
 次に、実施の形態に係るコンバータ制御部242及びインバータ制御部244の動作について、図8及び図9を参照して説明する。図8は、実施の形態に係るインバータ制御部244の動作説明に供する動作フロー図である。また、図9は、実施の形態に係るコンバータ制御部242の動作説明に供する動作フロー図である。 Next, the operations of converter control section 242 and inverter control section 244 according to the embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is an operation flow diagram for explaining the operation of the inverter control section 244 according to the embodiment. Further, FIG. 9 is an operation flow diagram for explaining the operation of converter control section 242 according to the embodiment.
 まず、図8に示すように、インバータ制御部244の内部では、駆動トルク目標値をインバータトルク目標値として出力する処理の制御系と、前述したコンデンサ電圧をコンデンサ電圧目標値に一致させる制御を行う制御系とが存在する。2つの制御系による出力は、回生電力決定フラグによって切り替えられる。回生電力決定フラグは、回生電力決定制御によって回生電力が決定されたときに出力される。前述した図5のタイムチャートでは、時刻t2で決定されている。この回生電力は、前述したように、補機所要電力に基づいて決定される。また、前述したように、補機所要電力は、列車情報管理装置から制御装置240に伝送される。この伝送処理については、更に幾つかの図面を用いて後述する。 First, as shown in FIG. 8, inside the inverter control unit 244, a control system for outputting a drive torque target value as an inverter torque target value and a control system for making the capacitor voltage match the capacitor voltage target value described above are performed. There is a control system. The outputs of the two control systems are switched by a regenerative power determination flag. The regenerative power determination flag is output when regenerative power is determined by regenerative power determination control. In the time chart of FIG. 5 described above, the time is determined at time t2. As described above, this regenerated power is determined based on the required power of the auxiliary equipment. Further, as described above, the required power for the auxiliary equipment is transmitted from the train information management device to the control device 240. This transmission process will be further described later using some drawings.
 コンデンサ電圧をコンデンサ電圧目標値に一致させる制御系は、図8に示すように、コンデンサ電圧検出値とコンデンサ電圧目標値との差分を補機所要電力を初期値としてPI(Proportional Integral)制御することで制御値を演算する。そして、演算した制御値をインバータトルク目標値としてインバータ230を駆動することで、前述したインバータ230によるコンデンサ電圧一定制御が実施される。 The control system for making the capacitor voltage match the capacitor voltage target value is to perform PI (Proportional Integral) control on the difference between the capacitor voltage detection value and the capacitor voltage target value with the auxiliary equipment required power as the initial value, as shown in FIG. Calculate the control value. Then, by driving the inverter 230 using the calculated control value as the inverter torque target value, the capacitor voltage constant control by the inverter 230 described above is implemented.
 次に、コンバータ制御部242について説明する。図9に示すように、コンバータ制御部242の内部では、架線電圧の検出値を取り込んで制御演算に使用する制御系と、架線電圧をトリガにして生成した正弦波電圧を制御演算に使用する制御系とが存在する。2つの制御系による出力は、波形の同一性確認完了フラグ及び架線電圧非参照制御の状態フラグによって切り替えられる。架線電圧非参照制御の状態フラグは、架線電圧非参照制御が実施されている期間においては、常時出力されている。波形の同一性確認完了フラグは、架線電圧位相追従制御において、正弦波電圧の位相と架線電圧の位相とが同期したと判定されたときに出力される。 Next, the converter control section 242 will be explained. As shown in FIG. 9, inside the converter control unit 242, there is a control system that takes in the detected value of the overhead line voltage and uses it for control calculations, and a control system that uses the sine wave voltage generated using the overhead line voltage as a trigger for control calculations. There is a system. The outputs of the two control systems are switched by the waveform identity confirmation completion flag and the overhead line voltage non-reference control status flag. The status flag of the overhead line voltage non-reference control is constantly output during the period when the overhead line voltage non-reference control is being performed. The waveform identity confirmation completion flag is output when it is determined that the phase of the sine wave voltage and the phase of the overhead line voltage are synchronized in the overhead line voltage phase tracking control.
 図9に示されるように、架線電圧非参照制御の状態フラグが出力され、且つ波形の同一性確認完了フラグが出力されていなければ、コンバータ制御部242の内部で生成した正弦波電圧が制御演算に使用される。図5のタイムチャートで見れば、時刻t4から時刻t7までの期間が、この状態に対応している。一方、架線電圧非参照制御の状態フラグが出力されず、又は、波形の同一性確認完了フラグが出力されていれば、架線電圧の検出値が取り込まれて制御演算に使用される。図5のタイムチャートで見れば、時刻t4までの期間と、時刻t8以降の期間とが、この状態に対応している。 As shown in FIG. 9, if the status flag of overhead line voltage non-reference control is output and the waveform identity confirmation completion flag is not output, the sine wave voltage generated inside converter control unit 242 is used for control calculation. used for. Looking at the time chart of FIG. 5, the period from time t4 to time t7 corresponds to this state. On the other hand, if the status flag of the overhead line voltage non-reference control is not output, or if the waveform identity confirmation completion flag is output, the detected value of the overhead line voltage is taken in and used for control calculations. Looking at the time chart of FIG. 5, the period up to time t4 and the period after time t8 correspond to this state.
 次に、補機所要電力を列車情報管理装置から制御装置240に伝送する処理について、図10及び図11を参照して説明する。図10は、実施の形態に係る鉄道車両用電力変換装置を備える鉄道車両の伝送系統の構成例を示す図である。また、図11は、実施の形態に係る鉄道車両用電力変換装置における情報伝送の説明に供するフローチャートである。 Next, the process of transmitting the required power for auxiliary equipment from the train information management device to the control device 240 will be described with reference to FIGS. 10 and 11. FIG. 10 is a diagram illustrating an example of the configuration of a transmission system of a railway vehicle including a power conversion device for a railway vehicle according to an embodiment. Further, FIG. 11 is a flowchart for explaining information transmission in the power conversion device for a railway vehicle according to the embodiment.
 図10には、1両の指令車80と、少なくとも2両の電動車82及び2両の付随車84とを有して編成される列車が示されている。指令車80は、図示しない運転台が搭載される車両である。電動車82は、上述した推進モータ106が搭載される車両である。付随車84は、運転台及び推進モータ106が搭載されない車両である。列車は、推進モータ106が搭載される電動車82によって推進力が付与される。 FIG. 10 shows a train that is composed of one command car 80, at least two electric cars 82, and two accompanying cars 84. The command vehicle 80 is a vehicle equipped with a driver's cab (not shown). The electric vehicle 82 is a vehicle on which the above-mentioned propulsion motor 106 is mounted. The accompanying vehicle 84 is a vehicle in which a driver's cab and a propulsion motor 106 are not mounted. Propulsion force is applied to the train by an electric vehicle 82 on which a propulsion motor 106 is mounted.
 指令車80には、列車情報管理装置50が搭載されている。列車情報管理装置50は、列車内で伝送される列車情報を管理する装置である。電動車82には、上述した主変換装置105が搭載されている。 A train information management device 50 is mounted on the command vehicle 80. The train information management device 50 is a device that manages train information transmitted within a train. The electric vehicle 82 is equipped with the main conversion device 105 described above.
 列車情報管理装置50は、列車内で伝送される列車情報を管理する装置である。列車情報には、補助電源装置107に関する動作情報も含まれており、列車情報管理装置50は、前述した補機所要電力の情報も管理している。従って、補機所要電力の情報を、伝送線86を通じて電動車82の各々の主変換装置105に伝送することが可能となる。また、列車情報には、前述したデッドセクション通過信号も含まれている。 The train information management device 50 is a device that manages train information transmitted within a train. The train information also includes operational information regarding the auxiliary power supply device 107, and the train information management device 50 also manages information on the above-mentioned auxiliary equipment power requirements. Therefore, it becomes possible to transmit information on the required power of the auxiliary equipment to the main conversion device 105 of each electric vehicle 82 through the transmission line 86. The train information also includes the dead section passing signal described above.
 図11において、列車情報管理装置50は、デッドセクション通過信号を受信すると(ステップS11)、指定された電動車82の主変換装置105に補機所要電力の情報を送信する(ステップS12)。ステップS12の処理は、デッドセクション通過信号が解除され無い限り継続され(ステップS13,No)、デッドセクション通過信号が解除されれば(ステップS13,Yes)、図11の処理フローを抜ける。 In FIG. 11, upon receiving the dead section passing signal (step S11), the train information management device 50 transmits information on the required power of the auxiliary equipment to the main converter 105 of the designated electric vehicle 82 (step S12). The process of step S12 is continued unless the dead section passing signal is canceled (step S13, No), and if the dead section passing signal is canceled (step S13, Yes), the processing flow of FIG. 11 is exited.
 補機所要電力の情報を受信した後の主変換装置105の動作は、前述した通りである。主変換装置105は、無給電期間において、補機所要電力の情報に基づいて推進モータ106が発生する回生電力を制御するので、無給電期間であっても、補機への電力供給を円滑に行うことが可能となる。 The operation of the main converter 105 after receiving the information on the required power for the auxiliary equipment is as described above. The main converter 105 controls the regenerative power generated by the propulsion motor 106 during the no-power period based on the information on the power required for the auxiliary equipment, so that power can be smoothly supplied to the auxiliary equipment even during the no-power period. It becomes possible to do so.
 以上説明したように、実施の形態に係る鉄道車両用電力変換装置は、コンバータ、平滑コンデンサ及びインバータを備え、主変圧器の二次巻線に接続される第1の電力変換装置と、主変圧器の三次巻線に接続され、鉄道車両に搭載された補機に電力を供給する第2の電力変換装置とを備える。コンバータは、架線からの電力の供給が行われる給電期間においては、平滑コンデンサの電圧であるコンデンサ電圧を一定にするように動作する。また、コンバータは、架線からの電力の供給が行われない無給電期間においては、推進モータが発生する回生電力を主変圧器を介して第2の電力変換装置に供給する動作を行う。インバータは、給電期間においては、推進モータを駆動する駆動トルクを出力し、無給電期間においては、補機の所要電力に基づいて決定された回生電力の目標値に従って動作する。このように構成された、鉄道車両用電力変換装置によれば、無給電期間において、推進モータの回生電力供給量と補助電源装置の電力需要量とが一致するように動作する。これにより、無給電期間であっても、補機への電力供給を円滑に行うことが可能となる。また、補助電源装置へ回生できなかった電圧が平滑コンデンサの電圧の跳ね上がりの要因となり、保護検知が働いてしまうという問題が生じるのを回避することができる。また、補助電源装置への回生電力量が足りずに、補機への電力供給が停止してしまうといった問題が生じるのも回避することができる。 As described above, the power conversion device for a railway vehicle according to the embodiment includes a first power conversion device that includes a converter, a smoothing capacitor, and an inverter, and is connected to the secondary winding of the main transformer; and a second power converter device that is connected to the tertiary winding of the device and supplies power to auxiliary equipment mounted on the railway vehicle. The converter operates to keep the capacitor voltage, which is the voltage of the smoothing capacitor, constant during the power supply period when power is supplied from the overhead line. Furthermore, during the non-power supply period when power is not supplied from the overhead wire, the converter operates to supply regenerated power generated by the propulsion motor to the second power converter via the main transformer. The inverter outputs a driving torque for driving the propulsion motor during the power supply period, and operates according to a target value of regenerative power determined based on the required power of the auxiliary equipment during the non-power supply period. According to the power conversion device for a railway vehicle configured in this manner, the regenerative power supply amount of the propulsion motor and the power demand amount of the auxiliary power supply device match during the non-power supply period. This makes it possible to smoothly supply power to the auxiliary equipment even during the non-power supply period. Further, it is possible to avoid the problem that the voltage that cannot be regenerated to the auxiliary power supply device causes the voltage of the smoothing capacitor to jump, causing protection detection to work. Furthermore, it is possible to avoid a problem in which the power supply to the auxiliary equipment is stopped due to insufficient regenerated power to the auxiliary power supply device.
 また、実施の形態に係る鉄道車両用電力変換装置は、無給電期間において、コンバータは、三次巻線に印加する電圧を架線電圧と主変圧器の巻数比とによって定まる目標電圧に一致させるように動作し、インバータは、コンデンサ電圧をコンデンサ電圧の目標値に一致させるように動作する。また、実施の形態に係る鉄道車両用電力変換装置は、給電期間において、コンバータは、推進モータが力行動作しているときには、コンバータから平滑コンデンサに向かう第1の方向の電流量を調整する動作を行うことでコンデンサ電圧を制御し、推進モータが回生動作しているときには、平滑コンデンサからコンバータに向かう第2の方向の電流量を調整する動作を行うことでコンデンサ電圧を制御する。このように構成された鉄道車両用電力変換装置によれば、給電期間と無給電期間との間の制御の受け渡しを円滑に行うことができる。 Further, in the power conversion device for a railway vehicle according to the embodiment, during the non-power supply period, the converter matches the voltage applied to the tertiary winding with the target voltage determined by the overhead line voltage and the turns ratio of the main transformer. In operation, the inverter operates to match the capacitor voltage to the target value of the capacitor voltage. Further, in the power conversion device for a railway vehicle according to the embodiment, during the power supply period, when the propulsion motor is in power operation, the converter performs an operation of adjusting the amount of current in the first direction from the converter to the smoothing capacitor. When the propulsion motor is performing regenerative operation, the capacitor voltage is controlled by adjusting the amount of current in the second direction from the smoothing capacitor to the converter. According to the power conversion device for a railway vehicle configured in this way, control can be smoothly transferred between the power feeding period and the non-power feeding period.
 また、実施の形態に係る鉄道車両用電力変換装置において、制御装置は、補機の所要電力に基づいて回生電力の目標値を決定する第1の制御を実施し、第1の制御の実施後に架線電圧を参照せずに、一定の振幅及び周波数の正弦波電圧を生成する第2の制御を実施し、第2の制御で生成される正弦波電圧のゼロクロスを無給電期間の経過後に検出した新たな架線電圧の波形に合わせる第3の制御を実施するように制御系を構成することができる。第1の制御を実施する際に必要とされる回生電力の目標値に関する情報は、第2の電力変換装置から受領してもよいし、鉄道車両に搭載される列車情報管理装置から受信してもよい。なお、列車情報管理装置を利用する形態であれば、電動車が複数編成されている列車において、補機への電力供給を所望の電動車に指示することができる。また、複数の電動車に指示することで、回生電力が不足する事態になることを確実に防止することができる。 Further, in the power conversion device for a railway vehicle according to the embodiment, the control device performs first control to determine a target value of regenerative power based on the required power of the auxiliary equipment, and after performing the first control, A second control was performed to generate a sine wave voltage with a constant amplitude and frequency without reference to the overhead line voltage, and the zero crossing of the sine wave voltage generated by the second control was detected after the unpowered period had passed. The control system can be configured to perform third control in accordance with the new overhead line voltage waveform. Information regarding the target value of regenerative power required when implementing the first control may be received from the second power conversion device or from the train information management device installed on the railway vehicle. Good too. Note that if the train information management device is used, it is possible to instruct a desired electric vehicle to supply power to an auxiliary machine in a train in which a plurality of electric vehicles are arranged. Further, by instructing a plurality of electric vehicles, it is possible to reliably prevent a situation where regenerative power becomes insufficient.
 最後に、上述した制御装置240の機能を実現するためのハードウェア構成について、図12及び図13の図面を参照して説明する。図12は、実施の形態に係る制御装置240の機能を実現するハードウェア構成の一例を示すブロック図である。図13は、実施の形態に係る制御装置240の機能を実現するハードウェア構成の他の例を示すブロック図である。 Finally, the hardware configuration for realizing the functions of the control device 240 described above will be explained with reference to the drawings of FIGS. 12 and 13. FIG. 12 is a block diagram illustrating an example of a hardware configuration that implements the functions of control device 240 according to the embodiment. FIG. 13 is a block diagram showing another example of the hardware configuration that implements the functions of the control device 240 according to the embodiment.
 実施の形態における制御装置240の機能の一部又は全部を実現する場合には、図12に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 In order to realize some or all of the functions of the control device 240 in the embodiment, as shown in FIG. The configuration may include an interface 304 for inputting and outputting signals.
 プロセッサ300は、演算手段である。プロセッサ300は、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)と称される演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 is a calculation means. The processor 300 may be a calculation means called a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 302 also includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM); Examples include a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disc).
 メモリ302には、実施の形態における制御装置240の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes the functions of the control device 240 in the embodiment. The processor 300 performs the above-described processing by exchanging necessary information via the interface 304, executing the program stored in the memory 302, and referring to the table stored in the memory 302. It can be carried out. The results of calculations by processor 300 can be stored in memory 302.
 また、実施の形態における制御装置240の機能の一部を実現する場合には、図13に示す処理回路303を用いることもできる。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して入手することができる。 Furthermore, when realizing part of the functions of the control device 240 in the embodiment, the processing circuit 303 shown in FIG. 13 can also be used. The processing circuit 303 is a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Information input to the processing circuit 303 and information output from the processing circuit 303 can be obtained via the interface 304.
 なお、制御装置240における一部の処理を処理回路303で実施し、処理回路303で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。 Note that some processing in the control device 240 may be performed by the processing circuit 303, and processing that is not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known technologies, and part of the configurations can be omitted or changed without departing from the scope of the invention. It is possible.
 50 列車情報管理装置、80 指令車、82 電動車、84 付随車、86 伝送線、100 架線、101 受電部、102 ACPT、103 開閉器、104 主変圧器、105 主変換装置、106 推進モータ、107 補助電源装置、141 一次巻線、142 二次巻線、143 三次巻線、153 中間リンク部、210 コンバータ、211,231 一次側端子、212,232 二次側端子、213 電流センサ、220 平滑コンデンサ、221 電圧センサ、230 インバータ、240 制御装置、242 コンバータ制御部、244 インバータ制御部、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース。 50 train information management device, 80 command vehicle, 82 electric vehicle, 84 accompanying vehicle, 86 transmission line, 100 overhead wire, 101 power receiving unit, 102 ACPT, 103 switch, 104 main transformer, 105 main converter, 106 propulsion motor, 107 Auxiliary power supply, 141 Primary winding, 142 Secondary winding, 143 Tertiary winding, 153 Intermediate link, 210 Converter, 211, 231 Primary terminal, 212, 232 Secondary terminal, 213 Current sensor, 220 Smoothing Capacitor, 221 Voltage sensor, 230 Inverter, 240 Control device, 242 Converter control unit, 244 Inverter control unit, 300 Processor, 302 Memory, 303 Processing circuit, 304 Interface.

Claims (7)

  1.  受電部を介して一次巻線が架線に接続される主変圧器と、前記主変圧器と前記架線とを電気的に遮断又は接続する開閉器と、前記架線と前記開閉器との間に設けられ、前記架線から印加される架線電圧を検出する電圧検出器とを備えた鉄道車両に搭載され、前記主変圧器の二次巻線に接続され、前記主変圧器を介して印加される交流電圧を直流電圧に変換するコンバータと、前記直流電圧を平滑する平滑コンデンサと、前記平滑コンデンサを介して前記コンバータから印加される直流電圧を鉄道車両駆動用の推進モータへの駆動電圧に変換して前記推進モータに印加するインバータとを備えた第1の電力変換装置と、前記主変圧器の三次巻線に接続され、前記鉄道車両に搭載された補機に電力を供給する第2の電力変換装置と、を備えた鉄道車両用電力変換装置であって、
     前記コンバータは、前記架線からの電力の供給が行われる給電期間においては、前記平滑コンデンサの電圧であるコンデンサ電圧を一定にするように動作し、前記架線からの電力の供給が行われない無給電期間においては、前記推進モータが発生する回生電力を前記主変圧器を介して前記第2の電力変換装置に供給する動作を行い、
     前記インバータは、前記給電期間においては、前記推進モータを駆動する駆動トルクを出力し、前記無給電期間においては、前記補機の所要電力に基づいて決定された回生電力の目標値に従って動作する
     ことを特徴とする鉄道車両用電力変換装置。
    A main transformer whose primary winding is connected to the overhead wire via a power receiving part, a switch that electrically disconnects or connects the main transformer and the overhead wire, and a switch provided between the overhead wire and the switch. an alternating current that is mounted on a railway vehicle and equipped with a voltage detector that detects an overhead line voltage applied from the overhead line, is connected to a secondary winding of the main transformer, and is applied via the main transformer. a converter that converts a voltage into a DC voltage; a smoothing capacitor that smoothes the DC voltage; and a DC voltage applied from the converter via the smoothing capacitor to a drive voltage for a propulsion motor for driving a railway vehicle. a first power conversion device including an inverter that applies power to the propulsion motor; and a second power conversion device that is connected to the tertiary winding of the main transformer and supplies power to auxiliary equipment mounted on the railway vehicle. A power conversion device for a railway vehicle, comprising:
    The converter operates to keep a capacitor voltage, which is the voltage of the smoothing capacitor, constant during a power supply period when power is supplied from the overhead line, and during a non-supply period when power is not supplied from the overhead line. During the period, an operation is performed to supply regenerated power generated by the propulsion motor to the second power converter via the main transformer,
    The inverter outputs a driving torque for driving the propulsion motor during the power supply period, and operates in accordance with a target value of regenerative power determined based on the required power of the auxiliary equipment during the non-power supply period. A power conversion device for railway vehicles characterized by:
  2.  前記コンバータは、前記無給電期間においては、前記三次巻線に印加する電圧を前記架線電圧と前記主変圧器の巻数比とによって定まる目標電圧に一致させるように動作する
     ことを特徴とする請求項1に記載の鉄道車両用電力変換装置。
    The converter operates to match the voltage applied to the tertiary winding to a target voltage determined by the overhead wire voltage and the turns ratio of the main transformer during the non-power feeding period. 1. The power conversion device for a railway vehicle according to 1.
  3.  前記コンバータは、前記給電期間において、
     前記推進モータが力行動作しているときには、前記コンバータから前記平滑コンデンサに向かう第1の方向の電流量を調整する動作を行うことで前記コンデンサ電圧を制御し、
     前記推進モータが回生動作しているときには、前記平滑コンデンサから前記コンバータに向かう第2の方向の電流量を調整する動作を行うことで前記コンデンサ電圧を制御する
     ことを特徴とする請求項2に記載の鉄道車両用電力変換装置。
    The converter, during the power supply period,
    When the propulsion motor is in power operation, the capacitor voltage is controlled by adjusting the amount of current in a first direction from the converter to the smoothing capacitor;
    3. When the propulsion motor is performing a regenerative operation, the capacitor voltage is controlled by adjusting an amount of current in a second direction from the smoothing capacitor toward the converter. power converter for railway vehicles.
  4.  前記インバータは、前記無給電期間においては、前記コンデンサ電圧を前記コンデンサ電圧の目標値に一致させるように動作する
     ことを特徴とする請求項1から3の何れか1項に記載の鉄道車両用電力変換装置。
    The electric power for a railway vehicle according to any one of claims 1 to 3, wherein the inverter operates to match the capacitor voltage with a target value of the capacitor voltage during the non-power feeding period. conversion device.
  5.  前記第1の電力変換装置の動作を制御する制御装置を備え、
     前記制御装置は、
     前記補機の所要電力に基づいて前記回生電力の目標値を決定する第1の制御と、
     前記第1の制御の実施後に前記架線電圧を参照せずに、一定の振幅及び周波数の正弦波電圧を生成する第2の制御と、
     前記第2の制御で生成される前記正弦波電圧のゼロクロスを前記無給電期間の経過後に検出した新たな架線電圧の波形に合わせる第3の制御と、を実施する
     ことを特徴とする請求項1から4の何れか1項に記載の鉄道車両用電力変換装置。
    comprising a control device that controls the operation of the first power conversion device,
    The control device includes:
    a first control that determines a target value of the regenerative power based on the required power of the auxiliary machine;
    a second control that generates a sine wave voltage with a constant amplitude and frequency without referring to the overhead line voltage after performing the first control;
    and a third control that matches the zero crossing of the sine wave voltage generated by the second control to a new waveform of the overhead line voltage detected after the non-power feeding period has elapsed. 4. The power conversion device for a railway vehicle according to any one of 4.
  6.  前記鉄道車両には、複数の鉄道車両によって編成された列車の列車情報を管理する列車情報管理装置が搭載され、前記補機の所要電力に関する情報は、前記列車情報管理装置から前記第1の電力変換装置に伝送される
     ことを特徴とする請求項1から5の何れか1項に記載の鉄道車両用電力変換装置。
    The railway vehicle is equipped with a train information management device that manages train information of a train composed of a plurality of railway vehicles, and information regarding the required power of the auxiliary equipment is transmitted from the train information management device to the first power source. The power conversion device for a railway vehicle according to any one of claims 1 to 5, wherein the power conversion device is transmitted to a conversion device.
  7.  前記補機の所要電力に関する情報は、前記第2の電力変換装置から前記第1の電力変換装置に伝送される
     ことを特徴とする請求項1から5の何れか1項に記載の鉄道車両用電力変換装置。
    The railway vehicle according to any one of claims 1 to 5, wherein information regarding the required power of the auxiliary equipment is transmitted from the second power converter to the first power converter. Power converter.
PCT/JP2022/026619 2022-07-04 2022-07-04 Power conversion device for railroad car WO2024009361A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024531769A JPWO2024009361A1 (en) 2022-07-04 2022-07-04
PCT/JP2022/026619 WO2024009361A1 (en) 2022-07-04 2022-07-04 Power conversion device for railroad car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026619 WO2024009361A1 (en) 2022-07-04 2022-07-04 Power conversion device for railroad car

Publications (1)

Publication Number Publication Date
WO2024009361A1 true WO2024009361A1 (en) 2024-01-11

Family

ID=89452935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026619 WO2024009361A1 (en) 2022-07-04 2022-07-04 Power conversion device for railroad car

Country Status (2)

Country Link
JP (1) JPWO2024009361A1 (en)
WO (1) WO2024009361A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109607A1 (en) * 2009-03-25 2010-09-30 三菱電機株式会社 Ac electric vehicle control device
JP2010220399A (en) * 2009-03-17 2010-09-30 Toshiba Corp Control device for securing in-vehicle power supply of electric vehicle
JP2015128353A (en) * 2013-12-27 2015-07-09 株式会社東芝 AC electric vehicle control system
WO2017056588A1 (en) * 2015-10-01 2017-04-06 株式会社東芝 Power conversion device for railway vehicle
JP2018033212A (en) * 2016-08-23 2018-03-01 株式会社東芝 Electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220399A (en) * 2009-03-17 2010-09-30 Toshiba Corp Control device for securing in-vehicle power supply of electric vehicle
WO2010109607A1 (en) * 2009-03-25 2010-09-30 三菱電機株式会社 Ac electric vehicle control device
JP2015128353A (en) * 2013-12-27 2015-07-09 株式会社東芝 AC electric vehicle control system
WO2017056588A1 (en) * 2015-10-01 2017-04-06 株式会社東芝 Power conversion device for railway vehicle
JP2018033212A (en) * 2016-08-23 2018-03-01 株式会社東芝 Electric vehicle

Also Published As

Publication number Publication date
JPWO2024009361A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
EP3038854B1 (en) Electric power conversion device, emergency traveling system and railway vehicle
WO2012014324A1 (en) Electric vehicle propulsion control device, and railway vehicle system
RU2492072C1 (en) Electric rolling stock electric power converter
JP3890924B2 (en) Electric car drive system
JP3622341B2 (en) Power backup device for vehicle
JP2010200576A (en) Power supply method and power supply system for ac-dc dual current electric railcar
JP5038339B2 (en) Power supply method and AC train power supply system
US20240204684A1 (en) Power conversion device
WO2024009361A1 (en) Power conversion device for railroad car
KR101606271B1 (en) Driving apparatus for rail car
JPWO2017056588A1 (en) Railway vehicle power converter
JP2003205772A (en) Electric power source facility for alternating-current electric-railway
JP3186281B2 (en) AC electric vehicle control device
CN111347941B (en) Auxiliary power supply system for railway vehicle and control method thereof
WO2020075504A1 (en) Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle
JP6851502B2 (en) Power conversion system for railway vehicles
JP3477068B2 (en) Electric car power supply
WO2023286122A1 (en) Propulsion control device and filter capacitor voltage control method
JP2005210821A (en) Railcar driving and controlling device
WO2024147187A1 (en) Propulsion control device
WO2024084668A1 (en) Power conversion device for railroad car
KR20140106942A (en) Propulsion system applied dual voltage ac and dc
AU2018350039B2 (en) Train traction system
JP6157977B2 (en) Railway vehicle and vehicle power conversion system
JP7229425B2 (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024531769

Country of ref document: JP

Kind code of ref document: A