WO2023284222A1 - 一种用于飞机快速装配的自定位装配系统及方法 - Google Patents

一种用于飞机快速装配的自定位装配系统及方法 Download PDF

Info

Publication number
WO2023284222A1
WO2023284222A1 PCT/CN2021/132603 CN2021132603W WO2023284222A1 WO 2023284222 A1 WO2023284222 A1 WO 2023284222A1 CN 2021132603 W CN2021132603 W CN 2021132603W WO 2023284222 A1 WO2023284222 A1 WO 2023284222A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
assembly
self
hole
aircraft
Prior art date
Application number
PCT/CN2021/132603
Other languages
English (en)
French (fr)
Inventor
隋少春
饶华
赵颖
毕修文
邓珍波
李绍杰
游诗茂
王明
Original Assignee
成都飞机工业(集团)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都飞机工业(集团)有限责任公司 filed Critical 成都飞机工业(集团)有限责任公司
Publication of WO2023284222A1 publication Critical patent/WO2023284222A1/zh
Priority to US18/450,523 priority Critical patent/US20230391474A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B11/00Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
    • B25B11/02Assembly jigs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/50Handling or transporting aircraft components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/01Aircraft parts

Definitions

  • the invention relates to the technical field of aircraft assembly, in particular to a self-positioning assembly system and method for rapid assembly of aircraft.
  • Aircraft assembly has strict process requirements.
  • the assembly parts used with positioning requirements are referred to as positioning assembly devices or positioning tooling devices. relationship, improving aircraft production efficiency and reducing costs.
  • Due to the weak rigidity, large quantity and complex coordination relationship of aircraft parts, aircraft assembly is different from general mechanical product assembly. It is necessary to use special assembly frames to shape and position aircraft parts. Due to the existence of a large number of assembly frames , leading to a long production preparation cycle of the aircraft, high manufacturing costs, and an unfriendly working environment for workers in the aircraft assembly process.
  • a large number of truss-type welded frames are used in traditional aircraft assembly tooling, and the positioner and the frame are fixedly connected.
  • the assembly of a type of aircraft product often requires hundreds of sets of assembly frames, and the assembly frames are only for one type of aircraft. For other Types of models, can not be reused. Cause a lot of idle and waste of jig resources.
  • the assembly method of the traditional aircraft fuselage structure is to shape and position more than 90% of the aircraft fuselage parts through the fuselage assembly jig.
  • Traditional assembly jigs usually have specificity, low reuse rate and complex structure; therefore, in the field of aircraft assembly, there is an urgent need to design a positioning device that is easy to use, fast to install, accurate and easy to operate.
  • aircraft assembly generally uses aircraft assembly jigs to realize aircraft assembly, and jigs take up a lot of space.
  • Jigs are special process equipment in traditional aircraft assembly and are an important part of assembly tooling. They are closely related to aircraft structure. Therefore, traditional assembly frames are generally difficult to adapt to the assembly of different types of aircraft. Whether the structural design of the assembly jig is reasonable and correct not only has a direct impact on the manufacturing workload, cycle length, cost, and assembly conditions of the assembly jig itself, but also determines whether the docking and matching dimensions of each workpiece are consistent, which affects the aircraft assembly. Interchange coordination, manufacturing quality and schedule have a great impact, affecting the entire aircraft manufacturing cycle.
  • the purpose of the present invention is to provide a self-positioning assembly system and method for rapid assembly of aircraft.
  • the overall skeleton of the aircraft assembly tooling adopts a scattered column assembly method, and various locators are used to self-position the aircraft parts to realize
  • the frameless and self-positioning assembly of the aircraft achieves the technical effect of saving space and site, simplifying the tooling structure, improving the efficiency and quality of aircraft assembly, and reducing the cost of aircraft assembly.
  • a self-positioning assembly system for rapid assembly of aircraft including a mounting platform, a skeleton assembly, a hole locator assembly, a strut locator assembly, and a pallet assembly, and may also include intersection points for positioning some special components or key parts of the aircraft Any one or more of the locator components in the hole locator, the special locating component for the swivel support and the locating component for the bulk tooling.
  • the installation platform is installed on the foundation, and the skeleton assembly is connected to the installation platform.
  • the skeleton assembly includes a hole locator column and a pallet column, and the hole locator column is provided with the hole locator assembly and/or
  • the intersection hole locator, the pallet assembly is arranged on the pallet column, the hole locator assembly, the intersection hole locator, and the pallet assembly are all modular and have a reconfigurable locator structure.
  • the reconfigurable locator structure can improve the openness and reusability of the tooling.
  • the installation platform includes an installation substrate and an installation base, and there are T-shaped notches between adjacent installation substrates and installation bases, and then, a plurality of T-shaped notches intersecting vertically and horizontally are formed on the surface of the installation platform,
  • the T-shaped notch is used for the installation of the frame component base, providing a support platform for the assembly of the frame component; the main body form of the frame component breaks through the closed frame beam structure type of the traditional tooling frame, and adopts the structural layout of the column group to increase the tooling. Open, simple and easy to assemble.
  • the locators and locator components except that the special locating component for the rotating top support is a special locator for aircraft circular products, the rest of the locators and locator components are all general structures of self-positioning tooling. In the positioning of the main frame and the main beam, the positioning of the product can also be realized through the above-mentioned several general locators and locator components.
  • the center of the installation substrate is provided with a hoisting hole, which is used to connect the hooks of lifting equipment such as a gantry crane, and the hoisting hole is arranged at the center of the installation substrate, which can effectively prevent unsafe accidents caused by the installation substrate tilting.
  • the hole locator column includes a first vertical column, a first connecting plate, a first base and a mounting plate, wherein the mounting plate is connected to the base through connecting bolts, and the base is connected to the first Vertical pipe string, the outer surface of the first vertical pipe string is connected to the first connecting plate, and the first connecting plate is provided with a plurality of standard mounting holes, and the mounting holes are standardized to form standard mounting holes, which is beneficial to the installation of different components.
  • the connecting plate is connected, the hole locator assembly and the intersection hole locator can be installed on the standard mounting hole, and then the height of the hole locator assembly and the intersection hole locator can be adjusted.
  • the first vertical pipe string may adopt any one or more of square cross-section pipes and rectangular cross-section pipes.
  • the hole locator column is mainly used for adjusting the height of the hole locator assembly and the intersection hole locator.
  • the bottom of the first vertical column is also connected with a plurality of first ribs, the bottoms of the plurality of first ribs are connected with the first base, and the first ribs are used to strengthen the first vertical column.
  • the pallet positioner column includes a second vertical pipe column, a second connecting plate, a second base and a mounting plate, wherein the mounting plate is connected to the base through connecting bolts, and the base is connected to the first Two vertical pipe strings, the outer surface of the second vertical pipe string is connected to the second connecting plate, and the second connecting plate is provided with a plurality of standard mounting holes, and the mounting holes are standardized to form standard mounting holes, which is beneficial to different components Make the connections on the connection board.
  • the second vertical pipe string may adopt any one or more of square cross-section pipes and rectangular cross-section pipes.
  • the bottom of the second vertical pipe column is also connected with a plurality of second ribs, the bottoms of the plurality of second ribs are connected with the second base, and the second ribs are used to strengthen the second vertical column. The strength of the connection between the string and the second base.
  • the top of the first/second vertical pipe string is provided with a hoisting device for hoisting operation when the first/second vertical pipe string needs to be moved.
  • the hole locator assembly includes a hole locator, a slide rail support, and a positioning pin assembly.
  • the slide rail support is installed on the hole locator column through a screw and a positioning pin assembly, and the end of the slide rail support is connected to the hole Locator and/or intersection hole locator, the hole locator assembly is used for locating the hole and/or intersection hole of the aircraft tooling.
  • the slide rail support includes a bottom plate, a support body, a guide rail assembly, a stopper, and a handle.
  • the support body is slidably connected to the guide rail assembly, and stoppers are respectively provided at both ends of the guide rail assembly, and the stoppers are used to limit the position of the support body.
  • One end of the support body is connected with a handle, and the handle has It is beneficial for installation workers to push and pull the support body to adjust the horizontal displacement of the support body.
  • the support body drives the hole locator and/or intersection hole locator to slide horizontally, and the specifications of the slide rail can be changed at any time according to the space and stroke requirements, and the reconfigurability is strong.
  • the locating pin assembly is a "spiral type" locating pin assembly, including a bolt, a channel bushing, a cylindrical pin, and a bushing.
  • the channel bushing has a helical spiral track groove, and the channel The bushing is fixed on the slide rail support, the bushing is fixed on the bottom plate, the lower part of the bolt is connected with the bushing, and a cylindrical pin is arranged in the middle of the bolt, and the cylindrical pin is used to limit the bolt. Make the pin move along the helical track of the helical bushing during insertion and extraction.
  • the helical track groove is conducive to the sliding of the cylindrical pin in the helical track groove, and the positioning pin assembly can be adjusted at any point along its length, while preventing the pin slip out or drop.
  • the positioning pin assembly can also be a "Z-shaped" positioning pin assembly, including a bolt, a channel bushing, a cylindrical pin, and a bushing, and the channel bushing has a "Z-shaped” track groove , the channel bushing is fixed on the slide rail support, the bushing is fixed on the bottom plate, the lower part of the bolt is connected with the bushing, the middle part of the bolt is provided with a cylindrical pin, and the cylindrical pin is used to limit
  • the pin can slide along the "Z-shaped" track groove, and the "Z-shaped" positioning pin assembly can realize the rapid installation and removal of each component of the positioning pin assembly compared with the "spiral type" positioning pin assembly, effectively It solves the problem of difficult on-site management caused by the need for pin positioning in many places during the aircraft assembly process, avoids the occurrence of loose tooling, and improves the overall tooling efficiency.
  • the "Z-shaped" positioning pin assembly can achieve positioning The rapid installation and dismantling of each component of the pin assembly effectively solves the problem of difficult on-site management caused by the need for pin positioning in many places during the aircraft assembly process, avoids the occurrence of loose tooling, and improves the overall tooling efficiency.
  • the hole locator is mainly used for locating the positioning holes of the main frame or main beam of the aircraft, and the hole locator includes a locator joint, a locating threaded pin, a handle nut, a locating bolt, and a locking threaded pin.
  • the cross-section of the locator joint is L-shaped and has two surfaces connected perpendicularly to each other.
  • One side of the locator joint is provided with a central positioning hole, and the other side is provided with a plurality of oblong holes and a plurality of positioning circular holes , the positioning threaded pin is installed in the central positioning hole, the positioning threaded pin abuts against the surface to be positioned of the aircraft product, the locking threaded pin is installed in the oblong hole, the positioning bolt is inserted into the positioning round hole, the The locking threaded pin and the positioning pin are used to lock the positioning position of the positioning threaded pin after it abuts against the surface to be positioned of the product.
  • the positioning surface of the hole locator joint fits with the product surface, and the locking screw pin passes through the locator joint to connect the bottom surface and the slide rail support through threaded connection and is pressed tightly, and is positioned by the positioning pin; when exiting the hole positioning When using the locator, pull out the positioning pin, loosen the locking threaded pin, and slide the locator joint along the oblong hole to move out of the working position.
  • the strut locator assembly is used independently and does not depend on support components such as the hole locator column and the supporting plate column, etc.
  • the relative position is positioned, and its positioning mainly depends on the positioning surface of the product. Therefore, the strut positioner assembly is a typical positioner that can realize self-positioning.
  • the strut locator assembly is a slidable strut locator assembly that can realize fine adjustment
  • the strut locator assembly includes a jacking nut, a positioning sleeve, a pressing block pin, a pointer, a locking nut, Struts, Cylindrical Pins, End Pins.
  • the terminal pin is a structure with a polished rod at one end and a threaded rod at the other end, one end of the terminal pin is inserted into one end of the strut, and the terminal pin and the strut are fixed by the cylindrical bolt,
  • the other end of the strut is sleeved in the positioning sleeve, and the positioning sleeve is provided with wedge-shaped grooves on both sides in the axial direction.
  • the slotted hole, the wedge-shaped groove on one side can be inserted into the pressing block pin.
  • the pressing block pin is a T-shaped structure, which is composed of a pressing block and a threaded pin vertically connected with the pressing block.
  • the lock nut and the threaded pin of the pressing block pin The external thread of the connection, by tightening the lock nut, the pin of the pressing block and the wedge-shaped groove of the positioning sleeve can be pressed tightly, and then the relative position of the positioning sleeve and the support rod can be fixed.
  • a pointer is provided on the pressing block pin, a scale is provided on the outer surface of the positioning sleeve, and the pointer is used to indicate the scale.
  • multiple strut locator assemblies are usually arranged between the positioning surfaces of two aircraft components (such as two main frames), and it is necessary to ensure that the vertical distances between the points of the two positioning surfaces are equal.
  • the strut locator assembly can also be a fixed strut locator assembly capable of fine adjustment, and the strut locator assembly includes a jacking nut, a positioning sleeve, a strut, a cylinder pin, an end pin and T-bolt.
  • the terminal pin is a structure in which both ends are threaded rods, one end of the terminal pin is threadedly connected to one end of the strut, the terminal pin and the strut are fixed by the cylindrical bolt, and the other end of the strut is sleeved It is arranged in the positioning sleeve, and one end of the positioning sleeve is threadedly connected with the jacking nut.
  • the T-shaped pin is composed of a handle and a rod positioning pin.
  • the rod positioning pin is inserted into the perforation of the positioning sleeve and the perforation of the strut.
  • the middle part of the rod positioning pin is provided with a tie hole.
  • the intersection hole locator is used for locating the main frame with the wing-body connection joint or the wing-body intersection, and the intersection hole locator includes a mounting base, an intersection hole positioning support, a latch, a positioning lug, and a compression nut.
  • the installation base is fixed on the column of the hole locator, and the installation base is connected with the intersection hole positioning support with bolts, and the intersection hole positioning support is formed by vertical welding of a base and two mutually parallel support seats , each of the support bases is provided with a plurality of perforations, and the rows of perforations on the two support bases are parallel to each other.
  • each pin After the lugs are positioned, they pass through a plurality of perforations on the other support base, and each pin is provided with a compression nut at one end, thereby preventing the pin from slipping and being lost during use. Intersection joints are key positioning points, and the intersection locators are used for alignment. This type of main frame will serve as a reference frame for the self-positioning of subsequent frame components.
  • the pallet assembly is used to support and position the holes of the aircraft main frame or main beam structure. Fixed on the hoisting plate at the top of the supporting column, the cross-section of the support is L-shaped structure, one side of the support is connected with the supporting plate through a plurality of threaded pins and positioning pins, and the supporting plate is plate-shaped A component, the top of the supporting plate is embedded with a plurality of spacers, and one side of the supporting plate is fixedly connected with the hole locator.
  • the pallet assembly is used for supporting the main frame structure of the aircraft and locating holes.
  • the upper surface of the pallet is the shape of the product skin, which can meet the supporting function under two working conditions: when the skin is not connected, add gaskets to position the shape of the frame; after connecting the skin, take out the gasket , supporting the skin shape.
  • the special positioning assembly for the rotating top support is used to support and position the circular product of the aircraft.
  • the special positioning assembly for the rotating top support includes a skeleton, a positioner support, an auxiliary support rod, and a positioner.
  • the special positioning component of the support adopts a point distribution structure, and adopts multi-point positioning for the overall circular product; multiple sets of positioners are connected to the support of the positioner through bolts, and are distributed at four points in space to position the outer surface of the product Compression avoids the difficulty of integral positioning processing and insufficient open space; one end of the auxiliary support is connected to the locator support, the other end is connected to the frame, and both ends adopt fork-ear rotating structure, which can realize different angles of connection.
  • Auxiliary support is provided to the locator support to enhance the connection rigidity and improve the stability.
  • the bulk tooling positioning assembly is used to locate the relative position of the non-frame parts.
  • the bulk tooling positioning assembly includes a bulk tooling body and a large and small pin.
  • the bulk tooling body is a rectangular structure, and the The four corners of the bulk tooling body are provided with positioning holes, and a plurality of large and small pins are inserted into the positioning holes respectively, and are connected with the holes to be positioned on the bulk product, and the holes to be positioned/positioning holes are connected to the large and small heads.
  • the bulk tooling positioning assembly is mainly used for positioning the relative position of non-frame components
  • the strut The locator component is mainly used for locating the relative positions of frame parts (such as main frame and main beam).
  • the frame of a product (including the main frame and the secondary frame of the fuselage) is positioned through four hole locators, that is, the "four-point positioning" method can be used for complete positioning.
  • the degree of freedom of a frame part has been completely limited in theory.
  • the general frame parts adopt 4-point positioning method, and the remaining 2 points are only used for compression; according to the actual product structure, larger-sized frame structures even adopt 6-point or 8-point positioning to improve the stability of frame positioning.
  • Step S0 Analyze the overall structural characteristics of the aircraft, strip out the key control points, and connect the fuselage assembly frame 72 and the wing assembly frame 73 to the installation platform according to the installation platform 1 corresponding to the key control points and the position of the skeleton components 1 on;
  • Step S1 self-positioning and assembling the fuselage components using the fuselage assembly jig 72;
  • Step S2 using the wing assembly jig 73 to self-position and assemble the wing components
  • Step S3 on the basis of the completion of steps S1 and S2, the fuselage frame is matched with the wing attitude adjustment frame, and the wing body is finished and reamed;
  • Step S4 On the basis of the completion of step S3, self-positioning assembly is performed on the accessory parts of the aircraft, and finally the aircraft frame is formed by the final assembly, and skin riveting is performed on the aircraft frame.
  • the above-mentioned scattered column assembly method has changed the traditional closed frame structure assembly.
  • the main frame and beam structures are positioned and assembled, and the self-positioning tooling structure is designed to maximize the openness of the assembly tooling.
  • the skeleton adopts standardized columns Type structure, standardized interface form, overall detachable reconstruction, which greatly shortens the assembly cycle and improves the reuse rate of tooling.
  • an assembly method of a self-positioning assembly system based on aircraft rapid assembly of the present invention has the advantages of:
  • the skeleton assembly of the present invention adopts the assembly method of scattered column groups, which saves the assembly space to the greatest extent, adopts the concept of frameless assembly, and simplifies and reduces the tooling structure.
  • the present invention proposes a new type of more efficient hole locator assembly, strut locator assembly and special positioning assembly for the top support, through the coarse adjustment of the decentralized column, combined with the fine adjustment of various locator assemblies , realize the self-positioning assembly and modular assembly of the aircraft, and improve the efficiency of aircraft assembly;
  • the strut locator assembly of the present invention is provided with a scale.
  • the installer can more intuitively judge the difference between the two positioning surfaces by reading the scale. Whether they are parallel, and then quickly adjust the extension length of the strut positioner assembly when they are not parallel;
  • the top of the vertical column of the present invention is provided with a hoisting part, which can be used to hoist the hole locator column or the supporting plate column, and then better assist the installation workers to quickly install and improve the aircraft assembly efficiency;
  • the aircraft tooling positioning device for self-positioning assembly of the present invention can be applied to the assembly of different aircraft models, compared with the prior art in which a set of tooling positioning device is separately set for each model, the reuse rate of the tooling is improved .
  • Fig. 1 is a schematic diagram of the aircraft fuselage assembly tooling system of the present invention.
  • Fig. 2 is a structural diagram of the installation platform of the present invention.
  • Fig. 3 is a structural diagram of the skeleton assembly of the present invention.
  • Fig. 4 is a structure diagram of the column of the hole locator of the present invention.
  • Fig. 5 is a structural diagram of the pallet column of the present invention.
  • Fig. 6 is a partial top view of the connection between the column of the hole locator and the installation platform of the present invention.
  • Fig. 7 is a schematic diagram of the partial connection between the hole locator assembly and the slide rail support of the present invention.
  • Fig. 8 is a structural diagram of the hole locator assembly of the present invention.
  • Fig. 9 is a structural diagram of the slide rail support of the present invention.
  • Fig. 10-1 is an overall appearance view of the structure of the positioning pin assembly in Embodiment 1 of the present invention.
  • Fig. 10-2 is an overall appearance view of the structure of the positioning pin assembly in Embodiment 2 of the present invention.
  • Fig. 10-3 is a partially exploded schematic diagram of the structure of the positioning pin assembly in Embodiment 2 of the present invention.
  • Fig. 11-1 is an overall appearance view of the strut positioner assembly in Embodiment 1 of the present invention.
  • Fig. 11-2 is an axial sectional view of the strut positioner assembly in Embodiment 1 of the present invention.
  • Fig. 11-3 is an overall appearance view of the strut positioner assembly in Embodiment 2 of the present invention.
  • Fig. 11-4 is an axial sectional view of the strut positioner assembly in Embodiment 2 of the present invention.
  • Fig. 12 is a structural diagram of the intersection hole locator of the present invention.
  • Fig. 13-1 is a structural diagram of the pallet assembly of the present invention.
  • Fig. 13-2 is a schematic diagram of assembly of the pallet assembly of the present invention.
  • Fig. 14-1 is a front and elevation structural view of the swivel support locator assembly of the present invention.
  • Fig. 14-2 is a three-dimensional structure diagram of the swivel support locator assembly of the present invention.
  • Fig. 14-3 is a partially exploded view of positioning of the swivel support locator assembly of the present invention.
  • Figure 15-1 is a three-dimensional structural diagram of a traditional bulk tooling positioning assembly.
  • Fig. 15-2 is a cross-sectional view of the bulk tooling positioning assembly of the present invention.
  • Fig. 15-3 is a structural schematic diagram of the large and small pins of the loose tooling positioning assembly of the present invention.
  • Figure 16-1 is a schematic diagram of the system assembly process layout of the traditional frame positioning method.
  • Fig. 16-2 is a schematic diagram of the layout of the system assembly process of the self-positioning assembly and positioning method without profile frame of the present invention.
  • Fig. 17 is a flow chart of the self-positioning and assembling method without profile frame of the present invention.
  • installation platform-1 skeleton component-2, hole locator component-3, strut locator component-4, intersection hole locator-5, supporting plate component-6, special positioning component for rotating top support-7 , Hole locator column-8, pallet column-9, auxiliary support assembly-10, base-15 mounting plate-16, connecting bolt-17, pressure block bolt-18, hole locator-19, slide rail support- 20.
  • Block-30 handle-31, pin-32, channel bushing-33, cylindrical pin-34, bushing-35, jacking nut-36, positioning sleeve-37, briquetting pin-38, Pointer-39, Lock Nut-40, Strut-41, Cylindrical Pin-42, End Pin-43, Scale-44, Wedge Groove-45, Handle-46, Rod Positioning Pin-47, Tether Piercing-48 , support-49, supporting plate-50, gasket-51, screw pin-52, positioning pin-53, hole locator-54, skeleton-55, locator support-56, auxiliary support rod-57, turn Top hole locator-58, workpiece-59, installation base-60, intersection hole positioning support-61, pin-62, positioning lug-63, compression nut-64; I frame-65, II frame- 66; Round product-67; Parts product-68, Parts tooling body-69, Big and small pins-70, Ring gasket-71, Fuselage assembly frame-72, Wing
  • a self-positioning assembly system for aircraft rapid assembly of the present invention including an installation platform 1, a skeleton assembly 2, a hole locator assembly 3, a strut locator assembly 4, and an intersection hole locator 5 , pallet assembly 6, special positioning assembly 7 for the top support.
  • the installation platform 1 includes an installation substrate 1-1 and an installation base 1-2.
  • a plurality of installation substrates 1-1 are arranged in an array and connected to the installation base 1-1.
  • the installation base is placed on the foundation.
  • the block mounting substrate 1-1 and the mounting base 1-2 form a T-shaped notch 1-4 that intersects vertically and horizontally, and the T-shaped notch 1-4 is used to connect the mounting plate of the skeleton assembly.
  • a hoisting hole 1-3 is provided at the center of the installation substrate 1-1, and the hoisting hole 1-3 is arranged at the center of the installation substrate 1-1, in order to keep the installation substrate 1-1 stable when the center of gravity is lifted, Further, it prevents safety accidents in which the center of gravity of the installation base plate 1-1 is unstable and the installation workers are injured due to rollover.
  • the function of the installation platform 1 is to provide a supporting platform for the assembly of the tooling.
  • a plurality of skeleton components 2 are installed on the installation platform 1.
  • the main body breaks through the closed frame and beam structure of the traditional tooling skeleton, adopts the structural layout of the column group, increases the openness of the tooling, is simple and easy to assemble; multiple hole locator columns 8 are respectively arranged on both sides of the installation platform 1, It is mainly used to connect the hole locator assembly 3 and the intersection hole locator 5 for positioning the main frame; a plurality of pallet columns 9 are arranged in the middle of the installation platform 1, and the pallet assembly 6 for lifting and positioning the main frame
  • This layout is also to consider the structural factors of the aircraft, that is, the middle body of the aircraft has a large volume in the middle, while the two sides (wing parts) and the nose and empennage are relatively small in volume.
  • the structural layout of the column group type has Conducive to the overall assembly of the aircraft.
  • auxiliary support assemblies 10 are installed on both sides of the installation platform 1 to enhance the overall structural rigidity of the aircraft tooling locating device.
  • the hole locator column 8 includes a first hoisting plate 111-1, a first vertical pipe column 121, a first connecting plate 131, a first rib plate 141, a first base 151 and a mounting plate 16, wherein the column Four sides are connected to the first connecting plate 131.
  • the surface roughness of the first connecting plate 131 is Ra3.2.
  • the first connecting plate 131 is provided with 4 rows of ⁇ 11H7 standard connecting holes 131-1, which can be used as threaded connection via holes or positioning as required.
  • Pin holes, the connecting plate of the locator is connected by standard locating pins diagonally, and the rest of the connecting holes are connected by threads, which are used to connect locator components such as hole locator components and intersection hole locators, so as to realize the standardization and coordination of the connection between the locator components and the column.
  • the top of the first vertical column 121 is closed with the first hoisting plate 111-1, and the center of the first hoisting plate 111-1 is provided with a hoisting ring 111-2, the lifting ring 111-2 is detachable; U-shaped grooves are arranged around the mounting plate 16 for bolt connection, and the hole locator column 8 connects the mounting plate 16 to the mounting platform through the connecting bolt 17 (or pressure block bolt 18) 1 on.
  • the pallet column 9 includes a second hoisting plate 112 - 1 , a second vertical column 122 , a second connecting plate 132 , a second rib plate 142 , a second base 152 and a mounting plate 16 .
  • the top of the second vertical column 122 is connected to the second hoisting plate 112-1, the bottom of the second vertical column 122 is connected to the second base 152, and the bottom of the second vertical column 122 is also provided with a second rib 142 , the second rib 142 is connected to the second base 152 at the same time, and the second base 152 is connected to the mounting plate 16 .
  • the structural appearance of the pallet column 9 is the same as that of the hole locator column 8, but the outline size and the lifting structure are different.
  • the center of the second lifting plate 112-1 surface of the pallet column 9 is provided with a ring hole.
  • the ring hole is hung on the crane for auxiliary hoisting. Since the top of the supporting plate column 9 is also used to connect the supporting plate assembly 6, no lifting ring is provided on the lifting plate 112-1. After the pallet column 9 is hoisted in place, the ring holes will no longer be used in the actual assembly process of the aircraft.
  • the hole locator column 8 (or the supporting plate column 9) is connected with the base 15 (the first base 151 or the second base 152), and the base 15 is connected with the mounting plate 16, and the mounting plate 16 is in a square shape (square
  • the mounting plate has better reconfigurability and is easier to install and move than rectangular or other shaped mounting plates)
  • the edge of the mounting plate 16 is provided with two groups of first round holes 16-1 and two groups of first oblong holes 16-2, and each group of first round holes 16-1 and each group of first oblong holes 16-2 are adjacently arranged, and connecting bolts 17 (or briquetting bolts 18) pass through the first round holes 16-1 and
  • the first oblong hole 16-2 extends into the T-shaped notch 1-4 in the installation platform 1, and is connected with the nut placed in the T-shaped notch 1-4.
  • the first round hole 16 - 1 and the first oblong hole 16 - 2 facilitate the position adjustment of the mounting plate 16 in the longitudinal and transverse directions.
  • the existing mounting plate 16 and the mounting base 1-1 are usually provided with many threaded holes.
  • the threaded holes are aligned, and then connected with connecting bolts 17.
  • the processing and manufacturing costs are relatively high.
  • the connection of the two requires high precision, and the fixed installation costs longer time.
  • the present invention fixes the mounting plate 16 in the vertically and horizontally intersecting T-shaped notches 1-4, so that no need to punch holes on the mounting plate 16, which reduces the processing and manufacturing costs, and the connection is more stable without requiring high assembly accuracy. Accurate positioning can be achieved, and disassembly is more convenient.
  • the hole locator assembly 3 includes a hole locator 19 (or intersection hole locator 5 ), a slide rail support 20 , and a positioning pin assembly 21 .
  • the slide rail support 20 is installed on the hole locator column 8 through screws and positioning pin assemblies 21, the end of the slide rail support 20 is connected to the hole locator 19 (or the intersection hole locator 5), and then, through the slide rail support 20 Sliding can drive the hole locator 19 (or intersection hole locator 5 ) to move in the horizontal direction, that is, to realize rough adjustment of hole positioning or intersection hole positioning.
  • the hole locator 19 includes a locator joint 22 , a positioning threaded pin 23 , a handle nut 24 , a positioning pin 25 , and a locking threaded pin 26 .
  • the locator joint 22 is in an L-shaped structure and has two planes connected vertically to each other. One side of the locator joint 22 is provided with a central positioning hole, and the other side is provided with a plurality of oblong holes and a plurality of positioning circular holes.
  • the positioning screw pin 23 is installed In the central positioning hole, the locking threaded pin 26 is installed in the oblong hole, and the positioning pin 25 is inserted in the positioning circular hole.
  • the positioning surface of the locator joint 22 fits the product surface, and the other end of the positioning screw pin 23 is connected with a handle nut 24, and the positioning screw pin 23 passes through the central positioning hole of the locator joint 22 and the product process hole, and then passes through the handle nut 24 Pressing, so as to realize the clamping of the product;
  • the locking threaded pin 26 passes through the oblong hole of the locator joint 22, and is threaded and fixedly connected with the slide rail support 20, and is positioned by the positioning pin 25; when it is necessary to exit the hole
  • the locator pin 25 is pulled out, and the locator joint 22 is slid along the oblong hole, thereby moving out of the working position.
  • the slide rail support 20 includes a bottom plate 27 , a support body 28 , a guide rail assembly 29 , a block 30 , and a handle 31 .
  • the base plate 27 is connected to the side of the hole locator column 8 through screws and positioning pin assemblies 21.
  • the guide rail assembly 29 is composed of 4 sets of slide blocks and 2 sets of slide rails.
  • the slide blocks are fixed on the base plate 27, and the slide rails are fixed on the support body 28 In this way, the support body 28 slides through the slide rail to drive the hole positioner to move, and the slide track support 20 can make the positioner assembly move relatively large horizontally, so it is mainly used for rough adjustment of the positioning process.
  • the positioning pin assembly 21 is used to fix the position of the slide rail support 20 on the hole locator column 8, and limit the lateral position of the slide rail support 20.
  • the positioning The pin assembly 21 is a "spiral type" positioning pin assembly.
  • the positioning pin assembly 21 includes a latch pin 32, a channel bushing 33, a cylindrical pin 34, and a bushing 35.
  • the channel bushing 33 has a spiral track groove, the spiral bushing 33 is fixed on the slide rail support 20, the bushing 35 is fixed on the bottom plate 27, the lower part of the bolt 32 is connected with the bushing 35, and the middle part of the bolt 32 is provided with a cylindrical pin 34, which is used for limiting , so that the latch 32 slides out along the spiral track groove of the spiral bushing 33 during the insertion and extraction process, effectively preventing the latch 32 from falling.
  • the strut locator assembly 4 is used for positioning two adjacent aircraft frames (such as the main frame and the fuselage secondary frame), therefore, the strut locator assembly 4 It is a relatively independent locator component, which can be used alone without being installed on the hole locator column 8, pallet column 9 or other auxiliary support equipment.
  • the strut locator component 4 is a slidable strut that can be fine-tuned A locator assembly
  • the strut locator assembly includes a tightening nut 36 , a positioning sleeve 37 , a pressing block pin 38 , a pointer 39 , a locking nut 40 , a strut 41 , a cylinder pin 42 , and an end pin 43 .
  • the terminal pin 43 is a structure with a polished rod at one end and a threaded rod at the other end. One end of the terminal pin 43 is inserted into one end of the strut 41, and the terminal pin 43 and the strut are fixed by a cylindrical latch 42. 41.
  • the other end of the strut 41 is sleeved in the positioning sleeve 37, and the positioning sleeve 37 is provided with wedge-shaped grooves 45 on both sides in the axial direction.
  • the slotted hole of trapezoidal section can insert briquetting block latch 38 in the wedge-shaped groove 45 of one side, and briquetting block latch 38 is T-shaped structure, is made up of briquetting block and the threaded bolt that is vertically arranged with this briquetting block, lock nut 40 and pressing block
  • the external thread connection of the threaded bolt of the block bolt 38, by tightening the lock nut 40, the briquetting block bolt 38 and the wedge-shaped groove 45 of the positioning sleeve 37 can be compressed, and then the relative position of the positioning sleeve 37 and the strut 41 can be fixed. .
  • a pointer 39 is also arranged on the pressing block plug 38, and the pointer 39 can be a separate part, or can be formed by etching/marking on the pressing block plug 38.
  • the positioning sleeve 37 has a scale arranged along its length direction 44 , the pointer 39 is used to indicate the scale 44 , and then determine the extension length of the strut 41 in the positioning sleeve 37 .
  • a plurality of strut positioner assemblies 4 are usually arranged between the positioning surfaces of two frame parts (such as two main frames), and it is necessary to ensure that the vertical distances between the points of the two positioning surfaces are equal, and then, in When the installer locates and installs, he can judge whether the scales on each strut locator assembly are consistent by reading the scales on each strut locator assembly 4 respectively. If they are consistent, it means that the two positioning surfaces are parallel. If not, you need to adjust the extension length of the strut positioner assembly.
  • the briquetting pin 38 drives the strut 41 to slide along the wedge-shaped groove 45 of the positioning sleeve 37, and the pointer 39 can indicate the position of the briquetting pin 38 wedge-shaped groove.
  • the pressing block pin 38 and the tightening nut 36 realize the coarse adjustment and positioning of the rod positioner 4, and the tightening nut 36 realizes the It is the fine adjustment and positioning of the pole positioner 4.
  • the fine adjustment and positioning is completed on the basis of the coarse adjustment and positioning.
  • intersection point hole locator 5 is used for carrying out hole location to the connection intersection point of fuselage and wing, and intersection point hole locator 5 comprises installation base 60, intersection point hole positioning support 61, latch 62, positioning lug 63, Compression nut 64.
  • the installation base 60 is fixed on the hole locator column 8, and the installation base 60 is bolted to the intersection hole positioning support 61.
  • the intersection hole positioning support 61 is formed by vertical welding of a base and two mutual parallel support seats, each Two perforations are provided on the support base, and the two rows of perforations on the two support bases are parallel to each other.
  • the two latches 62 are respectively inserted into the two perforations on the support base respectively, and after passing through the two positioning lugs 63 respectively, Respectively pass through two through holes on the other support base, and one end of each bolt 62 is provided with a compression nut 64, thereby preventing the bolt from slipping and being lost during use.
  • the intersection joint is the key positioning point, and the intersection locator is used to locate the main frame with wing-body connection joints, which will serve as the reference frame for the subsequent self-positioning of frame components.
  • the pallet assembly 6 includes a support 49 , a pallet 50 , a gasket 51 , a threaded pin 52 , a positioning pin 53 , and a hole locator 54 .
  • Bearing 49 and the hoisting plate 11-1 at the top of the supporting plate column, the cross section of bearing 49 is an L-shaped structure, and one side of bearing 49 is connected with supporting plate 50 by a plurality of threaded pins 52, positioning pins 53, supporting plate 50 is As a plate-like component, the two sides of the supporting plate 50 are provided with positioning round holes 50-1 and positioning oblong holes 50-2, and the positioning pins 53 are connected with the supporting plate 50 after passing through the positioning round holes 50-1.
  • 52 is connected to the supporting plate 50 after passing through the positioning oblong hole 50 - 2 , and the positioning oblong hole 50 - 2 can be used to adjust the vertical positioning position of the supporting plate 50 .
  • a plurality of gaskets 51 are embedded on the top of the supporting plate 50 , and a hole locator 54 is fixedly connected to one side of the supporting plate 50 .
  • the supporting plate assembly 6 is used to support the main frame structure of the aircraft and position the holes; the upper surface of the supporting plate is the product shape, which can meet the supporting function under two working conditions: when the skin is not connected, the shape of the frame is molded; surface positioning; after the skin is connected, a spacer 51 is added to support the shape of the skin.
  • the special positioning assembly 7 for the rotating top support is used for positioning the circular product 67 (such as the rotating top) of the aircraft, and the special positioning assembly 7 for the rotating top support It includes a skeleton 55, a locator support 56, an auxiliary strut 57, and a locator 58 for the top hole.
  • the upper parts of a plurality of skeletons 55 are connected to each other by crossbeams, and the top end surface of each skeleton 55 is hinged with one end of the auxiliary strut 57, and one side of the skeleton 55 adjacent to the end surface is fixedly connected to one end of a vertically arranged locator support 56 , the other end of the locator support 56 is hinged to the other end of the auxiliary strut 57 , and the top of the locator support 56 is connected to the top hole locator 58 .
  • the rotary top hole positioner 58 includes a rotary top positioning pallet 58-1 and a positioning pin 58-3, the rotary top positioning pallet has an L-shaped section, and one end of the rotary top positioning pallet 58-1 is set There are two positioning surfaces 58-4 perpendicular to each other, one of the positioning surfaces 58-4 is provided with a positioning hole 58-2, and the positioning pin 58-3 can be inserted in the positioning hole 58-2, and the two positioning surfaces 58- 1 respectively fits with two to-be-positioned surfaces 67-1 of the circular product 67.
  • the special positioning component 7 of the rotating top support adopts a point distribution structure, and adopts a 4-point positioning for the overall circular product 67 (about 700mm in diameter), which helps to reduce the difficulty of manufacturing and processing on the one hand, and helps to increase the size of the aircraft on the other hand.
  • the frame 55 is mainly composed of square aluminum tubes and round aluminum tubes, and the square aluminum tubes are connected as a whole through round aluminum tubes to form a frame structure and improve the stability of the frame; 4 sets of top hole positioners 58 is connected to the locator support 56 by bolts, and is distributed at four points in space to position and compress the outer surface of the product, avoiding the difficulty of integral positioning and processing, and the problems such as insufficient space; the auxiliary support rod 57 is two Both ends adopt a fork ear type rotating structure, which can realize connection at different angles, and provide auxiliary support for the locator support 56, so as to enhance the connection rigidity and improve the stability.
  • the tooling self-positioning of loose parts products adopts the positioning assembly of loose parts tooling positioning components, and the relative position of non-frame parts is used for positioning, and the positioning components of loose parts tooling
  • loose piece frock body 69 and big and small head bolt 70 loose piece frock body 69 is a rectangular shape structure, the four jiaos of loose piece frock body 69 are provided with positioning holes, and 4 big and small head bolts 70 are respectively inserted in the above-mentioned positioning holes, and
  • the hole to be positioned on the product 68 is connected, the hole to be positioned/positioning hole and the pin 70 of the large and small head are clamped with a ring gasket 71, and the positioning component of the loose tooling is used to align the parts of the product.
  • Positioning of aircraft structural components that require a high relative position between them that is, such self-positioning tooling has nothing to do with the assembly frame (main frame, fuselage secondary frame, main beam), and only ensures the relative positional relationship between products , instead of positioning the absolute position of the product in the aircraft coordinate system, such as the positioning of the pylon joint.
  • the pin 70 is connected sequentially by the big pin head 70-1, the annular connecting part 70-2 and the small pin head 70-3, the big pin head 70-1 is in the shape of a cylinder, and the small pin head 70-3 is provided with a small head perforation 70-4 that can be used for the tether to pass through.
  • the large head 70-1 of the bolt is inserted into the above-mentioned positioning hole and the hole to be positioned, so that The small head 70-3 of the bolt is set outwards.
  • the positioning pin assembly 21 is a "Z-shaped" positioning pin assembly, including a latch 32, a channel bushing 33, a cylindrical pin 34, a bushing 35, the channel bushing 33 has a "Z-shaped” track groove, the channel bushing 33 is fixed on the slide rail support 20, the bushing 35 is fixed on the bottom plate 27, and the lower part of the bolt 32 is connected with the bushing 35 , The middle part of the latch 32 is provided with a cylindrical pin 34, and the cylindrical pin 34 is used for positioning.
  • the latch 32 slides along the "Z-shaped" track groove, and when it slides to the bottom of the track groove, it rotates and locks.
  • the latch 32 slides out along the top of the "Z-shaped" track groove of the channel liner 33, effectively preventing the latch 32 from falling.
  • the "Z-shaped" locating pin assembly in this embodiment can realize the rapid installation and removal of each part of the locating pin assembly, effectively solving the need for multiple pins in the aircraft assembly process.
  • the problem of on-site management difficulties arising from positioning can avoid the appearance of loose tooling and improve the overall efficiency of tooling.
  • the strut locator assembly 4 is a fixed strut locator assembly that can realize fine adjustment, and the strut locator assembly includes a tightening nut 36, Positioning sleeve 37, strut 41, cylinder pin 42, end pin 43 and T-shaped pin.
  • the terminal pin 43 is a structure in which both ends are threaded rods, and one end of the terminal pin 43 is threadedly connected to one end of the strut 41, and the terminal pin 43 and the strut 41 are fixed by a cylindrical bolt 42 to support
  • the other end of the rod 41 is sheathed in the positioning sleeve 37 , and one end of the positioning sleeve 37 is threadedly connected with the jacking nut 36 .
  • the T-shaped latch is made up of a handle 46 and a rod positioning pin 47. The rod positioning pin 47 can be inserted into the perforation of the positioning sleeve 37 and the perforation of the strut 41.
  • the middle part of the rod positioning pin 47 is provided with a rope perforation 48.
  • the tether perforation 48 is used to penetrate high-strength binding straps such as steel wire ropes to bind and fix the T-shaped latch.
  • the fuselage structure mainly includes the main frame and the main beam of the fuselage. Therefore, the fuselage assembly frame is mainly for the positioning of the frame and beam structures.
  • the traditional assembly method adopts tooling positioning for most of the fuselage main frame and fuselage main beam structure. Therefore, due to the compact structure of the fuselage, the tooling structure is abnormally composite, and there are many positioners.
  • the traditional assembly tooling device or tooling system has a skeleton structure
  • the lack of closure and many locators not only brings about the improvement of tooling manufacturing cycle and cost, but also greatly affects the efficiency of on-site assembly. Therefore, in order to improve the efficiency of aircraft assembly and reduce the assembly cycle and cost, the present invention proposes a An assembly method of a self-positioning assembly system for rapid assembly.
  • Figure 16-1 shows the frame positioning method of the traditional tooling structure: the traditional tooling adopts four-point positioning.
  • the I frame body 65 is the main load-bearing frame, which adopts four-point positioning of tooling.
  • the II frame body 66 is an auxiliary structural frame.
  • the rigidity is weak, and it is not used as the main load-bearing structure, and has little influence on the overall shape of the aircraft. Therefore, if the traditional tool positioning method is adopted, a large number of tool positioning structures and skeletons will be added, and the assembly space will be occupied.
  • the present invention proposes an aircraft fuselage assembly process without a frame assembly, and adopts a positioning method with fewer positioners for this type of structural frame.
  • the II frame is positioned by means of tooling positioning and auxiliary self-positioning, which reduces tooling positioning structures and saves assembly costs .
  • the positioning is performed by using the rod positioner 4 .
  • a pallet positioning component is set for structural support and hole positioning, and the hole locator is used for auxiliary positioning of the II frame.
  • the present invention aims at the shortcomings of the traditional tooling structure, an assembly method of the self-positioning assembly system based on the rapid assembly of the aircraft of the present invention, examine Figure 16-2 and Figure 17, the assembly method can be divided into fuselage assembly, wing assembly, Three directions of wing body finishing assembly: change the assembly method of large aircraft structures from the traditional method of completely relying on the assembly frame to the method of relying on flexible assembly tooling, semi-flexible assembly tooling assembly, and self-positioning assembly of parts, reducing the cost of aircraft assembly.
  • the reliance on special assembly jigs greatly reduces assembly costs.
  • Principles of self-positioning assembly 1) In order to simplify the design and manufacture of the assembly jig, reduce the number of positioning, and improve the openness of the operating space, the assembly jig only positions the main frame in consideration of the product design, and the main girder realizes self-alignment through structural design. Positioning; 2) Considering the feasibility and convenience of air intake assembly, segment the aircraft frame. When assembling, the air inlet is first positioned, then the main frame is positioned, and finally the beam is self-positioned and installed to complete the assembly; 3) The assembly is mainly based on the process hole of the main frame and the intersection hole of the wing and body, and the rest of the parts are self-positioned. 4) The connection holes between the panel skin and the frame of the composite material adopt numerically controlled final holes for direct connection and assembly; 5) The process information required in the manufacturing process is coordinated and transmitted using the traditional process digital model.
  • the present invention utilizes the high-precision processing characteristics of the CNC parts, relies on the structure of the parts itself to carry out multi-part self-positioning assembly, and only a few other parts are assembled by means of tooling positioning.
  • the fuselage structure of the general model, except for the fuselage skin and the air inlet, the rest of the parts are all added by CNC machines.
  • the main assembly feature control points of the fuselage including main load-bearing structures, key coordination intersections, flight safety risk points, design separation surfaces, etc. are selected for tooling positioning.
  • the aircraft assembly process method of the non-frame assembly involves the overall assembly of the fuselage and the overall assembly of the wing, specifically including the following steps:
  • Step S0 Analyze the overall structural characteristics of the aircraft, strip out the key control points, and connect the fuselage assembly frame 72 and the wing assembly frame 73 to the installation platform according to the installation platform 1 corresponding to the key control points and the position of the skeleton components 1 on;
  • stripping out key control points also includes the following methods:
  • the key coordination intersections are the vertical tail installation intersection joint, the landing gear door installation intersection joint, the rudder surface installation intersection, and the engine installation intersection, etc.; for the wing , the key coordination intersection point is the joint component;
  • step S0 On the basis of the completion of step S0, enter step S1 and step S2, and the specific tooling steps are as follows:
  • Step S1 Self-positioning assembly of fuselage components, specifically including the following steps S11-S16:
  • Step S11 hoist the main frame of the fuselage (such as 2150 frame to 5700 frame), and place it on the fuselage assembly frame 72.
  • the bottom of the main frame is supported by the supporting plate assembly 6, and positioned by the hole locator assembly 3, so that the slide
  • the rail support 20 drives the hole locator 19 to slide to the position to be positioned, the positioning threaded pin 23 is tightened, and the locking threaded pin 26 is locked;
  • the frame structure with the intersection joint adopts the intersection hole locator 5 to locate the intersection hole;
  • Step S12 After step S11 is completed, the sub-frame of the hoisted fuselage is placed on the pallet assembly 6, and self-positioning assembly is performed between the sub-frame of the fuselage and the main frame of the fuselage through the strut locator assembly 4;
  • Step S13 After step S12 is completed, hoist the fuselage girders (such as wall beams, edge beams, etc.) and place them on the fuselage assembly frame 72. For the key coordination intersection, use the intersection hole locator 5 to locate the intersection hole , and then assemble with the main frame of the fuselage;
  • the fuselage girders such as wall beams, edge beams, etc.
  • Step S14 After step S13 is completed, hoist the rotating roof, place the rotating roof on the special positioning component 7 for the rotating roof support, and the rotating roof hole positioner 58 performs hole positioning for the rotating roof;
  • Step S15 After step S14 is completed, for the non-frame parts of the fuselage that have relative position requirements, use the bulk tooling positioning assembly for positioning;
  • Step S16 For the rest of the aircraft parts and components, take the main frame and main girder that have been positioned by the tooling as the positioning reference, and carry out positioning and assembly through the structural contours of the rest of the aircraft parts and components themselves through the positioning holes.
  • step S12 also further comprises the following steps:
  • Step S121 Judging whether the positioning length of the strut positioner assembly 4 meets the requirement of the preset length value, if not, proceed to step S122, and if satisfy the requirement, proceed to step S123;
  • Step S122 Make the strut 41 slide away/slide towards the positioning sleeve 37, stop sliding when it is judged that the positioning length of the strut locator assembly 4 meets the requirement of the preset length value, and tighten the lock nut 40 and the pressing block pin 38 .
  • Step S123 Adjust the tightening nut 36 so that the tightening nut 36 is tightened against the main frame of the fuselage or the main beam wall of the fuselage.
  • Step S2 Self-positioning assembly of wing components, specifically including the following steps S21-S23:
  • Step S21 hoisting the main girder of the wing, placing it on the wing assembly frame 73, and using the wing assembly frame 73 for assembly;
  • Step S22 hoisting the main rib of the wing and placing it on the wing assembly frame 73, and assembling the main beam of the wing with the main rib of the wing;
  • Step S23 use the intersection hole locator 5 to locate the intersection hole for the design separation surface, the process separation surface, and the connection coordination intersection between the fuselage and the wing;
  • the self-positioning assembly of the fuselage parts can be carried out by the fuselage assembly frame (72)
  • the self-positioning assembly of the wing parts can be carried out by the wing assembly frame (73)
  • the assembly jigs (73) are mutually independent jigs, therefore, the self-positioning assembly step S1 of the fuselage parts and the self-positioning assembly step S2 of the wing parts can be performed simultaneously or separately.
  • the fuselage assembly frame (72) adopts the fuselage assembly frame commonly used in the prior art.
  • Step S3 on the basis of the completion of steps S1 and S2, the fuselage frame is matched with the wing attitude adjustment frame, and the wing body is finished and reamed;
  • Step S4 On the basis of the completion of step S3, self-positioning assembly is performed on the accessory parts of the aircraft, and the final assembly is formed to form the aircraft frame, and skin riveting is performed on the aircraft frame;
  • Step S5 On the basis of the completion of step S4, when installing the next model, if the next model is the same as the model that has been assembled, then there is no need to disassemble the aircraft tooling positioning device for self-positioning assembly, from the tooling positioning device Take out the current stand-up aircraft, adjust various locators or locator components, and install the next model; if the next model is different from the model that has been assembled, first disassemble the various locators or locator components, and then install the next model. Disassemble the skeleton assembly from the installation platform, install the next model, reconfigure the self-positioning assembly system, and then return to step S0.
  • the assembly frame based on the product self-positioning assembly of the present invention adopts a scattered column assembly method, which changes the traditional closed frame structure assembly, and performs positioning assembly on the main frame and beam structures, and adopts a self-positioning tooling structure to maximize the assembly tooling
  • the skeleton adopts standardized column structure, standardized interface form, and the whole can be disassembled and reconstructed, which greatly shortens the assembly cycle and improves the reuse rate of tooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Assembly (AREA)

Abstract

本发明公开了一种用于飞机快速装配的自定位装配系统及方法,飞机工装定位装置具体包括安装平台、骨架组件、孔定位器组件、撑杆定位器组件以及托板组件;其优点在于:骨架组件采用分散立柱群式的装配方式,最大限度地节约装配空间场地,采用飞机结构自定位装配理念,减少了工装结构,工人可在装配空间场地间灵活出入,进行工件定位和装配操作,且提出了一种新型的、更高效的孔定位器、撑杆定位器和转顶支座专用定位组件,通过立柱粗调并结合各类定位器组件精调,实现飞机的自定位装配和模块化装配,提高飞机装配效率,本发明可适用于不同机型的装配,提高了工装重复利用率。

Description

一种用于飞机快速装配的自定位装配系统及方法 技术领域
本发明涉及飞机装配技术领域,具体涉及一种用于飞机快速装配的自定位装配系统及方法。
背景技术
飞机装配具有严格的工艺要求,所使用的具有定位要求的装配部件,简称为定位装配装置或定位工装装置,其主要目的在于保证飞机各个零部件的精准定位安装,协调各个零部件之间的位置关系,提高飞机生产效率并降低成本。由于飞机零部件刚性弱、数量多,且协调关系复杂,因此,飞机装配不同于一般的机械产品装配,需要采用专用的装配型架对飞机零部件进行定形和定位,由于大量装配型架的存在,导致飞机的生产准备周期长,制造成本高,且在飞机装配过程中的工人作业环境不够友好。
传统的飞机装配工装中大量使用桁架式焊接骨架,定位器与骨架采用固定连接,一型飞机产品的装配常常需要成百上千套装配型架,而且装配型架只针对一种飞机,对于其他种类的机型,不能重复使用。造成型架资源的大量闲置与浪费。传统飞机机身结构的装配方法是通过机身装配型架对90%以上的飞机机身零件进行定形和定位,机身结构中的大部分零部件均需要型架定位装配,装配量大,因此传统装配型架通常具有专用性,重复利用率低且结构复杂;因此,在飞机装配领域迫切需要设计一种使用方便且安装快捷、精确、操作简单的定位装置。
此外,飞机装配一般采用飞机装配型架实现飞机的装配,型架占用空间场地大,型架是传统飞机装配中的专用工艺装备,是装配工装的重要组成部分,具有与飞机结构构造密切相关的特点,因此,传统的装配型架一般很难适应不同机型的飞机装配。装配型架结构设计是否合理正确,不但对装配型架本身制造工作量大小、周期长短、成本高低和装配条件有直接影响,而且也决定着各工件的对接、配合尺寸是否一致,对飞机装配的互换协调性、制造质量和进度有很大的影响,影响着整个飞机的制造周期。
为此,如何充分考虑不同类型的飞机装配的不同需求,提高飞机的装配质量和装配效率,缩短装配周期,如何实现飞机装配过程中自定位精准定位,实现少型架装配,提高场地利用率以提高生产效率,成为飞机装配技术领域亟待解决的技术难题。
发明内容
本发明的目的在于提供一种用于飞机快速装配的自定位装配系统及方法,飞机装配 工装的整体骨架采用分散立柱式装配方式,并采用各类定位器对飞机零部件进行自定位,以实现飞机的无型架、自定位装配,达到节约空间场地,简化工装结构,提高飞机装配效率和装配质量,同时降低飞机装配成本的技术效果。
为实现上述目的,本发明的解决方案如下:
一种用于飞机快速装配的自定位装配系统,包括安装平台、骨架组件、孔定位器组件、撑杆定位器组件以及托板组件,还可以包括对一些特殊部件或者飞机关键部位进行定位的交点孔定位器、转顶支座专用定位组件和散件工装定位组件中的任意一种或多种定位器组件。
地基上安装所述安装平台,所述安装平台上连接所述骨架组件,所述骨架组件包括孔定位器立柱、托板立柱,所述孔定位器立柱上设置所述孔定位器组件和/或交点孔定位器,所述托板立柱上设置所述托板组件,孔定位器组件、交点孔定位器、托板组件均为模块化、具有可重构性定位器结构,使用模块化、具有可重构性定位器结构,可以提高工装的开敞性及重复利用率。
所述安装平台包括安装基板和安装基座,相邻的安装基板和安装基座之间具有T型槽口,进而,在安装平台的表面上形成了有纵横相交的多条T型槽口,T型槽口用于骨架组件底座的安装,为骨架组件的装配提供支撑平台;所述骨架组件主体形式突破传统工装骨架封闭式的框梁结构类型,采用立柱群形式的结构布局,增加工装的开敞性,简洁且便于装配。所述定位器及定位器组件中,除转顶支座专用定位组件为飞机圆形产品专用定位器外,其余定位器及定位器组件均为自定位工装的通用结构,在不同机型机身主框、主梁的定位中也可以通过上述几种通用的定位器及定位器组件实现对产品的定位。
所述安装基板的中心处设置了吊装孔,吊装孔用于连接龙门吊等起重设备的挂钩,将吊装孔设置在安装基板的中心处,可以有效防止安装基板侧倾造成的不安全事故。
所述孔定位器立柱包括第一立式管柱、第一连接板、第一底座和安装板,其中所述安装板上通过连接螺栓连接所述底座,所述底座上连接有所述第一立式管柱,所述第一立式管柱外表面连接第一连接板,所述第一连接板上设置有多个标准安装孔,将安装孔标准化形成标准安装孔,有利于不同组件在连接板上进行连接,孔定位器组件以及交点孔定位器可以在标准安装孔上进行安装,进而可以调整孔定位器组件以及交点孔定位器的高度。其中,所述第一立式管柱可采用方形截面管、矩形截面管中的任意一种或多种。所述孔定位器立柱主要用于调节孔定位器组件以及交点孔定位器的高度。
所述第一立式管柱底部还连接有多个第一筋板,多个所述第一筋板的底部与第一底座连接,所述第一筋板用于加强所述第一立式管柱与第一底座之间的连接强度。
所述托板定位器立柱包括第二立式管柱、第二连接板、第二底座和安装板,其中所述安装板上通过连接螺栓连接所述底座,所述底座上连接有所述第二立式管柱,所述第二立式管柱外表面连接第二连接板,所述第二连接板上设置有多个标准安装孔,将安装孔标准化形成标准安装孔,有利于不同组件在连接板上进行连接。其中,所述第二立式管柱可采用方形截面管、矩形截面管中的任意一种或多种。
所述第二立式管柱底部还连接有多个第二筋板,多个所述第二筋板的底部与第二底座连接,所述第二筋板用于加强所述第二立式管柱与第二底座之间的连接强度。
所述第一/二立式管柱的顶部设置有吊装装置,用于在第一/二立式管柱需要移动时,进行吊装操作。
所述孔定位器组件包括孔定位器、滑轨支座、定位销组件,所述滑轨支座通过螺钉与定位销组件安装在孔定位器立柱上,所述滑轨支座的末端连接孔定位器和/或交点孔定位器,孔定位器组件用于对飞机工装的孔和/或交点孔进行定位。
所述滑轨支座包括底板、支座体、导轨组件、挡块、手柄。所述支座体与导轨组件滑动连接,所述导轨组件两端分别设置有挡块,所述挡块用于对支座体进行限位,所述支座体的一端连接有手柄,手柄有利于安装工人推拉支座体,调整支座体的水平位移。通过支座体带动孔定位器和/或交点孔定位器进行水平滑动,可根据空间、行程要求随时更换滑轨规格,可重构性较强。
所述定位销组件为“螺线型”定位销组件,包括插销、槽道衬套、圆柱销、衬套组成,所述槽道衬套具有呈螺线型的螺旋轨道槽,所述槽道衬套固定在滑轨支座上,所述衬套固定于底板上,所述插销的下部与衬套连接,所述插销中部设置有圆柱销,所述圆柱销用于对插销进行限位,使得插销在插拔过程中沿螺旋衬套的螺旋轨道运动,螺旋轨道槽有利于圆柱销在螺旋轨道槽内滑动,并在可以调节定位销组件在其长度方向上任意一点进行定位,同时防止插销滑出或掉落。
优选地,所述定位销组件还可以为“Z字型”定位销组件,包括插销、槽道衬套、圆柱销、衬套,所述槽道衬套具有呈“Z字型”的轨道槽,所述槽道衬套固定在滑轨支座上,所述衬套固定于底板上,所述插销的下部与衬套连接,所述插销中部设置有圆柱销,所述圆柱销用于限位,所述插销可沿“Z字形”轨道槽滑动,“Z字型”定位销组件相对于“螺线型”定位销组件,可以实现定位销组件各零部件的迅速安装和拆除,有效地解决了飞机装配过程中多处需要插销定位而出现的现场管理困难的问题,避免出现散件工装,提高整体的工装效率,“Z字型”定位销组件相对于其他定位销组件,可以实现定位销组件各零部件的迅 速安装和拆除,有效地解决了飞机装配过程中多处需要插销定位而出现的现场管理困难的问题,避免出现散件工装,提高整体的工装效率。
所述孔定位器主要用于对飞机主框或主梁的定位孔进行定位,所述孔定位器包括定位器接头、定位螺纹销、手柄螺母、定位插销、锁紧螺纹销。所述定位器接头的横截面呈L形,具有相互垂直连接的两个面,所述定位器接头的一侧面设置有中心定位孔,另一侧面设置有多个长圆孔和多个定位圆孔,所述定位螺纹销安装在中心定位孔中,定位螺纹销与飞机产品的待定位面相抵接,所述锁紧螺纹销安装在长圆孔中,所述定位插销插入定位圆孔中,所述锁紧螺纹销和定位插销用于在定位螺纹销跟产品的待定位面相抵接后,对其定位位置进行锁定。所述孔定位器接头定位面与产品面相贴合,锁紧螺纹销穿过定位器接头连接底面与滑轨支座通过螺纹连接为一体并压紧,并通过定位插销进行定位;当退出孔定位器时,拔出定位插销,松开锁紧螺纹销,沿长圆孔滑动定位器接头,从而移出工作位置。
所述撑杆定位器组件独立使用,不依赖于孔定位器立柱以及托板立柱等支撑部件等支撑部件,所述撑杆定位器组件主要用于对飞机机身的多个框体之间的相对位置进行定位,其定位主要依赖产品的定位面,因此,撑杆定位器组件属于典型的可实现自定位的定位器。
优选地,所述撑杆定位器组件是一种可实现微调的可滑动撑杆定位器组件,该撑杆定位器组件包括顶紧螺母、定位套筒、压块插销、指针、锁紧螺母、撑杆、圆柱插销、端头销。所述端头销为一端是光杆,另一端是螺纹杆的结构,所述端头销的一端插入的所述撑杆一端内,并通过所述圆柱插销固定所述端头销和撑杆,所述撑杆的另一端套设在定位套筒内,所述定位套筒沿轴向两侧均开设有楔形槽,所述楔形槽为沿定位套筒长度方向设置的条状的具有梯形剖面的槽孔,一侧的楔形槽内可以插入压块插销,所述压块插销为T字形结构,由压块和与压块垂直连接的螺纹插销组成,锁紧螺母与压块插销的螺纹插销的外螺纹连接,通过拧紧锁紧螺母,可使压块插销与定位套筒的楔形槽压紧,进而可以固定定位套筒与撑杆的相对位置。
所述压块插销上设置有指针,所述定位套筒的外表面上设置有刻度,所述指针用于指示所述刻度。通常,两个飞机零部件(如两个主框)的定位面之间通常会设置多个撑杆定位器组件,需要保证两个定位面各点之间的垂直距离相等,进而,在安装人员定位安装时,可分别通过读取各个撑杆定位器组件上的刻度,判断各个撑杆定位器组件上的刻度是否一致,若一致,则说明两个定位面之间为平行关系,若不一致,则需要调整撑杆定位器组件的伸展长度。
所述撑杆定位器组件还可以是一种可实现微调的固定式撑杆定位器组件,所述撑杆 定位器组件包括顶紧螺母、定位套筒、撑杆、圆柱插销、端头销和T型插销。所述端头销为两端均是螺纹杆的结构,所述端头销的一端螺纹连接的撑杆一端,通过所述圆柱插销固定端头销和撑杆,所述撑杆的另一端套设在定位套筒内,所述定位套筒的一端与顶紧螺母螺纹连接。所述T型插销由把手和杆定位插销组成,所述杆定位插销插入定位套筒的穿孔和撑杆的穿孔内,所述杆定位插销的中部贯穿设置有束绳穿孔,在所述T型插销插入定位套筒后,在所述束绳穿孔中穿入钢丝绳等高强度的绑缚带,对所述T型插销进行绑缚固定。
所述交点孔定位器用于对带翼身连接接头的主框或翼身交点进行定位,所述交点孔定位器包括安装基体、交点孔定位支座、插销、定位耳片、压紧螺母组成。所述安装基体固定在所述孔定位器立柱上,所述安装基体与交点孔定位支座螺栓连接,所述交点孔定位支座为一底座和两个相互的平行的支撑座垂直焊接而成,每个所述支撑座上设置有多个穿孔,两个支撑座上的多排穿孔之间相互平行,多个所述插销先分别穿入一个支撑座上的穿孔后,再穿过两个定位耳片后,最后穿过另一个支撑座上的多个穿孔,每个所述插销的一端设置有压紧螺母,进而可以防止插销使用过程中滑落丢失。交点接头为关键定位点,所述交点定位器用于对,这类主框将作为后续框架部件自定位的基准框。
所述托板组件用于对飞机主框或主梁结构进行支撑和孔定位,所述托板组件包括支座、托板、垫片、螺纹销、定位销、孔定位器,所述支座固定在托板立柱顶部的吊装板上,所述支座截面呈L形结构,所述支座的一侧面通过多个螺纹销、定位销与所述托板连接,所述托板为板状部件,所述托板的顶部嵌设有多个垫片,所述托板的一侧面固定连接有所述孔定位器。所述托板组件用于对飞机主框结构进行支撑和孔定位。托板上表面为产品蒙皮外形,可满足两种工作状态下的支撑作用:在未连接蒙皮的情况下,加入垫片,对框外形进行型面定位;连接蒙皮后,取出垫片,支撑蒙皮外形。
所述转顶支座专用定位组件用于对飞机的圆形产品进行支撑和定位,所述转顶支座专用定位组件包括骨架、定位器支座、辅助撑杆、定位器,所述转顶支座专用定位组件采用点式分布结构,对整体圆形产品采用多点式定位;多组定位器通过螺栓连接到定位器支座上,在空间上四点分布,对产品的外形面进行定位压紧,避免了整体式定位加工难度大,空间不够开敞等问题;辅助撑一端连接定位器支座,另一端连接骨架,且两端采用叉耳式转动结构,可实现不同角度的连接,对定位器支座进行辅助支撑,起到增强连接刚度与提高稳定性的作用。
所述散件工装定位组件用于对非框体零部件的相对位置进行定位,所述散件工装定位组件包括散件工装本体和大小头插销,所述散件工装本体为矩形形状结构,所述散件工装 本体的四角设置有定位孔,多个大小头插销分别插入上述定位孔中,并与散件产品上设置的待定位孔连接,所述待定位孔/定位孔与所述大小头插销之间夹有环形垫片,散件工装定位组件主要用于对产品零部件不高,但两个产品之间的相对位置要求较高的飞机结构构件进行定位。
需要强调地是:虽然散件工装定位组件和撑杆定位器组件均用于相对位置的定位,但是散件工装定位组件主要用于对对非框体零部件的相对位置进行定位,而撑杆定位器组件主要用于对框体零部件(如主框、主梁)的相对位置进行定位。
在机身装配工装中,最主要的是对框体零部件的定位。一般而言,一个产品的框体(包含主框和机身次框),通过4个孔定位器进行定位,即“四点定位”法即可以进行完全定位。通过圆孔和长圆孔及螺母压紧,即在理论上已经完全限制了一个框体零部件的自由度,但是由于飞机产品框体零部件一般较大,因此2点定位一般定位刚度较弱,因此一般框体零部件采用4点定位方式,其余2点仅作为压紧;根据实际产品结构情况,尺寸较大的框结构甚至采用6点或8点定位,以提高框定位的稳定性。
一种基于飞机快速装配的自定位装配系统的装配方法,用于上述一种基于自定位装配的飞机机身工装定位装置,其特征在于:所述工装方法包含如下步骤:
步骤S0:对飞机整体结构特征进行分析,剥离出关键控制点,根据关键控制点所对应的安装平台1以及骨架组件位置,将机身装配型架72、机翼装配型架73连接在安装平台1上;
步骤S1:采用机身装配型架72对机身零部件自定位装配;
步骤S2:采用机翼装配型架73对机翼零部件自定位装配;
步骤S3:在步骤S1和步骤S2完成的基础上,使机身型架配合机翼调姿架车,进行翼身精加工配合铰孔;
步骤S4:在步骤S3完成的基础上,对飞机的附属部件进行自定位装配,最终装配形成飞机骨架,对飞机骨架进行蒙皮铆接。
采用上述分散立柱式装配方式,改变了传统封闭框架结构装配,对主要框、梁结构进行定位装配,并设计采用自定位工装结构,最大限度增加装配工装的开敞性,同时骨架采用规格化立柱式结构,标准化接口形式,整体可拆卸重构,大大缩短了装配周期,提高了工装重复利用率。
综上所述,本发明的一种基于飞机快速装配的自定位装配系统的装配方法,相对于 传统的型架定位装置和工装方法,其优点在于:
1)本发明的骨架组件采用分散立柱群式的装配方式,最大限度地节约装配空间场地,采用无型架装配理念,并简化减少了工装结构,在装配空间场地较大和工装结构较少的前提下,工人可在装配空间场地间灵活出入,进行工件的定位和装配操作;
2)本发明提出了一种新型的、更高效的孔定位器组件、撑杆定位器组件和转顶支座专用定位组件,通过分散式立柱粗调,并结合各类定位器组件的精调,实现飞机的自定位装配和模块化装配,提高了飞机装配效率;
3)本发明撑杆定位器组件设置有刻度,在两个定位面之间安装有多个撑杆定位器组件时,安装人员可以通过读取刻度,可以更直观地判断出两个定位面之间是否平行,进而在不平行时快速调整撑杆定位器组件的伸展长度;
4)本发明的立式管柱顶部设置有吊装部件,可以进行孔定位器立柱或托板立柱的吊装,进而更好地辅助安装工人快速安装,提高飞机装配效率;
5)本发明的自定位装配的飞机工装定位装置,可以适用于不同飞机机型的装配,相对于现有技术针对每一机型单独设置一套工装定位装置的方式,提高了工装重复利用率。
附图说明
图1为本发明的飞机机身装配工装系统示意图。
图2为本发明的安装平台结构图。
图3为本发明的骨架组件结构图。
图4为本发明的孔定位器立柱结构图。
图5为本发明的托板立柱结构图。
图6为本发明的孔定位器立柱与安装平台连接局部俯视图。
图7为本发明的孔定位器组件与滑轨支座局部连接示意图。
图8为本发明的孔定位器组件结构图。
图9为本发明的滑轨支座结构图。
图10-1为本发明实施例1中的定位销组件结构整体外观图。
图10-2为本发明实施例2中的定位销组件结构整体外观图。
图10-3为本发明实施例2中定位销组件结构局部分解示意图。
图11-1为本发明实施例1中的撑杆定位器组件整体外观图。
图11-2为本发明实施例1中撑杆定位器组件轴向剖视图。
图11-3为本发明实施例2中的撑杆定位器组件整体外观图。
图11-4为本发明实施例2中的撑杆定位器组件轴向剖视图。
图12为本发明的交点孔定位器结构图。
图13-1为本发明的托板组件结构图。
图13-2为本发明的托板组件装配示意图。
图14-1为本发明的转顶支座定位器组件正立面结构图。
图14-2为本发明的转顶支座定位器组件三维结构图。
图14-3为本发明的转顶支座定位器组件定位局部爆炸图。
图15-1为传统的散件工装定位组件的三维结构图。
图15-2为本发明的散件工装定位组件的剖视图。
图15-3为本发明的散件工装定位组件的大小头插销结构示意图。
图16-1为传统的框架定位方式的系统装配工艺布局示意图。
图16-2为本发明的无型架自定位装配定位方式的系统装配工艺布局示意图。
图17为本发明的无型架自定位装配方法流程图。
图中:安装平台-1、骨架组件-2、孔定位器组件-3、撑杆定位器组件-4、交点孔定位器-5、托板组件-6、转顶支座专用定位组件-7、孔定位器立柱-8、托板立柱-9、辅助支撑组件-10、底座-15安装板-16、连接螺栓-17、压块螺栓-18、孔定位器-19、滑轨支座-20、定位销组件-21、定位器接头-22、定位螺纹销-23、手柄螺母-24、定位插销-25、锁紧螺纹销-26、底板-27、支座体-28、导轨组件-29、挡块-30、手柄-31、插销-32、槽道衬套-33、圆柱销-34、衬套-35、顶紧螺母-36、定位套筒-37、压块插销-38、指针-39、锁紧螺母-40、撑杆-41、圆柱插销-42、端头插销-43、刻度-44、楔形槽-45、把手-46、杆定位插销-47、束绳穿孔-48、支座-49、托板-50、垫片-51、螺纹销-52、定位销-53、孔定位器-54、骨架-55、定位器支座-56、辅助撑杆-57、转顶孔定位器-58、工件-59、安装基体-60、交点孔定位支座-61、插销-62、定位耳片-63、压紧螺母-64;Ⅰ框体-65、Ⅱ框体-66;圆形产品-67;散件产品-68、散件工装本体-69、大小头插销-70、环形垫片-71、机身装配型架-72、机翼装配型架-73;安装基板-1-1、安装基座-1-2、吊装孔-1-3、T型槽口-1-4;
第一吊装板-111-1、吊环-111-2、第一立式管柱-121、第一连接板-131、第一筋板-141、第一底座-151,标准连接孔-131-1;
第二吊装板-112-1、第二立式管柱-122、第二连接板-132、第二筋板-142、第二底座-152,标准连接孔-132-1;
第一圆孔-16-1、第一长圆孔-16-2;
第二圆孔-50-1、第二长圆孔-50-2;
转顶定位托板-58-1、定位孔-58-2、定位插销-58-3、定位面-58-4;
产品待定位面-67-1;
插销大头部-70-1、环状连接部-70-2、插销小头部-70-3、小头部穿孔-70-4。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参阅图1-3,本发明的一种用于飞机快速装配的自定位装配系统,包括安装平台1、骨架组件2、孔定位器组件3、撑杆定位器组件4、交点孔定位器5、托板组件6、转顶支座专用定位组件7。
安装平台1包括安装基板1-1和安装基座1-2,多块安装基板1-1呈阵列排布连接在安装基座1-1上,安装基座放置在地基上,相邻的两块安装基板1-1与安装基座1-2形成纵横相交的T型槽口1-4,T型槽口1-4用于连接骨架组件的安装板。
由于安装基板1-1质量较大,在实际安装过程中,需要龙门吊等起重设备进行辅助吊装,工人在进行安装平台的拼装过程中才不至于太费力。因此,在安装基板1-1的中心处设置了吊装孔1-3,而吊装孔1-3设置在安装基板1-1的中心处,是为了保持安装基板1-1在起吊过重心稳定,进而防止安装基板1-1重心不稳出现侧倾而砸伤安装工人的安全事故。
安装平台1的作用是为工装的装配提供支撑平台,安装平台1上安装有多个骨架组件2,所述骨架组件2由孔定位器立柱8、托板立柱9、辅助支撑组件10组成,骨架主体形式突破传统工装骨架封闭式的框梁结构类型,采用立柱群的结构布局,增加工装的开敞性,简洁且便于装配;多个孔定位器立柱8分别设置在安装平台1的两侧,主要用于连接对主框进行定位的孔定位器组件3和交点孔定位器5;多个托板立柱9设置在安装平台1的中部,用于对主框进行托举定位的托板组件6的安装,这样布局的目的也是考虑了飞机的结构因素,即飞机中体是中部体积大,而两侧(机翼部分)以及机头和尾翼体积较小,因此,立柱群式的结构布局有利于飞机的整体装配。此外,由于两侧孔定位器立柱8较高,因此在安装平台1的两侧安装设置辅助支撑组件10,以增强飞机工装定位装置整体的结构刚性。
请参阅图4,孔定位器立柱8包括第一吊装板111-1、第一立式管柱121、第一连接 板131、第一筋板141、第一底座151和安装板16,其中立柱四面连接第一连接板131,第一连接板131的表面粗糙度Ra3.2,第一连接板131上设置有4排Φ11H7的标准连接孔131-1,根据需要可以作为螺纹连接过孔或定位销孔,定位器的连接板对角采用标准定位销连接,其余连接孔采用螺纹连接,用于连接孔定位器组件以及交点孔定位器等定位器组件,实现定位器组件与立柱连接的标准化和互换性;为便于在装配过程中的立柱组件2的吊装,在第一立式管柱121的顶部用第一吊装板111-1封闭,第一吊装板111-1的中心位置设置有吊环111-2,吊环111-2可拆卸;安装板16四周设置U型凹槽,用于螺栓连接,孔定位器立柱8通过连接螺栓17(或压块螺栓18)将安装板16连接在安装平台1上。
请参阅图5,托板立柱9包括第二吊装板112-1、第二立式管柱122、第二连接板132、第二筋板142、第二底座152和安装板16。第二立式管柱122的顶部连接第二吊装板112-1,第二立式管柱122的底部连接第二底座152,第二立式管柱122的底部还设置有第二筋板142,第二筋板142同时与第二底座152连接,第二底座152连接在安装板16上。托板立柱9的结构外观与孔定位器立柱8相同,只是外形轮廓尺寸以及吊装结构有所不同,托板立柱9的第二吊装板112-1表面中心设有吊环孔,吊环孔用于在安装托板立柱9时,将吊环孔挂在起重机上,进行辅助吊装,由于托板立柱9的顶部还用于连接托板组件6,因此吊装板112-1上不设置吊环。在托板立柱9吊装就位以后,吊环孔在飞机实际装配过程中将不再被使用。
请参阅图6,孔定位器立柱8(或托板立柱9)与底座15(第一底座151或第二底座152)连接,底座15与安装板16连接,安装板16呈正方形状(正方形的安装板,相对于长方形或者其他形状的安装板,可重构性更好,易于安装和移动),安装板16的边缘上设置有两组第一圆孔16-1和两组第一长圆孔16-2,且每一组第一圆孔16-1和每一组第一长圆孔16-2相邻设置,连接螺栓17(或压块螺栓18)穿过第一圆孔16-1和第一长圆孔16-2伸入安装平台1中的T型槽口1-4内,与T型槽口1-4内放置的螺母连接。第一圆孔16-1和第一长圆孔16-2有利于安装板16在纵、横方向上的位置调整。
现有的安装板16和安装基板1-1上通常设置有很多个螺纹孔,在固定安装板16和安装基板1-1时,通常需要将安装板16上的螺纹孔和安装基板1-1的螺纹孔进行位置对准,然后采用连接螺栓17连接,无论是安装板16还是安装基板1-1,其加工制造成本均较高,两者的连接需要很高的精度,且固定安装所花费的时间较长。本发明通过在纵横相交的T型槽口1-4中固定安装板16的方式,可不用在安装板16上打孔,降低了加工制造成本,连接更稳定,不需要很高的装配精度即可实现精准的定位,且拆卸更为方便。
请参阅图7,孔定位器组件3包括孔定位器19(或交点孔定位器5)、滑轨支座20、定位销组件21。滑轨支座20通过螺钉以及定位销组件21安装在孔定位器立柱8上,滑轨支座20的末端连接孔定位器19(或交点孔定位器5),进而,通过滑轨支座20滑动可以带动孔定位器19(或交点孔定位器5)在水平方向上移动,即实现孔定位或者交点孔定位的粗调。
请参阅图8,孔定位器19包括定位器接头22、定位螺纹销23、手柄螺母24、定位插销25、锁紧螺纹销26。定位器接头22呈L形结构,具有相互垂直连接的两个平面,定位器接头22的一面设置有中心定位孔,另一面设置有多个长圆孔和多个定位圆孔,定位螺纹销23安装在中心定位孔中,锁紧螺纹销26安装在长圆孔中,定位插销25插入定位圆孔中。定位器接头22的定位面与产品面相贴合,定位螺纹销23的另一端连接有手柄螺母24,定位螺纹销23穿过定位器接头22的中心定位孔及产品工艺孔,再通过手柄螺母24进行压紧,从而实现对产品的夹持;锁紧螺纹销26穿过定位器接头22的长圆孔,与滑轨支座20进行螺纹固定连接,并通过定位插销25进行定位;当需要退出孔定位器时,拔出定位插销25,沿长圆孔滑动定位器接头22,从而移出工作位置。
请参阅图9,滑轨支座20包括底板27、支座体28、导轨组件29、挡块30、手柄31。底板27通过螺钉、定位销组件21与孔定位器立柱8的侧面连接,导轨组件29由4组滑块和2组滑轨组成,滑块固定在底板27上,滑轨固定在支座体28上,由此,支座体28通过滑轨滑动进而带动孔定位器进行移动,滑轨支座20可以使定位器组件发生较大的水平移动,因而,其主要用于定位过程的粗调。
请参阅图10-1,定位销组件21用于使滑轨支座20的位置固定在孔定位器立柱8上,对滑轨支座20的横向位置进行限位,在本实施例中,定位销组件21为“螺线型”定位销组件,所述定位销组件21包括插销32、槽道衬套33、圆柱销34、衬套35,槽道衬套33具有呈螺线型的螺旋轨道槽,螺旋衬套33固定在滑轨支座20上,衬套35固定于底板27上,插销32的下部与衬套35连接,插销32中部设置有圆柱销34,圆柱销34用于限位,使得插销32在插拔过程中沿螺旋衬套33的螺旋轨道槽滑出,有效防止插销32掉落。
请参阅图11-1和图11-2,撑杆定位器组件4用于对相邻的两个飞机框体(如主框、机身次框)进行定位,因而,撑杆定位器组件4属于相对独立的定位器组件,可以单独使用,不用装设在孔定位器立柱8、托板立柱9或其他辅助支撑设备上,撑杆定位器组件4为一种可实现微调的可滑动撑杆定位器组件,该撑杆定位器组件包括顶紧螺母36、定位套筒37、压块插销38、指针39、锁紧螺母40、撑杆41、圆柱插销42、端头销43。在本实施例 中,端头销43为一端是光杆,另一端是螺纹杆的结构,端头销43的一端插入的撑杆41一端内,并通过圆柱插销42固定端头销43和撑杆41,撑杆41的另一端套设在定位套筒37内,定位套筒37沿轴向两侧均开设有楔形槽45,楔形槽45为沿定位套筒37长度方向设置的条状的具有梯形剖面的槽孔,一侧的楔形槽45内可以插入压块插销38,压块插销38为T字形结构,由压块和与该压块垂直设置的螺纹插销组成,锁紧螺母40与压块插销38的螺纹插销的外螺纹连接,通过拧紧锁紧螺母40,可使压块插销38与定位套筒37的楔形槽45压紧,进而可以固定定位套筒37与撑杆41的相对位置。
压块插销38上还设置有指针39,指针39可以是单独的部件,也可以是在压块插销38刻蚀/刻划形成,对应地,定位套筒37上具有沿其长度方向设置的刻度44,指针39用于指示所述刻度44,进而确定撑杆41在定位套筒37内的伸展长度。
通常,两件框体零部件(如两个主框)的定位面之间通常会设置多个撑杆定位器组件4,需要保证两个定位面各点之间的垂直距离相等,进而,在安装人员定位安装时,可分别通过读取各个撑杆定位器组件4上的刻度,判断各个撑杆定位器组件上的刻度是否一致,若一致,则说明两个定位面之间为平行关系,若不一致,则需要调整撑杆定位器组件的伸展长度。
在撑杆定位器组件对机身零部件定位过程中,压块插销38带动撑杆41沿定位套筒37的楔形槽45滑动,指针39可以指示压块插销38楔形槽位置,当撑杆定位器组件两端的顶紧螺母36触碰到机身零部件时,拧紧锁紧螺母40,对定位套筒37与撑杆41的相对位置进行锁定,然后再向外拧动顶紧螺母36,使撑杆定位器组件4的两端可以顶紧在工件上,在上述定位操作过程中,压块插销38和顶紧螺母36实现的是杆定位器4的粗调节定位,顶紧螺母36实现的是杆定位器4的精调节定位,精调节定位在粗调节定位的基础上完成,通过撑杆定位器组件4的粗调和精调,可以满足不同框距的产品自定位需求。
请参阅图12,交点孔定位器5用于对机身和机翼的连接交点进行孔定位,交点孔定位器5包括安装基体60、交点孔定位支座61、插销62、定位耳片63、压紧螺母64。安装基体60固定在孔定位器立柱8上,安装基体60与交点孔定位支座61螺栓连接,交点孔定位支座61为一底座和两个相互的平行的支撑座垂直焊接而成,每个支撑座上设置有两个穿孔,两个支撑座上的两排穿孔相互平行,两个插销62先分别穿入一个支撑座上的两个穿孔,分别穿过两个定位耳片63后,再分别穿入另一个支撑座上的两个穿孔,每个插销62的一端设置有压紧螺母64,进而可以防止插销使用过程中滑落丢失。交点接头为关键定位点,交点定位器用于对带翼身连接接头的主框进行定位,这类主框将作为后续框架部件自定 位的基准框。
请参阅图13-1和图13-2,托板组件6包括支座49、托板50、垫片51、螺纹销52、定位销53、孔定位器54。支座49与托板立柱顶部的吊装板11-1,支座49截面呈L形结构,支座49的一侧面通过多个螺纹销52、定位销53与托板50连接,托板50为板状部件,托板50的两侧贯穿设置有有定位圆孔50-1和定位长圆孔50-2,定位销53穿过所述定位圆孔50-1后与托板50连接,螺纹销52穿过所述定位长圆孔50-2后与托板50连接,定位长圆孔50-2可用于调节托板50的竖向定位位置。
托板50的顶部嵌设有多个垫片51,托板50的一侧面固定连接有孔定位器54。托板组件6用于对飞机主框结构进行支撑和孔定位;托板上表面为产品外形,可满足两种工作状态下的支撑作用:在未连接蒙皮的情况下,对框外形进行型面定位;连接蒙皮后,加入垫片51,支撑蒙皮外形。
请参阅图14-1、图14-2和图14-3,转顶支座专用定位组件7用于对飞机的圆形产品67(如转顶)进行定位,转顶支座专用定位组件7包括骨架55、定位器支座56、辅助撑杆57、转顶孔定位器58。多个骨架55的上部之间通过横梁相互连接,每个骨架55的顶部端面与辅助撑杆57的一端铰接,邻近该端面的骨架55一侧面固定连接竖向设置的定位器支座56的一端,定位器支座56的另一端与辅助撑杆57的另一端铰接,定位器支座56的顶部连接转顶孔定位器58。
进一步参阅图14-3,转顶孔定位器58包括转顶定位托板58-1和定位插销58-3,转顶定位托板截面呈L型,转顶定位托板58-1的一端设置有相互垂直的两个定位面58-4,其中一个定位面58-4上开设有定位孔58-2,定位插销58-3可插设在定位孔58-2中,两个定位面58-1分别与圆形产品67的产品的两个待定位面67-1相贴合。
转顶支座专用定位组件7采用点式分布结构,对整体圆形产品67(直径约为700mm)采用4点式定位,一方面有利于减小制造加工难度,另一方面有利于增大飞机的装配空间;骨架55主要由方铝管和圆铝管所组成,方铝管之间通过圆铝管连接成为一个整体,组成框架式结构,提高骨架的稳定性;4组转顶孔定位器58通过螺栓连接到定位器支座56上,在空间上四点分布,对产品的外形面进行定位压紧,避免了整体式定位加工难度大,空间不够开敞等问题;辅助撑杆57两端均采用叉耳式转动结构,可实现不同角度的连接,对定位器支座56进行辅助支撑,起到增强连接刚度与提高稳定性的作用。
请参阅图15-1、图15-2和图15-3,散件产品的工装自定位采用散件工装定位组件进行定位装配,非框体零部件的相对位置进行定位,散件工装定位组件包括散件工装本体69 和大小头插销70,散件工装本体69为矩形形状结构,散件工装本体69的四角设置有定位孔,4个大小头插销70分别插入上述定位孔中,并与散件产品68上设置的待定位孔连接,待定位孔/定位孔与大小头插销70之间夹有环形垫片71,散件工装定位组件用于对产品零部件不高,但两个产品之间的相对位置要求较高的飞机结构构件进行定位,即此类自定位工装与装配型架骨架(主框、机身次框、主梁)无关,仅保证产品之间的相对位置关系即可,而不对产品在飞机坐标系下的绝对位置定位,例如挂架接头的定位。
进一步地,大小头插销70由插销大头部70-1、环状连接部70-2和插销小头部70-3依次连接,插销大头部70-1为筒体形状,插销小头部70-3上设置有可供束绳穿过的小头部穿孔70-4,在进行散件产品的工装自定位时,插销大头部70-1插入上述定位孔和待定位孔中,使插销小头部70-3向外设置。
实施例2
请参阅图10-2和图10-3,在本实施例中,所述定位销组件21为“Z字型”定位销组件,包括插销32、槽道衬套33、圆柱销34、衬套35,槽道衬套33具有呈“Z字型”的轨道槽,槽道衬套33固定在滑轨支座20上,衬套35固定于底板27上,插销32的下部与衬套35连接,插销32中部设置有圆柱销34,圆柱销34用于限位,插销32沿“Z字形”轨道槽滑动,滑至轨道槽底部时,转动锁死。而在插拔过程中插销32沿槽道衬套33的“Z字型”的轨道槽顶部滑出,有效防止插销32掉落。本实施例中的“Z字型”定位销组件相对于“螺线型”定位销组件,可以实现定位销组件各零部件的迅速安装和拆除,有效地解决了飞机装配过程中多处需要插销定位而出现的现场管理困难的问题,避免出现散件工装,提高整体的工装效率。
参照图11-3和图11-4,在本实施例中,撑杆定位器组件4为一种可实现微调的固定式撑杆定位器组件,该撑杆定位器组件包括顶紧螺母36、定位套筒37、撑杆41、圆柱插销42、端头销43和T型插销。在本实施例中,端头销43为两端均是螺纹杆的结构,端头销43的一端螺纹连接的撑杆41一端,并通过圆柱插销42固定端头销43和撑杆41,撑杆41的另一端套设在定位套筒37内,定位套筒37的一端与顶紧螺母36螺纹连接。T型插销由把手46和杆定位插销47组成,杆定位插销47可以插入定位套筒37的穿孔和撑杆41的穿孔内,杆定位插销47的中部贯穿设置有束绳穿孔48,在T型插销插入定位套筒37后,束绳穿孔48用于穿入钢丝绳等高强度的绑缚带,对T型插销进行绑缚固定。
在上述撑杆定位器组件4对机身零部件定位过程中,当撑杆定位器组件两端的顶紧螺母36触碰到机身零部件时,将T型插销插入定位套筒37的穿孔和撑杆41的穿孔内,对 定位套筒37与撑杆41的相对位置进行锁定,然后再向外拧动顶紧螺母36,使撑杆定位器组件4的两端可以顶紧在工件上,在上述定位操作过程中,通过上述撑杆定位器组件4的自定位,可以满足不同框距的产品自定位需求。
实施例3
机身结构主要包括主框、机身主梁,因此,机身装配型架主要是对框、梁结构的定位。传统装配方法对大部分机身主框、机身主梁结构全部采用工装定位,因此,由于机身结构的紧凑造成工装结构异常复材,定位器众多,传统装配工装装置或工装系统存在骨架结构封闭、定位器多的不足,不仅带来工装制造周期、成本的提高,也对现场装配效率影响极大,因此,为了提高飞机装配效率、降低装配周期与成本,本发明提出了一种基于飞机快速装配的自定位装配系统的装配方法。
如图16-1所示为传统的工装结构的框定位方式:传统的工装采用四点式定位。图16-1中,I框体65为主要承力框,采用工装四点定位。II框体66为辅助结构框,在机身整体结构中,刚性较弱,不作为主要承力结构,对飞机整体外形影响不大。因此,若采用传统工装定位方式,会增加大量工装定位结构及骨架,且占用装配空间。
为了进一步提高装配效率及优化装配资源,本发明提出一种无型架装配的飞机机身装配工艺方法,对此类结构框采用了少定位器的定位方法。如图16-2所示,基于本发明专利提出的无型架装配的飞机机身装配工艺方法,II框体采用工装定位和辅助自定位的定位方式进行定位,减少工装定位结构,节约装配成本。以已通过工装完全定位的I框体65为II框体66的定位基准,通过利用杆定位器4进行定位。底部考虑到整体机身结构的重量,设置托板定位组件进行结构支撑和孔定位,通过孔定位器对II框体进行辅助定位。
本发明针对传统工装结构的缺点,本发明的一种基于飞机快速装配的自定位装配系统的装配方法,考察图16-2和图17,该装配方法可分为机身装配、机翼装配、翼身精加工装配三个方向:将大型飞机结构的装配方式从完全依赖装配型架的传统方法向依靠柔性装配工装、半柔性装配工装装配、零件自定位装配的方法上转变,降低飞机装配对专用装配型架的依赖程度,大幅度降低装配成本。
自定位装配原则:1)为简化装配型架的设计制造,减少定位数量,提升操作空间开敞性,在产品设计时考虑装配型架只对主框进行定位,主梁通过结构设计,实现自定位;2)考虑到进气道装配的可行性和方便性,将飞机框架进行分段。装配时先定位进气道,再定位主框,最后梁自定位安装完成装配;3)装配主要以主框的工艺孔以及翼身交点孔为装配基准进行装配,其余零部件采用零件自定位的方式进行装配连接;4)复材的壁板蒙皮与 骨架连接孔采用数控制终孔,直接连接装配;5)制造过程中需要的工艺信息采用传统的工艺数字模型协调和传递。
为了进一步解决飞机无型架各个部件精准装配的问题,本发明利用数控零件的高精度加工特点,依靠零件本身的结构进行多零件自定位装配,仅其他少数零部件采用工装定位的方式装配。一般型机的机身结构,除机身蒙皮及进气道外,其余零件均采用数控机加件。为保证机身整体装配的质量要求,仅选取机身主要装配特征控制点(包括主要承力结构、关键协调交点、飞行安全风险点、设计分离面等结构)进行工装定位,通过特征结构的装配,完成机身总体框架装配;其余非关键部位的零部件装配,则利用零件本身的关键特征(孔系、型面等)以及已经通过装配型架进行定位的机身主体结构为装配基准,根据零部件之间的空间连接关系来进行装配,从而达到通过控制机身关键装配特征使整体机身尺寸和轮廓达到装配精确性和装配准确性要求的目的。
考察图17,所述无型架装配的飞机装配工艺方法涉及到机身的整体装配和机翼的整体装配,具体包括如下步骤:
步骤S0:对飞机整体结构特征进行分析,剥离出关键控制点,根据关键控制点所对应的安装平台1以及骨架组件位置,将机身装配型架72、机翼装配型架73连接在安装平台1上;
在上述步骤中,剥离出关键控制点又包含如下方法:
1)飞机主要承力结构,对于机身部分,框结构均需工装定位,安装前起落架的主框在飞机起降过程中,承力较大,因此需要通过定位工装来保证安装精度,同时作为机身纵梁结构的定位基准;此外,前机身与唇口相连的位置,是主要的进风口,因此对外形要求也较高;对于机翼部分,关键桁和关键肋需工装定位;
2)飞机装配过程中的关键协调交点:对于机身来说,关键协调交点是垂尾安装交点接头、起落架舱门安装交点接头、舵面安装交点以及发动机安装交点等;对于机翼来说,关键协调交点是接头组件;
3)影响飞行安全的重要部位结构,即影响飞机降落安全的起落架主轴交点,包括前起落架轴和主起落架轴;
4)飞机设计分离面协调结构和工艺分离面部位结构,对机身部分而言,一般机头罩、机尾罩、机翼部分与机身连接处一般为设计分离面;对机身部分而言,蒙皮外形面一般为设计分离面。由于这些部位的结构对飞机装配的协调性要求较高,主框及翼身交点接头结构均需工装定位装配;
在步骤S0完成的基础上,进入步骤S1和步骤S2,具体工装步骤如下:
步骤S1:机身零部件自定位装配,具体包含如下步骤S11~S16:
步骤S11:吊装机身主框(如2150框~5700框),放置在机身装配型架72上,主框的底部通过托板组件6进行支撑,通过孔定位器组件3进行定位,使滑轨支座20带动孔定位器19滑动到待定位位置,定位螺纹销23拉紧,锁紧螺纹销26进行锁定;带有交点接头的框结构,采用交点孔定位器5进行交点孔定位;
步骤S12:步骤S11完成后,吊装机身次框放置在托板组件6上,机身次框与机身主框之间通过撑杆定位器组件4进行自定位装配;
步骤S13:步骤S12完成后,吊装机身主梁(如壁板梁、棱边梁等),放置在机身装配型架72上,对于关键协调交点,采用交点孔定位器5进行交点孔定位,再与机身主框进行装配;
步骤S14:步骤S13完成后,吊装转顶,将转顶放置在转顶支座专用定位组件7上,转顶孔定位器58对转顶进行孔定位;
步骤S15:步骤S14完成后,针对机身具有相对位置要求的非框体零部件,采用散件工装定位组件进行定位;
步骤S16:其余飞机零部件产品,以已完成工装定位的主框、主梁为定位基准,通过其余飞机零部件产品本身的结构外形面,自定位孔进行定位装配。
撑杆定位器组件4在定位过程中具有一定的特殊性,可以不依赖于孔定位器立柱、托板立柱等辅助支撑装置,依据飞机框体零部件的定位面,实现工装自定位,因此,上述步骤S12还进一步包括以下步骤:
步骤S121:判断撑杆定位器组件4的定位长度是否满足预设长度值要求,若不满足要求,则进入步骤S122,若满足要求,则进入步骤S123;
步骤S122:使撑杆41滑离/滑向定位套筒37,在判断撑杆定位器组件4的定位长度满足预设长度值要求时,停止滑动,并拧紧锁紧螺母40和压块插销38。
步骤S123:调节顶紧螺母36,使顶紧螺母36顶紧在机身主框或机身主梁壁面上。
步骤S2:机翼零部件自定位装配,具体包含如下步骤S21~S23:
步骤S21:吊装机翼主梁,放置在机翼装配型架73上,采用机翼装配型架73进行装配;
步骤S22:吊装机翼主肋,放置在机翼装配型架73上,机翼主梁与机翼主肋进行装配;
步骤S23:对于设计分离面、工艺分离面和机身与机翼的连接协调交点,采用交点孔定位器5进行交点孔定位;
由于机身零部件自定位装配可以通过机身装配型架(72)进行,机翼零部件自定位装配可以通过机翼装配型架(73)进行,机身装配型架(72)和机翼装配型架(73)属于相互独立的型架,因此,机身零部件自定位装配步骤S1和机翼零部件自定位装配步骤S2可以同时进行,也可以分开进行。在上述技术方案中,机身装配型架(72)采用现有技术中常用的机身装配型架。
步骤S3:在步骤S1和步骤S2完成的基础上,使机身型架配合机翼调姿架车,进行翼身精加工配合铰孔;
步骤S4:在步骤S3完成的基础上,对飞机的附属部件进行自定位装配,最终装配形成飞机骨架,对飞机骨架进行蒙皮铆接;
步骤S5:在步骤S4完成的基础上,安装下一机型时,若下一机型与已完成装配的机型相同,则不需要拆卸自定位装配的飞机工装定位装置,从工装定位装置中取出当前的立身式飞机,调节各类定位器或定位器组件,安装下一机型;若下一机型与已完成装配的机型不同,则先拆卸各类定位器或定位器组件,再从安装平台上拆卸骨架组件,安装下一机型,重构自定位装配系统,然后返回步骤S0。
本发明的基于产品自定位装配的装配型架采用分散立柱式装配方式,改变了传统封闭框架结构装配,对主要框、梁结构进行定位装配,并设计采用自定位工装结构,最大限度增加装配工装的开敞性,同时骨架采用规格化立柱式结构,标准化接口形式,整体可拆卸重构,大大缩短了装配周期,提高了工装重复利用率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (43)

  1. 一种用于飞机快速装配的自定位装配系统,包括安装平台(1)、骨架组件(2)、孔定位器组件(3)、撑杆定位器组件(4)以及托板组件(6),其特征在于:所述骨架组件(2)安装在所述安装平台(1)上,所述骨架组件(2)包括孔定位器立柱(8)和托板立柱(9),所述孔定位器立柱(8)上设置孔定位器组件(3),所述托板立柱(9)上设置托板组件(6),多个所述孔定位器立柱(8)分别设置在所述安装平台(1)的两侧,多个所述托板立柱(9)设置在安装平台(1)的中部。
  2. 如权利要求1所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述安装平台(1)上还安装有转顶支座专用定位组件(7)和/或散件工装定位组件:
    所述转顶支座专用定位组件(7)用于对飞机转顶支座进行支撑和定位;
    所述散件工装定位组件用于对非框体零部件的相对位置进行定位。
  3. 如权利要求1所述一种用于飞机快速装配的自定位装配系统,其特征在于:还
    包括交点孔定位器(5),所述交点孔定位器(5)安装在所述孔定位器立柱(8)上。
  4. 如权利要求1-3任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述孔定位器立柱包括第一立式管柱(121)、第一连接板(131)、第一底座(151)、安装板(16),其中所述安装板(16)上通过连接螺栓(17)连接第一底座(151),所述第一底座(151)上连接有所述第一立式管柱(121),所述第一立式管柱(121)外表面连接第一连接板(131),所述第一连接板(131)上设置有多个标准安装孔(131-1)。
  5. 如权利要求4所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述第一立式管柱(121)采用方形截面管、矩形截面管中的任意一种或多种。
  6. 如权利要求4所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述第一立式管柱(121)底部连接有多个第一筋板(141),每个所述第一筋板(141)的底部与底座(151)连接。
  7. 如权利要求6所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述第一立式管柱(121)的顶部用第一吊装板(111-1)封闭,所述第一吊装板(111-1)上连接有吊环(111-2)。
  8. 如权利要求7所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述吊环(111-2)连接在所述第一吊装板(111-1)的中心。
  9. 如权利要求1-3任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述托板立柱包括第二立式管柱(122)、第二连接板(132)、第二底座(152)、安装板(16),其中,所述安装板(16)通过连接螺栓(17)连接所述第二底座(152),所述第二底座 (152)上连接有所述第二立式管柱(122),所述第二立式管柱(122)外表面连接有所述第二连接板(132),所述第二连接板(132)上设置有多个标准安装孔(132-1)。
  10. 如权利要求9所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述第二立式管柱(122)采用方形截面管、矩形截面管中的任意一种或多种。
  11. 如权利要求10所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述第二立式管柱(122)底部固定有多个第二筋板(142),每个所述第二筋板(142)的底部与第二底座(152)连接。
  12. 如权利要求11所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述第二立式管柱(122)的顶部用第二吊装板(112-1)封闭,所述第二吊装板(112-1)中心开设有吊装孔。
  13. 如权利要求4所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述安装板(16)与底座(15)通过连接螺栓(17)连接。
  14. 如权利要求4所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述安装板(16)与底座(15)通过压块螺栓(18)连接。
  15. 如权利要求1所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述孔定位器组件(3)包括底板(27)、滑轨支座(20)、定位销组件(21)、孔定位器(19)或交点孔定位器(5),所述底板(27)安装在孔定位器立柱(8)和/或托板立柱(9)上,所述滑轨支座(20)通过定位销组件(21)连接在底板(27)上,所述滑轨支座(20)末端连接有所述孔定位器(19)和/或交点孔定位器(5)。
  16. 如权利要求15所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述滑轨支座(20)包括支座体(28)、导轨组件(29)、挡块(30)和手柄(31),所述支座体(28)与导轨组件(29)滑动连接,所述导轨组件(29)两端分别设置有挡块(30),所述支座体(28)的一端连接有手柄(31)。
  17. 如权利要求15所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述定位销组件包括插销(32)、槽道衬套(33)、圆柱销(34)、衬套(35),所述槽道衬套(33)具有呈螺线型的螺旋轨道槽,所述槽道衬套(33)固定在滑轨支座(20)上,所述衬套(35)固定于底板(27)上,所述插销(32)的下部与衬套(35)连接,所述插销(32)上设置有圆柱销(34)。
  18. 如权利要求15所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述定位销组件包括插销(32)、槽道衬套(33)、圆柱销(34)、衬套(35),所述槽道衬套(33)具 有呈“Z字型”的轨道槽,所述槽道衬套(33)固定在滑轨支座(20)上,所述衬套(35)固定于底板(27)上,所述插销(32)的下部与衬套(35)连接,所述插销(32)上设置有圆柱销(34)。
  19. 如权利要求15-18任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述孔定位器(19)包括定位器接头(22)、定位螺纹销(23)、手柄螺母(24)、定位插销(25)、锁紧螺纹销(26),所述定位器接头(22)横截面呈L形,所述定位器接头(22)的一定位面设置有中心定位孔,另一定位面设置有长圆孔和定位圆孔,所述定位螺纹销(23)安装在中心定位孔中,所述锁紧螺纹销(26)安装在长圆孔中,所述定位插销(25)插入定位圆孔中。
  20. 如权利要求19所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述定位器接头(22)的定位面与产品面贴合,所述锁紧螺纹销(26)穿过定位器接头(22)的连接底面与滑轨支座(20)连接。
  21. 如权利要求1所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述撑杆定位器组件(4)包括顶紧螺母(36)、定位套筒(37)、压块插销(38)、锁紧螺母(40)、撑杆(41)、圆柱插销(42)、端头插销(43),所述端头插销(43)一端是光杆,另一端是螺纹杆,所述端头插销(43)的光杆一侧插入的所述撑杆(41)内,并通过所述圆柱插销(42)固定所述端头插销(43)和撑杆(41),所述撑杆(41)的另一端套设在定位套筒(37)内,所述定位套筒(37)沿轴向两侧均开设有楔形槽(45),所述楔形槽(45)沿定位套筒长度方向设置,所述楔形槽(45)内放置压块插销(38),所述压块插销(38)与锁紧螺母(40)连接。
  22. 如权利要求21所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述压块插销(38)为T字形结构,所述锁紧螺母(40)与所述压块插销(38)螺纹连接。
  23. 如权利要求21-22任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述压块插销(38)上设置有指针(39),所述定位套筒(37)的外表面上设置有刻度(44),所述指针(39)用于指示所述刻度(44)。
  24. 如权利要求1任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述撑杆定位器组件包括顶紧螺母(36)、定位套筒(37)、撑杆(41)、圆柱插销(42)、端头插销(43)和T型插销,所述端头插销(43)两端均为螺纹杆结构,所述端头插销(43)的一端连接撑杆(41)一端,所述圆柱插销(42)固定所述端头插销(43)和撑杆(41),所述撑杆(41)的另一端套设在定位套筒(37)内,所述定位套筒(37)的一端与顶紧螺母 (36)螺纹连接。
  25. 如权利要求24所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述T型插销包括把手(46)和杆定位插销(47),所述T型插销用于固定所述定位套筒(37)和撑杆(41),所述杆定位插销(47)的中部贯穿设置有束绳穿孔(48),束绳穿过所述束绳穿孔可以将T型插销绑缚在定位套筒(37)上。
  26. 如权利要求1任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述托板组件(6)包括支座(49)、托板(50)、孔定位器(54),所述支座(49)与托板(50)连接,所述托板(50)上表面支撑飞机零部件,所述托板(50)一侧固定有孔定位器(54),所述孔定位器用于对飞机框型产品进行定位。
  27. 如权利要求26所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述托板(50)上设置有定位圆孔(50-1)和定位长圆孔(50-2),定位销(53)穿过所述定位圆孔(50-1)后与托板(50)连接,螺纹销(52)穿过所述定位长圆孔(50-2)后与托板(50)连接。
  28. 如权利要求26-27任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述托板(50)上表面还连接有垫片(51),在连接蒙皮时,采用托板(50)对飞机框型产品进行支撑,并通过孔定位器(54)进行定位;而在未连接蒙皮时,通过托板上的垫片(51)支撑框型产品。
  29. 如权利要求2所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述转顶支座专用定位组件(7)包括骨架(55)、定位器支座(56)和转顶孔定位器(58),所述骨架(55)包含有多个,所述骨架(55)的底部与安装平台(1)连接,多个所述骨架(55)之间通过横杆相互连接,所述骨架(55)的上部与定位器支座(56)连接,所述定位器支座(56)的顶部连接转顶孔定位器(58),所述转顶支座专用定位组件(7)用于对飞机的圆形零部件进行多点式定位。
  30. 如权利要求29所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述骨架(55)的顶部与辅助撑杆(57)的一端铰接,所述辅助撑杆(57)的另一端与定位器支座(56)铰接,所述辅助撑杆(57)的两端采用叉耳式转动结构。
  31. 如权利要求29-30任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述转顶孔定位器(58)包括转顶定位托板(58-1)和定位插销(58-3),所述转顶定位托板(58-1)的一端设置有相互垂直的两个定位面(58-4),其中一个所述定位面(58-4)上开设有定位孔(58-2),所述定位插销(58-3)可插设在定位孔(58-2)中,两个定位面(58- 1)分别与圆形产品(67)的两个待定位面(67-1)相贴合。
  32. 如权利要求3所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述交点孔定位器包括安装基体(60)、交点孔定位支座(61)、交点孔插销(62)、定位耳片(63)、压紧螺母(64),所述安装基体(60)的一面连接滑轨支座(20)的末端,所述安装基体(60)的另一面连接与交点孔定位支座(61)连接,所述交点孔定位支座(61)中插入多个定位耳片(63),所述定位耳片(63)中穿入交点孔插销(62),所述交点孔插销(62)的一端设置有所述压紧螺母(64)。
  33. 如权利要求2所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述散件工装定位组件包括散件工装本体(69)和大小头插销(70),所述散件工装本体(69)的四角设置有定位孔,所述大小头插销(70)分别插入所述定位孔中,并与散件产品(68)上设置的待定位孔连接,所述待定位孔/定位孔与所述大小头插销(70)之间夹有环形垫片(71)。
  34. 如权利要求33所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述大小头插销(70)由插销大头部(70-1)、环状连接部(70-2)和插销小头部(70-3)依次连接,所述插销大头部(70-1)呈筒形,所述插销小头部(70-3)呈柱状,所述插销小头部(70-3)上设置有可供束绳穿过的小头部穿孔(70-4),所述束绳用于对大小头插销(70)进行绑缚。
  35. 如权利要求1所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述安装平台(1)包括安装基板(1-1)和阵列排布连接在安装基座(1-1)上的安装基座(1-2)。
  36. 如权利要求35所述一种用于飞机快速装配的自定位装配系统,其特征在于:相邻的两块所述安装基板(1-1)与安装基座(1-2)之间形成纵横相交的T型槽口(1-4),所述T型槽口(1-4)用于连接骨架组件的安装板(16)。
  37. 如权利要求35-36任一项所述一种用于飞机快速装配的自定位装配系统,其特征在于:所述安装基板(1-1)的中心处设置了吊装孔(1-3),所述吊装孔(1-3)用于在安装基板(1-1)与安装基座(1-2)安装时进行辅助吊装。
  38. 一种基于飞机快速装配的自定位装配系统的装配方法,用于如权利要求1-37任一项所述的一种用于飞机快速装配的自定位装配系统,其特征在于:
    步骤S0:对飞机整体结构特征进行分析,剥离出关键控制点,根据关键控制点所对应的安装平台(1)以及骨架组件位置,将机身装配型架(72)、机翼装配型架(73)连接在安装平台(1)上;
    步骤S1:采用机身装配型架(72)对机身零部件自定位装配;
    步骤S2:采用机翼装配型架(73)对机翼零部件自定位装配;
    步骤S3:在步骤S1和步骤S2完成的基础上,使机身型架配合机翼调姿架车,进行翼身精加工配合铰孔;
    步骤S4:在步骤S3完成的基础上,对飞机的附属部件进行自定位装配,最终装配形成飞机骨架,对飞机骨架进行蒙皮铆接。
  39. 如权利要求38所述的一种基于飞机快速装配的自定位装配系统的装配方法,其特征在于:步骤S0:对飞机结构特征进行分析,剥离出关键控制点,具体包括如下方法:
    1)所述关键控制点为飞机主要承力结构,包括承受和分散机体飞行载荷的主框、机身次框、主梁、关键桁和关键肋;
    2)所述关键控制点为飞机装配过程中的关键协调交点,包括机身与机翼的连接协调交点、任务载荷舱协调交点、机身与小翼面的协调交点、机翼的接头组件;
    3)所述关键控制点为影响飞行安全的重要部位结构,包括影响飞机降落安全的前起落架轴、主起落架轴;
    4)所述关键控制点为设计分离面和工艺分离面部位的结构。
  40. 如权利要求38所述一种基于飞机快速装配的自定位装配系统的装配方法,其特征在于:步骤S1具体包含如下步骤S11~S16:
    步骤S11:吊装机身主框,放置在机身装配型架(72)上,主框的底部通过托板组件(6)进行支撑,通过孔定位器组件(3)进行定位,使滑轨支座(20)带动孔定位器(19)滑动到待定位位置,定位螺纹销(23)拉紧,锁紧螺纹销(26)进行锁定;带有交点接头的框结构,采用交点孔定位器(5)进行交点孔定位;
    步骤S12:步骤S11完成后,吊装机身次框放置在托板组件(6)上,机身次框与机身主框之间通过撑杆定位器组件(4)进行自定位装配;
    步骤S13:步骤S12完成后,吊装机身主梁,放置在机身装配型架(72)上,机身主梁通过孔定位器(19)进行定位,再与机身主框进行连接装配;
    步骤S14:步骤S13完成后,吊装转顶,将转顶放置在转顶支座专用定位组件(7)上,转顶孔定位器(58)对转顶进行孔定位;
    步骤S15:步骤S14完成后,针对机身具有相对位置要求的非框体零部件,采用散件工装定位组件进行定位;
    步骤S16:其余飞机零部件产品,以已完成工装定位的主框、主梁为定位基准,通过其余飞机零部件产品本身的结构外形面、自定位孔进行定位装配。
  41. 如权利要求40所述一种基于飞机快速装配的自定位装配系统的装配方法,其特征在于:所述步骤S12还包括以下步骤:
    步骤S121:判断撑杆定位器组件(4)的定位长度是否满足预设长度值要求,若不满足要求,则进入步骤S122,若满足要求,则进入步骤S123;
    步骤S122:使撑杆(41)滑离/滑向定位套筒(37),在判断撑杆定位器组件(4)的定位长度满足预设长度值要求时,停止滑动,并拧紧锁紧螺母(40)和压块插销(38);
    步骤S123:调节顶紧螺母(36),使顶紧螺母(36)顶紧在机身主框或机身主梁壁面上。
  42. 如权利要求38所述一种基于飞机快速装配的自定位装配系统的装配方法,其特征在于:步骤S2具体包含如下步骤S21~S23:
    步骤S21:吊装机翼主梁,放置在机翼装配型架(73)上,采用机翼装配型架(73)进行装配;
    步骤S22:吊装机翼主肋,放置在机翼装配型架(73)上,机翼主梁与机翼主肋进行装配;
    步骤S23:对于机身与机翼的连接协调交点,采用交点孔定位器(5)进行交点孔定位。
  43. 如权利要求38所述一种基于飞机快速装配的自定位装配系统的装配方法,其特征在于:还包括:步骤S5:在步骤S4完成的基础上,安装下一机型时,若下一机型与已完成装配的机型相同,则无需拆卸自定位装配的飞机工装定位装置,从工装定位装置中取出当前的立身式飞机,调节各类定位器组件,安装下一机型;若下一机型与已完成装配的机型不同,则先拆卸各类定位器组件,再从安装平台上拆卸骨架组件,安装下一机型,并重构自定位装配系统,然后返回步骤S0。
PCT/CN2021/132603 2021-07-16 2021-11-24 一种用于飞机快速装配的自定位装配系统及方法 WO2023284222A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/450,523 US20230391474A1 (en) 2021-07-16 2023-08-16 Self-positioning assembly system for rapid assembly of aircraft and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110803352.0A CN113245813B (zh) 2021-07-16 2021-07-16 一种用于飞机快速装配的自定位装配系统及方法
CN202110803352.0 2021-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/450,523 Continuation US20230391474A1 (en) 2021-07-16 2023-08-16 Self-positioning assembly system for rapid assembly of aircraft and method thereof

Publications (1)

Publication Number Publication Date
WO2023284222A1 true WO2023284222A1 (zh) 2023-01-19

Family

ID=77180482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132603 WO2023284222A1 (zh) 2021-07-16 2021-11-24 一种用于飞机快速装配的自定位装配系统及方法

Country Status (3)

Country Link
US (1) US20230391474A1 (zh)
CN (1) CN113245813B (zh)
WO (1) WO2023284222A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440765A (zh) * 2021-12-31 2022-05-06 上海市机械施工集团有限公司 一种异形构件测量定位装置及方法
CN115890547A (zh) * 2023-02-28 2023-04-04 中航成飞民用飞机有限责任公司 大飞机驾驶舱多段组件对合集成用组对工装及施工方法
CN116002039A (zh) * 2023-02-09 2023-04-25 北京航空航天大学 一种壁板预装配可重构柔性型架
CN117655752A (zh) * 2024-01-31 2024-03-08 埃瑞泰克斯(上海)机械制造有限公司 旋转定位系统及使用方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245813B (zh) * 2021-07-16 2021-10-01 成都飞机工业(集团)有限责任公司 一种用于飞机快速装配的自定位装配系统及方法
CN113664530B (zh) * 2021-09-06 2022-09-13 上海航天精密机械研究所 一种助推尾段型架尾翼对接接头的定位装置及装配方法
CN114193116B (zh) * 2021-12-08 2022-11-08 四川明日宇航工业有限责任公司 一种不锈钢箱式结构件精密装配方法
CN115071997B (zh) * 2022-06-20 2024-06-11 成都飞机工业(集团)有限责任公司 飞机机翼装配装置及装配方法
CN116372851B (zh) * 2023-06-05 2023-08-04 北京爱思达航天科技有限公司 一种飞行器装配型架及飞行器零件的装配定位方法
CN117602092B (zh) * 2024-01-23 2024-04-12 上海上飞飞机装备制造股份有限公司 客改货主货舱门装配方法、舱门组装工装及成组工艺装备
CN118081695B (zh) * 2024-04-28 2024-07-12 中航成飞民用飞机有限责任公司 用于自动钻铆设备的通用柔性支撑卡板系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745338A (zh) * 2012-07-05 2012-10-24 浙江大学 一种大型飞机中机身数字化装配系统
CN103158890A (zh) * 2011-12-15 2013-06-19 波音公司 拼板飞机机身的自动装配
US20180056511A1 (en) * 2016-08-24 2018-03-01 The Boeing Company Movement control for tracked robot assemblies that manufacture aircraft
CN109877744A (zh) * 2019-03-18 2019-06-14 成都飞机工业(集团)有限责任公司 一种薄壁管子的定位装置及其拼装方法
CN212290380U (zh) * 2020-02-27 2021-01-05 成都飞机工业(集团)有限责任公司 一种飞机型架柔性装配平台
CN113245813A (zh) * 2021-07-16 2021-08-13 成都飞机工业(集团)有限责任公司 一种用于飞机快速装配的自定位装配系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1401780A1 (ru) * 1986-11-25 1994-01-30 В.А. Граф Автомат для запрессовки трубок в каркас теплообменника
CN101987438B (zh) * 2009-07-30 2012-12-12 中国商用飞机有限责任公司 一种定位装置
CN102381658A (zh) * 2011-06-28 2012-03-21 常熟通润汽车千斤顶有限公司 用于立式油压千斤顶的集成式组合阀体
CN103252739B (zh) * 2013-05-17 2015-04-08 沈阳理工大学 一种真空吸附式微小件夹持装置
CN103878580B (zh) * 2014-03-13 2016-01-27 郑祥模 用于自动装配机的阀体装配模块
CN104128787B (zh) * 2014-07-23 2016-09-14 河南凯邦电机有限公司 卡簧压入工装
CN204221333U (zh) * 2014-08-26 2015-03-25 江阴博衍机械设备有限公司 钢丝螺套自动拧紧装置
CN104465065B (zh) * 2014-12-26 2016-09-14 济南玖源机电科技有限公司 生产变压器用插片设备
CN106425359B (zh) * 2016-09-28 2017-09-26 山东科技大学 一种激光定位智能装配系统及其使用方法
CN108340143A (zh) * 2018-01-26 2018-07-31 盐城全威科技有限公司 一种卡扣装配机
CN109319165A (zh) * 2018-11-05 2019-02-12 西安飞机工业(集团)有限责任公司 一种飞机框保型定位架和定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158890A (zh) * 2011-12-15 2013-06-19 波音公司 拼板飞机机身的自动装配
CN102745338A (zh) * 2012-07-05 2012-10-24 浙江大学 一种大型飞机中机身数字化装配系统
US20180056511A1 (en) * 2016-08-24 2018-03-01 The Boeing Company Movement control for tracked robot assemblies that manufacture aircraft
CN109877744A (zh) * 2019-03-18 2019-06-14 成都飞机工业(集团)有限责任公司 一种薄壁管子的定位装置及其拼装方法
CN212290380U (zh) * 2020-02-27 2021-01-05 成都飞机工业(集团)有限责任公司 一种飞机型架柔性装配平台
CN113245813A (zh) * 2021-07-16 2021-08-13 成都飞机工业(集团)有限责任公司 一种用于飞机快速装配的自定位装配系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440765A (zh) * 2021-12-31 2022-05-06 上海市机械施工集团有限公司 一种异形构件测量定位装置及方法
CN116002039A (zh) * 2023-02-09 2023-04-25 北京航空航天大学 一种壁板预装配可重构柔性型架
CN116002039B (zh) * 2023-02-09 2023-08-29 北京航空航天大学 一种壁板预装配可重构柔性型架
CN115890547A (zh) * 2023-02-28 2023-04-04 中航成飞民用飞机有限责任公司 大飞机驾驶舱多段组件对合集成用组对工装及施工方法
CN115890547B (zh) * 2023-02-28 2023-05-12 中航成飞民用飞机有限责任公司 大飞机驾驶舱多段组件对合集成用组对工装及施工方法
CN117655752A (zh) * 2024-01-31 2024-03-08 埃瑞泰克斯(上海)机械制造有限公司 旋转定位系统及使用方法

Also Published As

Publication number Publication date
CN113245813B (zh) 2021-10-01
CN113245813A (zh) 2021-08-13
US20230391474A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2023284222A1 (zh) 一种用于飞机快速装配的自定位装配系统及方法
CN110056374B (zh) 一种变截面隧道的施工装置及施工方法
CN204960296U (zh) 一种可调型钢模板组件
CN110206144B (zh) 一种钢骨柱梁柱节点的施工方法
CN105773004B (zh) 钢结构桥梁制造的柔性装备及其拆装方法
CN109779247A (zh) 钢柱包角的模板支设装置及施工方法
CN113668849A (zh) 一种后浇带浇筑设备及其施工方法
CN209908521U (zh) 一种变截面隧道的施工装置
CN214739894U (zh) 一种承载式金属模块化梁模板装置及系统
CN215291390U (zh) 一种带拼接结构的铝合金模板
CN110118014B (zh) 一种免外脚手架的外墙模板体系及其施工方法
CN212689586U (zh) 一种装配式叠合剪力墙模板的预埋螺杆
CN103216087B (zh) 一种双向自承式建筑模板系统
CN205702936U (zh) 钢结构桥梁制造的柔性装备
CN105625708A (zh) 一种建筑用铝木复合模板体系
CN111411770A (zh) 一种单元式胎架滑移支撑架
CN206128611U (zh) 一种用于超高层集成施工平台或模架的定位夹紧装置
CN107201825A (zh) 一种模块化液压爬模上部架体及其安装方法
CN110803664A (zh) 一种可减小变形的铝模板拆卸装置及拆卸方法
CN116220361B (zh) 一种超大环形下挂帷幕的施工方法
CN220889461U (zh) 水利工程闸墩门槽定型钢模板
CN217400331U (zh) 一种飘窗板定型化模架
CN217729733U (zh) 一种复合材料长桁工装以及使用该工装的共固化系统
CN217975359U (zh) 一种铝合金模板加固装置
CN220080913U (zh) 一种建筑结构梁加固装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949994

Country of ref document: EP

Kind code of ref document: A1