WO2023276320A1 - Motor control device and electric pump device - Google Patents

Motor control device and electric pump device Download PDF

Info

Publication number
WO2023276320A1
WO2023276320A1 PCT/JP2022/012010 JP2022012010W WO2023276320A1 WO 2023276320 A1 WO2023276320 A1 WO 2023276320A1 JP 2022012010 W JP2022012010 W JP 2022012010W WO 2023276320 A1 WO2023276320 A1 WO 2023276320A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
motor
voltage
change signal
Prior art date
Application number
PCT/JP2022/012010
Other languages
French (fr)
Japanese (ja)
Inventor
英生 岸田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2023276320A1 publication Critical patent/WO2023276320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation

Definitions

  • the present invention relates to a motor control device and an electric pump device.
  • the high-frequency voltage application method has been known as one of the sensorless vector control technologies for motors.
  • the HFI technique is a technique for estimating the rotational position of a motor based on a response current obtained by applying a high-frequency voltage having a frequency higher than that of the driving voltage of the motor to the motor.
  • Patent Document 1 discloses a method of estimating the rotational position of a motor using HFI technology.
  • the method of Patent Document 1 includes steps of supplying a driving voltage superimposed with a high-frequency voltage to a stationary portion of a motor, extracting a predetermined frequency component from the current flowing in the stationary portion as an extracted current, extracting current and extracting current. obtaining a composite signal relating to the amplitude of the extracted current by calculating the sum of squares of the phase-shifted current and the phase-shifted current obtained by shifting the phase of ⁇ /2, and obtaining the rotational position of the rotating part based on the composite signal and have
  • HFI technology is a technology developed on the premise of performing sensorless vector control.
  • a sensorless 120-degree energization method is used as a control method for motors for in-vehicle use, home appliance use, or industrial use.
  • the sensorless 120-degree energization method there is no need to perform coordinate conversion calculations required for sensorless vector control, so an inexpensive control circuit with low calculation capability can be used. Therefore, there is a demand for the development of a motor control technology that applies the HFI technology to the sensorless 120-degree energization method and allows the use of a less expensive control circuit.
  • One aspect of the motor control device of the present invention is a motor control device that controls a three-phase motor having saliency by a sensorless 120-degree energization method, wherein the DC power supply voltage is converted into a three-phase AC voltage to convert the three-phase A drive circuit for supplying power to the motor, a current detection unit for detecting the current flowing through the three-phase motor, and an energization pattern of the three-phase motor that is switched at intervals of 60 degrees and has a frequency higher than the frequency of the three-phase AC voltage.
  • a control unit that outputs to the drive circuit a switching control signal for supplying the three-phase AC voltage superimposed with a high-frequency voltage having a three-phase AC voltage to the three-phase motor;
  • An inductance change signal correlated with a change in inductance is generated based on the detected current, and the switching timing of the energization pattern is controlled based on the inductance change signal.
  • One aspect of the electric pump device of the present invention is a three-phase motor having saliency, and a pump positioned on one side in the axial direction of the rotation shaft of the three-phase motor and driven by the three-phase motor via the rotation shaft. and the motor control device of the above aspect for controlling the three-phase motor by a sensorless 120-degree energization method.
  • a motor control device and an electric pump device that can control a motor by a sensorless 120-degree energization method that applies HFI technology and that can use a less expensive control circuit.
  • FIG. 1 is a block diagram schematically showing an electric pump device 1 including a motor control device 10 according to the first embodiment of the invention.
  • FIG. 2 is a diagram showing an example of six energization patterns used in the sensorless 120-degree energization method.
  • FIG. 3 is a functional block diagram showing each function of the control unit 13 of the first embodiment by blocks.
  • FIG. 4 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, and the energization pattern.
  • FIG. 5 is a block diagram schematically showing an electric pump device 2 having a motor control device 10A according to a second embodiment of the invention.
  • FIG. 6 is a functional block diagram showing each function of the control unit 13A according to the second embodiment.
  • FIG. 7 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, the bus line inductance change signal Zb, and the energization pattern.
  • FIG. 1 is a block diagram schematically showing an electric pump device 1 including a motor control device 10 according to the first embodiment of the invention.
  • the electric pump device 1 includes a motor control device 10 and an electric pump 40 .
  • Electric pump 40 includes three-phase motor 20 and pump 30 .
  • the electric pump device 1 is a device that supplies cooling oil F to a drive motor mounted on a hybrid vehicle.
  • the three-phase motor 20 has saliency.
  • the three-phase motor 20 is a sensorless motor that does not have a position sensor such as a hall sensor.
  • the three-phase motor 20 is an inner rotor type three-phase brushless DC motor.
  • the three-phase motor 20 has a shaft 21 that is a rotating shaft, a U-phase terminal 22u, a V-phase terminal 22v, and a W-phase terminal 22w.
  • the three-phase motor 20 has a motor housing, and a rotor and a stator housed in the motor housing.
  • the rotor is a rotating body that is rotatably supported by bearing components inside the motor housing.
  • the stator is fixed inside the motor housing so as to surround the outer peripheral surface of the rotor, and generates an electromagnetic force necessary to rotate the rotor.
  • the shaft 21 is a shaft-shaped body coaxially joined to the rotor while axially penetrating the radially inner side of the rotor.
  • the U-phase terminal 22u, the V-phase terminal 22v, and the W-phase terminal 22w are metal terminals exposed from the surface of the motor housing. Although details will be described later, the U-phase terminal 22u, the V-phase terminal 22v, and the W-phase terminal 22w are electrically connected to the drive circuit 11 of the motor control device 10, respectively.
  • the three-phase motor 20 has three-phase coils (not shown).
  • a three-phase coil includes a U-phase coil, a V-phase coil, and a W-phase coil.
  • a U-phase coil, a V-phase coil, and a W-phase coil are exciting coils provided in the stator, respectively.
  • the U-phase coil, the V-phase coil, and the W-phase coil are delta-connected or star-connected inside the three-phase motor 20 .
  • the pump 30 is located on one axial side of the shaft 21 of the three-phase motor 20 and is driven by the three-phase motor 20 via the shaft 21 . As the pump 30 is driven by the three-phase motor 20, the pump 30 discharges the cooling oil F as a fluid.
  • the pump 30 has an oil inlet 31 and an oil outlet 32 .
  • the cooling oil F is sucked into the pump 30 through the oil inlet 31 and then discharged out of the pump 30 through the oil outlet 32 .
  • the electric pump 40 is configured by connecting the pump 30 and the three-phase motor 20 side by side in the axial direction of the shaft 21 .
  • the motor control device 10 is a device that controls a three-phase motor 20 having saliency using a sensorless 120-degree energization method.
  • the motor control device 10 controls the rotation speed of the three-phase motor 20 based on a command signal VC output from a host control device (not shown).
  • the host controller is an in-vehicle ECU (Electronic Control Unit) mounted on a hybrid vehicle.
  • the command signal VC may be a rotation speed command signal that instructs the rotation speed of the three-phase motor 20 or a voltage command signal that instructs the voltage of the three-phase motor 20 .
  • the motor control device 10 includes a drive circuit 11, a U-phase current sensor 12u, a V-phase current sensor 12v, a W-phase current sensor 12w, a control section 13, and a storage section .
  • the drive circuit 11 is a circuit that converts the DC power supply voltage VM into a three-phase AC voltage and supplies it to the three-phase motor 20 .
  • the drive circuit 11 converts the DC power supply voltage VM supplied from the DC power supply 200 into a three-phase AC voltage and outputs the three-phase AC voltage to the three-phase motor 20 .
  • the DC power supply 200 is one of a plurality of batteries mounted on a hybrid vehicle, and supplies a 12V DC power supply voltage VM to a 12V vehicle-mounted system, for example.
  • the drive circuit 11 includes a U-phase upper arm switch QUH, a V-phase upper arm switch QVH , a W-phase upper arm switch QWH , a U-phase lower arm switch QUL , and a V-phase lower arm switch QVL . and a W-phase lower arm switch QWL .
  • Each arm switch in this embodiment is, for example, an N-channel MOS-FET.
  • the drain terminal of U-phase upper arm switch QUH, the drain terminal of V-phase upper arm switch QVH , and the drain terminal of W-phase upper arm switch QWH are electrically connected to the positive terminal of DC power supply 200, respectively.
  • the source terminal of the U-phase lower arm switch QUL , the source terminal of the V-phase lower arm switch QVL , and the source terminal of the W-phase lower arm switch QWL are electrically connected to the negative terminal of the DC power supply 200, respectively. be done.
  • a negative terminal of the DC power supply 200 is electrically connected to the in-vehicle ground.
  • the source terminal of the U-phase upper arm switch QUH is electrically connected to the U-phase terminal 22u of the three-phase motor 20 and the drain terminal of the U-phase lower arm switch QUL .
  • the source terminal of the V-phase upper arm switch QVH is electrically connected to the V-phase terminal 22v of the three-phase motor 20 and the drain terminal of the V-phase lower arm switch QVL .
  • the source terminal of the W-phase upper arm switch QWH is electrically connected to the W-phase terminal 22w of the three-phase motor 20 and the drain terminal of the W-phase lower arm switch QWL .
  • a gate terminal of the U-phase upper arm switch QUH, a gate terminal of the V-phase upper arm switch QVH , and a gate terminal of the W-phase upper arm switch QWH are electrically connected to the control unit 13, respectively.
  • the gate terminal of the U-phase lower arm switch QUL , the gate terminal of the V-phase lower arm switch QVL , and the gate terminal of the W-phase lower arm switch QWL are also electrically connected to the control unit 13. be.
  • the drive circuit 11 is configured by a three-phase full bridge circuit having three upper arm switches and three lower arm switches.
  • the drive circuit 11 configured as described above converts the DC power supply voltage VM supplied from the DC power supply 200 into a three-phase AC voltage by controlling the switching of each arm switch by the control unit 13 to drive the three-phase motor. 20.
  • a sensorless 120-degree energization method is used as the energization method for the three-phase motor 20 .
  • switching of each arm switch is controlled based on the energization pattern shown in FIG.
  • the energization pattern of the sensorless 120-degree energization method includes six energization patterns PA1, PA2, PA3, PA4, PA5 and PA6.
  • PA1, PA2, PA3, PA4, PA5 and PA6 included in FIG. 2
  • the U-phase upper arm switch QUH and the W-phase lower arm switch QWL are controlled to be ON, and the remaining arm switches are controlled to be OFF.
  • the U-phase upper arm switch QUH is switching-controlled at a predetermined switching duty ratio.
  • the V-phase upper arm switch QVH and the W-phase lower arm switch QWL are controlled to be ON, and the remaining arm switches are controlled to be OFF.
  • the V-phase upper arm switch QVH is switching-controlled at a predetermined switching duty ratio.
  • the V-phase upper arm switch QVH and the U-phase lower arm switch QUL are controlled to be ON, and the remaining arm switches are controlled to be OFF.
  • the V-phase upper arm switch QVH is switching-controlled at a predetermined switching duty ratio.
  • the W-phase upper arm switch QWH and the U-phase lower arm switch QUL are controlled to be ON, and the remaining arm switches are controlled to be OFF.
  • only the W-phase upper arm switch QWH is switching-controlled at a predetermined switching duty ratio.
  • the W-phase upper arm switch QWH and the V-phase lower arm switch QVL are controlled to be ON, and the remaining arm switches are controlled to be OFF.
  • the W-phase upper arm switch QWH is switching-controlled at a predetermined switching duty ratio.
  • the U-phase upper arm switch QUH and the V-phase lower arm switch QVL are controlled to be ON, and the remaining arm switches are controlled to be OFF.
  • the U-phase upper arm switch QUH is switching-controlled at a predetermined switching duty ratio.
  • a rotating magnetic field that rotates the shaft 21 of the three-phase motor 20 by 360 degrees in a fixed direction is generated by sequentially switching the six energization patterns as described above at intervals of 60 degrees in electrical angle.
  • the shaft 21 of the three-phase motor 20 rotates in a certain direction by an electrical angle of 60 degrees during the period in which the switching control of each arm switch is performed in one energization pattern.
  • the speed at which the energization pattern is switched is called the commutation frequency Fs.
  • the unit of the commutation frequency Fs is "Hz”.
  • the current flowing through the three-phase motor 20 is detected while supplying the three-phase AC voltage superimposed with the high-frequency voltage to the three-phase motor 20 .
  • the detected current includes a high-frequency current having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage.
  • an inductance change signal correlated with a change in inductance is generated based on the detected current including the high-frequency current as described above, and the switching timing of the energization pattern is controlled based on the generated inductance change signal.
  • the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w are current detection units that detect the current flowing through the three-phase motor 20.
  • the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w may be collectively referred to as "current detector 12".
  • the current detector 12 detects currents flowing through the three phases of the three-phase motor 20 .
  • the U-phase current sensor 12u detects a U-phase line current and outputs the detection result to the control unit 13 as a U-phase detection current Iu.
  • the V-phase current sensor 12v detects a V-phase line current and outputs the detection result to the control unit 13 as a V-phase detection current Iv.
  • the W-phase current sensor 12w detects a W-phase line current and outputs the detection result to the control unit 13 as a W-phase detection current Iw.
  • the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w are CT-type current sensors.
  • the control unit 13 is, for example, a microprocessor such as an MCU (Microcontroller Unit).
  • a command signal VC output from a host controller (not shown) is input to the control unit 13 .
  • the controller 13 includes a U-phase detection current Iu output from the U-phase current sensor 12u, a V-phase detection current Iv output from the V-phase current sensor 12v, and a W-phase detection current output from the W-phase current sensor 12w.
  • a phase detection current Iw is input.
  • the control unit 13 is communicably connected to the storage unit 14 via a communication bus (not shown).
  • the control unit 13 supplies the three-phase motor 20 with a three-phase AC voltage in which the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees and a high-frequency voltage having a higher frequency than the frequency of the three-phase AC voltage is superimposed.
  • the switching control signal obtained is output to the drive circuit 11 .
  • the switching control signal is a PWM (Pulse Width Modulation) signal supplied to the gate terminal of each arm switch provided in the drive circuit 11 .
  • the control unit 13 generates an inductance change signal that correlates with the change in inductance based on the detected current obtained from the current detection unit 12, and controls the switching timing of the energization pattern based on the inductance change signal. Based on the three-phase detection currents (the U-phase detection current Iu, the V-phase detection current Iv, and the W-phase detection current Iw) obtained from the current detection unit 12, the control unit 13 detects three-phase currents correlated with changes in the three-phase inductances. , and controls the switching timing of the energization pattern based on the three-phase inductance change signals.
  • the detected currents Iu, Iv, and Iw detected by the current detector 12 include high-frequency currents having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage.
  • the control unit 13 extracts, as extracted currents, frequency components having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the detected currents Iu, Iv, and Iw obtained from the current detection unit 12, and extracts extracted currents and , and a phase-shifted current obtained by shifting the phase of the extracted current by ⁇ /2 to generate an inductance change signal.
  • the control unit 13 acquires the phase-shifted current by performing a Hilbert transform on the extracted current. In this embodiment, the Hilbert transform is performed by an FIR filter.
  • the storage unit 14 is used as a non-volatile memory for storing programs and various setting data necessary for the control unit 13 to execute various processes, and as a temporary storage destination for data when the control unit 13 executes various processes. and volatile memory.
  • the nonvolatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory.
  • Volatile memory is, for example, RAM (Random Access Memory).
  • the storage unit 14 stores various data necessary to control the three-phase motor 20 by the sensorless 120-degree energization method. For example, the storage unit 14 pre-stores the energization pattern shown in FIG. As shown in FIG. 1 , the storage unit 14 may be provided outside the control unit 13 or may be built in the control unit 13 .
  • FIG. 3 is a functional block diagram showing each function of the control unit 13 in blocks.
  • the control section 13 has an inductance change signal generation section 50 , an energization pattern setting section 60 , a high frequency voltage application section 70 , an addition section 80 and a PWM conversion section 90 .
  • Some or all of the inductance change signal generation unit 50, the energization pattern setting unit 60, the high frequency voltage application unit 70, the addition unit 80, and the PWM conversion unit 90 are implemented by software that operates on the processor core incorporated in the control unit 13. Alternatively, it may be implemented in hardware including analog and digital circuitry.
  • the inductance change signal generation unit 50 correlates the three-phase inductance changes based on the three-phase detection currents (the U-phase detection current Iu, the V-phase detection current Iv, and the W-phase detection current Iw) obtained from the current detection unit 12.
  • a three-phase inductance change signal is generated.
  • the inductance change signal generation unit 50 includes a first BPF (Band Path Filter) 51, a second BPF 52, a third BPF 53, a first Hilbert transform unit 54, a second Hilbert transform unit 55, It has a third Hilbert transform unit 56 , a first root-sum-of-squares operation unit 57 , a second root-sum-square operation unit 58 , and a third root-sum-square operation unit 59 .
  • the first BPF 51 extracts, as a U-phase extraction current Iuh, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the U-phase detection current Iu obtained from the U-phase current sensor 12u.
  • the U-phase extracted current Iuh is output to the first Hilbert transform section 54 .
  • the second BPF 52 extracts, as a V-phase extraction current Ivh, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the V-phase detection current Iv obtained from the V-phase current sensor 12v.
  • the V-phase extracted current Ivh is output to the second Hilbert transform section 55 .
  • the third BPF 53 extracts, as a W-phase extraction current Iwh, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the W-phase detection current Iw obtained from the W-phase current sensor 12w.
  • the W-phase extracted current Iwh is output to the third Hilbert transform section 56 .
  • the first Hilbert transform unit 54 transforms the U-phase extracted current Iuh into a complex analytic signal having a real part Xu and an imaginary part Yu.
  • the real part Xu is the same as the U-phase extraction current Iuh.
  • the imaginary part Yu is obtained by the Hilbert transform performed by the FIR filter.
  • the imaginary part Yu is a phase-shifted current obtained by shifting the phase of the U-phase extracted current Iuh by ⁇ /2.
  • the first Hilbert transform unit 54 outputs the real part Xu and the imaginary part Yu to the first root-sum-of-squares operation unit 57 .
  • the second Hilbert transform unit 55 transforms the V-phase extracted current Ivh into a complex analytic signal having a real part Xv and an imaginary part Yv.
  • the real part Xv is the same as the V-phase extraction current Ivh.
  • the imaginary part Yv is obtained by the Hilbert transform performed by the FIR filter.
  • the imaginary part Yv is a phase-shifted current obtained by shifting the phase of the V-phase extracted current Ivh by ⁇ /2.
  • the second Hilbert transform unit 55 outputs the real part Xv and the imaginary part Yv to the second root-sum-of-squares operation unit 58 .
  • the third Hilbert transform unit 56 transforms the W-phase extracted current Iwh into a complex analytic signal having a real part Xw and an imaginary part Yw.
  • the real part Xw is the same as the W-phase extraction current Iwh.
  • the imaginary part Yw is obtained by the Hilbert transform performed by the FIR filter.
  • the imaginary part Yw is a phase-shifted current obtained by shifting the phase of the W-phase extracted current Iwh by ⁇ /2.
  • the third Hilbert transform unit 56 outputs the real part Xw and the imaginary part Yw to the third root-sum-of-squares operation unit 59 .
  • the first root-sum-of-squares calculator 57 calculates the root-of-square sum of the real part Xw and the imaginary part Yw obtained from the first Hilbert transform part 54, thereby obtaining A change signal Zu is calculated.
  • the first square-sum-square calculator 57 calculates the square-root sum of the squares of the U-phase extracted current Iuh and the phase-shifted current obtained by shifting the phase of the U-phase extracted current Iuh by ⁇ /2.
  • a U-phase inductance change signal Zu is calculated.
  • the first sum-of-squares-square-root calculator 57 outputs the U-phase inductance change signal Zu to the energization pattern setting unit 60 .
  • a second root-sum-of-squares calculator 58 calculates the root-sum-square of the real part Xv and the imaginary part Yv obtained from the second Hilbert transform part 55, thereby obtaining A change signal Zv is calculated.
  • the second root-sum-of-squares calculator 58 calculates the square root of the sum of squares of the V-phase extracted current Ivh and the phase-shifted current obtained by shifting the phase of the V-phase extracted current Ivh by ⁇ /2.
  • a V-phase inductance change signal Zv is calculated.
  • Second sum-of-squares square root calculator 58 outputs V-phase inductance change signal Zv to energization pattern setting unit 60 .
  • a third root-sum-square calculator 59 calculates the root-sum-square of the real part Xw and the imaginary part Yw obtained from the third Hilbert transform part 56, thereby obtaining a W-phase inductance correlated with a change in the W-phase inductance.
  • a change signal Zw is calculated.
  • the third root-sum-square calculator 59 calculates the root-sum-square of the W-phase extracted current Iwh and the phase-shifted current obtained by shifting the phase of the W-phase extracted current Iwh by ⁇ /2.
  • a W-phase inductance change signal Zw is calculated.
  • the third root-sum-of-squares calculator 59 outputs the W-phase inductance change signal Zw to the energization pattern setting unit 60 .
  • the energization pattern setting unit 60 switches the energization pattern based on the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw.
  • FIG. 4 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, and the energization pattern.
  • the energization pattern setting unit 60 compares the U-phase inductance change signal Zu with a predetermined first threshold value Zuth, and sets the energization pattern at the timing when the U-phase inductance change signal Zu becomes equal to or greater than the first threshold value Zuth. switch.
  • the energization pattern setting unit 60 switches the energization pattern at times t1, t4, t7, t10, and t13.
  • times t1, t4, t7, t10, and t13 are referred to as first energization pattern switching timings.
  • the first threshold value Zuth which is the value of the U-phase inductance change signal Zu at the first energization pattern switching timing, needs to be acquired in advance through experiments, simulations, or the like.
  • the energization pattern setting unit 60 compares the V-phase inductance change signal Zv with a predetermined second threshold value Zvth, and switches the energization pattern at the timing when the V-phase inductance change signal Zv becomes equal to or greater than the second threshold value Zvth.
  • the energization pattern setting unit 60 switches the energization pattern at times t3, t6, t9, and t12.
  • times t3, t6, t9, and t12 are referred to as second energization pattern switching timings.
  • the second threshold value Zvth which is the value of the V-phase inductance change signal Zv at the second energization pattern switching timing, needs to be obtained in advance through experiments, simulations, or the like.
  • the energization pattern setting unit 60 compares the W-phase inductance change signal Zw with a predetermined third threshold value Zwth, and switches the energization pattern at the timing when the W-phase inductance change signal Zw becomes equal to or greater than the third threshold value Zwth.
  • the energization pattern setting unit 60 switches the energization pattern at times t2, t5, t8, and t11.
  • times t2, t5, t8, and t11 are referred to as third energization pattern switching timings.
  • the third threshold value Zwth which is the value of the W-phase inductance change signal Zw at the third energization pattern switching timing, needs to be acquired in advance through experiments, simulations, or the like.
  • the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw have a phase difference of 120 electrical degrees from each other. Looking at the total of the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw, one energization switching timing appears at intervals of 60 electrical degrees.
  • the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA2 at the time t2 when the third threshold value Zwth, which is the third energization switching timing, appears after rotating by 60 electrical degrees from the time t1.
  • the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA3 at the time t3 when the second threshold value Zvth, which is the second energization switching timing, appears after rotating by 60 electrical degrees from the time t2.
  • the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA4 at the time t4 when the first threshold value Zuth, which is the first energization switching timing after rotating by 60 electrical degrees from the time t3, appears.
  • the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA5 at the time t5 when the third threshold value Zwth, which is the third energization switching timing after rotating by 60 electrical degrees from the time t4, appears.
  • the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA6 at the time t6 when the second threshold value Zvth, which is the second energization switching timing after rotating by 60 electrical degrees from the time t5, appears.
  • the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA1 at time t7 when the first threshold value Zuth, which is the first energization switching timing, appears after rotating by 60 electrical degrees from time t6. Thereafter, the energization pattern setting unit 60 repeats the same operation as the operation from time t2 to time t7.
  • the above operation is the operation when the U-phase coil, the V-phase coil, and the W-phase coil are delta-connected.
  • the energization pattern may be switched at a timing earlier than the energization switching timing.
  • the energization pattern setting unit 60 outputs the command voltage indicated by the command signal VC to the addition unit 80 while switching the energization pattern.
  • the command signal VC is a rotation speed command signal that indicates the rotation speed
  • a voltage conversion unit that converts the indicated rotation speed into a command voltage may be provided before the energization pattern setting unit 60 .
  • the high-frequency voltage applying section 70 outputs to the adding section 80 a high-frequency voltage having a frequency higher than that of the three-phase AC voltage.
  • the addition unit 80 adds the command voltage from the energization pattern setting unit 60 and the high frequency voltage from the high frequency voltage application unit 70 and outputs the command voltage superimposed with the high frequency voltage to the PWM conversion unit 90 .
  • the PWM converter 90 outputs a switching control signal to the drive circuit 11 based on the command voltage superimposed with the high frequency voltage.
  • the PWM converter 90 when the energization pattern is switched to the energization pattern PA2 at time t2, the PWM converter 90 turns on the V-phase upper arm switch QVH and the W-phase lower arm switch QWL . At the same time, a switching control signal for turning off the remaining arm switches is output to the drive circuit 11 (see FIG. 2).
  • the PWM converter 90 performs switching control of only the V-phase upper arm switch QVH with a switching duty ratio corresponding to the command voltage superimposed with the high-frequency voltage.
  • a three-phase AC voltage superimposed with a high-frequency voltage is supplied from the drive circuit 11 to the three-phase motor 20 .
  • the energization pattern of the sensorless 120-degree energization method in the present embodiment is merely an example, and can be changed as appropriate according to required specifications and the like.
  • control unit 13 switches the energization pattern at intervals of 60 degrees in synchronization with the energization switching timing obtained from the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw.
  • the three-phase motor 20 is controlled by a sensorless 120-degree energization method.
  • the motor control device 10 in the first embodiment includes the current detection unit 12 that detects the current flowing through the three-phase motor 20, the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees, and three A control unit 13 that outputs to the drive circuit 11 a switching control signal for supplying a three-phase AC voltage superimposed with a high-frequency voltage having a frequency higher than that of the phase AC voltage to the three-phase motor 20 .
  • the control unit 13 generates an inductance change signal correlated with a change in inductance based on the detected current obtained from the current detection unit 12, and controls switching timing of the energization pattern based on the generated inductance change signal.
  • the motor control device 10 can control the three-phase motor 20 by the sensorless 120-degree energization method to which the HFI technology is applied, and can use a more inexpensive control circuit (control unit 13). and an electric pump device 1 are provided.
  • the current detection unit 12 detects currents flowing through the three phases of the three-phase motor 20, and the control unit 13 detects the three-phase currents obtained from the current detection unit 12. Based on this, a three-phase inductance change signal that correlates with the three-phase inductance change is generated, and the switching timing of the energization pattern is controlled based on the three-phase inductance change signal. As a result, the switching timing of the energization pattern is controlled based on the energization switching timing obtained at intervals of 60 degrees from the three-phase inductance change signals, so that the energization pattern can be switched at intervals of 60 degrees with high accuracy.
  • FIG. 5 is a block diagram schematically showing an electric pump device 2 having a motor control device 10A according to a second embodiment of the invention.
  • FIG. 6 is a functional block diagram showing each function of the control unit 13A according to the second embodiment. 5 and 6, among the components of the electric pump device 2 in the second embodiment, the same components as the components of the electric pump device 1 in the first embodiment are denoted by the same reference numerals.
  • constituent elements of the electric pump device 2 in the second embodiment constituent elements that are different from the constituent elements of the electric pump device 1 in the first embodiment will be explained, and explanations of the same constituent elements will be omitted.
  • the electric pump device 2 includes a motor control device 10A and an electric pump 40.
  • the motor control device 10A includes a shunt resistor 15 as a current detection section instead of the current detection section 12 of the first embodiment. Further, the motor control device 10A includes a control section 13A instead of the control section 13 of the first embodiment.
  • the shunt resistor 15 is a current detector that detects current flowing through the three-phase motor 20 .
  • the shunt resistor 15 detects current flowing through the power supply line of the drive circuit 11 via the three-phase motor 20 .
  • the power supply line of the drive circuit 11 may be called "bus line”.
  • One end of the shunt resistor 15 is electrically connected to each of the source terminals of the U-phase lower arm switch QUL , the V-phase lower arm switch QVL , and the W-phase lower arm switch QWL .
  • the other end of shunt resistor 15 is electrically connected to the negative terminal of DC power supply 200 .
  • one end of the shunt resistor 15 is electrically connected to the controller 13A.
  • the current flowing through the bus line flows through the shunt resistor 15 into the vehicle interior ground. Therefore, a voltage appears across the terminals of the shunt resistor 15 in proportion to the current flowing through the bus line.
  • a voltage across the terminals of the shunt resistor 15 is supplied to the controller 13A as a bus line detection current Ib indicating the detection result of the current flowing through the bus line.
  • a resistance voltage dividing circuit may be provided between one end of the shunt resistor 15 and the control section 13A, if necessary.
  • the control unit 13A is, for example, a microprocessor such as an MCU.
  • a command signal VC output from a host controller (not shown) is input to the controller 13A. Further, the voltage across the terminals of the shunt resistor 15 is input to the control section 13A as the bus line detection current Ib.
  • the control unit 13A is communicably connected to the storage unit 14 via a communication bus (not shown).
  • the control unit 13A supplies the three-phase motor 20 with a three-phase AC voltage in which the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees and a high-frequency voltage having a higher frequency than the frequency of the three-phase AC voltage is superimposed.
  • the switching control signal obtained is output to the drive circuit 11 .
  • the control unit 13A generates an inductance change signal correlated with a change in inductance of the bus line based on the bus line detection current Ib obtained from the shunt resistor 15, and determines switching timing of the energization pattern based on the generated inductance change signal. to control.
  • the bus line detection current Ib detected by the shunt resistor 15 contains a high frequency current having the same frequency as the high frequency voltage superimposed on the three-phase AC voltage.
  • the control unit 13A extracts, as an extracted current, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the bus line detection current Ib obtained from the shunt resistor 15, and extracts the extracted current and the extracted current.
  • An inductance change signal is generated by calculating the sum of squares with the phase-shifted current obtained by shifting the phase of the current by ⁇ /2.
  • 13 A of control parts acquire a phase shift current by performing Hilbert transform with respect to an extraction current. In this embodiment, the Hilbert transform is performed by an FIR filter.
  • control unit 13A has an inductance change signal generation unit 50A and an energization pattern setting unit 60A instead of the inductance change signal generation unit 50 and the energization pattern setting unit 60 of the first embodiment.
  • the inductance change signal generation unit 50A generates a bus line inductance change signal that correlates with the change in inductance of the bus line based on the bus line detection current Ib obtained from the shunt resistor 15 .
  • the inductance change signal generation unit 50A has a BPF 51A, a Hilbert transform unit 54A, and a sum-of-squares square root operation unit 57A.
  • the BPF 51A extracts a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the bus line detection current Ib obtained from the shunt resistor 15 as a bus line extraction current Ibh.
  • Ibh is output to the Hilbert transform unit 54A.
  • the Hilbert transform unit 54A transforms the bus line extracted current Ibh into a complex analytic signal having a real part Xb and an imaginary part Yb.
  • the real part Xb is the same as the bus line extraction current Ibh.
  • the imaginary part Yb is obtained by the Hilbert transform performed by the FIR filter.
  • the imaginary part Yb is a phase-shifted current obtained by shifting the phase of the bus line extracted current Ibh by ⁇ /2.
  • the Hilbert transform unit 54A outputs the real part Xb and the imaginary part Yb to the root-sum-of-squares operation unit 57A.
  • Root-sum-of-square calculator 57A calculates the square root of the sum of squares of real part Xb and imaginary part Yb obtained from Hilbert transform part 54A, thereby calculating bus line inductance change signal Zb that correlates with the change in inductance of the bus line. .
  • the square-sum-square calculator 57A calculates the square-root sum of the squares of the bus line extracted current Ibh and the phase-shifted current obtained by shifting the phase of the bus line extracted current Ibh by ⁇ /2 to obtain the bus line inductance.
  • a change signal Zb is calculated.
  • Root-sum-of-squares operation unit 57A outputs bus line inductance change signal Zb to energization pattern setting unit 60A.
  • the energization pattern setting unit 60A switches the energization pattern based on the bus line inductance change signal Zb.
  • FIG. 7 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, the bus line inductance change signal Zb, and the energization pattern.
  • the energization pattern setting unit 60A compares the bus line inductance change signal Zb with a predetermined fourth threshold value Zbth, and sets the energization pattern at the timing when the bus line inductance change signal Zb becomes equal to or greater than the fourth threshold value Zbth. switch.
  • the energization pattern setting unit 60A switches the energization pattern each from time t1 to time t13.
  • the period from time t1 to time t13 will be referred to as energization pattern switching timing.
  • the fourth threshold value Zbth which is the value of the bus line inductance change signal Zb at the energization pattern switching timing, needs to be acquired in advance through experiments, simulations, or the like.
  • one energization switching timing appears in the bus line inductance change signal Zb at an electrical angle interval of 60 degrees.
  • the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA2 at the time t2 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t1, appears.
  • the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA3 at the time t3 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t2, appears.
  • the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA4 at the time t4 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t3, appears.
  • the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA5 at time t5 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from time t4, appears.
  • the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA6 at the time t6 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t5, appears.
  • the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA1 at the time t7 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t6, appears. Thereafter, the energization pattern setting unit 60A repeats the same operation as the operation from time t2 to time t7.
  • the above operation is the operation when the U-phase coil, the V-phase coil, and the W-phase coil are delta-connected.
  • the energization pattern may be switched at a timing earlier than the energization switching timing.
  • the energization pattern setting unit 60A outputs the command voltage indicated by the command signal VC to the adding unit 80 while switching the energization pattern.
  • the command signal VC is a rotation speed command signal that indicates the rotation speed
  • a voltage for converting the indicated rotation speed into a command voltage is provided in the preceding stage of the energization pattern setting unit 60A.
  • a converter may be provided.
  • the high-frequency voltage applying section 70 outputs to the adding section 80 a high-frequency voltage having a frequency higher than that of the three-phase AC voltage.
  • the addition unit 80 adds the command voltage from the energization pattern setting unit 60 and the high frequency voltage from the high frequency voltage application unit 70 and outputs the command voltage superimposed with the high frequency voltage to the PWM conversion unit 90 .
  • the PWM converter 90 outputs a switching control signal to the drive circuit 11 based on the command voltage superimposed with the high frequency voltage.
  • the PWM converter 90 when the energization pattern is switched to the energization pattern PA2 at time t2, the PWM converter 90 turns on the V-phase upper arm switch QVH and the W-phase lower arm switch QWL . At the same time, a switching control signal for turning off the remaining arm switches is output to the drive circuit 11 (see FIG. 2).
  • the PWM converter 90 performs switching control of only the V-phase upper arm switch QVH with a switching duty ratio corresponding to the command voltage superimposed with the high-frequency voltage.
  • a three-phase AC voltage superimposed with a high-frequency voltage is supplied from the drive circuit 11 to the three-phase motor 20 .
  • the energization pattern of the sensorless 120-degree energization method in the present embodiment is merely an example, and can be changed as appropriate according to required specifications and the like.
  • control unit 13A switches the energization pattern at intervals of 60 degrees in synchronization with the energization switching timing obtained from the bus line inductance change signal Zb, and controls the switching of each arm switch. is controlled by a sensorless 120-degree energization method.
  • the motor control device 10A in the second embodiment includes the shunt resistor 15 that detects the current flowing through the three-phase motor 20, the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees, and three A control unit 13A that outputs to the drive circuit 11 a switching control signal for supplying a three-phase AC voltage superimposed with a high-frequency voltage having a frequency higher than that of the phase AC voltage to the three-phase motor 20.
  • the control unit 13A generates an inductance change signal correlated with a change in inductance based on the detected current obtained from the shunt resistor 15, and controls switching timing of the energization pattern based on the generated inductance change signal.
  • the three-phase motor 20 can be controlled by the sensorless 120-degree energization method to which the HFI technology is applied, and a more inexpensive control circuit (control unit 13A) A motor control device 10A and an electric pump device 2 are provided. Further, as in the first embodiment, in the second embodiment, sensorless synchronous control of the three-phase motor 20 can be performed using an inductance change signal that can acquire the energization switching timing even in the low speed range. Resistant to load fluctuations during phase motor start-up.
  • the shunt resistor 15 detects the current flowing through the power supply line of the drive circuit 11 via the three-phase motor 20, and the control section 13A detects the An inductance change signal correlated with a change in the inductance of the power supply line is generated based on the detected current of the power supply line, and the switching timing of the energization pattern is controlled based on the inductance change signal of the power supply line.
  • the switching timing of the energization pattern is controlled based on the energization switching timing obtained at intervals of 60 degrees from the inductance change signal of the power supply line. Since the energization pattern can be switched by the inductance change signal, the calculation load of the controller 13A can be further reduced as compared with the first embodiment.
  • the present invention is not limited to the above-described embodiments, and each configuration described in this specification can be appropriately combined within a mutually consistent range.
  • the three-phase motor 20 is controlled by the sensorless 120-degree energization method described in the above embodiment, and the rotation speed of the three-phase motor 20 can detect the zero cross point.
  • the three-phase motor 20 may be controlled by a conventional sensorless 120-degree energization method in which the energization pattern is switched based on the detection result of the zero-crossing point after reaching the rotational speed at which the induced voltage is generated.
  • the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w are CT-type current sensors, but the present invention is not limited to this.
  • a shunt resistor provided between the lower arm switch and the ground may be used as a current sensor for detecting the current of each phase.
  • the shunt resistor 15 is used as a current sensor for detecting the current flowing in the power supply line of the drive circuit 11.
  • the present invention is not limited to this, and the shunt resistor 15 is replaced with A CT-type current sensor may also be used.
  • a CT-type current sensor may be provided on the low-voltage power supply line of the drive circuit 11, or a CT-type current sensor may be provided on the high-voltage power supply line of the drive circuit 11. may be provided.
  • an electric pump device that supplies cooling oil F to a drive motor mounted on a hybrid vehicle was exemplified as the electric pump device of the present invention, but the electric pump device of the present invention is not limited to this.
  • the present invention can be applied to an electric pump device for supplying oil to a transmission.
  • the fluid discharged from the electric pump is not limited to oil such as cooling oil.
  • the motor control device of the present invention can be applied not only to control the motor of the electric pump, but also to general applications using the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

One embodiment of a motor control device according to the present invention controls a three-phase motor having saliency through a sensorless 120-degree energization method, and is provided with: a drive circuit for converting a direct-current power supply voltage to three-phase alternating-current voltage and supplying the alternating current voltage to a three-phase motor; a current detection unit for detecting the current flowing through the three-phase motor; and a control unit for outputting to the drive circuit a switching control signal with which the energization pattern of the three-phase motor is switched at 60-degree intervals, and a three-phase alternating-current voltage in which a high-frequency voltage having a higher frequency than the frequency of the three-phase alternating-current voltage has been superposed is supplied to the three-phase motor. The control unit generates an inductance change signal correlated with an inductance change, on the basis of a detected current obtained from the current detection unit, and controls the timing for switching of the energization pattern on the basis of the inductance change signal.

Description

モータ制御装置および電動ポンプ装置Motor control device and electric pump device
 本発明は、モータ制御装置および電動ポンプ装置に関する。 The present invention relates to a motor control device and an electric pump device.
 従来から、モータのセンサレスベクトル制御技術の一つとして、高周波電圧印加法(HFI)が知られている。HFI技術は、モータの駆動電圧の周波数よりも高い周波数を有する高周波電圧をモータに付与することにより得られる応答電流に基づいてモータの回転位置を推定する技術である。 Conventionally, the high-frequency voltage application method (HFI) has been known as one of the sensorless vector control technologies for motors. The HFI technique is a technique for estimating the rotational position of a motor based on a response current obtained by applying a high-frequency voltage having a frequency higher than that of the driving voltage of the motor to the motor.
 特許文献1には、HFI技術を利用してモータの回転位置を推定する方法が開示されている。特許文献1の方法は、高周波電圧が重畳された駆動電圧をモータの静止部に供給する工程と、静止部に流れる電流から所定の周波数成分を抽出電流として抽出する工程と、抽出電流と抽出電流の位相をπ/2だけシフトさせた位相シフト電流との二乗和を算出することにより、抽出電流の振幅に関する合成信号を取得する工程と、合成信号に基づいて回転部の回転位置を取得する工程と、を有する。 Patent Document 1 discloses a method of estimating the rotational position of a motor using HFI technology. The method of Patent Document 1 includes steps of supplying a driving voltage superimposed with a high-frequency voltage to a stationary portion of a motor, extracting a predetermined frequency component from the current flowing in the stationary portion as an extracted current, extracting current and extracting current. obtaining a composite signal relating to the amplitude of the extracted current by calculating the sum of squares of the phase-shifted current and the phase-shifted current obtained by shifting the phase of π/2, and obtaining the rotational position of the rotating part based on the composite signal and have
特開2016-201923号公報JP 2016-201923 A
 HFI技術は、センサレスベクトル制御を行うことを前提として開発された技術である。一方、車載用途、家電用途、或いは産業用途のモータの制御方式としてセンサレス120度通電方式が用いられる場合がある。センサレス120度通電方式では、センサレスベクトル制御で必要な座標変換演算を行う必要がないため、演算能力が低い安価な制御回路を用いることができる。そこで、HFI技術をセンサレス120度通電方式に適用して、より安価な制御回路を用いることができるモータ制御技術の開発が要望されていた。 HFI technology is a technology developed on the premise of performing sensorless vector control. On the other hand, there are cases where a sensorless 120-degree energization method is used as a control method for motors for in-vehicle use, home appliance use, or industrial use. In the sensorless 120-degree energization method, there is no need to perform coordinate conversion calculations required for sensorless vector control, so an inexpensive control circuit with low calculation capability can be used. Therefore, there is a demand for the development of a motor control technology that applies the HFI technology to the sensorless 120-degree energization method and allows the use of a less expensive control circuit.
 本発明のモータ制御装置における一つの態様は、センサレス120度通電方式によって突極性を有する三相モータを制御するモータ制御装置であって、直流電源電圧を三相交流電圧に変換して前記三相モータに供給する駆動回路と、前記三相モータに流れる電流を検出する電流検出部と、前記三相モータの通電パターンが60度間隔で切替えられ、且つ前記三相交流電圧の周波数よりも高い周波数を有する高周波電圧が重畳された前記三相交流電圧が前記三相モータに供給されるスイッチング制御信号を前記駆動回路に出力する制御部と、を備え、前記制御部は、前記電流検出部から得られる検出電流に基づいてインダクタンスの変化と相関するインダクタンス変化信号を生成し、前記インダクタンス変化信号に基づいて前記通電パターンの切替えタイミングを制御する。 One aspect of the motor control device of the present invention is a motor control device that controls a three-phase motor having saliency by a sensorless 120-degree energization method, wherein the DC power supply voltage is converted into a three-phase AC voltage to convert the three-phase A drive circuit for supplying power to the motor, a current detection unit for detecting the current flowing through the three-phase motor, and an energization pattern of the three-phase motor that is switched at intervals of 60 degrees and has a frequency higher than the frequency of the three-phase AC voltage. a control unit that outputs to the drive circuit a switching control signal for supplying the three-phase AC voltage superimposed with a high-frequency voltage having a three-phase AC voltage to the three-phase motor; An inductance change signal correlated with a change in inductance is generated based on the detected current, and the switching timing of the energization pattern is controlled based on the inductance change signal.
 本発明の電動ポンプ装置における一つの態様は、突極性を有する三相モータと、前記三相モータの回転軸の軸方向一方側に位置し、前記三相モータによって前記回転軸を介して駆動されて流体を吐出するポンプと、センサレス120度通電方式によって前記三相モータを制御する上記態様のモータ制御装置と、を備える。 One aspect of the electric pump device of the present invention is a three-phase motor having saliency, and a pump positioned on one side in the axial direction of the rotation shaft of the three-phase motor and driven by the three-phase motor via the rotation shaft. and the motor control device of the above aspect for controlling the three-phase motor by a sensorless 120-degree energization method.
 本発明の上記態様によれば、HFI技術を適用したセンサレス120度通電方式でモータを制御でき、且つより安価な制御回路を用いることができるモータ制御装置及び電動ポンプ装置が提供される。 According to the above aspect of the present invention, there are provided a motor control device and an electric pump device that can control a motor by a sensorless 120-degree energization method that applies HFI technology and that can use a less expensive control circuit.
図1は、本発明の第1実施形態におけるモータ制御装置10を備える電動ポンプ装置1を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing an electric pump device 1 including a motor control device 10 according to the first embodiment of the invention. 図2は、センサレス120度通電方式で使用される6つの通電パターンの一例を示す図である。FIG. 2 is a diagram showing an example of six energization patterns used in the sensorless 120-degree energization method. 図3は、第1実施形態の制御部13が有する各機能をブロックで表す機能ブロック図である。FIG. 3 is a functional block diagram showing each function of the control unit 13 of the first embodiment by blocks. 図4は、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、およびW相インダクタンス変化信号Zwと、通電パターンとの時間的な対応関係を示すタイミングチャートである。FIG. 4 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, and the energization pattern. 図5は、本発明の第2実施形態におけるモータ制御装置10Aを備える電動ポンプ装置2を模式的に示すブロック図である。FIG. 5 is a block diagram schematically showing an electric pump device 2 having a motor control device 10A according to a second embodiment of the invention. 図6は、第2実施形態の制御部13Aが有する各機能をブロックで表す機能ブロック図である。FIG. 6 is a functional block diagram showing each function of the control unit 13A according to the second embodiment. 図7は、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、W相インダクタンス変化信号Zwおよびバスラインインダクタンス変化信号Zbと、通電パターンとの時間的な対応関係を示すタイミングチャートである。FIG. 7 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, the bus line inductance change signal Zb, and the energization pattern.
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
〔第1実施形態〕
 まず、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態におけるモータ制御装置10を備える電動ポンプ装置1を模式的に示すブロック図である。図1に示すように、電動ポンプ装置1は、モータ制御装置10と、電動ポンプ40と、を備える。電動ポンプ40は、三相モータ20と、ポンプ30と、を備える。一例として、電動ポンプ装置1は、ハイブリッド車両に搭載される駆動用モータに冷却オイルFを供給する装置である。
An embodiment of the present invention will be described in detail below with reference to the drawings.
[First Embodiment]
First, a first embodiment of the present invention will be described. FIG. 1 is a block diagram schematically showing an electric pump device 1 including a motor control device 10 according to the first embodiment of the invention. As shown in FIG. 1 , the electric pump device 1 includes a motor control device 10 and an electric pump 40 . Electric pump 40 includes three-phase motor 20 and pump 30 . As an example, the electric pump device 1 is a device that supplies cooling oil F to a drive motor mounted on a hybrid vehicle.
 三相モータ20は、突極性を有する。三相モータ20は、ホールセンサ等の位置センサを有しないセンサレスモータである。一例として、三相モータ20は、インナーロータ型の三相ブラシレスDCモータである。三相モータ20は、回転軸であるシャフト21と、U相端子22uと、V相端子22vと、W相端子22wと、を有する。 The three-phase motor 20 has saliency. The three-phase motor 20 is a sensorless motor that does not have a position sensor such as a hall sensor. As an example, the three-phase motor 20 is an inner rotor type three-phase brushless DC motor. The three-phase motor 20 has a shaft 21 that is a rotating shaft, a U-phase terminal 22u, a V-phase terminal 22v, and a W-phase terminal 22w.
 また、図1では図示を省略するが、三相モータ20は、モータハウジングと、モータハウジングに収容されたロータ及びステータとを有する。ロータは、モータハウジングの内部において、軸受け部品によって回転可能に支持される回転体である。ステータは、モータハウジングの内部において、ロータの外周面を囲った状態で固定され、ロータを回転させるのに必要な電磁力を発生させる。 Although not shown in FIG. 1, the three-phase motor 20 has a motor housing, and a rotor and a stator housed in the motor housing. The rotor is a rotating body that is rotatably supported by bearing components inside the motor housing. The stator is fixed inside the motor housing so as to surround the outer peripheral surface of the rotor, and generates an electromagnetic force necessary to rotate the rotor.
 シャフト21は、ロータの径方向内側を軸方向に貫通した状態でロータと同軸接合される軸状体である。U相端子22u、V相端子22v及びW相端子22wは、それぞれモータハウジングの表面から露出する金属端子である。詳細は後述するが、U相端子22u、V相端子22v及びW相端子22wは、それぞれ、モータ制御装置10の駆動回路11と電気的に接続される。 The shaft 21 is a shaft-shaped body coaxially joined to the rotor while axially penetrating the radially inner side of the rotor. The U-phase terminal 22u, the V-phase terminal 22v, and the W-phase terminal 22w are metal terminals exposed from the surface of the motor housing. Although details will be described later, the U-phase terminal 22u, the V-phase terminal 22v, and the W-phase terminal 22w are electrically connected to the drive circuit 11 of the motor control device 10, respectively.
 三相モータ20は、不図示の三相コイルを有する。三相コイルは、U相コイル、V相コイル及びW相コイルを含む。U相コイル、V相コイル及びW相コイルは、それぞれステータに設けられた励磁コイルである。U相コイル、V相コイル及びW相コイルは、三相モータ20の内部でデルタ結線またはスター結線される。U相コイル、V相コイル及びW相コイルの通電状態がモータ制御装置10によって制御されることにより、ロータを回転させるのに必要な電磁力が発生する。ロータが回転することにより、シャフト21もロータに同期して回転する。 The three-phase motor 20 has three-phase coils (not shown). A three-phase coil includes a U-phase coil, a V-phase coil, and a W-phase coil. A U-phase coil, a V-phase coil, and a W-phase coil are exciting coils provided in the stator, respectively. The U-phase coil, the V-phase coil, and the W-phase coil are delta-connected or star-connected inside the three-phase motor 20 . By controlling the energization states of the U-phase coil, the V-phase coil, and the W-phase coil by the motor control device 10, an electromagnetic force necessary to rotate the rotor is generated. As the rotor rotates, the shaft 21 also rotates in synchronization with the rotor.
 ポンプ30は、三相モータ20のシャフト21の軸方向一方側に位置し、三相モータ20によってシャフト21を介して駆動される。ポンプ30が三相モータ20によって駆動されることにより、ポンプ30は冷却オイルFを流体として吐出する。ポンプ30は、オイル吸入口31及びオイル吐出口32を有する。冷却オイルFは、オイル吸入口31からポンプ30の内部に吸入された後、オイル吐出口32からポンプ30の外部に吐出される。このように、ポンプ30と三相モータ20とがシャフト21の軸方向に隣り合って接続されることにより、電動ポンプ40が構成される。 The pump 30 is located on one axial side of the shaft 21 of the three-phase motor 20 and is driven by the three-phase motor 20 via the shaft 21 . As the pump 30 is driven by the three-phase motor 20, the pump 30 discharges the cooling oil F as a fluid. The pump 30 has an oil inlet 31 and an oil outlet 32 . The cooling oil F is sucked into the pump 30 through the oil inlet 31 and then discharged out of the pump 30 through the oil outlet 32 . In this manner, the electric pump 40 is configured by connecting the pump 30 and the three-phase motor 20 side by side in the axial direction of the shaft 21 .
 モータ制御装置10は、センサレス120度通電方式によって突極性を有する三相モータ20を制御する装置である。モータ制御装置10は、不図示の上位制御装置から出力される指令信号VCに基づいて、三相モータ20の回転数を制御する。一例として、上位制御装置は、ハイブリッド車両に搭載される車載ECU(Electronic Control Unit)である。指令信号VCは、三相モータ20の回転数を指示する回転数指令信号でもよいし、或いは三相モータ20の電圧を指示する電圧指令信号でもよい。
 モータ制御装置10は、駆動回路11と、U相電流センサ12uと、V相電流センサ12vと、W相電流センサ12wと、制御部13と、記憶部14と、を備える。
The motor control device 10 is a device that controls a three-phase motor 20 having saliency using a sensorless 120-degree energization method. The motor control device 10 controls the rotation speed of the three-phase motor 20 based on a command signal VC output from a host control device (not shown). As an example, the host controller is an in-vehicle ECU (Electronic Control Unit) mounted on a hybrid vehicle. The command signal VC may be a rotation speed command signal that instructs the rotation speed of the three-phase motor 20 or a voltage command signal that instructs the voltage of the three-phase motor 20 .
The motor control device 10 includes a drive circuit 11, a U-phase current sensor 12u, a V-phase current sensor 12v, a W-phase current sensor 12w, a control section 13, and a storage section .
 駆動回路11は、直流電源電圧Vを三相交流電圧に変換して三相モータ20に供給する回路である。駆動回路11は、直流電源200から供給される直流電源電圧Vを三相交流電圧に変換して三相モータ20に出力する。一例として、直流電源200は、ハイブリッド車両に搭載される複数のバッテリの一つであり、例えば12V系の車載システムに対して12Vの直流電源電圧Vを供給する。 The drive circuit 11 is a circuit that converts the DC power supply voltage VM into a three-phase AC voltage and supplies it to the three-phase motor 20 . The drive circuit 11 converts the DC power supply voltage VM supplied from the DC power supply 200 into a three-phase AC voltage and outputs the three-phase AC voltage to the three-phase motor 20 . As an example, the DC power supply 200 is one of a plurality of batteries mounted on a hybrid vehicle, and supplies a 12V DC power supply voltage VM to a 12V vehicle-mounted system, for example.
 駆動回路11は、U相上側アームスイッチQUHと、V相上側アームスイッチQVHと、W相上側アームスイッチQWHと、U相下側アームスイッチQULと、V相下側アームスイッチQVLと、W相下側アームスイッチQWLと、を有する。本実施形態において各アームスイッチは、例えばNチャネル型MOS-FETである。 The drive circuit 11 includes a U-phase upper arm switch QUH, a V-phase upper arm switch QVH , a W-phase upper arm switch QWH , a U-phase lower arm switch QUL , and a V-phase lower arm switch QVL . and a W-phase lower arm switch QWL . Each arm switch in this embodiment is, for example, an N-channel MOS-FET.
 U相上側アームスイッチQUHのドレイン端子、V相上側アームスイッチQVHのドレイン端子、及びW相上側アームスイッチQWHのドレイン端子は、それぞれ直流電源200の正極端子と電気的に接続される。U相下側アームスイッチQULのソース端子、V相下側アームスイッチQVLのソース端子、及びW相下側アームスイッチQWLのソース端子は、それぞれ直流電源200の負極端子と電気的に接続される。なお、直流電源200の負極端子は車内グランドと電気的に接続される。 The drain terminal of U-phase upper arm switch QUH, the drain terminal of V-phase upper arm switch QVH , and the drain terminal of W-phase upper arm switch QWH are electrically connected to the positive terminal of DC power supply 200, respectively. The source terminal of the U-phase lower arm switch QUL , the source terminal of the V-phase lower arm switch QVL , and the source terminal of the W-phase lower arm switch QWL are electrically connected to the negative terminal of the DC power supply 200, respectively. be done. A negative terminal of the DC power supply 200 is electrically connected to the in-vehicle ground.
 U相上側アームスイッチQUHのソース端子は、三相モータ20のU相端子22uと、U相下側アームスイッチQULのドレイン端子とのそれぞれに電気的に接続される。V相上側アームスイッチQVHのソース端子は、三相モータ20のV相端子22vと、V相下側アームスイッチQVLのドレイン端子とのそれぞれに電気的に接続される。W相上側アームスイッチQWHのソース端子は、三相モータ20のW相端子22wと、W相下側アームスイッチQWLのドレイン端子とのそれぞれに電気的に接続される。 The source terminal of the U-phase upper arm switch QUH is electrically connected to the U-phase terminal 22u of the three-phase motor 20 and the drain terminal of the U-phase lower arm switch QUL . The source terminal of the V-phase upper arm switch QVH is electrically connected to the V-phase terminal 22v of the three-phase motor 20 and the drain terminal of the V-phase lower arm switch QVL . The source terminal of the W-phase upper arm switch QWH is electrically connected to the W-phase terminal 22w of the three-phase motor 20 and the drain terminal of the W-phase lower arm switch QWL .
 U相上側アームスイッチQUHのゲート端子、V相上側アームスイッチQVHのゲート端子、及びW相上側アームスイッチQWHのゲート端子は、それぞれ制御部13と電気的に接続される。また、U相下側アームスイッチQULのゲート端子、V相下側アームスイッチQVLのゲート端子、及びW相下側アームスイッチQWLのゲート端子も、それぞれ制御部13と電気的に接続される。 A gate terminal of the U-phase upper arm switch QUH, a gate terminal of the V-phase upper arm switch QVH , and a gate terminal of the W-phase upper arm switch QWH are electrically connected to the control unit 13, respectively. The gate terminal of the U-phase lower arm switch QUL , the gate terminal of the V-phase lower arm switch QVL , and the gate terminal of the W-phase lower arm switch QWL are also electrically connected to the control unit 13. be.
 上記のように、駆動回路11は、3つの上側アームスイッチと3つの下側アームスイッチとを有する3相フルブリッジ回路によって構成される。このように構成された駆動回路11は、制御部13によって各アームスイッチがスイッチング制御されることにより、直流電源200から供給される直流電源電圧Vを三相交流電圧に変換して三相モータ20に出力する。 As described above, the drive circuit 11 is configured by a three-phase full bridge circuit having three upper arm switches and three lower arm switches. The drive circuit 11 configured as described above converts the DC power supply voltage VM supplied from the DC power supply 200 into a three-phase AC voltage by controlling the switching of each arm switch by the control unit 13 to drive the three-phase motor. 20.
 本実施形態では、三相モータ20の通電方式としてセンサレス120度通電方式が用いられる。一例として、センサレス120度通電方式が用いられる場合、各アームスイッチは、図2に示す通電パターンに基づいてスイッチング制御される。図2に示すように、センサレス120度通電方式の通電パターンは、6つの通電パターンPA1、PA2、PA3、PA4、PA5及びPA6を含む。図2において、「QUH」から「QWL」までの列に並ぶ「ON」及び「OFF」のうち、「ON」は該当するアームスイッチがオンに制御されることを意味し、「OFF」は該当するアームスイッチがオフに制御されることを意味する。 In this embodiment, a sensorless 120-degree energization method is used as the energization method for the three-phase motor 20 . As an example, when the sensorless 120-degree energization method is used, switching of each arm switch is controlled based on the energization pattern shown in FIG. As shown in FIG. 2, the energization pattern of the sensorless 120-degree energization method includes six energization patterns PA1, PA2, PA3, PA4, PA5 and PA6. In FIG. 2, among "ON" and "OFF" arranged in a row from "Q UH " to "Q WL ", "ON" means that the corresponding arm switch is controlled to be ON, and "OFF". means that the corresponding arm switch is controlled to be off.
 通電パターンPA1では、U相上側アームスイッチQUHとW相下側アームスイッチQWLとがオンに制御され、且つ残りのアームスイッチがオフに制御される。一例として、通電パターンPA1では、U相上側アームスイッチQUHのみ所定のスイッチングデューティ比でスイッチング制御される。 In the energization pattern PA1, the U-phase upper arm switch QUH and the W-phase lower arm switch QWL are controlled to be ON, and the remaining arm switches are controlled to be OFF. As an example, in the energization pattern PA1, only the U-phase upper arm switch QUH is switching-controlled at a predetermined switching duty ratio.
 通電パターンPA2では、V相上側アームスイッチQVHとW相下側アームスイッチQWLとがオンに制御され、且つ残りのアームスイッチがオフに制御される。一例として、通電パターンPA2では、V相上側アームスイッチQVHのみ所定のスイッチングデューティ比でスイッチング制御される。 In the energization pattern PA2, the V-phase upper arm switch QVH and the W-phase lower arm switch QWL are controlled to be ON, and the remaining arm switches are controlled to be OFF. As an example, in the energization pattern PA2, only the V-phase upper arm switch QVH is switching-controlled at a predetermined switching duty ratio.
 通電パターンPA3では、V相上側アームスイッチQVHとU相下側アームスイッチQULとがオンに制御され、且つ残りのアームスイッチがオフに制御される。一例として、通電パターンPA3においても、V相上側アームスイッチQVHのみ所定のスイッチングデューティ比でスイッチング制御される。 In the energization pattern PA3, the V-phase upper arm switch QVH and the U-phase lower arm switch QUL are controlled to be ON, and the remaining arm switches are controlled to be OFF. As an example, even in the energization pattern PA3, only the V-phase upper arm switch QVH is switching-controlled at a predetermined switching duty ratio.
 通電パターンPA4では、W相上側アームスイッチQWHとU相下側アームスイッチQULとがオンに制御され、且つ残りのアームスイッチがオフに制御される。一例として、通電パターンPA4では、W相上側アームスイッチQWHのみ所定のスイッチングデューティ比でスイッチング制御される。 In the energization pattern PA4, the W-phase upper arm switch QWH and the U-phase lower arm switch QUL are controlled to be ON, and the remaining arm switches are controlled to be OFF. As an example, in the energization pattern PA4, only the W-phase upper arm switch QWH is switching-controlled at a predetermined switching duty ratio.
 通電パターンPA5では、W相上側アームスイッチQWHとV相下側アームスイッチQVLとがオンに制御され、且つ残りのアームスイッチがオフに制御される。一例として、通電パターンPA5においても、W相上側アームスイッチQWHのみ所定のスイッチングデューティ比でスイッチング制御される。 In the energization pattern PA5, the W-phase upper arm switch QWH and the V-phase lower arm switch QVL are controlled to be ON, and the remaining arm switches are controlled to be OFF. As an example, even in the energization pattern PA5, only the W-phase upper arm switch QWH is switching-controlled at a predetermined switching duty ratio.
 通電パターンPA6では、U相上側アームスイッチQUHとV相下側アームスイッチQVLとがオンに制御され、且つ残りのアームスイッチがオフに制御される。一例として、通電パターンPA6では、U相上側アームスイッチQUHのみ所定のスイッチングデューティ比でスイッチング制御される。 In the energization pattern PA6, the U-phase upper arm switch QUH and the V-phase lower arm switch QVL are controlled to be ON, and the remaining arm switches are controlled to be OFF. As an example, in the energization pattern PA6, only the U-phase upper arm switch QUH is switching-controlled at a predetermined switching duty ratio.
 以上のような6つの通電パターンが電気角で60度間隔で順番に切り替えられることにより、三相モータ20のシャフト21を一定方向に360度回転させる回転磁界が発生する。言い換えれば、1つの通電パターンで各アームスイッチのスイッチング制御が行われる期間において、三相モータ20のシャフト21は一定方向に電気角で60度回転する。通電パターンが切り替えられる速度は、転流周波数Fsと呼ばれる。転流周波数Fsの単位は「Hz」である。1つの通電パターンでスイッチング制御が行われる期間をP(秒)としたとき、転流周波数Fsは、「Fs=1/P」で表される。 A rotating magnetic field that rotates the shaft 21 of the three-phase motor 20 by 360 degrees in a fixed direction is generated by sequentially switching the six energization patterns as described above at intervals of 60 degrees in electrical angle. In other words, the shaft 21 of the three-phase motor 20 rotates in a certain direction by an electrical angle of 60 degrees during the period in which the switching control of each arm switch is performed in one energization pattern. The speed at which the energization pattern is switched is called the commutation frequency Fs. The unit of the commutation frequency Fs is "Hz". The commutation frequency Fs is represented by "Fs=1/P", where P (seconds) is the period during which switching control is performed in one energization pattern.
 従来の一般的なセンサレス120度通電方式では、U相端子22u、V相端子22v及びW相端子22wの夫々に露出する誘起電圧が中性点電位(=V/2)と交差する点をゼロクロス点として検出し、ゼロクロス点の検出結果に基づいて通電パターンの切替えタイミングを制御することにより、6つの通電パターンを60度間隔で順番に切り替える。これに対して、本実施形態では、高周波電圧が重畳された三相交流電圧を三相モータ20に供給しながら三相モータ20に流れる電流を検出する。検出された検出電流には、三相交流電圧に重畳された高周波電圧と同じ周波数を有する高周波電流が含まれる。本実施形態では、上記のような高周波電流を含む検出電流に基づいてインダクタンスの変化と相関するインダクタンス変化信号を生成し、生成されたインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。 In the conventional general sensorless 120-degree energization method, the point where the induced voltage exposed to each of the U-phase terminal 22u, the V-phase terminal 22v, and the W-phase terminal 22w intersects the neutral point potential (=V M /2) is By detecting the zero-cross points and controlling the switching timing of the energization patterns based on the detection result of the zero-cross points, the six energization patterns are sequentially switched at intervals of 60 degrees. In contrast, in the present embodiment, the current flowing through the three-phase motor 20 is detected while supplying the three-phase AC voltage superimposed with the high-frequency voltage to the three-phase motor 20 . The detected current includes a high-frequency current having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage. In this embodiment, an inductance change signal correlated with a change in inductance is generated based on the detected current including the high-frequency current as described above, and the switching timing of the energization pattern is controlled based on the generated inductance change signal.
 U相電流センサ12u、V相電流センサ12v、およびW相電流センサ12wは、三相モータ20に流れる電流を検出する電流検出部である。以下の説明において、U相電流センサ12u、V相電流センサ12v、およびW相電流センサ12wを、「電流検出部12」と総称する場合がある。電流検出部12は、三相モータ20の三相に流れる電流を検出する。U相電流センサ12uは、U相の線電流を検出し、その検出結果をU相検出電流Iuとして制御部13に出力する。V相電流センサ12vは、V相の線電流を検出し、その検出結果をV相検出電流Ivとして制御部13に出力する。W相電流センサ12wは、W相の線電流を検出し、その検出結果をW相検出電流Iwとして制御部13に出力する。一例として、U相電流センサ12u、V相電流センサ12v、およびW相電流センサ12wは、CT方式の電流センサである。 The U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w are current detection units that detect the current flowing through the three-phase motor 20. In the following description, the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w may be collectively referred to as "current detector 12". The current detector 12 detects currents flowing through the three phases of the three-phase motor 20 . The U-phase current sensor 12u detects a U-phase line current and outputs the detection result to the control unit 13 as a U-phase detection current Iu. The V-phase current sensor 12v detects a V-phase line current and outputs the detection result to the control unit 13 as a V-phase detection current Iv. The W-phase current sensor 12w detects a W-phase line current and outputs the detection result to the control unit 13 as a W-phase detection current Iw. As an example, the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w are CT-type current sensors.
 制御部13は、例えばMCU(Microcontroller Unit)などのマイクロプロセッサである。制御部13には、不図示の上位制御装置から出力される指令信号VCが入力される。また、制御部13には、U相電流センサ12uから出力されるU相検出電流Iuと、V相電流センサ12vから出力されるV相検出電流Ivと、W相電流センサ12wから出力されるW相検出電流Iwとが入力される。制御部13は、不図示の通信バスを介して記憶部14と通信可能に接続される。 The control unit 13 is, for example, a microprocessor such as an MCU (Microcontroller Unit). A command signal VC output from a host controller (not shown) is input to the control unit 13 . Further, the controller 13 includes a U-phase detection current Iu output from the U-phase current sensor 12u, a V-phase detection current Iv output from the V-phase current sensor 12v, and a W-phase detection current output from the W-phase current sensor 12w. A phase detection current Iw is input. The control unit 13 is communicably connected to the storage unit 14 via a communication bus (not shown).
 制御部13は、三相モータ20の通電パターンが60度間隔で切替えられ、且つ三相交流電圧の周波数よりも高い周波数を有する高周波電圧が重畳された三相交流電圧が三相モータ20に供給されるスイッチング制御信号を駆動回路11に出力する。一例として、スイッチング制御信号は、駆動回路11に設けられた各アームスイッチのゲート端子に供給されるPWM(Pulse Width Modulation)信号である。 The control unit 13 supplies the three-phase motor 20 with a three-phase AC voltage in which the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees and a high-frequency voltage having a higher frequency than the frequency of the three-phase AC voltage is superimposed. The switching control signal obtained is output to the drive circuit 11 . As an example, the switching control signal is a PWM (Pulse Width Modulation) signal supplied to the gate terminal of each arm switch provided in the drive circuit 11 .
 制御部13は、電流検出部12から得られる検出電流に基づいてインダクタンスの変化と相関するインダクタンス変化信号を生成し、インダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。制御部13は、電流検出部12から得られる三相の検出電流(U相検出電流Iu、V相検出電流Iv及びW相検出電流Iw)に基づいて三相のインダクタンスの変化と相関する三相のインダクタンス変化信号を生成し、三相のインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。 The control unit 13 generates an inductance change signal that correlates with the change in inductance based on the detected current obtained from the current detection unit 12, and controls the switching timing of the energization pattern based on the inductance change signal. Based on the three-phase detection currents (the U-phase detection current Iu, the V-phase detection current Iv, and the W-phase detection current Iw) obtained from the current detection unit 12, the control unit 13 detects three-phase currents correlated with changes in the three-phase inductances. , and controls the switching timing of the energization pattern based on the three-phase inductance change signals.
 上述したように、電流検出部12によって検出された検出電流Iu、Iv及びIwには、三相交流電圧に重畳された高周波電圧と同じ周波数を有する高周波電流が含まれる。制御部13は、電流検出部12から得られる検出電流Iu、Iv及びIwから、三相交流電圧に重畳された高周波電圧と同じ周波数を有する周波数成分を抽出電流として抽出し、抽出した抽出電流と、抽出電流の位相をπ/2だけシフトさせた位相シフト電流との二乗和を算出することにより、インダクタンス変化信号を生成する。制御部13は、抽出電流に対してヒルベルト変換を行うことにより、位相シフト電流を取得する。本実施形態においてヒルベルト変換は、FIRフィルタにより行われる。 As described above, the detected currents Iu, Iv, and Iw detected by the current detector 12 include high-frequency currents having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage. The control unit 13 extracts, as extracted currents, frequency components having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the detected currents Iu, Iv, and Iw obtained from the current detection unit 12, and extracts extracted currents and , and a phase-shifted current obtained by shifting the phase of the extracted current by π/2 to generate an inductance change signal. The control unit 13 acquires the phase-shifted current by performing a Hilbert transform on the extracted current. In this embodiment, the Hilbert transform is performed by an FIR filter.
 記憶部14は、制御部13に各種処理を実行させるのに必要なプログラムおよび各種設定データなどを記憶する不揮発性メモリと、制御部13が各種処理を実行する際にデータの一時保存先として使用される揮発性メモリとを含む。不揮発性メモリは、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリなどである。揮発性メモリは、例えばRAM(Random Access Memory)などである。記憶部14は、センサレス120度通電方式によって三相モータ20を制御するのに必要な各種データを記憶する。例えば、記憶部14は、図2に示す通電パターンを予め記憶する。図1に示すように、記憶部14は、制御部13の外部に設けられてもよいし、或いは制御部13に内蔵されていてもよい。 The storage unit 14 is used as a non-volatile memory for storing programs and various setting data necessary for the control unit 13 to execute various processes, and as a temporary storage destination for data when the control unit 13 executes various processes. and volatile memory. The nonvolatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory. Volatile memory is, for example, RAM (Random Access Memory). The storage unit 14 stores various data necessary to control the three-phase motor 20 by the sensorless 120-degree energization method. For example, the storage unit 14 pre-stores the energization pattern shown in FIG. As shown in FIG. 1 , the storage unit 14 may be provided outside the control unit 13 or may be built in the control unit 13 .
 図3は、制御部13が有する各機能をブロックで表す機能ブロック図である。図3に示すように、制御部13は、インダクタンス変化信号生成部50と、通電パターン設定部60と、高周波電圧印加部70と、加算部80と、PWM変換部90と、を有する。インダクタンス変化信号生成部50、通電パターン設定部60、高周波電圧印加部70、加算部80、およびPWM変換部90の一部又は全部を、制御部13に内蔵されたプロセッサコア上で動作するソフトウェアで構成してもよいし、或いはアナログ回路及びデジタル回路を含むハードウェアで構成してもよい。 FIG. 3 is a functional block diagram showing each function of the control unit 13 in blocks. As shown in FIG. 3 , the control section 13 has an inductance change signal generation section 50 , an energization pattern setting section 60 , a high frequency voltage application section 70 , an addition section 80 and a PWM conversion section 90 . Some or all of the inductance change signal generation unit 50, the energization pattern setting unit 60, the high frequency voltage application unit 70, the addition unit 80, and the PWM conversion unit 90 are implemented by software that operates on the processor core incorporated in the control unit 13. Alternatively, it may be implemented in hardware including analog and digital circuitry.
 インダクタンス変化信号生成部50は、電流検出部12から得られる三相の検出電流(U相検出電流Iu、V相検出電流Iv及びW相検出電流Iw)に基づいて三相のインダクタンスの変化と相関する三相のインダクタンス変化信号を生成する。インダクタンス変化信号生成部50は、第1のBPF(Band Path Filter)51と、第2のBPF52と、第3のBPF53と、第1のヒルベルト変換部54と、第2のヒルベルト変換部55と、第3のヒルベルト変換部56と、第1の二乗和平方根演算部57と、第2の二乗和平方根演算部58と、第3の二乗和平方根演算部59と、を有する。 The inductance change signal generation unit 50 correlates the three-phase inductance changes based on the three-phase detection currents (the U-phase detection current Iu, the V-phase detection current Iv, and the W-phase detection current Iw) obtained from the current detection unit 12. A three-phase inductance change signal is generated. The inductance change signal generation unit 50 includes a first BPF (Band Path Filter) 51, a second BPF 52, a third BPF 53, a first Hilbert transform unit 54, a second Hilbert transform unit 55, It has a third Hilbert transform unit 56 , a first root-sum-of-squares operation unit 57 , a second root-sum-square operation unit 58 , and a third root-sum-square operation unit 59 .
 第1のBPF51は、U相電流センサ12uから得られるU相検出電流Iuから、三相交流電圧に重畳された高周波電圧と同じ周波数を有する周波数成分をU相抽出電流Iuhとして抽出し、抽出したU相抽出電流Iuhを第1のヒルベルト変換部54に出力する。
 第2のBPF52は、V相電流センサ12vから得られるV相検出電流Ivから、三相交流電圧に重畳された高周波電圧と同じ周波数を有する周波数成分をV相抽出電流Ivhとして抽出し、抽出したV相抽出電流Ivhを第2のヒルベルト変換部55に出力する。
 第3のBPF53は、W相電流センサ12wから得られるW相検出電流Iwから、三相交流電圧に重畳された高周波電圧と同じ周波数を有する周波数成分をW相抽出電流Iwhとして抽出し、抽出したW相抽出電流Iwhを第3のヒルベルト変換部56に出力する。
The first BPF 51 extracts, as a U-phase extraction current Iuh, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the U-phase detection current Iu obtained from the U-phase current sensor 12u. The U-phase extracted current Iuh is output to the first Hilbert transform section 54 .
The second BPF 52 extracts, as a V-phase extraction current Ivh, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the V-phase detection current Iv obtained from the V-phase current sensor 12v. The V-phase extracted current Ivh is output to the second Hilbert transform section 55 .
The third BPF 53 extracts, as a W-phase extraction current Iwh, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the W-phase detection current Iw obtained from the W-phase current sensor 12w. The W-phase extracted current Iwh is output to the third Hilbert transform section 56 .
 第1のヒルベルト変換部54は、U相抽出電流Iuhを、実数部Xu及び虚数部Yuを有する複素解析信号に変換する。実数部Xuは、U相抽出電流Iuhと同じである。虚数部Yuは、FIRフィルタにより行われるヒルベルト変換によって得られる。虚数部Yuは、U相抽出電流Iuhの位相をπ/2だけシフトさせた位相シフト電流である。第1のヒルベルト変換部54は、実数部Xu及び虚数部Yuを第1の二乗和平方根演算部57に出力する。 The first Hilbert transform unit 54 transforms the U-phase extracted current Iuh into a complex analytic signal having a real part Xu and an imaginary part Yu. The real part Xu is the same as the U-phase extraction current Iuh. The imaginary part Yu is obtained by the Hilbert transform performed by the FIR filter. The imaginary part Yu is a phase-shifted current obtained by shifting the phase of the U-phase extracted current Iuh by π/2. The first Hilbert transform unit 54 outputs the real part Xu and the imaginary part Yu to the first root-sum-of-squares operation unit 57 .
 第2のヒルベルト変換部55は、V相抽出電流Ivhを、実数部Xv及び虚数部Yvを有する複素解析信号に変換する。実数部Xvは、V相抽出電流Ivhと同じである。虚数部Yvは、FIRフィルタにより行われるヒルベルト変換によって得られる。虚数部Yvは、V相抽出電流Ivhの位相をπ/2だけシフトさせた位相シフト電流である。第2のヒルベルト変換部55は、実数部Xv及び虚数部Yvを第2の二乗和平方根演算部58に出力する。 The second Hilbert transform unit 55 transforms the V-phase extracted current Ivh into a complex analytic signal having a real part Xv and an imaginary part Yv. The real part Xv is the same as the V-phase extraction current Ivh. The imaginary part Yv is obtained by the Hilbert transform performed by the FIR filter. The imaginary part Yv is a phase-shifted current obtained by shifting the phase of the V-phase extracted current Ivh by π/2. The second Hilbert transform unit 55 outputs the real part Xv and the imaginary part Yv to the second root-sum-of-squares operation unit 58 .
 第3のヒルベルト変換部56は、W相抽出電流Iwhを、実数部Xw及び虚数部Ywを有する複素解析信号に変換する。実数部Xwは、W相抽出電流Iwhと同じである。虚数部Ywは、FIRフィルタにより行われるヒルベルト変換によって得られる。虚数部Ywは、W相抽出電流Iwhの位相をπ/2だけシフトさせた位相シフト電流である。第3のヒルベルト変換部56は、実数部Xw及び虚数部Ywを第3の二乗和平方根演算部59に出力する。 The third Hilbert transform unit 56 transforms the W-phase extracted current Iwh into a complex analytic signal having a real part Xw and an imaginary part Yw. The real part Xw is the same as the W-phase extraction current Iwh. The imaginary part Yw is obtained by the Hilbert transform performed by the FIR filter. The imaginary part Yw is a phase-shifted current obtained by shifting the phase of the W-phase extracted current Iwh by π/2. The third Hilbert transform unit 56 outputs the real part Xw and the imaginary part Yw to the third root-sum-of-squares operation unit 59 .
 第1の二乗和平方根演算部57は、第1のヒルベルト変換部54から得られる実数部Xw及び虚数部Ywの二乗和平方根を演算することにより、U相のインダクタンスの変化と相関するU相インダクタンス変化信号Zuを算出する。言い換えれば、第1の二乗和平方根演算部57は、U相抽出電流Iuhと、U相抽出電流Iuhの位相をπ/2だけシフトさせた位相シフト電流との二乗和平方根を演算することにより、U相インダクタンス変化信号Zuを算出する。第1の二乗和平方根演算部57は、U相インダクタンス変化信号Zuを通電パターン設定部60に出力する。 The first root-sum-of-squares calculator 57 calculates the root-of-square sum of the real part Xw and the imaginary part Yw obtained from the first Hilbert transform part 54, thereby obtaining A change signal Zu is calculated. In other words, the first square-sum-square calculator 57 calculates the square-root sum of the squares of the U-phase extracted current Iuh and the phase-shifted current obtained by shifting the phase of the U-phase extracted current Iuh by π/2. A U-phase inductance change signal Zu is calculated. The first sum-of-squares-square-root calculator 57 outputs the U-phase inductance change signal Zu to the energization pattern setting unit 60 .
 第2の二乗和平方根演算部58は、第2のヒルベルト変換部55から得られる実数部Xv及び虚数部Yvの二乗和平方根を演算することにより、V相のインダクタンスの変化と相関するV相インダクタンス変化信号Zvを算出する。言い換えれば、第2の二乗和平方根演算部58は、V相抽出電流Ivhと、V相抽出電流Ivhの位相をπ/2だけシフトさせた位相シフト電流との二乗和平方根を演算することにより、V相インダクタンス変化信号Zvを算出する。第2の二乗和平方根演算部58は、V相インダクタンス変化信号Zvを通電パターン設定部60に出力する。 A second root-sum-of-squares calculator 58 calculates the root-sum-square of the real part Xv and the imaginary part Yv obtained from the second Hilbert transform part 55, thereby obtaining A change signal Zv is calculated. In other words, the second root-sum-of-squares calculator 58 calculates the square root of the sum of squares of the V-phase extracted current Ivh and the phase-shifted current obtained by shifting the phase of the V-phase extracted current Ivh by π/2. A V-phase inductance change signal Zv is calculated. Second sum-of-squares square root calculator 58 outputs V-phase inductance change signal Zv to energization pattern setting unit 60 .
 第3の二乗和平方根演算部59は、第3のヒルベルト変換部56から得られる実数部Xw及び虚数部Ywの二乗和平方根を演算することにより、W相のインダクタンスの変化と相関するW相インダクタンス変化信号Zwを算出する。言い換えれば、第3の二乗和平方根演算部59は、W相抽出電流Iwhと、W相抽出電流Iwhの位相をπ/2だけシフトさせた位相シフト電流との二乗和平方根を演算することにより、W相インダクタンス変化信号Zwを算出する。第3の二乗和平方根演算部59は、W相インダクタンス変化信号Zwを通電パターン設定部60に出力する。 A third root-sum-square calculator 59 calculates the root-sum-square of the real part Xw and the imaginary part Yw obtained from the third Hilbert transform part 56, thereby obtaining a W-phase inductance correlated with a change in the W-phase inductance. A change signal Zw is calculated. In other words, the third root-sum-square calculator 59 calculates the root-sum-square of the W-phase extracted current Iwh and the phase-shifted current obtained by shifting the phase of the W-phase extracted current Iwh by π/2. A W-phase inductance change signal Zw is calculated. The third root-sum-of-squares calculator 59 outputs the W-phase inductance change signal Zw to the energization pattern setting unit 60 .
 なお、抽出電流を、実数部及び虚数部を有する複素解析信号に変換するための演算方法と、実数部及び虚数部の二乗和平方根の演算方法の詳細については、特開2016-201923号公報を参照されたい。 In addition, for details of the calculation method for converting the extracted current into a complex analytic signal having a real part and an imaginary part and the calculation method of the square root of the sum of the squares of the real part and the imaginary part, see Japanese Patent Application Laid-Open No. 2016-201923. Please refer to
 通電パターン設定部60は、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、およびW相インダクタンス変化信号Zwに基づいて通電パターンを切り替える。図4は、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、およびW相インダクタンス変化信号Zwと、通電パターンとの時間的な対応関係を示すタイミングチャートである。 The energization pattern setting unit 60 switches the energization pattern based on the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw. FIG. 4 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, and the energization pattern.
 図4に示すように、通電パターン設定部60は、U相インダクタンス変化信号Zuと所定の第1閾値Zuthとを比較し、U相インダクタンス変化信号Zuが第1閾値Zuth以上となるタイミングで通電パターンを切り替える。図4に示す例では、通電パターン設定部60は、時刻t1、t4、t7、t10、及びt13において通電パターンを切り替える。以下では、時刻t1、t4、t7、t10、及びt13を第1の通電パターン切替タイミングと呼称する。なお、第1の通電パターン切替タイミングのときのU相インダクタンス変化信号Zuの値である第1閾値Zuthを、事前に実験或いはシミュレーションなどによって取得する必要がある。 As shown in FIG. 4, the energization pattern setting unit 60 compares the U-phase inductance change signal Zu with a predetermined first threshold value Zuth, and sets the energization pattern at the timing when the U-phase inductance change signal Zu becomes equal to or greater than the first threshold value Zuth. switch. In the example shown in FIG. 4, the energization pattern setting unit 60 switches the energization pattern at times t1, t4, t7, t10, and t13. Hereinafter, times t1, t4, t7, t10, and t13 are referred to as first energization pattern switching timings. It should be noted that the first threshold value Zuth, which is the value of the U-phase inductance change signal Zu at the first energization pattern switching timing, needs to be acquired in advance through experiments, simulations, or the like.
 通電パターン設定部60は、V相インダクタンス変化信号Zvと所定の第2閾値Zvthとを比較し、V相インダクタンス変化信号Zvが第2閾値Zvth以上となるタイミングで通電パターンを切り替える。図4に示す例では、通電パターン設定部60は、時刻t3、t6、t9、及びt12において通電パターンを切り替える。以下では、時刻t3、t6、t9、及びt12を第2の通電パターン切替タイミングと呼称する。なお、第2の通電パターン切替タイミングのときのV相インダクタンス変化信号Zvの値である第2閾値Zvthを、事前に実験或いはシミュレーションなどによって取得する必要がある。 The energization pattern setting unit 60 compares the V-phase inductance change signal Zv with a predetermined second threshold value Zvth, and switches the energization pattern at the timing when the V-phase inductance change signal Zv becomes equal to or greater than the second threshold value Zvth. In the example shown in FIG. 4, the energization pattern setting unit 60 switches the energization pattern at times t3, t6, t9, and t12. Hereinafter, times t3, t6, t9, and t12 are referred to as second energization pattern switching timings. It should be noted that the second threshold value Zvth, which is the value of the V-phase inductance change signal Zv at the second energization pattern switching timing, needs to be obtained in advance through experiments, simulations, or the like.
 通電パターン設定部60は、W相インダクタンス変化信号Zwと所定の第3閾値Zwthとを比較し、W相インダクタンス変化信号Zwが第3閾値Zwth以上となるタイミングで通電パターンを切り替える。図4に示す例では、通電パターン設定部60は、時刻t2、t5、t8、及びt11において通電パターンを切り替える。以下では、時刻t2、t5、t8、及びt11を第3の通電パターン切替タイミングと呼称する。なお、第3の通電パターン切替タイミングのときのW相インダクタンス変化信号Zwの値である第3閾値Zwthを、事前に実験或いはシミュレーションなどによって取得する必要がある。 The energization pattern setting unit 60 compares the W-phase inductance change signal Zw with a predetermined third threshold value Zwth, and switches the energization pattern at the timing when the W-phase inductance change signal Zw becomes equal to or greater than the third threshold value Zwth. In the example shown in FIG. 4, the energization pattern setting unit 60 switches the energization pattern at times t2, t5, t8, and t11. Hereinafter, times t2, t5, t8, and t11 are referred to as third energization pattern switching timings. It should be noted that the third threshold value Zwth, which is the value of the W-phase inductance change signal Zw at the third energization pattern switching timing, needs to be acquired in advance through experiments, simulations, or the like.
 図4に示すように、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、およびW相インダクタンス変化信号Zwは、互いに電気角で120度の位相差を有する。U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、およびW相インダクタンス変化信号Zwをトータルで見ると、電気角で60度間隔で1つの通電切替タイミングが現れる。 As shown in FIG. 4, the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw have a phase difference of 120 electrical degrees from each other. Looking at the total of the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw, one energization switching timing appears at intervals of 60 electrical degrees.
 例えば、第1の通電切替タイミングである時刻t1において通電パターンが通電パターンPA1に切り替えられたと仮定する。この場合、通電パターン設定部60は、時刻t1から電気角で60度回転し第3の通電切替タイミングである第3閾値Zwthが現れた時刻t2で通電パターンを通電パターンPA2に切り替える。
 通電パターン設定部60は、時刻t2から電気角で60度回転し第2の通電切替タイミングである第2閾値Zvthが現れた時刻t3で通電パターンを通電パターンPA3に切り替える。
 通電パターン設定部60は、時刻t3から電気角で60度回転し第1の通電切替タイミングである第1閾値Zuthが現れた時刻t4で通電パターンを通電パターンPA4に切り替える。
 通電パターン設定部60は、時刻t4から電気角で60度回転し第3の通電切替タイミングである第3閾値Zwthが現れた時刻t5で通電パターンを通電パターンPA5に切り替える。
 通電パターン設定部60は、時刻t5から電気角で60度回転し第2の通電切替タイミングである第2閾値Zvthが現れた時刻t6で通電パターンを通電パターンPA6に切り替える。
 通電パターン設定部60は、時刻t6から電気角で60度回転し第1の通電切替タイミングである第1閾値Zuthが現れた時刻t7で通電パターンを通電パターンPA1に切り替える。
 以降、通電パターン設定部60は、時刻t2から時刻t7までの動作と同じ動作を繰り返す。
For example, assume that the energization pattern is switched to the energization pattern PA1 at time t1, which is the first energization switching timing. In this case, the energization pattern setting unit 60 switches the energization pattern to the energization pattern PA2 at the time t2 when the third threshold value Zwth, which is the third energization switching timing, appears after rotating by 60 electrical degrees from the time t1.
The energization pattern setting unit 60 switches the energization pattern to the energization pattern PA3 at the time t3 when the second threshold value Zvth, which is the second energization switching timing, appears after rotating by 60 electrical degrees from the time t2.
The energization pattern setting unit 60 switches the energization pattern to the energization pattern PA4 at the time t4 when the first threshold value Zuth, which is the first energization switching timing after rotating by 60 electrical degrees from the time t3, appears.
The energization pattern setting unit 60 switches the energization pattern to the energization pattern PA5 at the time t5 when the third threshold value Zwth, which is the third energization switching timing after rotating by 60 electrical degrees from the time t4, appears.
The energization pattern setting unit 60 switches the energization pattern to the energization pattern PA6 at the time t6 when the second threshold value Zvth, which is the second energization switching timing after rotating by 60 electrical degrees from the time t5, appears.
The energization pattern setting unit 60 switches the energization pattern to the energization pattern PA1 at time t7 when the first threshold value Zuth, which is the first energization switching timing, appears after rotating by 60 electrical degrees from time t6.
Thereafter, the energization pattern setting unit 60 repeats the same operation as the operation from time t2 to time t7.
 なお、以上の動作は、U相コイル、V相コイル及びW相コイルがデルタ結線される場合の動作である。進角制御を行う場合には、通電切替タイミングよりも早いタイミングで通電パターンを切り替えればよい。 It should be noted that the above operation is the operation when the U-phase coil, the V-phase coil, and the W-phase coil are delta-connected. When performing advance angle control, the energization pattern may be switched at a timing earlier than the energization switching timing.
 通電パターン設定部60は、通電パターンの切替えとともに、指令信号VCによって指示される指令電圧を加算部80に出力する。なお、例えば、指令信号VCが回転数を指示する回転数指令信号である場合、通電パターン設定部60の前段に、指示された回転数を指令電圧に変換する電圧変換部を設けてもよい。高周波電圧印加部70は、三相交流電圧の周波数より高い周波数を有する高周波電圧を加算部80に出力する。加算部80は、通電パターン設定部60からの指令電圧と、高周波電圧印加部70からの高周波電圧とを加算し、高周波電圧が重畳された指令電圧をPWM変換部90に出力する。PWM変換部90は、高周波電圧が重畳された指令電圧に基づいてスイッチング制御信号を駆動回路11に出力する。 The energization pattern setting unit 60 outputs the command voltage indicated by the command signal VC to the addition unit 80 while switching the energization pattern. For example, if the command signal VC is a rotation speed command signal that indicates the rotation speed, a voltage conversion unit that converts the indicated rotation speed into a command voltage may be provided before the energization pattern setting unit 60 . The high-frequency voltage applying section 70 outputs to the adding section 80 a high-frequency voltage having a frequency higher than that of the three-phase AC voltage. The addition unit 80 adds the command voltage from the energization pattern setting unit 60 and the high frequency voltage from the high frequency voltage application unit 70 and outputs the command voltage superimposed with the high frequency voltage to the PWM conversion unit 90 . The PWM converter 90 outputs a switching control signal to the drive circuit 11 based on the command voltage superimposed with the high frequency voltage.
 例えば、図4に示すように、時刻t2において通電パターンが通電パターンPA2に切り替えられた場合、PWM変換部90は、V相上側アームスイッチQVH及びW相下側アームスイッチQWLをオンに制御するとともに、残りのアームスイッチをオフに制御するスイッチング制御信号を駆動回路11に出力する(図2参照)。通電パターンPA2の場合、PWM変換部90は、V相上側アームスイッチQVHのみ、高周波電圧が重畳された指令電圧に応じたスイッチングデューティ比でスイッチング制御する。その結果、高周波電圧が重畳された三相交流電圧が駆動回路11から三相モータ20に供給される。なお、本実施形態におけるセンサレス120度通電方式の通電パターンはあくまで一例であり、要求される仕様等によって適宜変更可能である。 For example, as shown in FIG. 4, when the energization pattern is switched to the energization pattern PA2 at time t2, the PWM converter 90 turns on the V-phase upper arm switch QVH and the W-phase lower arm switch QWL . At the same time, a switching control signal for turning off the remaining arm switches is output to the drive circuit 11 (see FIG. 2). In the case of the energization pattern PA2, the PWM converter 90 performs switching control of only the V-phase upper arm switch QVH with a switching duty ratio corresponding to the command voltage superimposed with the high-frequency voltage. As a result, a three-phase AC voltage superimposed with a high-frequency voltage is supplied from the drive circuit 11 to the three-phase motor 20 . It should be noted that the energization pattern of the sensorless 120-degree energization method in the present embodiment is merely an example, and can be changed as appropriate according to required specifications and the like.
 上記のように、制御部13は、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、およびW相インダクタンス変化信号Zwから得られる通電切替タイミングに同期して60度間隔で通電パターンの切り替え及び各アームスイッチのスイッチング制御を行うことにより、三相モータ20をセンサレス120度通電方式で制御する。 As described above, the control unit 13 switches the energization pattern at intervals of 60 degrees in synchronization with the energization switching timing obtained from the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, and the W-phase inductance change signal Zw. By performing switching control of each arm switch, the three-phase motor 20 is controlled by a sensorless 120-degree energization method.
 以上説明したように、第1実施形態におけるモータ制御装置10は、三相モータ20に流れる電流を検出する電流検出部12と、三相モータ20の通電パターンが60度間隔で切替えられ、且つ三相交流電圧の周波数よりも高い周波数を有する高周波電圧が重畳された三相交流電圧が三相モータ20に供給されるスイッチング制御信号を駆動回路11に出力する制御部13とを備える。制御部13は、電流検出部12から得られる検出電流に基づいてインダクタンスの変化と相関するインダクタンス変化信号を生成し、生成されたインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。
 このような第1実施形態によれば、HFI技術を適用したセンサレス120度通電方式で三相モータ20を制御でき、且つより安価な制御回路(制御部13)を用いることができるモータ制御装置10及び電動ポンプ装置1が提供される。
As described above, the motor control device 10 in the first embodiment includes the current detection unit 12 that detects the current flowing through the three-phase motor 20, the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees, and three A control unit 13 that outputs to the drive circuit 11 a switching control signal for supplying a three-phase AC voltage superimposed with a high-frequency voltage having a frequency higher than that of the phase AC voltage to the three-phase motor 20 . The control unit 13 generates an inductance change signal correlated with a change in inductance based on the detected current obtained from the current detection unit 12, and controls switching timing of the energization pattern based on the generated inductance change signal.
According to the first embodiment as described above, the motor control device 10 can control the three-phase motor 20 by the sensorless 120-degree energization method to which the HFI technology is applied, and can use a more inexpensive control circuit (control unit 13). and an electric pump device 1 are provided.
 ところで、従来のセンサレス120度通電方式では、三相モータの回転数が所定の回転数以上でなければ、ゼロクロス点を検出可能な誘起電圧は発生しない。そのため、従来のセンサレス120度通電方式では、三相モータの起動時に、三相モータの回転数が所定の回転数に達するまで、所定の転流周波数で強制的に通電パターンを切り替える強制転流制御を行う場合が多い。しかしながら、強制転流制御では、三相モータの回転位置に関係なく強制的に通電パターンを切り替えるため、負荷の変動に弱い。これに対して、第1実施形態では、低回転域でも通電切替タイミングを取得可能なインダクタンス変化信号を用いて三相モータ20のセンサレス同期制御を行うことができるため、三相モータの起動時における負荷の変動に強くなる。 By the way, in the conventional sensorless 120-degree energization method, unless the rotation speed of the three-phase motor is equal to or higher than a predetermined rotation speed, an induced voltage that can detect the zero-crossing point is not generated. Therefore, in the conventional sensorless 120-degree energization method, forced commutation control that forcibly switches the energization pattern at a predetermined commutation frequency until the rotation speed of the three-phase motor reaches a predetermined rotation speed when the three-phase motor is started. in many cases. However, forced commutation control is vulnerable to load fluctuations because the energization pattern is forcibly switched regardless of the rotational position of the three-phase motor. In contrast, in the first embodiment, sensorless synchronous control of the three-phase motor 20 can be performed using an inductance change signal that can acquire the energization switching timing even in the low rotation range. Resistant to load fluctuations.
 また、第1実施形態のモータ制御装置10において、電流検出部12は三相モータ20の三相に流れる電流を検出し、制御部13は、電流検出部12から得られる三相の検出電流に基づいて三相のインダクタンスの変化と相関する三相のインダクタンス変化信号を生成し、三相のインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。
 これにより、三相のインダクタンス変化信号から60度間隔で得られる通電切替タイミングに基づいて通電パターンの切替タイミングが制御されるので、精度よく60度間隔で通電パターンを切り替えることができる。
In the motor control device 10 of the first embodiment, the current detection unit 12 detects currents flowing through the three phases of the three-phase motor 20, and the control unit 13 detects the three-phase currents obtained from the current detection unit 12. Based on this, a three-phase inductance change signal that correlates with the three-phase inductance change is generated, and the switching timing of the energization pattern is controlled based on the three-phase inductance change signal.
As a result, the switching timing of the energization pattern is controlled based on the energization switching timing obtained at intervals of 60 degrees from the three-phase inductance change signals, so that the energization pattern can be switched at intervals of 60 degrees with high accuracy.
〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。
 図5は、本発明の第2実施形態におけるモータ制御装置10Aを備える電動ポンプ装置2を模式的に示すブロック図である。図6は、第2実施形態の制御部13Aが有する各機能をブロックで表す機能ブロック図である。図5及び図6では、第2実施形態における電動ポンプ装置2の構成要素のうち、第1実施形態における電動ポンプ装置1の構成要素と同じ構成要素には同一の符号を付している。以下の説明では、第2実施形態における電動ポンプ装置2の構成要素のうち、第1実施形態における電動ポンプ装置1の構成要素と異なる構成要素について説明し、同じ構成要素についての説明は省略する。
[Second embodiment]
Next, a second embodiment of the invention will be described.
FIG. 5 is a block diagram schematically showing an electric pump device 2 having a motor control device 10A according to a second embodiment of the invention. FIG. 6 is a functional block diagram showing each function of the control unit 13A according to the second embodiment. 5 and 6, among the components of the electric pump device 2 in the second embodiment, the same components as the components of the electric pump device 1 in the first embodiment are denoted by the same reference numerals. In the following description, among the constituent elements of the electric pump device 2 in the second embodiment, constituent elements that are different from the constituent elements of the electric pump device 1 in the first embodiment will be explained, and explanations of the same constituent elements will be omitted.
 図5に示すように、電動ポンプ装置2は、モータ制御装置10Aと、電動ポンプ40と、を備える。モータ制御装置10Aは、第1実施形態の電流検出部12に替えて、シャント抵抗器15を電流検出部として備える。また、モータ制御装置10Aは、第1実施形態の制御部13に替えて、制御部13Aを備える。 As shown in FIG. 5, the electric pump device 2 includes a motor control device 10A and an electric pump 40. The motor control device 10A includes a shunt resistor 15 as a current detection section instead of the current detection section 12 of the first embodiment. Further, the motor control device 10A includes a control section 13A instead of the control section 13 of the first embodiment.
 シャント抵抗器15は、三相モータ20に流れる電流を検出する電流検出部である。シャント抵抗器15は、三相モータ20を介して駆動回路11の電源ラインに流れる電流を検出する。以下の説明において、駆動回路11の電源ラインを「バスライン」と呼称する場合がある。シャント抵抗器15の一端は、U相下側アームスイッチQUL、V相下側アームスイッチQVL、及びW相下側アームスイッチQWLのソース端子のそれぞれと電気的に接続される。シャント抵抗器15の他端は、直流電源200の負極端子と電気的に接続される。さらに、シャント抵抗器15の一端は、制御部13Aと電気的に接続される。バスラインに流れる電流は、シャント抵抗器15を介して車内グランドに流れ込む。従って、シャント抵抗器15の端子間には、バスラインに流れる電流に比例する電圧が現れる。このようなシャント抵抗器15の端子間電圧が、バスラインに流れる電流の検出結果を示すバスライン検出電流Ibとして制御部13Aに供給される。なお、必要に応じて、シャント抵抗器15の一端と制御部13Aとの間に抵抗分圧回路を設けてもよい。 The shunt resistor 15 is a current detector that detects current flowing through the three-phase motor 20 . The shunt resistor 15 detects current flowing through the power supply line of the drive circuit 11 via the three-phase motor 20 . In the following description, the power supply line of the drive circuit 11 may be called "bus line". One end of the shunt resistor 15 is electrically connected to each of the source terminals of the U-phase lower arm switch QUL , the V-phase lower arm switch QVL , and the W-phase lower arm switch QWL . The other end of shunt resistor 15 is electrically connected to the negative terminal of DC power supply 200 . Furthermore, one end of the shunt resistor 15 is electrically connected to the controller 13A. The current flowing through the bus line flows through the shunt resistor 15 into the vehicle interior ground. Therefore, a voltage appears across the terminals of the shunt resistor 15 in proportion to the current flowing through the bus line. Such a voltage across the terminals of the shunt resistor 15 is supplied to the controller 13A as a bus line detection current Ib indicating the detection result of the current flowing through the bus line. A resistance voltage dividing circuit may be provided between one end of the shunt resistor 15 and the control section 13A, if necessary.
 制御部13Aは、例えばMCUなどのマイクロプロセッサである。制御部13Aには、不図示の上位制御装置から出力される指令信号VCが入力される。また、制御部13Aには、シャント抵抗器15の端子間電圧が、バスライン検出電流Ibとして入力される。制御部13Aは、不図示の通信バスを介して記憶部14と通信可能に接続される。 The control unit 13A is, for example, a microprocessor such as an MCU. A command signal VC output from a host controller (not shown) is input to the controller 13A. Further, the voltage across the terminals of the shunt resistor 15 is input to the control section 13A as the bus line detection current Ib. The control unit 13A is communicably connected to the storage unit 14 via a communication bus (not shown).
 制御部13Aは、三相モータ20の通電パターンが60度間隔で切替えられ、且つ三相交流電圧の周波数よりも高い周波数を有する高周波電圧が重畳された三相交流電圧が三相モータ20に供給されるスイッチング制御信号を駆動回路11に出力する。制御部13Aは、シャント抵抗器15から得られるバスライン検出電流Ibに基づいてバスラインのインダクタンスの変化と相関するインダクタンス変化信号を生成し、生成されたインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。 The control unit 13A supplies the three-phase motor 20 with a three-phase AC voltage in which the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees and a high-frequency voltage having a higher frequency than the frequency of the three-phase AC voltage is superimposed. The switching control signal obtained is output to the drive circuit 11 . The control unit 13A generates an inductance change signal correlated with a change in inductance of the bus line based on the bus line detection current Ib obtained from the shunt resistor 15, and determines switching timing of the energization pattern based on the generated inductance change signal. to control.
 シャント抵抗器15によって検出されたバスライン検出電流Ibには、三相交流電圧に重畳された高周波電圧と同じ周波数を有する高周波電流が含まれる。制御部13Aは、シャント抵抗器15から得られるバスライン検出電流Ibから、三相交流電圧に重畳された高周波電圧と同じ周波数を有する周波数成分を抽出電流として抽出し、抽出した抽出電流と、抽出電流の位相をπ/2だけシフトさせた位相シフト電流との二乗和を算出することにより、インダクタンス変化信号を生成する。制御部13Aは、抽出電流に対してヒルベルト変換を行うことにより、位相シフト電流を取得する。本実施形態においてヒルベルト変換は、FIRフィルタにより行われる。 The bus line detection current Ib detected by the shunt resistor 15 contains a high frequency current having the same frequency as the high frequency voltage superimposed on the three-phase AC voltage. The control unit 13A extracts, as an extracted current, a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the bus line detection current Ib obtained from the shunt resistor 15, and extracts the extracted current and the extracted current. An inductance change signal is generated by calculating the sum of squares with the phase-shifted current obtained by shifting the phase of the current by π/2. 13 A of control parts acquire a phase shift current by performing Hilbert transform with respect to an extraction current. In this embodiment, the Hilbert transform is performed by an FIR filter.
 図6に示すように、制御部13Aは、第1実施形態のインダクタンス変化信号生成部50及び通電パターン設定部60に替えて、インダクタンス変化信号生成部50A及び通電パターン設定部60Aを有する。 As shown in FIG. 6, the control unit 13A has an inductance change signal generation unit 50A and an energization pattern setting unit 60A instead of the inductance change signal generation unit 50 and the energization pattern setting unit 60 of the first embodiment.
 インダクタンス変化信号生成部50Aは、シャント抵抗器15から得られるバスライン検出電流Ibに基づいてバスラインのインダクタンスの変化と相関するバスラインインダクタンス変化信号を生成する。インダクタンス変化信号生成部50Aは、BPF51Aと、ヒルベルト変換部54Aと、二乗和平方根演算部57Aと、を有する。 The inductance change signal generation unit 50A generates a bus line inductance change signal that correlates with the change in inductance of the bus line based on the bus line detection current Ib obtained from the shunt resistor 15 . The inductance change signal generation unit 50A has a BPF 51A, a Hilbert transform unit 54A, and a sum-of-squares square root operation unit 57A.
 BPF51Aは、シャント抵抗器15から得られるバスライン検出電流Ibから、三相交流電圧に重畳された高周波電圧と同じ周波数を有する周波数成分をバスライン抽出電流Ibhとして抽出し、抽出したバスライン抽出電流Ibhをヒルベルト変換部54Aに出力する。 The BPF 51A extracts a frequency component having the same frequency as the high-frequency voltage superimposed on the three-phase AC voltage from the bus line detection current Ib obtained from the shunt resistor 15 as a bus line extraction current Ibh. Ibh is output to the Hilbert transform unit 54A.
 ヒルベルト変換部54Aは、バスライン抽出電流Ibhを、実数部Xb及び虚数部Ybを有する複素解析信号に変換する。実数部Xbは、バスライン抽出電流Ibhと同じである。虚数部Ybは、FIRフィルタにより行われるヒルベルト変換によって得られる。虚数部Ybは、バスライン抽出電流Ibhの位相をπ/2だけシフトさせた位相シフト電流である。ヒルベルト変換部54Aは、実数部Xb及び虚数部Ybを二乗和平方根演算部57Aに出力する。 The Hilbert transform unit 54A transforms the bus line extracted current Ibh into a complex analytic signal having a real part Xb and an imaginary part Yb. The real part Xb is the same as the bus line extraction current Ibh. The imaginary part Yb is obtained by the Hilbert transform performed by the FIR filter. The imaginary part Yb is a phase-shifted current obtained by shifting the phase of the bus line extracted current Ibh by π/2. The Hilbert transform unit 54A outputs the real part Xb and the imaginary part Yb to the root-sum-of-squares operation unit 57A.
 二乗和平方根演算部57Aは、ヒルベルト変換部54Aから得られる実数部Xb及び虚数部Ybの二乗和平方根を演算することにより、バスラインのインダクタンスの変化と相関するバスラインインダクタンス変化信号Zbを算出する。言い換えれば、二乗和平方根演算部57Aは、バスライン抽出電流Ibhと、バスライン抽出電流Ibhの位相をπ/2だけシフトさせた位相シフト電流との二乗和平方根を演算することにより、バスラインインダクタンス変化信号Zbを算出する。二乗和平方根演算部57Aは、バスラインインダクタンス変化信号Zbを通電パターン設定部60Aに出力する。 Root-sum-of-square calculator 57A calculates the square root of the sum of squares of real part Xb and imaginary part Yb obtained from Hilbert transform part 54A, thereby calculating bus line inductance change signal Zb that correlates with the change in inductance of the bus line. . In other words, the square-sum-square calculator 57A calculates the square-root sum of the squares of the bus line extracted current Ibh and the phase-shifted current obtained by shifting the phase of the bus line extracted current Ibh by π/2 to obtain the bus line inductance. A change signal Zb is calculated. Root-sum-of-squares operation unit 57A outputs bus line inductance change signal Zb to energization pattern setting unit 60A.
 通電パターン設定部60Aは、バスラインインダクタンス変化信号Zbに基づいて通電パターンを切り替える。図7は、U相インダクタンス変化信号Zu、V相インダクタンス変化信号Zv、W相インダクタンス変化信号Zwおよびバスラインインダクタンス変化信号Zbと、通電パターンとの時間的な対応関係を示すタイミングチャートである。 The energization pattern setting unit 60A switches the energization pattern based on the bus line inductance change signal Zb. FIG. 7 is a timing chart showing temporal correspondences between the U-phase inductance change signal Zu, the V-phase inductance change signal Zv, the W-phase inductance change signal Zw, the bus line inductance change signal Zb, and the energization pattern.
 図7に示すように、通電パターン設定部60Aは、バスラインインダクタンス変化信号Zbと所定の第4閾値Zbthとを比較し、バスラインインダクタンス変化信号Zbが第4閾値Zbth以上となるタイミングで通電パターンを切り替える。図7に示す例では、通電パターン設定部60Aは、時刻t1から時刻t13のそれぞれにおいて通電パターンを切り替える。以下では、時刻t1から時刻t13を通電パターン切替タイミングと呼称する。なお、通電パターン切替タイミングのときのバスラインインダクタンス変化信号Zbの値である第4閾値Zbthを、事前に実験或いはシミュレーションなどによって取得する必要がある。 As shown in FIG. 7, the energization pattern setting unit 60A compares the bus line inductance change signal Zb with a predetermined fourth threshold value Zbth, and sets the energization pattern at the timing when the bus line inductance change signal Zb becomes equal to or greater than the fourth threshold value Zbth. switch. In the example shown in FIG. 7, the energization pattern setting unit 60A switches the energization pattern each from time t1 to time t13. Hereinafter, the period from time t1 to time t13 will be referred to as energization pattern switching timing. It should be noted that the fourth threshold value Zbth, which is the value of the bus line inductance change signal Zb at the energization pattern switching timing, needs to be acquired in advance through experiments, simulations, or the like.
 図7に示すように、バスラインインダクタンス変化信号Zbには、電気角で60度間隔で1つの通電切替タイミングが現れる。 As shown in FIG. 7, one energization switching timing appears in the bus line inductance change signal Zb at an electrical angle interval of 60 degrees.
 例えば、時刻t1において通電パターンが通電パターンPA1に切り替えられたと仮定する。この場合、通電パターン設定部60Aは、時刻t1から電気角で60度回転し通電切替タイミングである第4閾値Zbthが現れた時刻t2で通電パターンを通電パターンPA2に切り替える。
 通電パターン設定部60Aは、時刻t2から電気角で60度回転し通電切替タイミングである第4閾値Zbthが現れた時刻t3で通電パターンを通電パターンPA3に切り替える。
 通電パターン設定部60Aは、時刻t3から電気角で60度回転し通電切替タイミングである第4閾値Zbthが現れた時刻t4で通電パターンを通電パターンPA4に切り替える。
 通電パターン設定部60Aは、時刻t4から電気角で60度回転し通電切替タイミングである第4閾値Zbthが現れた時刻t5で通電パターンを通電パターンPA5に切り替える。
 通電パターン設定部60Aは、時刻t5から電気角で60度回転し通電切替タイミングである第4閾値Zbthが現れた時刻t6で通電パターンを通電パターンPA6に切り替える。
 通電パターン設定部60Aは、時刻t6から電気角で60度回転し通電切替タイミングである第4閾値Zbthが現れた時刻t7で通電パターンを通電パターンPA1に切り替える。
 以降、通電パターン設定部60Aは、時刻t2から時刻t7までの動作と同じ動作を繰り返す。
For example, assume that the energization pattern is switched to the energization pattern PA1 at time t1. In this case, the energization pattern setting unit 60A switches the energization pattern to the energization pattern PA2 at the time t2 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t1, appears.
The energization pattern setting unit 60A switches the energization pattern to the energization pattern PA3 at the time t3 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t2, appears.
The energization pattern setting unit 60A switches the energization pattern to the energization pattern PA4 at the time t4 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t3, appears.
The energization pattern setting unit 60A switches the energization pattern to the energization pattern PA5 at time t5 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from time t4, appears.
The energization pattern setting unit 60A switches the energization pattern to the energization pattern PA6 at the time t6 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t5, appears.
The energization pattern setting unit 60A switches the energization pattern to the energization pattern PA1 at the time t7 when the fourth threshold value Zbth, which is the energization switching timing after rotating by 60 electrical degrees from the time t6, appears.
Thereafter, the energization pattern setting unit 60A repeats the same operation as the operation from time t2 to time t7.
 なお、以上の動作は、U相コイル、V相コイル及びW相コイルがデルタ結線される場合の動作である。進角制御を行う場合には、通電切替タイミングよりも早いタイミングで通電パターンを切り替えればよい。 It should be noted that the above operation is the operation when the U-phase coil, the V-phase coil, and the W-phase coil are delta-connected. When performing advance angle control, the energization pattern may be switched at a timing earlier than the energization switching timing.
 通電パターン設定部60Aは、通電パターンの切替えとともに、指令信号VCによって指示される指令電圧を加算部80に出力する。なお、第1実施形態と同様に、例えば、指令信号VCが回転数を指示する回転数指令信号である場合、通電パターン設定部60Aの前段に、指示された回転数を指令電圧に変換する電圧変換部を設けてもよい。高周波電圧印加部70は、三相交流電圧の周波数より高い周波数を有する高周波電圧を加算部80に出力する。加算部80は、通電パターン設定部60からの指令電圧と、高周波電圧印加部70からの高周波電圧とを加算し、高周波電圧が重畳された指令電圧をPWM変換部90に出力する。PWM変換部90は、高周波電圧が重畳された指令電圧に基づいてスイッチング制御信号を駆動回路11に出力する。 The energization pattern setting unit 60A outputs the command voltage indicated by the command signal VC to the adding unit 80 while switching the energization pattern. As in the first embodiment, for example, when the command signal VC is a rotation speed command signal that indicates the rotation speed, a voltage for converting the indicated rotation speed into a command voltage is provided in the preceding stage of the energization pattern setting unit 60A. A converter may be provided. The high-frequency voltage applying section 70 outputs to the adding section 80 a high-frequency voltage having a frequency higher than that of the three-phase AC voltage. The addition unit 80 adds the command voltage from the energization pattern setting unit 60 and the high frequency voltage from the high frequency voltage application unit 70 and outputs the command voltage superimposed with the high frequency voltage to the PWM conversion unit 90 . The PWM converter 90 outputs a switching control signal to the drive circuit 11 based on the command voltage superimposed with the high frequency voltage.
 例えば、図7に示すように、時刻t2において通電パターンが通電パターンPA2に切り替えられた場合、PWM変換部90は、V相上側アームスイッチQVH及びW相下側アームスイッチQWLをオンに制御するとともに、残りのアームスイッチをオフに制御するスイッチング制御信号を駆動回路11に出力する(図2参照)。通電パターンPA2の場合、PWM変換部90は、V相上側アームスイッチQVHのみ、高周波電圧が重畳された指令電圧に応じたスイッチングデューティ比でスイッチング制御する。その結果、高周波電圧が重畳された三相交流電圧が駆動回路11から三相モータ20に供給される。なお、本実施形態におけるセンサレス120度通電方式の通電パターンはあくまで一例であり、要求される仕様等によって適宜変更可能である。 For example, as shown in FIG. 7, when the energization pattern is switched to the energization pattern PA2 at time t2, the PWM converter 90 turns on the V-phase upper arm switch QVH and the W-phase lower arm switch QWL . At the same time, a switching control signal for turning off the remaining arm switches is output to the drive circuit 11 (see FIG. 2). In the case of the energization pattern PA2, the PWM converter 90 performs switching control of only the V-phase upper arm switch QVH with a switching duty ratio corresponding to the command voltage superimposed with the high-frequency voltage. As a result, a three-phase AC voltage superimposed with a high-frequency voltage is supplied from the drive circuit 11 to the three-phase motor 20 . It should be noted that the energization pattern of the sensorless 120-degree energization method in the present embodiment is merely an example, and can be changed as appropriate according to required specifications and the like.
 上記のように、制御部13Aは、バスラインインダクタンス変化信号Zbから得られる通電切替タイミングに同期して60度間隔で通電パターンの切り替え及び各アームスイッチのスイッチング制御を行うことにより、三相モータ20をセンサレス120度通電方式で制御する。 As described above, the control unit 13A switches the energization pattern at intervals of 60 degrees in synchronization with the energization switching timing obtained from the bus line inductance change signal Zb, and controls the switching of each arm switch. is controlled by a sensorless 120-degree energization method.
 以上説明したように、第2実施形態におけるモータ制御装置10Aは、三相モータ20に流れる電流を検出するシャント抵抗器15と、三相モータ20の通電パターンが60度間隔で切替えられ、且つ三相交流電圧の周波数よりも高い周波数を有する高周波電圧が重畳された三相交流電圧が三相モータ20に供給されるスイッチング制御信号を駆動回路11に出力する制御部13Aとを備える。制御部13Aは、シャント抵抗器15から得られる検出電流に基づいてインダクタンスの変化と相関するインダクタンス変化信号を生成し、生成されたインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。
 このような第2実施形態によれば、上記第1実施形態と同様に、HFI技術を適用したセンサレス120度通電方式で三相モータ20を制御でき、且つより安価な制御回路(制御部13A)を用いることができるモータ制御装置10A及び電動ポンプ装置2が提供される。また、上記第1実施形態と同様に、第2実施形態では、低回転域でも通電切替タイミングを取得可能なインダクタンス変化信号を用いて三相モータ20のセンサレス同期制御を行うことができるため、三相モータの起動時における負荷の変動に強くなる。
As described above, the motor control device 10A in the second embodiment includes the shunt resistor 15 that detects the current flowing through the three-phase motor 20, the energization pattern of the three-phase motor 20 is switched at intervals of 60 degrees, and three A control unit 13A that outputs to the drive circuit 11 a switching control signal for supplying a three-phase AC voltage superimposed with a high-frequency voltage having a frequency higher than that of the phase AC voltage to the three-phase motor 20. The control unit 13A generates an inductance change signal correlated with a change in inductance based on the detected current obtained from the shunt resistor 15, and controls switching timing of the energization pattern based on the generated inductance change signal.
According to the second embodiment, similarly to the first embodiment, the three-phase motor 20 can be controlled by the sensorless 120-degree energization method to which the HFI technology is applied, and a more inexpensive control circuit (control unit 13A) A motor control device 10A and an electric pump device 2 are provided. Further, as in the first embodiment, in the second embodiment, sensorless synchronous control of the three-phase motor 20 can be performed using an inductance change signal that can acquire the energization switching timing even in the low speed range. Resistant to load fluctuations during phase motor start-up.
 また、第2実施形態のモータ制御装置10Aにおいて、シャント抵抗器15は、三相モータ20を介して駆動回路11の電源ラインに流れる電流を検出し、制御部13Aは、シャント抵抗器15から得られる電源ラインの検出電流に基づいて電源ラインのインダクタンスの変化と相関するインダクタンス変化信号を生成し、電源ラインのインダクタンス変化信号に基づいて通電パターンの切替えタイミングを制御する。
 これにより、電源ラインのインダクタンス変化信号から60度間隔で得られる通電切替タイミングに基づいて通電パターンの切替タイミングが制御されるので、精度よく60間隔で通電パターンを切り替えることができるとともに、1本のインダクタンス変化信号で通電パターンの切替えを行えるため、第1実施形態と比較して制御部13Aの演算負荷をより低減できる。
In addition, in the motor control device 10A of the second embodiment, the shunt resistor 15 detects the current flowing through the power supply line of the drive circuit 11 via the three-phase motor 20, and the control section 13A detects the An inductance change signal correlated with a change in the inductance of the power supply line is generated based on the detected current of the power supply line, and the switching timing of the energization pattern is controlled based on the inductance change signal of the power supply line.
As a result, the switching timing of the energization pattern is controlled based on the energization switching timing obtained at intervals of 60 degrees from the inductance change signal of the power supply line. Since the energization pattern can be switched by the inductance change signal, the calculation load of the controller 13A can be further reduced as compared with the first embodiment.
〔変形例〕
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
 例えば、三相モータ20の起動時の低回転域では、上記実施形態で説明したセンサレス120度通電方式で三相モータ20を制御し、三相モータ20の回転数が、ゼロクロス点を検出可能な誘起電圧が発生する回転数に到達した後に、ゼロクロス点の検出結果に基づいて通電パターンを切り替える従来のセンサレス120度通電方式で三相モータ20を制御してもよい。
[Modification]
The present invention is not limited to the above-described embodiments, and each configuration described in this specification can be appropriately combined within a mutually consistent range.
For example, in the low rotation range when the three-phase motor 20 is started, the three-phase motor 20 is controlled by the sensorless 120-degree energization method described in the above embodiment, and the rotation speed of the three-phase motor 20 can detect the zero cross point. The three-phase motor 20 may be controlled by a conventional sensorless 120-degree energization method in which the energization pattern is switched based on the detection result of the zero-crossing point after reaching the rotational speed at which the induced voltage is generated.
 上記第1実施形態では、U相電流センサ12u、V相電流センサ12v、およびW相電流センサ12wとしてCT方式の電流センサを用いる形態を例示したが、本発明はこれに限定されず、各相の下側アームスイッチとグランドとの間に設けられるシャント抵抗器を各相の電流を検出する電流センサとして用いてもよい。 In the first embodiment, the U-phase current sensor 12u, the V-phase current sensor 12v, and the W-phase current sensor 12w are CT-type current sensors, but the present invention is not limited to this. A shunt resistor provided between the lower arm switch and the ground may be used as a current sensor for detecting the current of each phase.
 上記第2実施形態では、駆動回路11の電源ラインに流れる電流を検出する電流センサとしてシャント抵抗器15を用いる形態を例示したが、本発明はこれに限定されず、シャント抵抗器15に替えてCT方式の電流センサを用いてもよい。CT方式の電流センサを用いる場合、駆動回路11の低電圧側の電源ラインにCT方式の電流センサを設けてもよいし、或いは駆動回路11の高電圧側の電源ラインにCT方式の電流センサを設けてもよい。 In the second embodiment, the shunt resistor 15 is used as a current sensor for detecting the current flowing in the power supply line of the drive circuit 11. However, the present invention is not limited to this, and the shunt resistor 15 is replaced with A CT-type current sensor may also be used. When a CT-type current sensor is used, a CT-type current sensor may be provided on the low-voltage power supply line of the drive circuit 11, or a CT-type current sensor may be provided on the high-voltage power supply line of the drive circuit 11. may be provided.
 上記実施形態では、本発明の電動ポンプ装置として、ハイブリッド車両に搭載される駆動用モータに冷却オイルFを供給する電動ポンプ装置を例示したが、本発明の電動ポンプ装置はこれに限定されず、例えばトランスミッションにオイルを供給する電動ポンプ装置などにも本発明を適用するこができる。また、電動ポンプから吐出される流体は冷却オイル等のオイルに限定されない。また、本発明のモータ制御装置は、電動ポンプのモータを制御するために用いられるだけでなく、モータを使用するアプリケーションに対して全般的に適用することが可能である。 In the above embodiment, an electric pump device that supplies cooling oil F to a drive motor mounted on a hybrid vehicle was exemplified as the electric pump device of the present invention, but the electric pump device of the present invention is not limited to this. For example, the present invention can be applied to an electric pump device for supplying oil to a transmission. Further, the fluid discharged from the electric pump is not limited to oil such as cooling oil. Moreover, the motor control device of the present invention can be applied not only to control the motor of the electric pump, but also to general applications using the motor.
 1、2…電動ポンプ装置、10、10A…モータ制御装置、11…駆動回路、12u…U相電流センサ(電流検出部)、12v…V相電流センサ(電流検出部)、12w…W相電流センサ(電流検出部)、13、13A…制御部、14…記憶部、15…シャント抵抗器(電流検出部)、20…三相モータ、21…シャフト(回転軸)、22u…U相端子、22v…V相端子、22w…W相端子、30…ポンプ、31…オイル吸入口、32…オイル吐出口、40…電動ポンプ、50、50A…インダクタンス変化信号生成部、51…第1のBPF、52…第2のBPF、53…第3のBPF、54…第1のヒルベルト変換部、55…第2のヒルベルト変換部、56…第3のヒルベルト変換部、57…第1の二乗和平方根演算部、58…第2の二乗和平方根演算部、59…第3の二乗和平方根演算部、51A…BPF、54A…ヒルベルト変換部、57A…二乗和平方根演算部、60、60A…通電パターン設定部、70…高周波電圧印加部、80…加算部、90…PWM変換部、200…直流電源、F…冷却オイル 1, 2... Electric pump device, 10, 10A... Motor control device, 11... Drive circuit, 12u... U-phase current sensor (current detection unit), 12v... V-phase current sensor (current detection unit), 12w... W-phase current Sensor (current detection unit) 13, 13A control unit 14 storage unit 15 shunt resistor (current detection unit) 20 three-phase motor 21 shaft (rotating shaft) 22u U-phase terminal 22v... V-phase terminal, 22w... W-phase terminal, 30... Pump, 31... Oil suction port, 32... Oil discharge port, 40... Electric pump, 50, 50A... Inductance change signal generator, 51... First BPF, 52... Second BPF, 53... Third BPF, 54... First Hilbert transform unit, 55... Second Hilbert transform unit, 56... Third Hilbert transform unit, 57... First root sum square calculation Section 58... Second root-sum-of-squares calculator 59... Third root-sum-of-squares calculator 51A...BPF 54A... Hilbert transform section 57A... Square-root-sum-of- squares calculator 60, 60A... Conducting pattern setting section , 70... High-frequency voltage application unit, 80... Addition unit, 90... PWM conversion unit, 200... DC power supply, F... Cooling oil

Claims (7)

  1.  センサレス120度通電方式によって突極性を有する三相モータを制御するモータ制御装置であって、
     直流電源電圧を三相交流電圧に変換して前記三相モータに供給する駆動回路と、
     前記三相モータに流れる電流を検出する電流検出部と、
     前記三相モータの通電パターンが60度間隔で切替えられ、且つ前記三相交流電圧の周波数よりも高い周波数を有する高周波電圧が重畳された前記三相交流電圧が前記三相モータに供給されるスイッチング制御信号を前記駆動回路に出力する制御部と、
     を備え、
     前記制御部は、前記電流検出部から得られる検出電流に基づいてインダクタンスの変化と相関するインダクタンス変化信号を生成し、前記インダクタンス変化信号に基づいて前記通電パターンの切替えタイミングを制御する、
     モータ制御装置。
    A motor control device for controlling a three-phase motor having saliency by a sensorless 120-degree energization method,
    a drive circuit that converts a DC power supply voltage into a three-phase AC voltage and supplies the voltage to the three-phase motor;
    a current detection unit that detects a current flowing through the three-phase motor;
    Switching in which the energization pattern of the three-phase motor is switched at intervals of 60 degrees, and the three-phase AC voltage superimposed with a high-frequency voltage having a frequency higher than that of the three-phase AC voltage is supplied to the three-phase motor. a control unit that outputs a control signal to the drive circuit;
    with
    The control unit generates an inductance change signal that correlates with a change in inductance based on the detected current obtained from the current detection unit, and controls switching timing of the energization pattern based on the inductance change signal.
    motor controller.
  2.  前記電流検出部は、前記三相モータの三相に流れる電流を検出し、
     前記制御部は、前記電流検出部から得られる前記三相の検出電流に基づいて前記三相のインダクタンスの変化と相関する三相のインダクタンス変化信号を生成し、前記三相のインダクタンス変化信号に基づいて前記通電パターンの切替えタイミングを制御する、請求項1に記載のモータ制御装置。
    The current detection unit detects a current flowing through the three phases of the three-phase motor,
    The control unit generates a three-phase inductance change signal correlated with the three-phase inductance change based on the three-phase detected current obtained from the current detection unit, and generates a three-phase inductance change signal based on the three-phase inductance change signal. 2. The motor control device according to claim 1, wherein a switching timing of the energization pattern is controlled by a control.
  3.  前記電流検出部は、前記三相モータを介して前記駆動回路の電源ラインに流れる電流を検出し、
     前記制御部は、前記電流検出部から得られる前記電源ラインの検出電流に基づいて前記電源ラインのインダクタンスの変化と相関するインダクタンス変化信号を生成し、前記電源ラインのインダクタンス変化信号に基づいて前記通電パターンの切替えタイミングを制御する、請求項1に記載のモータ制御装置。
    The current detection unit detects a current flowing through the power supply line of the drive circuit via the three-phase motor,
    The control unit generates an inductance change signal correlated with a change in inductance of the power supply line based on the detected current of the power supply line obtained from the current detection unit, and the current is supplied based on the inductance change signal of the power supply line. 2. The motor control device according to claim 1, which controls pattern switching timing.
  4.  前記制御部は、前記電流検出部から得られる検出電流から、前記高周波電圧と同じ周波数を有する周波数成分を抽出電流として抽出し、前記抽出電流と、前記抽出電流の位相をπ/2だけシフトさせた位相シフト電流との二乗和を算出することにより、前記インダクタンス変化信号を生成する、請求項1から3のいずれか一項に記載のモータ制御装置。 The control section extracts a frequency component having the same frequency as that of the high-frequency voltage as an extracted current from the detected current obtained from the current detecting section, and shifts the phase of the extracted current and the extracted current by π/2. 4. The motor controller according to any one of claims 1 to 3, wherein the inductance change signal is generated by calculating the sum of squares with the phase shift current.
  5.  前記制御部は、前記抽出電流に対してヒルベルト変換を行うことにより、前記位相シフト電流を取得する、請求項4に記載のモータ制御装置。 The motor control device according to claim 4, wherein the control unit obtains the phase-shifted current by performing a Hilbert transform on the extracted current.
  6.  前記ヒルベルト変換が、FIRフィルタにより行われる、請求項5に記載のモータ制御装置。 The motor control device according to claim 5, wherein the Hilbert transform is performed by an FIR filter.
  7.  突極性を有する三相モータと、
     前記三相モータの回転軸の軸方向一方側に位置し、前記三相モータによって前記回転軸を介して駆動されて流体を吐出するポンプと、
     センサレス120度通電方式によって前記三相モータを制御する請求項1から6のいずれか一項に記載のモータ制御装置と、
     を備える、電動ポンプ装置。
    a three-phase motor with saliency;
    a pump positioned on one axial side of the rotating shaft of the three-phase motor and driven by the three-phase motor via the rotating shaft to discharge a fluid;
    The motor control device according to any one of claims 1 to 6, which controls the three-phase motor by a sensorless 120-degree energization method;
    An electric pump device comprising:
PCT/JP2022/012010 2021-06-29 2022-03-16 Motor control device and electric pump device WO2023276320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-107373 2021-06-29
JP2021107373 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276320A1 true WO2023276320A1 (en) 2023-01-05

Family

ID=84691162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012010 WO2023276320A1 (en) 2021-06-29 2022-03-16 Motor control device and electric pump device

Country Status (1)

Country Link
WO (1) WO2023276320A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780373A (en) * 2012-07-06 2012-11-14 天津大学 Permanent magnet motor with obvious rotor position features
JP2014079041A (en) * 2012-10-09 2014-05-01 Hitachi Appliances Inc Motor controller, and refrigerator and electrical machine using the same
JP2016201923A (en) * 2015-04-10 2016-12-01 ニデック シンガポール ピーティーイー リミテッド Rotation position estimation method for motor, and control apparatus for motor
JP2016201872A (en) * 2015-04-07 2016-12-01 日立オートモティブシステムズ株式会社 Motor drive device and phase current detection method for three-phase brushless motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780373A (en) * 2012-07-06 2012-11-14 天津大学 Permanent magnet motor with obvious rotor position features
JP2014079041A (en) * 2012-10-09 2014-05-01 Hitachi Appliances Inc Motor controller, and refrigerator and electrical machine using the same
JP2016201872A (en) * 2015-04-07 2016-12-01 日立オートモティブシステムズ株式会社 Motor drive device and phase current detection method for three-phase brushless motor
JP2016201923A (en) * 2015-04-10 2016-12-01 ニデック シンガポール ピーティーイー リミテッド Rotation position estimation method for motor, and control apparatus for motor

Similar Documents

Publication Publication Date Title
US6670784B2 (en) Motor Apparatus and control method therefor
US9590552B2 (en) Motor drive device and electric compressor
JP4256392B2 (en) Control device for vehicle generator motor
JP5436681B2 (en) Synchronous motor drive system
US8872457B2 (en) Method and apparatus for driving a polyphase electronically commutated electric machine and a motor system
KR20140038878A (en) Sensorless driving device and sensorless driving method for brushless motor
JP2008245411A (en) Permanent magnet synchronous motor controller, and method thereof
CN109983689B (en) Inverter control device and motor drive system
CA2772805C (en) Position sensing circuit for brushless motors
JP4590761B2 (en) Control device for permanent magnet type synchronous motor
WO2010100989A1 (en) Controller of electric motor
KR20180082128A (en) Apparatus and method for controlling a start of BLDC motor using detection of phase voltage
WO2023276320A1 (en) Motor control device and electric pump device
JP4670044B2 (en) Method and apparatus for estimating magnetic pole position of electric motor
JP6440355B2 (en) Method and apparatus for synchronizing rotor speed with stator rotating magnetic field
JP6700954B2 (en) Control device for rotating electric machine
CN111034013B (en) Control device for three-phase synchronous motor and electric power steering device using same
JP2005323414A (en) Motor drive and electric compressor and air conditioner for vehicle mounted with motor drive
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
CN113424427A (en) Power conversion device and electric power steering device
JP5317812B2 (en) Electric motor control device
JP2005039891A (en) Control unit of synchronous machine
JP2008193790A (en) Electric motor driver for turbocharger with electric motor
JP2004015902A (en) Motor, control device and method thereof and electric equipment
JP2005278389A (en) Method and device for estimating magnetic pole position of motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832483

Country of ref document: EP

Kind code of ref document: A1