WO2023276043A1 - Servo system and articulated robot - Google Patents

Servo system and articulated robot Download PDF

Info

Publication number
WO2023276043A1
WO2023276043A1 PCT/JP2021/024743 JP2021024743W WO2023276043A1 WO 2023276043 A1 WO2023276043 A1 WO 2023276043A1 JP 2021024743 W JP2021024743 W JP 2021024743W WO 2023276043 A1 WO2023276043 A1 WO 2023276043A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
servo
communication control
communication
peripheral device
Prior art date
Application number
PCT/JP2021/024743
Other languages
French (fr)
Japanese (ja)
Inventor
進一 加藤
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/024743 priority Critical patent/WO2023276043A1/en
Priority to JP2023531240A priority patent/JPWO2023276043A1/ja
Publication of WO2023276043A1 publication Critical patent/WO2023276043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • This specification discloses technologies related to servo systems and articulated robots.
  • a stepping motor control device described in Patent Document 1 includes connection means and control means, and controls a plurality of motors by at least two arithmetic units.
  • the connection means enables the hardware of the master computing unit to be used by the slave computing unit with little impact on the processing power of the master computing unit.
  • the control means controls the slave-side arithmetic device according to a command given from the master-side arithmetic device.
  • a multi-joint robot that uses multiple servo motors to move its joints may be equipped with peripheral equipment.
  • communication for controlling the servo motors that move the joints and communication for controlling the peripheral devices are performed. If these communications coexist in the same communications network, the communications for controlling the servo motors that move the joints may be affected by the communications for controlling the peripheral devices. What has been described above can be similarly applied to the case where the above communication is performed in an articulated robot.
  • the present specification discloses a servo system and an articulated robot capable of ensuring the communication performance of the communication for controlling the servo motors that move the joints.
  • the present specification includes a first motor control unit that drives and controls first servo motors, which are a plurality of servo motors that move the joints of an articulated robot, peripheral devices provided as necessary for work by the articulated robot, and the A servo system is disclosed that includes a first communication control unit that can communicate with each of the first motor control units.
  • the present specification includes a first motor control unit that drives and controls a first servo motor that is a plurality of servo motors that move joints, and a peripheral device and the first motor control unit that are provided as necessary for work.
  • a first motor control unit that drives and controls a first servo motor that is a plurality of servo motors that move joints, and a peripheral device and the first motor control unit that are provided as necessary for work.
  • an articulated robot comprising a communicable first communication control unit.
  • the first communication control section can communicate with the peripheral device and the first motor control section. Therefore, in the servo system, the communication for controlling the servo motors that move the joints can be separated from the communication for controlling the peripheral devices, and the communication performance of the communication for controlling the servo motors that move the joints can be improved. can be secured. What has been described above for the servo system also applies to the articulated robot including the first motor control section and the first communication control section.
  • FIG. 4 is a block diagram showing an example of control blocks of the servo system; FIG. It is a perspective view showing an example of an articulated robot.
  • 1 is a perspective view showing an example of a peripheral device;
  • FIG. 11 is a perspective view showing another example of a peripheral device;
  • FIG. 4 is a plan view showing an example of a state in which supplies are arranged at predetermined positions in a storage case;
  • FIG. 4 is a plan view showing an example of a state in which a supply item is attached to a predetermined portion of an attachment portion of an object to be worked on;
  • Embodiment 1-1 Configuration Example of Servo System 10
  • the servo system 10 includes a first motor control section 21 and a first communication control section 31 .
  • the first motor control unit 21 drives and controls the first servomotors 21m, which are a plurality of servomotors that move the joints 50j of the articulated robot 50 .
  • the articulated robot 50 can take various forms as long as it moves the joints 50j by servo motors. Also, the number of joints 50j is not limited, and the articulated robot 50 can be provided with first servo motors 21m corresponding to the number of joints 50j.
  • the drive control of the first servomotor 21m can take various known controls.
  • drive control of the first servomotor 21m includes position control, speed control, current control, etc. of the first servomotor 21m.
  • the first motor control unit 21 based on a movement command (position command) and position information acquired from a position detector (for example, an encoder) that detects the position of the first servo motor 21m, the first servo Position control, speed control and current control of the motor 21m are performed.
  • a movement command (position command) can be obtained from the motion controller MC0 via the first communication control unit 31, which will be described later.
  • Position control, speed control, and current control can employ various known controls.
  • the first motor control section 21 can perform feedback control using at least one of proportional control, integral control, and differential control.
  • the first motor control unit 21 can also perform feedforward control.
  • the first motor control section 21 can generate a drive signal for the first servo motor 21m based on the control values of position control, speed control and current control.
  • the drive signal for the first servomotor 21m can be represented by a duty ratio, which is the ratio of the ON width and OFF width of the pulse in PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • a switching element of a power converter for example, an inverter
  • PWM Pulse Width Modulation
  • a motor current flows through the corresponding phase, and the motor current increases or decreases according to the time (ON width) that the switching element is in a closed state.
  • the first communication control unit 31 can communicate with the peripheral device 60 and the first motor control unit 21 provided as required for the work by the articulated robot 50 .
  • the peripheral device 60 may take various forms as long as it is necessary for the work performed by the articulated robot 50 .
  • the peripheral device 60 may be an end effector 61 attached to the arm tip portion 50t of the articulated robot 50 .
  • the peripheral device 60 may be a transport device 62 that transports the work object W1.
  • the peripheral device 60 may be a supply device 63 that supplies the supply P1 to the work object W1.
  • the first communication control section 31 may take various forms as long as it can communicate with the peripheral device 60 and the first motor control section 21 respectively.
  • the servo system 10 of this embodiment can comprise a first servo network section 41 and a second servo network section 42 .
  • the first servo network unit 41 communicates between the first communication control unit 31 and the first motor control unit 21 .
  • the second servo network unit 42 communicates between the first communication control unit 31 and the second communication control unit 32 provided in the peripheral device 60 when the peripheral device 60 is provided.
  • the first communication control section 31 of this embodiment can communicate with the first motor control section 21 using the first servo network section 41 . Also, when the peripheral device 60 is provided, the first communication control section 31 can communicate with the second communication control section 32 provided in the peripheral device 60 using the second servo network section 42 . Therefore, in the servo system 10 of the present embodiment, it is easy to separate the communication for controlling the first servomotor 21m that moves the joint 50j and the communication for controlling the peripheral device 60.
  • the communication between the first communication control unit 31 and the first motor control unit 21 is included in the communication for controlling the first servomotor 21m that moves the joint 50j.
  • Communication between the first communication control unit 31 and the second communication control unit 32 provided in the peripheral device 60 is included in communication for controlling the peripheral device 60 .
  • the communication standard of the first servo network section 41 and the communication standard of the second servo network section 42 may be the same or different.
  • the control of the first servomotor 21m that moves the joint 50j often requires a faster response than the control of the peripheral device 60. Therefore, the communication for controlling the first servomotor 21m that moves the joint 50j often requires communication performance equal to or faster than that for controlling the peripheral device 60 . Therefore, it is preferable that the communication cycle in the first servo network section 41 is set equal to or shorter than the communication cycle in the second servo network section 42 . This makes it easier for the servo system 10 of the present embodiment to ensure the communication performance of the communication for controlling the first servomotor 21m that moves the joint 50j.
  • connection between the first communication control unit 31 and the first motor control unit 21 can take various known forms of connection.
  • the first communication control section 31 and the first motor control section 21 are connected via a bus.
  • the first servomotor 21m is connected in parallel to the first communication control section 31 .
  • the first servo network unit 41 can form a dedicated servo network for driving and controlling the first servo motor 21m to control the joint 50j.
  • connection between the first communication control unit 31 and the second communication control unit 32 provided in the peripheral device 60 can take various known connection forms.
  • the second servo network unit 42 of the present embodiment uses the second communication control unit provided in the peripheral device 60 via the communication control unit 30 directly connected to the first communication control unit 31. Section 32 is daisy chained.
  • the second communication control unit 32 provided in the peripheral device 60 is connected to the second servo network unit 42 different from the first servo network unit 41 that controls the first servo motor 21m that moves the joint 50j. be provided. Therefore, the communication for controlling the first servomotor 21m that moves the joint 50j is less likely to be affected by the communication for controlling the peripheral device 60.
  • FIG. For example, even if the amount of communication for controlling the peripheral device 60 increases with an increase in the number of peripheral devices 60, problems such as a delay in communication for controlling the first servo motor 21m that moves the joint 50j are less likely to occur. .
  • the communication control unit 30 and the second communication control unit 32 may take various forms as long as they can communicate with the first communication control unit 31.
  • the communication control unit 30 and the second communication control unit 32 can be provided in various control devices.
  • the communication control unit 30 can be formed in an ASIC (Application Specific Integrated Circuit).
  • the second communication control unit 32 can be formed in a communication FPGA (Field Programmable Gate Array).
  • the second servo network unit 42 can be formed using a known general-purpose servo network (eg, MECHATROLINK (registered trademark) III, etc.).
  • the communication control unit 30 is provided when the peripheral device 60 is provided, and controls communication with the first communication control unit 31 and communication with the second communication control unit 32 .
  • the second communication control section 32 provided in the middle of the second servo network section 42 performs transmission and reception of communications with itself as the destination or source among the communications in the second servo network section 42 .
  • the second communication control unit 32 transmits, among the communications in the second servo network unit 42, the communication whose destination or source is another second communication control unit 32 to the adjacent second communication control unit 32. and broadcast.
  • the second communication control section 32 provided at the end of the second servo network section 42 performs transmission and reception of communication with itself as the destination or source.
  • the communication control unit 30 and the second communication control unit 32 can communicate with each other in a master-slave system at a predetermined transmission cycle.
  • the first motor control unit 21 and the first communication control unit 31 can be provided in various control devices.
  • the first motor controller 21 can be formed in an FPGA for motor control.
  • the first communication control unit 31 can be formed in a communication FPGA.
  • the first motor control section 21 and the first communication control section 31 are provided in the first servo amplifier SA1 that drives the first servo motor 21m.
  • a known servo amplifier can be used for the first servo amplifier SA1.
  • the first servo amplifier SA1 supplies a motor current based on the drive signal for the first servo motor 21m generated by the first motor control unit 21 from the power converter to the first servo motor 21m. This drives the first servomotor 21m.
  • the first communication control unit 31 is provided so as to be able to communicate with the motion controller MC0 that controls the motion of the articulated robot 50.
  • a known motion controller can be used as the motion controller MC0.
  • the motion controller MC0 has a known CPU (Central Processing Unit), and calculates a movement command (position command) for the first servomotor 21m based on a command value obtained from a higher control device.
  • CPU Central Processing Unit
  • the first communication control unit 31 transmits to the first motor control unit 21 the movement command (position command) for the first servo motor 21m received from the motion controller MC0.
  • the first communication control unit 31 can also receive control information for the first servomotor 21m from the first motor control unit 21 and transmit the received control information for the first servomotor 21m to the motion controller MC0.
  • the motion controller MC0 can also calculate a drive command for the peripheral device 60.
  • the first communication control unit 31 transmits the driving command for the peripheral device 60 received from the motion controller MC ⁇ b>0 to the second communication control unit 32 via the communication control unit 30 .
  • the first communication control unit 31 may receive drive information of the peripheral device 60 from the second communication control unit 32 via the communication control unit 30, and transmit the received drive information of the peripheral device 60 to the motion controller MC0. can.
  • connection between the first communication control unit 31 and the motion controller MC0 can take various known forms of connection.
  • a known general-purpose servo network is formed between the first communication control unit 31 and the motion controller MC0.
  • a control device corresponding to the communication control unit 30 is required for communication between the first communication control unit 31 and the motion controller MC0.
  • the first communication control unit 31 and the motion controller MC0 are connected so as to be communicable according to the PCI (Peripheral Component Interconnect) communication standard.
  • the communication standard is not limited to PCI, and may be a communication standard such as PCI-X or PCI-Express.
  • PCI-Express is an extended interface standard for serial transfer, and is capable of relatively high-speed data communication. Therefore, it is preferable that the first communication control unit 31 and the motion controller MC0 are connected so as to be communicable according to the PCI-Express communication standard.
  • the peripheral device 60 can be provided with various driving devices.
  • the peripheral device 60 can include at least one servo motor 22m that moves the movable portion 60m of the peripheral device 60 .
  • the movable part 60m is not limited as long as it is moved by a servomotor.
  • the number of the second servomotors 22m is not limited, and the peripheral device 60 can be provided with the number of the second servomotors 22m necessary to move the movable portion 60m.
  • the peripheral device 60 can include the second motor control section 22 that drives and controls the second servo motor 22m.
  • the drive control of the second servomotor 22m can take well-known various controls.
  • the second motor control unit 22 performs position control, speed control, current control, etc. of the second servomotor 22m, and generates a drive signal of the second servomotor 22m. can do.
  • the second motor control unit 22 uses a drive command (position command) for the second servomotor 22m and position information acquired from a position detector (for example, an encoder) that detects the position of the second servomotor 22m. Position control, speed control and current control of the second servomotor 22m are performed based on this.
  • the drive command (position command) for the second servomotor 22m can be obtained from the motion controller MC0 via the first communication control unit 31, the communication control unit 30, and the second communication control unit 32. can.
  • connection between the second communication control unit 32 and the second motor control unit 22 can take various known forms of connection.
  • the peripheral device 60 includes a plurality of second servo motors 22m
  • the second communication control unit 32 and the second motor control unit 22 can be connected via a bus, similar to the first servo network unit 41. can.
  • the second motor control unit 22 and the second communication control unit 32 can be provided in various control devices.
  • the second motor controller 22 can be formed in an FPGA for motor control.
  • the second communication control unit 32 can be formed in a communication FPGA.
  • the second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2 that drives the second servo motor 22m.
  • a known servo amplifier can be used for the second servo amplifier SA2.
  • the second servo amplifier SA2 supplies the motor current based on the drive signal for the second servo motor 22m generated by the second motor control unit 22 from the power converter to the second servo motor 22m. This drives the second servomotor 22m.
  • the servo system 10 can be applied to various work machines including the articulated robot 50 .
  • the work machine 80 of this embodiment includes an articulated robot 50, an end effector 61, a transfer device 62, a supply device 63, and a base portion .
  • the end effector 61, the transfer device 62 and the supply device 63 are included in the peripheral device 60 and are unitized.
  • the articulated robot 50 having the end effector 61 , the transfer device 62 and the supply device 63 are arranged above the base portion 70 .
  • the articulated robot 50 has an arm 50a.
  • the arm 50a is a multi-axis (eg, five-axis) vertical multi-joint arm, and has multiple (eg, six) links (first link 51a to sixth link 51f), each of which can rotate or turn.
  • a plurality of (for example, five) joints 50j (first joint 52a to fifth joint 52e) are provided.
  • a plurality of (five) joints 50j are movable by the first servomotor 21m described above.
  • Each joint 50j is provided with a first servomotor 21m and a position detector (such as an encoder) that detects the position (rotational position) of the first servomotor 21m.
  • the first servomotor 21m is driven and controlled by the first motor control section 21.
  • the first motor control section 21 and the first communication control section 31 are provided in the first servo amplifier SA1.
  • the first servo amplifier SA1 is arranged inside the base portion 70 .
  • a detection signal is input to the first servo amplifier SA1 from a detector such as a position detector (encoder).
  • the articulated robot 50 can cooperate with the peripheral device 60 to perform various tasks.
  • the peripheral device 60 may take various forms as long as it is necessary for the work performed by the articulated robot 50 .
  • Peripheral device 60 may be at least one of end effector 61 , carrier device 62 and delivery device 63 .
  • the work machine 80 of the present embodiment is provided with peripheral devices 60 such as an end effector 61, a transfer device 62 and a supply device 63. As shown in FIGS.
  • an end effector 61 is detachably attached to the sixth link 51f, which is the arm tip 50t of the articulated robot 50.
  • the end effector 61 can use, for example, an electromagnetic chuck, a mechanical chuck, a suction nozzle, or the like.
  • the end effector 61 is appropriately selected according to the shape, material, etc. of the workpiece W1 and the supply product P1.
  • a camera 50c is attached to the fifth link 51e. The camera 50c can image the work object W1, the supplies P1, and the like.
  • the mechanical chuck of the end effector 61 is the movable portion 60m, which is moved by the second servomotor 22m.
  • the second servomotor 22m is driven and controlled by the second motor control section 22 .
  • the second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2.
  • the second servo amplifier SA2 is arranged inside the base portion 70 .
  • a detection signal is input to the second servo amplifier SA2 from a detector such as a position detector (encoder).
  • the transport device 62 transports the work object W1.
  • the conveying device 62 of this embodiment is configured by, for example, a belt conveyor.
  • the carrier device 62 carries the work object W1 into the work machine 80 and positions the work object W1 at a predetermined position inside the machine. After the work by the articulated robot 50 is completed, the transfer device 62 carries the work W1 out of the work machine 80 .
  • the transport device 62 can transport various work objects W1 used in the work by the articulated robot 50, and the work object W1 is not limited.
  • the belt conveyor of the conveying device 62 is the movable portion 60m, which is moved by the second servomotor 22m.
  • the second servomotor 22m is driven and controlled by the second motor control section 22 .
  • the second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2.
  • the second servo amplifier SA2 is arranged inside the carrier device 62 .
  • a detection signal is input to the second servo amplifier SA2 from a detector such as a position detector (encoder).
  • the supply device 63 supplies the supply item P1 to the work object W1.
  • the supply device 63 of the present embodiment includes a plurality (eg, two) of storage sections 63a and a plurality (eg, two) of transport sections 63b.
  • the plurality (two) of storage portions 63a are arranged along the conveying direction of the work object W1, and each of the plurality (two) of the storage portions 63a stores the supplies P1.
  • Each of the plurality (two) of transport units 63b is configured by, for example, a belt conveyor, etc., and transports the supplies P1 discharged from the storage unit 63a to a position where the articulated robot 50 can pick them up.
  • the supply device 63 can supply various supplies P1 necessary for the work by the articulated robot 50, and the supplies P1 are not limited.
  • Each of the belt conveyors of the plurality (two) of conveying sections 63b is the movable section 60m, and is movable by the second servomotor 22m.
  • the second servomotor 22m is driven and controlled by the second motor control section 22 .
  • the second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2.
  • the second servo amplifier SA2 is arranged inside the supply device 63 .
  • a detection signal is input to the second servo amplifier SA2 from a detector such as a position detector (encoder).
  • the first motor control section 21 can move the arm 50a and move the end effector 61 toward the work object W1 or the supply item P1.
  • the articulated robot 50 can use the end effector 61 to perform various operations on the work object W1.
  • the articulated robot 50 captures an image of the work W1 with the camera 50c.
  • a control device higher than the motion controller MC0 performs image processing on the captured image of the work object W1, and recognizes the position and orientation of the work object W1.
  • the control device calculates the target position (X coordinate, Y coordinate and Z coordinate) and target posture (rotational angle) of the end effector 61 based on the position and posture of the work object W1.
  • the motion controller MC0 controls each joint 50j of the arm 50a (first joint 52a to fifth joint 52a to fifth joint 52e) set the target position and target angle.
  • the first motor control unit 21 drives and controls the first servo motor 21m so that the positions of the joints 50j (the first joints 52a to the fifth joints 52e) match the target positions and the angles match the target angles. .
  • the articulated robot 50 can perform various operations on the work object W1 while the second motor control unit 22 drives and controls the second servo motor 22m of the end effector 61. Further, the second motor control unit 22 drives and controls the second servo motor 22m of the conveying device 62 to convey the work object W1, and the articulated robot 50 performs various operations on the conveyed work object W1. can also be done. Further, the second motor control unit 22 drives and controls the second servo motor 22m of the supply device 63 to supply the supply item P1, and the articulated robot 50 uses the supplied supply item P1 to move the workpiece W1. can also be used to perform various tasks.
  • the work performed by the articulated robot 50 is not limited.
  • a pickup operation for picking up the supply item P1 an arrangement operation for arranging the supply item P1 at a predetermined position AR1 of the work object W1, and an assembly operation for assembling the supply item P1 to a predetermined portion AP1 of the assembly target portion AM1 of the work object W1. At least one of them is included in the work performed by the articulated robot 50 .
  • the articulated robot 50 shown in FIG. 2 can use the end effector 61 to pick up the work object W1 transported and positioned by the transport device 62 .
  • the articulated robot 50 can also use the end effector 61 to pick up the supplies P1 supplied by the supply device 63 .
  • the articulated robot 50 can also place the supplies P1 at a predetermined position AR1 of the storage case C1 shown in FIG. 5, for example.
  • the storage case C1 is the work object W1 and is divided into a plurality of areas.
  • the predetermined position AR1 indicates at least one area (one area in the figure) of the plurality of areas.
  • the articulated robot 50 can arrange the supply item P1 for each type of part in the storage case C1.
  • the articulated robot 50 can also arrange the supplies P1 in the storage case C1 according to the outer dimensions of the parts.
  • the articulated robot 50 can also arrange the supplies P1 in the storage case C1 in the order of work steps.
  • the articulated robot 50 can also assemble the supply item P1 to the predetermined portion AP1 of the assembling part AM1 of the work object W1 shown in FIG.
  • the articulated robot 50 can pick up the supply item P1 supplied by the supply device 63 and attach the supply item P1 to the predetermined portion AP1 of the assembly target AM1.
  • the articulated robot 50 can also pick up the supplies P1 arranged in the storage case C1 and assemble the supplies P1 to the predetermined portion AP1 of the assembly part AM1.
  • a plurality of articulated robots 50 can work together to assemble the supplies P1 to the predetermined portion AP1 of the assembly part AM1.
  • the peripheral device 60 of the present embodiment includes an end effector 61 attached to an arm tip portion 50t of the articulated robot 50, a transfer device 62 for transferring the work W1, and a supply device for supplying the work P1 to the work W1. At least one of the devices 63 . Therefore, the articulated robot 50 can perform work using at least one of the end effector 61 , the transfer device 62 and the supply device 63 . Also, the peripheral device 60 is unitized. Therefore, it is easy to change the configuration of the servo system 10 .
  • the articulated robot 50 can also include a first motor control section 21 and a first communication control section 31 .
  • the first motor control unit 21 drives and controls the first servomotors 21m, which are a plurality of servomotors that move the joints 50j.
  • the first communication control unit 31 can communicate with the peripheral device 60 and the first motor control unit 21, which are provided as necessary for the work. The same can be said for the servo system 10 in this embodiment. Therefore, redundant description is omitted in this specification.
  • the first communication control section 31 can communicate with the peripheral device 60 and the first motor control section 21, respectively. Therefore, the servo system 10 can separate the communication for controlling the first servo motor 21m that moves the joint 50j and the communication for controlling the peripheral device 60, and the first servo motor 21m that moves the joint 50j can be separated. It is possible to ensure the communication performance of the communication for controlling the What has been described above for the servo system 10 also applies to the articulated robot 50 including the first motor control section 21 and the first communication control section 31 .
  • 10 servo system
  • 21 first motor control unit
  • 21m first servo motor
  • 22 second motor control unit
  • 22m second servo motor
  • 30 communication control section
  • 31 first communication control section
  • 32 second communication control unit
  • 41 first servo network unit
  • 42 second servo network unit
  • 50 articulated robot
  • 50j joint
  • 50t arm tip
  • 60 peripheral device
  • 60m movable part
  • 61 end effector
  • 62 transport equipment
  • 63 supply equipment
  • MC0 motion controller
  • SA1 first servo amplifier
  • SA2 second servo amplifier
  • W1 work object
  • P1 supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

This servo system comprises a first motor control unit and a first communication control unit. The first motor control unit drives and controls first servo motors which are a plurality of servo motors for moving the joints of an articulated robot. The first communication control unit can communicate with the first motor control unit and a peripheral device that is provided depending on the necessity thereof for work performed by the articulated robot.

Description

サーボシステムおよび多関節ロボットServo system and articulated robot
 本明細書は、サーボシステムおよび多関節ロボットに関する技術を開示する。 This specification discloses technologies related to servo systems and articulated robots.
 特許文献1に記載のステッピングモータ制御装置は、接続手段と、制御手段とを備え、複数のモータを少なくとも2つの演算装置により制御する。接続手段は、マスター側の演算装置の処理能力にほとんど影響を与えずにスレーブ側の演算装置がマスター側の演算装置のハードウエアを使用可能にする。制御手段は、マスター側の演算装置から与えられたコマンドによりスレーブ側の演算装置を制御する。 A stepping motor control device described in Patent Document 1 includes connection means and control means, and controls a plurality of motors by at least two arithmetic units. The connection means enables the hardware of the master computing unit to be used by the slave computing unit with little impact on the processing power of the master computing unit. The control means controls the slave-side arithmetic device according to a command given from the master-side arithmetic device.
特開平10-80196号公報JP-A-10-80196
 複数のサーボモータを用いて関節を動かす多関節ロボットには、周辺機器が設けられる場合がある。この場合、サーボシステムでは、関節を動かすサーボモータを制御するための通信と、周辺機器を制御するための通信とが行われる。これらの通信が同一の通信ネットワークにおいて混在すると、関節を動かすサーボモータを制御するための通信は、周辺機器を制御するための通信によって影響を受ける可能性がある。上述されていることは、多関節ロボットにおいて上記の通信が行われる場合についても同様に言える。 A multi-joint robot that uses multiple servo motors to move its joints may be equipped with peripheral equipment. In this case, in the servo system, communication for controlling the servo motors that move the joints and communication for controlling the peripheral devices are performed. If these communications coexist in the same communications network, the communications for controlling the servo motors that move the joints may be affected by the communications for controlling the peripheral devices. What has been described above can be similarly applied to the case where the above communication is performed in an articulated robot.
 このような事情に鑑みて、本明細書は、関節を動かすサーボモータを制御するための通信の通信性能を確保可能なサーボシステムおよび多関節ロボットを開示する。 In view of such circumstances, the present specification discloses a servo system and an articulated robot capable of ensuring the communication performance of the communication for controlling the servo motors that move the joints.
 本明細書は、多関節ロボットの関節を動かす複数のサーボモータである第一サーボモータを駆動制御する第一モータ制御部と、前記多関節ロボットによる作業の必要に応じて設けられる周辺機器および前記第一モータ制御部とそれぞれ通信可能な第一通信制御部と、を備えるサーボシステムを開示する。 The present specification includes a first motor control unit that drives and controls first servo motors, which are a plurality of servo motors that move the joints of an articulated robot, peripheral devices provided as necessary for work by the articulated robot, and the A servo system is disclosed that includes a first communication control unit that can communicate with each of the first motor control units.
 また、本明細書は、関節を動かす複数のサーボモータである第一サーボモータを駆動制御する第一モータ制御部と、作業の必要に応じて設けられる周辺機器および前記第一モータ制御部とそれぞれ通信可能な第一通信制御部と、を備える多関節ロボットを開示する。 In addition, the present specification includes a first motor control unit that drives and controls a first servo motor that is a plurality of servo motors that move joints, and a peripheral device and the first motor control unit that are provided as necessary for work. Disclosed is an articulated robot comprising a communicable first communication control unit.
 上記のサーボシステムによれば、第一通信制御部は、周辺機器および第一モータ制御部とそれぞれ通信可能である。よって、サーボシステムは、関節を動かすサーボモータを制御するための通信と、周辺機器を制御するための通信とを分離することができ、関節を動かすサーボモータを制御するための通信の通信性能を確保することができる。サーボシステムについて上述されていることは、第一モータ制御部および第一通信制御部を備える多関節ロボットについても同様に言える。 According to the above servo system, the first communication control section can communicate with the peripheral device and the first motor control section. Therefore, in the servo system, the communication for controlling the servo motors that move the joints can be separated from the communication for controlling the peripheral devices, and the communication performance of the communication for controlling the servo motors that move the joints can be improved. can be secured. What has been described above for the servo system also applies to the articulated robot including the first motor control section and the first communication control section.
サーボシステムの制御ブロックの一例を示すブロック図である。4 is a block diagram showing an example of control blocks of the servo system; FIG. 多関節ロボットの一例を示す斜視図である。It is a perspective view showing an example of an articulated robot. 周辺機器の一例を示す斜視図である。1 is a perspective view showing an example of a peripheral device; FIG. 周辺機器の他の一例を示す斜視図である。FIG. 11 is a perspective view showing another example of a peripheral device; 収納ケースの所定位置に供給品が配置されている状態の一例を示す平面図である。FIG. 4 is a plan view showing an example of a state in which supplies are arranged at predetermined positions in a storage case; 供給品が作業対象物の被組み付け部の所定部位に組み付けられている状態の一例を示す平面図である。FIG. 4 is a plan view showing an example of a state in which a supply item is attached to a predetermined portion of an attachment portion of an object to be worked on;
 1.実施形態
 1-1.サーボシステム10の構成例
 図1に示すように、サーボシステム10は、第一モータ制御部21と、第一通信制御部31とを備える。第一モータ制御部21は、多関節ロボット50の関節50jを動かす複数のサーボモータである第一サーボモータ21mを駆動制御する。多関節ロボット50は、サーボモータによって関節50jを動かすものであれば良く、種々の形態をとり得る。また、関節50jの数は、限定されず、多関節ロボット50は、関節50jの数に応じた第一サーボモータ21mを備えることができる。
1. Embodiment 1-1. Configuration Example of Servo System 10 As shown in FIG. 1 , the servo system 10 includes a first motor control section 21 and a first communication control section 31 . The first motor control unit 21 drives and controls the first servomotors 21m, which are a plurality of servomotors that move the joints 50j of the articulated robot 50 . The articulated robot 50 can take various forms as long as it moves the joints 50j by servo motors. Also, the number of joints 50j is not limited, and the articulated robot 50 can be provided with first servo motors 21m corresponding to the number of joints 50j.
 第一サーボモータ21mの駆動制御は、公知の種々の制御をとり得る。例えば、第一サーボモータ21mの駆動制御には、第一サーボモータ21mの位置制御、速度制御、電流制御などが含まれる。例えば、第一モータ制御部21は、移動指令(位置指令)と、第一サーボモータ21mの位置を検出する位置検出器(例えば、エンコーダなど)から取得した位置情報とに基づいて、第一サーボモータ21mの位置制御、速度制御および電流制御を行う。移動指令(位置指令)は、後述する第一通信制御部31を介してモーションコントローラMC0から取得することができる。 The drive control of the first servomotor 21m can take various known controls. For example, drive control of the first servomotor 21m includes position control, speed control, current control, etc. of the first servomotor 21m. For example, the first motor control unit 21, based on a movement command (position command) and position information acquired from a position detector (for example, an encoder) that detects the position of the first servo motor 21m, the first servo Position control, speed control and current control of the motor 21m are performed. A movement command (position command) can be obtained from the motion controller MC0 via the first communication control unit 31, which will be described later.
 位置制御、速度制御および電流制御は、公知の種々の制御をとり得る。例えば、第一モータ制御部21は、比例制御、積分制御および微分制御のうちの少なくとも一つを用いたフィードバック制御を行うことができる。第一モータ制御部21は、フィードフォワード制御を行うこともできる。また、第一モータ制御部21は、位置制御、速度制御および電流制御の制御値に基づいて、第一サーボモータ21mの駆動信号を生成することができる。 Position control, speed control, and current control can employ various known controls. For example, the first motor control section 21 can perform feedback control using at least one of proportional control, integral control, and differential control. The first motor control unit 21 can also perform feedforward control. Further, the first motor control section 21 can generate a drive signal for the first servo motor 21m based on the control values of position control, speed control and current control.
 例えば、第一サーボモータ21mの駆動信号は、PWM(Pulse Width Modulation)制御におけるパルスのON幅とOFF幅の比であるデューティ比で表すことができる。PWM制御では、電力変換器(例えば、インバータなど)のスイッチング素子が閉状態のときに対応する相にモータ電流が流れ、スイッチング素子が閉状態の時間(ON幅)に応じてモータ電流が増減する。つまり、スイッチング素子の閉状態の時間(ON幅)が長くなるほどモータ電流は大きくなり、スイッチング素子の閉状態の時間(ON幅)が短くなるほどモータ電流は小さくなる。 For example, the drive signal for the first servomotor 21m can be represented by a duty ratio, which is the ratio of the ON width and OFF width of the pulse in PWM (Pulse Width Modulation) control. In PWM control, when a switching element of a power converter (for example, an inverter) is in a closed state, a motor current flows through the corresponding phase, and the motor current increases or decreases according to the time (ON width) that the switching element is in a closed state. . In other words, the longer the closed state time (ON width) of the switching element, the larger the motor current, and the shorter the closed state time (ON width) of the switching element, the smaller the motor current.
 第一通信制御部31は、多関節ロボット50による作業の必要に応じて設けられる周辺機器60および第一モータ制御部21とそれぞれ通信可能である。周辺機器60は、多関節ロボット50による作業に必要なものであれば良く、種々の形態をとり得る。後述するように、例えば、周辺機器60は、多関節ロボット50のアーム先端部50tに取り付けられるエンドエフェクタ61であっても良い。また、周辺機器60は、作業対象物W1を搬送する搬送機器62であっても良い。さらに、周辺機器60は、作業対象物W1に供給品P1を供給する供給機器63であっても良い。 The first communication control unit 31 can communicate with the peripheral device 60 and the first motor control unit 21 provided as required for the work by the articulated robot 50 . The peripheral device 60 may take various forms as long as it is necessary for the work performed by the articulated robot 50 . As will be described later, for example, the peripheral device 60 may be an end effector 61 attached to the arm tip portion 50t of the articulated robot 50 . Further, the peripheral device 60 may be a transport device 62 that transports the work object W1. Further, the peripheral device 60 may be a supply device 63 that supplies the supply P1 to the work object W1.
 第一通信制御部31は、周辺機器60および第一モータ制御部21とそれぞれ通信可能であれば良く、種々の形態をとり得る。本実施形態のサーボシステム10は、第一サーボネットワーク部41と、第二サーボネットワーク部42とを具備可能である。第一サーボネットワーク部41は、第一通信制御部31と第一モータ制御部21との間で通信を行う。第二サーボネットワーク部42は、周辺機器60が設けられる場合に第一通信制御部31と周辺機器60に設けられる第二通信制御部32との間で通信を行う。 The first communication control section 31 may take various forms as long as it can communicate with the peripheral device 60 and the first motor control section 21 respectively. The servo system 10 of this embodiment can comprise a first servo network section 41 and a second servo network section 42 . The first servo network unit 41 communicates between the first communication control unit 31 and the first motor control unit 21 . The second servo network unit 42 communicates between the first communication control unit 31 and the second communication control unit 32 provided in the peripheral device 60 when the peripheral device 60 is provided.
 よって、本実施形態の第一通信制御部31は、第一サーボネットワーク部41を用いて第一モータ制御部21と通信することができる。また、第一通信制御部31は、周辺機器60が設けられる場合に、第二サーボネットワーク部42を用いて周辺機器60に設けられる第二通信制御部32と通信することができる。よって、本実施形態のサーボシステム10は、関節50jを動かす第一サーボモータ21mを制御するための通信と、周辺機器60を制御するための通信とを分離することが容易である。 Therefore, the first communication control section 31 of this embodiment can communicate with the first motor control section 21 using the first servo network section 41 . Also, when the peripheral device 60 is provided, the first communication control section 31 can communicate with the second communication control section 32 provided in the peripheral device 60 using the second servo network section 42 . Therefore, in the servo system 10 of the present embodiment, it is easy to separate the communication for controlling the first servomotor 21m that moves the joint 50j and the communication for controlling the peripheral device 60. FIG.
 なお、第一通信制御部31と第一モータ制御部21との間の通信は、関節50jを動かす第一サーボモータ21mを制御するための通信に含まれる。第一通信制御部31と周辺機器60に設けられる第二通信制御部32との間の通信は、周辺機器60を制御するための通信に含まれる。また、第一サーボネットワーク部41の通信規格と第二サーボネットワーク部42の通信規格は、同じであっても良く、異なっていても良い。 The communication between the first communication control unit 31 and the first motor control unit 21 is included in the communication for controlling the first servomotor 21m that moves the joint 50j. Communication between the first communication control unit 31 and the second communication control unit 32 provided in the peripheral device 60 is included in communication for controlling the peripheral device 60 . Also, the communication standard of the first servo network section 41 and the communication standard of the second servo network section 42 may be the same or different.
 関節50jを動かす第一サーボモータ21mの制御は、周辺機器60の制御と比べて、高速な応答が求められる場合が多い。そのため、関節50jを動かす第一サーボモータ21mを制御するための通信は、周辺機器60を制御するための通信と比べて、同等若しくは高速な通信性能が必要な場合が多い。そこで、第一サーボネットワーク部41における通信周期は、第二サーボネットワーク部42における通信周期と同等に若しくは当該通信周期と比べて短く設定されていると良い。これにより、本実施形態のサーボシステム10は、関節50jを動かす第一サーボモータ21mを制御するための通信の通信性能を確保し易くなる。 The control of the first servomotor 21m that moves the joint 50j often requires a faster response than the control of the peripheral device 60. Therefore, the communication for controlling the first servomotor 21m that moves the joint 50j often requires communication performance equal to or faster than that for controlling the peripheral device 60 . Therefore, it is preferable that the communication cycle in the first servo network section 41 is set equal to or shorter than the communication cycle in the second servo network section 42 . This makes it easier for the servo system 10 of the present embodiment to ensure the communication performance of the communication for controlling the first servomotor 21m that moves the joint 50j.
 第一通信制御部31と第一モータ制御部21との間の接続は、公知の種々の接続形態をとり得る。例えば、本実施形態の第一サーボネットワーク部41は、第一通信制御部31と第一モータ制御部21との間がバス接続されている。バス接続では、第一通信制御部31に対して、第一サーボモータ21mが並列接続される。このように、第一サーボネットワーク部41は、第一サーボモータ21mを駆動制御して関節50jを制御するための専用のサーボネットワークを形成することができる。 The connection between the first communication control unit 31 and the first motor control unit 21 can take various known forms of connection. For example, in the first servo network section 41 of this embodiment, the first communication control section 31 and the first motor control section 21 are connected via a bus. In the bus connection, the first servomotor 21m is connected in parallel to the first communication control section 31 . Thus, the first servo network unit 41 can form a dedicated servo network for driving and controlling the first servo motor 21m to control the joint 50j.
 同様に、第一通信制御部31と周辺機器60に設けられる第二通信制御部32との間の接続は、公知の種々の接続形態をとり得る。図1に示すように、例えば、本実施形態の第二サーボネットワーク部42は、第一通信制御部31に直接接続される通信制御部30を介して、周辺機器60に設けられる第二通信制御部32がディジーチェーン接続されている。 Similarly, the connection between the first communication control unit 31 and the second communication control unit 32 provided in the peripheral device 60 can take various known connection forms. As shown in FIG. 1, for example, the second servo network unit 42 of the present embodiment uses the second communication control unit provided in the peripheral device 60 via the communication control unit 30 directly connected to the first communication control unit 31. Section 32 is daisy chained.
 これにより、周辺機器60の増減に応じた第二サーボネットワーク部42の構成変更が容易になる。図1に示す例では、二つの周辺機器60が図示されている。よって、同図に示す第二サーボネットワーク部42では、第一通信制御部31、通信制御部30、第二通信制御部32および第二通信制御部32の順に接続されており、二つの第二通信制御部32がディジーチェーン接続されている。 This makes it easier to change the configuration of the second servo network section 42 according to the increase or decrease in the number of peripheral devices 60 . In the example shown in FIG. 1, two peripheral devices 60 are illustrated. Therefore, in the second servo network section 42 shown in the figure, the first communication control section 31, the communication control section 30, the second communication control section 32 and the second communication control section 32 are connected in this order, and two second A communication control unit 32 is connected in a daisy chain.
 このように、本実施形態では、周辺機器60に設けられる第二通信制御部32は、関節50jを動かす第一サーボモータ21mを制御する第一サーボネットワーク部41と異なる第二サーボネットワーク部42に設けられる。よって、関節50jを動かす第一サーボモータ21mを制御するための通信は、周辺機器60を制御するための通信による影響を受け難くなる。例えば、周辺機器60の増加に伴って周辺機器60を制御するための通信量が増加しても、関節50jを動かす第一サーボモータ21mを制御するための通信が遅延する不具合などが生じ難くなる。 Thus, in this embodiment, the second communication control unit 32 provided in the peripheral device 60 is connected to the second servo network unit 42 different from the first servo network unit 41 that controls the first servo motor 21m that moves the joint 50j. be provided. Therefore, the communication for controlling the first servomotor 21m that moves the joint 50j is less likely to be affected by the communication for controlling the peripheral device 60. FIG. For example, even if the amount of communication for controlling the peripheral device 60 increases with an increase in the number of peripheral devices 60, problems such as a delay in communication for controlling the first servo motor 21m that moves the joint 50j are less likely to occur. .
 通信制御部30および第二通信制御部32は、第一通信制御部31と通信可能であれば良く、種々の形態をとり得る。通信制御部30および第二通信制御部32は、種々の制御装置に設けることができる。例えば、通信制御部30は、ASIC(Application Specific Integrated Circuit)に形成することができる。第二通信制御部32は、通信用のFPGA(Field Programmable Gate Array)に形成することができる。また、例えば、第二サーボネットワーク部42は、公知の汎用のサーボネットワーク(例えば、MECHATROLINK(登録商標)IIIなど)を用いて形成することができる。通信制御部30は、周辺機器60が設けられる場合に設けられ、第一通信制御部31との間の通信および第二通信制御部32との間の通信を制御する。 The communication control unit 30 and the second communication control unit 32 may take various forms as long as they can communicate with the first communication control unit 31. The communication control unit 30 and the second communication control unit 32 can be provided in various control devices. For example, the communication control unit 30 can be formed in an ASIC (Application Specific Integrated Circuit). The second communication control unit 32 can be formed in a communication FPGA (Field Programmable Gate Array). Also, for example, the second servo network unit 42 can be formed using a known general-purpose servo network (eg, MECHATROLINK (registered trademark) III, etc.). The communication control unit 30 is provided when the peripheral device 60 is provided, and controls communication with the first communication control unit 31 and communication with the second communication control unit 32 .
 第二サーボネットワーク部42の途中に設けられる第二通信制御部32は、第二サーボネットワーク部42における通信のうち、自己を送信先または送信元とする通信の送受信を行う。また、当該第二通信制御部32は、第二サーボネットワーク部42における通信のうち、他の第二通信制御部32を送信先または送信元とする通信を隣接する第二通信制御部32に送信して中継する。さらに、第二サーボネットワーク部42の終端に設けられる第二通信制御部32は、自己を送信先または送信元とする通信の送受信を行う。通信制御部30および第二通信制御部32は、所定の伝送周期で、マスタ・スレーブ方式によって通信することができる。 The second communication control section 32 provided in the middle of the second servo network section 42 performs transmission and reception of communications with itself as the destination or source among the communications in the second servo network section 42 . In addition, the second communication control unit 32 transmits, among the communications in the second servo network unit 42, the communication whose destination or source is another second communication control unit 32 to the adjacent second communication control unit 32. and broadcast. Furthermore, the second communication control section 32 provided at the end of the second servo network section 42 performs transmission and reception of communication with itself as the destination or source. The communication control unit 30 and the second communication control unit 32 can communicate with each other in a master-slave system at a predetermined transmission cycle.
 なお、第一モータ制御部21および第一通信制御部31は、種々の制御装置に設けることができる。例えば、第一モータ制御部21は、モータ制御用のFPGAに形成することができる。第一通信制御部31は、通信用のFPGAに形成することができる。また、図1に示すように、本実施形態では、第一モータ制御部21および第一通信制御部31は、第一サーボモータ21mを駆動する第一サーボアンプSA1に設けられている。第一サーボアンプSA1は、公知のサーボアンプを用いることができる。第一サーボアンプSA1は、第一モータ制御部21によって生成された第一サーボモータ21mの駆動信号に基づいたモータ電流を電力変換器から第一サーボモータ21mに供給する。これにより、第一サーボモータ21mが駆動する。 Note that the first motor control unit 21 and the first communication control unit 31 can be provided in various control devices. For example, the first motor controller 21 can be formed in an FPGA for motor control. The first communication control unit 31 can be formed in a communication FPGA. Further, as shown in FIG. 1, in this embodiment, the first motor control section 21 and the first communication control section 31 are provided in the first servo amplifier SA1 that drives the first servo motor 21m. A known servo amplifier can be used for the first servo amplifier SA1. The first servo amplifier SA1 supplies a motor current based on the drive signal for the first servo motor 21m generated by the first motor control unit 21 from the power converter to the first servo motor 21m. This drives the first servomotor 21m.
 図1に示すように、第一通信制御部31は、多関節ロボット50の動作を制御するモーションコントローラMC0と通信可能に設けられている。モーションコントローラMC0は、公知のモーションコントローラを用いることができる。モーションコントローラMC0は、公知のCPU(Central Processing Unit)を備えており、上位の制御装置から取得した指令値に基づいて、第一サーボモータ21mの移動指令(位置指令)を算出する。 As shown in FIG. 1, the first communication control unit 31 is provided so as to be able to communicate with the motion controller MC0 that controls the motion of the articulated robot 50. A known motion controller can be used as the motion controller MC0. The motion controller MC0 has a known CPU (Central Processing Unit), and calculates a movement command (position command) for the first servomotor 21m based on a command value obtained from a higher control device.
 第一通信制御部31は、モーションコントローラMC0から受信した第一サーボモータ21mの移動指令(位置指令)を第一モータ制御部21に送信する。第一通信制御部31は、第一モータ制御部21から第一サーボモータ21mの制御情報を受信して、受信した第一サーボモータ21mの制御情報をモーションコントローラMC0に送信することもできる。 The first communication control unit 31 transmits to the first motor control unit 21 the movement command (position command) for the first servo motor 21m received from the motion controller MC0. The first communication control unit 31 can also receive control information for the first servomotor 21m from the first motor control unit 21 and transmit the received control information for the first servomotor 21m to the motion controller MC0.
 また、モーションコントローラMC0は、周辺機器60の駆動指令を算出することもできる。第一通信制御部31は、モーションコントローラMC0から受信した周辺機器60の駆動指令を通信制御部30を介して第二通信制御部32に送信する。第一通信制御部31は、通信制御部30を介して第二通信制御部32から周辺機器60の駆動情報を受信して、受信した周辺機器60の駆動情報をモーションコントローラMC0に送信することもできる。 The motion controller MC0 can also calculate a drive command for the peripheral device 60. The first communication control unit 31 transmits the driving command for the peripheral device 60 received from the motion controller MC<b>0 to the second communication control unit 32 via the communication control unit 30 . The first communication control unit 31 may receive drive information of the peripheral device 60 from the second communication control unit 32 via the communication control unit 30, and transmit the received drive information of the peripheral device 60 to the motion controller MC0. can.
 第一通信制御部31とモーションコントローラMC0との間の接続は、公知の種々の接続形態をとり得る。例えば、第一通信制御部31とモーションコントローラMC0との間において公知の汎用のサーボネットワークを形成することが想定される。しかしながら、この場合、第一通信制御部31とモーションコントローラMC0との間の通信において、通信制御部30に相当する制御装置が必要になる。 The connection between the first communication control unit 31 and the motion controller MC0 can take various known forms of connection. For example, it is assumed that a known general-purpose servo network is formed between the first communication control unit 31 and the motion controller MC0. However, in this case, a control device corresponding to the communication control unit 30 is required for communication between the first communication control unit 31 and the motion controller MC0.
 そこで、第一通信制御部31とモーションコントローラMC0との間は、PCI(Peripheral Component Interconnect)の通信規格によって通信可能に接続されていると良い。また、通信規格は、PCIに限定されず、PCI-X、PCI-Expresなどの通信規格であっても良い。特に、PCI-Expresは、シリアル転送方式の拡張インターフェース規格であり、比較的高速なデータ通信を行うことができる。よって、第一通信制御部31とモーションコントローラMC0との間は、PCI-Expresの通信規格によって通信可能に接続されていると良い。 Therefore, it is preferable that the first communication control unit 31 and the motion controller MC0 are connected so as to be communicable according to the PCI (Peripheral Component Interconnect) communication standard. Also, the communication standard is not limited to PCI, and may be a communication standard such as PCI-X or PCI-Express. In particular, PCI-Express is an extended interface standard for serial transfer, and is capable of relatively high-speed data communication. Therefore, it is preferable that the first communication control unit 31 and the motion controller MC0 are connected so as to be communicable according to the PCI-Express communication standard.
 なお、周辺機器60には、種々の駆動装置を設けることができる。例えば、周辺機器60は、周辺機器60の可動部60mを動かす少なくとも一つのサーボモータである第二サーボモータ22mを備えることができる。可動部60mは、サーボモータによって動くものであれば良く、限定されない。また、第二サーボモータ22mの数は、限定されず、周辺機器60は、可動部60mを動かすのに必要な数の第二サーボモータ22mを備えることができる。 It should be noted that the peripheral device 60 can be provided with various driving devices. For example, the peripheral device 60 can include at least one servo motor 22m that moves the movable portion 60m of the peripheral device 60 . The movable part 60m is not limited as long as it is moved by a servomotor. Moreover, the number of the second servomotors 22m is not limited, and the peripheral device 60 can be provided with the number of the second servomotors 22m necessary to move the movable portion 60m.
 この場合、周辺機器60は、第二サーボモータ22mを駆動制御する第二モータ制御部22を備えることができる。第二サーボモータ22mの駆動制御は、公知の種々の制御をとり得る。例えば、第一サーボモータ21mの駆動制御と同様に、第二モータ制御部22は、第二サーボモータ22mの位置制御、速度制御、電流制御などを行い、第二サーボモータ22mの駆動信号を生成することができる。 In this case, the peripheral device 60 can include the second motor control section 22 that drives and controls the second servo motor 22m. The drive control of the second servomotor 22m can take well-known various controls. For example, like the drive control of the first servomotor 21m, the second motor control unit 22 performs position control, speed control, current control, etc. of the second servomotor 22m, and generates a drive signal of the second servomotor 22m. can do.
 例えば、第二モータ制御部22は、第二サーボモータ22mの駆動指令(位置指令)と、第二サーボモータ22mの位置を検出する位置検出器(例えば、エンコーダなど)から取得した位置情報とに基づいて、第二サーボモータ22mの位置制御、速度制御および電流制御を行う。既述したように、第二サーボモータ22mの駆動指令(位置指令)は、第一通信制御部31、通信制御部30および第二通信制御部32を介して、モーションコントローラMC0から取得することができる。 For example, the second motor control unit 22 uses a drive command (position command) for the second servomotor 22m and position information acquired from a position detector (for example, an encoder) that detects the position of the second servomotor 22m. Position control, speed control and current control of the second servomotor 22m are performed based on this. As described above, the drive command (position command) for the second servomotor 22m can be obtained from the motion controller MC0 via the first communication control unit 31, the communication control unit 30, and the second communication control unit 32. can.
 なお、第二通信制御部32と第二モータ制御部22との間の接続は、公知の種々の接続形態をとり得る。例えば、周辺機器60が複数の第二サーボモータ22mを備える場合、第一サーボネットワーク部41と同様に、第二通信制御部32と第二モータ制御部22との間は、バス接続することができる。 The connection between the second communication control unit 32 and the second motor control unit 22 can take various known forms of connection. For example, when the peripheral device 60 includes a plurality of second servo motors 22m, the second communication control unit 32 and the second motor control unit 22 can be connected via a bus, similar to the first servo network unit 41. can.
 また、第二モータ制御部22および第二通信制御部32は、種々の制御装置に設けることができる。例えば、第二モータ制御部22は、モータ制御用のFPGAに形成することができる。既述したように、第二通信制御部32は、通信用のFPGAに形成することができる。さらに、図1に示すように、本実施形態では、第二モータ制御部22および第二通信制御部32は、第二サーボモータ22mを駆動する第二サーボアンプSA2に設けられている。第二サーボアンプSA2は、公知のサーボアンプを用いることができる。第二サーボアンプSA2は、第二モータ制御部22によって生成された第二サーボモータ22mの駆動信号に基づいたモータ電流を電力変換器から第二サーボモータ22mに供給する。これにより、第二サーボモータ22mが駆動する。 Also, the second motor control unit 22 and the second communication control unit 32 can be provided in various control devices. For example, the second motor controller 22 can be formed in an FPGA for motor control. As already mentioned, the second communication control unit 32 can be formed in a communication FPGA. Furthermore, as shown in FIG. 1, in this embodiment, the second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2 that drives the second servo motor 22m. A known servo amplifier can be used for the second servo amplifier SA2. The second servo amplifier SA2 supplies the motor current based on the drive signal for the second servo motor 22m generated by the second motor control unit 22 from the power converter to the second servo motor 22m. This drives the second servomotor 22m.
 1-2.サーボシステム10の適用例
 サーボシステム10は、多関節ロボット50を備える種々の作業機に適用することができる。図2~図4に示すように、本実施形態の作業機80は、多関節ロボット50と、エンドエフェクタ61と、搬送機器62と、供給機器63と、ベース部70とを備えている。エンドエフェクタ61、搬送機器62および供給機器63は、周辺機器60に含まれ、それぞれユニット化されている。また、エンドエフェクタ61を備える多関節ロボット50、搬送機器62および供給機器63は、ベース部70の上部に配置されている。
1-2. Application Examples of Servo System 10 The servo system 10 can be applied to various work machines including the articulated robot 50 . As shown in FIGS. 2 to 4, the work machine 80 of this embodiment includes an articulated robot 50, an end effector 61, a transfer device 62, a supply device 63, and a base portion . The end effector 61, the transfer device 62 and the supply device 63 are included in the peripheral device 60 and are unitized. Also, the articulated robot 50 having the end effector 61 , the transfer device 62 and the supply device 63 are arranged above the base portion 70 .
 図2に示すように、多関節ロボット50は、アーム50aを備えている。アーム50aは、複数軸(例えば、五軸)の垂直多関節アームであり、複数(例えば、六つ)のリンク(第一リンク51a~第六リンク51f)と、各リンクを回転または旋回可能に連結する複数(例えば、五つ)の関節50j(第一関節52a~第五関節52e)とを備えている。複数(五つ)の関節50jは、既述した第一サーボモータ21mによって可動する。各関節50jには、第一サーボモータ21mと、第一サーボモータ21mの位置(回転位置)を検出する位置検出器(エンコーダなど)とが設けられている。 As shown in FIG. 2, the articulated robot 50 has an arm 50a. The arm 50a is a multi-axis (eg, five-axis) vertical multi-joint arm, and has multiple (eg, six) links (first link 51a to sixth link 51f), each of which can rotate or turn. A plurality of (for example, five) joints 50j (first joint 52a to fifth joint 52e) are provided. A plurality of (five) joints 50j are movable by the first servomotor 21m described above. Each joint 50j is provided with a first servomotor 21m and a position detector (such as an encoder) that detects the position (rotational position) of the first servomotor 21m.
 既述したように、第一サーボモータ21mは、第一モータ制御部21によって駆動制御される。第一モータ制御部21および第一通信制御部31は、第一サーボアンプSA1に設けられている。第一サーボアンプSA1は、ベース部70の内部に配置されている。また、第一サーボアンプSA1には、位置検出器(エンコーダ)などの検出器から検出信号が入力される。 As described above, the first servomotor 21m is driven and controlled by the first motor control section 21. The first motor control section 21 and the first communication control section 31 are provided in the first servo amplifier SA1. The first servo amplifier SA1 is arranged inside the base portion 70 . A detection signal is input to the first servo amplifier SA1 from a detector such as a position detector (encoder).
 多関節ロボット50は、周辺機器60と協働して、種々の作業を行うことができる。周辺機器60は、多関節ロボット50による作業に必要なものであれば良く、種々の形態をとり得る。周辺機器60は、エンドエフェクタ61、搬送機器62および供給機器63のうちの少なくとも一つであっても良い。図2~図4に示すように、本実施形態の作業機80には、エンドエフェクタ61、搬送機器62および供給機器63の周辺機器60が設けられている。 The articulated robot 50 can cooperate with the peripheral device 60 to perform various tasks. The peripheral device 60 may take various forms as long as it is necessary for the work performed by the articulated robot 50 . Peripheral device 60 may be at least one of end effector 61 , carrier device 62 and delivery device 63 . As shown in FIGS. 2 to 4, the work machine 80 of the present embodiment is provided with peripheral devices 60 such as an end effector 61, a transfer device 62 and a supply device 63. As shown in FIGS.
 図2に示すように、多関節ロボット50のアーム先端部50tである第六リンク51fには、エンドエフェクタ61が着脱可能に取り付けられている。エンドエフェクタ61は、例えば、電磁チャック、メカニカルチャック、吸着ノズルなどを用いることができる。エンドエフェクタ61は、作業対象物W1および供給品P1の形状、素材などに合わせて適宜選択される。また、第五リンク51eには、カメラ50cが取り付けられている。カメラ50cは、作業対象物W1、供給品P1などを撮像することができる。 As shown in FIG. 2, an end effector 61 is detachably attached to the sixth link 51f, which is the arm tip 50t of the articulated robot 50. The end effector 61 can use, for example, an electromagnetic chuck, a mechanical chuck, a suction nozzle, or the like. The end effector 61 is appropriately selected according to the shape, material, etc. of the workpiece W1 and the supply product P1. A camera 50c is attached to the fifth link 51e. The camera 50c can image the work object W1, the supplies P1, and the like.
 例えば、エンドエフェクタ61のメカニカルチャックは、可動部60mであり、第二サーボモータ22mによって可動する。第二サーボモータ22mは、第二モータ制御部22によって駆動制御される。第二モータ制御部22および第二通信制御部32は、第二サーボアンプSA2に設けられている。第二サーボアンプSA2は、ベース部70の内部に配置されている。また、第二サーボアンプSA2には、位置検出器(エンコーダ)などの検出器から検出信号が入力される。 For example, the mechanical chuck of the end effector 61 is the movable portion 60m, which is moved by the second servomotor 22m. The second servomotor 22m is driven and controlled by the second motor control section 22 . The second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2. The second servo amplifier SA2 is arranged inside the base portion 70 . A detection signal is input to the second servo amplifier SA2 from a detector such as a position detector (encoder).
 搬送機器62は、作業対象物W1を搬送する。図3に示すように、本実施形態の搬送機器62は、例えば、ベルトコンベアなどによって構成されている。搬送機器62は、作業機80の機内に作業対象物W1を搬入し、機内の所定位置に作業対象物W1を位置決めする。搬送機器62は、多関節ロボット50による作業が終了した後に、作業対象物W1を作業機80の機外に搬出する。なお、搬送機器62は、多関節ロボット50による作業において使用される種々の作業対象物W1を搬送することができ、作業対象物W1は、限定されない。 The transport device 62 transports the work object W1. As shown in FIG. 3, the conveying device 62 of this embodiment is configured by, for example, a belt conveyor. The carrier device 62 carries the work object W1 into the work machine 80 and positions the work object W1 at a predetermined position inside the machine. After the work by the articulated robot 50 is completed, the transfer device 62 carries the work W1 out of the work machine 80 . In addition, the transport device 62 can transport various work objects W1 used in the work by the articulated robot 50, and the work object W1 is not limited.
 搬送機器62のベルトコンベアは、可動部60mであり、第二サーボモータ22mによって可動する。第二サーボモータ22mは、第二モータ制御部22によって駆動制御される。第二モータ制御部22および第二通信制御部32は、第二サーボアンプSA2に設けられている。第二サーボアンプSA2は、搬送機器62の内部に配置されている。また、第二サーボアンプSA2には、位置検出器(エンコーダ)などの検出器から検出信号が入力される。 The belt conveyor of the conveying device 62 is the movable portion 60m, which is moved by the second servomotor 22m. The second servomotor 22m is driven and controlled by the second motor control section 22 . The second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2. The second servo amplifier SA2 is arranged inside the carrier device 62 . A detection signal is input to the second servo amplifier SA2 from a detector such as a position detector (encoder).
 供給機器63は、作業対象物W1に供給品P1を供給する。図4に示すように、本実施形態の供給機器63は、複数(例えば、二つ)の収容部63aと、複数(例えば、二つ)の搬送部63bとを備えている。複数(二つ)の収容部63aは、作業対象物W1の搬送方向に沿って配置されており、複数(二つ)の収容部63aの各々は、供給品P1を収容している。複数(二つ)の搬送部63bの各々は、例えば、ベルトコンベアなどによって構成されており、収容部63aから排出された供給品P1を多関節ロボット50がピックアップ可能な位置まで搬送する。なお、供給機器63は、多関節ロボット50による作業において必要な種々の供給品P1を供給することができ、供給品P1は、限定されない。 The supply device 63 supplies the supply item P1 to the work object W1. As shown in FIG. 4, the supply device 63 of the present embodiment includes a plurality (eg, two) of storage sections 63a and a plurality (eg, two) of transport sections 63b. The plurality (two) of storage portions 63a are arranged along the conveying direction of the work object W1, and each of the plurality (two) of the storage portions 63a stores the supplies P1. Each of the plurality (two) of transport units 63b is configured by, for example, a belt conveyor, etc., and transports the supplies P1 discharged from the storage unit 63a to a position where the articulated robot 50 can pick them up. The supply device 63 can supply various supplies P1 necessary for the work by the articulated robot 50, and the supplies P1 are not limited.
 複数(二つ)の搬送部63bの各々のベルトコンベアは、可動部60mであり、第二サーボモータ22mによって可動する。第二サーボモータ22mは、第二モータ制御部22によって駆動制御される。第二モータ制御部22および第二通信制御部32は、第二サーボアンプSA2に設けられている。第二サーボアンプSA2は、供給機器63の内部に配置されている。また、第二サーボアンプSA2には、位置検出器(エンコーダ)などの検出器から検出信号が入力される。 Each of the belt conveyors of the plurality (two) of conveying sections 63b is the movable section 60m, and is movable by the second servomotor 22m. The second servomotor 22m is driven and controlled by the second motor control section 22 . The second motor control section 22 and the second communication control section 32 are provided in the second servo amplifier SA2. The second servo amplifier SA2 is arranged inside the supply device 63 . A detection signal is input to the second servo amplifier SA2 from a detector such as a position detector (encoder).
 第一モータ制御部21は、第一サーボモータ21mを駆動制御することにより、アーム50aを移動させることができ、エンドエフェクタ61を作業対象物W1または供給品P1に向けて移動させることができる。多関節ロボット50は、エンドエフェクタ61を用いて、作業対象物W1に対して種々の作業を行うことができる。例えば、多関節ロボット50は、カメラ50cによって作業対象物W1を撮像する。モーションコントローラMC0より上位の制御装置は、作業対象物W1が撮像された画像を画像処理して、作業対象物W1の位置および姿勢を認識する。 By driving and controlling the first servomotor 21m, the first motor control section 21 can move the arm 50a and move the end effector 61 toward the work object W1 or the supply item P1. The articulated robot 50 can use the end effector 61 to perform various operations on the work object W1. For example, the articulated robot 50 captures an image of the work W1 with the camera 50c. A control device higher than the motion controller MC0 performs image processing on the captured image of the work object W1, and recognizes the position and orientation of the work object W1.
 制御装置は、作業対象物W1の位置および姿勢に基づいて、エンドエフェクタ61の目標位置(X座標、Y座標およびZ座標)並びに目標姿勢(回転角度)を算出する。モーションコントローラMC0は、算出されたエンドエフェクタ61の目標位置(X座標、Y座標およびZ座標)並びに目標姿勢(回転角度)に基づいて、アーム50aの各関節50j(第一関節52a~第五関節52e)の目標位置および目標角度を設定する。第一モータ制御部21は、各関節50j(第一関節52a~第五関節52e)の位置が目標位置と一致し且つ角度が目標角度と一致するように、第一サーボモータ21mを駆動制御する。 The control device calculates the target position (X coordinate, Y coordinate and Z coordinate) and target posture (rotational angle) of the end effector 61 based on the position and posture of the work object W1. The motion controller MC0 controls each joint 50j of the arm 50a (first joint 52a to fifth joint 52a to fifth joint 52e) set the target position and target angle. The first motor control unit 21 drives and controls the first servo motor 21m so that the positions of the joints 50j (the first joints 52a to the fifth joints 52e) match the target positions and the angles match the target angles. .
 また、多関節ロボット50は、第二モータ制御部22がエンドエフェクタ61の第二サーボモータ22mを駆動制御しつつ、作業対象物W1に対して種々の作業を行うこともできる。さらに、第二モータ制御部22が搬送機器62の第二サーボモータ22mを駆動制御して作業対象物W1を搬送し、多関節ロボット50が搬送された作業対象物W1に対して種々の作業を行うこともできる。また、第二モータ制御部22が供給機器63の第二サーボモータ22mを駆動制御して供給品P1を供給し、多関節ロボット50が供給された供給品P1を用いて作業対象物W1に対して種々の作業を行うこともできる。 In addition, the articulated robot 50 can perform various operations on the work object W1 while the second motor control unit 22 drives and controls the second servo motor 22m of the end effector 61. Further, the second motor control unit 22 drives and controls the second servo motor 22m of the conveying device 62 to convey the work object W1, and the articulated robot 50 performs various operations on the conveyed work object W1. can also be done. Further, the second motor control unit 22 drives and controls the second servo motor 22m of the supply device 63 to supply the supply item P1, and the articulated robot 50 uses the supplied supply item P1 to move the workpiece W1. can also be used to perform various tasks.
 多関節ロボット50による作業は、限定されない。供給品P1をピックアップするピックアップ作業、供給品P1を作業対象物W1の所定位置AR1に配置する配置作業、および、供給品P1を作業対象物W1の被組み付け部AM1の所定部位AP1に組み付ける組み付け作業のうちの少なくとも一つは、多関節ロボット50による作業に含まれる。 The work performed by the articulated robot 50 is not limited. A pickup operation for picking up the supply item P1, an arrangement operation for arranging the supply item P1 at a predetermined position AR1 of the work object W1, and an assembly operation for assembling the supply item P1 to a predetermined portion AP1 of the assembly target portion AM1 of the work object W1. At least one of them is included in the work performed by the articulated robot 50 .
 図2に示す多関節ロボット50は、エンドエフェクタ61を用いて、搬送機器62によって搬送され位置決めされた作業対象物W1をピックアップすることができる。また、多関節ロボット50は、エンドエフェクタ61を用いて、供給機器63によって供給された供給品P1をピックアップすることもできる。さらに、多関節ロボット50は、例えば、図5に示す収納ケースC1の所定位置AR1に供給品P1を配置することもできる。収納ケースC1は、作業対象物W1であり、複数の領域に区分されている。所定位置AR1は、複数の領域のうちの少なくとも一つの領域(同図では、一つの領域)を示している。 The articulated robot 50 shown in FIG. 2 can use the end effector 61 to pick up the work object W1 transported and positioned by the transport device 62 . The articulated robot 50 can also use the end effector 61 to pick up the supplies P1 supplied by the supply device 63 . Furthermore, the articulated robot 50 can also place the supplies P1 at a predetermined position AR1 of the storage case C1 shown in FIG. 5, for example. The storage case C1 is the work object W1 and is divided into a plurality of areas. The predetermined position AR1 indicates at least one area (one area in the figure) of the plurality of areas.
 例えば、供給品P1が複数の部品の集合物である場合、多関節ロボット50は、収納ケースC1において、供給品P1を部品の種類毎に配置することができる。また、多関節ロボット50は、収納ケースC1において、供給品P1を部品の外形寸法に応じて配置することもできる。さらに、多関節ロボット50は、収納ケースC1において、供給品P1を作業工程順に配置することもできる。 For example, if the supply item P1 is an aggregate of a plurality of parts, the articulated robot 50 can arrange the supply item P1 for each type of part in the storage case C1. The articulated robot 50 can also arrange the supplies P1 in the storage case C1 according to the outer dimensions of the parts. Furthermore, the articulated robot 50 can also arrange the supplies P1 in the storage case C1 in the order of work steps.
 多関節ロボット50は、図6に示す作業対象物W1の被組み付け部AM1の所定部位AP1に供給品P1を組み付けることもできる。例えば、多関節ロボット50は、供給機器63によって供給された供給品P1をピックアップして、被組み付け部AM1の所定部位AP1に供給品P1を組み付けることができる。また、多関節ロボット50は、収納ケースC1に配置した供給品P1をピックアップして、被組み付け部AM1の所定部位AP1に供給品P1を組み付けることもできる。なお、複数の多関節ロボット50が協働して、被組み付け部AM1の所定部位AP1に供給品P1を組み付けることもできる。 The articulated robot 50 can also assemble the supply item P1 to the predetermined portion AP1 of the assembling part AM1 of the work object W1 shown in FIG. For example, the articulated robot 50 can pick up the supply item P1 supplied by the supply device 63 and attach the supply item P1 to the predetermined portion AP1 of the assembly target AM1. The articulated robot 50 can also pick up the supplies P1 arranged in the storage case C1 and assemble the supplies P1 to the predetermined portion AP1 of the assembly part AM1. It should be noted that a plurality of articulated robots 50 can work together to assemble the supplies P1 to the predetermined portion AP1 of the assembly part AM1.
 本実施形態の周辺機器60は、多関節ロボット50のアーム先端部50tに取り付けられるエンドエフェクタ61、作業対象物W1を搬送する搬送機器62、および、作業対象物W1に供給品P1を供給する供給機器63のうちの少なくとも一つである。よって、多関節ロボット50は、エンドエフェクタ61、搬送機器62および供給機器63のうちの少なくとも一つを使用して作業を行うことができる。また、周辺機器60は、ユニット化されている。そのため、サーボシステム10の構成変更が容易である。 The peripheral device 60 of the present embodiment includes an end effector 61 attached to an arm tip portion 50t of the articulated robot 50, a transfer device 62 for transferring the work W1, and a supply device for supplying the work P1 to the work W1. At least one of the devices 63 . Therefore, the articulated robot 50 can perform work using at least one of the end effector 61 , the transfer device 62 and the supply device 63 . Also, the peripheral device 60 is unitized. Therefore, it is easy to change the configuration of the servo system 10 .
 2.多関節ロボット50
 多関節ロボット50は、第一モータ制御部21と、第一通信制御部31とを備えることもできる。第一モータ制御部21は、関節50jを動かす複数のサーボモータである第一サーボモータ21mを駆動制御する。第一通信制御部31は、作業の必要に応じて設けられる周辺機器60および第一モータ制御部21とそれぞれ通信可能である。この形態においても、サーボシステム10について既述されていることが同様に言える。よって、本明細書では、重複する説明が省略されている。
2. Articulated robot 50
The articulated robot 50 can also include a first motor control section 21 and a first communication control section 31 . The first motor control unit 21 drives and controls the first servomotors 21m, which are a plurality of servomotors that move the joints 50j. The first communication control unit 31 can communicate with the peripheral device 60 and the first motor control unit 21, which are provided as necessary for the work. The same can be said for the servo system 10 in this embodiment. Therefore, redundant description is omitted in this specification.
 3.実施形態の効果の一例
 サーボシステム10によれば、第一通信制御部31は、周辺機器60および第一モータ制御部21とそれぞれ通信可能である。よって、サーボシステム10は、関節50jを動かす第一サーボモータ21mを制御するための通信と、周辺機器60を制御するための通信とを分離することができ、関節50jを動かす第一サーボモータ21mを制御するための通信の通信性能を確保することができる。サーボシステム10について上述されていることは、第一モータ制御部21および第一通信制御部31を備える多関節ロボット50についても同様に言える。
3. Example of Effect of Embodiment According to the servo system 10, the first communication control section 31 can communicate with the peripheral device 60 and the first motor control section 21, respectively. Therefore, the servo system 10 can separate the communication for controlling the first servo motor 21m that moves the joint 50j and the communication for controlling the peripheral device 60, and the first servo motor 21m that moves the joint 50j can be separated. It is possible to ensure the communication performance of the communication for controlling the What has been described above for the servo system 10 also applies to the articulated robot 50 including the first motor control section 21 and the first communication control section 31 .
10:サーボシステム、21:第一モータ制御部、
21m:第一サーボモータ、22:第二モータ制御部、
22m:第二サーボモータ、30:通信制御部、31:第一通信制御部、
32:第二通信制御部、41:第一サーボネットワーク部、
42:第二サーボネットワーク部、50:多関節ロボット、50j:関節、
50t:アーム先端部、60:周辺機器、60m:可動部、
61:エンドエフェクタ、62:搬送機器、63:供給機器、
MC0:モーションコントローラ、SA1:第一サーボアンプ、
SA2:第二サーボアンプ、W1:作業対象物、P1:供給品。
10: servo system, 21: first motor control unit,
21m: first servo motor, 22: second motor control unit,
22m: second servo motor, 30: communication control section, 31: first communication control section,
32: second communication control unit, 41: first servo network unit,
42: second servo network unit, 50: articulated robot, 50j: joint,
50t: arm tip, 60: peripheral device, 60m: movable part,
61: end effector, 62: transport equipment, 63: supply equipment,
MC0: motion controller, SA1: first servo amplifier,
SA2: second servo amplifier, W1: work object, P1: supply.

Claims (13)

  1.  多関節ロボットの関節を動かす複数のサーボモータである第一サーボモータを駆動制御する第一モータ制御部と、
     前記多関節ロボットによる作業の必要に応じて設けられる周辺機器および前記第一モータ制御部とそれぞれ通信可能な第一通信制御部と、
    を備えるサーボシステム。
    a first motor control unit that drives and controls first servo motors, which are a plurality of servo motors that move the joints of the articulated robot;
    a first communication control unit capable of communicating with a peripheral device and the first motor control unit provided as required for work by the articulated robot;
    Servo system with
  2.  前記第一通信制御部と前記第一モータ制御部との間で通信を行う第一サーボネットワーク部と、
     前記周辺機器が設けられる場合に前記第一通信制御部と前記周辺機器に設けられる第二通信制御部との間で通信を行う第二サーボネットワーク部と、
    を具備可能な請求項1に記載のサーボシステム。
    a first servo network unit that communicates between the first communication control unit and the first motor control unit;
    a second servo network unit that communicates between the first communication control unit and a second communication control unit provided in the peripheral device when the peripheral device is provided;
    2. The servo system of claim 1, comprising:
  3.  前記第一サーボネットワーク部における通信周期は、前記第二サーボネットワーク部における通信周期と同等に若しくは当該通信周期と比べて短く設定されている請求項2に記載のサーボシステム。 The servo system according to claim 2, wherein the communication cycle in the first servo network section is set equal to or shorter than the communication cycle in the second servo network section.
  4.  前記第一サーボネットワーク部は、前記第一通信制御部と前記第一モータ制御部との間がバス接続されている請求項2または請求項3に記載のサーボシステム。 The servo system according to claim 2 or 3, wherein the first servo network unit has a bus connection between the first communication control unit and the first motor control unit.
  5.  前記第二サーボネットワーク部は、前記第一通信制御部に直接接続される通信制御部を介して前記周辺機器に設けられる前記第二通信制御部がディジーチェーン接続されている請求項2~請求項4のいずれか一項に記載のサーボシステム。 Said second servo network unit is daisy-chain connected to said second communication control unit provided in said peripheral device via a communication control unit directly connected to said first communication control unit. 5. The servo system according to any one of Claims 4.
  6.  前記第一モータ制御部および前記第一通信制御部は、前記第一サーボモータを駆動する第一サーボアンプに設けられている請求項1~請求項5のいずれか一項に記載のサーボシステム。 The servo system according to any one of claims 1 to 5, wherein the first motor control unit and the first communication control unit are provided in a first servo amplifier that drives the first servo motor.
  7.  前記第一通信制御部は、前記多関節ロボットの動作を制御するモーションコントローラと通信可能に設けられている請求項1~請求項6のいずれか一項に記載のサーボシステム。 The servo system according to any one of claims 1 to 6, wherein the first communication control unit is provided so as to be able to communicate with a motion controller that controls the motion of the articulated robot.
  8.  前記第一通信制御部と前記モーションコントローラとの間は、PCI-Expresの通信規格によって通信可能である請求項7に記載のサーボシステム。 The servo system according to claim 7, wherein communication is possible between the first communication control unit and the motion controller according to the PCI-Express communication standard.
  9.  前記周辺機器は、前記周辺機器の可動部を動かす少なくとも一つのサーボモータである第二サーボモータを駆動制御する第二モータ制御部を備える請求項1~請求項8のいずれか一項に記載のサーボシステム。 9. The peripheral device according to any one of claims 1 to 8, wherein the peripheral device comprises a second motor control section that drives and controls a second servo motor that is at least one servo motor that moves a movable portion of the peripheral device. servo system.
  10.  前記周辺機器は、前記第一通信制御部との間で通信を行う第二通信制御部を備え、
     前記第二モータ制御部および前記第二通信制御部は、前記第二サーボモータを駆動する第二サーボアンプに設けられている請求項9に記載のサーボシステム。
    The peripheral device comprises a second communication control unit that communicates with the first communication control unit,
    10. The servo system according to claim 9, wherein said second motor control section and said second communication control section are provided in a second servo amplifier that drives said second servo motor.
  11.  前記周辺機器は、ユニット化されている請求項1~請求項10のいずれか一項に記載のサーボシステム。 The servo system according to any one of claims 1 to 10, wherein the peripheral device is unitized.
  12.  前記周辺機器は、前記多関節ロボットのアーム先端部に取り付けられるエンドエフェクタ、作業対象物を搬送する搬送機器、および、前記作業対象物に供給品を供給する供給機器のうちの少なくとも一つである請求項1~請求項11のいずれか一項に記載のサーボシステム。 The peripheral device is at least one of an end effector attached to the tip of the arm of the articulated robot, a transfer device that transfers a work object, and a supply device that supplies supplies to the work object. The servo system according to any one of claims 1 to 11.
  13.  関節を動かす複数のサーボモータである第一サーボモータを駆動制御する第一モータ制御部と、
     作業の必要に応じて設けられる周辺機器および前記第一モータ制御部とそれぞれ通信可能な第一通信制御部と、
    を備える多関節ロボット。
    a first motor control unit that drives and controls first servo motors that are a plurality of servo motors that move joints;
    a first communication control unit capable of communicating with a peripheral device provided as necessary for work and the first motor control unit, respectively;
    Articulated robot with
PCT/JP2021/024743 2021-06-30 2021-06-30 Servo system and articulated robot WO2023276043A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024743 WO2023276043A1 (en) 2021-06-30 2021-06-30 Servo system and articulated robot
JP2023531240A JPWO2023276043A1 (en) 2021-06-30 2021-06-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024743 WO2023276043A1 (en) 2021-06-30 2021-06-30 Servo system and articulated robot

Publications (1)

Publication Number Publication Date
WO2023276043A1 true WO2023276043A1 (en) 2023-01-05

Family

ID=84689815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024743 WO2023276043A1 (en) 2021-06-30 2021-06-30 Servo system and articulated robot

Country Status (2)

Country Link
JP (1) JPWO2023276043A1 (en)
WO (1) WO2023276043A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246547A (en) * 2004-03-04 2005-09-15 Daihen Corp Robot control system
JP2017151869A (en) * 2016-02-26 2017-08-31 ファナック株式会社 Cell control device for displaying abnormality occurrence situation of manufacturing machine by the area or by the step
JP2017189821A (en) * 2016-04-11 2017-10-19 ファナック株式会社 Control system enabling cpu for control to be added thereto
JP2019161759A (en) * 2018-03-09 2019-09-19 富士電機株式会社 Motor drive system
JP2020048410A (en) * 2016-02-29 2020-03-26 株式会社安川電機 Motor control system, apparatus, and diagnosis method for industrial device
JP2021074872A (en) * 2019-10-24 2021-05-20 エヌビディア コーポレーション In-hand object pose tracking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246547A (en) * 2004-03-04 2005-09-15 Daihen Corp Robot control system
JP2017151869A (en) * 2016-02-26 2017-08-31 ファナック株式会社 Cell control device for displaying abnormality occurrence situation of manufacturing machine by the area or by the step
JP2020048410A (en) * 2016-02-29 2020-03-26 株式会社安川電機 Motor control system, apparatus, and diagnosis method for industrial device
JP2017189821A (en) * 2016-04-11 2017-10-19 ファナック株式会社 Control system enabling cpu for control to be added thereto
JP2019161759A (en) * 2018-03-09 2019-09-19 富士電機株式会社 Motor drive system
JP2021074872A (en) * 2019-10-24 2021-05-20 エヌビディア コーポレーション In-hand object pose tracking

Also Published As

Publication number Publication date
JPWO2023276043A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
Oltean Mobile robot platform with arduino uno and raspberry pi for autonomous navigation
JP6788593B2 (en) Manipulator system
US9539725B2 (en) Visually controlled end effector
Matsumaru Design and control of the modular robot system: TOMMS
US10232506B2 (en) Production system
Shah et al. Concept for automated sorting robotic arm
CN104444360A (en) Five-axis hub transfer robot and clamping manipulator
US11926043B2 (en) Robot for gripping and/or holding objects
JP2020062742A (en) Movable type fixing apparatus and method
JP2007118176A (en) Mobile manipulator
CN110545952B (en) Robot system and work line provided with same
KR101161056B1 (en) robot having multi-joint
US10946514B2 (en) Controller, work control unit, multi-axis motion control unit, and drive control unit
US11745364B2 (en) Robot and first arm member
US20030010603A1 (en) Continuous motion robotic manipulator
CN112296995B (en) Robot cooperation carrying system
WO2023276043A1 (en) Servo system and articulated robot
CN103895007A (en) Two-translational-motion parallel robot
Liu et al. ReBot: A novel under-actuated resilient robot
Gosim et al. Pick and place ABB working with a liner follower robot
CN211916865U (en) Both arms transport positioning robot
CN210848738U (en) Anti-collision welding robot
KR101619927B1 (en) Cooperative Grasping Control and Obstacle Avoidance of Multiple Mobile Manipulator
CN112318491A (en) Robot with control of multiple coordinated shafts
Patil et al. A review paper on introduction of parallel manipulator and control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531240

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948350

Country of ref document: EP

Kind code of ref document: A1