WO2023246772A1 - 用于数据中心的冷冻水冷却系统及制冷空调机组 - Google Patents
用于数据中心的冷冻水冷却系统及制冷空调机组 Download PDFInfo
- Publication number
- WO2023246772A1 WO2023246772A1 PCT/CN2023/101380 CN2023101380W WO2023246772A1 WO 2023246772 A1 WO2023246772 A1 WO 2023246772A1 CN 2023101380 W CN2023101380 W CN 2023101380W WO 2023246772 A1 WO2023246772 A1 WO 2023246772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chilled water
- unit
- refrigeration
- cooling system
- heat
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 221
- 238000001816 cooling Methods 0.000 title claims abstract description 196
- 238000005057 refrigeration Methods 0.000 title claims abstract description 135
- 238000004378 air conditioning Methods 0.000 title claims abstract description 20
- 238000011084 recovery Methods 0.000 claims abstract description 53
- 239000002918 waste heat Substances 0.000 claims abstract description 34
- 239000003507 refrigerant Substances 0.000 claims description 104
- 230000001105 regulatory effect Effects 0.000 claims description 45
- 239000007788 liquid Substances 0.000 claims description 22
- 230000007613 environmental effect Effects 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 description 8
- 238000005265 energy consumption Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/02—Compression machines, plants or systems, with several condenser circuits arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20763—Liquid cooling without phase change
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/30—Artificial light
Definitions
- the present disclosure relates to the technical field of refrigeration equipment, and in particular, to a chilled water cooling system and a refrigeration and air conditioning unit used in a data center.
- Data centers are large energy consumers. Refrigeration and air conditioning energy consumption accounts for about 40% of the total energy consumption of data centers. Energy conservation in the data center refrigeration and air conditioning industry is particularly important. Data centers contain abundant waste heat resources. However, the cooling solutions in some cases have technical problems of low energy utilization.
- the present disclosure provides a chilled water cooling system and a refrigeration and air conditioning unit for a data center.
- the present disclosure provides a chilled water cooling system for a data center, including: an evaporative cooling unit; a heat exchanger connected to a return interface of chilled water; and a thermal energy driven refrigeration unit connected to a water supply interface of chilled water. Connection, the evaporative cooling unit and the heat exchanger are both connected to the thermal energy-driven refrigeration unit; the heat recovery device is connected to the thermal energy-driven refrigeration unit for recovering waste heat and transferring the waste heat to the thermal energy-driven refrigeration unit; wherein, the chilled water cooling system includes the third In the first cooling mode and the second cooling mode, the chilled water cooling system can switch to the corresponding cooling mode according to the outdoor environmental parameters.
- the present disclosure also provides a refrigeration and air-conditioning unit, including: the chilled water cooling system described in any one of the above; and a chilled water terminal.
- the water supply interface of the chilled water terminal is connected to the thermal energy driven refrigeration unit.
- the chilled water terminal The return water interface is connected to the heat exchanger.
- Figure 1 is a schematic structural diagram of a chilled water cooling system provided by an embodiment of the present disclosure.
- Figure 2 is a schematic structural diagram of a chilled water cooling system provided by an embodiment of the present disclosure.
- Evaporative cooling unit 11. Liquid storage area; 12. Filling area; 13. Spraying device; 14. Exhaust fan; 15. Air inlet area; 16. Air outlet area;
- Control valve 51. First regulating valve; 52. Second regulating valve;
- Control unit 70. First water pump; 80. Second water pump;
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance. or an implicit indication of the quantity of the technical feature indicated.
- features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
- “plurality” means two or more than two, unless otherwise expressly and specifically limited.
- Data centers have played an increasingly important role in people's daily lives.
- Data centers are large energy consumers in building energy consumption. Refrigeration and air conditioning energy consumption accounts for about 40% of the total energy consumption of data centers. Recently, the country has recently proposed the energy-saving goal of "peak carbon neutrality".
- Data center refrigeration and air conditioning Energy conservation in the industry is particularly important. Data centers contain abundant waste heat resources. At present, data centers are generally refrigerated, and a large amount of heat is discharged to the outdoor environment and wasted. The use of refrigeration and air conditioning only transfers the heat generated by the equipment to the outdoor environment, and the transfer process is based on At the expense of a large amount of air conditioning energy consumption, energy utilization is low.
- an embodiment of the present disclosure provides a chilled water cooling system for a data center, including an evaporative cooling unit 10 , a heat exchanger 20 , a thermal energy driven refrigeration unit 30 and a heat recovery device 40 .
- the heat exchanger 20 is connected to the return water interface 200 of the chilled water.
- the thermal energy driven refrigeration unit 30 is connected to the chilled water water supply interface 300 , and the thermal energy driven refrigeration unit 30 is connected to the evaporative cooling unit 10 .
- the heat recovery device 40 is connected to the thermal energy driven refrigeration unit 30 for recovering waste heat and transferring the waste heat to the thermal energy driven refrigeration unit 30 .
- the chilled water cooling system includes a first cooling mode and a second cooling mode, and the chilled water cooling system can switch to the corresponding cooling mode according to outdoor environmental parameters.
- the water supply interface 300 and the return water interface 200 are respectively used to connect the chilled water supply pipeline and the chilled water return pipeline located in the data center computer room.
- the chilled water also called return water
- the chilled water cooling system includes a first cooling mode and a second cooling mode.
- the chilled water cooling system can be based on The outdoor environmental parameters use the corresponding cooling mode to cool down the chilled water.
- the cooled chilled water is discharged from the thermal energy driven refrigeration unit 30 and can be transported to the chilled water end of the data center computer room to provide a heat dissipation source for the data center computer room.
- the waste heat of the data center is recovered through the heat recovery device 40 and used to refrigerate the chilled water flowing out of the data center computer room.
- No additional electric energy is needed to transfer the heat in the data center computer room to the outdoor environment, which is energy-saving and environmentally friendly, and greatly improves energy utilization. Rate.
- the above-mentioned chilled water cooling system has a simple structure, low cost, and stable operation, which is conducive to popularization and application.
- Reasonable cooling mode switching based on meteorological conditions can not only meet the cooling needs of the data center computer room requirements and can save energy to the greatest extent.
- the chilled water supply pipeline and the chilled water return pipeline are at least a part of the chilled water terminal located in the data center computer room, which can directly exchange heat with the air in the data center computer room.
- the chilled water terminal includes a chilled water precision air conditioner, a chilled water backplane air conditioner, a chilled water variable frequency air conditioner, or a chilled water inter-row air conditioner.
- the chilled water terminal may also be a liquid pipeline provided in the data center computer room.
- the first refrigerant flowing through the heat recovery device 40 can exchange heat with the heat exchange medium (such as water), and the heat exchange medium flowing out from the heat recovery device 40 flows through the thermal energy driven refrigeration unit 30 and will be converted from the first refrigeration unit.
- the heat absorbed by the refrigerant is transferred to the thermal energy driven refrigeration unit 30.
- the heat carried by the first refrigerant comes from the waste heat of the data center computer room, thereby realizing waste heat recovery and utilization.
- the first refrigerant flowing out from the evaporative cooling unit 10 flows through the heat exchanger 20 and then flows into the heat recovery device 40 via the thermal energy-driven refrigeration unit 30.
- the thermal energy-driven refrigeration unit 30 pairs Chilled water does not cool.
- the first refrigerant flowing out from the evaporative cooling unit 10 does not flow through the heat exchanger 20 but flows into the heat recovery device 40 via the thermal energy driven refrigeration unit 30.
- the thermal energy driven refrigeration unit 30 cools the chilled water.
- the chilled water cooling system includes an evaporative cooling unit 10 and a thermal energy driven refrigeration unit 30, which effectively combines the stable and reliable advantages of non-evaporative refrigeration (such as jet refrigeration) and can broaden the application scope of evaporative cooling air conditioning technology. Select the cooling mode corresponding to the outdoor environmental parameters according to the different outdoor environmental parameters, which can not only meet the cooling needs of the data center computer room, but also save energy as much as possible.
- the first refrigerant flowing out from the evaporative cooling unit 10 when the outdoor air dry bulb temperature is less than or equal to the first temperature threshold, the first refrigerant flowing out from the evaporative cooling unit 10 includes ethylene glycol.
- the first refrigerant flowing out from the evaporative cooling unit 10 includes water. It can be understood that the first temperature threshold is smaller than the second temperature threshold.
- the first temperature threshold and the second temperature threshold can be designed to any appropriate value according to actual requirements.
- the first temperature threshold is 3°C.
- the second temperature threshold is 16°C.
- the thermal energy driven refrigeration unit 30 includes a generator 31 , an ejector 32 , an evaporator 33 , a condenser 34 and a throttling device 35 .
- the injector 32 is used to inject the second refrigerant flowing out from the generator 31 and the evaporated second refrigerant flowing out from the evaporator 33 .
- the inlet of the ejector 32 is connected to the evaporator 33 and the generator 31 respectively, and the outlet of the ejector 32 is connected to the condenser 34.
- the evaporator 33 is connected to the water supply interface 300 .
- the condenser 34 is connected to the heat recovery device 40 .
- the condenser 34 condenses and releases heat for the second refrigerant flowing out of the ejector 31 .
- the evaporator 33 can receive the second refrigerant that is throttled and depressurized by the throttling device 36 .
- the chilled water cooling system of the above embodiment uses natural cold source, dry air energy and low-grade energy for combined refrigeration, which can greatly reduce the power usage efficiency of the data center (Power Usage Effectiveness (PUE), effectively combining the stable and reliable advantages of jet refrigeration, can broaden the application scope of evaporative cooling air conditioning technology.
- PUE Power Usage Effectiveness
- the second refrigerant includes refrigerant or Freon.
- the generator 31 can also be connected to a solar energy conversion unit (not shown).
- the solar energy conversion unit can convert solar energy into thermal energy, and the heat transfer fluid flows through the generator 31 so that the second refrigerant in the generator 31 absorbs heat.
- solar energy and waste heat from the data center computer room drive thermal energy to drive the refrigeration unit 30, which is environmentally friendly and energy-saving.
- the chilled water cooling system can not only make full use of dry air energy and waste heat in the data center computer room, but also the heat-driven refrigeration unit 30 can be driven by low-grade solar energy, which is energy-saving and environmentally friendly, reducing equipment energy consumption and saving operation and maintenance costs.
- the chilled water cooled by the chilled water cooling system is high-temperature cold water, that is, the chilled water flowing out from the evaporator 33 is high-temperature cold water.
- the temperature of the high-temperature cold water is 18°C.
- the evaporative cooling unit 10 in the first refrigeration mode, the heat exchanger 20, the condenser 34 and the heat recovery device 40 are connected in sequence to form a circulation loop for the flow of the first refrigerant.
- the return water interface 200, the heat exchanger 20, the evaporator 33 and the water supply interface 300 are connected in sequence to form a liquid channel for the flow of chilled water.
- the evaporative cooling unit 10 in the second refrigeration mode, the condenser 34 and the heat recovery device 40 are connected in sequence to form a circulation loop for the flow of the first refrigerant, the return water interface 200, the heat exchanger 20 , the evaporator 33 and the water supply interface 300 are connected in sequence to form a liquid channel for the flow of chilled water.
- the chilled water cooling system further includes a third cooling mode, and the chilled water cooling system can switch between the first cooling mode, the second cooling mode and the third cooling mode according to outdoor environmental parameters.
- the third refrigeration mode the first refrigerant flowing out from the evaporative cooling unit 10 flows through the heat exchanger 20 and then flows into the heat recovery device 40 via the thermal energy driven refrigeration unit 30.
- the thermal energy driven refrigeration unit 30 cools the chilled water. In this way, it can work in different cooling modes according to outdoor environmental parameters, so that different grades of energy can be fully utilized. It can not only meet the cooling needs of the data center computer room, but also improve the energy utilization rate and meet the various needs of users; it can be based on seasons and Choose the best refrigeration method that meets the requirements for different cooling and heat needs.
- the evaporative cooling unit 10 in the third refrigeration mode, the heat exchanger 20, the condenser 34 and the heat recovery device 40 are connected in sequence to form a circulation loop for the flow of the first refrigerant.
- the return water interface 200, the heat exchanger 20, the evaporator 33 and the water supply interface 300 are connected in sequence to form a liquid channel for the flow of chilled water.
- the chilled water cooling system also includes a control component.
- the control component is used to control the chilled water cooling system to switch between different cooling modes.
- the control assembly includes a control valve 50.
- Control valve 50 is used to control evaporation
- the cooling unit 10 is optionally connected to the heat exchanger 20 .
- the control valve 50 includes a first regulating valve 51 and a second regulating valve 52 for controlling the evaporative cooling unit 10 to selectively communicate with the heat exchanger 20 .
- the first refrigeration mode the first regulating valve 51 is closed, the second regulating valve 52 is opened, and the evaporative cooling unit 10 is connected to the heat exchanger 20 .
- the first regulating valve 51 is opened, the second regulating valve 52 is closed, and the evaporative cooling unit 10 is not connected to the heat exchanger 20 .
- the third refrigeration mode the first regulating valve 51 is closed, the second regulating valve 52 is opened, and the evaporative cooling unit 10 is connected to the heat exchanger 20 .
- the first interface C1 of the first regulating valve 51 is connected to the evaporative cooling unit 10
- the second interface C2 of the first regulating valve 51 is connected to the condenser 34
- the first interface D1 of the second regulating valve 52 is connected to the evaporative cooling unit 10
- the second interface D2 of the second regulating valve 52 is connected to the heat exchanger 20 .
- both the first regulating valve 51 and the second regulating valve 52 are two-way valves. In an exemplary embodiment, both the first regulating valve 51 and the second regulating valve 52 are solenoid valves or the like.
- control valve 50 may also include a three-way valve for controlling the evaporative cooling unit 10 to selectively communicate with the heat exchanger 20 .
- control assembly also includes a control unit 60.
- the control unit 60 is electrically connected to the evaporative cooling unit 10, the control valve 50, the thermal energy driven refrigeration unit 30 and the heat recovery device 40, and is used to control the chilled water cooling system to switch between different cooling modes according to outdoor environmental parameters.
- control unit 60 is used to control the chilled water cooling system to switch between the first cooling mode, the second cooling mode and the third cooling mode according to the outdoor environmental parameters.
- the control unit 60 may include a circuit board or a control chip.
- the evaporative cooling unit 10 includes: a cooling tower or a direct precooling evaporative cooling chiller, an indirect precooling evaporative cooling chiller, a dew point indirect precooling evaporative cooling chiller, a surface cooling-indirect precooling chiller. At least one of an evaporative cooling chiller, or a surface cooling-dew point pre-cooling evaporative cooling chiller.
- evaporative cooling unit 10 includes a cooling tower.
- the cooling tower includes a liquid storage area 11, a filling area 12, a spray device 13 (such as a water distributor) and an exhaust fan 14.
- the liquid outlet of the liquid storage area 11 is connected to the first water pump 70
- the spray device 13 is connected to the condenser 34 .
- the first refrigerant (such as cooling water) flowing out from the condenser 34 is transported to the top of the cooling tower and sprayed out through the spray device 13 provided at the top of the cooling tower.
- the first refrigerant sprayed from the spray device 13 After the first refrigerant sprayed from the spray device 13 fully contacts the cold air entering from the air inlet area 15 in the filling area 12, the temperature of the first refrigerant is reduced, and the first refrigerant with the reduced temperature continues to drip downward.
- the first refrigerant in the liquid storage area 11 flows out to the heat exchanger 20 or the condenser 34 through the liquid outlet of the cooling tower.
- the filling area 12 is filled with fillers, which can increase the heat dissipation in the cooling tower, prolong the residence time of the first refrigerant (such as cooling water), increase the heat exchange area, increase the heat exchange amount, and evenly distribute water.
- first refrigerant such as cooling water
- the exhaust fan 14 is arranged above the cooling tower and above the packing area 12 .
- the hot air flow after heat exchange in the cooling tower can be discharged from the air outlet area 16 to further ensure the cooling effect.
- the thermal energy driven refrigeration unit 30 includes at least one of an injection refrigeration unit and an absorption refrigeration cycle chiller.
- the chilled water cooling system further includes a first water pump 70 and a second water pump 80 .
- the inlet of the first water pump 70 is connected to the evaporative cooling unit 10 , and the outlet of the first water pump 70 is connected to the condenser 34 and the heat exchanger 20 through the first regulating valve 51 and the second regulating valve 52 respectively.
- the inlet of the second water pump 80 is connected to the evaporator 33 , and the outlet of the second water pump 80 is connected to the water supply interface 300 .
- the thermal energy driven refrigeration unit 30 further includes a refrigerant pump 36 and a throttling device 35 .
- the inlet of the refrigerant pump 36 is connected to the condenser 34 and the first interface E1 of the throttling device 35
- the outlet of the refrigerant pump 36 is connected to the generator 31 .
- the first interface E1 of the throttling device 35 is connected to the inlet of the refrigerant pump 36 and the condenser 34
- the second interface E2 of the throttling device 35 is connected to the evaporator 33 .
- the first refrigerant flowing through the heat recovery device 40 can exchange heat with a heat exchange medium (such as water), and the heat exchange medium flowing through the thermal energy-driven refrigeration unit 30 will absorb energy from the first refrigerant.
- the heat is conducted to the generator 31.
- the heat energy converted by the solar energy conversion unit is transferred to the generator 31 through the heat transfer fluid flowing through the generator 31 .
- the heat energy carried by the heat exchange medium from the heat recovery device 40 and/or the heat energy carried by the heat transfer fluid from the solar conversion unit causes the second refrigerant liquid in the generator 31 to absorb heat and vaporize.
- the second refrigerant liquid absorbs heat and vaporizes to generate saturated steam.
- the saturated steam flows through the ejector 32, generating a low pressure near the nozzle of the ejector 32, thereby sucking the second refrigerant vapor in the evaporator 33 for injection.
- the mixed gas is mixed in the ejector 32 and boosted together through the scaling and expansion section of the ejector 32.
- the mixed gas coming out of the ejector 32 enters the condenser 34 for condensation.
- the second refrigerant liquid coming out of the condenser 34 is divided into two paths, and one path passes through the throttle.
- the flow device 35 depressurizes and returns to the evaporator 33 , while the other path increases the pressure through the refrigerant pump 36 and then enters the generator 31 .
- throttling device 35 includes an electronic expansion valve.
- the thermal energy driven refrigeration unit 30 further includes a liquid reservoir 37 .
- the condenser 34 is in communication with the liquid reservoir 37 .
- the generator 31 communicates with the reservoir 37 via a refrigerant pump 36 .
- the evaporator 33 communicates with the liquid reservoir 37 through the throttling device 35 .
- the chilled water cooling system further includes a detection sensor (not shown) for detecting outdoor air temperature and/or outdoor air humidity.
- the detection sensor can detect the outdoor air temperature and/or outdoor air humidity and send it to the control Unit 60, the control unit 60 controls the chilled water cooling system to switch to one of the first cooling mode, the second cooling mode and the third cooling mode according to the received outdoor air temperature and/or outdoor air humidity. It can be understood that by automatically judging the outdoor environment, the control unit 60 and the control valve 50 can realize all-weather temperature, reliable, efficient and energy-saving operation of the chilled water cooling system.
- the detection sensor includes a temperature sensor and/or a humidity sensor.
- the temperature sensor and the humidity sensor can be integrated on one physical entity, or can be set independently on different physical entities. There is no limitation here.
- the second regulating valve 52 and the evaporative cooling unit 10 are opened, and the first regulating valve 51, the thermal energy driven refrigeration unit 30 and the heat recovery device 40 are closed.
- the first regulating valve 51, the heat recovery device 40 and the refrigerant pump 36 are closed, and the exhaust fan 14, the first water pump 70, the second water pump 80 and the second regulating valve are turned on.
- Valve 52. The first refrigerant flowing out from the evaporative cooling unit 10 flows through the heat exchanger 20 and then flows into the heat recovery device 40 via the condenser 34 .
- the first refrigerant flowing out from the evaporative cooling unit 10 exchanges heat with the chilled water in the heat exchanger 20 to cool the chilled water.
- the thermal energy drives the refrigeration unit 30 to not cool the chilled water (that is, when the chilled water flows through the evaporator 33 No heat exchange is performed).
- the first refrigerant in the first refrigeration mode, circulates in the following flow direction: evaporative cooling unit 10 - first water pump 70 - second regulating valve 52 - heat exchanger 20 - condenser 34-Heat recovery device 40-Evaporative cooling unit 10. Chilled water flows in the following flow direction: return water interface 200 - heat exchanger 20 - evaporator 33 - second water pump 80 - water supply interface 300.
- the first refrigerant flowing out from the evaporative cooling unit 10 can perform heat exchange with the chilled water in the heat exchanger 20 , so that all the waste heat of the data center computer room carried by the chilled water is transferred to the first refrigeration unit. agent.
- the first refrigerant circulates in the following flow direction: evaporative cooling unit 10 - first water pump 70 - first regulating valve 51 - condenser 34 - heat recovery device 40-Evaporative cooling unit 10.
- the chilled water flows in the following flow direction: return water interface 200 - heat exchanger 20 - evaporator 33 - second water pump 80 - water supply interface 300.
- the second refrigerant coming out of the generator 31 and the second refrigerant flowing out of the evaporator 33 are mixed in the ejector 32 and then enter the condenser 34 to exchange heat with the first refrigerant.
- the first refrigerant heats up and the second refrigerant cools down.
- the second refrigerant flowing out from the condenser 34 flows through the accumulator 37 and then divides into two paths. One of them enters the evaporator 33 through the throttling device 35 and flows through the evaporator 33
- the chilled water generates a cooling effect, and the other channel flows through the refrigerant pump 36 and then flows to the generator 31, thus completing the cycle of the second refrigerant.
- the first refrigerant flowing out from the condenser 34 comes to the heat recovery device 40 to exchange heat with the heat exchange medium.
- the first refrigerant cools down and the heat exchange medium heats up, so that the first refrigerant is directly transferred from the chilled water.
- the absorbed waste heat and/or the waste heat absorbed from the second refrigerant is transferred to the heat exchange medium.
- the high-temperature heat exchange medium carrying waste heat flowing out from the heat recovery device 40 flows to the generator 31 to heat the second refrigerant, and the heat exchange medium after heat exchange returns to the heat exchange device, thereby realizing the data Waste heat recovery in the central computer room.
- the second regulating valve 52, the evaporative cooling unit 10, the thermal energy driven refrigeration unit 30 and the heat recovery device 40 are opened, and the first regulating valve 51 is closed.
- the exhaust fan 14, the second regulating valve 52, the heat recovery device 40, the first water pump 70, the second water pump 80 and the refrigerant pump 36 are turned on, and the first regulating valve is turned off.
- the first refrigerant flowing out from the evaporative cooling unit 10 flows through the heat exchanger 20 and then flows into the heat recovery device 40 via the condenser 34.
- the first refrigerant flowing out from the evaporative cooling unit 10 interacts with chilled water in the heat exchanger 20. Chilled water is cooled by heat exchange. When the chilled water flows through the evaporator 33, it exchanges heat with the second refrigerant to cool down, and the heat energy drives the refrigeration unit 30 to cool the chilled water.
- the first refrigerant circulates in the following flow direction: evaporative cooling unit 10 - first water pump 70 - second regulating valve 52 - heat exchanger 20 - condenser 34 - heat recovery device 40 - evaporation Cooling unit 10.
- the second refrigerant coming out of the generator 31 and the second refrigerant flowing out of the evaporator 33 are mixed in the ejector 32 and then enter the condenser 34 to exchange heat with the first refrigerant.
- the second refrigerant cooled from the condenser 34 flows through the accumulator 37 and then divides into two paths, one of which passes through the throttling device 35 and enters the evaporator 33 to flow through the evaporator.
- the chilled water 33 produces a cooling effect, and the other channel flows through the refrigerant pump 36 and then to the generator 31, thereby completing the cycle of the second refrigerant.
- the first refrigerant flowing out from the evaporative cooling unit 10 can perform heat exchange with the chilled water in the heat exchanger 20, so that the waste heat of the data center computer room carried by the chilled water is transferred to the first refrigeration unit. agent.
- the chilled water flowing out from the heat exchanger 20 flows to the evaporator 33 to exchange heat with the second refrigerant, so that the waste heat of the data center computer room carried by the chilled water is transferred to the second refrigerant.
- the second refrigerant coming out of the generator 31 and the second refrigerant carrying waste heat flowing out from the evaporator 33 are mixed in the ejector 32 and then enter the condenser 34 .
- the first refrigerant carrying waste heat flowing out of the heat exchanger 20 flows to the condenser 34 to exchange heat with the second refrigerant, so that the waste heat carried by the second refrigerant is transferred to the first refrigerant.
- the first refrigerant flowing out from the condenser 34 comes to the heat recovery device 40 to exchange heat with the heat exchange medium.
- the first refrigerant cools down and the heat exchange medium heats up, so that the first refrigerant is directly transferred from the chilled water.
- the absorbed waste heat and/or the waste heat absorbed from the second refrigerant is transferred to the heat exchange medium.
- the high-temperature heat exchange medium carrying waste heat flowing out from the heat recovery device 40 flows to the generator 31 to heat the second refrigerant, and the heat exchange medium after heat exchange returns to the heat exchange device, thereby realizing the data Waste heat recovery in the central computer room.
- Embodiment 1 The chilled water cooling system has only two refrigeration modes, which are the first refrigeration mode and the second refrigeration mode.
- the chilled water cooling system switches to the first cooling mode.
- the chilled water cooling system switches to the second cooling mode.
- the appropriate cooling mode can be selected based on the outdoor air wet bulb temperature to cool the chilled water from the data center room, improve energy utilization, save energy and protect the environment.
- the second temperature threshold can be designed according to actual requirements. For example, the second temperature threshold is 16°C.
- Embodiment 2 The chilled water cooling system has three refrigeration modes, which are the first refrigeration mode, the second refrigeration mode and the third refrigeration mode.
- the outdoor environmental parameters include outdoor air wet bulb temperature. When the outdoor air wet bulb temperature is less than or equal to the second temperature threshold, the chilled water cooling system switches to the first cooling mode. When the outdoor air wet bulb temperature is greater than the second temperature threshold and less than or equal to the third temperature threshold, the chilled water cooling system switches to the third cooling mode. When the outdoor air wet bulb temperature is greater than the third temperature threshold, the chilled water cooling system switches to the second cooling mode.
- the first preset temperature is smaller than the second preset temperature. In this way, a more appropriate cooling mode can be selected based on the outdoor air wet bulb temperature to cool the chilled water from the data center computer room, improve energy utilization as much as possible, and save energy and protect the environment.
- the second temperature threshold and the third temperature threshold can be designed according to actual requirements.
- the second temperature threshold is 16°C.
- the third temperature threshold is 21°C.
- An embodiment of the present disclosure also provides a refrigeration and air-conditioning unit, including the chilled water cooling system of any of the above embodiments and a chilled water terminal (not shown).
- the water supply interface 300 at the end of the chilled water is connected to the thermal energy driven refrigeration unit 30.
- the return water interface 200 at the end is connected to the heat exchanger 20 .
- the chilled water terminal is an independent device, which may include the air conditioner in the server room of the terminal data center.
- the air conditioner in the server room of the terminal data center.
- it may be a chilled water precision air conditioner, a chilled water backplane air conditioner, a chilled water inverter air conditioner, or a chilled water air conditioner. Chilled water column air conditioning, etc.
- the chilled water terminal may also be a liquid pipeline provided in the data center computer room.
- the present disclosure provides a chilled water cooling system and a refrigeration and air conditioning unit for a data center, aiming to cool the chilled water and recover waste heat in the data center to improve energy utilization.
- Embodiments of the present disclosure provide a chilled water cooling system and a refrigeration and air conditioning unit for a data center.
- the chilled water from the data center computer room flows through a heat exchanger and a thermal energy driven refrigeration unit.
- the chilled water cooling system includes a first cooling mode. In the second cooling mode, the chilled water cooling system can use the corresponding cooling mode to cool down the chilled water according to the outdoor environmental parameters.
- the cooled chilled water is discharged from the heat-driven refrigeration unit and can be transported to the end of the chilled water in the data center computer room to provide a heat dissipation source for the data center computer room.
- the data center heat is recovered through the heat recovery device to cool the chilled water flowing out of the data center computer room. No additional electricity is needed to transfer the heat in the data center computer room to the outdoor environment. This is energy-saving and environmentally friendly, and greatly improves energy utilization.
- the chilled water cooling system and refrigeration and air conditioning unit provided by the present disclosure can cool the chilled water and recover waste heat in the data center, thereby improving energy utilization.
- the terms “mounted”, “connected”, “connected”, “mechanically coupled” and “coupled” should be understood in a broad sense, for example, It can be a fixed connection, a detachable connection, or an integral connection.
- the connection can be mechanical or electrical. It can be a direct connection or an indirect connection through an intermediary. It can be an internal connection between two elements or an interaction between two elements.
- the mechanical coupling or coupling of two components includes direct coupling and indirect coupling, for example, direct fixed connection, connection through a transmission mechanism, etc.
- a first feature "on” or “below” a second feature may include the first and second features in direct contact, or may include the first and second features. Not in direct contact but through additional characteristic contact between them.
- the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
- “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
本公开提供一种用于数据中心的冷冻水冷却系统及制冷空调机组,该冷冻水冷却系统包括蒸发冷却机组(10)、热交换器(20)、热能驱动制冷机组(30)和热回收装置(40);热交换器(20)与冷冻水的回水接口(200)连接;热能驱动制冷机组(30)与冷冻水的供水接口(300)连接,蒸发冷却机组(10)和热交换器(20)均与热能驱动制冷机组(30)连接;热回收装置(40),与热能驱动制冷机组(30)连接,用于回收余热并将余热传导至热能驱动制冷机组(30);其中,冷冻水冷却系统包括第一制冷模式和第二制冷模式,冷冻水冷却系统能够根据室外环境参数切换至对应的制冷模式。
Description
相关申请的交叉引用
本公开要求享有2022年06月20日提交的名称为“用于数据中心的冷冻水冷却系统及制冷空调机组”的中国专利申请CN202210697820.5的优先权,其全部内容通过引用并入本公开中。
本公开涉及制冷设备技术领域,尤其涉及一种用于数据中心的冷冻水冷却系统及制冷空调机组。
随着人工智能、大数据等IT行业以及5G通信技术的蓬勃发展,数据中心扮演了越来越重要的角色。数据中心属于耗能大户,制冷空调能耗占据了数据中心总能耗的40%左右,数据中心制冷空调行业的节能显得尤为重要。数据中心蕴含丰富的余热废热资源,然而,一些情形下的制冷方案存在能源的利用率较低的技术问题。
发明内容
本公开提供一种用于数据中心的冷冻水冷却系统及制冷空调机组。
第一方面,本公开提供了一种用于数据中心的冷冻水冷却系统,包括:蒸发冷却机组;热交换器,与冷冻水的回水接口连接;热能驱动制冷机组,与冷冻水的供水接口连接,蒸发冷却机组和热交换器均与热能驱动制冷机组连接;热回收装置,与热能驱动制冷机组连接,用于回收余热并将余热传导至热能驱动制冷机组;其中,冷冻水冷却系统包括第一制冷模式和第二制冷模式,冷冻水冷却系统能够根据室外环境参数切换至对应的制冷模式。
第二方面,本公开还提供了一种制冷空调机组,包括:上述任一项所述的冷冻水冷却系统;以及冷冻水末端,冷冻水末端的供水接口与热能驱动制冷机组连接,冷冻水末端的回水接口与热交换器连接。
为了更清楚地说明本公开实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一实施例提供的冷冻水冷却系统的结构示意图;以及
图2是本公开的一实施例提供的冷冻水冷却系统的结构示意图。
附图标记说明:
10、蒸发冷却机组;11、储液区;12、填料区;13、喷洒装置;14、排风机;15、进风区;16、出风区;
20、热交换器;
30、热能驱动制冷机组;31、发生器;32、喷射器;33、蒸发器;34、冷凝器;35、节流装置;36、制冷剂泵;37、储液器;
40、热回收装置;
50、控制阀;51、第一调节阀;52、第二调节阀;
60、控制单元;70、第一水泵;80、第二水泵;
200、回水接口;300、供水接口。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性
或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
还应当理解,在本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
随着人工智能、大数据等IT行业以及5G通信技术的蓬勃发展,国家对新基建项目的倡导,数据中心在人们的日常生活扮演了越来越重要的角色。而数据中心在建筑能耗当中属于耗能大户,制冷空调能耗占据了数据中心总能耗的40%左右,最近国家最新提出了“碳达峰碳中和”的节能目标,数据中心制冷空调行业的节能显得尤为重要。数据中心蕴含丰富的余热废热资源,目前一般对数据中心进行制冷,大量的热量被排至室外环境浪费掉,利用制冷空调只是将设备发热量进行往室外环境的转移过程,而且转移的过程是以大量的空调能耗作为代价,使得能源的利用率较低。
请参阅图1,本公开实施例提供一种用于数据中心的冷冻水冷却系统,包括蒸发冷却机组10、热交换器20、热能驱动制冷机组30和热回收装置40。热交换器20与冷冻水的回水接口200连通。热能驱动制冷机组30与冷冻水的供水接口300连接,热能驱动制冷机组30与蒸发冷却机组10连接。热回收装置40与热能驱动制冷机组30连接,用于回收余热并将余热传导至热能驱动制冷机组30。其中,冷冻水冷却系统包括第一制冷模式和第二制冷模式,冷冻水冷却系统能够根据室外环境参数切换至对应的制冷模式。
上述实施例的冷冻水冷却系统,供水接口300和回水接口200分别用于连接位于数据中心机房内的冷冻水供水管道和冷冻水回水管道。从数据中心机房出来的冷冻水(亦可称为回水)流经热交换器20和热能驱动制冷机组30,冷冻水冷却系统包括第一制冷模式和第二制冷模式,冷冻水冷却系统能够根据室外环境参数采用对应的制冷模式对该冷冻水降温。经降温后的冷冻水从热能驱动制冷机组30排出并可以输送至数据中心机房的冷冻水末端处为数据中心机房提供散热冷源。通过热回收装置40将数据中心余热废热回收并用于对从数据中心机房流出的冷冻水进行制冷,无需额外的电能将数据中心机房内的热量转移至室外环境,节能环保,极大提高了能源利用率。综上,上述冷冻水冷却系统,结构简单、造价低、运行稳定,有利于推广应用;结合气象条件切换合理地制冷模式,既能够满足数据中心机房制冷需
求,又能够最大程度地节约能源。
可以理解地,冷冻水供水管道和冷冻水回水管道为设于数据中心机房内的冷冻水末端的至少一部分,其可以直接与数据中心机房内的空气进行热交换。在一示例性实施例中,冷冻水末端包括冷冻水型精密空调、冷冻水型背板空调、冷冻水变频空调或者冷冻水列间空调等。在一示例性实施例中,冷冻水末端也可以为设于数据中心机房内的液体管路。
可以理解地,流经热回收装置40的第一制冷剂能够与换热介质(比如水)进行换热,从热回收装置40流出的换热介质流经热能驱动制冷机组30将从第一制冷剂吸收的热量传导至热能驱动制冷机组30,第一制冷剂所携带的热量来源于数据中心机房的余热废热,由此实现余热回收与利用。
在一些实施例中,在第一制冷模式下,从蒸发冷却机组10流出的第一制冷剂流经热交换器20之后经由热能驱动制冷机组30流入到热回收装置40,热能驱动制冷机组30对冷冻水不制冷。在第二制冷模式下,从蒸发冷却机组10流出的第一制冷剂不流经热交换器20而经由热能驱动制冷机组30流入到热回收装置40,热能驱动制冷机组30对冷冻水制冷。该冷冻水冷却系统包括蒸发冷却机组10与热能驱动制冷机组30,有效结合了非蒸发制冷(比如喷射制冷)稳定可靠的优势,能够拓宽蒸发冷却空调技术的应用范围。根据室外环境参数的不同选择与室外环境参数对应的制冷模式,既能够满足数据中心机房制冷需求,又能够尽可能地节约能源。
在一些实施例中,当室外空气干球温度小于或等于第一温度阈值时,从蒸发冷却机组10流出的第一制冷剂包括乙二醇。当室外空气干球温度大于第一温度阈值且室外空气湿球温度小于或等于第二温度阈值时,从蒸发冷却机组10流出的第一制冷剂包括水。可以理解地,第一温度阈值小于第二温度阈值。
第一温度阈值和第二温度阈值可以根据实际需求设计为任意合适值。比如,第一温度阈值为3℃。第二温度阈值为16℃。
请参阅图1,在一些实施例中,热能驱动制冷机组30包括发生器31、喷射器32、蒸发器33、冷凝器34和节流装置35。喷射器32用于将从发生器31流出的第二制冷剂和从蒸发器33流出的蒸发了的第二制冷剂进行喷射。喷射器32的进口分别与蒸发器33、发生器31相连,喷射器32的出口与冷凝器34相连接。蒸发器33与供水接口300连接。冷凝器34与热回收装置40连接。冷凝器34对喷射器31流出的第二制冷剂进行冷凝放热。蒸发器33能够接收经节流装置36节流降压的第二制冷剂。可以理解地,上述实施例的冷冻水冷却系统,采用自然冷源、干空气能和低品位能联合制冷,能够大大降低数据中心电源使用效率(Power
Usage Effectiveness,PUE),有效结合喷射制冷稳定可靠的优势,能够拓宽蒸发冷却空调技术的应用范围。
在一示例性实施例中,第二制冷剂包括冷媒或氟利昂。
在一示例性实施例中,发生器31还可以连接太阳能转换机组(图未示)。太阳能转换机组能够将太阳能转换成热能,通过传热流体流经发生器31使得发生器31中的第二制冷剂吸收热量。如此,太阳能和数据中心机房的废热余热驱动热能驱动制冷机组30,环保节能。冷冻水冷却系统不仅能够对干空气能和数据中心机房的余热废热充分利用,而且热能驱动制冷机组30可利用低品位的太阳能驱动,节能环保,降低了设备能耗,节省运行维护成本。
在一示例性实施例中,经冷冻水冷却系统冷却后的冷冻水为高温冷水,亦即从蒸发器33流出的冷冻水为高温冷水。在一示例性实施例中,高温冷水的温度为18℃。
在一些实施例中,在第一制冷模式下,蒸发冷却机组10、热交换器20、冷凝器34和热回收装置40依次连接形成用于供第一制冷剂流动的循环回路。回水接口200、热交换器20、蒸发器33和供水接口300依次连接形成用于供冷冻水流动的液体通道。
在一些实施例中,在第二制冷模式下,蒸发冷却机组10、冷凝器34和热回收装置40依次连接形成用于供第一制冷剂流动的循环回路,回水接口200、热交换器20、蒸发器33和供水接口300依次连接形成用于供冷冻水流动的液体通道。
在一些实施例中,冷冻水冷却系统还包括第三制冷模式,冷冻水冷却系统能够根据室外环境参数在第一制冷模式、第二制冷模式和第三制冷模式之间切换。在第三制冷模式下,从蒸发冷却机组10流出的第一制冷剂流经热交换器20之后经由热能驱动制冷机组30流入到热回收装置40,热能驱动制冷机组30对冷冻水制冷。如此,能够根据室外环境参数在不同制冷模式下工作,使得不同品位能源得到充分利用,既能够对数据中心机房制冷需求,又能够提高了能源利用率,满足用户的多种需求;可以根据季节和不同冷、热量需求选择满足要求的最佳制冷方式。
在一些实施例中,在第三制冷模式下,蒸发冷却机组10、热交换器20、冷凝器34和热回收装置40依次连接形成用于供第一制冷剂流动的循环回路。回水接口200、热交换器20、蒸发器33和供水接口300依次连接形成用于供冷冻水流动的液体通道。
在一些实施例中,冷冻水冷却系统还包括控制组件。控制组件用于控制冷冻水冷却系统在不同制冷模式之间切换。
请参阅图1和图2,在一些实施例中,控制组件包括控制阀50。控制阀50用于控制蒸发
冷却机组10可选择地连通热交换器20。在一示例性实施例中,控制阀50包括第一调节阀51和第二调节阀52,用于控制蒸发冷却机组10可选择地连通热交换器20。在第一制冷模式下,第一调节阀51关闭,第二调节阀52打开,蒸发冷却机组10与热交换器20连通。在第二制冷模式下,第一调节阀51打开,第二调节阀52关闭,蒸发冷却机组10与热交换器20不连通。在第三制冷模式下,第一调节阀51关闭,第二调节阀52打开,蒸发冷却机组10与热交换器20连通。
请参阅图1,在一些实施例中,第一调节阀51的第一接口C1与蒸发冷却机组10连通,第一调节阀51的第二接口C2与冷凝器34连通。第二调节阀52的第一接口D1与蒸发冷却机组10连通,第二调节阀52的第二接口D2与热交换器20连通。
在一示例性实施例中,第一调节阀51和第二调节阀52均为双通阀。在一示例性实施例中,第一调节阀51和第二调节阀52均为电磁阀等。
在一些实施例中,控制阀50也可以包括三通阀,该三通阀用于控制蒸发冷却机组10可选择地连通热交换器20。
在一些实施例中,控制组件还包括控制单元60。控制单元60电连接于蒸发冷却机组10、控制阀50、热能驱动制冷机组30和热回收装置40,用于根据室外环境参数控制冷冻水冷却系统在不同制冷模式之间切换。比如,控制单元60用于根据室外环境参数控制冷冻水冷却系统在第一制冷模式、第二制冷模式和第三制冷模式之间切换。在一示例性实施例中,控制单元60可以包括电路板或者控制芯片等。
在一些实施例中,蒸发冷却机组10包括:冷却塔或者直接预冷式蒸发冷却冷水机组,间接预冷式蒸发冷却冷水机组,露点间接预冷式蒸发冷却冷水机组,表冷-间接预冷式蒸发冷却冷水机组,或者表冷-露点预冷式蒸发冷却冷水机组等中的至少一种。
在一示例性实施例中,请参阅图1,蒸发冷却机组10包括冷却塔。冷却塔包括储液区11、填料区12、喷洒装置13(比如布水器)和排风机14。储液区11的出液口与第一水泵70连通,喷洒装置13与冷凝器34连通。从冷凝器34流出的第一制冷剂(比如冷却水)输送至冷却塔顶部,并通过设于冷却塔顶部的喷洒装置13喷洒而出。从喷洒装置13喷洒出的第一制冷剂与从进风区15进入的冷空气在填料区12充分接触后第一制冷剂的温度得以降低,温度降低后的第一制冷剂继续滴落至下方的储液区11中,储液区11中的第一制冷剂经过冷却塔的出液口流出至热交换器20或者冷凝器34处。
填料区12内充填有填料,填料在冷却塔中可以增加散热量,延长第一制冷剂(比如冷却水)停留时间,增加换热面积,增加换热量,均匀布水。
排风机14设置在冷却塔上方且位于填料区12上方。冷却塔内换热后的热气流可以从出风区16排出,以进一步保证冷却效果。
在一些实施例中,热交换器20包括板式换热器。
在一些实施例中,热能驱动制冷机组30包括喷射制冷机组和吸收式制冷循环冷水机组中的至少一种。
在一些实施例中,热回收装置40包括热回收热泵。
请参阅图1,在一些实施例中,冷冻水冷却系统还包括第一水泵70和第二水泵80。第一水泵70的入口与蒸发冷却机组10连通,第一水泵70的出口分别通过第一调节阀51和第二调节阀52连通于冷凝器34和热交换器20。第二水泵80的入口与蒸发器33连通,第二水泵80的出口与供水接口300连通。
请参阅图1,在一些实施例中,热能驱动制冷机组30还包括制冷剂泵36和节流装置35。制冷剂泵36的入口连通于冷凝器34和节流装置35的第一接口E1,制冷剂泵36的出口与发生器31连通。节流装置35的第一接口E1连通于制冷剂泵36的入口和冷凝器34,节流装置35的第二接口E2与蒸发器33连通。
在一示例性实施例中,流经热回收装置40的第一制冷剂能够与换热介质(比如水)进行换热,通过换热介质流经热能驱动制冷机组30将从第一制冷剂吸收的热量传导至发生器31。太阳能转换机组所转化的热能通过传热流体流经发生器31传导至发生器31。来自热回收装置40的换热介质所携带的热能和/或来自太阳能转换机组的传热流体所携带的热能使得发生器31中的第二制冷剂液体吸热汽化。在发生器31中,第二制冷剂液体吸热汽化产生饱和蒸汽,饱和蒸汽流经喷射器32,在喷射器32的喷嘴附近产生低压,从而将蒸发器33中的第二制冷剂蒸汽吸入喷射器32中混合,并一同经喷射器32的缩放扩压段升压,喷射器32出来的混合气体进入冷凝器34冷凝,冷凝器34出来的第二制冷剂液体分为两路,一路通过节流装置35降压后回到蒸发器33,另一路则通过制冷剂泵36升压后再进入发生器31中。
在一示例性实施例中,节流装置35包括电子膨胀阀。
请参阅图1,在一些实施例中,热能驱动制冷机组30还包括储液器37。冷凝器34与储液器37连通。发生器31通过制冷剂泵36与储液器37连通。蒸发器33通过节流装置35与储液器37连通。
在一些实施例中,冷冻水冷却系统还包括检测传感器(图未示),用于检测室外空气温度和/或室外空气湿度。检测传感器可以检测到的室外空气温度和/或室外空气湿度发送到控制
单元60,控制单元60根据所接收到的室外空气温度和/或室外空气湿度控制冷冻水冷却系统切换至第一制冷模式、第二制冷模式和第三制冷模式中的其中一个。可以理解地,通过对室外环境的自动判断,可通过控制单元60和控制阀50实现冷冻水冷却系统全天候温度、可靠、高效、节能运行。
在一示例性实施例中,检测传感器包括温度传感器和/或湿度传感器。温度传感器和湿度传感器可以集成在一个物理实体上,也可以相互独立设置在不同物理实体上,在此不作限制。
可以理解地,在第一制冷模式下,开启第二调节阀52和蒸发冷却机组10,关闭第一调节阀51、热能驱动制冷机组30和热回收装置40。在一示例性实施例中,在第一制冷模式下,关闭第一调节阀51、热回收装置40和制冷剂泵36,打开排风机14、第一水泵70、第二水泵80和第二调节阀52。从蒸发冷却机组10流出的第一制冷剂流经热交换器20之后经由冷凝器34流入到热回收装置40。从蒸发冷却机组10流出的第一制冷剂在热交换器20内与冷冻水进行热交换而实现对冷冻水降温,热能驱动制冷机组30对冷冻水不制冷(亦即冷冻水流经蒸发器33时未进行热交换)。
在一示例性实施例中,在第一制冷模式下,第一制冷剂按照以下的流动方向循环流动:蒸发冷却机组10-第一水泵70-第二调节阀52-热交换器20-冷凝器34-热回收装置40-蒸发冷却机组10。冷冻水按照以下的流动方向流动:回水接口200-热交换器20-蒸发器33-第二水泵80-供水接口300。
在第一制冷模式下,从蒸发冷却机组10流出的第一制冷剂能够在热交换器20内与冷冻水进行热交换,使得冷冻水所携带的数据中心机房的余热废热全部传递至第一制冷剂。
可以理解地,在第二制冷模式下,开启第一调节阀51、蒸发冷却机组10、热能驱动制冷机组30和热回收装置40,关闭第二调节阀52。在一示例性实施例中,在第二制冷模式下,打开排风机14、第一调节阀51、热回收装置40、第一水泵70、第二水泵80和制冷剂泵36,关闭第二调节阀52。从蒸发冷却机组10流出的第一制冷剂不流经热交换器20而经由热能驱动制冷机组30流入到热回收装置40(亦即冷冻水流经热交换器20时未进行热交换),冷冻水流经蒸发器33时与第二制冷剂热交换而降温,热能驱动制冷机组30对冷冻水制冷。
在一示例性实施例中,在第二制冷模式下,第一制冷剂按照以下的流动方向循环流动:蒸发冷却机组10-第一水泵70-第一调节阀51-冷凝器34-热回收装置40-蒸发冷却机组10。
在第二制冷模式下,冷冻水按照以下的流动方向流动:回水接口200-热交换器20-蒸发器33-第二水泵80-供水接口300。
在第二制冷模式下,从发生器31出来的第二制冷剂与从蒸发器33流出的第二制冷剂在喷射器32混合后进入冷凝器34与第一制冷剂热交换,在冷凝器34内第一制冷剂升温、第二制冷剂降温,从冷凝器34流出的第二制冷剂流经储液器37后分两路,其中一路经节流装置35进入蒸发器33对流经蒸发器33的冷冻水产生制冷效果,另一路流经制冷剂泵36后流至发生器31,由此完成第二制冷剂的循环。
在第二制冷模式下,冷冻水流经热交换器20时没有进行热交换。从热交换器20流出的冷冻水流至蒸发器33与第二制冷剂热交换,使得冷冻水所携带的数据中心机房的余热废热传递至第二制冷剂。从发生器31出来的第二制冷剂与从蒸发器33流出的携带有余热废热的第二制冷剂在喷射器32混合后进入冷凝器34。从蒸发冷却机组10流出的第一制冷剂流至冷凝器34与第二制冷剂热交换,使得第二制冷剂所携带的余热废热传递给第一制冷剂。从冷凝器34流出的第一制冷剂来到热回收装置40与换热介质热交换,在热回收装置40内第一制冷剂降温、换热介质升温,使得第一制冷剂中直接从冷冻水吸收的余热废热和/或从第二制冷剂吸收的余热废热传递给换热介质。从热回收装置40流出的携带有余热废热的高温换热介质流至发生器31,对第二制冷剂进行加热升温,换热后的换热介质再回到热交换装置,由此实现了数据中心机房的余热废热回收。
在第三制冷模式下,开启第二调节阀52、蒸发冷却机组10、热能驱动制冷机组30和热回收装置40,关闭第一调节阀51。在一示例性实施例中,在第三制冷模式下,打开排风机14、第二调节阀52、热回收装置40、第一水泵70、第二水泵80和制冷剂泵36,关闭第一调节阀51。从蒸发冷却机组10流出的第一制冷剂流经热交换器20之后经由冷凝器34流入到热回收装置40,从蒸发冷却机组10流出的第一制冷剂在热交换器20内与冷冻水进行热交换而实现冷冻水降温。冷冻水流经蒸发器33时与第二制冷剂热交换而降温,热能驱动制冷机组30对冷冻水制冷。
在第三制冷模式下,第一制冷剂按照以下的流动方向循环流动:蒸发冷却机组10-第一水泵70-第二调节阀52-热交换器20-冷凝器34-热回收装置40-蒸发冷却机组10。
在第三制冷模式下,冷冻水按照以下的流动方向流动:回水接口200-热交换器20-蒸发器33-第二水泵80-供水接口300。
在第三制冷模式下,从发生器31出来的第二制冷剂与从蒸发器33流出的第二制冷剂在喷射器32混合后进入冷凝器34与第一制冷剂热交换,经冷凝器34时第一制冷剂升温、第二制冷剂降温,从冷凝器34降温后的第二制冷剂流经储液器37后分两路,其中一路经节流装置35进入蒸发器33对流经蒸发器33的冷冻水产生制冷效果,另一路流经制冷剂泵36后流
至发生器31,由此完成第二制冷剂的循环。
在第三制冷模式下,从蒸发冷却机组10流出的第一制冷剂能够在热交换器20内与冷冻水进行热交换,使得冷冻水所携带的数据中心机房的余热废热部分传递至第一制冷剂。从热交换器20流出的冷冻水流至蒸发器33与第二制冷剂热交换,使得冷冻水所携带的数据中心机房的余热废热传递给第二制冷剂。从发生器31出来的第二制冷剂与从蒸发器33流出的携带有余热废热的第二制冷剂在喷射器32混合后进入冷凝器34。从热交换器20内流出的携带有余热废热的第一制冷剂流至冷凝器34与第二制冷剂热交换,使得第二制冷剂所携带的余热废热传递给第一制冷剂。从冷凝器34流出的第一制冷剂来到热回收装置40与换热介质热交换,在热回收装置40内第一制冷剂降温、换热介质升温,使得第一制冷剂中直接从冷冻水吸收的余热废热和/或从第二制冷剂吸收的余热废热传递给换热介质。从热回收装置40流出的携带有余热废热的高温换热介质流至发生器31,对第二制冷剂进行加热升温,换热后的换热介质再回到热交换装置,由此实现了数据中心机房的余热废热回收。
下面举例说明冷冻水冷却系统的不同制冷模式的组合。
实施方式一:冷冻水冷却系统仅仅有两种制冷模式,分别为第一制冷模式和第二制冷模式。当室外空气湿球温度小于或等于第二温度阈值时,冷冻水冷却系统切换至第一制冷模式。当室外空气湿球温度大于第二温度阈值时,冷冻水冷却系统切换至第二制冷模式。如此,能够根据室外空气湿球温度选择合适的制冷模式,从而对来自数据中心机房的冷冻水进行制冷,并提高能源利用率,节能环保。在一示例性实施例中,第二温度阈值可以根据实际需求进行设计。比如,第二温度阈值为16℃。
实施方式二:冷冻水冷却系统有三种制冷模式,分别为第一制冷模式、第二制冷模式和第三制冷模式。在一些实施例中,室外环境参数包括室外空气湿球温度。当室外空气湿球温度小于或等于第二温度阈值时,冷冻水冷却系统切换至第一制冷模式。当室外空气湿球温度大于第二温度阈值且小于或等于第三温度阈值时,冷冻水冷却系统切换至第三制冷模式。当室外空气湿球温度大于第三温度阈值时,冷冻水冷却系统切换至第二制冷模式。可以理解地,第一预设温度小于第二预设温度。如此,能够根据室外空气湿球温度选择更加合适的制冷模式,从而对来自数据中心机房的冷冻水进行制冷,并尽可能地提高能源利用率,节能环保。
在一示例性实施例中,第二温度阈值和第三温度阈值可以根据实际需求进行设计。比如,第二温度阈值为16℃。第三温度阈值为21℃。
本公开实施例还提供一种制冷空调机组,包括上述任意一个实施例的冷冻水冷却系统以及冷冻水末端(图未示)。冷冻水末端的供水接口300与热能驱动制冷机组30连接,冷冻水
末端的回水接口200与热交换器20连接。
在一示例性实施例中,冷冻水末端是一个独立的设备,可以包括末端的数据中心服务器机房里的空调,例如可以是冷冻水型精密空调、冷冻水型背板空调、冷冻水变频空调或者冷冻水列间空调等。
在一示例性实施例中,冷冻水末端也可以为设于数据中心机房内的液体管路。
本公开提供一种用于数据中心的冷冻水冷却系统及制冷空调机组,旨在对冷冻水制冷并回收数据中心的余热,提高能源利用率。本公开实施例提供了一种用于数据中心的冷冻水冷却系统及制冷空调机组,其从数据中心机房出来的冷冻水流经热交换器和热能驱动制冷机组,冷冻水冷却系统包括第一制冷模式和第二制冷模式,冷冻水冷却系统能够根据室外环境参数采用对应的制冷模式对该冷冻水降温。经降温后的冷冻水从热能驱动制冷机组排出并可以输送至数据中心机房的冷冻水末端处为数据中心机房提供散热冷源。通过热回收装置将数据中心热量回收用于对从数据中心机房流出的冷冻水进行制冷,无需额外电能将数据中心机房内的热量转移至室外环境,节能环保,极大提高了能源利用率。本公开提供的冷冻水冷却系统及制冷空调机组,能够对冷冻水制冷并回收数据中心的余热,提高能源利用率。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“机械耦合”、“耦接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。两个部件的机械耦合或者耦接即包括直接耦合以及间接耦合,例如,直接固定连接,通过传动机构连接等。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复
是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本公开的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体方法步骤、特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。在本公开中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体方法步骤、特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种用于数据中心的冷冻水冷却系统,包括:蒸发冷却机组;热交换器,与冷冻水的回水接口连接;热能驱动制冷机组,与冷冻水的供水接口连接,所述蒸发冷却机组和所述热交换器均与所述热能驱动制冷机组连接;热回收装置,与所述热能驱动制冷机组连接,用于回收余热并将余热传导至所述热能驱动制冷机组;其中,所述冷冻水冷却系统包括第一制冷模式和第二制冷模式,所述冷冻水冷却系统能够根据室外环境参数切换至对应的制冷模式。
- 根据权利要求1所述的冷冻水冷却系统,其中,在所述第一制冷模式下,从所述蒸发冷却机组流出的第一制冷剂流经所述热交换器之后经由所述热能驱动制冷机组流入到所述热回收装置,所述热能驱动制冷机组对所述冷冻水不制冷;在所述第二制冷模式下,从所述蒸发冷却机组流出的第一制冷剂不流经所述热交换器而经由所述热能驱动制冷机组流入到所述热回收装置,所述热能驱动制冷机组对所述冷冻水制冷。
- 根据权利要求1所述的冷冻水冷却系统,其中,当所述室外空气干球温度小于或等于第一温度阈值时,从所述蒸发冷却机组流出的第一制冷剂包括乙二醇;当所述室外空气干球温度大于所述第一温度阈值且所述室外空气湿球温度小于或等于第二温度阈值时,从所述蒸发冷却机组流出的第一制冷剂包括水。
- 根据权利要求1所述的冷冻水冷却系统,其中,所述热能驱动制冷机组包括冷凝器和蒸发器,在所述第一制冷模式下,所述蒸发冷却机组、所述热交换器、所述冷凝器和所述热回收装置依次连接形成用于供第一制冷剂流动的循环回路,所述回水接口、所述热交换器、所述蒸发器和所述供水接口依次连接形成用于供所述冷冻水流动的液体通道;在所述第二制冷模式下,所述蒸发冷却机组、所述冷凝器和所述热回收装置依次连接形成用于供第一制冷剂流动的循环回路,所述回水接口、所述热交换器、所述蒸发器和所述供水接口依次连接形成用于供所述冷冻水流动的液体通道。
- 根据权利要求1-4任一项所述的冷冻水冷却系统,其中,所述冷冻水冷却系统还包括第三制冷模式,所述冷冻水冷却系统能够根据室外环境参数在第一制冷模式、所述第二制冷模式和所述第三制冷模式之间切换;在所述第三制冷模式下,从所述蒸发冷却机组流出的第 一制冷剂流经所述热交换器之后经由所述热能驱动制冷机组流入到所述热回收装置,所述热能驱动制冷机组对所述冷冻水制冷。
- 根据权利要求5所述的冷冻水冷却系统,其中,所述热能驱动制冷机组包括冷凝器和蒸发器,在所述第三制冷模式下,所述蒸发冷却机组、所述热交换器、所述冷凝器和所述热回收装置依次连接形成用于供第一制冷剂流动的循环回路,所述回水接口、所述热交换器、所述蒸发器和所述供水接口依次连接形成用于供所述冷冻水流动的液体通道。
- 根据权利要求5所述的冷冻水冷却系统,其中,所述室外环境参数包括室外空气湿球温度,当室外空气湿球温度小于或等于第二温度阈值时,所述冷冻水冷却系统切换至所述第一制冷模式;当室外空气湿球温度大于所述第二温度阈值且小于或等于第三温度阈值时,所述冷冻水冷却系统切换至所述第三制冷模式;当室外空气湿球温度大于所述第三温度阈值时,所述冷冻水冷却系统切换至所述第二制冷模式。
- 根据权利要求5所述的冷冻水冷却系统,其中,还包括第一调节阀和第二调节阀,所述第一调节阀和所述第二调节阀用于控制所述蒸发冷却机组可选择地连通所述热交换器。
- 根据权利要求8所述的冷冻水冷却系统,其中,在所述第一制冷模式下,开启所述第二调节阀和所述蒸发冷却机组,关闭所述第一调节阀、所述热能驱动制冷机组和所述热回收装置;在所述第二制冷模式下,开启所述第一调节阀、所述蒸发冷却机组、所述热能驱动制冷机组和所述热回收装置,关闭所述第二调节阀;在所述第三制冷模式下,开启所述第二调节阀、所述蒸发冷却机组、所述热能驱动制冷机组和所述热回收装置,关闭所述第一调节阀。
- 一种制冷空调机组,包括:权利要求1-9任一项所述的冷冻水冷却系统;以及冷冻水末端,所述冷冻水末端的供水接口与所述热能驱动制冷机组连接,所述冷冻水末端的回水接口与所述热交换器连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210697820.5A CN117295287A (zh) | 2022-06-20 | 2022-06-20 | 用于数据中心的冷冻水冷却系统及制冷空调机组 |
CN202210697820.5 | 2022-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023246772A1 true WO2023246772A1 (zh) | 2023-12-28 |
Family
ID=89252365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/101380 WO2023246772A1 (zh) | 2022-06-20 | 2023-06-20 | 用于数据中心的冷冻水冷却系统及制冷空调机组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117295287A (zh) |
WO (1) | WO2023246772A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118623500A (zh) * | 2024-08-14 | 2024-09-10 | 天津卓朗科技发展有限公司 | 制冷系统及制冷系统的控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101968245A (zh) * | 2010-11-02 | 2011-02-09 | 浙江大学 | 一种水冷式节能型机房空调系统 |
US20140298834A1 (en) * | 2013-04-03 | 2014-10-09 | William A. Gast, Jr. | Method and system for hybrid cooling systems |
CN106642799A (zh) * | 2016-12-26 | 2017-05-10 | 广东申菱环境系统股份有限公司 | 一种数据中心冷热联供系统及其控制方法 |
CN110595013A (zh) * | 2019-10-23 | 2019-12-20 | 李立华 | 数据中心的空调制冷方法、空调制冷系统及数据中心 |
CN113819548A (zh) * | 2021-10-28 | 2021-12-21 | 福建省建筑设计研究院有限公司 | 一种冷冻水热回收空调系统及其使用方法 |
CN114554792A (zh) * | 2022-01-27 | 2022-05-27 | 华为数字能源技术有限公司 | 机房冷却系统和数据中心 |
-
2022
- 2022-06-20 CN CN202210697820.5A patent/CN117295287A/zh active Pending
-
2023
- 2023-06-20 WO PCT/CN2023/101380 patent/WO2023246772A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101968245A (zh) * | 2010-11-02 | 2011-02-09 | 浙江大学 | 一种水冷式节能型机房空调系统 |
US20140298834A1 (en) * | 2013-04-03 | 2014-10-09 | William A. Gast, Jr. | Method and system for hybrid cooling systems |
CN106642799A (zh) * | 2016-12-26 | 2017-05-10 | 广东申菱环境系统股份有限公司 | 一种数据中心冷热联供系统及其控制方法 |
CN110595013A (zh) * | 2019-10-23 | 2019-12-20 | 李立华 | 数据中心的空调制冷方法、空调制冷系统及数据中心 |
CN113819548A (zh) * | 2021-10-28 | 2021-12-21 | 福建省建筑设计研究院有限公司 | 一种冷冻水热回收空调系统及其使用方法 |
CN114554792A (zh) * | 2022-01-27 | 2022-05-27 | 华为数字能源技术有限公司 | 机房冷却系统和数据中心 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118623500A (zh) * | 2024-08-14 | 2024-09-10 | 天津卓朗科技发展有限公司 | 制冷系统及制冷系统的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117295287A (zh) | 2023-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102538100B (zh) | 机房用热管复合型空调机组及其控制方法 | |
CN102788392B (zh) | 一种热管热泵复合系统 | |
CN111010851B (zh) | 一种数据中心混合式冷却系统及其工作方法 | |
CN108444040A (zh) | 一种双冷源数据中心及温度控制方法 | |
CN102798184B (zh) | 一种热管热泵复合系统 | |
WO2023124976A1 (zh) | 数据中心冷却系统及数据中心 | |
CN108919927B (zh) | 一种服务器芯片冷却系统 | |
CN102628624A (zh) | 复叠式溴化锂制冷和蓄冷系统 | |
WO2023246772A1 (zh) | 用于数据中心的冷冻水冷却系统及制冷空调机组 | |
CN202709539U (zh) | 复叠式溴化锂制冷和蓄冷系统 | |
CN116761399A (zh) | 一种服务器雾化喷淋液冷系统及其控制方法 | |
CN208766597U (zh) | 一种服务器芯片冷却系统 | |
CN102620407A (zh) | 一种中央空调系统中冷凝器的冷却装置 | |
CN205939504U (zh) | 一种动力热管一体机空调系统 | |
CN116367495A (zh) | 一种功率模块的换热系统及其控制方法 | |
CN205174922U (zh) | 一种空气源冷热水机组 | |
CN115103579A (zh) | 一种基于液冷机柜的压缩机与氟泵系统 | |
CN114413366A (zh) | 带热回收蒸发冷却机组及其控制方法 | |
CN209768093U (zh) | 基于蒸发冷却技术的液冷冷却系统 | |
CN219976613U (zh) | 热泵空调机组 | |
CN105423617A (zh) | 一种空气源柔性冷热水机组及运行方法 | |
CN112954948A (zh) | 一种用于数据中心制冷的节能方案 | |
CN102563963A (zh) | 一种双效喷射式制冷/热泵机组 | |
CN222017050U (zh) | 一种数据机房专用风冷式氟利昂制冷机组散热装置 | |
CN118741978B (zh) | 数据中心液冷冷却系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23826419 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |