WO2023243667A1 - セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法 - Google Patents

セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法 Download PDF

Info

Publication number
WO2023243667A1
WO2023243667A1 PCT/JP2023/022115 JP2023022115W WO2023243667A1 WO 2023243667 A1 WO2023243667 A1 WO 2023243667A1 JP 2023022115 W JP2023022115 W JP 2023022115W WO 2023243667 A1 WO2023243667 A1 WO 2023243667A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
laser
substrate
less
peak
Prior art date
Application number
PCT/JP2023/022115
Other languages
English (en)
French (fr)
Inventor
幸久 松本
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Publication of WO2023243667A1 publication Critical patent/WO2023243667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the embodiments generally relate to a ceramic substrate, a ceramic circuit board, a semiconductor device, a method for manufacturing a ceramic substrate, and a method for manufacturing a ceramic divided substrate.
  • Patent Document 2 As one method of dividing a silicon nitride substrate, which is a large ceramic substrate produced in order to reduce manufacturing costs, into the product size to be used, a method has been disclosed in which a large number of silicon nitride substrates are cut using a scribe line formed by laser processing.
  • Patent Document 2 micro-cracks in a silicon nitride substrate are not generated more than necessary when dividing the silicon nitride substrate for multi-chip production by laser processing, and scribe line processing for multi-chip production can be performed easily and at low cost. It can be carried out.
  • Patent No. 6399252 Japanese Patent Application Publication No. 2002-176119
  • the embodiments solve these problems and relate to a ceramic substrate with excellent cost performance that enables efficient production of small substrates from large, thin, high-strength ceramic substrates that have both heat dissipation and electrical insulation properties.
  • the ceramic substrate according to the embodiment is a ceramic substrate having a scribe line, in which a laser processed surface including the scribe line is formed by laser irradiation, and the laser irradiation area of the laser processed surface is measured by XPS (X-ray Photoelectron Spectroscopy). It is characterized by the presence of two or more peaks in the range of 98 eV or more and 106 eV or less among the obtained spectra.
  • XPS X-ray Photoelectron Spectroscopy
  • FIG. 1 is a top view showing an example of a ceramic substrate according to an embodiment.
  • FIG. 3 is a diagram schematically showing an example of the results of measuring the ceramic substrate according to the embodiment by XPS.
  • FIG. 2 is a diagram schematically showing an example of the scribe line of the substrate in FIG. 1 viewed diagonally from above.
  • FIG. 7 is a top view showing another example of the ceramic substrate according to the embodiment.
  • FIG. 2 is a top view showing an example when the ceramic substrate according to the embodiment has a circular shape.
  • FIG. 1 is a side view showing an example of a ceramic circuit board according to an embodiment. 1 is a diagram showing an example of a laser processing method according to an embodiment.
  • FIG. 7 is a top view showing another example of the ceramic substrate according to the embodiment.
  • FIG. 7 is a top view showing another example of the ceramic substrate according to the embodiment.
  • FIG. 7 is a top view showing another example of the ceramic substrate according to the embodiment.
  • FIG. 6 is an enlarged side view of another example of the ceramic substrate according to the embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a portion cut along a bright line in the divided ceramic substrate according to the embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a portion cut along a bright line in the divided ceramic substrate according to the embodiment.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing a ceramic substrate according to an embodiment.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing a ceramic substrate according to an embodiment.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing a ceramic substrate according to an embodiment.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing a ceramic substrate according to
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing a ceramic substrate according to an embodiment.
  • FIG. 3 is an enlarged top view showing an example of misalignment of the ceramic substrate according to the embodiment.
  • FIG. 3 is an enlarged top view showing an example of a defective division of the ceramic substrate according to the embodiment.
  • FIG. 7 is a top view showing another example of the ceramic substrate according to the embodiment.
  • the scribe line according to the embodiment refers to the scribe line before the ceramic laser scribe substrate is divided into ceramic divided substrates, and the scribe line mark after the ceramic laser scribed substrate is divided into ceramic divided substrates (hereinafter referred to as "scribe line"). ).
  • the scribe line is formed by laser irradiation and has a spectrum of 98 eV or more and 106 eV measured by X-ray photoelectron spectroscopy (XPS). It is characterized by two or more peaks being observed in the following ranges. Two or more peaks within the range indicates that more than two peaks, such as three or four, may be observed. Note that "splitting" the ceramic laser scribe substrate is also referred to as "breaking" the ceramic laser scribe substrate.
  • FIG. 1 shows a plan view of an example of a ceramic substrate according to an embodiment.
  • 1 is a ceramic laser scribe substrate
  • 2 is a ceramic multi-chip substrate
  • 3 is a scribe line that is a non-through hole
  • 4 is an individual ceramic divided substrate that will become a product
  • 5 is a peripheral area that is not used as a product.
  • numeral 7 is a through hole
  • numeral 71 is a through hole which is an example of the through hole 7
  • numeral 72 is a notch portion which is an example of the through hole 7.
  • the ceramic laser scribe substrate 1 mainly consists of a ceramic multi-chip substrate 2 and a peripheral portion 5. Note that in this specification, the ceramic substrate means the ceramic laser scribe substrate 1, the ceramic multi-chip substrate 2, or the ceramic divided substrate 4.
  • the laser processing in the present invention may be performed into any shape.
  • This shape may be the scribe line 3 as described above, the formation of a notch 72 suitable for screwing, or even drilling.
  • the cutout portion 7 is formed by superimposing a plurality of laser dots on the sintered substrate. In this way, two or more peaks in the range of 98 eV or more and 106 eV or less can be observed in any observation region, which leads to a reduction in strength unevenness on the machined surface in the case of screwed parts, for example, and reduces torque. It can be made larger. Furthermore, even when formed as a scribe line, it will not break during transportation, and furthermore, it is possible to suppress the occurrence of defects when dividing.
  • FIG. 1 shows an example in which a large number of ceramic divided substrates 4, two in the vertical direction and four in the horizontal direction, are cut out by laser scribing.
  • the ceramic laser scribe substrate 1 is not limited to such a shape, and one ceramic divided substrate 4 may be processed into a product shape using the scribe lines 3, and more than 2 pieces vertically and 4 pieces horizontally. A large number of divided ceramic substrates 4 may be obtained. Further, it is not necessary to form the scribe lines 3 on all four sides of the ceramic divided substrate 4, and it is sufficient to have the scribe lines 3 at one or more locations. Further, although the ceramic divided substrate 4 has a rectangular shape in a plan view in FIG.
  • the scribe line 3 may be provided on both the front and back sides of the ceramic laser scribe substrate 1. Alternatively, the scribe line 3 may be formed by a combination of laser and other methods. Further, in the laser processing of the invention, only one of continuous oscillation or pulse oscillation oscillation methods may be used, or both oscillation methods may be used in combination. Furthermore, the shape of the ceramic laser scribe substrate 1 may be circular as shown in FIG. Furthermore, the ceramic laser scribe substrate 1 may have a shape after breaking such that it has a notch at the corner, as shown in FIG.
  • the ceramic substrates 1 and 2 and the ceramic divided substrate 4 portion of the ceramic circuit board 10 have two or more peaks in the range of 98 eV or more and 106 eV or less in the spectrum obtained by measuring with XPS. is observed.
  • the three-point bending strength can be as high as 600 MPa or more, or even 700 MPa or more.
  • some have thermal conductivity of 50 W/m ⁇ K or more, and even 80 W/m ⁇ K or more.
  • materials with a thermal conductivity of 80 W/m.K or higher include those with a thermal conductivity of about 130 W/m.K.
  • the thermal conductivity can be as high as 170 W/m ⁇ K or more, or even 230 W/m ⁇ K or more.
  • the three-point bending strength is 350 MPa or more, and some have a three-point bending strength of 450 MPa or more.
  • silicon nitride substrates and aluminum nitride substrates have both high strength and high thermal conductivity.
  • the ceramic substrates 1, 2, and 4 may be a single plate, or may have a three-dimensional structure such as a multilayer structure (ceramic-conductor portion-ceramic-conductor portion structure). Moreover, it is preferable that the ceramic substrates 1, 2, and 4 are Si-containing ceramic substrates. Examples of Si-containing ceramics include SiAlON, and those containing one or more of silicon nitride and silicon carbide as a main component. It is more preferable to use a silicon nitride substrate as these Si-containing ceramics.
  • the scribe line 3 is processed by laser.
  • the laser used in this case is preferably selected from a semiconductor laser, a fiber laser, an excimer laser, a femtosecond laser, a YAG laser, a YVO laser, a CO 2 laser, a DDL laser, and a blue laser.
  • a YAG laser a second harmonic, a third harmonic, or a fourth harmonic may be used as necessary. It is particularly preferable to use a laser having a wavelength of 1200 nm. Lasers with a wavelength of 1200 nm or less include fiber lasers, excimer lasers, femtosecond lasers, YAG lasers, YVO lasers, and the like.
  • a fiber laser When using such a laser, a condenser lens or mirror may be used as necessary. Further, when using a condensing lens, it is preferable to use the type and arrangement thereof under appropriate conditions depending on the position and thickness of the substrate. By optimizing the conditions of the condenser lens in this way, the depth of focus can be adjusted. As described above, when forming the scribe line 3, it is preferable to move the substrate that is the source of the ceramic laser scribe substrate 1 (for example, a sintered substrate after a sintering process) to form the groove shape.
  • the substrate that is the source of the ceramic laser scribe substrate 1 for example, a sintered substrate after a sintering process
  • the fiber laser conforms to the definition of fiber laser in JISZ 3001-5 (2013).
  • the fiber laser may be a YAG crystal doped with Nd, Er, or Ho, or may be one using KLN, PPLN, sapphire, ruby, or the like.
  • the fiber diameter is preferably 100 ⁇ m or less. Further, the accuracy of the diameter is preferably an error of 0.001 mm or less, and it is preferable that both parallelism and perpendicularity are controlled.
  • a crystal capable of wavelength conversion such as BBO (beta barium bolite) may be used as second harmonic, triple harmonic, quadruple harmonic, etc. as necessary. Good too.
  • a fiber laser it is more preferable to use either a step index or a grating index as the index type.
  • the step index means that the refractive index within the core is uniform
  • the grating index means that the refractive index within the core is non-uniform and the intensity distribution becomes higher at the center. Therefore, with the same output, deeper machining is possible with the grating index.
  • the oscillation mode may be a single mode or a multimode, but it is more preferable to use a single mode.
  • HZ heat affected zone
  • an assist gas may be used to form the scribe line.
  • the assist gas used at this time is preferably nitrogen or air.
  • This assist gas is preferably injected from the injection port before the laser beam is oscillated from the laser irradiation port. This is because the speed of light is much faster than the speed of sound, so if it is injected at the same time as oscillation, air resistance will occur, and it will take time for the assist gas to reach the sintered substrate surface, resulting in a time lag. This is because in such a case, the effect obtained by using the assist gas may be reduced.
  • FIG. 7 schematically shows a dust collection method in laser processing.
  • the reference numeral 1 is a ceramic laser scribe substrate
  • the reference numeral 11 is a metal circuit
  • the reference numeral 14 is a laser processing machine
  • the reference numeral 15 is a particle generated by laser irradiation
  • the reference numeral 16 is a dust collector. As shown in FIG.
  • the dust collector 16 simultaneously collects the fine particles 15. Thereby, it is possible to suppress the phenomenon in which the fine particles 15 cover the laser ejection port and destabilize the laser output. By stabilizing the laser output in this way, it is also possible to suppress changes over time in the laser product in the laser irradiation area.
  • the scribe line 3 may be formed by multiple laser irradiations.
  • the time interval between, for example, the nth (n: natural number) irradiation and the (n+1)th irradiation is 1 ⁇ sec or more.
  • the plurality of time intervals that appear over time may be the same or different.
  • the interval between the n-th irradiation and the n+1-th irradiation and the interval between the n+1-th irradiation and the n+2-th irradiation may be different or the same. This is because when the irradiation is performed in multiple steps in this way, by leaving time intervals, the thermal energy remaining in the sintered substrate due to the irradiation can be reduced before the next laser irradiation can be performed. More preferably, this interval is 3 minutes or less. This is because if the interval is longer than 3 minutes, it will take time to manufacture and there is a risk that the yield will deteriorate.
  • the laser oscillation may be either continuous wave (CW) or pulse wave (PW), or a combination of continuous wave and pulse wave.
  • CW continuous wave
  • PW pulse wave
  • a short pulse width on the order of nanoseconds or less. If the pulse width is long, the influence of laser irradiation becomes excessive, and oxidation progresses, so that two or more peaks may not be observed in the range of 98 eV or more and 106 eV or less.
  • the ceramic substrates 1, 2, and 4 are preferably made of Si-containing ceramics, and the scribe line 3 is formed by laser processing, and the scribe line 3 is obtained by measuring the laser irradiation area on the side surface of the laser processing using XPS. It is characterized in that two or more peaks are observed in the range of 98 ev to 10 6 ev in the spectrum obtained. Further, the upper limit of the number of peaks is not particularly limited, but is preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less.
  • the peak intensity ratio I3/I2 is 0.4 or more and 12 or less. Furthermore, it is preferable that I3/I2 is 0.6 or more and 4.5 or less. More preferably, I3/I2 is 0.9 or more and 4.1 or less. More preferably, I3/I2 is 0.9 or more and 1.7 or less.
  • the peak intensity will be defined.
  • the peak intensity is the height of the peak minus the baseline height.
  • the baseline is a straight line connecting the ends of the peaks.
  • the edge of this peak is the point where the slope of the spectrum becomes zero for the first time (minimum value) when looking in one direction from the strongest point of the peak.
  • a local minimum value exists between two local maximum values, and the distance from one of the local maximum values is less than twice the half width, use the local minimum value that exceeds another local maximum value. It is preferable.
  • the height of one end is set as the baseline height.
  • This I2 refers to the intensity of the Si--Si peak
  • I3 refers to the intensity of the Si--O peak. Therefore, adjusting the intensity ratio of the Si--O and Si--Si peaks to 2.5 or less means that oxidation of Si due to thermal effects due to laser processing is reduced.
  • the humidity is 35% or more and 75% or less.
  • Performing laser processing in an environment with a humidity of less than 30% is not preferable because static electricity is generated and there is a risk that microbubbles are likely to be formed due to repulsion between charged particles.
  • it exceeds 80% water molecules in the atmosphere may absorb the laser energy and the silicon compound may become hydrated. Therefore, when a hydrate is formed in this way, the absolute value of the Si--O peak may become small. This is because oxygen's lone electron pair is used for bonding with hydrogen atoms rather than bonding with Si.
  • molecules of hydrates generated by absorption of laser energy form hydrogen bonds with each other. Hydrogen bonds have weaker bond energy than covalent bonds.
  • the temperature during laser processing is preferably 28° C. or lower.
  • the timing of irradiating the laser to the substrate that is the source of the ceramic laser scribe substrate 1 is not particularly limited, it is preferably after sintering. This is because if the substrate is a sintered substrate after sintering, the position of the scribe line with little change in size in subsequent steps can be easily maintained.
  • the conductor portion may be bonded after the scribe line is formed on the sintered substrate, or the scribe line may be formed after the conductor portion is bonded to the sintered substrate.
  • “after the conductor part is bonded” may be after the etching process or before the etching process, and the etching process may not be necessary.
  • Examples of methods that do not include an etching step include a method of joining conductor portions that have been given a circuit shape in advance by punching or the like.
  • the light collection distance is 0.5 mm or more, and it is preferable that it is 30 mm or less. If the distance between the irradiation port and the substrate is less than 0.5 mm, the emitted plume will adhere to the irradiation port, making the energy of laser processing likely to become unstable, and there is a risk that positional accuracy may not be maintained sufficiently.
  • the peaks observed by XPS may also change.
  • the distance is more than 30 mm, although plume adhesion can be suppressed, the slight difference in angle between the laser and the ceramic substrates 1, 2, and 4 may greatly affect the positional accuracy.
  • a more preferable range of the light focusing distance is 1 mm or more and 15 mm or less. If the molecular density is the same, the amount of water molecules existing at the same distance is the same. Therefore, the farther the distance from the irradiation port, the greater the influence of water molecules on the laser output energy. Furthermore, there is a possibility that the influence of the environment in which laser processing is performed, such as humidity and temperature, will be excessive. As a result, there is a possibility that the peaks observed by XPS may also change.
  • _Quantera_SXM manufactured by PHI was used as the XPS. Therefore, it is preferable to use a material with performance equivalent to or higher than this.
  • Single crystal spectroscopy AlK ⁇ rays were used as the X-ray source.
  • the X-ray output at this time was 4.5W.
  • the analysis area had a diameter of 20 ⁇ m.
  • the absolute value (peak difference) of the value obtained by subtracting the value of the peak intensity of the strongest peak in the irradiated region in the range of 528 eV or more and 536 eV or less from the value of the peak intensity of the strongest peak in the non-irradiated region in the range is 2500 or less, more preferably It is preferably 1600 or less. More preferably, the peak difference is 1500 or less. More preferably, the peak difference is 800 or more and 1500 or less. Moreover, it is preferable that the absolute value of the peak intensity of the strongest peak in the range of 528 eV or more and 536 eV or less of the irradiation region is 1000 or more.
  • a value of 1000 or more indicates that the energy density of the laser is high, and indicates that the magnitude of thermal influence on the non-irradiated area is suppressed.
  • the absolute value of the peak intensity of the strongest peak in the range of 528 eV to 536 eV in the irradiation region is preferably 3500 or less. This is because if it exceeds 3500, the oxidation number of the Si component will increase too much and the value of I3/I2 may become uncontrollable.
  • the absolute value (peak difference) of the value obtained by subtracting the value of the peak intensity of the strongest peak in the non-irradiated area from the value of the peak intensity of the strongest peak in the range of 395 eV or more and 400 eV or less in the irradiated area is 2500 or less. It is preferable. More preferably, the peak difference is 2200 or less. More preferably, the peak difference is 300 or more and 2000 or less. The peaks in this range are those derived from oxides. The fact that the peak difference is 300 or more indirectly indicates that the thermal influence on the non-irradiated area is small and the influence of the laser remains on the irradiated area.
  • the absolute value (peak difference) of the value obtained by subtracting the value of the peak intensity of the strongest peak in the irradiated area in the range of 282 eV or more and 288 eV or less in the irradiated area from the value in the non-irradiated area is 2500. It is preferable that it is below. It is more preferable that the peak difference is 1200 or less. It is more preferable that the peak difference is as follows.
  • the non-irradiation area is defined as a location 0.05 mm or more away from the laser-processed surface as the center of the measurement location. This peak indicates the presence of carbon in the 1S orbit. The presence of carbon in the 1S orbit means that it has a bond with carbon, and the bond with carbon originates from a single bond.
  • the small difference in the peak intensities of these three types indicates that the changes in these contents are small depending on whether or not laser irradiation is performed. Therefore, it is preferable that the peak difference between these three types of peak intensities is 2500 or less. Further, it is more preferable that the peak difference between the two types of peak intensities is 2000 or less. Further, it is preferable that this peak difference is about a certain level. Therefore, it is more preferable that the peak difference is 1000 or less.
  • the peak difference is the absolute value of the value obtained by subtracting the peak intensity in the range in the non-laser irradiation area from the peak intensity in the range in the laser irradiation area.
  • the peak difference C EF in the peak intensity in the range from E [eV] to F [eV] is expressed by the following formula.
  • C E-F
  • the peak difference can be indirectly determined by comparing the heights of the determined peaks and determining the magnitude of the difference in peak height between the irradiated area and the non-irradiated area.
  • the ceramic to be subjected to the scribing process contains one or more of alumina, zirconia, silicon nitride, sialon, and aluminum nitride as a main component.
  • the main component means containing 50 wt% or more.
  • the ceramic to be subjected to the scribing process is a Si-containing ceramic.
  • the type of ceramic is silicon nitride, sialon, or silicon carbide as a main component.
  • silicon nitride is the main component.
  • the ceramic substrates 1, 2, and 4 are Si-containing ceramics. More preferably, the Si-containing ceramic is silicon nitride, silicon carbide, or sialon.
  • the thickness of the ceramic substrates 1, 2, and 4 used at this time is not particularly limited, but is preferably 0.1 mm or more and 3.00 mm or less, and more preferably 0.2 mm or more and 2.5 mm or less. If the substrate is too thin (less than .1 mm), it will be easily broken during transportation after laser processing, and there is a risk that transportation will be adversely affected. On the other hand, if the thickness exceeds 3 mm, oxidation will progress too much during laser processing, and there is a risk that two or more peaks may not be observable on any laser processed surface.
  • the ceramic substrates 1, 2, and 4 are Si-containing ceramics, according to the XPS spectrum, if the peak intensity of the strongest peak at 98 eV or more and below 101 eV is I2, and the peak intensity of the strongest peak at 101 eV or more and 106 eV or less is I3, It is preferable that the peak intensity ratio I3/I2 is 2.5 or less.
  • This I2 refers to the intensity of the Si--Si peak
  • I3 refers to the intensity of the Si--O peak. Therefore, adjusting the intensity ratio of the Si--O and Si--Si peaks to 2.5 or less means that the increase in the oxidation number of Si due to the thermal influence due to laser processing is reduced.
  • the peaks obtained in this manner are separated into waveforms and their integral values are compared.
  • the integral value indicates the area of the peak. Therefore, this integral value depends on the peak intensity and the half width.
  • the waveform separation method refers to the spectrum of the non-irradiated region and the main peak in the range of 98 eV or more and 106 eV or less.
  • the peak integral value of the strongest peak at 98 eV or more and less than 101 eV is S2
  • the peak integral value of the strongest peak at 101 eV or more and 106 eV or less is S3
  • the peak intensity ratio S3/S2 is 0.8 or more and 4.2 or less. It is preferable that there be. In this way, by controlling not only the peak intensity but also the integral value of the peak, the production ratio of the compound or simple substance that can form a Si-Si bond and the compound that can form a Si-O bond can be further controlled. be able to.
  • the depth of the scribe line 3 obtained by laser may be changed as appropriate depending on the application.
  • the laser processing depth D (shown in FIG. 3) can be changed as appropriate by changing the energy density.
  • the laser processing depth D may be changed by changing the movement (scanning) speed of the sintered substrate.
  • the method of changing the scanning speed includes, for example, changing the speed at which the sintered substrate is moved. Further, the scanning speed can be changed as necessary, but if it is too slow, there is a risk that the thermal influence due to the laser energy will be excessive. Therefore, it is preferable to have a scanning speed above a certain level.
  • the ceramic laser scribe substrate 1 equipped with the ceramic multi-chip substrate 2 has at least two scribe lines extending outward from the intersection with other scribe lines 31 and reaching the edge. 31, a scribe line 32 between adjacent ceramic substrates 4, and other scribe lines 33 (shown only in FIGS. 8 and 9 of FIGS. 8 to 10). It is preferable that the scribe line 32 protrudes outside the intersection with the scribe lines 31 and 33.
  • the two lines extending in the horizontal direction of the page are the scribe lines 31, in FIG. 9, the two lines extending in the vertical direction of the page are the scribe lines 31, and in FIG. There are four scribe lines 31 in total, two extending in the vertical direction of the page.
  • the value (W2/W1) of the protrusion width W2 to the protrusion width W1 is set to be 1/2 or less.
  • W2/W1 is 1/4 or less.
  • the scanning speed of the sintered substrate may be changed freely, but in order to observe two or more peaks in the range of 98 eV to 106 eV no matter which range is measured, the amount of change in the scanning speed must be greater than 0.
  • the speed is preferably 1500 mm/s or less.
  • the amount of change in the scanning speed on the sintered substrate may exceed 0 by controlling it to be as small as possible. This is done in consideration of the possibility that it will take some time for the laser output to stabilize.
  • fine powder generated by the processing may be generated. If this plume is too close to the laser irradiation port, it may adhere to the laser irradiation port, destabilizing the laser output, and even blocking the injection port. Further, in order to suppress the adhesion of these plumes, it is preferable to perform dust collection. Further, an assist gas may be used if necessary. Further, when performing this dust collection, it is preferable to use a dust collector or the like. Further, it is preferable that the dust collector has a filter or the like. Furthermore, when using a dust collector having a structure including a filter as described above, it is preferable that fine powder adhering to the filter portion be removed as necessary.
  • dust collection has the effect of suppressing fine powder such as generated plumes from adhering to the substrate.
  • deposits generated by laser processing of the sintered substrate may be removed in a post-process, if they remain on the surface of the ceramic laser scribe substrate 1, they may peel off.
  • the laser output is increased without dust collection, the processing speed can be increased, but the damage to the laser-processed surface will increase.
  • the method may be one using a foil or one using a brazing paste.
  • the active metal brazing material include a mixture whose main component is either Ag (silver) or Cu in addition to Ti. Further, it is preferable that Ti is contained in a range of 0.1 wt% to 10 wt%, and Cu is contained in a range of 5 wt% to 96 wt%.
  • examples of the bonding layer for bonding semiconductor elements and lead frames include solder, brazing material, and the like.
  • the solder is lead-free solder.
  • the solder is one having a melting point of 450°C or lower.
  • a brazing material has a melting point of over 450°C.
  • materials with a melting point of 500° C. or higher are called high-temperature brazing materials.
  • the high-temperature brazing filler metal include those containing Ag as a main component.
  • Examples of brazing filler metals containing Ag as a main component include Ag paste with controlled particle size and Cu paste containing copper as a main component.
  • the laser scribe surface may be on the side opposite to the metal circuit 11 (metal heat sink 12 side). This is because it is difficult for the resin to enter the recesses generated by laser scribing, which may result in voids. Since voids impede heat dissipation, it is preferable to form scribe lines on the heat dissipation plate side to prevent the occurrence of voids.
  • a silicon nitride substrate having the through holes is prepared.
  • the through hole may be provided in advance at the stage of forming a molded body.
  • a step of providing through holes (for example, through holes) 71 in the silicon nitride sintered body may be performed. Examples of the step of providing the through holes include laser processing similar to laser scribing, cutting processing, and the like. Examples of the cutting process include drilling using a drill or the like.
  • the width W4 (shown in FIG. 12) of the scribe marks of the dots 3A is 20 ⁇ m or more and 100 ⁇ m or less.
  • the depth of the dots 3A is preferably 1/6 or more and 2/3 or less of the substrate thickness. Further, the depth of the dots 3A is preferably 50 ⁇ m or more and 300 ⁇ m or less. More preferably, the depth of the dots 3A is 150 ⁇ m or more and 250 ⁇ m or less.
  • the dots 3A illustrated in FIG. 12
  • the continuous grooves 3B illustrated in FIG.
  • Ag does not necessarily have to be contained, and may be contained in an amount of about 95 wt%.
  • one or more selected from In, Sn, Al, Si, C, Mg, Mo (molybdenum), Mn (manganese), W (tungsten), Re (rhenium), and Os (osmium) may be added in total. It may be added in a range of 1 wt% or more and 35 wt% or less.
  • the active metal brazing material is made into a paste.
  • a paste is a mixture of a brazing material component and an organic substance, and the components of the brazing material need to be mixed uniformly. This is because if the brazing filler metal components are unevenly distributed, the brazing will not be stable and this will cause joint failure.
  • An active metal brazing paste is applied to a ceramic laser scribe substrate 1. Place a copper plate on top of it. Next, this is heated at a temperature of 600° C. or higher and 900° C. or lower to bond them.
  • the heating step is performed in a vacuum or in a non-oxidizing atmosphere, if necessary.
  • the pressure is preferably 1 ⁇ 10 ⁇ 2 Pa or less.
  • the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, and a neon atmosphere.
  • the non-oxidizing atmosphere is not particularly limited, but refers to one in which the oxygen partial pressure is 10% or less.
  • a bonding layer is provided at a location where semiconductor elements are bonded.
  • the bonding layer may be solder or brazing material, or may be a silver layer using silver paste or the like. Alternatively, a copper layer using copper paste may be used.
  • a bonding layer is provided, and a semiconductor element is provided thereon. Further, if necessary, the lead frame is bonded via a bonding layer. Additionally, wire bonding shall be provided as necessary. In addition, the required number of semiconductor elements, lead frames, and wire bonding shall be provided.
  • the semiconductor element, lead frame, and silicon nitride circuit board with wire bonding are molded with resin to seal the inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

実施形態にかかるセラミックス基板は、レーザ加工面のレーザ照射域をXPSで測定して得られたスペクトルのうち、98eV以上106eV以下の範囲に、2つ以上ピークがあることを特徴とする。また、当該セラミックス基板を備えるセラミックス回路基板および半導体装置と、当該セラミックス回路基板およびセラミックス分割基板の製造方法とを提供する。

Description

セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法
 実施形態は、おおむね、セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法に関する。
 近年、パワーエレクトロニクス、次世代パワー半導体等の大電流を必要とする半導体素子の発展に伴って、放熱性と電気絶縁性を兼ね備えたセラミックス基板の需要は年々増加している。特に、小型化・高性能化に伴い素子の発熱が増加するにつれ、放熱を効率よく行うためにセラミックス基板の厚さは薄くなる傾向にある。
 一方で、セラミックス基板の製造コストを下げるために、より大きな形状で製造をすることが行われている。セラミックス基板のなかで高強度・高靭性を有し高い放熱性を兼ね備えた窒化珪素基板では、220mm×220mm×0.32mmの大きさの基板が開示されている(特許文献1)。
 製造コストを下げるために大きく製造したセラミックス基板としての窒化珪素基板を、使用する製品サイズに分割する方法のひとつとして、レーザ加工により形成されたスクライブラインを利用して多数個取りする方法が開示されている(特許文献2)。特許文献2によれば、レーザ加工による多数個取りに伴う分割の際に、窒化珪素基板のマイクロクラックが必要以上に発生せず、多数個取りのためのスクライブライン加工も、容易かつ低コストで行うことができる。
 その一方で、分割前の基板が大きく薄くなったために、高強度・高靭性を有するセラミックス基板をレーザ加工することによって発生する課題が明らかになってきた。たとえば、セラミックス基板が高強度を有するためにスクライブラインに沿ってブレイクするには大きな力が必要となるため、レーザをセラミックス基板の厚さ方向に深く入れる必要がある。しかしながら、このように厚さ方向に深くスクライブラインを形成するためには大きなエネルギーが必要であった。レーザのエネルギーがスクライブのエネルギーに変換される際にその一部が熱的エネルギーに変換されてしまうということが起こっていた。この熱エネルギーへの変換割合が大きい場合、熱的影響が大きくなるということが起こっていた。したがって、この熱的影響により珪素化合物の酸化が進んだ状態になることが多かった。
 これまでのレーザ加工面においてはその加工面をXPS(X-ray Photoelectron Spectroscopy)で測定したときどの場所においても528eV以上536eV以下のピークが2つ以上観測されるわけではなかった。そのため、場所により分割されやすい箇所とされにくい箇所が混在しており、搬送や洗浄の際に分割されてしまうという問題が起こることがあった。
特許第6399252号公報 特開2002-176119号公報
 近年、パワー半導体チップのジャンクション温度上昇に伴い、セラミックス回路基板の高信頼化が求められている。このため高信頼性を損なうことなく、放熱性と電気絶縁性を兼ね備えた高強度で薄いセラミックス回路基板が求められている。
 実施形態は、このような問題を解決するものであり、放熱性と電気絶縁性を兼ね備えた高強度で薄い大型セラミックス基板から効率よく小型基板を製造可能にしたコストパフォーマンスに優れたセラミックス基板に関する。
 実施形態にかかるセラミックス基板は、スクライブラインを有するセラミックス基板において、スクライブラインを含むレーザ加工面がレーザの照射により形成され、レーザ加工面のレーザ照射域をXPS(X-ray Photoelectron Spectroscopy)で測定して得られたスペクトルのうち、98eV以上106eV以下の範囲において、2つ以上ピークがあることを特徴とする。
実施形態にかかるセラミックス基板の一例を示す上面図。 実施形態にかかるセラミックス基板をXPSで測定した結果の一例を模式的に示した図。 図1の基板のスクライブラインを斜め上から見たときの一例を模式的に示した図。 実施形態にかかるセラミックス基板の他の一例を示す上面図。 実施形態にかかるセラミックス基板が円形状の時の一例を示す上面図。 実施形態にかかるセラミックス回路基板の一例を示す側面図。 実施形態にかかるレーザ加工方法の一例を示す図。 実施形態にかかるセラミックス基板の他の一例を示す上面図。 実施形態にかかるセラミックス基板の他の一例を示す上面図。 実施形態にかかるセラミックス基板の他の一例を示す上面図。 実施形態にかかるセラミックス基板の他の一例を示す側面上面拡大図。 実施形態にかかる分割後のセラミックス基板において、ブライクラインで切断した部分の一例を示す断面図。 実施形態にかかる分割後のセラミックス基板において、ブライクラインで切断した部分の一例を示す断面図。 実施形態にかかるセラミックス基板の製法の一例をフローチャートとして示す図。 実施形態にかかるセラミックス基板の製法の一例をフローチャートとして示す図。 実施形態にかかるセラミックス基板の製法の一例をフローチャートとして示す図。 実施形態にかかるセラミックス基板の位置ずれの一例を示す上面拡大図。 実施形態にかかるセラミックス基板の分割の不良の一例を示す上面拡大図。 実施形態にかかるセラミックス基板の他の一例を示す上面図。
実施形態
 実施形態にかかるスクライブラインとは、セラミックスレーザスクライブ基板をセラミックス分割基板に分割する前のスクライブライン、および、セラミックス分割基板に分割後のスクライブライン痕を示すものとする(以下、「スクライブライン」と称する)。実施形態にかかるスクライブラインを有するセラミックス基板は、スクライブラインがレーザの照射により形成され、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)で測定して得られたスペクトルのうち、98eV以上106eV以下の範囲において2つ以上のピークが観測されることを特徴とする。当該範囲内の2つ以上のピークとは、たとえば3つや4つなどといった2つより多くのピークが観測されていてもよいことを示すものである。なお、セラミックスレーザスクライブ基板の「分割」は、セラミックスレーザスクライブ基板の「ブレイク」とも称する。
 図1に実施形態にかかるセラミックス基板の一例の平面図を示した。符号1はセラミックスレーザスクライブ基板、符号2はセラミックス多個取り基板、符号3は非貫通孔であるスクライブライン、符号4は製品となる個々のセラミックス分割基板、符号5は製品としては使用しない周辺部、符号7は貫通孔、符号71は貫通孔7の一例であるスルーホール、符号72は貫通孔7の一例である切り欠き部である。セラミックスレーザスクライブ基板1は、大きくは、セラミックス多個取り基板2と、周辺部5とからなる。なお、本明細書において、セラミックス基板は、セラミックスレーザスクライブ基板1、セラミックス多個取り基板2、または、セラミックス分割基板4を意味する。
 また、本発明におけるレーザ加工はどのような形状に加工を行ってもよいものである。この形状は前述のようにスクライブライン3であってもよいし、ねじ止めに好適な切り欠き部72の形成であってもよいし、さらには穴あけ加工であってもよい。切り欠き部7は、焼結基板上にレーザによる複数のドットを重ねて設けることで形成される。このように98eV以上106eV以下の範囲において2つ以上のピークがどの観測領域においても観測されるようにすることで、たとえばねじ止め部の場合には加工面における強度ムラの低減につながり、トルクを大きくすることができる。また、同様にスクライブラインとして形成させた際にも搬送の際にブレイクされることがなく、さらには、分割時における不良の発生の抑制もすることができるのである。
 図1では、縦2個、横4個の計8個のセラミックス分割基板4をレーザスクライブで多数個取りをしている例を示したものである。
 セラミックスレーザスクライブ基板1は、このような形に限定されるものではなく、1個のセラミックス分割基板4をスクライブライン3により製品形状に加工しても良く、縦2個、横4個を超えた数量のセラミックス分割基板4を多数個取りしても良い。また、セラミックス分割基板4の4辺全てにスクライブライン3を形成する必要はなく、スクライブライン3は1ヵ所以上あれば良いものとする。また、図1では平面図でセラミックス分割基板4が長方形状を有しているが、略多角形状を有していても良いし、略円形を有していてもよいし、略多角形の角部に丸みを帯びさせた形状を有していてもよい。また、このスクライブライン3は、セラミックスレーザスクライブ基板1の表裏の両方に設けてもよい。また、レーザと他の方法を組み合わせたによるスクライブライン3の形成であってもよい。また発明のレーザ加工においては連続発振またはパルス発振のいずれか片方の発振方法のみを用いてもよく、両方の発振方法を組み合わせてもよいものである。さらには、セラミックスレーザスクライブ基板1の形状は、図5のように円形であってもよい。また、セラミックスレーザスクライブ基板1は、図4のようにブレイク後の形状が角部に切り欠きを有するような形状であってもよい。
 セラミックス基板1,2と、セラミックス回路基板10(図6に図示)のセラミックス分割基板4の部分とは、XPSで測定して得られたスペクトルのうち98eV以上106eV以下の範囲において2つ以上のピークが観測されることを特徴とするものである。
 セラミックス基板1,2,4が窒化珪素基板である場合は、三点曲げ強度600MPa以上、さらには700MPa以上と高強度にすることができる。また、熱伝導率は50W/m・K以上、さらには80W/m・K以上のものがある。熱伝導率80W/m・K以上のものがとしては、たとえば、130W/m・K程度のものがあげられる。セラミックス基板1,2,4が窒化アルミニウム基板である場合は、熱伝導率170W/m・K以上、さらには230W/m・K以上と高熱伝導率にすることができる。また、三点曲げ強度は350MPa以上、さらには450MPa以上のものがある。特に、近年は高強度と高熱伝導の両方を併持つ窒化珪素基板および窒化アルミニウム基板もある。
 セラミックス基板1,2,4は単板であってもよいし、多層構造(セラミックス-導体部-セラミックス-導体部の構造)などの立体構造を有していても良い。また、セラミックス基板1,2,4はSi含有セラミック基板であることが好ましい。Si含有セラミックスにはサイアロンや窒化珪素や炭化ケイ素のいずれか1種以上を主成分とするものなどがあげられる。これらのSi含有セラミックスとしては窒化珪素基板を用いることがより好ましい。
 スクライブライン3は、レーザにて加工されたものである。この際に用いられるレーザは、半導体レーザ、ファイバーレーザ、エキシマーレーザ、フェムト秒レーザ、YAGレーザ、YVOレーザ、COレーザ、DDLレーザ、ブルーレーザのいずれかから選ばれたものであることが好ましい。また、YAGレーザを用いる場合には、必要に応じ、2倍波や3倍波や4倍波を用いてもよい。特に好ましくは、波長が1200nmのレーザを用いることがより好ましい。このように波長が1200nm以下のレーザにはファイバーレーザ、エキシマーレーザ、フェムト秒レーザ、YAGレーザ、YVOレーザなどが含まれる。これらのレーザ種の中ではさらに好ましくはファイバーレーザを用いることである。このようなレーザを用いる際には、必要に応じて、集光レンズやミラーを用いてもよい。また、集光レンズを用いる場合には、その種類や配置を基板の位置や厚さに応じて適切な条件で用いることが好ましい。このように集光レンズの条件を最適化することで、焦点深度を調整することができる。前述のようにスクライブライン3の形成の際には、セラミックスレーザスクライブ基板1の元となる基板(たとえば、焼結工程後の焼結基板)を動かして溝形状を形成させることが好ましい。レーザ光を調整して溝形状を制御する方法としてはミラーによって向きを調整する方法とレーザ自体を調整する方法の2種類があげられるが、いずれにおいても光路の距離などによっては位置精度が保てない虞がある。また、光路の長さによって照射されるエネルギーは変化しうるものであり、レーザは精密機械であるためレーザ自体を何度も動かすとレーザの発振エネルギーが経時的に変化する虞がある。このような問題が起こるとXPSで得られるピークも制御できない虞がある。
 そのため、焼結基板自体を台(ステージ)に載せステージ自体を動かすことが好ましい。ミラーを用いた場合にミラーを動かす方法でもよいが、このようにするとミラーから加工対象物までの距離が長ければ長いほど、位置精度が悪くなる虞がある。またファイバーレーザは、ファイバーレーザとはJISZ 3001-5(2013)で定義されているものに準拠したものである。ファイバーレーザには、YAG結晶にNd、Er、Hoをドープさせたものであってもよいし、KLN、PPLNやサファイヤ、ルビー等用いたものであってもよい。ファイバー径は100μm以下のものであることが好ましい。また、直径の精度は0.001mm以下の誤差であることが好ましく、平行度および垂直度ともに制御されていることが好ましい。
 また、ファイバーレーザを含む前記レーザにおいては、必要に応じて、BBO(ベータバリウムボライト)などの波長変換が可能な結晶を用いて2倍波、3倍波、4倍波などとして使用してもよい。また、ファイバーレーザを用いる場合、インデックス型は、ステップインデックス、または、グレーティングインデックスのいずれかを用いることがより好ましい。ここで、ステップインデックスとは、コア内の屈折率が均一である一方、グレーティングインデックスとはコア内の屈折率が不均一で強度分布が中心部において高くなるものである。したがって、同一出力ではグレーティングインデックスのほうが深い加工が可能である。また、発振モードはシングルモードであってもよいしマルチモードであってもよいが、より好ましくはシングルモードを用いることである。ここで、熱的影響部(HAZ)について説明する。この熱的影響部とは略同心円状に広がっていくものである。
 また、スクライブラインの形成にはアシストガスを用いてもよい。この際に用いられるアシストガスは窒素または大気を用いることが好ましい。このアシストガスはレーザの照射口からレーザ光が発振されるよりも前に噴射口から噴射されることが好ましい。これは光の速さが音速よりも非常に速いため、発振と同時に噴射した場合には空気抵抗が生じ、アシストガスが焼結基板表面に達するまでには時間がかかり、時間差が生じるものである、このような場合にはアシストガスを用いることによって得られる効果が低減されてしまう虞があるためである。
 また、アシストガスの有無にかかわらず、集塵を行うことが好ましい。集塵を行うことでレーザ照射によって生成した高温の微小な粉塵を取り除くことができる。このように集塵を行うことで、生成した微小な粉塵が再堆積する際に発生しうる気泡の生成を阻害することができる。
 図7はレーザ加工における集塵の方法を模式化したものである。符号1はセラミックスレーザスクライブ基板、符号11は金属回路、符号14はレーザ加工機、符号15はレーザ照射によって生じた微粒子、符号16は集塵機である。図7のように、レーザ加工機14により、金属回路11が形成されたセラミックスレーザスクライブ基板1に対してレーザ加工機14からレーザを照射する際に同時に集塵機16により微粒子15の集塵を行う。これにより、この微粒子15がレーザの吐出口を覆いレーザの出力などを不安定化する現象を抑制することができる。このようにレーザの出力を安定化させることで、レーザ照射域におけるレーザ生成物の経時的な変化を抑制することもできる。
 また、スクライブライン3の形成においては複数回のレーザ照射によって得られるものであってもよい。このように同一箇所に複数回のレーザ照射によってスクライブライン3を形成する場合には、レーザ加工において次のレーザ加工までに1ミリ秒以上の間隔をあけることが好ましい。つまり、同じ箇所にレーザをする場合、たとえばn(n:自然数)回目の照射とn+1回目の照射との時間間隔が1μ秒以上であることをさすものである。また、時間経過とともに現れる複数の時間間隔は、同じであってもよいし異なっていてもよい。たとえば、n回目の照射およびn+1回目の照射との間隔と、n+1回目の照射およびn+2回目の照射との間隔とは異なっていても同じであってもよい。このように複数回に分けて照射する場合は時間間隔をあけることで、照射により焼結基板に残った熱エネルギーを低減させてから次のレーザ照射を行うことができるためである。この間隔は3分以下であることがさらに好ましい。間隔が3分を超えて長いと製造に時間がかかり歩留まりが悪化する虞があるためである。また、レーザ発振は連続波(CW:Continuous Wave)またはパルス波(PW:Pulse Wave)のいずれか一方であってもよいし、連続波とパルス波を組み合わせてもよいものである。パルス波を用いる場合はナノ秒オーダー以下の短いパルス幅であることがさらに好ましい。パルス幅が長いとレーザ照射の影響が過大になり、酸化が進むことで、98eV以上106eV以下の範囲において2つ以上のピークが観測されなくなる虞がある。
 セラミックス基板1,2,4はSi含有セラミックスであることが好適であり、レーザ加工によりスクライブライン3が形成されるものであり、そのレーザ加工側面であるレーザ照射域をXPSで測定して得られたスペクトルのうち、98ev以上106ev以下の範囲において2つ以上のピークが観測されることを特徴とする。また、ピークの本数の上限は特に限定されるものではないが10個以下であることが好ましく、より好ましくは5つ以下であり、さらに好ましくは3つ以下である。98eV以上101eV未満における最強ピークのピーク強度をI2とし、101ev以上106ev以下における最強ピークのピーク強度をI3とすると、ピーク強度の比であるI3/I2が0.4以上12以下である。さらには、I3/I2が0.6以上4.5以下であることが好ましい。より好ましくはI3/I2が0.9以上4.1以下であることである。さらに好ましくはI3/I2が0.9以上1.7以下であることである。
 ここで、ピーク強度について定義する。ピーク強度とは、その時のピークの高さからベースラインの高さを引いたものである。ベースラインとは、図2に示すように、ピークの端部と端部を直線で結んだものである。このピークの端部とはピークの最強の箇所から一方向に見ていくときにスペクトルの傾きが初めて0になった箇所(極小値)である。ただし、極小値が極大値同士の間に存在し、いずれかの極大値との距離が半値幅の2倍未満しか極小値が離れていない場合には別の極大値を超えた極小値を用いることが好ましい。また、このような極小値を測定することが難しい場合には片方の端部の高さをベースラインの高さとする。このI2は、Si-Siのピークの強度を指しており、I3はSi-Oのピーク強度を指すものである。したがって、Si-OとSi-Siのピークの強度比を2.5以下に調整するということは、レーザ加工による熱的影響によるSiの酸化を低減させたことを意味するものである。
 このようにピークの強度を制御するために、湿度を30%以上80%以下で28℃以下の環境下で集塵を行いながら焼結基板にレーザ加工を行うことが好ましい。より、好ましくは、湿度35%以上75%以下である。湿度が30%未満の環境でレーザ加工を行うと静電気が起き、帯電した微粒子同士の反発により微小な気泡ができやすくなる虞があるため好ましくない。一方、80%を超えて大きいと大気中の水分子がレーザのエネルギーを吸収し珪素化合物が水和する虞がある。したがって、このように水和物が形成するとSi-Oのピークの絶対値は小さくなる虞がある。これは酸素の非共有電子対がSiとの結合ではなく、水素原子との結合に使われるためである。また、レーザのエネルギーの吸収により生成した水和物は分子同士が水素結合する。水素結合は共有結合より結合エネルギーが弱い結合である。
 したがって、水和物が多量に生成するとその側面における強度が低下する虞がある。よって、珪素水和物が多量に生成することは好ましくない。ここで、湿度とは飽和水蒸気量に対する大気中の水蒸気量であり、飽和水蒸気量は温度の上昇に伴って増加するものである。したがって、同じ湿度でも温度が高ければ高いほど同一体積中に存在する水分子の量は多くなるものである。そのため、温度が28℃を超えて大きいと飽和水蒸気量が増加し湿度を80%以下に制御した効果が十分に得られない虞がある。そのため、レーザ加工時の温度は28℃以下であることが好ましい。
 また、セラミックスレーザスクライブ基板1の元となる基板にレーザを照射するタイミングは特に限定されるものではないが、焼結後であることが好ましい。焼結後の焼結基板であれば、その後の工程における大きさの変化が少ないスクライブラインの位置が保ちやすいためである。また、焼結基板へのスクライブラインの形成後に導体部を接合してもよいし、焼結基板に導体部接合後にスクライブラインの形成をしてもよい。ここで、導体部接合後とはエッチング工程後であってもよいし、エッチング工程前であってもよいことを示すものであり、エッチング工程を有さなくてもよいものである。エッチング工程を有さない方法としては打ち抜き加工などによりあらかじめ回路形状を付与された導体部を接合する方法などが挙げられる。また、集光距離は0.5mm以上あることが好ましく、30mm以下であることが好ましい。照射口と基板との距離0.5mm未満であると発したプルームが照射口に付着し、レーザ加工のエネルギーなどが不安定になりやすく、位置精度を十分に保てない虞がある。
 また、出力の不安定化により、XPSで観測されるピークも変わる虞がある。一方、30mmを超えて遠いと、プルームの付着などは抑制できるものの、レーザとセラミックス基板1,2,4とからなる微妙な角度の違いが位置精度の大きく影響を与える虞がある。また、前記集光距離としてより好ましい範囲は、1mm以上15mm以下であることである。同じ、分子密度であれば同一距離あたりに存在する水分子の量が同一である。したがって、照射口からの距離が遠ければ遠いほど、レーザの出力エネルギーに対する水分子の影響は大きくものである。また、湿度や温度といったレーザ加工を行う環境から受ける影響が過大になる虞がある。これにより、XPSで観測されるピークも変わる虞がある。
 この際、XPSはPHI社製_Quantera_SXMを用いた。そのためこれと同等以上の性能のものを用いることが好ましい。X線源には単結晶分光AlKα線を用いた。この時のX線出力は4.5Wであった。また分析領域については直径20μmであった。
 528eV以上536eV以下の範囲における最強ピークのピーク強度の照射領域における値から前記範囲における最強ピークのピーク強度の非照射領域における値を引いた値の絶対値(ピーク差)が2500以下、より好ましくは1600以下であることが好ましい。より好ましくは、当該ピーク差が1500以下である。さらに好ましくは、当該ピーク差が、800以上1500以下である。また、照射領域の528eV以上536eV以下の範囲における最強ピークのピーク強度の絶対値は1000以上であることが好ましい。この値が1000以上であることはレーザのエネルギー密度が高いことを示しており、非照射領域への熱的影響の大きさを抑制していることを示すものである。前述のようにエネルギー密度を大きくすると、スクライブ溝の幅を小さくすることができ、セラミックスレーザスクライブ基板1全体の大きさに対する得られるセラミックス分割基板4の面積の割合を向上させることも可能となる。また、照射領域の528eV以上536eV以下の範囲における最強ピークのピーク強度の絶対値は3500以下であることがこのましい。3500を超えて大きいとSi成分の酸化数の増加が進みすぎてI3/I2の値が制御できなくなる虞があるためである。
 また、395eV以上400eV以下の範囲における最強ピークのピーク強度の照射領域における値から前記範囲における最強ピークのピーク強度の非照射領域における値を引いた値の絶対値(ピーク差)が2500以下であることが好ましい。より好ましくは、当該ピーク差が2200以下である。さらに好ましくは、当該ピーク差が、300以上2000以下である。この範囲におけるピークは酸化物に由来するピークである。
 ピーク差が300以上あるということは非照射領域に対して与える熱的影響が少なく照射領域にレーザの影響がとどまっていることが間接的に示されていることを示すものである。
 さらに、282eV以上288eV以下の範囲における最強ピークのピーク強度の照射領域における値から前記範囲の照射領域の最強ピークのピーク強度の非照射領域における値を引いた値の絶対値(ピーク差)が2500以下であることが好ましい。前記ピーク差は、1200以下であることがより好ましい。前記ピーク差は、以下であることがより好ましい。非照射領域とはレーザ加工面から0.05mm以上離れた箇所を測定箇所の中心とするものである。
 このピークは1S軌道の炭素の存在を示している。1S軌道の炭素の存在とは炭素との結合を有し、前記炭素との結合が単結合に由来するものである。
 したがって、これら3種のピーク強度のピーク差が少ないことは、これらの含有量の変化がレーザ照射の有無で少ないことを示すものである。
 そのため、これら3種のピーク強度のピーク差を2500以下とすることが好ましいものである。また、前記2種のピーク強度のピーク差は2000以下であることがさらに好ましい。また、このピーク差はある一定程度であることが好ましい。したがって、ピーク差は1000以下であることがより好ましい。ここで、ピーク差とはレーザの照射領域におけるその範囲におけるピークの強度からレーザの非照射領域におけるその範囲におけるピークの強度を引いた値の絶対値である。
 E[eV]以上F[eV]以下の範囲におけるピーク強度のピーク差CE-Fは次の式で示されるものである。
 CE-F
=|(照射領域におけるE[eV]以上F[eV]以下の範囲のピーク強度)
 -(非照射領域におけるE[eV]以上F[eV]以下の範囲のピーク強度)|
 求めたピークの高さを比較し、そのピーク高さの照射領域と非照射領域の差の大きさを求めることで間接的にそのピーク差を求めることができるものである。
 また、スクライビング加工をされるセラミックスはアルミナ、ジルコニア、窒化珪素、サイアロン、窒化アルミニウムの1種または2種以上を主成分とすることがより好ましい。ここで、主成分とは50wt%以上を含有することである。スクライビング加工をされるセラミックスはSi含有セラミックスであることがより好ましい。また、セラミックスの種類は窒化珪素またはサイアロンまたは炭化珪素を主成分とすることがより好ましい。また窒化珪素を主成分とすることがさらに好ましい。
 また、セラミックス基板1,2,4がSi含有セラミックスであることが好ましい。Si含有セラミックスは窒化珪素または炭化珪素またはサイアロンであることがより好ましい。この時用いられるセラミックス基板1,2,4の厚さは特に限定されるものではないが、0.1mm以上3.00mm以下が好ましく、0.2mm以上2.5mm以下であることがより好ましい0.1mm未満と薄すぎる基板であるとレーザ加工を行ったのちに搬送する際にブレイクされやすくなり、搬送に悪影響を及ぼす虞がある。一方、3mmを超えて厚いとレーザ加工を行った際に酸化が進みすぎて、2つ以上のピークをどのレーザ加工面においても観測できるようにすることができない虞がある。
 セラミックス基板1,2,4がSi含有セラミックスである場合にはXPSスペクトルによると、98eV以上101eV未満における最強ピークのピーク強度をI2とし、101eV以上106eV以下における最強ピークのピーク強度をI3とすると、ピーク強度の比であるI3/I2が2.5以下であることが好ましい。このI2はSi-Siのピークの強度を指しており、I3はSi-Oのピーク強度を指すものである。したがってSi-OとSi-Siのピークの強度比を2.5以下に調整するということは、レーザ加工による熱的影響によるSiの酸化数の増加を低減させたことを意味するものである。
 また、このようにして得られたピークを波形分離してその積分値を比較する。ここで、積分値とはピークの面積を示すものである。したがって、この積分値とはピーク強度と半値幅に依存するものである。波形分離の方法は非照射領域のスペクトルおよび、98eV以上106eV以下の範囲におけるメインピークを参照するものとする。
 98eV以上101eV未満における最強ピークのピーク積分値をS2とし、101eV以上106eV以下における最強ピークのピーク積分値をS3とすると、ピーク強度の比であるS3/S2が0.8以上4.2以下であることが好ましい。このようにピーク強度以外にピークの積分値においても制御することで、Si-Siの結合を形成しうる化合物または単体と、Si-Oの結合を形成しうる化合物の生成比をさらに制御をすることができる。
 レーザによって得られたスクライブライン3においては、その深さはその用途などにおいて適宜変えてもよい。たとえばエネルギー密度を変えるなどによってレーザ加工深さD(図3に図示)は適宜変更が可能である。前述のようにレーザ加工深さDを変える方法としては、焼結基板の移動(走査)速度を変えることによってもよい。走査速度を変える方法とは、たとえば焼結基板を動かす速度を変えることなどが挙げられる。また、走査速度は必要に応じて適宜変更可能であるが、遅すぎるとレーザのエネルギーによる、熱的影響が過大になる虞がある。したがって、一定以上の走査速度を有することが好ましい。
 図3に示すセラミックスレーザスクライブ基板1のレーザ加工面において、開口端部81と開口端部82をそれぞれ、レーザ凹部8の開口部(レーザ照射側)であって、レーザ走査方向Lの垂線上の2箇所の端部とする。これに対し、レーザ凹部8のレーザ加工深さDにある最深部と2つの開口端部81,82からなる最深部の最小角(角度θ)を3度以上90度未満とすることが好ましい。また、角度θは5度以上60度以下であることがより好ましい。さらには、角度θは5度以上45度以下であることが好ましい。さらに好ましい範囲としては、角度θは5度以上30度未満である。前述のように、角度θを制御することで、スクライブライン3に沿ってセラミックスレーザスクライブ基板1を分割する際や切り欠き部72を形成する際に、無駄となる箇所(耳部)を低減するとともに、ブレイク(分割)や切り離される際の位置精度の向上につながる。また、前述のように分割や切り離しなどの際の位置精度の向上のみのとどまらず、分割など際には強度の異なる形成物層が存在することで角度θが鋭い鋭角になっても、分割したくない時には分割されないようにすることができる。また、このようなセラミックスレーザスクライブ基板1のレーザ加工面においては、貫通していないレーザ凹部8に加え、および/または、部分的に貫通しているレーザ凹部(図示省略)を設けてもよい。つまり、1つのセラミックスレーザスクライブ基板1内に、貫通させたレーザ加工痕と貫通させない箇所とが共存していてもよいのである。
 また、セラミックス多個取り基板2を備えるセラミックスレーザスクライブ基板1は、図8~10に示すように、他のスクライブライン31との交点から外側にはみ出し縁部まで達している少なくとも2本のスクライブライン31と、隣り合うセラミックス基板4同士の間におけるスクライブライン32と、その他のスクライブライン33(図8~10のうち図8および図9のみに図示)とを備える。そして、スクライブライン32がスクライブライン31,33との交点より外側にはみ出していること好ましい。たとえば、図8において、紙面左右方向に伸びる2本がスクライブライン31であり、図9において、紙面上下方向に伸びる2本がスクライブライン31であり、図10において、紙面左右方向に伸びる2本と紙面上下方向に伸びる2本との計4本がスクライブライン31である。前述のように、スクライブライン32がスクライブライン31,33との交点より外側にはみ出すように設計されていると、スクライブドット(以下、単に「ドット」と呼ぶ)3Aの位置ずれ(図17に例示)や、ドット3Aに起因するブレイク時の割れ不良U(図18に図示)につながる虞がある。一方、図11に示すように、セラミックスレーザスクライブ基板1は、スクライブライン31のはみ出し幅W1に対し、スクライブライン32のはみ出し幅W2を有しており、幅W2は0.1mm以上であることがさらに好ましい。また、前記はみ出し幅W2のはみ出し幅W1に対する値(W2/W1)が1/2以下となるようにすることが好ましい。前述のようにW2/W1を1/2以下となるようにすることで、セラミックスレーザスクライブ基板1の搬送時に意図せず分割(ブレイク)されることがなく、かつタクトタイムも短くすることが可能となる。さらに好ましくは、前記W2/W1が1/4以下となることである。
また、
 さらには、分割用のレーザ加工とは別工程として、ねじ止め部などの切り欠き形状をレーザ加工によって設けてもよい。また、分割用のレーザ加工を行わず、切り欠き部72の形成のみを行ってもよい。したがって、セラミックス基板1,2,4のレーザ加工面はその形状を特に限定するものではない。また、分割などの切り離しを行うタイミングはどのようであってもよいものである。たとえば、このような切り離し工程を2回に分けて行い、その間に別の工程を挟んでもよいものである。
 焼結基板の走査速度は自由に変えてもよいが、どの範囲を測定しても98eV以上106eV以下の範囲において2つ以上のピークが観測されるためには、走査速度の変化量は0より大きく1500mm/s以下であることが好ましい。一方、焼結基板の走査速度の変化量を完全に0にするにはコストがかかりすぎる虞がある。したがって、焼結基板上の走査速度の変化量はなるべく小さくなるように制御することで0を超えてもよいものである。これは、レーザ出力が安定化するまでに多少の時間を要する可能性を考慮したものである。
 焼結基板のレーザ加工においては、プルームなどと呼ばれる加工によって生じた微細な粉末が発生することがある。このプルームはレーザ照射口が近すぎると、このレーザ照射口に付着し、レーザ出力の不安定化、さらには噴射口を塞ぐ虞がある。
 また、これらのプルームなどの付着の抑制のためには集塵を行うことが好ましい。また、必要に応じてアシストガスを用いてもよいものである。また、この集塵を行う際には集塵機などを用いることが好ましい。また、集塵機にはフィルターなどを有しているものであることが好ましい。さらには、前述のようにフィルターを有した構造の集塵機を用いる場合には、前記フィルター部に付着した微細粉末などは必要に応じて除去されることが好ましい。このようにフィルター部に付着した微細粉末を除去されることで、常に一定程度以上の集塵力を維持することができる。また、集塵は発生したプルームなどの微粉末が基板に付着することを抑制する効果もある。
 焼結基板のレーザ加工によって生じた付着物は後工程により除去されることもあるが、セラミックスレーザスクライブ基板1の表面に残った場合には、剥がれ落ちる可能性がある。また、集塵をせずにレーザ出力を大きくすると加工速度を上げることができるが、レーザ加工面に与えるダメージが大きくなる。
 焼結基板にレーザ加工を施した後のセラミックスレーザスクライブ基板1には、金属板などの導体部を接合して回路部(たとえば、図6に図示する金属回路11)を形成することが可能である。また、焼結基板に導体部を接合後に回路形状を付与し、その後に、レーザ加工を行ってもよい。これらの場合、セラミックスレーザスクライブ基板1に金属回路11を形成した後でセラミックス回路基板10への分割を行う(図14および図15に図示)。または、セラミックスレーザスクライブ基板1からセラミックス分割基板4への分割後に、金属回路11を形成してセラミックス回路基板10としてもよい。また、レーザ加工工程(図14および図15に示すステップS2)と、レーザ加工後に行われるスクライブラインに沿う分割工程(ステップS8)との間に別の工程を含んでもよいし、含まなくてもよい。
 金属回路11に使用される金属は銅(Cu)や銅系合金、アルミニウム(Al)などが挙げられる。銅を金属回路11として用いる場合は無酸素銅であってもよい。また、金属回路11の形成はエッチングを経て行ってもよいし、予め回路形状を有した導体部を接合してもよい。このあらかじめの回路形状の付与方法とは、たとえば打ち抜き加工と呼ばれるものなどが挙げられる。
 図6に示すように、セラミックス分割基板(製品部分)4と金属回路11は接合層(たとえば、ろう材層13)を介して接合されていることが好ましい。また、セラミックス分割基板4に金属放熱板12を接合する場合も接合層(たとえば、ろう材層13)を介して接合することが好ましい。また、セラミックス分割基板4と金属回路11の間のろう材層13として、Ti(チタン)などの活性金属を含む活性金属ろう材を設けることが好ましい。活性金属は、Ti以外にも、Zr(ジルコニウム)やNb(ニオブ)やHf(ハフニウム)などが挙げられる。したがって、Tiの代わりに他の活性金属を用いてもよい。このように接合層を設ける方法にはろう材ペーストを用いる方法と合金の箔を用いる方法があげられる。
 したがって、接合層を設けることができれば、その方法は箔を用いたものであってもろう材ペーストを用いたものであってもよい。活性金属ろう材としては、Ti以外に、Ag(銀)またはCuのいずれか1種を主成分とする混合物が挙げられる。また、Tiは0.1wt%以上10wt%以下、Cuは5wt%以上96wt%以下含有させることが好ましい。また、必要に応じ、In(インジウム)、Sn(錫)、Al、Si(珪素)、C(炭素)、Mg(マグネシウム)、Mo(モリブデン)、Mn(マンガン)、W(タングステン)、Re(レニウム)、Os(オスミウム)から選ばれる1種以上を合計で1wt%以上35wt%以下添加してもよい。Agは残部である。したがって、Agは必ずしも含有されていなくてもよい。活性金属ろう材を用いた活性金属接合法は、セラミックス分割基板4表面に活性金属ろう材ペーストを塗布し、その上に金属回路11を配置する。これを600℃以上900℃以下で加熱して接合するものである。また接合には真空引きを要する方法を用いてもよいし、不活性雰囲気下で行ってもよい。不活性雰囲気とは、たとえば窒素雰囲気下(モル分率80%以上、より好ましくはモル分率85%以上)や希ガス雰囲気下(アルゴン雰囲気下、ネオン雰囲気下)などが挙げられる。
 活性金属接合法によれば、セラミックス分割基板4と金属回路11との接合強度を16kN/m以上とすることができる。
 また、金属回路11表面に、Ni(ニッケル)、Ag(銀)、Au(金)から選ばれる1種を主成分とする金属薄膜を設けても良いものとする。これら金属薄膜としては、めっき膜、スパッタ膜などが挙げられる。金属薄膜を設けることにより、耐食性やはんだ濡れ性を向上させることができる。また皮膜は部分的に設けられたものであってもよいし、導体部全体を覆うものであってもよい。さらには、セラミックス回路基板10は、図6に記載の金属板―セラミックス基板―金属板のような構造にのみ限定されるのもではなく、金属板―セラミックス基板―金属板―セラミックス基板―金属板のような5層構造であってもよい。また、ここでいう金属板は回路形状を付与されたものや表面に溝形状を施したものであってもよい。
 図6に示す実施形態では、セラミックス分割基板4および金属放熱板12の接合面積と、セラミックス分割基板4および金属回路11の接合面積とが異なっているが同じであってもよい。また、これらの金属の厚さはともに同じであっても違っていてもよい。さらには、金属放熱板12とセラミックス分割基板4をろう材層13を介さず接合してもよい。また、金属放熱板12とセラミックス分割基板4との間に、ろう材層13以外の導体部を設けてもよい。
 このようなセラミックス回路基板10は、金属回路11に接合層を介して半導体素子を実装したことを特徴とする半導体モジュールに好適である。
 また、得られた、セラミックス回路基板10に半導体素子などの電子部品を搭載してもよい。さらには、半導体素子の他にワイヤーボンディングと金属回路11を接合してもよい。ワイヤーボンディングしたセラミックス回路基板10に樹脂モールドを行い半導体モジュールとしてもよい。実施形態にかかる半導体モジュールは、その構造において限定されるものではない。たとえば、ワイヤーボンディングとリードフレームはどちらか一方であっても良い。また、半導体素子、ワイヤーボンディングおよびリードフレームは、金属回路11にそれぞれ複数個設けても良い。
 また、半導体素子やリードフレームを接合する接合層は、はんだ、ろう材などが挙げられる。はんだは鉛フリーはんだが好ましい。また、はんだは融点が450℃以下のものを示す。ろう材は融点が450℃を越えたものを示す。また、融点が500℃以上のものを高温ろう材と呼ぶ。高温ろう材はAgを主成分とするものが挙げられる。Agを主成分とするろう材には粒径を制御したAgペーストや銅を主成分としたCuペーストなどが挙げられる。
 樹脂モールドでセラミックス回路基板10を封止する場合は、レーザスクライブ面が金属回路11と反対側(金属放熱板12側)であってもよい。これはレーザスクライブで発生した凹部には樹脂が入り込みにくく空孔になる可能性があるためである。空孔は放熱性を妨げるため発生を抑止するようにスクライブラインを放熱板側に形成することが好ましい。
 半導体素子は小型化が進む一方でチップからの発熱量は増加の一途をたどっている。そのため、半導体素子を搭載するセラミックス回路基板10においては放熱性の向上が重要になっている。また、半導体装置(半導体モジュール)の高性能化のために、セラミックス回路基板10上に複数の半導体素子を実装するようになっている。半導体素子一つだけでも素子の真性温度を超えてしまうと、抵抗が負のマイナス側の温度係数に変化してしまう。これに伴い、電力が集中的に流れる熱暴走を起こして瞬時に破壊してしまう現象がおきる。よって、放熱性を向上させることは有効である。また、実施形態にかかる半導体装置は、自動車(電気自動車含む)、電鉄車両、産業機械およびエアコン等のインバータに用いられるPCU(Power Control Unit)、IGBT(Insulated GateBipolar Transistor)、IPM(Intelligent Power Module)モジュールに用いることができる。自動車は、電気自動車化が進んでいる。半導体装置の信頼性が向上することは、そのまま自動車の安全性につながることである。電鉄、産業機器なども同様である。
 次に、実施形態にかかるセラミックス基板1,2,4のうち窒化珪素基板のレーザスクライブ方法について説明する。窒化珪素基板のレーザスクライブは前述の構成を有していれば、その製造方法は特に限定されるものではないが、歩留まり良く得るための方法として次のものが挙げられる。
 まず、窒化珪素基板を用意する。特に、セラミックス回路基板10全体の放熱性を考慮すると熱伝導率50W/m・K以上かつ三点曲げ強度600MPa以上であることが好ましい。熱伝導率50W/m・K以上かつ三点曲げ強度600MPa以上であるものとは、たとえば熱伝導率130W/m・Kかつ三点曲げ強度750MPaのものなどが挙げられる。
 また、貫通孔によりセラミックス回路基板10の金属回路11と金属放熱板12の導通を行うときは、貫通孔を有する窒化珪素基板を用意する。窒化珪素基板に貫通孔を設ける場合は、予め成形体の段階で貫通孔を設けても良い。また、窒化珪素焼結体に貫通孔(たとえば、スルーホール)71を設ける工程を行っても良い。貫通孔を設ける工程は、レーザスクライブと同様なレーザ加工、切削加工などが挙げられる。切削加工は、ドリルなどによる穴あけ加工が挙げられる。
 さらに、スクライブライン3は、図13に示す連続溝3Bではなく、ドット3Aと浅い連続溝3Bの組み合わせで形成されてもよい(図示省略)し、図12に示すようなドット3Aのみで形成されてもよい。ここで、ドット3Aは、重ならずに離間するレーザ加工痕から構成される一方、連続溝3Bは、少なくとも一部が重なるレーザ加工痕から構成される。スクライブライン3がドット3Aで形成される場合には、ドット3Aごとの最大深さのなる個所同士の幅W3(図12に図示)の平均値は、50μm以上300μm以下であること好ましい。さらに好ましくは、前記幅W3の平均値は、50μm以上150μm以下であることが好ましい。さらに、ドット3Aのスクライブ痕の幅W4(図12に図示)を20μm以上100μm以下となるように制御することが好ましい。ドット3Aの深さは、基板厚さの1/6以上2/3以下であることが好ましい。また、ドット3Aの深さは、50μm以上300μm以下であることが好ましい。さらに好ましくは、ドット3Aの深さは150μm以上250μm以下であることが好ましい。また、前記レーザ加工において、スクライブラインは、ドット3A(図12に図示)または連続溝3B(図13に図示)の他、ドット3Aまたは連続溝3B周囲に部分的に複数回照射して補助カットライン(補助的な連続溝またはドット)を形成することが好ましい。図14~図16に示すステップS2においてドット3Aまたは連続溝3Bに加えて補助カットラインを形成してスクライブライン3を形成することで、分割時に不良率をさらに低減することができる。
 セラミックス基板1,2,4に、スクライブライン3を設ける工程(ステップS2)の前に、基板を台(ステージ)に乗せる工程(ステップS2)を有し、かつ、スクライブライン3を設ける工程(ステップS2)ののちにホーニングまたはブラストなどを用いて表面を洗浄する工程(ステップS2)を有することが好ましい。さらに、図16に記載のように、周縁部を分割する工程(ステップS13)の後、表面を洗浄する工程(ステップS14)を有してもよい。また、図14および図15のように、銅板を接合する工程(ステップS5)の後に、セラミックス回路基板10に分割する工程(ステップS8)を実施してもよい(ステップS8)。なお、図14に示すように、セラミックス回路基板10への分割の工程(ステップS8)の前に、分割前のセラミックス回路基板10を洗浄する工程(ステップS7)を有するより、図15に示すように、セラミックス回路基板10への分割の工程(ステップS8)の後に、セラミックス回路基板10を洗浄する工程(ステップS7)を有することがさらに好ましい。分割の際に発生する微小な粉末などが付着する虞があり、その粉末をステップS7で洗浄すべきだからである。さらに、スクライブライン3は、図19のように周縁部のみを分割するためのスクライブラインであってもよい。
 窒化珪素基板をファイバーレーザなどのレーザ加工機の精密加工テーブル上にセットする(ステップS1)。窒化珪素基板にレーザを照射して、ドット3Aからなるスクライブライン3などのレーザ加工痕を形成する(図12に図示)。このとき、レーザ加工機14(図7に図示)の条件により、所定の大きさのドット3Aを形成する。また、レーザ加工は精密加工テーブルを動かすことにより、行われることが好ましい。レーザ加工の際に、レーザを動かしたり、ミラーの向きを変えたりすることで加工の制御を行うとその走査速度の調整が難しくなる虞があるためである。
 スクライブライン3を形成した窒化珪素基板、つまり、セラミックスレーザスクライブ基板1に金属板(金属回路11および金属放熱板12)を接合する。
 窒化珪素基板と金属板の接合は、活性金属接合法で行うことが好ましい。活性金属接合法は、Tiなどの活性金属を混合した活性金属ろう材を用いるものとする。また、活性金属ろう材としては、Ti、Cuの混合物が挙げられる。またこの活性金属ろう材には必要に応じてAgを含有させてもよい。Agを含有させる場合は99.5wt%以下であることが好ましい。また、より好ましくは95wt%以下であることである。このようにAgの含有量を制御することでイオンマイグレーションを起こりにくくする効果が期待できる。イオンマイグレーションはCuに比べてAgの方が起こりやすいことが知られている。一方、銀が多いと高温での接合の信頼性が上がる。したがって、必要や用途に応じて銀量を0wt%以上95wt%以下の範囲で自由に調整することがより好ましい。たとえば、Tiは0.1wt%以上10wt%以下、Cuは0.5wt%以上60wt%以下、Agは残部である。
 したがって、Agは必ずしも含有されていなくてはならないわけではなく、95wt%程度含有していてもよいものである。また、必要に応じ、In、Sn、Al、Si、C、Mg、Mo(モリブデン)、Mn(マンガン)、W(タングステン)、Re(レニウム)、Os(オスミウム)から選ばれる1種以上を合計で1wt%以上35wt%以下添加してもよい。活性金属ろう材をペースト化する。ペーストは、ろう材成分と有機物を混合したものであるが、ろう材成分は均一に成分が混合される必要がある。これは、ろう材成分が不均一に分布するとろう付けが安定せず接合不良の原因となるためである。
 活性金属ろう材ペーストをセラミックスレーザスクライブ基板1に塗布する。その上に銅板を配置する。次に、これを600℃以上900℃以下で加熱して接合する工程を行うものである。加熱工程は、必要に応じ、真空中や非酸化性雰囲気で行うものとする。また、真空中で行う場合は、1×10-2Pa以下であることが好ましい。また、非酸化性雰囲気は窒素雰囲気やアルゴン雰囲気、ヘリウム雰囲気、ネオン雰囲気などが挙げられる。ここで、非酸化性雰囲気とは特に限定されるものではないが、酸素分圧が10%以下のものであるものを指す。
 真空中または非酸化性雰囲気とすることにより、接合層が酸化されるのを抑制することができる。これにより、接合強度の向上が図られる。
 接合する導体部は、回路形成用に予めパターン形状に加工したもの、パターン加工が行われていない一枚板のどちらでもよい。また、一枚板を用いた場合は、接合後にエッチング加工を施して、パターン形状に加工するものとする。このとき金属回路11はスクライブライン形成された面とは反対側の面に形成してもよい。この工程により、セラミックス回路基板10としての窒化珪素金属回路基板が製造することができる。
 次に、窒化珪素金属回路基板に半導体素子などを接合する工程を行う。半導体素子を接合する箇所に接合層を設ける。接合層は、はんだまたはろう材であってもよいし、銀ペーストなどを用いた銀層であっても良い。また、銅ペーストを用いた銅層であってもよい。接合層を設けて、その上に半導体素子を設ける。また、必要に応じ、接合層を介してリードフレームを接合する。また、必要に応じ、ワイヤーボンディングを設けるものとする。また、半導体素子、リードフレーム、ワイヤーボンディングは必要な数を設けるものとする。半導体素子、リードフレーム、ワイヤーボンディングが行われた窒化珪素回路基板を樹脂によりモールドすることにより内部を密閉する。
 実施形態にかかるセラミックス基板1,2,4のうち炭化ケイ素基板のレーザスクライブ方法について説明する。まず、炭化ケイ素基板を用意する。特に、セラミックス回路基板10全体の放熱性を考慮すると熱伝導率150W/m・K以上かつ三点曲げ強度400MPa以上であることが好ましい。炭化ケイ素基板のレーザスクライブは前述の構成を有していれば、その製造方法は特に限定されるものではないが、歩留まり良く得るための方法としては、上述の窒化珪素基板および窒化珪素回路基板と同様の製造工程をとるものとする。
 (実施例1~22、比較例1~7)
 セラミックス基板1,2,4には、縦200mm×横180mmで厚さが0.32mmおよび0.50mmの窒化珪素基板(熱伝導率90W/m・K、三点曲げ強度650MPa)を用意した。
 また、縦200mm×横180mmで厚さが0.635mmおよび0.80mmの炭化ケイ素基板(熱伝導率300W/m・K、三点曲げ強度400MPa)を用意した。
 次に、図1に示すようにファイバーレーザによりセラミックスレーザスクライブ基板の元となる基板(たとえば、焼結基板)に片側表面に集塵を行って実施例1~22および比較例1~7の各条件で1枚の基板あたり8本のレーザ加工を200枚ずつ行った。加工形状は表2に示すとおりである。なお、表2に示す実施例2~4,10~12,18,21と比較例1,4のスクライブラインは、ドットに対応する。また、温度および湿度のうち両方の条件を満たしたものは、表1の「温度・湿度」の欄に「〇(丸)」として記載し、いずれか一方でも満たさないものがあった場合には「×(バツ)」と記載した。
 また、表1の「レーザ条件」の欄に「〇(丸)」と記載したものは、パルス幅をナノ秒オーダー以下となるように設定し、集塵を行ったことを示す。「集光距離」が条件を満たすものは、「集光距離」の欄に「〇(丸)」と記載した。また、比較例におけるレーザ加工では、アシストガスを用いなかった。
 また、各条件のレーザ加工後のセラミックス基板を同一条件で搬送などの後述の工程(後工程と呼ぶ)を行った。後述の工程とはホーニング・洗浄・乾燥・搬送である。
 このような工程を行った際に、部分的または、スクライブラインに沿ってまたはブレイクラインからずれてブレイク(分割)されたものを分割された割合として表2に示した。
 また、溝部の最深部と開口端部の2か所(両端部)とからなる角度θを求めた。前記角度θは、表2の「レーザ加工角度」の欄に記載した。
 実施例と比較例の測定結果を表1および表2に示す。(表1において窒化珪素(Si)基板は「SiN」と、炭化ケイ素基板は「SiC」と表記した。
 [表1]
Figure JPOXMLDOC01-appb-I000001
 [表2]
Figure JPOXMLDOC01-appb-I000002
 実施例1~17にかかるセラミックス基板1,2,4は、レーザ加工における条件などは好ましい実施形態の範囲内であった。一方、比較例1~7にかかるセラミックス基板は好ましい実施形態の範囲外となった。なお、本実施例に記載の切り欠き部とは図1中に符号72で示したような切り欠き部のことである。
 次に、各条件で分割して、分割箇所のうちレーザ加工面をXPSで測定した。表3および表4はその測定結果である。測定に用いた装置は、PHI社製_Quantera_SXMであった。
 また、X線源は単結晶分光AlKα線であった。X線出力は4.5Wであり、分析領域はφ20μm、ジオメトリは45度、パスエネルギーは、-69.00eV(0.125eV/Step)であった。
 [表3]
Figure JPOXMLDOC01-appb-I000003
 [表4]
Figure JPOXMLDOC01-appb-I000004
 表3および表4からわかる通り、すべての実施例1~22にかかるセラミックス基板1,2,4において、XPSで測定された98eV以上106eV以下のピーク本数は好ましい範囲であった。
 表1~表4を用いて実施例と比較例との比較を行うと、レーザ加工角度がどのようであっても比較例は後工程においてブレイクされる割合が4%以上と大きかった。一方、XPSで好ましいピークが見られた実施例においては4%未満といずれもブレイク割合が小さかった。
 98eV以上106eV以下の範囲において2つ以上のピークが観測されることによりレーザ加工面が強化され不必要な分割(ブレイク)が起こらなかったことがわかる。前記2つ以上のピークは、任意のレーザ加工面で観測された。
 またブレイクされた箇所の不良(割れ、欠け、クラック)は実施例においては観測されなかった。一方、比較例においてはこれらの不良が観測されるものも存在した。
 これらの不良はレーザ加工における出力の不安定化(プルームの照射口への付着などによる)の影響であったと考えられる。
したがって、レーザ加工における様々な条件の最適化を行い、得られるXPSスペクトルを制御することは重要であったことが分かった。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1…セラミックス基板(たとえば、セラミックスレーザスクライブ基板)
2…セラミックス基板(たとえば、セラミックス多個取り基板)
3…スクライブライン
4…セラミックス基板(たとえば、セラミックス分割基板(製品部分))
5…周辺部(非製品部分)
6…レーザ加工面
7…貫通孔
71…貫通孔(たとえば、スルーホール)
72…貫通孔(たとえば、切り欠き部)
8…レーザ凹部
9…非レーザ照射面(非レーザ加工面)
10…セラミックス回路基板
11…金属回路
12…金属放熱板
13…ろう材層
14…レーザ加工機
15…レーザ照射によって生じた微粒子
16…集塵機
W1…周縁部のはみ出し幅
W2…スクライブラインのはみ出し幅

Claims (15)

  1.  レーザ加工面のレーザ照射域をXPS(X-ray Photoelectron Spectroscopy)で測定して得られたスペクトルのうち、98eV以上106eV以下の範囲において、2つ以上ピークがあることを特徴とするセラミックス基板。
  2.  前記レーザ照射域を前記XPSで測定によって得られたスペクトルのうち、98eV以上101eV未満における最強ピークのピーク強度をI2とし、101eV以上106eV以下における最強ピークのピーク強度をI3とすると、ピーク強度の比であるI3/I2が0.4以上12以下であることを特徴とする請求項1に記載のセラミックス基板。
  3.  前記レーザ照射域を前記XPSで測定して得られたスペクトルのうち、98eV以上101eV未満における最強ピークのピーク強度をI2とし、101eV以上106eV以下における最強ピークのピーク強度をI3とすると、ピーク強度の比であるI3/I2が0.6以上4.5以下であることを特徴とする請求項1に記載のセラミックス基板。
  4.  前記レーザ照射域とレーザ非照射域を前記XPSで測定して得られたスペクトルのうち、528eV以上536eV以下の範囲における最強ピークのピーク強度の照射領域における値から前記範囲の非照射領域の最強ピークのピーク強度の値を引いた値の絶対値が1600以下であることを特徴する請求項1ないし請求項3のいずれか1項に記載のセラミックス基板。
  5.  前記レーザ照射域とレーザ非照射域を前記XPSで測定して得られたスペクトルのうち、395eV以上400eV以下の範囲における最強ピークのピーク強度の照射領域における値から前記範囲の非照射領域の最強ピークのピーク強度の値を引いた値の絶対値が2500以下であることを特徴する請求項1ないし請求項4のいずれか1項に記載のセラミックス基板。
  6.  前記レーザ照射域とレーザ非照射域を前記XPSで測定して得られたスペクトルのうち、282eV以上288eV以下の範囲における最強ピークのピーク強度の照射領域における値から前記範囲の非照射領域の最強ピークのピーク強度の値を引いた値の絶対値が、2500以下であること特徴とする請求項1ないし請求項5のいずれか1項に記載のセラミックス基板。
  7.  Si含有セラミックスであることを特徴とする請求項1ないし請求項6のいずれか1項に記載のセラミックス基板。
  8.  請求項1に記載の前記セラミックス基板の表面に回路部が形成されたことを特徴とするセラミックス回路基板。
  9.  レーザが照射された面またはレーザ照射面とは反対側の面のいずれか1つ以上の面に前記回路部としての金属回路が形成されたことを特徴とする請求項8に記載のセラミックス回路基板。
  10.  前記回路部がアルミニウム、アルミニウム合金、銅、銅合金の中から選ばれるいずれか1種以上を含有することを特徴とする請求項8に記載のセラミックス回路基板。
  11.  樹脂によりモールドされていることを特徴とする請求項10に記載のセラミックス回路基板。
  12.  請求項8に記載のセラミックス回路基板に半導体素子を実装したことを特徴とする半導体装置。
  13.  焼結基板の少なくとも一辺のうち一部にファイバーレーザによりドットまたは連続溝を形成した後に、さらにもう一度以上、前記ファイバーレーザにより補助的なドットまたは連続溝を形成してスクライブラインを形成することで、請求項1に記載の前記セラミックス基板を製造することを特徴とするセラミックス基板の製造方法。
  14.  焼結基板にレーザ照射を行う際に湿度を30%以上80%以下とし、温度を28℃以下とすることで、請求項1に記載の前記セラミックス基板を製造することを特徴とする請求項1に記載のセラミックス基板の製造方法。
  15.  焼結基板の少なくとも一辺にファイバーレーザによりスクライブラインを形成することで請求項1に記載の前記セラミックス基板としてのセラミックスレーザスクライブ基板を製造し、前記セラミックスレーザスクライブ基板に応力を印加して前記セラミックスレーザスクライブ基板を分割することにより、前記セラミックス基板としてのセラミックス分割基板を製造することを特徴とするセラミックス分割基板の製造方法。
PCT/JP2023/022115 2022-06-14 2023-06-14 セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法 WO2023243667A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095379 2022-06-14
JP2022-095379 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243667A1 true WO2023243667A1 (ja) 2023-12-21

Family

ID=89191398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022115 WO2023243667A1 (ja) 2022-06-14 2023-06-14 セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法

Country Status (1)

Country Link
WO (1) WO2023243667A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293153A (ja) * 2002-04-01 2003-10-15 Kobe Steel Ltd 銅又は銅合金部材、その製造方法、セラミックス皮膜被覆銅又は銅合金部材、給湯用熱交換器
JP2013175667A (ja) * 2012-02-27 2013-09-05 Nippon Steel & Sumikin Electronics Devices Inc 多数個取りセラミック回路基板
WO2016174970A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
WO2020189526A1 (ja) * 2019-03-15 2020-09-24 デンカ株式会社 窒化物セラミック基板の製造方法及び窒化物セラミック基材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293153A (ja) * 2002-04-01 2003-10-15 Kobe Steel Ltd 銅又は銅合金部材、その製造方法、セラミックス皮膜被覆銅又は銅合金部材、給湯用熱交換器
JP2013175667A (ja) * 2012-02-27 2013-09-05 Nippon Steel & Sumikin Electronics Devices Inc 多数個取りセラミック回路基板
WO2016174970A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
WO2020189526A1 (ja) * 2019-03-15 2020-09-24 デンカ株式会社 窒化物セラミック基板の製造方法及び窒化物セラミック基材

Similar Documents

Publication Publication Date Title
US6737606B2 (en) Wafer dicing device and method
TWI387503B (zh) Plate cutting method and laser processing device
US10147671B2 (en) Semiconductor device and method for manufacturing same
US5543365A (en) Wafer scribe technique using laser by forming polysilicon
US8609512B2 (en) Method for laser singulation of chip scale packages on glass substrates
Lei et al. Die singulation technologies for advanced packaging: A critical review
EP1201108B1 (en) A circuit singulation system and method
TWI673783B (zh) 封裝基板之加工方法
JP2009544145A (ja) 短パルスを使用する赤外線レーザによるウェハスクライビング
US20150303113A1 (en) Wafer processing method
KR20040103757A (ko) 레이저빔을 사용한 가공기
JP2009538231A (ja) 超短レーザパルスによるウェハスクライビング
JP7208161B2 (ja) 低アモルファス相を有するセラミック-金属基板
JP2005109432A (ja) Iii族窒化物系化合物半導体素子の製造方法
EP2104587B1 (en) A process for laser cutting a non-metallic material
EP2856586B1 (en) Laser ablation process for manufacturing submounts for laser diode and laser diode units
WO2023243667A1 (ja) セラミックス基板、セラミックス回路基板、半導体装置、セラミックス基板の製造方法、および、セラミックス分割基板の製造方法
JP2008041945A (ja) パワーモジュール用基板の製造方法およびパワーモジュール用基板並びにパワーモジュール
JP5174698B2 (ja) 電子部品製造用の切削装置及び切削方法
Romero et al. Experimental study of diode laser cutting of silicon by means of water assisted thermally driven separation mechanism
JP2012020303A (ja) 積層基板の溝加工方法
JP3459154B2 (ja) 半導体装置およびレーザスクライビング法
WO2023120654A1 (ja) セラミックススクライブ回路基板、セラミックス回路基板、セラミックススクライブ回路基板の製造方法、セラミックス回路基板の製造方法、及び、半導体装置の製造方法
EP4266835A1 (en) Ceramic scribe substrate, ceramic substrate, method for manufacturing ceramic scribe substrate, method for manufacturing ceramic substrate, method for manufacturing ceramic circuit board, and method for manufacturing semiconductor element
JP2022185936A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823957

Country of ref document: EP

Kind code of ref document: A1