WO2023243274A1 - 制御装置、制御方法、及びプログラム - Google Patents

制御装置、制御方法、及びプログラム Download PDF

Info

Publication number
WO2023243274A1
WO2023243274A1 PCT/JP2023/017850 JP2023017850W WO2023243274A1 WO 2023243274 A1 WO2023243274 A1 WO 2023243274A1 JP 2023017850 W JP2023017850 W JP 2023017850W WO 2023243274 A1 WO2023243274 A1 WO 2023243274A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
quality
unit
usage
control
Prior art date
Application number
PCT/JP2023/017850
Other languages
English (en)
French (fr)
Inventor
孝太郎 小野
和宏 徳永
岳浩 藤永
亮太 石橋
浩明 前田
琢也 東條
健 桑原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2023243274A1 publication Critical patent/WO2023243274A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • the present invention relates to a technology for controlling components involved in information transmission via a network in a system in which a terminal and an information processing infrastructure are connected via a network.
  • non-patent document 1 In order to realize remote monitoring and control and autonomous driving in the areas of smart agriculture and connected cars, it is necessary to continue transmitting real-time information at a certain level of quality. In order to realize this, it is conceivable to use a conventional technique (non-patent document 1) that detects NW quality deterioration and performs follow-up control.
  • FIG. 7 is a diagram for explaining Example 6.
  • FIG. 7 is a diagram for explaining Example 6.
  • FIG. 7 is a diagram for explaining Example 7.
  • FIG. 7 is a diagram for explaining Example 7.
  • FIG. 8 is a diagram for explaining Example 8.
  • FIG. 8 is a diagram for explaining Example 8.
  • 12 is a diagram for explaining Example 11.
  • FIG. It is a diagram showing the efficiency of NW usage resources in ascending order.
  • 5 is a diagram showing an example of information stored in a storage unit 150.
  • FIG. 3 is a diagram showing an example of NW usage pattern candidates. An example of information stored in the storage unit 150 is shown.
  • FIG. 3 is a diagram showing an example of NW usage pattern candidates. It is a diagram showing an example of the hardware configuration of the device.
  • Non-Patent Document 1 performs follow-up control based on detection of NW quality deterioration in connection with "continuation of real-time information transmission of a certain quality or higher".
  • FIG. 2 shows an example of the overall configuration of the communication system in this embodiment.
  • this communication system includes a control device 100, a schedule/plan DB 200, and a past history/current situation DB 300.
  • FIG. 2 shows an information transmitting device 10, an information receiving device 20, an information generating device 30, and an information utilizing device 40 as devices to be controlled/information collected.
  • the past history/current status DB 300 includes information collection results, device movement history, surrounding environment conditions such as radio wave propagation environment, network/information quality fluctuation history, and relationships/correlation between device/network status and control results. Evaluation results and the like are stored, and at least one of them is used by the control device 100.
  • schedule/plan DB 200 and the past history/current situation DB 300 may be provided outside the control device 100, or may be provided in a storage section within the control device 100, respectively. In the example described later, the schedule/plan DB 200 and the past history/current situation DB 300 are provided in a storage section within the control device 100.
  • the information quality prediction unit 140 retrieves from the storage unit 150 “the relationship between the information quality prediction result and the measurement result based on the situation on the device/information processing area side, the fluctuation history of NW/information quality, and the situation on the device/NW area side/ the information quality prediction is performed based on one or more of these pieces of information, and the information quality prediction result is stored in the storage unit 150.
  • the NW usage pattern determining unit 160 retrieves information from the storage unit 150 such as information transmission requirements, device area status, NW quality fluctuation history, NW quality prediction results (including reliability/accuracy), and device/NW area status. the results of the relationship/correlation evaluation between the NW usage pattern determination results and the NW/information quality measurement results, etc., and use one or more of these pieces of information to determine the NW usage pattern. , stores the NW usage type determination result in the storage unit 150, and notifies the information setting determination unit 170 and the NW usage type setting unit 180 of the NW usage type determination result.
  • the information setting determination unit 170 retrieves information from the storage unit 150 such as “information transmission requirements, device/information processing area side status, network/information quality fluctuation history, network/information quality prediction results (including reliability/accuracy), device/ The relationship/correlation evaluation results between the information setting determination results and information quality measurement results based on the situation on the NW area side and the NW usage pattern determination results are obtained, and one or more of these pieces of information are used to Information setting determination is performed, and the information determination result is stored in storage section 150 and notified to information setting section 190.
  • the NW usage type setting unit 180 receives the NW usage type determination result from the NW usage type determining unit 160 and sets it in the information transmitting device 10.
  • the information setting unit 190 receives the information setting determination result from the information setting determining unit 170, and performs information setting in the information generating device 30 based on the information setting determination result.
  • the information generating device 30 is, for example, a camera or an encoder.
  • the information transmitting device 10 is, for example, a NW device (communication device) such as a router.
  • NW device communication device
  • the information generation device 30 and the information transmission device 10 may be one device.
  • the information receiving device 20 and the NW quality measurement unit 110 may be implemented as a NW device such as a router.
  • the information utilization device 40 and the information quality measurement unit 120 may be implemented with a display and a decoder, for example. In some cases, the function of the information quality measurement unit 120 is performed by a human.
  • the control device 100 may be equipped with time/location information acquisition/distribution functions such as a GNSS receiver and a PNSS client.
  • the time/location information acquisition/distribution function acquires a terminal identifier (EID), acquires NMEA (including information on the current location of the terminal, current time, etc.) at a predetermined period (xHz), and stores these in the storage unit 150. Store. Furthermore, the time/location information acquisition/distribution function acquires the location of the terminal in real time.
  • the "time/location information acquisition/distribution function" may also be called a location acquisition section.
  • the position acquisition unit may be included in the measurement unit (for example, the NW quality measurement unit 110). Further, a position acquisition unit may be provided within the terminal.
  • Information transmission requirements are stored in the storage unit 150 in advance.
  • Information transmission requirements include, for example, requirements regarding video quality, requirements regarding redundancy, and NW-related requirements (such as usage priority).
  • the NW quality measurement unit 110 receives, for example, bandwidth, delay, and packet loss rate as NW quality measurement results from the information receiving device 20 (or the information transmitting device 10, or both the information transmitting device 10 and the information receiving device 20). get.
  • the information quality measurement unit 120 receives information quality measurement results from the information utilization device 40 (or the information generation device 30, or both the information generation device 30 and the information utilization device 40), for example, MDI, DF/MLR, frame rate, bits. Get rate and delay. The occurrence of video interruption may be visually monitored.
  • the NW quality prediction unit 130 acquires a set of “terminal identifier (EID), NMEA, NW quality prediction result, NW usage pattern, video transmission setting, and reception result” from the storage unit 150 before judgment, and uses these information. Based on any one or more of these, the bandwidth, delay, and packet loss rate after t seconds are predicted in xHz.
  • the NW usage type determination unit 160 performs determination at a predetermined period, for example, in the following steps S1 to S4.
  • EID applicable terminal identifier
  • NMEA the latest NMEA to determine which area the device is in (an image of dividing the location into grids) and which time period the current time belongs to (early morning, daytime, night, Image of late night etc.)) is determined.
  • the quality of each NW is determined to be the default quality (e.g., predetermined band, in the selected NW usage pattern).
  • the bit rate is below the previously set video transmission setting (bit rate), and if it is, return to S2, select the next best NW usage mode, and repeat from then on.
  • the NW usage pattern determination result (eg, NW to be used/bonded, usage priority for each NW, and upper limit bandwidth to be set) is determined. Note that “bonding” means using multiple NWs.
  • ⁇ Minimum NW usage form The upper limit bandwidth setting value of the NW with the smallest number of bonded NWs and the lowest usage priority is the minimum.
  • the information setting determination unit 170 stores, for example, codec, resolution, frame rate, bit rate, and delay in the storage unit 150 as the video transmission settings that are the information determination results, and notifies the information setting unit 190.
  • the NW usage type determination unit 160 obtains the NW usage determination result including reliability/accuracy, and notifies the information setting determination unit 170 of the result.
  • the information setting determination unit 170 determines the information settings and notifies the NW usage type setting unit 180 of the NW usage pattern on which the information setting determination is based.
  • the control device 100 includes "NW quality prediction unit 130, information quality prediction unit 140, NW usage type determination unit 160, information setting determination unit 170, NW usage type setting unit 180, and information setting unit 190". It can be classified into a control function with "NW quality measurement unit 110, information quality measurement unit 120, storage unit 150", and a database function and information acquisition regarding the past/present/future including information transmission requirements. .
  • the information setting determination unit 170 and the NW usage configuration setting unit 180 in the control device 100 are the core parts that perform the determination.
  • the prediction section 130, the information quality prediction section 140, and the storage section 150 are sections that provide information that serves as the basis for determination.
  • FIG. 7 shows an overview of the control operation in the control device 100.
  • the control within the frame indicated by the thick solid line is A.
  • B. shows proactive control based on future prediction, and the flow shown by the thick dotted line is B.
  • This figure shows control for increasing the precision of reactive/proactive control.
  • the control device 100 runs a loop to determine what the device status is, what the NW status is, what the determined result is, and how to determine the next device/NW status based on these. Efforts are being made to improve accuracy.
  • Figure 8 shows an example of functional deployment assumed in implementation. However, this is just an example.
  • the "NW quality prediction unit 130, information quality prediction unit 140, and storage unit 150" portion is implemented by a digital information infrastructure.
  • the digital information infrastructure here refers to, for example, an "advanced geospatial information database" with high precision and rich semantic information, which integrates sensing data with high precision location and time in real time, and analyzes and processes it at high speed. ⁇ It is the basis for predicting the future.
  • the NW quality prediction unit 130 is implemented using multi-radio proactive control technology, and the information quality measurement unit 120 is implemented using technology for identifying and visualizing communication flows in real time, a decoder, and the like. Further, the NW quality measurement unit 110 is implemented by, for example, an E2E overlay NW.
  • FIG. 9 is a diagram showing what kind of control consists of a system for proactively and reactively controlling the information transmission method in the control device 100. As shown in the figure, it is broadly divided into proactive control based on future prediction and high precision reactive/proactive control (optimization/performance improvement), and each performs the control shown in FIG.
  • A information transmission requirements, device/information processing area side situation, NW/information quality fluctuation history, NW/information quality prediction result (including reliability/accuracy), device/NW
  • NW/information quality prediction result including reliability/accuracy
  • device/NW The result of the relationship/correlation evaluation between the information setting judgment result and the information quality measurement result based on the area situation and the NW usage pattern judgment result is reflected in the information setting judgment.
  • B NW usage form based on information transmission requirements, the situation on the device area side, the fluctuation history of NW quality, the NW quality prediction results (including reliability/accuracy), and the situation on the device/NW area side.”
  • the results of the relationship/correlation evaluation between the determination results and the NW/information quality measurement results are reflected in the NW usage pattern determination.
  • configuration example 1 is a configuration in which the final decision authority for the "NW usage pattern" is given to the "NW usage pattern determining unit 160.”
  • the NW quality measurement unit 110 transmits the NW quality measurement result to the storage unit 150, and the storage unit 150 stores the received NW quality measurement result.
  • the information quality measurement unit 120 transmits the information quality measurement results to the storage unit 150, and the storage unit 150 stores the received information quality measurement results.
  • the NW quality prediction unit 130 performs NW quality prediction based on the information acquired from the storage unit 150, and transmits the NW quality prediction result to the storage unit 150. Store the results.
  • the information quality prediction unit 140 performs information quality prediction based on the information acquired from the storage unit 150, and transmits the information quality prediction result to the storage unit 150, and the storage unit 150 Store the results.
  • reference information requests/responses are transmitted and received between the storage unit 150 and the NW usage type determining unit 160.
  • the NW usage type determining unit 160 determines the NW usage type based on the information acquired from the storage unit 150, and in S111 to S113, each of the information setting determination unit 170, the NW usage type setting unit 180, and the storage unit 150 Send the NW usage pattern determination result.
  • the information setting determination unit 170 transmits the information setting determination result to each of the information setting unit 190 and the storage unit 150, which perform the information setting determination based on the information acquired from the storage unit 150.
  • the configuration example 2 is a configuration in which the final decision authority for the "NW usage mode" is given to the "information setting determination unit 170."
  • S201 to S208 in FIG. 11 are the same as S101 to S108 in FIG. The processing after S208 will be explained.
  • reference information requests/responses are transmitted and received between the storage unit 150 and the NW usage type determining unit 160.
  • the information setting determination unit 170 performs information setting determination based on the information acquired from the storage unit 150. In S215, the information setting determination unit 170 transmits the NW usage type determination result (the NW usage type on which the information setting determination is based) to the NW usage type setting unit 180.
  • the information setting determination section 170 transmits the information setting determination results to the information setting section 190 and the storage section 150, respectively.
  • the NW usage pattern based on the information setting determination result is transmitted to the storage unit 150, and the storage unit 150 stores these.
  • the information setting determination unit 170 directly notifies the NW usage type setting unit 180 of the "final NW usage type determination result,” but this is just one example.
  • the information setting determination unit 170 notifies the NW usage type determination unit 160 of the “final NW usage type determination result,” and the NW usage type determination unit 160 notifies the NW usage type setting unit 180 and storage unit 150 of the “final NW usage type determination result.” It may also be possible to notify the user of the usage pattern determination result.
  • the NW usage pattern determining unit 160 acquires information transmission requirements and NW quality related information from the storage unit 150.
  • the NW usage pattern determination unit 160 performs NW usage pattern determination based on the information acquired in S301.
  • the NW usage type determination unit 160 notifies the information setting determination unit 170 of the NW usage type determination result.
  • the information setting determination unit 170 acquires information transmission requirements and information quality related information from the storage unit 150. In S305, the information setting determination unit 170 performs information setting determination based on the information acquired in S304.
  • FIG. 13 shows an example of the information transmission requirements and NW quality related information that the NW usage pattern determination unit 160 acquires in S301.
  • NW the information transmitting device 10 will use in the future is a "NW usage mode.”
  • the NW usage type determining unit 160 determines that NW-A and NW-B will be used in the future +1 second later. In this case, the information setting determination unit 170 is notified that "NW-A and NW-B will be used in one second.”
  • the NW usage pattern determination unit 160 may narrow down the NW usage pattern candidates based on information transmission requirements or user/NW side requests, or may prioritize each NW and determine the NW usage pattern. may be determined.
  • FIG. 14 shows an example of the information transmission requirements and information quality related information that the information setting determination unit 170 acquires in S304.
  • the information generation device 10 determines at which bit rate the video should be encoded.
  • the information setting determination unit 170 determines to set the video transmission bit rate to 60 Mbps, for example.
  • the information setting determination unit 170 may perform the information setting determination based on the information transmission requirements and user requests, and also taking into consideration the requests/policies of the NW side.
  • Examples 1 to 8 can be implemented in any combination.
  • the NW quality prediction unit 130 calculates the device position, received signal strength (e.g., received strength on the transmitting side), and NW quality measurement result (e.g., on the receiving side) for a certain device (e.g., the information transmitting device 10).
  • the NW quality is predicted from the quality measured in , and the NW usage pattern determination unit 160 determines the NW usage pattern based on the prediction result. Note that the fact that the NW usage pattern is determined for the information transmitting device 10 is the same in the following embodiments.
  • FIG. 15 shows an example of information stored in the storage unit 150 in the first embodiment.
  • the storage unit 150 stores values of past and current measurement results by the NW quality measurement unit 110 regarding the device position, received radio field strength, and NW quality, and future values determined by the NW quality prediction unit 130. The predicted value of is stored.
  • FIG. 16 shows an example of NW usage mode candidates determined based on the predicted values shown in FIG. 15 and "bandwidth requirement: 120 Mbps, user request: NW-A priority”.
  • multiple candidates are determined (determined) based on the predicted value (NW-C has poor quality, etc.) while satisfying the band requirements and taking user requests into consideration.
  • the prediction unit predicts future values based on past and present values
  • any method can be used.
  • it may be predicted by regression analysis or by a neural network model.
  • Example 2 Next, Example 2 will be explained.
  • the NW quality measurement/prediction result by the NW quality measurement unit 110/NW quality prediction unit 130 and the information quality measurement unit 120/information quality Based on the information quality measurement/prediction result by the prediction unit 140, the NW usage type determining unit 160/information setting determining unit 170 determines the NW usage type/information setting.
  • FIG. 17 shows an example of information stored in the storage unit 150 in the second embodiment.
  • the storage unit 150 stores prediction results and measurement results regarding NW quality and information quality. Note that information for each NW may be stored regarding the prediction results and measurement results shown in FIG. 17.
  • the information setting determination unit 170 determines, for example, that the video transmission bit rate setting is 180 Mbps. Further, the NW usage pattern determination unit 160 determines, for example, the candidates shown in FIG. 18 as NW usage pattern candidates.
  • Example 3 Next, Example 3 will be explained.
  • the third embodiment is an example in which the determination logic is made highly accurate based on information managed in the storage unit 150.
  • FIG. 19 in the third embodiment, device location, radio wave propagation environment, base station congestion status, NW quality, device operation plan, event information, information (video) quality, subjective evaluation, cost, etc. are stored in the storage unit 150.
  • FIG. 20 shows an example of information stored in the storage unit 150.
  • the NW usage type determining unit 160/information setting determining unit 170 can make accurate determinations. . For example, if you know the time when a large-scale event that affects network traffic will occur, it is possible to make a decision to avoid using the network of an operator used for that event at that time.
  • Example 4 Next, Example 4 will be explained.
  • the use of multi-access NWs is determined based on usage "priority" of each NW.
  • NW-A Company A
  • NW-B Company B
  • NW-C Company C
  • the information transmitting device 10/information receiving device 20 is It can be connected to any NW.
  • the information transmitting device 10 and the information receiving device 20 can be connected to two or three NWs at the same time. This point also applies to Examples 5 to 8.
  • Company A is assumed to be a communication carrier that operates control device 100 according to this embodiment.
  • the NW usage type determining unit 160 determines the NW used by the information transmitting device 10
  • the NW used by the information transmitting device 10 may also be used by the information receiving device 20, or the NW used by the information receiving device 20 may be determined using the same determination logic as the information transmitting device 10.
  • the NW type, NW operator, NW usage pattern, and priority are information stored in the storage unit 150 in advance, and the usage rate is determined by the NW usage pattern determination unit 160 ( (determined) shows the usage rate of each NW. Basically, the same applies to Examples 5 to 8. However, in Examples 7 and 8, the priority is changed by the NW usage type determining unit 160 (or other functional unit).
  • the following requirement sufficiency determination can be made based on measurement results, prediction results, bandwidth requirements, quality requirements, user requests, etc.
  • the priority settings shown in each table in FIG. 22 may be settings based on user requests or settings based on NW side requests.
  • the priority setting values shown in each table in Figure 22 mean that normally all packets are sent via NW-A, and another company's NW is used in response to NW-A's NW quality deterioration or packet redundancy requests. It means. Note that the usage percentages shown in each table are just examples. The maximum bandwidth may be specified instead of the utilization ratio.
  • the NW usage pattern determining unit 160 determines whether the requirements can be satisfied only with the NW-A of priority 1. If the determination in S401 is Yes, the NW usage type determining unit 160 determines that only NW-A is to be used.
  • the determination process in S401 is, for example, repeatedly performed on a regular basis.
  • the above current events can be determined by acquiring the current information from the decoder (application layer) or CPE: Customer Premises Equipment (NW layer) (Reference information examples: MDI, VMAF, video bit rate, delay , packet loss rate).
  • the above future events can be determined by acquiring future information from the wireless NW quality prediction function (NW layer) (reference information examples: throughput, delay, packet loss rate, jitter).
  • NW layer wireless NW quality prediction function
  • NW quality deterioration or disconnection as a current event and NW quality deterioration or disconnection as a future event are both examples of "network status.”
  • the process advances to S402.
  • the NW usage type determination unit 160 determines whether the NW-A with priority level 1 is available. If the determination result in S402 is Yes, the process advances to S403; if the determination result is No, the process advances to S404.
  • the NW usage pattern determination unit 160 determines whether the requirements can be satisfied by using both NW-A with priority 1 and NW-B with priority 2. If the determination result in S403 is Yes, the NW usage type determining unit 160 determines that both NW-A and NW-B are to be used. In other words, from 100% utilization of NW-A with priority 1, the utilization rate of NW-B with priority 2 is increased to satisfy the requirements.
  • the maximum bandwidth may be set to, for example, NW-A: unlimited, NW-B: 10 Mbps, and NW-C: 0 Mbps.
  • the NW usage type determining unit 160 determines whether the requirements can be satisfied only by the NW-B with priority level 2. If the determination result in S404 is Yes, the NW usage type determination unit 160 determines that only NW-B is used. In other words, the utilization rate of NW-B is assumed to be 100%.
  • the maximum bandwidth may be set to, for example, NW-A: 0 Mbps, NW-B: 10 Mbps, and unlimited: 0 Mbps.
  • Example 5 If the requirements cannot be met in the reference NW situation, for example, one or more of the following operations (1) to (4) may be performed. The same applies to Example 5.
  • Example 5 will be described with reference to FIG. 23.
  • the fifth embodiment has the same processing logic as the fourth embodiment, but the priority values are different. That is, in the fifth embodiment, all packets are normally transmitted via NWs other than NW-A.
  • the percentages shown in each table are just examples. Here, emphasis is placed on resource efficiency/economic rationality on the NW-A side, and the NW-A is used in response to a decline in the quality of the used NW or a request for packet redundancy.
  • the NW usage pattern determining unit 160 determines whether the requirements can be satisfied only with the NW-B of priority 1. If the determination in S501 is Yes, the NW usage type determination unit 160 determines that only NW-B is used.
  • the determination process of S501 is, for example, repeatedly performed periodically.
  • Example 6 Next, Example 6 will be described with reference to FIG. 24.
  • Embodiment 6 is also an example in which the use of multi-access NWs is determined based on the usage "priority" of each NW.
  • the "priority" in Example 6 is the priority seen from the service user side (resource user such as an agricultural business operator).
  • the NW usage type determining unit 160 determines whether the requirements can be satisfied only with the NW-A of priority 1. If the determination in S601 is Yes, the NW usage type determining unit 160 determines that only NW-A is to be used.
  • the determination process of S601 is, for example, repeatedly performed periodically.
  • the process advances to S602.
  • the NW usage pattern determining unit 160 determines whether the requirements can be satisfied by using both NW-A with priority 1 and NW-B with priority 2. If the determination result in S603 is Yes, the NW usage type determining unit 160 determines that both NW-A and NW-B are to be used. In other words, from 100% utilization of NW-A with priority 1, the utilization rate of NW-B with priority 2 is increased to satisfy the requirements.
  • the maximum bandwidth may be set to, for example, NW-A: unlimited, NW-B: 10 Mbps, and NW-C: 0 Mbps.
  • FIG. 26 shows information specifying, for each frame, a transmission route according to the characteristics of the frame.
  • a transmission route For each frame, a transmission route according to the characteristics of the frame.
  • multiple transmission paths are designated per frame.
  • the number of frames to be transmitted is 19.
  • Actual control involves, for example, determining the upper limit of each route, distributing frames, and asymptotically approaching the set information, and the final usage rate is determined by the transmission result.
  • Example 7 the NW configuration shown in FIG. 27 is assumed.
  • the bands operated by each of NW-A (5G), NW-B (5G), NW-A (LTE), NW-B (Platinum), and NW-C (Platinum) are determined in advance.
  • Embodiment 7 emphasis is placed on profit, and normally all packets are transmitted via NW-A.
  • the usage rate is, for example, changed gradually according to a policy that emphasizes quality.
  • Circumstances change. Examples after the change are shown in FIGS. 28B to 28C.
  • the above current event can be determined by acquiring current information from the device or a function that manages resource status (reference information examples: time/location information, base station deployment status).
  • future events can also be determined by acquiring future information from a function that manages device and resource status (reference information examples: time/location information, base station deployment status).
  • the information transmitting device 10 is in the coverage area of n79 (4.5-4.6 GHz) or n257 (27.4-27.8 GHz) operated by NW-A (5G).
  • the priority is set to "1:2:2" and, for example, the usage ratio of NW-A is set to 100%.
  • the priority is set to "3: 1:2'' and the usage ratio is, for example, 0%:80%:20%.
  • the priority is set to "2:1:3". and the usage ratio is, for example, "20%:80%:0%”.
  • Example 8 Next, Example 8 will be explained.
  • the usage "priority" of the wireless access NW is varied according to the capacity consumption status of the NW usage contract.
  • Example 8 it is assumed that the NW charge form of each NW is a capacity flat rate system.
  • FIG. 29 shows an example of the NW charge form of the flat-rate capacity system.
  • the thick solid line shows the charge that increases stepwise according to the used capacity (the vertical axis is on the left), and the thick dotted line shows the bit unit price at each stage (the vertical axis is on the right).
  • the maximum capacity for which charges remain constant is called "fixed rate capacity.”
  • the bit unit price for the additional capacity (for the second and subsequent stages) is usually higher than the capacity for the initial stage.
  • the second stage is an unlimited flat rate
  • NW prioritize use of unlimited flat rate NW. good.
  • the trigger is the flat-rate capacity expiration (the capacity is used up), but a threshold value set before the capacity expiration (such as 10% of the contracted capacity remaining) may be used as the basis for the trigger.
  • a shown in FIG. 30 shows the normal state. That is, in normal times, the NW usage pattern determination unit 160 sets the priority of NW-A, NW-B, and NW-C to "1:2:3", and sets the usage ratio to "40%:30%:30%”. ”.
  • the NW usage pattern determining unit 160 sets the priority to "3:1:2" and the usage ratio to "3:1:2" as shown in B. 0%:60%:40%".
  • the NW usage pattern determining unit 160 sets the priority to "1:2:3" and uses the usage ratio as shown in D. is set to "100%:0%:0%". Note that here, it is assumed that capacity addition will be carried out only by NW-A (Company A).
  • the NW usage pattern determining unit 160 sets the priority to "3:1:2" and uses it as shown in E.
  • the ratio is set to "0%:100%:0%”. It is assumed here that capacity additions will also be leveled.
  • the eighth embodiment it is possible to reduce resource usage costs for service users on the premise that requirements regarding the quality of information transmission are satisfied.
  • the control device 100 refers to the history of changes in device status (position, surrounding environment, etc.), NW quality (bandwidth, delay, etc.), video and other information quality (MDI, VMAF, bit rate, MOS value, etc.) and determines the NW quality.
  • NW quality bandwidth, delay, etc.
  • MDI video and other information quality
  • VMAF bit rate, MOS value, etc.
  • x% e.g. 5%
  • the control device 100 may set the determination logic based not only on the minimum cost determination that may be considered as a user's request, but also on the response policy and billing policy of the side that provides the wireless access NW and server resources. For example, it is possible to provide resources by providing a buffer with emphasis on mission criticality, or to preferentially use resources with a pay-as-you-go system.
  • the control device 100 not only performs settings using judgment logic based on preliminary measurements and fixed rules, but also dynamically changes the setting mechanism itself using a machine learning approach/AI to perform more flexible settings. Good too.
  • Example 6> The control device 100 assumes a situation in which the determination result of the NW usage pattern cannot be applied due to a sudden change in situation, extracts the second and third determination results in the determination stage, and triggers the occurrence of an event in which the application is not applicable. Alternatively, the second or third determination result may be applied.
  • the control device 100 transmits any one or more of the NW usage pattern determination results, the determination results of video and other information settings, and various measured/predicted values to systems other than those involved in the transmission of video and other information (for example, device control, etc.). ) may also be used for other cooperative operations/control functions. Further, when utilizing the determination results, etc., the reliability/accuracy of the prediction may also be notified with respect to future prediction.
  • the technology according to the present embodiment is also applicable to an automatically traveling mobile object (hereinafter referred to as mobile object A) such as an automatic driving car.
  • the mobile body A may be a car, an agricultural machine, a construction vehicle such as a shovel car, or something other than these. Furthermore, the mobile body A may be referred to as a "device”.
  • the communication unit 1A and the camera 3A can each receive reactive and proactive control from the control device 100, as described above in this embodiment.
  • Example 11 it is possible to implement control in which three controls are linked: NW control for the communication unit 1A, video control for the camera 3A, and control related to automatic driving. Examples of control are as shown in S1 to S3 below. Note that the control described below is an example. Furthermore, “judgment based on actual measured values” and “judgment based on predicted values” described below may be combined.
  • Video deterioration includes, for example, video stopping due to a decrease in NW bandwidth (throughput).
  • the NW quality prediction unit 130 of the control device 100 predicts that the NW quality (e.g., bandwidth, delay, packet loss, etc.) regarding the communication of the mobile body A will deteriorate below a predetermined threshold (e.g., 1 (predicted to deteriorate after a few seconds)
  • the NW usage type determining unit 160 determines the NW usage type (for example, changing from one NW connection to two NW connections) to improve the NW quality
  • the NW usage type setting unit 180 The NW usage mode is set to the communication unit 1A.
  • a predetermined threshold e.g. 1 (predicted to deteriorate after a few seconds
  • ⁇ S2> ⁇ When the NW quality remains degraded below the threshold value with only control in S1, or when there is a problem with the quality of the video received by the mobile object control unit B (such as the video being interrupted intermittently) ” (judgment based on actual measured values), or “When it is predicted that the NW quality will remain worse than the threshold value with only control in S1, or when the video quality received by the mobile object control unit B is When it is predicted that a quality problem will occur (e.g., a judgment based on a predicted value after one second), the information determination unit 170 makes a decision to reduce the video quality (e.g., resolution, frame rate) of the camera 3A, for example. and sets the determined setting information from the information setting section 190 to the camera 3A.
  • the video quality may be reduced by a predetermined width (for example, changing the frame rate from 30 FPS to 10 FPS).
  • ⁇ S3> "When the NW quality remains degraded below the threshold value with only control in S1 and S2, or when there is a problem with the quality of the video received by the mobile object control unit B" (judgment based on actual measured values) ), or "When it is predicted that the NW quality will remain degraded below the threshold value with only control in S1 and S2, or a problem may occur in the quality of the video received by the mobile object control unit B.”
  • the mobile object control unit B can ensure safety for the automatic driving unit 2A of the mobile object A even if sufficient images cannot be obtained. Instruct the driver to slow down, change route, or stop.
  • the first embodiment has been described above.
  • the second embodiment adds the QoS (Quality of Service) control level of the NW as a subject of cooperative control to the first embodiment. Except for this point, the first embodiment and the second embodiment are the same.
  • the QoS control level of the NW can be controlled in any of the configurations and operations described in the first embodiment.
  • the control method for the QoS control level is not limited to a specific method, and may be dynamic control or static control.
  • a QoS control level is used as an example of communication priority. Something other than the "QoS control level" may be used as the "communication priority.”
  • measurement and prediction of NW quality is performed for each QoS control level of the NW, and the NW usage pattern to be determined includes the QoS control level of the NW.
  • the NW usage pattern can be controlled for each NW QoS control level.
  • “NW-A of QoS control level 1", “NW-A of QoS control level 2", “NW-A of QoS control level 3", “QoS control NW usage patterns can be controlled by setting priorities and usage ratios among "NW-B at level 1", “NW-B at QoS control level 2", and "NW-C”. can. That is, a priority is assigned to each NW for each QoS control level, and the NW usage type determination unit 160 determines the usage rate for each QoS control level of each NW as the NW usage type based on the priority. can do.
  • the system configuration, device configuration, and operation sequence (process flow) in the second embodiment are basically the same as the system configuration, device configuration, and operation sequence (process flow) in the first embodiment.
  • This embodiment differs from the first embodiment in that the QoS control level of the NW is added as a subject of cooperative control.
  • the NW quality measurement unit 110 acquires NW quality measurement results for each QoS control level from the information receiving device 20, and stores the acquired NW quality measurement results for each QoS control level in the storage unit 150.
  • the information quality measurement unit 120 acquires information quality measurement results from the information utilization device 40 and stores the acquired information quality measurement results in the storage unit 150.
  • the NW quality prediction unit 130 retrieves from the storage unit 150 “relationship/correlation evaluation between the NW quality prediction results and measurement results based on the device area side situation, NW quality fluctuation history, and device side situation” for each QoS control level. results, etc.”, perform NW quality prediction for each QoS control level based on one or more of these pieces of information, and store the NW quality prediction results for each QoS control level in the storage unit 150. do.
  • the information quality prediction unit 140 retrieves from the storage unit 150 “the relationship between the information quality prediction result and the measurement result based on the situation on the device/information processing area side, the fluctuation history of NW/information quality, and the situation on the device/NW area side/ the information quality prediction is performed based on one or more of these pieces of information, and the information quality prediction result is stored in the storage unit 150.
  • the NW usage pattern determining unit 160 retrieves information from the storage unit 150 such as information transmission requirements, device area status, NW quality fluctuation history, NW quality prediction results (including reliability/accuracy), and device/NW area status. ⁇ results of relationship/correlation evaluation between NW usage pattern determination results and NW/information quality measurement results, etc.'' are obtained. Note that the NW quality fluctuation history and the NW quality prediction result are information for each QoS control level.
  • the NW usage type determination unit 160 determines the NW usage type using any one or more of the above information, stores the NW usage type determination result in the storage unit 150, and also stores the NW usage type determination result in the information setting determination unit 170. and notifies the NW usage pattern setting unit 180 of the NW usage pattern determination result.
  • the NW usage pattern determination result determined by the NW usage pattern determination unit 160 includes the QoS control level for the NW that performs QoS control.
  • the information setting determination unit 170 retrieves information from the storage unit 150 such as “information transmission requirements, device/information processing area side status, network/information quality fluctuation history, network/information quality prediction results (including reliability/accuracy), device/ "Results of relationship/correlation evaluation between information setting determination results and information quality measurement results based on the situation on the NW area side and the NW usage pattern determination results" are obtained. Note that the NW quality fluctuation history and the NW quality prediction result are information for each QoS control level.
  • the information setting determination unit 170 performs information setting determination using any one or more of the above information, stores the information determination result in the storage unit 150, and notifies the information setting unit 190.
  • the NW usage type setting unit 180 receives the NW usage type determination result from the NW usage type determining unit 160 and sets it in the information transmitting device 10. As described above, the NW usage pattern determination result includes the QoS control level.
  • the information setting unit 190 receives the information setting determination result from the information setting determining unit 170, and performs information setting in the information generating device 30 based on the information setting determination result.
  • configuration example 2 is an example where there are multiple NW usage pattern candidates included in the NW usage pattern determination result.
  • the functional units existing in the configuration example 1 in FIG. 3 and the configuration example 2 in FIG. 4 are the same. The main points different from configuration example 1 in FIG. 3 will be explained. Note that even if there are multiple NW usage pattern candidates included in the NW usage pattern determination result, the process in configuration example 1 may be performed.
  • Example 2-1 (the intention of Example 1 in the second embodiment) and Example 2-2 will be described as specific operation examples when the QoS control level of the NW is included as a control target.
  • the system configuration and device configuration are the same as in the first embodiment, for example as shown in FIGS. 2 to 4. That is, as shown in FIG. 2, the information transmitting device 10 communicates with the information receiving device 20 by using any one, any two, or all three of NW-A, NW-B, and NW-C. Communication is possible.
  • the information transmitting apparatus 10 may be referred to as a "device".
  • Poor resource efficiency means, for example, a situation where the bandwidth cannot be sufficiently used for other communications even when there is no communication traffic for which the bandwidth is guaranteed because the bandwidth is guaranteed.
  • Good resource efficiency corresponds to, for example, best-effort communication without QoS control. Even among multiple QCIs that perform bandwidth guarantee, resource efficiency may be better or worse depending on the degree of bandwidth guarantee, etc.
  • the above values are for each NW. Furthermore, for NWs where QoS control is performed, the above values are values for each QCI.
  • the NW quality prediction result for NW-B is 20 Mbps
  • the NW quality prediction result for NW-C is 1 Mbps.
  • Example 2-1 the requirements/requirements for the device targeted for NW usage pattern determination are "bandwidth requirement: 120 Mbps, user request: NW-A priority, orientation for highly efficient use of resources.” Assume that information is stored in the storage unit 150. Examples of NW usage pattern candidates determined by the NW usage pattern determination unit 160 are based on the predicted values shown in FIG. Shown in FIG.
  • NW-B since NW-B, which is ⁇ oriented toward highly efficient resource utilization'' and does not perform QoS control, has a predicted bandwidth of 20 Mbps, NW-B has ⁇ 20 Mbps (priority 2)".
  • the NW usage pattern determination unit 160 may notify the NW usage pattern setting unit 180 of the information shown in FIG. 34, and the NW usage pattern setting unit 180 may set the information shown in FIG. 34 to the device.
  • the time/location information and the NW quality measurement results acquired by the NW quality measurement unit 130 are temporarily stored in the storage unit 150, and the NW usage type determination unit 160 stores them. Although it is assumed that this information is read out from the unit 150 and used for determination, the present invention is not limited to such processing.
  • the time/location information and the NW quality measurement results acquired by the NW quality measurement unit 130 may be directly notified to the NW usage type determination unit 160.
  • Example 2-2 the requirements/requests for devices subject to NW usage pattern determination are the same as in Example 2-1, such as "bandwidth requirement: 120 Mbps, user request: NW-A priority, high resource efficiency.” “Usage Intention” is stored in the storage unit 150.
  • control device 100 can be realized by using hardware resources such as a CPU and memory built into a computer to execute a program corresponding to the processing performed by the device.
  • the above program can be recorded on a computer-readable recording medium (such as a portable memory) and can be stored or distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
  • the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when there is an instruction to start the program.
  • CPU 1004 implements functions related to control device 100 according to programs stored in memory device 1003.
  • the interface device 1005 is used as an interface for connecting to a network or the like.
  • a display device 1006 displays a GUI (Graphical User Interface) and the like based on a program.
  • the input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operation instructions.
  • An output device 1008 outputs the calculation result.
  • the technology according to this embodiment makes it possible to proactively and reactively control the information transmission method. That is, higher accuracy of reactive control based on analysis of the current situation based on past history and higher accuracy of proactive control based on future prediction based on past/present analysis and schedule/plan are realized.
  • Additional Note 1 a determination unit that determines a network usage pattern of the device based on a predicted value of quality regarding information transmission and requirements regarding information transmission; a setting unit configured to set the network usage pattern determined by the determination unit in the device; The determination unit changes the network usage mode based on a state of a network used by the device or a state of the device.
  • the determining unit determines the transmission quality of the information based on a predicted value regarding the quality of the information and a requirement regarding the quality of the information, The control device according to supplementary note 1, wherein the setting unit sets the transmission quality determined by the determination unit to the device.
  • the control device according to appendix 1 or 2, wherein the determination unit determines the network usage pattern based on information about future plans that will affect the network.
  • the network usage pattern includes one or more networks used by the device, each network is assigned a priority, and the determination unit determines the usage ratio of each network based on the priority.
  • the control device according to any one of Additional Items 1 to 3.
  • the control device according to Supplementary Note 4, wherein the determination unit varies the priority for each network based on the state of the device.
  • the device is a moving object that runs, The determining unit determines whether or not to control the driving on the device based on a measured value or a predicted value of the quality of the information after the network usage pattern is changed, The control device according to any one of Supplementary Notes 1 to 5, wherein when the determining unit determines that the driving-related control is to be performed, the setting unit performs the driving-related control on the device.
  • Supplementary Notes 1 to 6 The control device according to any one of Supplementary Notes 1 to 6, further comprising: a position acquisition unit that acquires position information of the device as the state of the device.
  • a control method executed by a control device comprising: a determination step of determining a network usage pattern of the device based on a predicted value of quality regarding information transmission and requirements regarding information transmission; a setting step of setting the network usage pattern determined in the determination step in the device; A control method comprising: changing the network usage pattern based on a state of a network used by the device or a state of the device.
  • a non-temporary storage medium storing a program for causing a computer to function as each part of the control device according to any one of Supplementary Notes 1 to 7.
  • Additional note 2 a determination unit that determines a network usage pattern of the device based on a predicted value of network quality for each communication priority and requirements regarding information transmission; a setting unit configured to set the network usage pattern determined by the determination unit in the device; The determination unit changes the network usage pattern based on a quality measurement result for each communication priority of the network used by the device.
  • the determining unit determines the transmission quality of the information based on a predicted value regarding the quality of the information and a requirement regarding the quality of the information, The control device according to supplementary note 1, wherein the setting unit sets the transmission quality determined by the determination unit to the device.
  • the device is a moving object that runs, The determination unit determines whether or not to control the driving on the device based on a measured value or a predicted value of the quality of the information, The control device according to Supplementary Note 1, wherein when the determining unit determines that the driving-related control is to be performed, the setting unit performs the driving-related control on the device.
  • a control method executed by a control device comprising: a determination step of determining a network usage pattern of the device based on a predicted value of network quality for each communication priority and requirements regarding information transmission; a setting step of setting the network usage pattern determined in the determination step in the device; A control method comprising: changing the network usage pattern based on a quality measurement result for each communication priority of a network used by the device.
  • a non-temporary storage medium storing a program for causing a computer to function as each part of the control device according to any one of Supplementary Notes 1 to 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

制御装置において、通信優先度毎のネットワーク品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定部と、前記判定部により判定された前記ネットワーク利用形態を、前記デバイスに設定する設定部と、を備え、前記判定部は、前記デバイスが利用しているネットワークの通信優先度毎の品質計測結果に基づいて、前記ネットワーク利用形態を変更する。

Description

制御装置、制御方法、及びプログラム
 本発明は、端末と情報処理基盤がネットワークを介して接続されたシステムにおいて、ネットワークを介した情報伝送に関わる構成要素を制御する技術に関連するものである。
 近年、エッジ/クラウドコンピューティングが様々な分野で活用されている。エッジ/クラウドコンピューティングでは、カメラやLiDAR(Light Detection and Ranging)等のセンサで取得できる端末側の情報をネットワーク経由でエッジ/クラウド側の情報処理基盤に伝送し、ヒトやAIなどの情報の利用者向けに情報処理/加工を施す。また、その上で必要に応じて情報処理基盤側から端末側を制御するような信号を下り方向に伝送する。
 スマート農業やコネクティッドカー関連では、端末側で取得できる情報に基づいて遠隔から端末を監視/制御するようなユースケースが検討されており、自動運転の安全確保やダイナミックマップの作成などを目的とした技術の実用化が進んでいる。
 多種多様なセンサ情報の中でも、映像はヒトやAI向けへの活用用途が多岐にわたり、加えて直感的に目視できる情報として着目され取り扱われることが多い。その一方で、映像は比較的大容量の情報であるため、リアルタイムな情報伝送やその継続性の確保には工夫やある程度のコストが必要とされる側面から、映像ストリーミングの制御については様々な分野で関連技術が検討されている。
映像コミュニケーションSmart-telecasterhttps://www.soliton.co.jp/products/category/product/video/smart_telecaster/?tab=02
 スマート農業やコネクティッドカー関連において、遠隔監視制御や自動運転を実現するには、ある一定品質以上のリアルタイムな情報伝送を継続することが必要である。これを実現するために、NW品質低下を検知して追随制御を行う従来技術(非特許文献1)を使用することが考えられる。
 しかし、NW品質低下を検知して追随制御を行う従来技術では、イベントドリブンによるリアクティブな対応になるため追随に遅延が生じ、この遅延時間の間に送信された情報は適切に設定/制御されていないため、取り得る最高品質と比較した品質劣化や想定しない再送による帯域圧迫が生じ得る。
 本発明は上記の点に鑑みてなされたものであり、情報伝送の方法をプロアクティブかつリアクティブに制御することを可能とする技術を提供することを目的とする。
 開示の技術によれば、通信優先度毎のネットワーク品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定部と、
 前記判定部により判定された前記ネットワーク利用形態を、前記デバイスに設定する設定部と、を備え、
 前記判定部は、前記デバイスが利用しているネットワークの通信優先度毎の品質計測結果に基づいて、前記ネットワーク利用形態を変更する
 制御装置が提供される。
 開示の技術によれば、情報伝送の方法をプロアクティブかつリアクティブに制御することを可能とする技術が提供される。
ユースケース観点での本実施の形態に係るシステム構成例を示す図である。 通信システムの全体構成例を示す図である。 制御装置100の構成例1を示す図である。 制御装置100の構成例2を示す図である。 制御装置100における機能分類等を示す図である。 制御装置100における機能分類等を示す図である。 制御装置100における制御動作の概要を示す図である。 制御装置100における機能配備例を示す図である。 制御装置100における制御内容の概要を示す図である。 構成例1におけるシーケンス図である。 構成例2におけるシーケンス図である。 NW利用形態判定及び情報設定判定についてのフローである。 情報伝送要件及びNW品質関連情報の例を示す図である。 情報伝送要件及び情報品質関連情報の例を示す図である。 実施例1を説明するための図である。 実施例1を説明するための図である。 実施例2を説明するための図である。 実施例2を説明するための図である。 実施例3を説明するための図である。 実施例3を説明するための図である。 実施例4を説明するための図である。 実施例4を説明するための図である。 実施例5を説明するための図である。 実施例6を説明するための図である。 実施例6を説明するための図である。 実施例6を説明するための図である。 実施例7を説明するための図である。 実施例7を説明するための図である。 実施例8を説明するための図である。 実施例8を説明するための図である。 例11を説明するための図である。 NW利用リソースの効率を昇順で示した図である。 記憶部150に格納されている情報の例を示す図である。 NW利用形態候補の例を示す図である。 記憶部150に格納される情報の例を示す NW利用形態候補の例を示す図である。 装置のハードウェア構成例を示す図である。
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。なお、以下の説明で用いる"/"は、「又は」を意味する。例えば「A/B」は、「A又はB」である。ただし、「A/B」は、「AとBのうちのどちらか1つのみ」を意味しているのではなく、「AとBの両方」も「A/B」の意味に含まれる。
 また、本実施の形態で説明するマルチアクセスNWにおける端末の具体的な通信方式に関しては、どのような方式を用いてもよい。例えば、3GPP(登録商標)で規定されているATSSS(Access Traffic Steering, Switching and Splitting)を用いてもよい。
 (実施の形態の概要)
 図1に、あるユースケースを想定した本実施の形態に係るシステムの構成例を示す。図1に示す機能名(装置名)、装置(機能)間でやりとりされる情報は一例である。
 図1に示すように、本システムは、複数キャリア(マルチキャリア)によりサービスが提供されるマルチアクセスNW環境におけるシステムである。この環境においては、A社により提供されるNW-A、B社により提供されるNW-B、C社により提供されるNW-Cが存在する。
 また、本システムが適用される具体例として、トラクタやコンバイン等の農業機械の遠隔監視制御/自動運転、無人シャトルサービスを提供する自動運転バスなどがある。
 本システムにおいて、ビデオエンコーダ(情報送信機能)1が、ビデオデコーダ(情報受信機能)2に映像(伝送情報)を送信する。また、ビデオエンコーダ(情報送信機能)1は、マルチパス伝送制御機能(協調制御機能)3に対してデバイス位置/電波伝搬環境(デバイス側の現在/未来の状況)を送信する。
 また、ビデオデコーダ(情報受信機能)2は、マルチパス伝送制御機能(協調制御機能)3に対して映像品質/主観品質(情報処理側の現在/未来の状況)を送信する。また、マルチパス伝送制御機能(協調制御機能)3は、NWから、NW品質、NWリソースの配備/利用状況、及び接続経路情報(NW側の現在/未来の状況)を取得する。また、マルチパス伝送制御機能(協調制御機能)3は、利用者/提供者からのサービス要件/要望を受信している。なお、マルチパス伝送制御機能(協調制御機能)3は、後述する制御装置100に相当する。
 このようなシステムにおいて、本実施の形態では、マルチパス伝送制御機能(協調制御機能)3が、マルチアクセスNW環境での情報伝送方法をリアルタイムに制御して、情報伝送に関する要件の充足とNWリソース利用の効率化を両立させることとしている。
 上記制御では、マルチアクセスNW利用形態/マルチパス伝送の制御が行われる。その制御例として、例えば下記のような制御がある。
 ・最適NWの選択(シングルパス)
 ・接続経路冗長化(マルチパス、冗長モード)
 ・狭帯域回線の帯域拡大(マルチパス、帯域拡大モード)
 また、上記制御には、パケット複製など情報の生成方法、配分/傾斜などの伝送方法のリアルタイム制御を含む。
 本実施の形態に係る技術により、ある一定品質以上のリアルタイムな情報伝送の継続を実現でき、情報伝送に関する要件を考慮したNWリソースの選択的な利用を行って、リソース利用効率の向上/コスト低減を実現できる。また、要件充足が可能な範囲を最大化するマルチアクセスNWの柔軟かつリアルタイムな使い分けを実現できる。
 上記機能により、要件充足の継続と対象範囲の拡大、NWリソースの利用者/提供者双方にとってのリソースコスト低減(効率的なリソース利用)が可能になる。
 (従来技術と課題について)
 非特許文献1に開示された技術では、「ある一定品質以上のリアルタイムな情報伝送の継続」に関連して、NW品質低下の検知に基づく追随制御を行っている。
 しかし、NW品質低下の検知に基づく追随制御では、イベントドリブン/リアクティブな対応になるため追随に遅延が生じ、この遅延時間の間に送信された情報は適切に設定/制御されていないため、取り得る最高品質と比較した品質劣化や想定しない再送による帯域圧迫が生じ得る。
 上記の問題に対する対策としてNW品質の未来予測に基づくプロアクティブな制御が想定されるが、伝送情報の設定/制御が適切になされるかどうかがNW品質の未来予測精度依存となり、精度が悪い場合は追随制御の場合と同様に取り得る最高品質と比較した品質劣化や想定しない再送による帯域圧迫が生じ得る。
 以下では、上記課題を解決する本実施の形態に係る技術を詳細に説明する。以下、第1実施形態と第2実施形態について説明する。
 [第1実施形態]
 (システム構成例)
 本実施の形態では、情報伝送方法をプロアクティブかつリアクティブに制御する方式を採用することで上記の課題を解決する。すなわち、従来技術ではイベントドリブン/リアクティブな対応としていたものを、本実施の形態では、未来予測に基づくプロアクティブ制御とする。
 また、従来技術では、未来予測の精度悪化により伝送情報の品質劣化や帯域圧迫が生じていたが、本実施の形態では、過去履歴を踏まえた現在状況の分析に基づくリアクティブ制御の高精度化および過去/現在の分析と予定/計画を踏まえた未来予測に基づくプロアクティブ制御の高精度化を実現している。
 図2に、本実施の形態における通信システムの全体構成例を示す。図2に示すように、本通信システムは、制御装置100、予定/計画DB200、過去履歴/現在状況DB300を有する。また、図2には、制御対象/情報収集元となる装置として、情報送信装置10、情報受信装置20、情報生成装置30、情報活用装置40が示されている。
 情報送信装置10と情報受信装置20はそれぞれ、NW-A、NW-B、及びNW-Cのうちのいずれか1つ又は複数を介して通信可能である。なお、制御装置100により制御対象となる装置を総称して「デバイス」と呼んでもよい。また、情報送信装置10と情報生成装置30をまとめてデバイスと呼んでもよい。
 過去履歴/現在状況DB300には、情報活用装置40における情報品質計測結果が格納され、情報受信装置20におけるNW品質計測結果が格納される。また、過去履歴/現在状況DB300には、情報/NW利用形態の設定がなされる。
 予定/計画DB200には、情報伝送要件、デバイス領域側の周辺環境におけるイベント/工事予定、デバイスの運行計画、情報処理領域側の情報活用予定、運用計画等が格納されており、これらのうちの少なくとも1つが制御装置100により利用される。
 また、過去履歴/現在状況DB300には、情報収集の結果、デバイスの移動履歴、電波伝搬環境等の周辺環境状況、NW/情報品質の変動履歴、デバイス/NW状況と制御結果の関係性/相関評価の結果等が格納されており、これらのうちの少なくとも1つが制御装置100により利用される。
 制御装置100は、上記の情報を利用して、情報送信装置10に対してNW利用形態の設定を行う。また、情報生成装置30に対して情報設定をすることも可能である。また、制御装置100は、情報/NW利用形態の設定内容を過去履歴/現在状況DB300に格納する。
 なお、予定/計画DB200と過去履歴/現在状況DB300はそれぞれ、制御装置100の外部に備えられてもよいし、制御装置100内の記憶部に備えられてもよい。後述する例では、予定/計画DB200と過去履歴/現在状況DB300は、制御装置100内の記憶部に備えられる。
 (制御装置100の構成例)
 <構成例1>
 図3に、制御装置100の構成例1を示す。構成例1は、NW利用形態の最終決定権限がNW利用形態判定部160にある場合の構成例である。構成例1は、NW利用形態判定結果に含まれるNW利用形態候補が1つである場合の例である。
 図3に示すように、制御装置100は、NW品質計測部110、情報品質計測部120、NW品質予測部130、情報品質予測部140、記憶部150、NW利用形態判定部160、情報設定判定部170、NW利用形態設定部180、情報設定部190を有する。なお、NW品質計測部110と情報品質計測部120をまとめて計測部と呼んでもよい。NW品質予測部130と情報品質予測部140をまとめて予測部と呼んでもよい。NW利用形態判定部160と情報設定判定部170をまとめて判定部と呼んでもよい。NW利用形態設定部180と情報設定部190をまとめて設定部と呼んでもよい。
 また、制御装置100には、位置取得部(後述する「時刻/位置情報取得/配信機能」に相当)が含まれていてもよい。
 制御装置100は、1つのコンピュータで実現されてもよいし、複数のコンピュータで実現されてもよい。制御装置100を制御システムと呼んでもよい。各部の動作は下記のとおりである。
 NW品質計測部110は、情報受信装置20からNW品質計測結果を取得し、取得したNW品質計測結果を記憶部150に格納する。情報品質計測部120は、情報活用装置40から情報品質計測結果を取得し、取得した情報品質計測結果を記憶部150に格納する。
 NW品質予測部130は、記憶部150から、「デバイス領域側の状況、NW品質の変動履歴、デバイス側の状況を踏まえたNW品質予測結果と計測結果の関係性/相関評価の結果等」を取得し、これらの情報のうちのいずれか1つ又は複数に基づいて、NW品質予測を行い、NW品質予測結果を記憶部150に格納する。
 情報品質予測部140は、記憶部150から「デバイス/情報処理領域側の状況、NW/情報品質の変動履歴、デバイス/NW領域側の状況を踏まえた情報品質予測結果と計測結果の関係性/相関評価の結果等」を取得し、これらの情報のうちのいずれか1つ又は複数に基づいて、情報品質予測を行い、情報品質予測結果を記憶部150に格納する。
 NW利用形態判定部160は、記憶部150から「情報伝送要件、デバイス領域側の状況、NW品質の変動履歴、NW品質予測結果(信頼度/確度を含む)、デバイス/NW領域側の状況を踏まえたNW利用形態判定結果とNW/情報品質計測結果の関係性/相関評価の結果等」を取得し、これらの情報のうちのいずれか1つ又は複数を用いてNW利用形態判定を行って、NW利用形態判定結果を記憶部150に格納するとともに、情報設定判定部170とNW利用形態設定部180にNW利用形態判定結果を通知する。
 情報設定判定部170は、記憶部150から「情報伝送要件、デバイス/情報処理領域側の状況、NW/情報品質の変動履歴、NW/情報品質予測結果(信頼度/確度を含む)、デバイス/NW領域側の状況とNW利用形態判定結果に基づく情報設定判定結果と情報品質計測結果の関係性/相関評価の結果」を取得し、これらの情報のうちのいずれか1つ又は複数を用いて情報設定判定を行い、情報判定結果を記憶部150に格納するとともに、情報設定部190に通知する。
 NW利用形態設定部180は、NW利用形態判定部160からNW利用形態判定結果を受信し、それを情報送信装置10に設定する。情報設定部190は、情報設定判定部170から情報設定判定結果を受信し、それに基づき、情報生成装置30へ情報設定を行う。
 実装の観点から、より具体的な例を説明する。なお、下記の具体例はあくまでも例であり、本発明に係る技術は下記の具体例に限定されない。
 情報生成装置30は、例えば、カメラあるいはエンコーダである。情報送信装置10は、例えば、ルータ等のNW装置(通信装置)である。情報生成装置30と情報送信装置10が1つの装置であってもよい。
 情報受信装置20とNW品質計測部110が、ルータ等のNW装置として実装されてもよい。情報活用装置40と情報品質計測部120が、例えば、ディスプレイとデコーダとで実装されてもよい。情報品質計測部120の機能をヒトが担う場合もある。
 制御装置100には、GNSSレシーバ、PNSSクライアントなどの時刻/位置情報取得/配信機能が配備されてもよい。時刻/位置情報取得/配信機能は、端末識別子(EID)を取得し、NMEA(端末の現在位置の情報、現在時刻等を含む)を所定周期(xHz)で取得し、これらを記憶部150に格納する。また、時刻/位置情報取得/配信機能は、端末の位置をリアルタイムに取得する。「時刻/位置情報取得/配信機能」を位置取得部と呼んでもよい。位置取得部が、計測部(例えば、NW品質計測部110)に含まれていてもよい。また、位置取得部が、端末内に備えられてもよい。
 なお、「端末」(デバイスと呼んでもよい)は、例えば、情報送信装置10(あるいは情報送信装置10の機能を含む装置)である。
 記憶部150には、情報伝送要件が予め格納されている。情報伝送要件としては、例えば、映像品質に関する要件、冗長性に関する要件、及び、NW関連要件(利用優先度等)がある。
 NW品質計測部110は、情報受信装置20(又は情報送信装置10、又は、情報送信装置10と情報受信装置20の両方)からNW品質計測結果として、例えば、帯域、遅延、及びパケットロス率を取得する。
 情報品質計測部120は、情報活用装置40(又は情報生成装置30、又は、情報生成装置30と情報活用装置40の両方)から情報品質計測結果として、例えば、MDI DF/MLR、フレームレート、ビットレート、及び遅延を取得する。映像断の発生状況を目視で監視してもよい。
 NW品質予測部130は、記憶部150から、「端末識別子(EID)、NMEA、NW品質予測結果、NW利用形態、映像送信設定、受信結果」のセットを判定前に取得し、これらの情報のうちのいずれか1つ又は複数に基づいて、t秒後の帯域、遅延、パケットロス率をxHzで予測する。
 そして、NW利用形態判定部160は、例えば下記のS1~S4の手順で、所定周期で判定を行う。
 S1)
 該当する端末識別子(EID)、及び最新のNMEAを参照し、デバイスがどの領域にいるか(場所をマス目で区切るイメージ)、及び、現在時刻はどの時間区分に属するか(早朝、昼間、夜間、深夜などのイメージ))を判定する。
 S2)
 該当領域の過去履歴(NW利用形態、映像送信設定、受信結果のセット)を参照し、受信結果がOKとなっているセットの中で最も受信結果が良いものかつNW利用が最小のNW利用形態を選択する。用語の定義は後述する。
 S3)
 選択したNW利用形態(例:NW-AとNW-B)に含まれるNWの品質予測結果を参照し、各NWの品質が既定の品質(例:予め定めた帯域、選択したNW利用形態における過去に設定した映像送信設定のビットレート)を下回っていないか確認し、下回っていればS2に戻って次点のNW利用形態を選択し、以後繰り返す。
 S4)
 NW利用形態判定結果(例:利用/ボンディングするNW、NW毎の利用優先度、設定する上限帯域)を確定する。なお、「ボンディング」とは複数のNWを利用することである。
 上述した「受信結果OK」、「最良の受信結果」、「最小のNW利用形態」の定義例は下記のとおりである。
 ・受信結果OK:フレームレート、ビットレート、遅延のいずれか又は全部が要件を充足していて、映像断が発生していない。
 ・最良の受信結果:ビットレートが最大。
 ・最小のNW利用形態:ボンディングするNW数が最小かつ利用優先度が最も低いNWの上限帯域設定値が最小。
 NW利用形態判定部160は、NW利用形態判定結果とその根拠として参照したS2の履歴(判定結果としたNW利用形態における最良の受信結果時の映像送信設定)を、情報設定判定部170に通知する。
 情報設定判定部170は、情報判定結果である映像送信設定として、例えば、コーデック、解像度、フレームレート、ビットレート、及び遅延を記憶部150に格納するとともに、情報設定部190に通知する。
 <構成例2>
 図4に、制御装置100の構成例2を示す。構成例2は、NW利用形態の最終決定権限が情報設定判定部170にある場合の構成例である。構成例2は、NW利用形態判定結果に含まれるNW利用形態候補が複数ある場合の例である。
 図3の構成例1と図4の構成例2において、存在する機能部は同じである。図3の構成例1と異なる主な点を説明する。
 構成例2では、NW利用形態判定部160は、信頼度/確度を含むNW利用判定結果を得て、これを情報設定判定部170に通知する。情報設定判定部170は、情報設定の判定を行い、情報設定判定の根拠としたNW利用形態をNW利用形態設定部180に通知する。
 <機能分類、実装機能配備例>
 以下、図3に示した構成例1を例にとって、機能分類等を説明する。図5に示すように、制御装置100は、「NW品質予測部130、情報品質予測部140、NW利用形態判定部160、情報設定判定部170、NW利用形態設定部180、情報設定部190」を有する制御機能、及び、「NW品質計測部110、情報品質計測部120、記憶部150」を有する、情報伝送要件を含む過去/現在/未来に関する情報取得およびデータベースの機能に分類することができる。
 図6に示すように、制御装置100における情報設定判定部170とNW利用形態設定部180が、判定を行うコアとなる部分であり、「NW品質計測部110、情報品質計測部120、NW品質予測部130、情報品質予測部140、記憶部150」が、判定の根拠となる情報を提供する部分である。
 図7は、制御装置100における制御動作の概要を示している。太実線で示した枠内の制御が、A.未来予測に基づくプロアクティブ制御を示し、太点線で示した流れが、B.リアクティブ/プロアクティブ制御の高精度化のための制御を示している。つまり、制御装置100では、デバイス状況がどうで、NW状況がどうで、判定した結果はどうだったか、それを踏まえると次のデバイス/NW状況ではどう判定すべきか、についてループを回すことで高精度化を図っている。
 図8は、実装で想定する機能配備例を示す。ただし、これは一例である。図8に示す例において、「情報品質予測部140、NW利用形態判定部160、情報設定判定部170、NW利用形態設定部180、情報設定部190」の部分は、協調制御GW(これを制御装置と呼んでもよい)により実装される。「NW品質予測部130、情報品質予測部140、記憶部150」の部分は、デジタル情報基盤により実装される。ここでのデジタル情報基盤とは、例えば、高精度で豊富な意味情報を持つ「高度地理空間情報データベース」上に、高精度な位置・時刻を持つセンシングデータをリアルタイムに統合し、高速に分析処理・未来予測を行う基盤である。
 NW品質予測部130は、マルチ無線プロアクティブ制御技術により実装され、情報品質計測部120は、通信フローをリアルタイムに識別・可視化する技術やデコーダ等により実装される。また、NW品質計測部110は、例えば、E2EオーバーレイNWにより実装される。
 図9は、制御装置100における情報伝送方法をプロアクティブかつリアクティブに制御する方式が、どのような制御から構成されるかを示した図である。図示するように、未来予測に基づくプロアクティブ制御と、リアクティブ/プロアクティブ制御の高精度化(最適化/性能向上)に大きく分けられ、それぞれが図9に示した制御を行う。
 図9における「A」の記述は、「情報伝送要件、デバイス/情報処理領域側の状況、NW/情報品質の変動履歴、NW/情報品質予測結果(信頼度/確度を含む)、デバイス/NW領域側の状況とNW利用形態判定結果に基づく情報設定判定結果と情報品質計測結果の関係性/相関評価の結果を情報設定判定に反映」である。
 「B」の記述は、「情報伝送要件、デバイス領域側の状況、NW品質の変動履歴、NW品質予測結果(信頼度/確度を含む)、デバイス/NW領域側の状況を踏まえたNW利用形態判定結果とNW/情報品質計測結果の関係性/相関評価の結果をNW利用形態判定に反映」である。
 (動作シーケンス)
 次に、構成例1(図3)と、構成例2(図4)のそれぞれについて、制御装置100における動作シーケンスを説明する。
 <構成例1におけるシーケンス>
 まず、図10を参照して、構成例1におけるシーケンスを説明する。前述したとおり、構成例1は、「NW利用形態」の最終決定権限が「NW利用形態判定部160」にある形態である。
 S101において、NW品質計測部110は、記憶部150に対してNW品質計測結果を送信し、記憶部150は、受信したNW品質計測結果を格納する。
 S102において、情報品質計測部120は、記憶部150に情報品質計測結果を送信し、記憶部150は、受信した情報品質計測結果を格納する。
 S103、S104において、NW品質予測部130と記憶部150との間で参照情報要求/応答の送受信がなされる。
 S105において、NW品質予測部130は、記憶部150から取得した情報に基づいてNW品質予測を行い、記憶部150に対してNW品質予測結果を送信し、記憶部150は、受信したNW品質予測結果を格納する。
 S106、S107において、情報品質予測部140と記憶部150との間で参照情報要求/応答の送受信がなされる。
 S108において、情報品質予測部140は、記憶部150から取得した情報に基づいて情報品質予測を行い、記憶部150に対して情報品質予測結果を送信し、記憶部150は、受信した情報品質予測結果を格納する。
 S109、S110において、記憶部150とNW利用形態判定部160との間で、参照情報要求/応答の送受信がなされる。
 NW利用形態判定部160は、記憶部150から取得した情報に基づいてNW利用形態判定を行い、S111~S113において、情報設定判定部170、NW利用形態設定部180、及び記憶部150のそれぞれにNW利用形態判定結果を送信する。
 S114、S115において、記憶部150と情報設定判定部170との間で参照情報要求/応答の送受信がなされる。
 S116、S117において、情報設定判定部170は、記憶部150から取得した情報に基づいて、情報設定判定を行う、情報設定部190と記憶部150のそれぞれに情報設定判定結果を送信する。
 <構成例2におけるシーケンス>
 次に、図11を参照して、構成例2におけるシーケンスを説明する。前述したとおり、構成例2は、「NW利用形態」の最終決定権限が「情報設定判定部170」にある形態である。図11のS201~S208は、図10のS101~S108と同じである。S208以降の処理を説明する。
 S209、S210において、記憶部150とNW利用形態判定部160との間で、参照情報要求/応答の送受信がなされる。
 NW利用形態判定部160は、記憶部150から取得した情報に基づいてNW利用形態判定を行い、S211~S212において、情報設定判定部170、及び記憶部150のそれぞれにNW利用形態判定結果を送信する。
 S213、S214において、記憶部150と情報設定判定部170との間で参照情報要求/応答の送受信がなされる。
 情報設定判定部170は、記憶部150から取得した情報に基づいて、情報設定判定を行う。S215において、情報設定判定部170は、NW利用形態設定部180に対し、NW利用形態判定結果(情報設定判定の根拠としたNW利用形態)を送信する。
 S216、S217において、情報設定判定部170は、情報設定部190と記憶部150のそれぞれに情報設定判定結果を送信する。記憶部150へは、情報設定判定結果とともに、根拠としたNW利用形態が送信され、記憶部150はこれらを格納する。
 構成例2では、情報設定判定部170がNW利用形態設定部180に直接「最終的なNW利用形態判定結果」を通知することとしているが、これは一例である。情報設定判定部170が「最終的なNW利用形態判定結果」をNW利用形態判定部160に通知し、NW利用形態判定部160がNW利用形態設定部180及び記憶部150に「最終的なNW利用形態判定結果」を通知することとしてもよい。
 (NW利用形態及び情報設定判定のフロー例)
 NW利用形態判定及び情報設定判定についてのフロー例を説明する。ここでは、制御対象の「情報」は映像であるものとする。
 まず、図12を参照してフローを説明する。S301において、NW利用形態判定部160は、記憶部150から、情報伝送要件及びNW品質関連情報を取得する。S302において、NW利用形態判定部160は、S301で取得した情報に基づいて、NW利用形態判定を実施する。
 S303において、NW利用形態判定部160は、情報設定判定部170に対してNW利用形態判定結果を通知する。
 S304において、情報設定判定部170は、記憶部150から情報伝送要件、及び情報品質関連情報を取得する。S305において、情報設定判定部170は、S304において取得した情報に基づいて、情報設定判定を実施する。
 NW利用形態判定部160が、S301において取得する情報伝送要件及びNW品質関連情報の例を図13に示す。ここでは例えば、情報送信装置10が、未来にどのNWを利用するかを「NW利用形態」であるとする。図13の例では、情報伝送要件が帯域120Mbps、遅延100msであることから、NW利用形態判定部160は、+1秒後の未来にNW-AとNW-Bを利用する、と判定する。この場合、「1秒後にNW-AとNW-Bを利用する」という情報が情報設定判定部170に通知される。
 なお、NW利用形態判定部160は、情報伝送要件あるいはユーザ/NW側要望に基づいて、NW利用形態候補の絞り込みを行ってもよいし、個々のNWに優先度付けをした上でNW利用形態を判定してもよい。
 情報設定判定部170が、S304において取得する情報伝送要件及び情報品質関連情報の例を図14に示す。ここでは例えば、情報生成装置10が、映像をどのビットレートでエンコードするかを判定する。図14の例では、情報設定判定部170は、例えば、映像送信ビットレートを60Mbpsに設定すると判定する。なお、情報設定判定部170は、情報伝送要件、ユーザ要望を前提としつつ、NW側の要望/方針を考慮して情報設定判定を実施しても構わない。
 以下、NW利用形態判定/情報設定判定についての具体例を実施例1~8として説明する。実施例1~8は任意に組み合わせて実施可能である。
 (実施例1)
 実施例1では、NW品質予測部130が、あるデバイス(例:情報送信装置10)について、デバイス位置、受信信号強度(例:送信側の受信強度)、及びNW品質計測結果(例:受信側で測定した品質)から、NW品質を予測し、NW利用形態判定部160が、その予測結果に基づいて、NW利用形態を判定する。なお、NW利用形態の判定対象が情報送信装置10であることは、以降の実施例でも同様である。
 図15に、実施例1において、記憶部150に格納されている情報の例を示す。図15に示すように、記憶部150には、デバイス位置、受信電波強度、及びNW品質についての、NW品質計測部110による過去及び現在の計測結果の値、及び、NW品質予測部130による未来の予測値が格納されている。
 実施例1では、また、「帯域要件:120Mbps、ユーザ要望:NW-A優先」が記憶部150に格納されているとする。図15に示す予測値、及び「帯域要件:120 Mbps、ユーザ要望:NW-A優先」に基づいて判定されたNW利用形態候補の例を図16に示す。
 図16に示すように、予測値(NW-Cは品質が悪いなど)に基づき、帯域要件を満たしつつ、ユーザ要望を考慮した複数候補が判定(決定)されている。
 なお、予測部が、過去及び現在の値に基づいて未来の値を予測する方法については、特に限定はなく、任意の方法を使用することができる。例えば、回帰分析で予測してもよいし、ニューラルネットワークのモデルで予測してもよい。
 (実施例2)
 次に、実施例2を説明する。実施例2では、あるデバイス(例:情報送信装置10及び情報生成装置30)について、NW品質計測部110/NW品質予測部130によるNW品質計測/予測結果と、情報品質計測部120/情報品質予測部140による情報品質計測/予測結果とから、NW利用形態判定部160/情報設定判定部170が、NW利用形態/情報設定を判定する。
 図17に、実施例2において、記憶部150に格納されている情報の例を示す。図17に示すように、記憶部150には、NW品質及び情報品質についての、予測結果と測定結果が格納されている。なお、図17に示す予測結果と測定結果について、NW毎の情報が格納されていてもよい。
 実施例2では、また、「映像品質要件:120Mbps以上、ユーザ要望:NW-A優先」が記憶部150に格納されているとする。この場合、情報設定判定部170は、例えば、映像送信ビットレート設定を180Mbpsと判定する。また、NW利用形態判定部160は、例えば、NW利用形態候補のとして、図18に示す候補を決定する。
 (実施例3)
 次に、実施例3を説明する。実施例3では、記憶部150で管理している情報に基づいて判定ロジックを高精度化する例である。
 図19に示すように、実施例3では、デバイス位置、電波伝搬環境、基地局混雑状況、NW品質、デバイス運行計画、イベント情報、情報(映像)品質、主観評価、コストなどが記憶部150に格納される。図20に、記憶部150に格納される情報の例を示す。
 図20に示すように、判定において周辺イベント情報(未来の予定の情報)なども加味することで、NW利用形態判定部160/情報設定判定部170は、精度良く判定を行うことが可能となる。例えば、ネットワークのトラフィックに影響を与える大規模イベントが行われる時刻がわかっている場合、その時刻では、そのイベントで使用される事業者のネットワーク使用を回避するといった判定を行うことができる。
 図20に示すような詳細な情報を用いつつ、デバイス状況がどうで、NW状況がどうで、判定した結果はどうだったか、それを踏まえると次のデバイス/NW状況ではどう判定すべきか、についてループを回すことで、NW利用形態判定部160/情報設定判定部170による判定を高精度化することができる。
 (実施例4)
 次に、実施例4を説明する。実施例4では、マルチアクセスNWの使い分けをNW毎の利用「優先度」に落とし込んで実施する例を説明する。
 実施例4では、図21に示すように、NW-A(A社)、NW-B(B社)、NW-C(C社)が存在し、情報送信装置10/情報受信装置20は、いずれのNWにも接続可能である。また、情報送信装置10と情報受信装置20は、2つ又は3つのNWに同時に接続することも可能である。この点は、実施例5~8も同様である。なお、A社は、本実施の形態に係る制御装置100を運営する通信事業者であることを想定している。
 図22を参照して、NW利用形態判定部160が、情報送信装置10の利用するNWを判定する判定ロジックの例を説明する。なお、情報送信装置10の利用するNWを情報受信装置20も利用することとしてもよいし、情報受信装置20の利用するNWを、情報送信装置10と同様の判定ロジックで決定してもよい。
 図22に示す各表において、NW種別、NW事業者、NW利用形態、及び優先度は予め記憶部150に格納されている情報であり、利用割合は、NW利用形態判定部160が、判定(決定)した各NWの利用割合を示す。基本的に、実施例5~8でも同様である。ただし、実施例7,8ではNW利用形態判定部160(又は他の機能部)により、優先度が変動される。
 また、以下の要件充足判定に関しては、既に説明したように、計測結果、予測結果、帯域要件、品質要件、ユーザ要望等から判定することができる。
 図22の各表に示す優先度設定は、ユーザ要望による設定であってもよいし、NW側要望による設定であってもよい。図22の各表に示す優先度設定の値は、通常は全てのパケットをNW-A経由で送信し、NW-AのNW品質低下やパケット冗長化要求に応じて他社NWを利用する、ことを意味している。なお、各表に示す利用割合は一例である。利用割合に代えて最大帯域で規定してもよい。
 S401において、NW利用形態判定部160は、優先度1のNW-Aのみで要件を充足させることが可能か否かを判定する。S401の判定がYesである場合、NW利用形態判定部160は、NW-Aのみを利用すると判定する。S401の判定処理は例えば定期的に繰り返し実施される。
 例えば、NW-Aの品質低下やNW断が発生(現在事象)したり、NW-Aの品質低下やNW断が予測(未来事象)される場合には、S401の判定結果がNoになる。
 上記の現在事象に関しては、現在の情報をデコーダ(アプリレイヤ)あるいはCPE:Customer Premises Equipment(NWレイヤ)から取得することで判断することができる(参照情報例:MDI、VMAF、映像ビットレート、遅延、パケットロス率)。
 また、上記の未来事象に関しては、未来の情報を無線NW品質予測機能(NWレイヤ)から取得することで判断できる(参照情報例:スループット、遅延、パケットロス率、ジッタ)。
 なお、現在事象としてのNWの品質低下や断、及び、未来事象としてのNWの品質低下や断はいずれも、「ネットワークの状態」の例である。
 S401の判定結果がNoである場合、処理はS402に進む。S402において、NW利用形態判定部160は、優先度1のNW-Aが利用可能か否かを判定する。S402の判定結果がYesの場合はS403に進み、Noの場合はS404に進む。
 S403において、NW利用形態判定部160は、優先度1のNW-Aと優先度2のNW-Bの両方を利用することで要件充足可能か否かを判定する。S403での判定結果がYesの場合、NW利用形態判定部160は、NW-AとNW-Bの両方を利用すると判定する。つまり、優先度1のNW-Aの100%利用から、要件充足のために優先度2のNW-Bの利用割合を増加させる。
 また、利用割合に代えて、最大帯域を、例えば、NW-A:無制限、NW-B:10Mbps、NW-C:0Mbpsとしてもよい。
 S403の判定結果がNoの場合、S404に進む。S404において、NW利用形態判定部160は、優先度2のNW-Bのみで要件充足可能か否かを判定する。S404での判定結果がYesの場合、NW利用形態判定部160は、NW-Bのみを利用すると判定する。つまり、NW―Bの利用割合を100%とする。
 また、利用割合に代えて、最大帯域を、例えば、NW-A:0Mbps、NW-B:10Mbps、無制限:0Mbpsとしてもよい。
 S404の判定結果がNoの場合、別のNWの組み合わせに対して上述した判定と同様の判定が行われる。その結果、例えば、NW―Bの利用割合を50%、NW―Cの利用割合を50%とした通信を行う。
 参照するNW状況で要件を充足できない場合は、例えば、下記(1)~(4)のうちのいずれか1つ又は複数の動作を行ってもよい。実施例5でも同様である。
 (1)要件充足に最も漸近する形態での情報伝送
 (2)既定の形態(デフォルト設定の形態)での情報伝送
 (3)情報生成装置30が情報を再構成(情報生成装置30の伝送要求を情報送信装置10が棄却/返却)
 (4)ユーザ/事業者にアラート通知
 (実施例5)
 次に、図23を参照して実施例5を説明する。実施例5は、処理のロジックとしては実施例4と同じであるが、優先度の値が異なる。つまり、実施例5では、通常は全てのパケットをNW-A以外のNW経由で送信する。各表で示すその割合は一例である。ここでは、NW-A側リソース効率化/経済合理性を重視しており、利用NWの品質低下やパケット冗長化要求に応じてNW―Aを利用する。
 S501において、NW利用形態判定部160は、優先度1のNW-Bのみで要件を充足させることが可能か否かを判定する。S501の判定がYesである場合、NW利用形態判定部160は、NW-Bのみを利用すると判定する。S501の判定処理は例えば定期的に繰り返し実施される。
 実施例4と同様のトリガにより、S501の判定結果がNoになる場合、処理はS502に進む。S502において、NW利用形態判定部160は、優先度1のNW-Bが利用可能か否かを判定する。S502の判定結果がYesの場合はS503に進み、Noの場合はS504に進む。
 S503において、NW利用形態判定部160は、優先度1のNW-Bと優先度2のNW-Cの両方を利用することで要件充足可能か否かを判定する。S503での判定結果がYesの場合、NW利用形態判定部160は、NW-BとNW-Cの両方を利用すると判定する。つまり、優先度1のNW-Bの100%利用から、要件充足のために優先度2のNW-Cの利用割合を増加させる。
 S503の判定結果がNoの場合、S504に進む。S504において、NW利用形態判定部160は、優先度2のNW-Cのみで要件充足可能か否かを判定する。S504での判定結果がYesの場合、NW利用形態判定部160は、NW-Cのみを利用すると判定する。つまり、NW―Cの利用割合を100%とする。
 S504の判定結果での判定結果がNoの場合、別のNWの組み合わせに対して上述した判定と同様の判定が行われる。その結果、例えば、NW―Aの利用割合を50%、NW―Cの利用割合を50%とした通信を行う。
 (実施例6)
 次に、図24を参照して実施例6を説明する。実施例6も、マルチアクセスNWの使い分けをNW毎の利用「優先度」に落とし込んで実施する例である。ただし、実施例6での「優先度」は、サービス利用者側(農業事業者などのリソース利用者)から見た優先度である。
 実施例6では、通常は全てのパケットを無制限定額のNW-A経由で送信し、無制限定額のNW-AのNW品質低下やパケット冗長化要求に応じてカバレッジ等が異なるNWを利用する。そのため、NW-Aの優先度が1になっている。
 S601において、NW利用形態判定部160は、優先度1のNW-Aのみで要件を充足させることが可能か否かを判定する。S601の判定がYesである場合、NW利用形態判定部160は、NW-Aのみを利用すると判定する。S601の判定処理は例えば定期的に繰り返し実施される。
 S601の判定結果がNoである場合、処理はS602に進む。S602において、NW利用形態判定部160は、優先度1のNW-Aと優先度2のNW-Bの両方を利用することで要件充足可能か否かを判定する。S603での判定結果がYesの場合、NW利用形態判定部160は、NW-AとNW-Bの両方を利用すると判定する。つまり、優先度1のNW-Aの100%利用から、要件充足のために優先度2のNW-Bの利用割合を増加させる。
 また、利用割合に代えて、最大帯域を、例えば、NW-A:無制限、NW-B:10Mbps、NW-C:0Mbpsとしてもよい。
 S602の判定結果がNoの場合、S603に進む。S603において、NW利用形態判定部160は、優先度1のNW-Aと優先度2のNW-Bと優先度3のNW-Cの全部を利用することで要件充足可能か否かを判定する。S603での判定結果がYesの場合、NW利用形態判定部160は、NW-A、NW-B、及びNW-Cを利用すると判定する。図24の例では、利用割合を「50%:36%:14%」としている。
 また、利用割合に代えて、最大帯域を、例えば、NW-A:無制限、NW-B:10Mbps、無制限:5Mbpsとしてもよい。S603の判定結果がNoの場合、S604において、サービス提供不可と判定する。
 複数のNWを利用する場合において、利用割合に応じた送信制御の例を図25、図26を参照して説明する。ここでは、情報送信装置10が送信する伝送情報として、図25に示すように、14個のフレームがあるとする。
 <例1>
 例1では、利用割合のみで制御する。この場合、利用割合を「50%:36%:14%」とすると、14個のフレームにおける各NWで送信するフレーム数は下記のとおりである。
 NW-A(50%)=7
 NW-B(36%)=5
 NW-C(14%)=2
 例1の制御は、例えば、NW利用形態設定部180から情報送信装置10に対して利用割合を通知することで実現できる。
 <例2>
 例2では、決定した利用割合に基づいて、図26に示すような情報を作成し、NW利用形態設定部180から情報送信装置10に通知する。
 図26は、フレーム毎に、フレームの特性に応じた伝送経路を指定した情報である。冗長構成をとる場合、1フレームあたり複数の伝送経路が指定される。この場合、送信するフレーム数は19である。実際の制御は、例えば、各々の経路の上限を決めてフレームを振り分け、設定した情報に漸近させるような制御となり、最終的な利用割合は送信結果により決まる。
 例1,例2以外にも、フレーム種別とNW品質の両方を考慮してn(冗長数)とそれぞれの伝送経路を設定することとしてもよく、情報複製やマルチパス形態時の配分/傾斜の制御には様々なバリエーションが想定される。
 (実施例7)
 次に、実施例7を説明する。実施例7では、基地局配備状況に応じて無線アクセスNWの利用「優先度」を変動させる例を説明する。ここでは特に品質重視のポリシーで運用する場合の例を説明する。なお、実施例7及び8において、優先度/利用割合を変動させること(優先度/利用割合を決定する)ことは、NW利用形態判定部160が行ってもよいし、その他の機能部が行ってもよい。
 実施例7では、図27に示すNW構成を想定する。NW-A(5G)、NW-B(5G)、NW-A(LTE)、NW-B(プラチナ)、及びNW-C(プラチナ)のそれぞれが運用するバンドは、予め決まっている。
 実施例7では、収益を重視し、通常は全てのパケットをNW-A経由で送信する。NW-AのNW品質低下やパケット冗長化要求に応じて他社のNWを利用する。利用割合については、例えば、品質重視のポリシーに従って緩やかに変動させる。
 図28に示すAが通常の状態を示している。つまり、通常時において、NW利用形態判定部160は、情報送信装置10にNW-Aを100%利用させると判定する。
 例えば、情報送信装置10の移動や、無線状況の変化により、情報送信装置10が接続する基地局のハンドオーバが発生(現在事象)する、又は、ハンドオーバ発生の予測(未来事象)がなされると、状況が変化する。変化後の例を図28のB~Cに示している。
 上記の現在事象に関しては、現在の情報をデバイスや、リソース状況を管理する機能から取得することで判断できる(参照情報例:時刻/位置情報、基地局配備状況)。
 また、上記の未来事象に関しても、未来の情報をデバイス、リソース状況を管理する機能から取得することで判断できる(参照情報例:時刻/位置情報、基地局配備状況)。
 図28のBに示すように、情報送信装置10が、NW-A(5G)により運用されるn79(4.5-4.6GHz)あるいはn257(27.4-27.8GHz)のカバレッジ地域に移動した場合、広帯域通信を利用するために、優先度を「1:2:2」とし、例えば、NW-Aの利用割合を100%とする。
 Cに示すように、NW-B(5G)とNW-C(5G)により運用されるn77(3.7 GHz帯)のカバレッジ地域に情報送信装置10が移動した場合、優先度を「3:1:2」とし、利用割合を例えば、「0%:80%:20%」とする。
 Dに示すように、NW-B(プラチナ)により運用されるバンド18(815-830MHz、860-875MHz)のカバレッジ地域に情報送信装置10が移動した場合、優先度を「2:1:3」とし、利用割合を例えば、「20%:80%:0%」とする。
 Eに示すように、NW-C(プラチナ)により運用されるバンド8(880-915MHz、925-960MHz)のカバレッジ地域に情報送信装置10が移動した場合、優先度を「2:3:1」とし、利用割合を例えば、「20%:0%:80%」とする。
 (実施例8)
 次に、実施例8を説明する。実施例8では、NW利用契約の容量消費状況に応じて無線アクセスNWの利用「優先度」を変動させる例を説明する。
 実施例8では、各NWのNW料金形態が容量定額制であることを想定している。容量定額制のNW料金形態例を図29に示す。図29において、太実線が、使用容量に応じて段階的に増加する料金(縦軸は左側)を示し、太点線が各段階でのビット単価(縦軸は右側)を示す。料金が定額を保つ最大容量を「定額容量」と呼ぶ。
 追加分(2段階目以降の分)のビット単価は初期の段階の容量分と比較して割高になるのが通例である。ある会社が提供しているサービスのように、2段階定額(2段階目は無制限定額)の場合には、実施例5と同様の動作(無制限定額のNWを優先利用)に移行することとしてもよい。
 実施例8では、通常はNW利用量を平準化する運用とする。なお、同条件であればNW-Aを優先する。また、容量追加(図29の例で、料金の段階が上がること)が最低限になるように定額容量の使い切りを優先する。つまり、容量追加が必要になる前後で優先度を変動させる。
 以下、図30を参照して、ある情報送信装置10に関する制御の例を説明する。なお、図30に示す優先度や利用割合は一例である。また、以下の例では、定額容量の容量切れ(容量を使い切ったこと)をトリガとしているが、容量切れ前の設定閾値(契約容量の残量10%など)をトリガ根拠としても構わない。
 図30に示すAが通常の状態を示している。つまり、通常時において、NW利用形態判定部160は、NW-A、NW-B、NW-Cの優先度を「1:2:3」とし、利用割合を「40%:30%:30%」とする。
 NW利用形態判定部160は、情報送信装置10が、NW-Aの定額容量を使い切ったことを検出すると、Bに示すように、優先度を「3:1:2」とし、利用割合を「0%:60%:40%」とする。
 続いて、NW利用形態判定部160は、情報送信装置10が、更にNW-Bの定額容量を使い切ったことを検出すると、Cに示すように、優先度を「2:3:1」とし、利用割合を「0%:0%:100%」とする。
 そして、NW利用形態判定部160は、情報送信装置10が、全てのNWの定額容量を使い切ったことを検出すると、Dに示すように、優先度を「1:2:3」とし、利用割合を「100%:0%:0%」とする。なお、ここでは、容量追加をNW-A(A社)のみで実施することを想定している。
 その後、NW利用形態判定部160は、情報送信装置10が、NW-Aの追加定額容量を使い切ったことを検出すると、Eに示すように、優先度を「3:1:2」とし、利用割合を「0%:100%:0%」とする。なお、ここでは、容量追加についても平準化することを想定している。
 実施例8により、情報伝送の品質に関する要件充足を前提として、サービス利用者のリソース利用コストを低減することができる。
 実施例8で行ったような優先度の動的変更に関しては、サービス利用要望に応じたシステム上での自動変更形態に加えて、サービス利用者への通知(レコメンド)に基づくサービス利用者主導での変更形態(検知と制御の機能分離)を採用してもよい。
 なお、デバイス(端末)における、容量の使用量(現在値、予測値)、現在位置、未来位置はいずれも、「デバイスの状態」の例である。
 (その他の例)
 本実施の形態に係る制御装置100において、下記の<例1>~<例10>に記載した動作を行うことも可能である。下記の動作は、制御装置100における、予測部、計測部、判定部、設定部のいずれが行ってもよい。
 <例1>
 制御装置100は、デバイス位置に関して、過去の移動履歴、現在の周辺環境状況(イベント情報、信号機の状態、道路工事予定等)、運行計画、デバイス特性のうちのいずれか1つ又は複数から高精度に未来位置を予測する。またそれをベースにNW品質や映像等情報品質を予測し、NW利用形態を判定する。それに加えて映像等情報設定を判定・設定してもよい。
 <例2>
 制御装置100は、デバイス状況(位置、周辺環境など)、NW品質(帯域、遅延など)、映像等情報品質(MDI、VMAF、ビットレート、MOS値など)の変動履歴を参照してNW品質や映像等情報品質を予測して、設定を判定する際に、これまでの予測結果(又は設定結果)と計測結果との差がx%(例:5%)以下であれば予測結果に1に近い大きな係数(例:1-x/100)をかけ、y%(例:20%)以上であれば予測結果に0に近い小さな係数(例:1-2y/100)をかけた値を予測値として参照し、判定結果に反映する。これにより、映像等の情報の想定しない品質劣化を回避することができる。
 <例3>
 制御装置100は、未来予測に関してはその予測に信頼度/確度を設定し、信頼度を係数化あるいは閾値として判定時に活用することとしてもよい。例えば、信頼度を係数に変換して予測値にかける、ある信頼度を下回った場合は特別に低い係数をかける、あるいは0として扱うようにする。
 <例4>
 制御装置100は、ユーザ要望として考えられるコストミニマムな判定だけではなく、無線アクセスNWやサーバリソースを提供する側の対応方針や課金ポリシーに基づいて判定ロジックを設定してもよい。例えば、ミッションクリティカル性を重視してバッファを設けてリソースを提供すること、従量課金制のリソースを優先的に利用すること、などを実行してもよい。
 <例5>
 制御装置100は、事前測定や固定ルールに基づく判定ロジックによる設定だけではなく、機械学習的なアプローチ/AIの活用により設定機構自体を動的に変動させることで、より柔軟な設定を行うこととしてもよい。
 <例6>
 制御装置100は、NW利用形態の判定結果が突発的な状況変化などにより適用できない事態を想定し、判定段階で第2、第3の判定結果を抽出しておき、適用不可の事象発生をトリガとして第2あるいは第3の判定結果を適用することとしてもよい。
 <例7>
 制御装置100において、上記NW利用形態の判定結果が突発的な状況変化などにより適用できない事態をNW利用形態設定部180が検知し、NW利用形態判定部160に通知すると同時に、予め規定されたフェールセーフ機構を臨時適用する、あるいは予め通知されている第2、第3の判定結果の適用を試みることとしてもよい。
 <例8>
 制御装置100は、ある一定期間の情報伝送総量と伝送に使用するNWのビット単価/料金体系からコスト最安のNW利用形態(NW切替/ボンディングのタイミングや方法を含む)を判定してそれを適用してもよい。また、伝送品質向上やコスト低減の目的に応じて推奨するNW利用形態の選択肢をユーザ等に提示し、選択結果に基づいてNW利用形態を選択/適用することとしてもよい。
 <例9>
 制御装置100は、NW利用形態判定結果、映像等の情報設定の判定結果、各種計測/予測値のうちのいずれか又は複数を、映像等の情報の伝送に関わるシステム以外の(例えばデバイス制御などの)他の協調動作/制御機能に活用してもよい。また判定結果等を活用する際に未来予測に関してはその予測の信頼度/確度も合わせて通知してもよい。
 <例10>
 制御装置100は、参照するNW状況の具体例として無線基地局の混雑状況(および混雑見込み)を活用してもよい。またそれらと電波伝搬環境等デバイス状況、あるいは実際のNW品質との相関を分析し、NW品質予測およびNW利用形態判定に反映してもよい。
 <例11>
 本実施の形態に係る技術は、図31に示すように、自動運転車等の自動的に走行する移動体(以下、移動体Aと記述する)にも適用可能である。当該移動体Aは、自動車であってもよいし、農機であってもよいし、ショベルカー等の工事車両であってもよいし、これら以外のものであってもよい。また、移動体Aを「デバイス」と呼んでもよい。
 移動体Aは、自動運転を行うための機能部である自動運転部2Aとともに、本実施の形態における情報送信装置10の機能と情報生成装置30の機能を含む。
 具体的には、移動体Aは、無線でNWを介して通信を行う通信部1A、及びカメラ3Aを備える。当該カメラで撮影された映像(移動体Aの周囲の映像)は通信部1Aにより制御装置100に送られる。なお、映像は「情報」の例である。
 また、例11では、制御装置100の中に、移動体制御部Bが含まれている。当該移動体制御部Bは、移動体Aから受信した映像を解析して、例えば、移動体Aが危険な状態(例:対向車が接近しているような状態)にあることを検知すると、移動体Aの自動運転部2Aに対して停止等を指示することが可能である。なお、移動体制御部Bは、設定機能を含むので、これを設定部と呼んでもよい。
 通信部1Aとカメラ3Aはそれぞれ、本実施の形態においてこれまでに説明したように、制御装置100から、リアクティブ、かつ、プロアクティブな制御を受けることができる。
 例11では、通信部1AについてのNW制御と、カメラ3Aについての映像制御と、自動運転の走行に関わる制御の3つの制御を連動させた制御を実施可能である。制御の例は下記のS1~S3のとおりである。なお、下記の制御は一例である。また、以下で示す「実際の測定値に基づく判断」と「予測値に基づく判断」を組み合わせてもよい。
 <S1>
 NW品質が劣化すると、移動体Aから移動体制御部Bへ送信される映像が劣化して、移動体制御部Bが、移動体Aに対する制御を適切に行えない可能性が生じる。映像の劣化には、例えば、NWの帯域(スループット)減少により、映像が止まってしまうことなどが含まれる。
 そこで、制御装置100のNW品質予測部130が、移動体Aの通信に関して、NW品質(例:帯域、遅延、パケットロス等)が予め定めた閾値よりも劣化することを予測すると(例えば、1秒後に劣化すると予測)、NW利用形態判定部160は、NW品質を向上させるためのNW利用形態(例:1つのNW接続から2つのNW接続に変更)を決定し、NW利用形態設定部180から通信部1AへNW利用形態を設定する。なお、ここでの「帯域、遅延、パケットロス等」は、「情報の伝送に関する品質」の例であり、「閾値」は、「情報の伝送に関する要件」の例である。
 その後、上記の設定変更により、NW品質が向上し、映像に問題が生じなければ、この状態を継続する。
 <S2>
 「S1での制御のみでは、NW品質が閾値よりも劣化したままであるとき、あるいは、移動体制御部Bが受信する映像の品質に問題があるとき(映像が断続的に途切れてしまう等)」(実際の測定値に基づく判断)、又は、「S1での制御のみでは、NW品質が閾値よりも劣化したままであると予測されるとき、あるいは、移動体制御部Bが受信する映像の品質に問題が生じることが予測されるとき」(例えば1秒後の予測値に基づく判断)、情報判定部170は、例えば、カメラ3Aの映像品質(例:解像度、フレームレート)を低下させる決定を行い、決定後の設定情報を情報設定部190からカメラ3Aへ設定する。上記の映像品質低下の設定を行う際には、例えば、1回の低下設定において、予め定めた幅(例:フレームレートを30FPSから10FPSへ変更)だけ低下させることとしてもよい。
 その後、上記の設定変更により、映像に問題が生じなければ、この状態を継続する。
 <S3>
 「S1及びS2での制御のみでは、NW品質が閾値よりも劣化したままであるとき、あるいは、移動体制御部Bが受信する映像の品質に問題があるとき」(実際の測定値に基づく判断)、又は、「S1及びS2での制御のみでは、NW品質が閾値よりも劣化したままであると予測されるとき、あるいは、移動体制御部Bが受信する映像の品質に問題が生じることが予測されるとき」(例えば1秒後の予測値に基づく判断)、移動体制御部Bは、移動体Aの自動運転部2Aに対して、十分な映像が得られなくても安全を確保できるように、速度の低下、経路変更、あるいは、停止等を指示する。
 以上、第1実施形態を説明した。
 [第2実施形態]
 続いて、第2実施形態を説明する。第2実施形態は、第1実施形態に対して、協調制御の対象として、NWのQoS(Quality of Service)制御レベルを追加するものである。この点を除き、第1実施形態と第2実施形態は同じである。第2実施形態においては、第1実施形態で説明したいずれの構成及び動作においても、NWのQoS制御レベルを制御対象とすることができる。QoS制御レベルに対する制御方法に関しては、特定の方法に限定されるわけではなく、動的制御であってもよいし、静的制御であってもよい。
 なお、第2実施形態では、通信優先度の一例としてQoS制御レベルを使用している。「QoS制御レベル」以外のものを「通信優先度」として使用してもよい。
 より具体的には、第2実施形態では、NW品質の計測及び予測について、NWのQoS制御レベル毎に計測及び予測を行い、判定するNW利用形態には、NWのQoS制御レベルが含まれる。
 また、第2実施形態では、NWのQoS制御レベル毎にNW利用形態を制御することができる。例えば、第1実施形態の実施例4~8において、「QoS制御レベル1のNW-A」、「QoS制御レベル2のNW-A」、「QoS制御レベル3のNW-A」、「QoS制御レベル1のNW-B」、「QoS制御レベル2のNW-B」、及び「NW-C」の間で、優先度設定及び利用割合設定を行うことで、NW利用形態の制御を行うことができる。すなわち、各NWにはQoS制御レベル毎に優先度が割り当てられ、NW利用形態判定部160は、当該優先度に基づいて、各NWのQoS制御レべル毎の利用割合をNW利用形態として決定することができる。
 第2実施形態におけるシステム構成、装置構成、動作シーケンス(処理の流れ)は、第1実施形態でのシステム構成、装置構成、動作シーケンス(処理の流れ)と基本的に同じである。協調制御の対象として、NWのQoS制御レベルが追加される点が第1実施形態と異なる。
 図3(構成例1)、図4(構成例2)を参照して、第2実施形態において、機能部間でやりとりされる情報の例を説明する。
 <図3:構成例1>
 NW品質計測部110は、情報受信装置20からQoS制御レベル別のNW品質計測結果を取得し、取得したQoS制御レベル別のNW品質計測結果を記憶部150に格納する。情報品質計測部120は、情報活用装置40から情報品質計測結果を取得し、取得した情報品質計測結果を記憶部150に格納する。
 NW品質予測部130は、記憶部150から、QoS制御レベル別の「デバイス領域側の状況、NW品質の変動履歴、デバイス側の状況を踏まえたNW品質予測結果と計測結果の関係性/相関評価の結果等」を取得し、これらの情報のうちのいずれか1つ又は複数に基づいて、QoS制御レベル別のNW品質予測を行い、QoS制御レベル別のNW品質予測結果を記憶部150に格納する。
 情報品質予測部140は、記憶部150から「デバイス/情報処理領域側の状況、NW/情報品質の変動履歴、デバイス/NW領域側の状況を踏まえた情報品質予測結果と計測結果の関係性/相関評価の結果等」を取得し、これらの情報のうちのいずれか1つ又は複数に基づいて、情報品質予測を行い、情報品質予測結果を記憶部150に格納する。
 NW利用形態判定部160は、記憶部150から「情報伝送要件、デバイス領域側の状況、NW品質の変動履歴、NW品質予測結果(信頼度/確度を含む)、デバイス/NW領域側の状況を踏まえたNW利用形態判定結果とNW/情報品質計測結果の関係性/相関評価の結果等」を取得する。なお、NW品質の変動履歴、及びNW品質予測結果は、それぞれ、QoS制御レベル別の情報である。
 NW利用形態判定部160は、上記の情報のうちのいずれか1つ又は複数を用いてNW利用形態判定を行って、NW利用形態判定結果を記憶部150に格納するとともに、情報設定判定部170とNW利用形態設定部180にNW利用形態判定結果を通知する。NW利用形態判定部160により判定されたNW利用形態判定結果には、QoS制御を行うNWに関して、QoS制御レベルが含まれる。
 情報設定判定部170は、記憶部150から「情報伝送要件、デバイス/情報処理領域側の状況、NW/情報品質の変動履歴、NW/情報品質予測結果(信頼度/確度を含む)、デバイス/NW領域側の状況とNW利用形態判定結果に基づく情報設定判定結果と情報品質計測結果の関係性/相関評価の結果」を取得する。なお、NW品質の変動履歴、及びNW品質予測結果は、それぞれ、QoS制御レベル別の情報である。
 情報設定判定部170は、上記の情報のうちのいずれか1つ又は複数を用いて情報設定判定を行い、情報判定結果を記憶部150に格納するとともに、情報設定部190に通知する。
 NW利用形態設定部180は、NW利用形態判定部160からNW利用形態判定結果を受信し、それを情報送信装置10に設定する。上記のとおり、NW利用形態判定結果にはQoS制御レベルが含まれる。情報設定部190は、情報設定判定部170から情報設定判定結果を受信し、それに基づき、情報生成装置30へ情報設定を行う。
 <図4:構成例2>
 第1実施形態において説明したとおり、構成例2は、NW利用形態判定結果に含まれるNW利用形態候補が複数ある場合の例である。第2実施形態においても、図3の構成例1と図4の構成例2において、存在する機能部は同じである。図3の構成例1と異なる主な点を説明する。なお、NW利用形態判定結果に含まれるNW利用形態候補が複数ある場合であっても、構成例1での処理を行うこととしてもよい。
 構成例2では、NW利用形態判定部160は、信頼度/確度を含むNW利用判定結果(QoS制御レベルを含む)を得て、これを情報設定判定部170に通知する。情報設定判定部170は、情報設定の判定を行い、情報設定判定の根拠としたNW利用形態(QoS制御レベルを含む)をNW利用形態設定部180に通知する。
 以下、NWのQoS制御レベルを制御対象として含む場合における具体的な動作例として、実施例2-1(第2実施形態における実施例1の意図)と実施例2-2を説明する。実施例2-1、2-2いずれの場合も、システム構成、装置構成は第1実施形態と同じであり、例えば図2~図4に示したとおりである。つまり、図2に示すように、情報送信装置10は、NW-A、NW-B、NW-Cのいずれか1つ又はいずれか2つ又は3つ全部を利用して、情報受信装置20と通信可能である。実施例においては、情報送信装置10を「デバイス」と呼ぶ場合がある。
 また、以下の実施例では、NWのQoS制御レベルの値としてQCI(QoS Class Identifier、QoSクラス識別子)を使用する。QCIにより、NWの帯域(速度)、遅延、パケットロス率等がどの程度保証されるか(あるいは帯域保証されないか)が識別される。NWのQoS制御レベルの値としてQCIを使用することは例であり、NWのQoS制御レベルの値としてQCI以外の情報を使用してもよい。
 (実施例2-1)
 実施例2-1では、NW品質予測部130が、あるデバイス(情報送信装置10)について、時刻、デバイス位置、NW品質計測結果(例:受信側で測定した品質)から、NW品質を予測し、NW利用形態判定部160が、その予測結果に基づいて、当該デバイスのNW利用形態を判定する。つまり、実施例2-1ではプロアクティブ制御の例を説明する。
 なお、下記の実施例2-1における処理では、NW品質予測部130によるNW品質予測結果を記憶部150に一旦格納し、NW利用形態判定部160が記憶部150からNW品質予測結果を読み出して判定に利用することを想定しているが、このような処理に限定されない。NW品質予測部130により得られたNW品質予測結果を、NW利用形態判定部160に対して直接に通知することとしてもよい。
 図32は、実施例2-1において使用するNW(QoS制御を行うNWの場合はQCIを含む)における、NW利用リソースの効率を昇順で示したものである。つまり、QCI=131でQoS制御がなされるNW-Aのリソース効率が最も悪く、NW-Cのリソース効率が最も良い。
 リソース効率が悪いとは、例えば、帯域保証をしているために、帯域保証対象の通信トラフィックがない場合でも、その帯域を他の通信により十分に使用できないような状況を意味する。リソース効率が良いとは、例えば、QoS制御がなされない、ベストエフォートでの通信が該当する。帯域保証を行う複数QCI間でも、帯域保証等の程度に応じて、リソース効率の良し悪しが生じる。
 以降、QCI=mでQoS制御がなされる場合のNW-XをNW-X(QCI:m)と記述する。
 図33に、実施例2-1において、記憶部150に格納されている情報の例を示す。図33に示すように、記憶部150には、デバイス位置、及びNW品質予測結果についての時刻(過去、現在、未来)毎の値が格納されている。NW品質計測結果については、過去と現在の値が格納されている。
 上記値は、NW毎の値である。また、QoS制御が行われるNWについては、上記の値はQCI毎の値となる。例えば、未来の時刻(09:10:13)において、NW-A(QCI=131)のNW品質予測結果(ここでは帯域の予測結果)は100Mbpsであり、NW-A(QCI=130)のNW品質予測結果は50Mbpsであり、NW-A(QCI=9)のNW品質予測結果は5Mbpsである。また、NW-BのNW品質予測結果は20Mbpsであり、NW-CのNW品質予測結果は1Mbpsである。
 また、実施例2-1では、NW利用形態判定の対象となるデバイスについての要件/要望が、「帯域要件:120Mbps、ユーザ要望:NW-A優先、リソースの高効率利用志向」であり、この情報が記憶部150に格納されているとする。図33に示す予測値、及び「帯域要件:120Mbps、ユーザ要望:NW-A優先、リソースの高効率利用志向」に基づいて、NW利用形態判定部160により判定されたNW利用形態候補の例を図34に示す。
 図34において、NW-A(QCI=131)に対するNW利用形態である「100Mbps(優先度1)」は、帯域要件(=120Mbps)のうちの100Mbps分の通信に対して、最高優先度でNW-A(QCI=131)を利用することを意味する。また、本例では、「リソースの高効率利用志向」であり、QoS制御を行わないNW-Bは、予測帯域が20Mbpsであることから、NW-Bは、NW利用形態として「20Mbps(優先度2)」と判定されている。
 NW利用形態判定部160は、判定により得られた、図34に示す候補に基づき、デバイスのNW利用形態として、基本的には、「NW-A(CQI=131)とNW-Bを利用」を決定することができる。
 この場合、判定結果である「NW-A(CQI=131)とNW-Bを利用」が、NW利用形態判定部160(又は情報設定判定部170)からNW利用形態設定部180に通知され、NW利用形態設定部180からデバイスに対して「NW-A(CQI=131)とNW-Bを利用」が設定される。これにより、デバイスは、NW-A(CQI=131)とNW-Bを利用して情報送信を実行する。
 また、NW利用形態判定部160は、図34に示す情報を、NW利用形態設定部180に通知し、NW利用形態設定部180が、図34に示す情報をデバイスに設定してもよい。
 図34に示す情報を受信したデバイスは、優先度情報に基づいて、基本的には、NW-A(CQI=131)とNW-Bを利用して情報送信を行い、帯域が不足する場合には、NW-A(CQI=131)とNW-Bに加えて、「NW-A(QCI=9)」あるいは「NW-A(QCI=9)とNW-Cの両方」を利用することができる。
 NW-A(QCI=9)とNW-Cの両方を利用する際には、重み付けラウンドロビンでNW-A(QCI=9)とNW-Cを交互に利用してもよい。なお、重み付けの分だけ、一方のNWのほうが、利用時間が大きくなる。
 なお、実施例2-1のようなプロアクティブ制御は、予め定めた時間間隔で行ってもよいし、利用中のNWについてのNW品質予測結果に予め定めた閾値以上の変化が発生した場合に行ってもよい。
 (実施例2-2)
 続いて、実施例2-2を説明する。実施例2-2では、NW利用形態判定部160が、あるデバイス(情報送信装置10)について、時刻、デバイス位置、NW品質計測結果(例:受信側で測定した品質)から、NW利用形態を変更する例を説明する。つまり、実施例2-2ではリアクティブ制御の例を説明する。
 なお、下記の実施例2-2の処理では、時刻/位置情報、及び、NW品質計測部130により取得されたNW品質計測結果を記憶部150に一旦格納し、NW利用形態判定部160が記憶部150からこれらの情報を読み出して判定に利用することを想定しているが、このような処理に限定されない。時刻/位置情報、及び、NW品質計測部130により取得されたNW品質計測結果を、NW利用形態判定部160に対して直接に通知することとしてもよい。
 実施例2-2におけるNW利用リソースの効率は、実施例2-1と同じであり、図32に示したとおりである。また、実施例2-1と同様に、QCI=mでQoS制御がなされる場合のNW-XをNW-X(QCI:m)と記述する。
 図35に、実施例2-2において、記憶部150に格納される情報の例を示す。図35に示すように、記憶部150には、デバイス位置、NW品質計測結果、及びNW品質予測結果についての過去及び現在の値が格納されている。
 上記値は、NW毎の値である。また、QoS制御が行われるNWについては、上記の値はQCI毎の値となる。例えば、現在の時刻(09:10:12.134)において、NW-A(QCI=131)のNW品質計測結果は100Mbpsであり、NW-A(QCI=130)のNW品質計測結果は50Mbpsであり、NW-A(QCI=9)のNW品質計測結果は5Mbpsである。また、NW-BのNW品質計測結果は5Mbpsであり、NW-CのNW品質計測結果は1Mbpsである。
 実施例2-2において、NW利用形態判定の対象となるデバイスについての要件/要望は実施例2-1と同じであり、「帯域要件:120Mbps、ユーザ要望:NW-A優先、リソースの高効率利用志向」が記憶部150に格納されている。
 実施例2-2では、まず、デバイスは、実施例2-1での判定及び設定に基づき、NW-A(QCI=131)とNW-Bを利用した情報送信を行っているものとする。
 ここで、ある現在時刻において、図35に示すように、NW-BでのNW品質計測結果が、25Mbpsから5Mbpsに劣化したとする。このような状況は、例えば、当該時刻において、デバイスがNW-Bのエリア(セル)の周辺部分に移動した状況、あるいは、NW-Bの基地局とデバイスとの間に高い建物等が存在するような状況であることが想定される。あるいは、当該時刻において、NW-Bのエリアにおいて他のデバイスが増加したことなどにより、NW-Bが混雑してきたような状況になったことが想定される。
 例えば、NW利用形態判定部160は、NW品質計測結果に基づき、NW品質がある閾値を下回ることを検知すると、NW利用形態を変更する。ここで、閾値との比較の対象とするNWは、現在利用しているNW(本例では、NW-A(CQI=131)とNW-B)であるが、これに限定されない。
 本例では、例えば、NW-BのNW品質計測結果についての閾値が10Mbpsであるとすると、図35の現在時刻において、NW-BのNW品質計測結果が5Mbpsなので、閾値を下回っている。
 よって、NW利用形態判定部160は、現在のNW品質に基づいて、NW利用形態候補を図36に示すとおりの形態へ変更する。
 図36に示すように、本例では、「NW-A(QCI=130)」についての判定結果が、「0Mbps(使用しない)」から「50Mbps(優先度2)」になり、「NW-B」についての判定結果が、「20Mbps(優先度2)」から「無制限(重み付けラウンドロビン(優先度5)」になる。
 つまり、主にNW-A(QCI=131)とNW-Bでの情報伝送から、主にNW-A(QCI=131)とNW-A(QCI=130)での情報伝送に切り替えが行われる。
 具体的には、判定結果である「NW-A(QCI=131)とNW-A(QCI=130)を利用」が、NW利用形態判定部160(又は情報設定判定部170)からNW利用形態設定部180に通知され、NW利用形態設定部180からデバイスに対して「NW-A(QCI=131)とNW-A(QCI=130)を利用」が設定される。
 また、実施例2-1と同様に、デバイスは、帯域が不足する場合には、NW-A(QCI=131)とNW-A(QCI=130)に加えて、NW-A(QCI=9)とNW-CとNW-A(QCI=9)のうちのいずれ1つ又はいずれか複数又は全部を優先度に応じて利用することができる。
 上記のNW利用形態判定の変更内容は一例である。例えば、デバイスが1回線のみを利用している場合において、ベストエフォート回線からQoS制御された優先回線に切り替える変更を行う場合もあるし、QoS制御された優先回線を追加する変更(複数回線利用への変更)を行う場合もある。
 (ハードウェア構成例)
 第1実施形態及び第2実施形態で説明した制御装置100は、例えば、コンピュータに、本実施の形態で説明する処理内容を記述したプログラムを実行させることにより実現可能である。このコンピュータは、物理的なコンピュータであってもよいし、クラウド上の仮想マシンであってもよい。
 すなわち、制御装置100は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、当該装置で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。
 図37は、上記コンピュータのハードウェア構成例を示す図である。図37のコンピュータは、それぞれバスBSで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、出力装置1008等を有する。
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、制御装置100に係る機能を実現する。インタフェース装置1005は、ネットワーク等に接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。
 (実施の形態の効果)
 本実施の形態に係る技術により、情報伝送方法をプロアクティブかつリアクティブに制御することが可能となる。すなわち、過去履歴を踏まえた現在状況の分析に基づくリアクティブ制御の高精度化および過去/現在の分析と予定/計画を踏まえた未来予測に基づくプロアクティブ制御の高精度化が実現される。
 <付記1>
 以上の実施形態に関し、更に以下の付記項を付記1として開示する。
(付記項1)
 情報の伝送に関する品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定部と、
 前記判定部により判定された前記ネットワーク利用形態を、前記デバイスに設定する設定部と、を備え、
 前記判定部は、前記デバイスが利用しているネットワークの状態、又は、前記デバイスの状態に基づいて、前記ネットワーク利用形態を変更する
 制御装置。
(付記項2)
 前記判定部は、前記情報の品質に関する予測値と、前記情報の品質に関する要件とに基づいて、前記情報の送信品質を判定し、
 前記設定部は、前記判定部により判定された前記送信品質を前記デバイスに設定する
 付記項1に記載の制御装置。
(付記項3)
 前記判定部は、ネットワークに影響する未来の予定の情報に基づいて、前記ネットワーク利用形態を判定する
 付記項1又は2に記載の制御装置。
(付記項4)
 前記ネットワーク利用形態は、前記デバイスが利用する1つ又は複数のネットワークを含み、各ネットワークには優先度が割り当てられ、前記判定部は、前記優先度に基づいて、各ネットワークの利用割合を決定する
 付記項1ないし3のうちいずれか1項に記載の制御装置。
(付記項5)
 前記判定部は、前記デバイスの状態に基づいて、ネットワーク毎の優先度を変動させる
 付記項4に記載の制御装置。
(付記項6)
 前記デバイスは、走行する移動体であり、
 前記判定部は、前記ネットワーク利用形態の変更後における、前記情報の品質の測定値又は予測値に基づいて、前記デバイスに対して前記走行に関する制御を行うか否かを判定し、
 前記判定部により前記走行に関する制御を行うと判定された場合に、前記設定部は、前記デバイスに対して前記走行に関する制御を行う
 付記項1ないし5のうちいずれか1項に記載の制御装置。
(付記項7)
 前記デバイスの状態として、前記デバイスの位置情報を取得する位置取得部
 を更に備える付記項1ないし6のうちいずれか1項に記載の制御装置。
(付記項8)
 制御装置が実行する制御方法であって、
 情報の伝送に関する品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定ステップと、
 前記判定ステップにより判定された前記ネットワーク利用形態を、前記デバイスに設定する設定ステップと、
 前記デバイスが利用しているネットワークの状態、又は、前記デバイスの状態に基づいて、前記ネットワーク利用形態を変更する変更ステップと
 を備える制御方法。
(付記項9)
 コンピュータを、付記項1ないし7のうちいずれか1項に記載の制御装置における各部として機能させるためのプログラムを記憶した非一時的記憶媒体。
 <付記2>
(付記項1)
 通信優先度毎のネットワーク品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定部と、
 前記判定部により判定された前記ネットワーク利用形態を、前記デバイスに設定する設定部と、を備え、
 前記判定部は、前記デバイスが利用しているネットワークの通信優先度毎の品質計測結果に基づいて、前記ネットワーク利用形態を変更する
 制御装置。
(付記項2)
 前記判定部は、前記情報の品質に関する予測値と、前記情報の品質に関する要件とに基づいて、前記情報の送信品質を判定し、
 前記設定部は、前記判定部により判定された前記送信品質を前記デバイスに設定する
 付記項1に記載の制御装置。
(付記項3)
 前記判定部は、ネットワークに影響する未来の予定の情報に基づいて、前記ネットワーク利用形態を判定する
 付記項1に記載の制御装置。
(付記項4)
 前記ネットワーク利用形態に関する判定の対象となる各ネットワークには通信優先度毎に優先度が割り当てられ、前記判定部は、前記優先度に基づいて、各ネットワークの通信優先度毎の利用割合を決定する
 付記項1に記載の制御装置。
(付記項5)
 前記デバイスは、走行する移動体であり、
 前記判定部は、前記情報の品質の測定値又は予測値に基づいて、前記デバイスに対して前記走行に関する制御を行うか否かを判定し、
 前記判定部により前記走行に関する制御を行うと判定された場合に、前記設定部は、前記デバイスに対して前記走行に関する制御を行う
 付記項1に記載の制御装置。
(付記項6)
 前記デバイスの位置情報を取得する位置取得部
 を更に備える付記項1に記載の制御装置。
(付記項7)
 制御装置が実行する制御方法であって、
 通信優先度毎のネットワーク品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定ステップと、
 前記判定ステップにより判定された前記ネットワーク利用形態を、前記デバイスに設定する設定ステップと、
 前記デバイスが利用しているネットワークの通信優先度毎の品質計測結果に基づいて、前記ネットワーク利用形態を変更する変更ステップと
 を備える制御方法。
(付記項8)
 コンピュータを、付記項1ないし6のうちいずれか1項に記載の制御装置における各部として機能させるためのプログラムを記憶した非一時的記憶媒体。
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本特許出願は2022年6月14日に出願した国際特許出願PCT/JP2022/023862に基づきその優先権を主張するものであり、国際特許出願PCT/JP2022/023862の全内容を本願に援用する。
A 移動体
1A 通信部
2A 自動運転部
3A カメラ
B 移動体制御部
10 情報送信装置
20 情報受信装置
30 情報生成装置
40 情報活用装置
100 制御装置
110 NW品質計測部
120 情報品質計測部
130 NW品質予測部
140 情報品質予測部
150 記憶部
160 NW利用形態判定部
170 情報設定判定部
180 NW利用形態設定部
190 情報設定部
200 予定/計画DB
300 過去履歴/現在状況DB
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置

Claims (8)

  1.  通信優先度毎のネットワーク品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定部と、
     前記判定部により判定された前記ネットワーク利用形態を、前記デバイスに設定する設定部と、を備え、
     前記判定部は、前記デバイスが利用しているネットワークの通信優先度毎の品質計測結果に基づいて、前記ネットワーク利用形態を変更する
     制御装置。
  2.  前記判定部は、前記情報の品質に関する予測値と、前記情報の品質に関する要件とに基づいて、前記情報の送信品質を判定し、
     前記設定部は、前記判定部により判定された前記送信品質を前記デバイスに設定する
     請求項1に記載の制御装置。
  3.  前記判定部は、ネットワークに影響する未来の予定の情報に基づいて、前記ネットワーク利用形態を判定する
     請求項1に記載の制御装置。
  4.  前記ネットワーク利用形態に関する判定の対象となる各ネットワークには通信優先度毎に優先度が割り当てられ、前記判定部は、前記優先度に基づいて、各ネットワークの通信優先度毎の利用割合を決定する
     請求項1に記載の制御装置。
  5.  前記デバイスは、走行する移動体であり、
     前記判定部は、前記情報の品質の測定値又は予測値に基づいて、前記デバイスに対して前記走行に関する制御を行うか否かを判定し、
     前記判定部により前記走行に関する制御を行うと判定された場合に、前記設定部は、前記デバイスに対して前記走行に関する制御を行う
     請求項1に記載の制御装置。
  6.  前記デバイスの位置情報を取得する位置取得部
     を更に備える請求項1に記載の制御装置。
  7.  制御装置が実行する制御方法であって、
     通信優先度毎のネットワーク品質の予測値と、情報の伝送に関する要件とに基づいて、デバイスのネットワーク利用形態を判定する判定ステップと、
     前記判定ステップにより判定された前記ネットワーク利用形態を、前記デバイスに設定する設定ステップと、
     前記デバイスが利用しているネットワークの通信優先度毎の品質計測結果に基づいて、前記ネットワーク利用形態を変更する変更ステップと
     を備える制御方法。
  8.  コンピュータを、請求項1ないし6のうちいずれか1項に記載の制御装置における各部として機能させるためのプログラム。
PCT/JP2023/017850 2022-06-14 2023-05-12 制御装置、制御方法、及びプログラム WO2023243274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2022/023862 2022-06-14
PCT/JP2022/023862 WO2023242967A1 (ja) 2022-06-14 2022-06-14 制御装置、制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2023243274A1 true WO2023243274A1 (ja) 2023-12-21

Family

ID=89191131

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/023862 WO2023242967A1 (ja) 2022-06-14 2022-06-14 制御装置、制御方法、及びプログラム
PCT/JP2023/017850 WO2023243274A1 (ja) 2022-06-14 2023-05-12 制御装置、制御方法、及びプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023862 WO2023242967A1 (ja) 2022-06-14 2022-06-14 制御装置、制御方法、及びプログラム

Country Status (1)

Country Link
WO (2) WO2023242967A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199381A (ja) * 2007-02-14 2008-08-28 Hitachi Ltd 移動体通信システム
WO2014087671A1 (ja) * 2012-12-06 2014-06-12 日本電気株式会社 通信ネットワークにおける無線通信端末およびネットワーク通信負荷推定方法
WO2019106787A1 (ja) * 2017-11-30 2019-06-06 本田技研工業株式会社 車両制御装置、それを有する車両、および制御方法
WO2020217459A1 (ja) * 2019-04-26 2020-10-29 日本電信電話株式会社 通信装置及び通信システム
WO2021038961A1 (ja) * 2019-08-30 2021-03-04 ソニー株式会社 判定装置、判定方法および判定プログラム
WO2021149230A1 (ja) * 2020-01-23 2021-07-29 日本電信電話株式会社 最適化エンジン、最適化方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9888429B2 (en) * 2011-08-12 2018-02-06 Sk Telecom Co., Ltd. Multi-network based simultaneous data transmission method and apparatuses applied to the same
JP6786407B2 (ja) * 2017-01-23 2020-11-18 株式会社クボタ 作業車無線管理システム
JP2021005801A (ja) * 2019-06-26 2021-01-14 パナソニックIpマネジメント株式会社 路側装置および通信輻輳制御方法
JP7384773B2 (ja) * 2020-09-29 2023-11-21 Kddi株式会社 通信システム、送信局、移動局、通信方法及びコンピュータプログラム
JP7468321B2 (ja) * 2020-12-03 2024-04-16 株式会社デンソー 通信制御装置、通信制御方法、及び中継サーバ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199381A (ja) * 2007-02-14 2008-08-28 Hitachi Ltd 移動体通信システム
WO2014087671A1 (ja) * 2012-12-06 2014-06-12 日本電気株式会社 通信ネットワークにおける無線通信端末およびネットワーク通信負荷推定方法
WO2019106787A1 (ja) * 2017-11-30 2019-06-06 本田技研工業株式会社 車両制御装置、それを有する車両、および制御方法
WO2020217459A1 (ja) * 2019-04-26 2020-10-29 日本電信電話株式会社 通信装置及び通信システム
WO2021038961A1 (ja) * 2019-08-30 2021-03-04 ソニー株式会社 判定装置、判定方法および判定プログラム
WO2021149230A1 (ja) * 2020-01-23 2021-07-29 日本電信電話株式会社 最適化エンジン、最適化方法、及びプログラム

Also Published As

Publication number Publication date
WO2023242967A1 (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
Duan et al. SDN enabled dual cluster head selection and adaptive clustering in 5G-VANET
US10679431B2 (en) Systems and methods for multi-vehicle adaptive data collection in a network of moving things, for example including autonomous vehicles
Dharmaraja et al. Reliability and survivability of vehicular ad hoc networks: An analytical approach
Kumari et al. AMGRP: AHP-based multimetric geographical routing protocol for urban environment of VANETs
Qian et al. Survey on reinforcement learning applications in communication networks
CN107249169B (zh) 车载网络环境下基于雾节点的事件驱动的数据收集方法
Sciancalepore et al. Slice as a service (SlaaS) optimal IoT slice resources orchestration
JP7184171B2 (ja) 通信装置及び通信システム
US10708823B2 (en) Systems and methods for cooperative, dynamic, and balanced access to the infrastructure supporting the network of moving things, for example including autonomous vehicles
US20180316764A1 (en) Captive portal-related control and management in a network of moving things
EP2790424B1 (en) Mobility management method, system and equipment for group terminals
CN104640224A (zh) 一种网络数据传输方法、装置及系统
US20220190941A1 (en) Terminal and communication system
Monteiro et al. Context-aware network selection in heterogeneous wireless networks
Jiao et al. Predictive big data collection in vehicular networks: A software defined networking based approach
KR100826914B1 (ko) 이동통신 시스템에서의 QoS제어 방법 및 장치
Hapanchak et al. An intelligent path management in heterogeneous vehicular networks
US20140287758A1 (en) Method and System for Load Balancing of Large File Transfers on a Wireless Network
Dhar et al. Intelligent vertical handover scheme for utopian transport scenario
WO2023243274A1 (ja) 制御装置、制御方法、及びプログラム
CN115398873A (zh) 边缘云计算层中移动客户端控制的进程的弹性转移和适配
Chebaane et al. Time‐Critical Fog Computing for Vehicular Networks
Altahrawi et al. Service-oriented lstm multi-criteria rat selection scheme for vehicle-to-infrastructure communication
Tshilongamulenzhe et al. Traffic-based Congestion Management algorithm for Wireless Sensor networks
Rostami et al. A multi-rate congestion controller for pedestrian communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823577

Country of ref document: EP

Kind code of ref document: A1