WO2023243013A1 - 負極活物質層、負極及びリチウムイオン二次電池 - Google Patents

負極活物質層、負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2023243013A1
WO2023243013A1 PCT/JP2022/024003 JP2022024003W WO2023243013A1 WO 2023243013 A1 WO2023243013 A1 WO 2023243013A1 JP 2022024003 W JP2022024003 W JP 2022024003W WO 2023243013 A1 WO2023243013 A1 WO 2023243013A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
material layer
positive electrode
Prior art date
Application number
PCT/JP2022/024003
Other languages
English (en)
French (fr)
Inventor
浩 笹川
敬史 毛利
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2022/024003 priority Critical patent/WO2023243013A1/ja
Publication of WO2023243013A1 publication Critical patent/WO2023243013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material layer, a negative electrode, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are also widely used as a power source for mobile devices such as mobile phones and notebook computers, and hybrid cars.
  • Charging and discharging of a lithium ion secondary battery is carried out by an active material layer containing an active material.
  • an active material layer containing an active material.
  • studies are being conducted on the structure within the active material layer.
  • Patent Documents 1 and 2 describe active material layers containing fillers in a predetermined shape.
  • Patent Documents 3 and 4 describe the use of two types of lithium cobalt oxides having different tap densities as active materials.
  • Patent Document 5 describes an active material layer in which carbon nanofibers are added to a binder.
  • Patent Document 6 describes an active material layer in which fibrous carbon is added to a binder.
  • a negative electrode active material containing silicon undergoes large volumetric expansion during charging.
  • the volumetric expansion of the negative electrode active material causes a decrease in the cycle characteristics of the battery.
  • the negative electrode active material expands in volume, for example, the conductive path between the negative electrode active materials is cut, separation occurs at the interface between the negative electrode active material layer and the current collector, and cracks occur in the SEI (Solid Electrolyte Interphase) film. Decomposition of the electrolyte will occur. These deteriorate the cycle characteristics of the battery.
  • SEI Solid Electrolyte Interphase
  • the present disclosure has been made in view of the above problems, and aims to provide a negative electrode active material layer, a negative electrode, and a lithium ion secondary battery whose charge/discharge characteristics are less likely to deteriorate.
  • the negative electrode active material layer according to the first aspect includes a negative electrode active material and a fibrous material.
  • the negative electrode active material includes silicon.
  • the fibrous material includes one or more selected from the group consisting of titanium oxide, potassium titanate, aluminum oxide, silicon carbide, silicon nitride, and silicon oxide.
  • the fiber length of the fibrous substance is 20 ⁇ m or more and 150 ⁇ m or less. The value obtained by dividing the layer thickness of the negative electrode active material layer by the fiber length is 0.4 or more and 1.0 or less.
  • the average interparticle distance of the negative electrode active material may be 3.0 ⁇ m or more and 4.5 ⁇ m or less.
  • the fibrous material may contain any one or more selected from the group consisting of titanium oxide, potassium titanate, and aluminum oxide.
  • the negative electrode according to the second aspect includes the negative electrode active material layer according to the above aspect.
  • a lithium ion secondary battery includes the negative electrode according to the above aspect, a positive electrode facing the negative electrode, and an electrolyte connecting the negative electrode and the positive electrode.
  • the negative electrode active material layer, the negative electrode, and the lithium ion secondary battery according to the above embodiments do not easily deteriorate in charge/discharge characteristics.
  • FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to a first embodiment.
  • FIG. 2 is an enlarged schematic diagram of a characteristic portion of the negative electrode active material layer according to the first embodiment.
  • FIG. 1 is a schematic diagram of a lithium ion secondary battery according to a first embodiment.
  • a lithium ion secondary battery 100 shown in FIG. 1 includes a power generation element 40, an exterior body 50, and an electrolyte (for example, a nonaqueous electrolyte).
  • Exterior body 50 covers the periphery of power generation element 40 .
  • the power generating element 40 is connected to the outside through a pair of connected terminals 60 and 62.
  • the non-aqueous electrolyte is contained within the exterior body 50.
  • FIG. 1 illustrates a case in which there is one power generation element 40 in the exterior body 50, a plurality of power generation elements 40 may be stacked.
  • the power generating element 40 includes a separator 10, a positive electrode 20, and a negative electrode 30.
  • the power generating element 40 may be a laminate in which these are laminated, or a wound body in which a structure in which these are laminated is wound.
  • the positive electrode 20 includes, for example, a positive electrode current collector 22 and a positive electrode active material layer 24.
  • the positive electrode active material layer 24 is in contact with at least one surface of the positive electrode current collector 22 .
  • the positive electrode current collector 22 is, for example, a conductive plate material.
  • the positive electrode current collector 22 is, for example, a thin metal plate made of aluminum, copper, nickel, titanium, stainless steel, or the like. Aluminum, which is light in weight, is preferably used for the positive electrode current collector 22.
  • the average thickness of the positive electrode current collector 22 is, for example, 10 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode active material layer 24 includes, for example, a positive electrode active material.
  • the positive electrode active material layer 24 may contain a conductive additive and a binder, if necessary.
  • the positive electrode active material is an electrode active material that is capable of reversibly occluding and deintercalating lithium ions, deintercalating and intercalating lithium ions, or doping and dedoping lithium ions and counter anions. including.
  • the positive electrode active material is, for example, a composite metal oxide.
  • the positive electrode active material may be a lithium-free material.
  • lithium-free materials include FeF 3 , conjugated polymers containing organic conductive substances, Chevrel phase compounds, transition metal chalcogenides, vanadium oxides, niobium oxides, and the like. Any one of the lithium-free materials may be used alone, or a plurality of them may be used in combination. If the positive electrode active material is a material that does not contain lithium, for example, discharge is performed first. Lithium is inserted into the positive electrode active material by discharge. In addition, lithium may be pre-doped chemically or electrochemically into a material in which the positive electrode active material does not contain lithium.
  • the conductive additive increases the electronic conductivity between the positive electrode active materials.
  • the conductive aid include carbon powder, carbon nanotubes, carbon materials, fine metal powders, mixtures of carbon materials and fine metal powders, and conductive oxides.
  • the carbon powder include carbon black, acetylene black, and Ketjen black.
  • the metal fine powder is, for example, copper, nickel, stainless steel, iron, or the like powder.
  • the content of the conductive additive in the positive electrode active material layer 24 is not particularly limited.
  • the content of the conductive additive is 0.5% by mass or more and 20% by mass or less, preferably 1% by mass or more and 5% by mass or less based on the total mass of the positive electrode active material, conductive additive, and binder. .
  • the binder in the positive electrode active material layer 24 binds the positive electrode active materials to each other.
  • a known binder can be used.
  • the binder is preferably one that does not dissolve in the electrolytic solution, has oxidation resistance, and has adhesive properties.
  • the binder is, for example, a fluororesin.
  • binder examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole (PBI), and Ether sulfone (PES), polyacrylic acid and its copolymers, metal ion crosslinked polyacrylic acid and its copolymers, polypropylene (PP) or polyethylene (PE) grafted with maleic anhydride, and mixtures thereof.
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • PA polyamide
  • PI polyimide
  • PAI polyamideimide
  • PBI polybenzimidazole
  • polyacrylic acid and its copolymers metal ion crosslinked polyacrylic acid and its copolymers
  • PP polypropylene
  • PE polyethylene
  • the binder content in the positive electrode active material layer 24 is not particularly limited.
  • the content of the binder is 1% by mass or more and 15% by mass or less, preferably 1.5% by mass or more and 5% by mass or less with respect to the total mass of the positive electrode active material, conductive aid, and binder. If the binder content is low, the adhesive strength of the positive electrode 20 will be weakened. When the binder content is high, the binder is electrochemically inert and does not contribute to the discharge capacity, so the energy density of the lithium ion secondary battery 100 becomes low.
  • the negative electrode 30 includes, for example, a negative electrode current collector 32 and a negative electrode active material layer 34.
  • the negative electrode active material layer 34 is formed on at least one surface of the negative electrode current collector 32.
  • the negative electrode current collector 32 is, for example, a conductive plate material. As the negative electrode current collector 32, the same one as the positive electrode current collector 22 can be used.
  • FIG. 2 is an enlarged schematic diagram of characteristic parts of the negative electrode active material layer 34.
  • the negative electrode active material layer 34 includes, for example, a negative electrode active material 1, a fibrous material 2, a conductive support agent 3, and a binder (not shown).
  • the negative electrode active material layer 34 may also contain other substances such as a dispersion stabilizer.
  • the negative electrode active material 1 contains silicon.
  • the negative electrode active material 1 may be single silicon, a silicon alloy, a silicon compound, or a silicon composite.
  • the negative electrode active material 1 may be crystalline or amorphous.
  • a silicon alloy is represented by, for example, X n Si.
  • X is a cation.
  • X is, for example, Ba, Mg, Al, Zn, Sn, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, W, Au, Ti, Na , K, etc.
  • n satisfies 0 ⁇ n ⁇ 0.5.
  • the silicon compound is, for example, silicon oxide expressed as SiO x .
  • x satisfies 0.8 ⁇ x ⁇ 2.
  • the silicon oxide may be made of only SiO 2 , only SiO, or a mixture of SiO and SiO 2 . Further, silicon oxide may be partially deficient in oxygen.
  • a silicon composite is, for example, one in which at least a portion of the surface of particles of silicon or a silicon compound is coated with a conductive material.
  • the conductive material include carbon materials, Al, Ti, Fe, Ni, Cu, Zn, Ag, and Sn.
  • Si--C silicon carbon composite material
  • the average interparticle distance L of the negative electrode active material 1 is, for example, 3.0 ⁇ m or more and 4.5 ⁇ m or less.
  • the average interparticle distance L can be measured with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average particle diameter of the negative electrode active material 1 is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 7 ⁇ m or less.
  • the average particle diameter of the negative electrode active material 1 is also determined as the average value of the particle diameters at 150 points measured with a scanning microscope.
  • the fibrous substance 2 is a linear particle having shape anisotropy.
  • the fibrous material 2 includes, for example, one or more selected from the group consisting of titanium oxide, potassium titanate, aluminum oxide, silicon carbide, silicon nitride, and silicon oxide.
  • the fibrous material 2 includes, for example, a different material from the negative electrode active material 1. Since the silicon-based material may expand and contract like the negative electrode active material 1, the fibrous material 2 may contain one or more selected from the group consisting of titanium oxide, potassium titanate, and aluminum oxide. preferable.
  • the fiber length of the fibrous material 2 is, for example, 20 ⁇ m or more and 150 ⁇ m or less.
  • the fiber length of the fibrous material 2 can be determined by the following procedure. First, the lithium ion secondary battery 100 is disassembled and the negative electrode 30 is taken out. Next, the negative electrode 30 is immersed in a solvent that can dissolve the binder forming the negative electrode active material layer 34 for one hour. For example, when the binder is a polyimide resin, e-Solve 21KZE-100 manufactured by Kaneko Chemical Co., Ltd. is used. Next, the solvent is filtered and washed multiple times, and the powder remaining on the filter paper is dried. The powder after drying contains a negative electrode active material 1, a fibrous material 2, and a conductive aid 3.
  • the fibrous material 2 can be identified from the powder by mapping using energy dispersive X-ray spectroscopy (EDS). Then, the size of the identified fibrous substance 2 is measured using a scanning electron microscope. The size of the fibrous substance 2, like the average interparticle distance L, is determined as the average value of 150 points of the substance measured with a scanning microscope.
  • EDS energy dispersive X-ray spectroscopy
  • the particle size distribution of the powder after drying is measured using a particle size distribution measuring device (for example, manufactured by Malvern Panalytical), the particle size distribution of the powder after drying can be obtained.
  • the particle size distribution of the powder after drying has two or more peaks. One of the peaks is due to the fibrous material 2 and occurs near the fiber length of the fibrous material 2. Moreover, one of the peaks is caused by the negative electrode active material 1 and occurs near the particle size of the negative electrode active material 1. Since the particle size of the negative electrode active material 1 and the particle size of the fibrous material 2 are different, a plurality of peaks occur in the particle size distribution of the powder. When the fibrous material 2 and the negative electrode active material 1 both contain silicon, the presence or absence of the fibrous material 2 can be confirmed by measuring the particle size distribution of this powder.
  • the fibrous material 2 preferably accounts for 20% or less of the total mass ratio of the negative electrode active material layer 34. Further, it is preferable that the fibrous material 2 accounts for 1% or more of the total mass ratio of the negative electrode active material layer 34.
  • the layer thickness t (see FIG. 1) of the negative electrode active material layer 34 is, for example, 8 ⁇ m or more and 150 ⁇ m or less.
  • the value obtained by dividing the layer thickness t of the negative electrode active material layer 34 by the fiber length of the fibrous material 2 is, for example, 0.4 or more and 1.0 or less.
  • the binder in the negative electrode 30 may be, for example, cellulose, styrene/butadiene rubber, ethylene/propylene rubber, polyimide resin, polyamideimide resin, acrylic resin, or the like.
  • the cellulose may be, for example, carboxymethyl cellulose (CMC).
  • Separator 10 is sandwiched between positive electrode 20 and negative electrode 30.
  • the separator 10 isolates the positive electrode 20 and the negative electrode 30 and prevents a short circuit between the positive electrode 20 and the negative electrode 30.
  • the separator 10 extends in-plane along the positive electrode 20 and the negative electrode 30. Lithium ions can pass through the separator 10.
  • the separator 10 has, for example, an electrically insulating porous structure.
  • the separator 10 is, for example, a single layer or a laminate of polyolefin films.
  • the separator 10 may be a stretched film of a mixture of polyethylene, polypropylene, or the like.
  • the separator 10 may be a fibrous nonwoven fabric made of at least one constituent material selected from the group consisting of cellulose, polyester, polyacrylonitrile, polyamide, polyethylene, and polypropylene.
  • Separator 10 may be, for example, a solid electrolyte.
  • the solid electrolyte is, for example, a polymer solid electrolyte, an oxide solid electrolyte, or a sulfide solid electrolyte.
  • the separator 10 may be an inorganic coated separator.
  • the inorganic coated separator is obtained by coating the surface of the above film with a mixture of a resin such as PVDF or CMC and an inorganic substance such as alumina or silica.
  • the inorganic coated separator has excellent heat resistance and suppresses precipitation of transition metals eluted from the positive electrode onto the surface of the negative electrode.
  • the electrolytic solution is sealed in the exterior body 50 and impregnated into the power generation element 40.
  • the electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolytic salt. The electrolytic salt is dissolved in a non-aqueous solvent.
  • the solvent is not particularly limited as long as it is a solvent generally used in lithium ion secondary batteries.
  • the solvent includes, for example, any one of a cyclic carbonate compound, a chain carbonate compound, a cyclic ester compound, and a chain ester compound.
  • the solvent may contain a mixture of these in any proportion.
  • the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate, and vinylene carbonate.
  • Examples of the chain carbonate compound include diethyl carbonate (DEC) and ethylmethyl carbonate (EMC).
  • Examples of the cyclic ester compound include ⁇ -butyrolactone.
  • Examples of the chain ester compound include propyl propionate, ethyl propionate, and ethyl acetate.
  • the electrolytic salt is, for example, a lithium salt.
  • the electrolyte include LiPF6 , LiClO4, LiBF4 , LiCF3SO3 , LiCF3CF2SO3 , LiC ( CF3SO2 ) 3 , LiN( CF3SO2 ) 2 , LiN( CF3CF2 ) . SO2 ) 2 , LiN( CF3SO2 ) ( C4F9SO2 ) , LiN( CF3CF2CO ) 2 , LiBOB , LiN ( FSO2 ) 2, etc.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • the electrolyte preferably contains LiPF6 .
  • the degree of dissociation of the electrolytic salt at room temperature in the carbonate solvent is preferably 10% or more.
  • the electrolytic solution is preferably one in which LiPF 6 is dissolved in a carbonate solvent, for example.
  • the concentration of LiPF 6 is, for example, 1 mol/L.
  • the polyimide resin may exhibit charging behavior like soft carbon.
  • the electrolyte is a carbonate electrolyte solvent containing a cyclic carbonate, lithium can be uniformly reacted with polyimide.
  • the cyclic carbonate is preferably ethylene carbonate, fluoroethylene carbonate, or vinylene carbonate.
  • the exterior body 50 seals the power generation element 40 and the non-aqueous electrolyte therein.
  • the exterior body 50 prevents non-aqueous electrolyte from leaking to the outside and moisture from entering the lithium ion secondary battery 100 from the outside.
  • the exterior body 50 includes a metal foil 52 and a resin layer 54 laminated on each surface of the metal foil 52.
  • the exterior body 50 is a metal laminate film in which a metal foil 52 is coated on both sides with a polymer film (resin layer 54).
  • the metal foil 52 aluminum foil can be used as the metal foil 52.
  • a polymer film such as polypropylene can be used.
  • the material constituting the resin layer 54 may be different between the inside and outside.
  • the outer material is a polymer with a high melting point, such as polyethylene terephthalate (PET), polyamide (PA), etc.
  • the inner polymer membrane material is polyethylene (PE), polypropylene (PP), etc. be able to.
  • Terminals 60 and 62 are connected to positive electrode 20 and negative electrode 30, respectively.
  • Terminal 60 connected to positive electrode 20 is a positive electrode terminal
  • terminal 62 connected to negative electrode 30 is a negative electrode terminal.
  • Terminals 60 and 62 are responsible for electrical connection with the outside.
  • the terminals 60, 62 are made of a conductive material such as aluminum, nickel, copper, or the like. The connection method may be welding or screwing.
  • the terminals 60, 62 are preferably protected with insulating tape to prevent short circuits.
  • the lithium ion secondary battery 100 is manufactured by preparing a negative electrode 30, a positive electrode 20, a separator 10, an electrolytic solution, and an exterior body 50, and assembling them. An example of a method for manufacturing the lithium ion secondary battery 100 will be described below.
  • the negative electrode 30 is produced, for example, by sequentially performing a slurry production process, an electrode coating process, a drying process, and a rolling process.
  • the slurry preparation step is a step of mixing the negative electrode active material 1, the fibrous material 2, the conductive aid 3, the binder, and the solvent to form a slurry. Adding a dispersion stabilizer to the slurry can suppress aggregation of the negative electrode active material.
  • the solvent include water, N-methyl-2-pyrrolidone, and the like.
  • the electrode coating process is a process of coating the surface of the negative electrode current collector 32 with slurry.
  • slurry There are no particular restrictions on the method of applying the slurry.
  • a slit die coating method or a doctor blade method can be used as the slurry coating method.
  • the slurry is applied, for example, at room temperature.
  • the drying process is a process of removing the solvent from the slurry.
  • the negative electrode current collector 32 coated with the slurry is dried in an atmosphere of 80° C. to 350° C.
  • the rolling process is performed as necessary.
  • the rolling process is a process of applying pressure to the negative electrode active material layer 34 and adjusting the density of the negative electrode active material layer 34.
  • the rolling process is performed using, for example, a roll press machine. By performing the rolling process, the layer thickness of the negative electrode active material layer 34 can be adjusted.
  • the positive electrode 20 can be manufactured using the same procedure as the negative electrode 30.
  • As the separator 10 and the exterior body 50 commercially available products can be used.
  • the produced positive electrode 20 and negative electrode 30 are stacked so that the separator 10 is located between them, and the power generation element 40 is produced.
  • the power generation element 40 is a wound body
  • the positive electrode 20, the negative electrode 30, and the separator 10 are wound around one end side of the separator 10 as an axis.
  • the power generating element 40 is enclosed in the exterior body 50.
  • the non-aqueous electrolyte is injected into the exterior body 50.
  • the non-aqueous electrolyte is impregnated into the power generation element 40.
  • the lithium ion secondary battery 100 is obtained.
  • the power generating element 40 may be impregnated with the electrolytic solution. After injecting the liquid into the power generation element, it is preferable to leave it for 24 hours.
  • the negative electrode active material layer 34 includes the fibrous material 2, the charge/discharge characteristics are unlikely to deteriorate. This is considered to be because the fibrous material 2 functions as a skeleton of the negative electrode active material layer 34 and prevents the negative electrode active material layer 34 from cracking during charging and discharging.
  • the cracks in the negative electrode active material layer 34 interrupt the conductive path within the negative electrode active material layer 34 . Since the negative electrode active material layer 34 is less likely to crack, the conductive path within the negative electrode active material layer 34 is maintained, and the charge/discharge characteristics of the lithium ion secondary battery 100 are less likely to deteriorate.
  • Example 1 The positive electrode slurry was applied to one side of an aluminum foil having a thickness of 15 ⁇ m.
  • a positive electrode slurry was prepared by mixing a positive electrode active material, a conductive additive, a binder, and a solvent.
  • Li x CoO 2 was used as the positive electrode active material.
  • Acetylene black was used as the conductive aid.
  • Polyvinylidene fluoride (PVDF) was used as the binder.
  • N-methyl-2-pyrrolidone was used as the solvent.
  • a positive electrode slurry was prepared by mixing 97 parts by mass of a positive electrode active material, 1 part by mass of a conductive aid, 2 parts by mass of a binder, and 70 parts by mass of a solvent. The amount of the positive electrode active material supported in the positive electrode active material layer after drying was 25 mg/cm 2 .
  • the solvent was removed from the positive electrode slurry in a drying oven to create a positive electrode active material layer.
  • the positive electrode active material layer was pressed with a roll press to produce a positive electrode.
  • the negative electrode slurry was applied to one side of the copper foil with a thickness of 10 ⁇ m.
  • the negative electrode slurry was prepared by mixing a negative electrode active material, acicular particles, a conductive aid, a binder, and a solvent.
  • Silicon particles were used as the negative electrode active material.
  • the average particle size of the silicon particles was 3.0 ⁇ m.
  • Titanium oxide was used as the fibrous material.
  • the fibrous material used had a fiber length of 20 ⁇ m.
  • Carbon black was used as the conductive aid.
  • Polyimide resin was used as the binder.
  • N-methyl-2-pyrrolidone was used as the solvent.
  • a negative electrode slurry was prepared by mixing 78 parts by mass of silicon particles, 2 parts by mass of acicular particles, 5 parts by mass of a conductive aid, and 15 parts by mass of a binder in N-methyl-2-pyrrolidone. did.
  • the amount of negative electrode active material supported in the negative electrode active material layer after drying was 1.5 mg/cm 2 .
  • the negative electrode active material layer was pressurized with a roll press and then baked at 300° C. or higher for 5 hours in a nitrogen atmosphere.
  • the thickness of the negative electrode active material layer after firing was 8 ⁇ m.
  • an electrolytic solution was prepared.
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • additives for improving output, gas suppressing additives, cycle characteristic improving additives, safety performance improving additives, etc. were added to the electrolyte.
  • LiPF 6 was used as the electrolytic salt. The concentration of LiPF 6 was 1 mol/L.
  • the battery whose battery capacity Q1 was determined above was charged again using the secondary battery charging/discharging test device by constant current charging at a charging rate of 0.5C until the battery voltage reached 4.2V, and the battery was charged at a discharge rate of 0.5C. Discharge was performed at a constant current of 5C until the battery voltage reached 2.5V. The above charging and discharging was counted as one cycle, and 100 cycles of charging and discharging were performed. Thereafter, the discharge capacity after 100 cycles of charging and discharging was detected, and the battery capacity Q2 after 100 cycles was determined.
  • the capacity retention rate after 100 cycles was determined from the capacities Q 1 and Q 2 determined above.
  • the capacity retention rate of Example 1 was 90%.
  • the lithium ion secondary battery after charging and discharging was disassembled, and the rate of change in the thickness of the negative electrode active material layer was determined.
  • the rate of change in the thickness of the negative electrode active material layer is determined by “(thickness after charging) ⁇ (thickness after discharging)”/(thickness after discharging) ⁇ 100.
  • the rate of change in Example 1 was 55%.
  • the cross section of the negative electrode active material layer after decomposition was measured to determine the distance between the negative electrode active materials. The average interparticle distance between the negative electrode active materials in Example 1 was 2.9 ⁇ m.
  • Examples 2 to 44, Comparative Examples 1 to 16 are different from the following: the type of material constituting the fibrous material, the fiber length of the fibrous material, the layer thickness of the negative electrode active material layer, and the average interparticle distance between negative electrode active materials.
  • This embodiment differs from the first embodiment in that the following points have been changed. The changes are summarized in Tables 1 to 3. The other conditions were the same as in Example 1, and the capacity retention rates, etc. of Examples 2 to 44 and Comparative Examples 1 to 16 were measured.
  • the lithium ion secondary batteries of Examples 1 to 44 all have higher capacity retention rates than the lithium ion secondary batteries of Comparative Examples 1 to 16.
  • Comparative Examples 1 to 4 and Comparative Examples 13 to 16 using carbon fiber had lower capacity retention rates than the lithium ion secondary batteries of Examples 1 to 44. This is probably because carbon fibers are softer than inorganic materials such as ceramics, and the effect of reinforcing the negative electrode active material layer 34 was not sufficiently achieved.
  • Comparative Examples 5 to 8 using Cu whiskers had lower capacity retention rates than the lithium ion secondary batteries of Examples 1 to 44. This is considered to be because the effect of reinforcing the negative electrode active material layer 34 was not sufficiently obtained because the metal material has ductility and is easy to stretch, and the crystal structure tends to slip.
  • Comparative Examples 9 to 12 in which the size of the fibrous material was inappropriate, had lower capacity retention rates than the lithium ion secondary batteries of Examples 1 to 44. This is considered to be because the fibrous material could not function sufficiently as a skeleton for reinforcing the negative electrode active material layer 34.
  • Negative electrode active material 1
  • Fibrous material 3
  • Conductive support agent 10
  • Positive electrode 22
  • Positive electrode current collector 24
  • Positive electrode active material layer 30
  • Negative electrode 32
  • Negative electrode current collector 34
  • Power generation element 50
  • Exterior body 52
  • Metal foil 54
  • Resin layer 60, 62 Terminal 100 Lithium ion secondary battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

この負極活物質層は、負極活物質と繊維状物質とを含み、前記負極活物質は、シリコンを含み、前記繊維状物質は、酸化チタン、チタン酸カリウム、酸化アルミニウム、炭化シリコン、窒化シリコン、酸化シリコンからなる群から選択される何れか1種以上を含み、前記繊維状物質の繊維長は、20μm以上150μm以下であり、層厚を前記繊維長で割った値は、0.4以上1.0以下である。

Description

負極活物質層、負極及びリチウムイオン二次電池
 本発明は、負極活物質層、負極及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、携帯電話、ノートパソコン等のモバイル機器やハイブリットカー等の動力源としても広く用いられている。
 リチウムイオン二次電池の充放電は、活物質を含む活物質層が担う。リチウムイオン二次電池の特性を向上させるために、活物質層内の構成の検討が行われている。
 例えば、特許文献1及び2には、所定の形状のフィラーを含む活物質層が記載されている。例えば、特許文献3及び4には、タップ密度の異なる2種類のコバルト酸リチウムを活物質として用いることが記載されている。例えば、特許文献5にはカーボンナノファイバーをバインダーに添加した活物質層が記載されている。例えば、特許文献6には繊維状炭素をバインダーに添加した活物質層が記載されている。
特開2006-172901号公報 特開2019-186164号公報 米国特許出願公開第2005/0271576号明細書 米国特許出願公開第2008/0087862号明細書 米国特許出願公開第2007/0092796号明細書 米国特許出願公開第2011/0266495号明細書
 シリコンを含む負極活物質は充電時に大きな体積膨張を伴う。負極活物質の体積膨張は、電池のサイクル特性の低下の原因となる。負極活物質が体積膨張すると、例えば、負極活物質の間の導電パスが切断したり、負極活物質層と集電体の界面で剥離が生じたり、SEI(Solid Electrolyte Interphase)被膜にクラックが生じ電解液の分解等が生じる。これらは、電池のサイクル特性を低下させる。負極活物質としてシリコン系材料を用いた場合でも、充放電特性が劣化しにくい電池が求められている。
 本開示は上記問題に鑑みてなされたものであり、充放電特性が劣化しにくい負極活物質層、負極及びリチウムイオン二次電池を提供することを目的とする。
 上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかる負極活物質層は、負極活物質と繊維状物質とを含む。前記負極活物質は、シリコンを含む。前記繊維状物質は、酸化チタン、チタン酸カリウム、酸化アルミニウム、炭化シリコン、窒化シリコン、酸化シリコンからなる群から選択される何れか1種以上を含む。前記繊維状物質の繊維長は、20μm以上150μm以下である。負極活物質層の層厚を前記繊維長で割った値は、0.4以上1.0以下である。
(2)上記態様にかかる負極活物質層において、前記負極活物質の平均粒子間距離は、3.0μm以上4.5μm以下であってもよい。
(3)上記態様にかかる負極活物質層において、前記繊維状物質は、酸化チタン、チタン酸カリウム、酸化アルミニウム、からなる群から選択される何れか1種以上を含んでもよい。
(4)第2の態様にかかる負極は、上記態様にかかる負極活物質層を含む。
(5)第3の態様にかかるリチウムイオン二次電池は、上記態様にかかる負極と、前記負極と対向する正極と、前記負極と前記正極との間を繋ぐ電解質と、を備える。
 上記態様に係る負極活物質層、負極及びリチウムイオン二次電池は、充放電特性が劣化しにくい。
第1実施形態にかかるリチウムイオン二次電池の断面模式図である。 第1実施形態にかかる負極活物質層の特徴部分の拡大模式図である。
 以下、実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
「リチウムイオン二次電池」
 図1は、第1実施形態にかかるリチウムイオン二次電池の模式図である。図1に示すリチウムイオン二次電池100は、発電素子40と外装体50と電解質(例えば、非水電解液)とを備える。外装体50は、発電素子40の周囲を被覆する。発電素子40は、接続された一対の端子60、62によって外部と接続される。非水電解液は、外装体50内に収容されている。図1では、外装体50内に発電素子40が一つの場合を例示したが、発電素子40が複数積層されていてもよい。
(発電素子)
 発電素子40は、セパレータ10と正極20と負極30とを備える。発電素子40は、これらが積層された積層体でも、これらを積層した構造物を巻回した巻回体でもよい。
<正極>
 正極20は、例えば、正極集電体22と正極活物質層24とを有する。正極活物質層24は、正極集電体22の少なくとも一面に接する。
[正極集電体]
 正極集電体22は、例えば、導電性の板材である。正極集電体22は、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属薄板である。重量が軽いアルミニウムは、正極集電体22に好適に用いられる。正極集電体22の平均厚みは、例えば、10μm以上30μm以下である。
[正極活物質層]
 正極活物質層24は、例えば、正極活物質を含む。正極活物質層24は、必要に応じて、導電助剤、バインダーを含んでもよい。
 正極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンとカウンターアニオンのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を含む。
 正極活物質は、例えば、複合金属酸化物である。複合金属酸化物は、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnの化合物(一般式中においてx+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)である。正極活物質は、有機物でもよい。例えば、正極活物質は、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンでもよい。
 正極活物質は、リチウム非含有の材料でもよい。リチウム非含有の材料は、例えば、FeF、有機導電性物質を含む共役系ポリマー、シェブレル相化合物、遷移金属カルコゲン化物、バナジウム酸化物、ニオブ酸化物等である。リチウム非含有の材料は、いずれか一つの材料のみを用いてもよいし、複数組み合わせて用いてもよい。正極活物質がリチウム非含有の材料の場合は、例えば、最初に放電を行う。放電により正極活物質にリチウムが挿入される。このほか、正極活物質がリチウム非含有の材料に対して、化学的又は電気化学的にリチウムをプレドープしてもよい。
 導電助剤は、正極活物質の間の電子伝導性を高める。導電助剤は、例えば、カーボン粉末、カーボンナノチューブ、炭素材料、金属微粉、炭素材料及び金属微粉の混合物、導電性酸化物である。カーボン粉末は、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等である。金属微粉は、例えば、銅、ニッケル、ステンレス、鉄等の粉である。
 正極活物質層24における導電助剤の含有率は特に限定されない。例えば、正極活物質、導電助剤、バインダーの総質量に対して導電助剤の含有率は、0.5質量%以上20質量%以下であり、好ましくは1質量%以上5質量%以下である。
 正極活物質層24におけるバインダーは、正極活物質同士を結合する。バインダーは、公知のものを用いることができる。バインダーは、電解液に溶解せず、耐酸化性を有し、接着性を有するものが好ましい。バインダーは、例えば、フッ素樹脂である。バインダーは、例えば、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、ポリエーテルスルホン(PES)、ポリアクリル酸及びその共重合体、ポリアクリル酸及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)又はポリエチレン(PE)、これらの混合物である。正極活物質層に用いるバインダーは、PVDFが特に好ましい。
 正極活物質層24におけるバインダーの含有率は特に限定されない。例えば、正極活物質、導電助剤、バインダーの総質量に対してバインダーの含有率は、1質量%以上15質量%以下であり、好ましくは1.5質量%以上5質量%以下である。バインダーの含有率が少ないと、正極20の接着強度が弱まる。バインダーの含有率が高いと、バインダーは電気化学的に不活性で放電容量に寄与しないため、リチウムイオン二次電池100のエネルギー密度が低くなる。
<負極>
 負極30は、例えば、負極集電体32と負極活物質層34とを有する。負極活物質層34は、負極集電体32の少なくとも一面に形成されている。
[負極集電体]
 負極集電体32は、例えば、導電性の板材である。負極集電体32は、正極集電体22と同様のものを用いることができる。
[負極活物質層]
 図2は、負極活物質層34の特徴部分の拡大模式図である。負極活物質層34は、例えば、負極活物質1と繊維状物質2と導電助剤3とバインダー(図示略)とを含む。負極活物質層34は、この他、分散安定剤等の他の物質を含んでもよい。
 負極活物質1は、シリコンを含む。負極活物質1は、単体のシリコン、シリコン合金、シリコン化合物、シリコン複合体のいずれでもよい。負極活物質1は、結晶質でも非晶質でもよい。
 シリコン合金は、例えば、XSiで表される。Xは、カチオンである。Xは、例えば、Ba、Mg、Al、Zn、Sn、Ca、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、W、Au、Ti、Na、K等である。nは、0≦n≦0.5を満たす。
 シリコン化合物は、例えば、SiOで表記される酸化シリコンである。xは、例えば、0.8≦x≦2を満たす。酸化シリコンは、SiOのみからなってもよいし、SiOのみからなってもよいし、SiOとSiOとの混合物でもよい。また酸化シリコンは、酸素の一部が欠損していてもよい。
 シリコン複合体は、例えば、シリコン又はシリコン化合物の粒子の表面の少なくとも一部に、導電性材料が被覆したものである。導電性材料は、例えば、炭素材料、Al、Ti、Fe、Ni、Cu、Zn、Ag、Sn等である。例えば、シリコン炭素複合化材料(Si-C)は複合体の一例である。
 負極活物質1の平均粒子間距離Lは、例えば、3.0μm以上4.5μm以下である。平均粒子間距離Lは、走査型電子顕微鏡(SEM)で測定できる。平均粒子間距離Lを求める場合は、まず1000倍以上1500倍に拡大したSEM画像を3視野測定する。そして、3視野のそれぞれで、隣接する負極活物質1の幾何中心同士の距離を50点測定する。そして、測定した合計150点の粒子間距離の平均値を求めることで、平均粒子間距離Lが得られる。
 負極活物質1の平均粒子径は、例えば、0.1μm以上10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上7μm以下である。負極活物質1の平均粒子径も、負極活物質1の平均粒子間距離Lと同様に、走査型顕微鏡で測定された150点の粒子径の平均値として求められる。
 繊維状物質2は、形状異方性を有する線状の粒子である。繊維状物質2は、例えば、酸化チタン、チタン酸カリウム、酸化アルミニウム、炭化シリコン、窒化シリコン、酸化シリコンからなる群から選択される何れか1種以上を含む。繊維状物質2は、例えば、負極活物質1と異なる材料を含む。シリコン系材料は負極活物質1と同様に膨張収縮する場合があるため、繊維状物質2は、酸化チタン、チタン酸カリウム、酸化アルミニウムからなる群から選択される何れか1種以上を含むことが好ましい。
 繊維状物質2の繊維長は、例えば、20μm以上150μm以下である。繊維状物質2の繊維長は以下の手順で求めることができる。まずリチウムイオン二次電池100を分解し、負極30を取り出す。次いで、負極活物質層34を構成するバインダーを溶解できる溶剤に負極30を1時間浸漬する。例えば、バインダーがポリイミド系の樹脂の場合は、株式会社カネコ化学製のeソルブ21KZE-100を用いる。次いで、溶剤を複数回ろ過洗浄し、ろ紙に残った粉体を乾燥させる。乾燥後の粉体には、負極活物質1、繊維状物質2、導電助剤3が含まれる。エネルギー分散型X線分光(EDS)を用いたマッピングを行うことで、粉体から繊維状物質2を特定できる。そして走査型電子顕微鏡を用いて、特定した繊維状物質2のサイズを測定する。繊維状物質2のサイズは、平均粒子間距離Lと同様に、走査型顕微鏡で測定された150点の物質の平均値として求められる。
 また乾燥後の粉末の粒子の粒度分布を粒度分布測定装置(例えば、Malvern Panalytical社製)を用いて測定すると、乾燥後の粉末の粒度分布が得られる。乾燥後の粉末の粒度分布は、2以上のピークを有する。そのうちの一つのピークは、繊維状物質2に起因するものであり、繊維状物質2の繊維長の近傍に生じる。またそのうちの一つのピークは、負極活物質1に起因するものであり、負極活物質1の粒径の近傍に生じる。負極活物質1の粒径と繊維状物質2の粒径とは異なるため、粉末の粒度分布には複数のピークが生じる。繊維状物質2と負極活物質1がいずれもシリコンを含む場合は、この粉末の粒度分布を測定することで、繊維状物質2の有無が確認できる。
 繊維状物質2は、負極活物質層34の全体の質量比の20%以下であることが好ましい。また繊維状物質2は、負極活物質層34の全体の質量比の1%以上であることが好ましい。
 負極活物質層34の層厚t(図1参照)は、例えば、8μm以上150μm以下である。負極活物質層34の層厚tを繊維状物質2の繊維長で割った値は、例えば、0.4以上1.0以下である。負極活物質層34の層厚tに対して繊維状物質2の繊維長の長さが十分であると、繊維状物質2が負極活物質層34の骨格として機能して、負極活物質層34が充放電時にひび割れすることを抑制できる。
 導電助剤3及びバインダーは、正極20と同様のものを用いることができる。負極30におけるバインダーは、正極20に挙げたものの他に、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等でもよい。セルロースは、例えば、カルボキシメチルセルロース(CMC)でもよい。
<セパレータ>
 セパレータ10は、正極20と負極30とに挟まれる。セパレータ10は、正極20と負極30とを隔離し、正極20と負極30との短絡を防ぐ。セパレータ10は、正極20及び負極30に沿って面内に広がる。リチウムイオンは、セパレータ10を通過できる。
 セパレータ10は、例えば、電気絶縁性の多孔質構造を有する。セパレータ10は、例えば、ポリオレフィンフィルムの単層体、積層体である。セパレータ10は、ポリエチレンやポリプロピレン等の混合物の延伸膜でもよい。セパレータ10は、セルロース、ポリエステル、ポリアクリロニトリル、ポリアミド、ポリエチレン及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布でもよい。セパレータ10は、例えば、固体電解質であってもよい。固体電解質は、例えば、高分子固体電解質、酸化物系固体電解質、硫化物系固体電解質である。セパレータ10は、無機コートセパレータでもよい。無機コートセパレータは、上記のフィルムの表面に、PVDFやCMCなど樹脂とアルミナやシリカなどの無機物の混合物を塗布したものである。無機コートセパレータは、耐熱性に優れ、正極から溶出した遷移金属の負極表面への析出を抑制する。
<電解液>
 電解液は、外装体50内に封入され、発電素子40に含浸している。電解液は、液系の電解質に限られず、固体での電解質でもよい。非水電解液は、例えば、非水溶媒と電解塩とを有する。電解塩は、非水溶媒に溶解している。
 溶媒は、一般にリチウムイオン二次電池に用いられている溶媒であれば特に限定はない。溶媒は、例えば、環状カーボネート化合物、鎖状カーボネート化合物、環状エステル化合物、鎖状エステル化合物のいずれかを含む。溶媒は、これらを任意の割合で混合して含んでもよい。環状カーボネート化合物は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、フルオロエチレンカーボネート、ビニレンカーボネート等である。鎖状カーボネート化合物は、例えば、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等である。環状エステル化合物は、例えば、γ-ブチロラクトン等である。鎖状エステル化合物は、例えば、プロピオン酸プロピル、プロピオン酸エチル、酢酸エチル等である。
 電解塩は、例えば、リチウム塩である。電解質は、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB、LiN(FSO等である。リチウム塩は、1種を単独で使用してもよく、2種以上を併用してもよい。電離度の観点から、電解質はLiPFを含むことが好ましい。カーボネート溶媒中の室温における電解塩の乖離度は10%以上であることが好ましい。
 電解液は、例えば、カーボネート溶媒にLiPFを溶解させたものが好ましい。LiPFの濃度は、例えば、1mol/Lである。ポリイミド樹脂が芳香族を多く含む場合、ポリイミド樹脂がソフトカーボンのような充電挙動を示すことがある。電解液が、環状カーボネートを含むカーボネート電解液溶媒の場合、均一にポリイミドにリチウムを反応させることができる。この場合、環状カーボネートは、エチレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネートが好ましい。
<外装体>
 外装体50は、その内部に発電素子40及び非水電解液を密封する。外装体50は、非水電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止する。
 外装体50は、例えば図1に示すように、金属箔52と、金属箔52の各面に積層された樹脂層54と、を有する。外装体50は、金属箔52を高分子膜(樹脂層54)で両側からコーティングした金属ラミネートフィルムである。
 金属箔52としては例えばアルミ箔を用いることができる。樹脂層54には、ポリプロピレン等の高分子膜を利用できる。樹脂層54を構成する材料は、内側と外側とで異なっていてもよい。例えば、外側の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド(PA)等を用い、内側の高分子膜の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等を用いることができる。
<端子>
 端子60、62は、それぞれ正極20と負極30とに接続されている。正極20に接続された端子60は正極端子であり、負極30に接続された端子62は負極端子である。端子60、62は、外部との電気的接続を担う。端子60、62は、アルミニウム、ニッケル、銅等の導電材料から形成されている。接続方法は、溶接でもネジ止めでもよい。端子60、62は短絡を防ぐために、絶縁テープで保護することが好ましい。
 リチウムイオン二次電池100は、負極30、正極20、セパレータ10、電解液、外装体50をそれぞれ準備し、これらを組み上げて作製される。以下、リチウムイオン二次電池100の製造方法の一例を説明する。
 負極30は、例えば、スラリー作製工程、電極塗布工程、乾燥工程、圧延工程を順に行って作製される。
 スラリー作製工程は、負極活物質1、繊維状物質2、導電助剤3、バインダー及び溶媒を混合してスラリーを作る工程である。スラリーに分散安定剤を添加すると、負極活物質の凝集を抑制できる。溶媒は、例えば、水、N-メチル-2-ピロリドン等である。
 電極塗布工程は、負極集電体32の表面に、スラリーを塗布する工程である。スラリーの塗布方法は、特に制限はない。例えば、スリットダイコート法、ドクターブレード法をスラリーの塗布方法として用いることができる。スラリーは、例えば、室温で塗布する。
 乾燥工程は、スラリーから溶媒を除去する工程である。例えば、スラリーが塗布された負極集電体32を、80℃~350℃の雰囲気下で乾燥させる。
 圧延工程は、必要に応じて行われる。圧延工程は、負極活物質層34に圧力を加え、負極活物質層34の密度を調整する工程である。圧延工程は、例えば、ロールプレス装置等で行われる。圧延工程を行うことで、負極活物質層34の層厚を調整できる。
 正極20は、負極30と同様の手順で作製できる。セパレータ10及び外装体50は、市販のものを用いることができる。
 次いで、作製した正極20及び負極30の間にセパレータ10が位置するようにこれらを積層して、発電素子40を作製する。発電素子40が捲回体の場合は、正極20、負極30及びセパレータ10の一端側を軸として、これらを捲回する。
 最後に、発電素子40を外装体50に封入する。非水電解液は外装体50内に注入する。非水電解液を注入後に減圧、加熱等を行うことで、発電素子40内に非水電解液が含浸する。熱等を加えて外装体50を封止することで、リチウムイオン二次電池100が得られる。なお、外装体50に電解液を注入するのではなく、発電素子40を電解液に含浸してもよい。発電素子への注液後は、24時間静置することが好ましい。
 第1実施形態にかかるリチウムイオン二次電池100は、負極活物質層34が繊維状物質2を有することで、充放電特性が劣化しにくい。これは、繊維状物質2が、負極活物質層34の骨格として機能して、負極活物質層34が充放電時に割れることを防止したためと考えられる。負極活物質層34の割れは、負極活物質層34内の導電パスを遮断する。負極活物質層34が割れにくくなることで、負極活物質層34内の導電パスが維持され、リチウムイオン二次電池100の充放電特性が劣化しにくくなる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
「実施例1」
 厚さ15μmのアルミニウム箔の一面に、正極スラリーを塗布した。正極スラリーは、正極活物質と導電助剤とバインダーと溶媒とを混合して作製した。
 正極活物質は、LiCoOを用いた。導電助剤は、アセチレンブラックを用いた。バインダーは、ポリフッ化ビニリデン(PVDF)を用いた。溶媒は、N-メチル-2-ピロリドンを用いた。97質量部の正極活物質と、1質量部の導電助剤と、2質量部のバインダーと、70質量部の溶媒を混合して、正極スラリーを作製した。乾燥後の正極活物質層における正極活物質の担持量は、25mg/cmとした。正極スラリーから乾燥炉内で溶媒を除去し、正極活物質層を作成した。正極活物質層をロールプレスで加圧し、正極を作製した。
 次いで、厚さ10μmの銅箔の一面に、負極スラリーを塗布した。負極スラリーは、負極活物質と針状粒子と導電助剤とバインダーと溶媒とを混合して作製した。
 負極活物質は、シリコン粒子を用いた。シリコン粒子は、平均粒径が3.0μmとした。繊維状物質は、酸化チタンを用いた。繊維状物質は、繊維長が20μmのものを用いた。導電助剤は、カーボンブラックを用いた。バインダーは、ポリイミド樹脂を用いた。溶媒は、N-メチル-2-ピロリドンを用いた。78質量部のシリコン粒子と、2質量部の針状粒子と、5質量部の導電助剤と、15質量部のバインダーとを、N-メチル-2-ピロリドンに混合して、負極スラリーを作製した。乾燥後の負極活物質層における負極活物質の担持量は、1.5mg/cmとした。負極活物質層は、ロールプレスで加圧した後、窒素雰囲気下、300℃以上で5時間、焼成した。焼成後の負極活物質層の厚みは8μmであった。
 次いで、電解液を作製した。電解液の溶媒は、フルオロエチレンカーボネート(FEC):エチレンカーボネート(EC):ジエチルカーボネート(DEC)=10体積%:20体積%:70体積%とした。また電解液には、出力向上用添加剤、ガス抑制添加剤、サイクル特性改善添加剤、安全性能改善添加剤などを添加した。電解塩は、LiPFを用いた。LiPFの濃度は1mol/Lとした。
(評価用リチウムイオン二次電池の作製)
 作製した負極と正極とを、正極活物質層と負極活物質層とが互いに対向するように、セパレータ(多孔質ポリエチレンシート)を介して積層して積層体を得た。この積層体を、アルミラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成した。そして、最後に、外装体内に上記電解液を注入した後に、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封して、リチウムイオン二次電池を作製した。作製後のリチウムイオン二次電池は、24時間静置した。
(100サイクル後容量維持率の測定)
 リチウムイオン二次電池のサイクル特性を測定した。サイクル特性は、二次電池充放電試験装置(北斗電工株式会社製)を用いて行った。
 充電レート0.5C(25℃で定電流充電を行ったときに1時間で充電終了となる電流値)の定電流充電で電池電圧が4.2Vとなるまで充電を行い、放電レート1.0Cの定電流放電で電池電圧が2.5Vとなるまで放電を行った。充放電終了後の放電容量を検出し、サイクル試験前の電池容量Qを求めた。
 上記で電池容量Qを求めた電池を、再び二次電池充放電試験装置を用い、充電レート0.5Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、放電レート0.5Cの定電流放電で電池電圧が2.5Vとなるまで放電を行った。上記充放電を1サイクルとカウントし、100サイクルの充放電を行った。その後、100サイクル充放電終了後の放電容量を検出し、100サイクル後の電池容量Qを求めた。
 上記で求めた容量Q、Qから、100サイクル後の容量維持率を求めた。容量維持率Eは、E=Q/Q×100で求められる。実施例1の容量維持率は、90%であった。
 そして、充放電後のリチウムイオン二次電池を分解し、負極活物質層の厚みの変化率を求めた。負極活物質層の厚みの変化率は、「(充電後の厚み)-(放電後の厚み)」/(放電後の厚み)×100で求められる。実施例1の変化率は55%であった。また分解後の負極活物質層の断面を測定し、負極活物質間の距離を求めた。実施例1の負極活物質間の平均粒子間距離は、2.9μmであった。
「実施例2~44、比較例1~16」
 実施例2~44、比較例1~16は、繊維状物質を構成する物質種類、繊維状物質の繊維長、負極活物質層の層厚、負極活物質間の平均粒子間距離のうちのいずれかを変更した点が実施例1と異なる。変更点を表1~表3にまとめた。その他の条件は、実施例1と同様として、実施例2~44、比較例1~16の容量維持率等を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~44のリチウムイオン二次電池は、いずれも比較例1~16のリチウムイオン二次電池より容量維持率が高い。
 炭素繊維を用いた比較例1~4及び比較例13~16は、実施例1~44のリチウムイオン二次電池より容量維持率が低かった。これは、炭素繊維は、セラミック等の無機材料と比較して柔らかく、負極活物質層34を補強する効果が十分得られなかったと考えられる。
 Cuウィスカーを用いた比較例5~8は、実施例1~44のリチウムイオン二次電池より容量維持率が低かった。これは、金属材料は延性を有し延びやすく、また結晶構造に滑りが生じやすいため、負極活物質層34を補強する効果が十分得られなかったと考えられる。
 繊維状物質のサイズが適切でない比較例9~12は、実施例1~44のリチウムイオン二次電池より容量維持率が低かった。これは、繊維状物質が負極活物質層34を補強する骨格として十分に機能できなかったためと考えられる。
1 負極活物質
2 繊維状物質
3 導電助剤
10 セパレータ
20 正極
22 正極集電体
24 正極活物質層
30 負極
32 負極集電体
34 負極活物質層
40 発電素子
50 外装体
52 金属箔
54 樹脂層
60、62 端子
100 リチウムイオン二次電池

Claims (5)

  1.  負極活物質と繊維状物質とを含み、
     前記負極活物質は、シリコンを含み、
     前記繊維状物質は、酸化チタン、チタン酸カリウム、酸化アルミニウム、炭化シリコン、窒化シリコン、酸化シリコンからなる群から選択される何れか1種以上を含み、
     前記繊維状物質の繊維長は、20μm以上150μm以下であり、
     層厚を前記繊維長で割った値は、0.4以上1.0以下である、負極活物質層。
  2.  前記負極活物質の平均粒子間距離は、3.0μm以上4.5μm以下である、請求項1に記載の負極活物質層。
  3.  前記繊維状物質は、酸化チタン、チタン酸カリウム、酸化アルミニウム、からなる群から選択される何れか1種以上を含む、請求項1に記載の負極活物質層。
  4.  請求項1に記載の負極活物質層を含む、負極。
  5.  請求項4に記載の負極と、前記負極と対向する正極と、前記負極と前記正極との間を繋ぐ電解質と、を備える、リチウムイオン二次電池。
PCT/JP2022/024003 2022-06-15 2022-06-15 負極活物質層、負極及びリチウムイオン二次電池 WO2023243013A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024003 WO2023243013A1 (ja) 2022-06-15 2022-06-15 負極活物質層、負極及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024003 WO2023243013A1 (ja) 2022-06-15 2022-06-15 負極活物質層、負極及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2023243013A1 true WO2023243013A1 (ja) 2023-12-21

Family

ID=89192460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024003 WO2023243013A1 (ja) 2022-06-15 2022-06-15 負極活物質層、負極及びリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2023243013A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329433A (ja) * 1998-05-22 1999-11-30 Kao Corp 非水系二次電池用負極
JP2010055761A (ja) * 2008-08-26 2010-03-11 Sony Corp 二次電池
JP2018116820A (ja) * 2017-01-17 2018-07-26 株式会社ダイセル 電極用スラリーの製造方法、電極及び二次電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329433A (ja) * 1998-05-22 1999-11-30 Kao Corp 非水系二次電池用負極
JP2010055761A (ja) * 2008-08-26 2010-03-11 Sony Corp 二次電池
JP2018116820A (ja) * 2017-01-17 2018-07-26 株式会社ダイセル 電極用スラリーの製造方法、電極及び二次電池の製造方法

Similar Documents

Publication Publication Date Title
CN110265629B (zh) 负极及锂离子二次电池
JP2019175657A (ja) リチウムイオン二次電池。
JP6237777B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP7003775B2 (ja) リチウムイオン二次電池
US20220393167A1 (en) Lithium ion secondary battery
US20220384794A1 (en) Lithium ion secondary battery
JP2019175631A (ja) リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
JP2022181365A (ja) リチウムイオン二次電池
WO2023243013A1 (ja) 負極活物質層、負極及びリチウムイオン二次電池
WO2023238325A1 (ja) 負極活物質層、負極及びリチウムイオン二次電池
WO2024181069A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2024150390A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2024181064A1 (ja) リチウムイオン二次電池用バインダー、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2023106099A1 (ja) 電池
JP6870712B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
US20220311004A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2024150391A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2015046393A1 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP2023134262A (ja) 正極活物質層、正極及びリチウムイオン二次電池
JP2024037349A (ja) リチウムイオン二次電池用バインダー、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2023130887A (ja) 負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2024122207A (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2023134263A (ja) 負極活物質、負極及びリチウムイオン二次電池
JP2023038529A (ja) リチウムイオン二次電池
JP2023130695A (ja) 負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024528002

Country of ref document: JP

Kind code of ref document: A