WO2023236605A1 - 加热不燃烧电子雾化装置 - Google Patents

加热不燃烧电子雾化装置 Download PDF

Info

Publication number
WO2023236605A1
WO2023236605A1 PCT/CN2023/080509 CN2023080509W WO2023236605A1 WO 2023236605 A1 WO2023236605 A1 WO 2023236605A1 CN 2023080509 W CN2023080509 W CN 2023080509W WO 2023236605 A1 WO2023236605 A1 WO 2023236605A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heating
atomization device
electronic atomization
component
Prior art date
Application number
PCT/CN2023/080509
Other languages
English (en)
French (fr)
Inventor
刘佳慧
钟乐
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023236605A1 publication Critical patent/WO2023236605A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present application belongs to the field of electronic atomization technology, and specifically relates to a heat-not-burn electronic atomization device.
  • the heating components when heating the aerosol-generating substrate, the heating components require a higher temperature to operate, and the thermal conductivity of the aerosol-generating substrate is low. Part of the heat is transferred to the surface of the shell along the structural parts of the appliance, resulting in a technical problem of high surface temperature of the appliance. .
  • This application aims to solve one of the technical problems existing in the existing technology or related technology.
  • this application proposes a heat-not-burn electronic atomization device.
  • the heat-not-burn electronic atomization device includes: a housing including an installation cavity; and a heating component located in the installation cavity for heating an aerosol-generating substrate. , the heating component encloses a heating cavity, and the heating cavity is used to accommodate the aerosol-generating matrix; the heat insulation component is located between the shell and the heating component, and the heat insulation component includes: aerogel, which is located between the heating component and the shell. space and set apart from the shell.
  • the heat-not-burn electronic atomization device defined in this application includes a housing and a heating component.
  • the shell is the main frame structure of the heat-not-burn electronic atomizer device, used to position and support the heat-not-burn electronic atomizer. Other structures on the device.
  • An installation cavity is formed inside the casing, and the heating component is arranged in the installation cavity.
  • the heating component has the functions of clamping the aerosol-generating substrate and heating the aerosol-generating substrate. During the working process, the heating component heats the aerosol-generating matrix, causing the aerosol-generating matrix to generate aerosol, thus meeting the aerosol generation needs of the heat-not-burn electronic atomization device.
  • the heating component can contact and heat the aerosol-generating matrix through the heat it emits, and can also heat the non-burning electronic atomization device by emitting infrared radiation and microwaves.
  • This technical solution does not impose a rigid limit on the structural form of the heating component. , to meet the heating needs.
  • the heating component is internally enclosed to define a heating cavity, and the shape of the heating cavity is adapted to the outer contour shape of the aerosol-generating substrate to position the aerosol-generating substrate through the heating cavity.
  • the size of the heat-not-burn electronic atomization device needs to be strictly limited, so that the internal structure of the heat-not-burn electronic atomization device is relatively compact.
  • the aerosol-generating matrix needs to be heated to a higher temperature to stably generate aerosols, and the thermal conductivity efficiency of the aerosol-generating matrix is low, the heating mechanism inside the heat-not-burn electronic atomization device is in operation. It will dissipate a large amount of heat to the outside.
  • a heat insulation component is provided in the heat-not-burn electronic atomization device.
  • the thermal insulation component is provided between the housing and the heating component.
  • the heat insulation component includes aerogel, which has excellent heat insulation properties. Placing a heat insulation component made of airgel between the heating component and the casing can effectively reduce the diffusion efficiency of heat from the heating component to the casing. .
  • the outer shell temperature is too high, it is inconvenient for users to hold the heated non-burning electronic atomizer, and the user experience is poor.
  • the technical effect of optimizing the heat-not-burn electronic atomization device improving the practicality and safety of the aerosol, and improving the user experience.
  • the aerosol-generating substrate can be lump tobacco, cigarettes, cigarettes, tobacco paste, or herbal medicine that can be atomized.
  • the airgel includes multiple layers, and the multiple layers of airgel are stacked between the heating component and the housing.
  • multiple layers of aerogel are stacked between the heating component and the housing in the radial direction of the housing.
  • increasing the number of layers of airgel can fill the space between two adjacent layers of airgel with air, thus making the insulation that originally relied solely on airgel for thermal insulation more efficient.
  • Thermal components are converted into thermal insulation components that rely on airgel mixed air layers for thermal insulation. From the above content, it can be seen that compared to solid air, it is an excellent thermal insulation medium. Setting up multi-layer stacked airgel can further improve the thermal insulation components. Thermal insulation effect to optimize the user's experience of holding the airgel generating device.
  • each layer of aerogel is ring-shaped; multiple layers of aerogel are nested around the heating component.
  • each layer of airgel in the thermal insulation component is ring-shaped, that is, the thermal insulation component is composed of multiple nested airgel rings.
  • the inner and outer diameters of multiple airgel rings increase gradually from the inside to the outside.
  • the inner diameter of the outer airgel ring is greater than or equal to the outer diameter of the inner airgel ring.
  • an air gap is formed between two adjacent layers of airgel rings, through which the thermal insulation effect of the thermal insulation component can be enhanced. For example, in the case of four layers of aerogel, there are three layers of air gaps mixed in the four layers of aerogel.
  • the specifics can be based on The number of airgel layers corresponding to thermal insulation requirements and design costs is selected to take into account thermal insulation performance, low cost and miniaturization design requirements.
  • the heat-not-burn electronic atomization device is generally columnar, and a columnar installation cavity is formed in the columnar housing.
  • the heating component is arranged in the central area of the installation cavity, and the airgel layer is arranged around the circumference of the heating component and spaced apart from the shell to form an air gap surrounding the heating component.
  • the main holding area is on the peripheral side of the casing.
  • the thermal insulation component includes four layers of aerogel; the thickness of each layer of aerogel ranges from greater than or equal to 0.3mm to less than or equal to 0.7mm.
  • the thermal insulation component includes four layers of aerogel, where the thickness of each layer of aerosol needs to be greater than or equal to 0.3mm and less than or equal to 0.7mm.
  • the thickness of the aerogel is the thickness of the aerogel layer placed in the radial direction of the shell. length on.
  • the thermal insulation requirements of the heat-not-burn electronic atomizer device can be met under normal working conditions, ensuring that the user can No burning sensation will be felt.
  • each layer of airgel by limiting the thickness of each layer of airgel to greater than or equal to 0.3mm, the thermal insulation performance of each layer of airgel can be ensured, and the airgel layer that is too thin cannot be effectively insulated, and the thickness of each layer of airgel is limited.
  • the thickness of 0.3mm or more can help improve the structural strength of the airgel layer and reduce the possibility of uncontrollable deformation of the airgel layer.
  • the thickness of each layer of aerogel can be prevented from excessively occupying the radial space of the installation cavity, thus providing convenience for the miniaturized design of the heat-not-burn electronic atomization device.
  • the installation cavity includes: a first cavity, the heating component and the heat insulation component are arranged in the first cavity; the second cavity; the inner surface of the shell encloses the installation cavity, and the heating does not burn the electrons
  • the atomization device also includes: a heat conductive member located on the inner surface of the housing, and the heat conductive member extends from the first cavity to the second cavity.
  • the installation cavity is divided into a first cavity and a second cavity according to the structure accommodated in the installation cavity.
  • the first cavity is used to accommodate the heating component, the reflection component and the heat insulation component.
  • the aerosol-generating substrate is heated in the first chamber.
  • the second cavity and the first cavity are offset in the length direction of the heat-not-burn electronic atomization device.
  • the second cavity is used to accommodate other working structures on the heat-not-burn electronic atomization device, including batteries, control circuits and light-emitting parts. Keeping the above-mentioned other working structures away from the heating component can prevent the heating component from affecting the normal operation of the above-mentioned working structure. Work.
  • the heat-not-burn electronic atomization device is further provided with a heat conductive member, part of which is located in the first cavity and the other part of which extends to the second cavity.
  • the thermal conductive member has good heat transfer performance.
  • part of the heat can be transferred from the thermal conductive member to the second cavity with a lower temperature, thereby improving the heat dissipation effect of the first cavity and reducing the final transfer to the second cavity.
  • One cavity side shell on the heat This is to avoid forming a heat concentration area on the casing and ensure that the user's holding experience will not be damaged by local high temperature areas. In this way, the structure of the heat-not-burn electronic atomization device can be optimized, the practicality and safety of the heat-not-burn electronic atomization device can be improved, and the technical effect of improving the user experience can be achieved.
  • the thermal conductive member is a graphene film; the graphene film extends in the length direction of the heat-not-burn electronic atomization device.
  • the heat-conducting member is specifically a graphene film.
  • the graphene film made of graphene material has the characteristics of high planar thermal conductivity and thin thickness, and can quickly conduct heat in the first cavity in a limited space. to the second cavity, thereby achieving relatively uniform heat dissipation in the entire shell area, strengthening the heat dissipation effect, and achieving the goal of reducing the maximum temperature of the shell of the heat-not-burn electronic atomization device.
  • the highly thermally conductive graphene film can quickly conduct the heat generated by the upper heating section of the heat-not-burn electronic atomizer device to the lower non-heating capacitor section. Since the overall average temperature after soaking will not be higher than 48°C, other working structures such as batteries, circuit boards, light-emitting components, etc. will not be in danger due to the heat introduced.
  • graphene also has the advantage of low density. Choosing graphene film as a thermal conductive component can not only improve the heat dissipation effect, but also provide convenient conditions for the lightweight design of the heat-not-burn electronic atomization device, thereby improving the user's holding experience.
  • the plurality of graphene films are arranged at intervals in the circumferential direction of the housing, and the plurality of graphene films are evenly distributed in the circumferential direction of the housing.
  • the heat conductive member includes a plurality of graphene films, wherein each graphene film extends on the inner surface of the housing along the height direction of the heat-not-burn electronic atomization device to facilitate rapid transfer of heat in the first cavity. to the second cavity.
  • multiple graphene films are spaced apart along the circumferential direction of the housing on the inner surface of the housing and evenly distributed.
  • the heat-not-burn electronic atomization device further includes: a reflective member, which is provided between the heating component and the heat insulation component.
  • the reflective component can reflect the thermal radiation emitted by the heating component.
  • the heat-not-burn electronic atomization device is further provided with a reflective member.
  • the reflective member is arranged between the heating component and the heat insulation component.
  • the reflective component has a reflective surface, and the reflective surface faces the heating component. The thermal radiation emitted by the heating component during operation is partially reflected by the reflective component after contacting the reflective surface. radiation to prevent this part of the heat radiation from being transmitted to the insulation components.
  • the reflective member is a reflective film, which is provided on the surface of the heat insulation component facing the heating component; the reflective surface of the reflective film faces the heating component.
  • the reflective member is specifically a reflective film, and the reflective film is attached to the surface of the heat insulation component facing the heating component, that is, the reflective film is attached to the inner ring of the innermost airgel ring of the heating component.
  • the reflective film facing the heating component is a reflective surface, and the heat radiation is partially reflected back into the heating component after contacting the reflective surface.
  • the reflective film can be directly printed on the inner surface of the heat insulation component, thereby reducing the process difficulty and assembly complexity of the heat-not-burn electronic atomization device.
  • providing a reflective film can reduce the space occupied by the reflective member while ensuring the reflective effect, thereby enhancing the heat insulation effect without increasing the overall size of the heat-not-burn electronic atomization device.
  • the reflective film is thinner and lighter, which can improve the heat insulation effect without significantly increasing the weight of the heat-not-burn electronic atomization device, and avoid the user's feeling of holding the heat-not-burn electronic atomization device due to the installation of reflective parts. Change.
  • the reflective film is a polyimide aluminum-plated film.
  • the reflective film is a polyimide aluminum-plated film.
  • the polyimide aluminum-plated film has excellent reflective effects and excellent anti-corrosion properties.
  • the heat-not-burn electronic atomization device further includes: an energy storage component, located in the second cavity, connected to the heating component, and used to supply power to the heating component.
  • the heat-not-burn electronic atomization device is also provided with an energy storage component.
  • the energy storage member is arranged in the installation cavity, and the energy storage member and the heating assembly are offset in the length direction of the heat-not-burn electronic atomization device.
  • the energy storage component is connected to the heating component so that the energy storage component can deliver stored electrical energy to the heating component to drive the heating component to work.
  • the heating component includes: a container, which is provided in the installation cavity and used to accommodate The aerosol generating matrix; the heating element is located in the container and used to heat the container.
  • Heating components include containers and heating elements.
  • a heating cavity is formed in the container, and the heating cavity is used to accommodate the aerosol-generating substrate.
  • a heating pot can be selected as the container.
  • the heating element is arranged on the outer surface of the container.
  • the heating element is arranged on the outer surface of the container.
  • the heating element generates heat after being energized.
  • the heat is transferred to the container to heat the container, so that the electrons in the heating cavity are heated by the high-temperature container without burning.
  • the atomizing device is heated to continuously generate a stable aerosol.
  • the container can play a role in positioning the aerosol-generating substrate.
  • the aerosol-generating substrate can be loaded by inserting the aerosol-generating substrate into the container.
  • the friction between the container and the aerosol-generating substrate can avoid aerosol generation.
  • Matrix detachment On this basis, arranging the heating element outside the container helps to improve the uniformity of heating of the aerosol-generating substrate, thereby improving the uniformity of aerosol production efficiency.
  • the heating element is a heating film; the heating film covers at least part of the outer surface of the container.
  • the heating element is an electric heating film.
  • the electric heating film is attached to the outer surface of the container, and the electric heating film covers at least part of the outer surface of the container.
  • the electric heating film can optionally be used to cover the peripheral side of the container.
  • the airgel ring is arranged around the electric heating film. The electric heating film generates heat after being energized, and the heat is transferred to the container through contact, causing the container to heat up, thereby heating the aerosol to generate a matrix through the high-temperature container.
  • the airgel ring can block the outward transfer of heat on the peripheral side of the electric heating film, thereby improving the heating efficiency of the heating element on the container in disguise.
  • Electric heating film has the advantage of high heating efficiency. Setting up an electric heating film heating container can help improve the energy efficiency ratio of the heat-not-burn electronic atomization device. In addition, the electric heating film also has the advantage of taking up little space. The installation of the electric heating film can rationally utilize the gap between the airgel ring and the container, thus providing convenient conditions for the miniaturization design of the heat-not-burn electronic atomization device.
  • Figure 1 shows one of the structural schematic diagrams of a heat-not-burn electronic atomization device in an embodiment of the present application
  • Figure 2 shows the second structural schematic diagram of the heat-not-burn electronic atomization device in one embodiment of the present application
  • Figure 3 shows one of the test data graphs of the heat-not-burn electronic atomization device in one embodiment of the present application
  • Figure 4 shows the second test data graph of the heat-not-burn electronic atomization device in one embodiment of the present application.
  • the corresponding relationship between the reference signs and component names in Figures 1 and 2 is: 100 heat-not-burn electronic atomization device, 110 shell, 112 installation cavity, 1122 first cavity, 1124 second cavity, 120 heating component, 122 container, 124 heating element, 126 heating chamber, 130 aerogel, 140 reflective element, 150 thermal conductive element, 160 energy storage element, 200 aerosol generating matrix.
  • the heat-not-burn electronic atomization device 100 includes: a housing 110, including an installation cavity 112; and a heating component. 120, located in the installation cavity 112, is used to heat the aerosol generating substrate 200.
  • the heating component 120 encloses the heating cavity 126, and the heating cavity 126 is used to accommodate the aerosol generating substrate 200; the heat insulation component is located in the housing 110 and Between the heating components 120, the heat insulation component includes: multi-layer aerogel 130.
  • the multi-layer aerogel 130 is stacked between the heating component 120 and the shell 110, and is spaced apart from the shell 110.
  • the heat-not-burn electronic atomization device 100 defined in this application includes a housing 110 and a heating component 120 .
  • the housing 110 is the main frame structure of the heat-not-burn electronic atomization device 100 and is used to position and support other structures on the heat-not-burn electronic atomization device 100 .
  • An installation cavity 112 is formed inside the housing 110 , and the heating component 120 is disposed in the installation cavity 112 .
  • the heating component 120 has the functions of clamping the aerosol generating substrate 200 and heating the aerosol generating substrate 200 . During operation, the heating component 120 heats the aerosol-generating substrate 200 to cause the aerosol-generating substrate 200 to generate aerosol, thereby meeting the aerosol generation requirements of the heat-not-burn electronic atomization device 100 .
  • the heating component 120 can contact and heat the aerosol-generating substrate 200 with the heat it emits, and can also heat the non-burning electronic atomization device 100 by emitting infrared radiation and microwaves. This embodiment does not change the structure of the heating component 120 .
  • the form is strictly limited to meet the heating requirements.
  • the heating assembly 120 is internally enclosed to define a heating cavity 126 , and the shape of the heating cavity 126 is adapted to the outer contour shape of the aerosol-generating substrate 200 to position the aerosol-generating substrate 200 through the heating cavity 126 .
  • the size of the heat-not-burn electronic atomization device needs to be strictly limited, so that the internal structure of the heat-not-burn electronic atomization device is relatively compact.
  • the aerosol-generating matrix needs to be heated to a higher temperature to stably generate aerosols, and the thermal conductivity efficiency of the aerosol-generating matrix is low, the heating mechanism inside the heat-not-burn electronic atomization device is in operation. It will dissipate a large amount of heat to the outside.
  • a heat insulation component is provided in the heat-not-burn electronic atomization device 100 .
  • the heat insulation component is provided between the housing 110 and the heating component 120 .
  • the thermal insulation assembly includes multiple layers of airgel 130 , which are stacked between the heating assembly 120 and the housing 110 in the radial direction of the housing 110 .
  • the airgel 130 has excellent thermal insulation properties. Providing a heat insulation component composed of the airgel 130 between the heating component 120 and the housing 110 can effectively reduce the diffusion efficiency of heat from the heating component 120 to the housing 110 .
  • the airgel 130 includes multiple layers, and the multiple layers of airgel 130 are stacked between the heating component 120 and the housing 110 .
  • multiple layers of airgel 130 are stacked between the heating component 120 and the housing 110 in the radial direction of the housing 110 .
  • increasing the number of layers of aerogel 130 can fill air between two adjacent layers of aerogel 130.
  • the thermal insulation component insulated by airgel 130 is transformed into a thermal insulation component relying on the mixed air layer of airgel 130 for thermal insulation. From the above content, it can be seen that it is an excellent thermal insulation medium compared to solid air, and a multi-layer stack is provided.
  • the airgel 130 can further enhance the thermal insulation effect of the thermal insulation component to optimize the user's experience of holding the airgel 130 generating device.
  • each layer of aerogel 130 is ring-shaped; the multiple layers of aerogel 130 are nested around the heating component 120 .
  • each layer of airgel 130 in the thermal insulation assembly is ring-shaped, that is, the thermal insulation assembly is composed of multiple nested rings of airgel 130 .
  • the inner and outer diameters of multiple airgel rings 130 increase gradually from the inside to the outside.
  • the inner diameter of the outer airgel 130 ring is greater than or equal to that of the inner airgel 130 ring. outer diameter. Because there are bound to be errors in processing, and the airgel 130 can deform, an air gap is formed between two adjacent layers of airgel 130 rings, and the heat insulation effect of the heat insulation component can be enhanced through the air gap. For example, when four layers of airgel 130 are provided, three layers of air gaps are mixed in the four layers of airgel 130.
  • the corresponding number of airgel 130 layers can be selected according to the thermal insulation requirements and design costs to take into account thermal insulation performance, low cost and miniaturization design requirements.
  • the heat-not-burn electronic atomization device 100 has a columnar shape as a whole, and a columnar installation cavity 112 is formed in the columnar housing 110 .
  • the heating component 120 is disposed in the central area of the installation cavity 112, and the airgel layer 130 is disposed around the circumference of the heating component 120 and spaced apart from the shell 110 to form a An air gap surrounding the heating element 120.
  • the main holding area is on the peripheral side of the housing 110.
  • the adsorbent can be fully positioned around the heating component 120. The orientation slows down the heat transfer efficiency, thereby reducing the temperature on the sides of the housing 110 to effectively solve the technical problem of excessive temperature in the holding area and poor user experience.
  • the thermal insulation assembly includes four layers of airgel 130; the thickness of each layer of airgel 130 ranges from greater than or equal to 0.3mm to less than or equal to 0.7mm. .
  • the thermal insulation component includes four layers of aerogel 130, where the thickness of each layer of aerosol needs to be greater than or equal to 0.3mm and less than or equal to 0.7mm, where the thickness of the aerogel 130 is the thickness of the aerogel 130 layer in the shell. 110 radial length.
  • the heat insulation requirements of the heat-not-burn electronic atomization device 100 under normal working conditions can be met, and the user can ensure that the user is holding the casing. At 110, you won’t feel the burning sensation.
  • each layer of airgel 130 by limiting the thickness of each layer of airgel 130 to be greater than or equal to 0.3mm, the thermal insulation performance of each layer of airgel 130 can be ensured, and the airgel 130 layer that is too thin cannot be effectively insulated, and the thickness of each layer of airgel is limited.
  • the thickness of the gel layer 130 is greater than or equal to 0.3mm, which helps to improve the structural strength of the airgel layer 130 and reduces the possibility of uncontrollable deformation of the airgel layer 130.
  • each layer of aerogel 130 By limiting the thickness of each layer of aerogel 130 to less than or equal to 0.7 mm, the layer of aerogel 130 can be prevented from excessively occupying the radial space of the installation cavity 112 , thereby facilitating the miniaturization design of the heat-not-burn electronic atomization device 100 .
  • the solid line A represents the temperature change curve of continuous heating for two minutes when only one layer of aerogel 130 with a thickness of 2 mm is provided inside the housing 110 .
  • the dotted line B represents the temperature change curve of continuous heating for two minutes when four layers of aerogel 130 with a thickness of 0.5 mm are provided inside the shell 110 .
  • the heat-not-burn electronic atomization device 100 It also includes: a reflective member 140, which is disposed between the heating component 120 and the heat insulation component.
  • the reflective component 140 can reflect the thermal radiation emitted by the heating component 120.
  • the heat-not-burn electronic atomization device 100 is further provided with a reflective member 140 .
  • the reflective member 140 is disposed between the heating component 120 and the heat insulation component.
  • the reflective component 140 has a reflective surface, and the reflective surface faces the heating component 120.
  • the thermal radiation emitted by the heating component 120 during operation contacts the reflective surface.
  • Part of the heat radiation is reflected by the reflective member 140 to prevent this part of the heat radiation from being transmitted to the heat insulation component.
  • the reflective member 140 is a reflective film, which is disposed on the surface of the heat insulation component facing the heating component 120; the reflective surface of the reflective film faces the heating component 120.
  • the reflective member 140 is specifically a reflective film, and the reflective film is attached to the surface of the heat insulation component facing the heating component 120, that is, the reflective film is attached to the innermost layer of aerogel 130 of the heating component 120. on the inner surface of the ring.
  • the surface of the reflective film facing the heating component 120 is a reflective surface, and the heat radiation is partially reflected back into the heating component 120 after contacting the reflective surface.
  • the reflective film can be directly printed on the inner surface of the heat insulation component, thereby reducing the process difficulty and assembly complexity of the heat-not-burn electronic atomization device 100 . Furthermore, providing a reflective film can reduce the space occupied by the reflective member 140 while ensuring the reflection effect, thereby enhancing the heat insulation effect without increasing the overall size of the heat-not-burn electronic atomization device 100 . At the same time, the reflective film is thinner and lighter, which can improve the heat insulation effect without significantly increasing the weight of the heat-not-burn electronic atomization device 100 and avoid the user's feeling of holding the heat-not-burn electronic atomization device 100 due to the reflection Piece 140 has changed.
  • the reflective film is a polyimide aluminum-plated film.
  • the reflective film is a polyimide aluminum-plated film, and the polyimide aluminum-plated film has excellent reflective effects and excellent anti-corrosion properties.
  • the installation cavity 112 includes: a first cavity 1122 in which the heating component 120 and the heat insulation component are located; a second cavity 1124; and a shell.
  • the inner surface of the body 110 encloses the installation cavity 112, which does not burn when heated.
  • the electronic atomization device 100 further includes: a thermal conductive member 150 disposed on the inner surface of the housing 110 , and the thermal conductive member 150 extends from the first cavity 1122 to the second cavity 1124 .
  • the installation cavity 112 is divided into a first cavity 1122 and a second cavity 1124 according to the structure accommodated in the installation cavity 112 .
  • the first cavity 1122 is used to accommodate the heating component 120, the reflective component 140 and the heat insulation component.
  • the aerosol generating substrate 200 is heated within the first chamber 1122.
  • the second cavity 1124 and the first cavity 1122 are offset in the length direction of the heat-not-burn electronic atomization device 100 .
  • the second cavity 1124 is used to accommodate other working structures on the heat-not-burn electronic atomization device 100, including batteries, control circuits and light-emitting components. Keeping the above-mentioned other working structures away from the heating component 120 can prevent the heating component 120 from affecting the above-mentioned components. Proper functioning of the working structure.
  • the heat-not-burn electronic atomization device 100 is also provided with a heat conductive member 150 .
  • a part of the heat conductive member 150 is located in the first cavity 1122 and the other part extends to the second cavity 1124 .
  • the thermal conductor 150 has good heat transfer performance. By disposing the thermal conductor 150, part of the heat can be transferred from the thermal conductor 150 to the second cavity 1124 with a lower temperature, thereby improving the heat dissipation effect of the first cavity 1122. The heat ultimately transferred to the first cavity 1122 and the peripheral shell 110 is reduced.
  • the heat conductive member 150 is a graphene film; the graphene film extends in the length direction of the heat-not-burn electronic atomization device 100 .
  • the thermal conductive member 150 is specifically a graphene film.
  • the graphene film made of graphene material has the characteristics of high planar thermal conductivity and thin thickness, and can transfer the heat in the first cavity 1122 within a limited space. The heat is quickly conducted to the second cavity 1124, thereby achieving relatively uniform heat dissipation in the entire housing area, enhancing the heat dissipation effect, and achieving the goal of reducing the maximum temperature of the housing of the heat-not-burn electronic atomization device 100.
  • the highly thermally conductive graphene film can quickly conduct the heat generated by the upper part of the heat-generating section of the heat-not-burn electronic atomization device 100 to the lower part of the non-heating capacitor section. Since the overall average temperature after equalization will not be higher than 48°C, other working structures such as batteries, circuit boards, and light-emitting components will not be affected by the heat conduction. Quantity creates danger.
  • graphene also has the advantage of low density. Choosing graphene film as the thermal conductive member 150 can provide convenience for the lightweight design of the heat-not-burn electronic atomization device 100 on the basis of improving the heat dissipation effect, thereby improving the user's holding experience.
  • the columnar figure on the left corresponds to the static temperature of the outer contour of the housing 110 without the heat conductive member 150
  • the columnar figure on the right corresponds to the static temperature of the outer contour of the housing 110 with the heat conductive member 150 .
  • the maximum temperature of the casing 110 is 74°C
  • the average temperature of the casing 110 is 57°C.
  • the maximum temperature of the casing dropped to 47.5°C, and the average temperature dropped to 40°C.
  • the graphene film guides the temperature accumulated in the heating section corresponding to the first cavity 1122 to the lower half section corresponding to the second cavity 1124, thereby reducing the maximum temperature of the shell 110, ensuring that the shell 110 is not hot, and making the entire shell
  • the body temperature is lower than 48°C, which improves safety.
  • any of the above embodiments there are multiple graphene films; the multiple graphene films are spaced apart in the circumferential direction of the housing 110 , and the multiple graphene films are located on the circumferential direction of the housing 110 . Evenly distributed around the circumference.
  • the heat conductive member 150 includes a plurality of graphene films, wherein each graphene film extends along the height direction of the heat-not-burn electronic atomization device 100 on the inner surface of the housing 110 so as to connect the first cavity
  • the heat in 1122 is quickly transferred to the second cavity 1124.
  • multiple graphene films are arranged at intervals along the circumferential direction of the housing 110 on the inner surface of the housing 110 and are evenly distributed. By arranging multiple spaced and evenly distributed graphene films, the heat dissipation uniformity of the casing 110 can be improved and local high-temperature areas can be avoided on the casing 110.
  • arranging multiple graphene films can help increase the thermal conductivity efficiency, thereby reducing the The temperature of the housing 110 on the peripheral side of a cavity 1122.
  • the heat-not-burn electronic atomization device 100 also includes: an energy storage component 160, which is disposed in the second cavity 1124 and connected to the heating component 120 for supplying energy to the heating component. 120 power supply.
  • the heat-not-burn electronic atomization device 100 is also provided with an energy storage component 160 .
  • the energy storage member 160 is disposed in the installation cavity 112 , and the energy storage member 160 and the heating assembly 120 are disposed in a misaligned manner in the length direction of the heat-not-burn electronic atomization device 100 .
  • the energy storage component 160 is connected to the heating component 124 so that the energy storage component 160 can deliver stored electrical energy to the heating component 124 to drive the heating component 124 to work.
  • the heat-not-burn electronic atomization device 100 can be carried by the user, thereby improving the user experience.
  • the heating assembly 120 includes: a container 122 disposed in the installation cavity 112 for accommodating the aerosol generating matrix 200 ; a heating element 124 disposed in the container 122 , for heating container 122.
  • the heating assembly 120 includes a container 122 and a heating element 124 .
  • a heating cavity is formed in the container 122, and the heating cavity is used to accommodate the aerosol generating substrate 200.
  • a heating pot can be selected as the container 122.
  • the heating element 124 is arranged on the outer surface of the container 122.
  • the heating element 124 is arranged on the outer surface of the container 122.
  • the heating element 124 generates heat after being energized, and the heat is transferred to the container 122 to heat up the container 122, thereby heating the container 122 through the high-temperature container 122.
  • the heat-not-burn electronic atomization device 100 in the heating chamber is heated to continuously generate a stable aerosol.
  • the container 122 can play a role in positioning the aerosol generating matrix 200.
  • the loading of the aerosol generating matrix 200 can be completed by inserting the aerosol generating matrix 200 into the container 122.
  • the gap between the container 122 and the aerosol generating matrix 200 is Friction can prevent the aerosol-generating matrix 200 from coming out.
  • arranging the heating element 124 outside the container 122 helps to improve the heating uniformity of the aerosol generating substrate 200, thereby improving the uniformity of the aerosol production efficiency.
  • the heating element 124 is a heating film; the heating film covers at least part of the outer surface of the container 122 .
  • the heating element 124 is an electric heating film.
  • the electric heating film is attached to the outer surface of the container 122 and covers at least part of the outer surface of the container 122.
  • the electric heating film can optionally be used to cover the peripheral side of the container 122.
  • the airgel 130 ring is arranged on the peripheral side of the electric heating film.
  • the electric heating film generates heat after being energized, and the heat is transferred to the container 122 through contact, causing the container 122 to heat up, thereby heating the aerosol-generating substrate 200 through the high-temperature container 122 .
  • the airgel ring 130 can block the outward transfer of heat on the peripheral side of the electric heating film, thereby improving the heating efficiency of the heating element 124 on the container 122 in disguise.
  • the electric heating film has the advantage of high heating efficiency, and the provision of the electric heating film heating container 122 can help improve the energy efficiency ratio of the heat-not-burn electronic atomization device 100 .
  • the electric heating film also has the advantage of occupying less space.
  • the electric heating film can rationally utilize the gap between the airgel 130 ring and the container 122, thus providing convenient conditions for the miniaturization design of the heat-not-burn electronic atomization device 100.
  • connection can be a fixed connection between multiple objects, or a detachable connection between multiple objects.
  • Connection, or integrated connection it can be a direct connection between multiple objects, or an indirect connection between multiple objects through an intermediary.

Landscapes

  • Resistance Heating (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提出了一种加热不燃烧电子雾化装置。加热不燃烧电子雾化装置包括:壳体,包括安装腔;加热组件,设于安装腔内,用于加热气溶胶生成基质,加热组件围合出加热腔,加热腔用于收容气溶胶生成基质;隔热组件,设于壳体和加热组件之间,隔热组件包括:气凝胶,设于加热组件和壳体之间,且与壳体间隔设置。通过在加热组件和壳体之间设置气凝胶,可以借助气凝胶的隔热性能将部分加热组件所散发出的热量阻隔在气凝胶内侧,从而减少传递至壳体上的热量。解决外壳温度过高,用户不便于握持加热不燃烧电子雾化装置,使用体验差的技术问题。

Description

加热不燃烧电子雾化装置
本申请要求于2022年06月07日提交到中国国家知识产权局、申请号为“202210636861.3”,申请名称为“加热不燃烧电子雾化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子雾化技术领域,具体而言,涉及一种加热不燃烧电子雾化装置。
背景技术
现有的加热不燃烧电子雾化装置由于空间结构尺寸的限制,不论是中心加热式还是周圈加热式,都存在器具表面温度过高,烫手的问题。
具体地,加热气溶胶生成基质时发热部件工作需要较高温度,且气溶胶生成基质热导率较低,部分热量沿着器具结构件传递至外壳表面,从而造成器具表面温度较高的技术问题。
因此,如何设计出一种可有效解决上述技术问题的加热不燃烧电子雾化装置,成为了亟待解决的技术问题。
申请内容
本申请旨在解决现有技术或相关技术中存在的技术问题之一。
为此,本申请提出了一种加热不燃烧电子雾化装置。
有鉴于此,根据本申请提出一种加热不燃烧电子雾化装置,加热不燃烧电子雾化装置包括:壳体,包括安装腔;加热组件,设于安装腔内,用于加热气溶胶生成基质,加热组件围合出加热腔,加热腔用于收容气溶胶生成基质;隔热组件,设于壳体和加热组件之间,隔热组件包括:气凝胶,设于加热组件和壳体之间,且与壳体间隔设置。
本申请所限定的加热不燃烧电子雾化装置包括壳体和加热组件。壳体为加热不燃烧电子雾化装置的主体框架结构,用于定位和支撑加热不燃烧电子雾化 装置上的其他结构。壳体内部形成有安装腔,加热组件设置在安装腔内。加热组件具备装夹气溶胶生成基质和加热气溶胶生成基质的作用。工作过程中,加热组件通过加热气溶胶生成基质,使气溶胶生成基质生成气溶胶,从而满足加热不燃烧电子雾化装置的气溶胶生成需求。
其中,加热组件可以通过自身发出的热量接触加热气溶胶生成基质,还可以通过发射红外辐射以及发射微波来加热加热不燃烧电子雾化装置,对此该技术方案不对加热组件的结构形式做硬性限定,满足加热需求即可。加热组件内部围合限定出加热腔,加热腔的形状与气溶胶生成基质的外轮廓形状适配,以通过加热腔定位气溶胶生成基质。
相关技术中,为保证加热不燃烧电子雾化装置的便携性和实用性,加热不燃烧电子雾化装置的尺寸需要严格限制,以至于加热不燃烧电子雾化装置内部的结构紧凑度较高。在此基础上,因气溶胶生成基质需要被加热至较高温度才能稳定产生气溶胶,并且气溶胶生成基质的导热效率较低,所以加热不燃烧电子雾化装置内部的加热机构在工作过程中会向外散发大量热量,此部分热量传递至外壳会使外壳处于高温状态,导致加热不燃烧电子雾化装置存在外壳温度过高,用户不便于握持加热不燃烧电子雾化装置,使用体验差的技术问题。
对此,本申请所限定的技术方案中,在加热不燃烧电子雾化装置中设置了隔热组件。具体地,隔热组件设置在壳体和加热组件之间。隔热组件包括气凝胶,气凝胶具备优良的隔热性能,在加热组件和壳体之间设置由气凝胶构成的隔热组件能够有效降低热量由加热组件扩散至壳体的扩散效率。
由此可见,通过在加热组件和壳体之间设置气凝胶,可以借助气凝胶的隔热性能将部分加热组件所散发出的热量阻隔在气凝胶内侧,从而减少传递至壳体上的热量。在此基础上,通过限定气凝胶与壳体相间隔,可以在隔热组件和壳体内表面之间围合限定出气隙,和任何固体物质相比,空气本身属于一种优秀的隔热材料,在壳体和加热组件之间形成气隙,可以配合气凝胶强化隔热效果,以进一步降传递至壳体上的热量,从而降低壳体的工作温度。从而解决相关技术中所存在的,外壳温度过高,用户不便于握持加热不燃烧电子雾化装置,使用体验差的技术问题。进而实现优化加热不燃烧电子雾化装置,提升气溶胶实用性和安全性,提高用户使用体验的技术效果。
其中,气溶胶生成基质可以是块状烟草,卷烟,烟支,烟膏,或者是可以雾化的本草。
另外,根据本申请提供的上述技术方案中的加热不燃烧电子雾化装置,还可以具有如下附加技术特征:
在上述技术方案中,气凝胶包括多层,多层气凝胶叠设在加热组件和壳体之间。
在该技术方案中,在壳体的径向方向上,多层气凝胶叠设在加热组件和壳体之间。相较于设置单层气凝胶的技术方案来说,增加气凝胶的层数可以使相邻两层气凝胶之间充有空气,从而将原本单纯依靠气凝胶进行隔热的隔热组件转化为依靠气凝胶混合空气层进行隔热的隔热组件,由前述内容可知,相较于固体空气属于优秀的隔热介质,设置多层叠设的气凝胶可以进一步提升隔热组件的隔热效果,以优化用户握持气凝胶产生装置的体验。
在上述任一技术方案中,每层气凝胶均呈环状;多层气凝胶在加热组件的周侧嵌套设置。
在该技术方案中,隔热组件中每层气凝胶均呈环状,即隔热组件由多个气凝胶环嵌套构成。其中,由内至外多个气凝胶环的内外径尺寸梯度增长,对于相邻两个气凝胶环来说,外侧气凝胶环的内径大于等于内侧气凝胶环的外径。因加工必然存在误差,且气凝胶能够发生形变,所以相邻两层气凝胶环之间形成有气隙,通过该气隙即可强化隔热组件的隔热效果。例如,在设置四层气凝胶的情况下,四层气凝胶中混合有三层气隙,气凝胶层数越多混合气隙层数越多,对应隔热效果越强,具体可以根据隔热需求和设计成本选择对应的气凝胶层数,以兼顾隔热性能、低成本成本和小型化设计需求。
具体地,加热不燃烧电子雾化装置整体呈柱状,柱状的壳体内形成有柱状的安装腔。其中,加热组件设置在安装腔的中心区域,气凝胶层则环绕设置在加热组件的周侧,并与壳体间隔,以形成环绕加热组件的气隙。用户使用加热不燃烧电子雾化装置的过程中,主要握持区域在壳体的周侧面上,通过设置环绕加热组件的隔热组件,使吸附件可以在加热组件的周侧全方位减缓热量传递效率,从而降低壳体周侧面的温度,以有效解决握持区域温度过高、用户使用体验差的技术问题。
在上述任一技术方案中,隔热组件包括四层气凝胶;每层气凝胶的厚度的范围为:大于等于0.3mm,且小于等于0.7mm。
在该技术方案中,承接前述技术方案,对隔热组件所包含的气凝胶层数和气凝胶层的尺寸作出了限定。具体地,隔热组件包括四层气凝胶,其中每层气溶胶的厚度需大于等于0.3mm且小于等于0.7mm,其中,气凝胶的厚度即是气凝胶层在壳体径向放上的长度。
首先,通过选择四层尺寸介于0.3mm至0.7mm的气溶胶层作为隔热组件,可以满足加热不燃烧电子雾化装置在常规工作状态下的隔热需求,可以确保用户在握持壳体时不会感受到灼热感。
具体地,通过限定每层气凝胶的厚度需大于等于0.3mm可以保证每层气凝胶的隔热性能,避免过薄的气凝胶层无法有效隔热,并且限定每层气凝胶层的厚度大于等于0.3mm有助于提升气凝胶层的结构强度,降低气凝胶层发生不可控形变的可能性。通过限定每层气凝胶的厚度小于等于0.7mm,可以避免气凝胶层过度占用安装腔径向空间,从而为加热不燃烧电子雾化装置的小型化设计提供便利条件。
在上述任一技术方案中,安装腔包括:第一腔体,加热组件和隔热组件设于第一腔体;第二腔体;壳体的内表面围合出安装腔,加热不燃烧电子雾化装置还包括:导热件,设于壳体的内表面上,导热件由第一腔体延伸至第二腔体。
在该技术方案中,根据安装腔所容置的结构,安装腔划分为第一腔体和第二腔体。其中,第一腔体用于容纳加热组件、反射件和隔热组件。气溶胶生成基质在第一腔体内进行加热。第二腔体和第一腔体在加热不燃烧电子雾化装置的长度方向上错位设置。其中,第二腔体用于容纳加热不燃烧电子雾化装置上的其他工作结构,包括蓄电池、控制电路和发光件,将上述其他工作结构避开加热组件可以避免加热组件影响上述工作结构的正常工作。
在此基础上,加热不燃烧电子雾化装置还设置有导热件,导热件一部分位于第一腔体内,另一部分延伸至第二腔体。在工作过程中,因加热件处于第一腔体,因此第一腔体内的温度高于第二腔体内的温度。导热件具备良好的热传递性能,通过设置该导热件,可以将部分热量由导热件传递至温度较低的第二腔体中,从而提升第一腔体的散热效果,以减少最终传递至第一腔体周侧壳体 上的热量。以避免在壳体上形成热集中区域,保证用户的握持体验不会被局部高温区域破坏。进而实现优化加热不燃烧电子雾化装置结构,提升加热不燃烧电子雾化装置实用性和安全性,提升用户使用体验的技术效果。
在上述任一技术方案中,导热件为石墨烯膜;石墨烯膜在加热不燃烧电子雾化装置的长度方向上延伸。
在该技术方案中,导热件具体为石墨烯膜,由石墨烯材料制成的石墨烯膜,具有平面高导热、厚度薄等特点,能在有限的空间内将第一腔体内的热量快速传导至第二腔体内,从而在整个外壳区域实现较为均匀的散热,强化散热效果,实现降低加热不燃烧电子雾化装置外壳最高温度的目标。
具体地,高导热石墨烯膜可迅速将加热不燃烧电子雾化装置上部分发热段所产生的热量导到下部分不发热的电容段。由于均热后的整体平均温度不会高于48℃,因此蓄电池、电路板、发光件等其他工作结构不会因引导来的热量产生危险。
其中,石墨烯还具备密度低的优点,选择石墨烯膜作为导热件可以在提升散热效果的基础上位加热不燃烧电子雾化装置的轻量化设计提供便利条件,进而提升用户握持体验。
在上述任一技术方案中,石墨烯膜为多个;多个石墨烯膜在壳体的周向上间隔设置,且多个石墨烯膜在壳体的周向上均匀分布。
在该技术方案中,导热件包括多个石墨烯膜,其中每个石墨烯膜在壳体内表面上沿加热不燃烧电子雾化装置的高度方向延伸,以便于将第一腔体内的热量快速传递至第二腔体。在此基础上,多个石墨烯膜在壳体的内表面上沿壳体的周向间隔设置,且均匀分布。通过设置多个间隔且均匀分布的石墨烯膜,可以提升壳体的散热均匀性,避免壳体上出现局部高温区域,并且设置多个石墨烯膜有助于增加导热效率,从而降低第一腔体周侧的壳体温度。
在上述任一技术方案中,加热不燃烧电子雾化装置还包括:反射件,设于加热组件和隔热组件之间,反射件能够反射加热组件所发出的热辐射。
在该技术方案中,加热不燃烧电子雾化装置还设置有反射件。具体地,反射件设置在加热组件和隔热组件之间,反射件具备反射面,反射面朝向加热组件,加热组件在工作过程中所发出的热辐射在接触到反射面后部分被反射件反 射,以阻止此部分热辐射传递至隔热组件上。
实际工作过程中,由于空气具备良好的隔热性能,所以大部分热量穿过空气层的方式都来源于热辐射,通过在隔热组件和加热组件之间设置反射件,可以将辐射的热量通过反射件反射回加热组件,从而一方面降低传递至隔热组件上的热量,以提升加热不燃烧电子雾化装置的隔热效果,另一方面可以降低热辐射损失,以提高加热组件的能效。
在上述任一技术方案中,反射件为反射膜,设于隔热组件朝向加热组件的面上;反射膜的反射面朝向加热组件。
在该技术方案中,承接前述技术方案,反射件具体为反射膜,反射膜附着在隔热组件朝向加热组件的面上,即反射膜贴设在加热组件最内层气凝胶环的内环面上。其中,反射膜朝向加热组件的面为反射面,热辐射在接触反射面后部分被反射回加热组件中。
具体地,反射膜可以直接印刷在隔热组件的内换面上,从而可以降低加热不燃烧电子雾化装置的工艺难度和装配复杂度。并且,设置反射膜可以在保证反射效果的基础上降低反射件所占用的空间,从而在不增大加热不燃烧电子雾化装置整体尺寸的基础上强化隔热效果。同时,反射膜厚度较薄重量较轻,可以在不明显增加加热不燃烧电子雾化装置重量的基础上提升隔热效果,避免用户握持加热不燃烧电子雾化装置的感受因设置反射件发生改变。
在上述任一技术方案中,反射膜为聚酰亚胺镀铝薄膜。
在该技术方案中,反射膜为聚酰亚胺镀铝薄膜,聚酰亚胺镀铝薄膜具备优良的反射效果,且具备优秀的防腐性能。
在上述任一技术方案中,加热不燃烧电子雾化装置还包括:储能件,设于第二腔体内,与加热组件连接,用于向加热组件供电。
在该技术方案中,加热不燃烧电子雾化装置还设置有储能件。具体地,储能件设置在安装腔内,且储能件和加热组件在加热不燃烧电子雾化装置的长度方向上错位设置。储能件与加热件连接,以使储能件能够将存储的电能输送至加热件,以驱动加热件工作。通过设置储能件,使加热不燃烧电子雾化装置可以被用户携带,进而提升用户使用体院。
在上述任一技术方案中,加热组件包括:容器,设于安装腔内,用于容置 气溶胶生成基质;加热件,设于容器,用于加热容器。
在该技术方案中,对加热组件的结构进行说明。加热组件包括容器和加热件。容器内形成有加热腔,加热腔用于容置气溶胶生成基质,具体可选择加热锅作为容器。加热件设置在容器的外表面上,加热件设置在容器的外表面上,加热件在通电后产生热量,热量传递至容器上使容器升温,从而通过高温容器对加热腔内的加热不燃烧电子雾化装置进行加热,以持续生成状态稳定的气溶胶。
具体地,容器可以起到定位气溶胶生成基质的作用,将气溶胶生成基质插接在容器内即可完成气溶胶生成基质的装载,容器和气溶胶生成基质之间的摩擦力可以避免气溶胶生成基质脱出。在此基础上,通过将加热件设置在容器外部有助于提升气溶胶生成基质的加热均匀性,进而提升气溶胶产出效率的均匀性。
在上述任一技术方案中,加热件为发热膜;发热膜覆盖容器的至少部分外表面。
在该技术方案中,加热件为电热膜,电热膜贴设在容器的外表面上,且电热膜覆盖容器的至少部分外表面,具体可选择通过电热膜覆盖容器的周侧面。气凝胶环套设在电热膜周侧。电热膜通电后产生热量,热量通过接触传递至容器中,使容器升温,从而通过高温容器加热气溶胶生成基质。其中,气凝胶环可以在电热膜的周侧阻挡热量向外传递,从而变相提升加热件对容器的加热效率。
电热膜具备加热效率高的优点,设置电热膜加热容器有助于提升加热不燃烧电子雾化装置的能效比。并且电热膜还具备占用空间小的优点,设置电热膜可以合理利用气凝胶环和容器之间的间隙,从而为加热不燃烧电子雾化装置的小型化设计提供便利条件。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描 述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例中的加热不燃烧电子雾化装置的结构示意图之一;
图2示出了本申请的一个实施例中的加热不燃烧电子雾化装置的结构示意图之二;
图3示出了本申请的一个实施例中的加热不燃烧电子雾化装置的测试数据图之一;
图4示出了本申请的一个实施例中的加热不燃烧电子雾化装置的测试数据图之二。
其中,图1和图2中附图标记与部件名称之间的对应关系为:
100加热不燃烧电子雾化装置,110壳体,112安装腔,1122第一腔体,
1124第二腔体,120加热组件,122容器,124加热件,126加热腔,130气凝胶,140反射件,150导热件,160储能件,200气溶胶生成基质。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图4描述根据本申请一些实施例的一种加热不燃烧电子雾化装置。
如图1和图2所示,本申请的一个实施例中提供了一种加热不燃烧电子雾化装置100,加热不燃烧电子雾化装置100包括:壳体110,包括安装腔112;加热组件120,设于安装腔112内,用于加热气溶胶生成基质200,加热组件120围合出加热腔126,加热腔126用于收容气溶胶生成基质200;隔热组件,设于壳体110和加热组件120之间,隔热组件包括:多层气凝胶130,多层气凝胶130叠设在加热组件120和壳体110之间,且与壳体110间隔设置。
本申请所限定的加热不燃烧电子雾化装置100包括壳体110和加热组件120。壳体110为加热不燃烧电子雾化装置100的主体框架结构,用于定位和支撑加热不燃烧电子雾化装置100上的其他结构。壳体110内部形成有安装腔112,加热组件120设置在安装腔112内。加热组件120具备装夹气溶胶生成基质200和加热气溶胶生成基质200的作用。工作过程中,加热组件120通过加热气溶胶生成基质200,使气溶胶生成基质200生成气溶胶,从而满足加热不燃烧电子雾化装置100的气溶胶生成需求。
其中,加热组件120可以通过自身发出的热量接触加热气溶胶生成基质200,还可以通过发射红外辐射以及发射微波来加热加热不燃烧电子雾化装置100,对此该实施例不对加热组件120的结构形式做硬性限定,满足加热需求即可。加热组件120内部围合限定出加热腔126,加热腔126的形状与气溶胶生成基质200的外轮廓形状适配,以通过加热腔126定位气溶胶生成基质200。
相关技术中,为保证加热不燃烧电子雾化装置的便携性和实用性,加热不燃烧电子雾化装置的尺寸需要严格限制,以至于加热不燃烧电子雾化装置内部的结构紧凑度较高。在此基础上,因气溶胶生成基质需要被加热至较高温度才能稳定产生气溶胶,并且气溶胶生成基质的导热效率较低,所以加热不燃烧电子雾化装置内部的加热机构在工作过程中会向外散发大量热量,此部分热量传递至外壳会使外壳处于高温状态,导致加热不燃烧电子雾化装置存在外壳温度过高,用户不便于握持加热不燃烧电子雾化装置,使用体验差的技术问题。
对此,本申请所限定的实施例中,在加热不燃烧电子雾化装置100中设置了隔热组件。具体地,隔热组件设置在壳体110和加热组件120之间。隔热组件包括多层气凝胶130,在壳体110的径向方向上,多层气凝胶130叠设在加热组件120和壳体110之间。气凝胶130具备优良的隔热性能,在加热组件120和壳体110之间设置由气凝胶130构成的隔热组件能够有效降低热量由加热组件120扩散至壳体110的扩散效率。
由此可见,通过在加热组件120和壳体110之间设置气凝胶130,可以借助气凝胶130的隔热性能将部分加热组件120所散发出的热量阻隔在气凝胶130内侧,从而减少传递至壳体110上的热量。在此基础上,通过限定隔热组件与壳体110相间隔,可以在隔热组件和壳体110内表面之间 围合限定出气隙,和任何固体物质相比,空气本身属于一种优秀的隔热材料,在壳体110和加热组件120之间形成气隙,可以配合气凝胶130强化隔热效果,以进一步降传递至壳体110上的热量,从而降低壳体110的工作温度。从而解决相关技术中所存在的,外壳温度过高,用户不便于握持加热不燃烧电子雾化装置100,使用体验差的技术问题。进而实现优化加热不燃烧电子雾化装置100,提升气溶胶实用性和安全性,提高用户使用体验的技术效果。
如图1和图2所示,在上述实施例中,气凝胶130包括多层,多层气凝胶130叠设在加热组件120和壳体110之间。
在该技术方案中,在壳体110的径向方向上,多层气凝胶130叠设在加热组件120和壳体110之间。在此基础上,相较于设置单层气凝胶130的实施例来说,增加气凝胶130的层数可以使相邻两层气凝胶130之间充有空气,从而将原本单纯依靠气凝胶130进行隔热的隔热组件转化为依靠气凝胶130混合空气层进行隔热的隔热组件,由前述内容可知,相较于固体空气属于优秀的隔热介质,设置多层叠设的气凝胶130可以进一步提升隔热组件的隔热效果,以优化用户握持气凝胶130产生装置的体验。
如图1和图2所示,在上述实施例中,每层气凝胶130均呈环状;多层气凝胶130在加热组件120的周侧嵌套设置。
在该实施例中,隔热组件中每层气凝胶130均呈环状,即隔热组件由多个气凝胶130环嵌套构成。其中,由内至外多个气凝胶130环的内外径尺寸梯度增长,对于相邻两个气凝胶130环来说,外侧气凝胶130环的内径大于等于内侧气凝胶130环的外径。因加工必然存在误差,且气凝胶130能够发生形变,所以相邻两层气凝胶130环之间形成有气隙,通过该气隙即可强化隔热组件的隔热效果。例如,在设置四层气凝胶130的情况下,四层气凝胶130中混合有三层气隙,气凝胶130层数越多混合气隙层数越多,对应隔热效果越强,具体可以根据隔热需求和设计成本选择对应的气凝胶130层数,以兼顾隔热性能、低成本成本和小型化设计需求。
具体地,加热不燃烧电子雾化装置100整体呈柱状,柱状的壳体110内形成有柱状的安装腔112。其中,加热组件120设置在安装腔112的中心区域,气凝胶130层则环绕设置在加热组件120的周侧,并与壳体110间隔,以形成 环绕加热组件120的气隙。用户使用加热不燃烧电子雾化装置100的过程中,主要握持区域在壳体110的周侧面上,通过设置环绕加热组件120的隔热组件,使吸附件可以在加热组件120的周侧全方位减缓热量传递效率,从而降低壳体110周侧面的温度,以有效解决握持区域温度过高、用户使用体验差的技术问题。
如图2和图3所示,在上述任一实施例中,隔热组件包括四层气凝胶130;每层气凝胶130的厚度的范围为:大于等于0.3mm,且小于等于0.7mm。
在该实施例中,承接前述实施例,对隔热组件所包含的气凝胶130层数和气凝胶130层的尺寸作出了限定。具体地,隔热组件包括四层气凝胶130,其中每层气溶胶的厚度需大于等于0.3mm且小于等于0.7mm,其中,气凝胶130的厚度即是气凝胶130层在壳体110径向放上的长度。
首先,通过选择四层尺寸介于0.3mm至0.7mm的气溶胶层作为隔热组件,可以满足加热不燃烧电子雾化装置100在常规工作状态下的隔热需求,可以确保用户在握持壳体110时不会感受到灼热感。
具体地,通过限定每层气凝胶130的厚度需大于等于0.3mm可以保证每层气凝胶130的隔热性能,避免过薄的气凝胶130层无法有效隔热,并且限定每层气凝胶130层的厚度大于等于0.3mm有助于提升气凝胶130层的结构强度,降低气凝胶130层发生不可控形变的可能性。通过限定每层气凝胶130的厚度小于等于0.7mm,可以避免气凝胶130层过度占用安装腔112径向空间,从而为加热不燃烧电子雾化装置100的小型化设计提供便利条件。
具体地,如图3所示,实线A代表在壳体110内侧仅设置一层厚度为2mm的气凝胶130层的情况下,持续加热两分钟的温度变化曲线。虚线B代表在壳体110内侧设置4层厚度为0.5mm的气凝胶130层的情况下,持续加热两分钟的温度变化曲线。
从结果显示,总厚度同为2mm的气凝胶130,4层0.5mm的组合能给壳体110温度带来约3℃的温降,说明空气与气凝胶130的掺杂能降低隔热组件的导热能力,使热量更好的隔绝在加热锅内部,避免向外传递,达到保温,降低热损失的效果。
如图1和图2所示,在上述任一实施例中,加热不燃烧电子雾化装置100 还包括:反射件140,设于加热组件120和隔热组件之间,反射件140能够反射加热组件120所发出的热辐射。
在该实施例中,加热不燃烧电子雾化装置100还设置有反射件140。具体地,反射件140设置在加热组件120和隔热组件之间,反射件140具备反射面,反射面朝向加热组件120,加热组件120在工作过程中所发出的热辐射在接触到反射面后部分被反射件140反射,以阻止此部分热辐射传递至隔热组件上。
实际工作过程中,由于空气具备良好的隔热性能,所以大部分热量穿过空气层的方式都来源于热辐射,通过在隔热组件和加热组件120之间设置反射件140,可以将辐射的热量通过反射件140反射回加热组件120,从而一方面降低传递至隔热组件上的热量,以提升加热不燃烧电子雾化装置100的隔热效果,另一方面可以降低热辐射损失,以提高加热组件120的能效。
在上述任一实施例中,反射件140为反射膜,设于隔热组件朝向加热组件120的面上;反射膜的反射面朝向加热组件120。
在该实施例中,承接前述实施例,反射件140具体为反射膜,反射膜附着在隔热组件朝向加热组件120的面上,即反射膜贴设在加热组件120最内层气凝胶130环的内环面上。其中,反射膜朝向加热组件120的面为反射面,热辐射在接触反射面后部分被反射回加热组件120中。
具体地,反射膜可以直接印刷在隔热组件的内换面上,从而可以降低加热不燃烧电子雾化装置100的工艺难度和装配复杂度。并且,设置反射膜可以在保证反射效果的基础上降低反射件140所占用的空间,从而在不增大加热不燃烧电子雾化装置100整体尺寸的基础上强化隔热效果。同时,反射膜厚度较薄重量较轻,可以在不明显增加加热不燃烧电子雾化装置100重量的基础上提升隔热效果,避免用户握持加热不燃烧电子雾化装置100的感受因设置反射件140发生改变。
在上述任一实施例中,反射膜为聚酰亚胺镀铝薄膜。
在该实施例中,反射膜为聚酰亚胺镀铝薄膜,聚酰亚胺镀铝薄膜具备优良的反射效果,且具备优秀的防腐性能。如图1和图2所示,在上述任一实施例中,安装腔112包括:第一腔体1122,加热组件120和隔热组件设于第一腔体1122;第二腔体1124;壳体110的内表面围合出安装腔112,加热不燃烧 电子雾化装置100还包括:导热件150,设于壳体110的内表面上,导热件150由第一腔体1122延伸至第二腔体1124。
在该实施例中,根据安装腔112所容置的结构,安装腔112划分为第一腔体1122和第二腔体1124。其中,第一腔体1122用于容纳加热组件120、反射件140和隔热组件。气溶胶生成基质200在第一腔体1122内进行加热。第二腔体1124和第一腔体1122在加热不燃烧电子雾化装置100的长度方向上错位设置。其中,第二腔体1124用于容纳加热不燃烧电子雾化装置100上的其他工作结构,包括蓄电池、控制电路和发光件,将上述其他工作结构避开加热组件120可以避免加热组件120影响上述工作结构的正常工作。
在此基础上,加热不燃烧电子雾化装置100还设置有导热件150,导热件150一部分位于第一腔体1122内,另一部分延伸至第二腔体1124。在工作过程中,因加热件124处于第一腔体1122,因此第一腔体1122内的温度高于第二腔体1124内的温度。导热件150具备良好的热传递性能,通过设置该导热件150,可以将部分热量由导热件150传递至温度较低的第二腔体1124中,从而提升第一腔体1122的散热效果,以减少最终传递至第一腔体1122周侧壳体110上的热量。以避免在壳体110上形成热集中区域,保证用户的握持体验不会被局部高温区域破坏。进而实现优化加热不燃烧电子雾化装置100结构,提升加热不燃烧电子雾化装置100实用性和安全性,提升用户使用体验的技术效果。
在上述任一实施例中,导热件150为石墨烯膜;石墨烯膜在加热不燃烧电子雾化装置100的长度方向上延伸。
在该实施例中,导热件150具体为石墨烯膜,由石墨烯材料制成的石墨烯膜,具有平面高导热、厚度薄等特点,能在有限的空间内将第一腔体1122内的热量快速传导至第二腔体1124内,从而在整个外壳区域实现较为均匀的散热,强化散热效果,实现降低加热不燃烧电子雾化装置100外壳最高温度的目标。
具体地,高导热石墨烯膜可迅速将加热不燃烧电子雾化装置100上部分发热段所产生的热量导到下部分不发热的电容段。由于均热后的整体平均温度不会高于48℃,因此蓄电池、电路板、发光件等其他工作结构不会因导下的热 量产生危险。
其中,石墨烯还具备密度低的优点,选择石墨烯膜作为导热件150可以在提升散热效果的基础上位加热不燃烧电子雾化装置100的轻量化设计提供便利条件,进而提升用户握持体验。
如图4所示,左侧柱状图形对应未设置导热件150的壳体110的外轮廓静态温度,右侧柱状图形对应设置导热件150的壳体110的外轮廓静态温度。在不设置导热件150的情况下壳体110最高温度为74℃,壳体110平均温度为57℃,显然存在外壳温度过高,安全性低的问题。在外壳内增加石墨烯膜后外壳最高温度降为47.5℃,平均温度降为40℃。石墨烯膜将聚集在第一腔体1122对应的发热段的温度导到第二腔体1124对应的下半段中,从而降低壳体110最高温度,确保壳体110不烫手,使整段壳体110温度低于48℃,提高安全性。
如图1和图2所示,在上述任一实施例中,石墨烯膜为多个;多个石墨烯膜在壳体110的周向上间隔设置,且多个石墨烯膜在壳体110的周向上均匀分布。
在该实施例中,导热件150包括多个石墨烯膜,其中每个石墨烯膜在壳体110内表面上沿加热不燃烧电子雾化装置100的高度方向延伸,以便于将第一腔体1122内的热量快速传递至第二腔体1124。在此基础上,多个石墨烯膜在壳体110的内表面上沿壳体110的周向间隔设置,且均匀分布。通过设置多个间隔且均匀分布的石墨烯膜,可以提升壳体110的散热均匀性,避免壳体110上出现局部高温区域,并且设置多个石墨烯膜有助于增加导热效率,从而降低第一腔体1122周侧的壳体110温度。
如图1所示,在上述任一实施例中,加热不燃烧电子雾化装置100还包括:储能件160,设于第二腔体1124内,与加热组件120连接,用于向加热组件120供电。
在该实施例中,加热不燃烧电子雾化装置100还设置有储能件160。具体地,储能件160设置在安装腔112内,且储能件160和加热组件120在加热不燃烧电子雾化装置100的长度方向上错位设置。储能件160与加热件124连接,以使储能件160能够将存储的电能输送至加热件124,以驱动加热件124工作。 通过设置储能件160,使加热不燃烧电子雾化装置100可以被用户携带,进而提升用户使用体院。
如图1和图2所示,在上述任一实施例中,加热组件120包括:容器122,设于安装腔112内,用于容置气溶胶生成基质200;加热件124,设于容器122,用于加热容器122。
在该实施例中,对加热组件120的结构进行说明。加热组件120包括容器122和加热件124。容器122内形成有加热腔,加热腔用于容置气溶胶生成基质200,具体可选择加热锅作为容器122。加热件124设置在容器122的外表面上,加热件124设置在容器122的外表面上,加热件124在通电后产生热量,热量传递至容器122上使容器122升温,从而通过高温容器122对加热腔内的加热不燃烧电子雾化装置100进行加热,以持续生成状态稳定的气溶胶。
具体地,容器122可以起到定位气溶胶生成基质200的作用,将气溶胶生成基质200插接在容器122内即可完成气溶胶生成基质200的装载,容器122和气溶胶生成基质200之间的摩擦力可以避免气溶胶生成基质200脱出。在此基础上,通过将加热件124设置在容器122外部有助于提升气溶胶生成基质200的加热均匀性,进而提升气溶胶产出效率的均匀性。
如图2所示,在上述任一实施例中,加热件124为发热膜;发热膜覆盖容器122的至少部分外表面。
在该实施例中,加热件124为电热膜,电热膜贴设在容器122的外表面上,且电热膜覆盖容器122的至少部分外表面,具体可选择通过电热膜覆盖容器122的周侧面。气凝胶130环套设在电热膜周侧。电热膜通电后产生热量,热量通过接触传递至容器122中,使容器122升温,从而通过高温容器122加热气溶胶生成基质200。其中,气凝胶130环可以在电热膜的周侧阻挡热量向外传递,从而变相提升加热件124对容器122的加热效率。
电热膜具备加热效率高的优点,设置电热膜加热容器122有助于提升加热不燃烧电子雾化装置100的能效比。并且电热膜还具备占用空间小的优点,设置电热膜可以合理利用气凝胶130环和容器122之间的间隙,从而为加热不燃烧电子雾化装置100的小型化设计提供便利条件。
需要明确的是,在本申请的权利要求书、说明书和说明书附图中,术 语“多个”则指两个或两个以上,除非有额外的明确限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了更方便地描述本申请和使得描述过程更加简便,而不是为了指示或暗示所指的装置或元件必须具有所描述的特定方位、以特定方位构造和操作,因此这些描述不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,举例来说,“连接”可以是多个对象之间的固定连接,也可以是多个对象之间的可拆卸连接,或一体地连接;可以是多个对象之间的直接相连,也可以是多个对象之间的通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据上述数据地具体情况理解上述术语在本申请中的具体含义。
在本申请的权利要求书、说明书和说明书附图中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请的权利要求书、说明书和说明书附图中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种加热不燃烧电子雾化装置,用于加热气溶胶生成基质,其中,包括:
    壳体,包括安装腔;
    加热组件,设于所述安装腔内,用于加热所述气溶胶生成基质,所述加热组件围合出加热腔,所述加热腔用于收容所述气溶胶生成基质;
    隔热组件,设于所述壳体和所述加热组件之间,所述隔热组件包括:
    气凝胶,设于所述加热组件和所述壳体之间,且与所述壳体间隔设置。
  2. 根据权利要求1所述的加热不燃烧电子雾化装置,其中,所述气凝胶包括多层,多层所述气凝胶叠设在所述加热组件和所述壳体之间。
  3. 根据权利要求2所述的加热不燃烧电子雾化装置,其中,
    每层所述气凝胶均呈环状;
    所述多层所述气凝胶在所述加热组件的周侧嵌套设置。
  4. 根据权利要求2所述的加热不燃烧电子雾化装置,其中,
    所述隔热组件包括四层气凝胶;
    每层所述气凝胶的厚度的范围为:大于等于0.3mm,且小于等于0.7mm。
  5. 根据权利要求1所述的加热不燃烧电子雾化装置,其中,所述安装腔包括:
    第一腔体,所述加热组件和所述隔热组件设于所述第一腔体;
    第二腔体;
    所述壳体的内表面围合出所述安装腔,所述加热不燃烧电子雾化装置还包括:
    导热件,设于所述壳体的所述内表面上,所述导热件由所述第一腔体延伸至所述第二腔体。
  6. 根据权利要求5所述的加热不燃烧电子雾化装置,其中,
    所述导热件为石墨烯膜;
    所述石墨烯膜在所述加热不燃烧电子雾化装置的长度方向上延伸。
  7. 根据权利要求6所述的加热不燃烧电子雾化装置,其中,
    所述石墨烯膜为多个;
    多个所述石墨烯膜在所述壳体的周向上间隔设置,且多个所述石墨烯膜在所述壳体的周向上均匀分布。
  8. 根据权利要求1所述的加热不燃烧电子雾化装置,其中,还包括:
    反射件,设于所述加热组件和所述隔热组件之间,所述反射件能够反射所述加热组件所发出的热辐射。
  9. 根据权利要求8所述的加热不燃烧电子雾化装置,其中,
    所述反射件为反射膜,设于所述隔热组件朝向所述加热组件的面上;
    所述反射膜的反射面朝向所述加热组件。
  10. 根据权利要求9所述的加热不燃烧电子雾化装置,其中,
    所述反射膜为聚酰亚胺镀铝薄膜。
  11. 根据权利要求5所述的加热不燃烧电子雾化装置,其中,还包括:
    储能件,设于所述第二腔体内,与所述加热组件连接,用于向所述加热组件供电。
  12. 根据权利要求1至11中任一项所述的加热不燃烧电子雾化装置,其中,所述加热组件包括:
    容器,设于所述安装腔内,用于容置所述气溶胶生成基质;
    加热件,设于所述容器,用于加热所述容器。
  13. 根据权利要求12所述的加热不燃烧电子雾化装置,其中,
    所述加热件为发热膜;
    所述发热膜覆盖所述容器的至少部分外表面。
PCT/CN2023/080509 2022-06-07 2023-03-09 加热不燃烧电子雾化装置 WO2023236605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210636861.3A CN117223911A (zh) 2022-06-07 2022-06-07 加热不燃烧电子雾化装置
CN202210636861.3 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023236605A1 true WO2023236605A1 (zh) 2023-12-14

Family

ID=89095351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080509 WO2023236605A1 (zh) 2022-06-07 2023-03-09 加热不燃烧电子雾化装置

Country Status (2)

Country Link
CN (1) CN117223911A (zh)
WO (1) WO2023236605A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207136243U (zh) * 2017-08-16 2018-03-27 湖南中烟工业有限责任公司 烟雾抽吸系统、低温烟具及其发热组件
CN208064490U (zh) * 2018-03-28 2018-11-09 湖南中烟工业有限责任公司 一种便携型低温烟具
CN109674095A (zh) * 2019-01-26 2019-04-26 深圳市合元科技有限公司 烟支加热器及电加热吸烟装置、隔热装置
CN112822951A (zh) * 2018-10-12 2021-05-18 Jt国际股份公司 气溶胶产生装置及其加热腔体
CN113729287A (zh) * 2021-09-08 2021-12-03 深圳麦克韦尔科技有限公司 导向部件、加热组件及气溶胶产生装置
CN217487675U (zh) * 2022-06-07 2022-09-27 深圳麦克韦尔科技有限公司 加热不燃烧电子雾化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207136243U (zh) * 2017-08-16 2018-03-27 湖南中烟工业有限责任公司 烟雾抽吸系统、低温烟具及其发热组件
CN208064490U (zh) * 2018-03-28 2018-11-09 湖南中烟工业有限责任公司 一种便携型低温烟具
CN112822951A (zh) * 2018-10-12 2021-05-18 Jt国际股份公司 气溶胶产生装置及其加热腔体
CN109674095A (zh) * 2019-01-26 2019-04-26 深圳市合元科技有限公司 烟支加热器及电加热吸烟装置、隔热装置
CN113729287A (zh) * 2021-09-08 2021-12-03 深圳麦克韦尔科技有限公司 导向部件、加热组件及气溶胶产生装置
CN217487675U (zh) * 2022-06-07 2022-09-27 深圳麦克韦尔科技有限公司 加热不燃烧电子雾化装置

Also Published As

Publication number Publication date
CN117223911A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN217487675U (zh) 加热不燃烧电子雾化装置
WO2019015343A1 (zh) 发热装置、加热不燃烧烟具及恒温烟气释放方法
JP3248388U (ja) 加熱装置
WO2023000855A1 (zh) 加热器件及电子雾化装置
JP2022540282A (ja) ヒータモジュール、ヒータモジュールの製造方法、及びヒータモジュールを含むエアロゾル生成装置
WO2021143835A1 (zh) 低温烟具
WO2022027800A1 (zh) 加热模组及发烟装置
WO2023236605A1 (zh) 加热不燃烧电子雾化装置
WO2022027801A1 (zh) 加热模组及发烟装置
KR102626583B1 (ko) 담배 히터 및 전기 가열 흡연 장치
JP3753875B2 (ja) 電子機器
CN211204122U (zh) 一种便携式小火炉的隔热结构
TWM588913U (zh) 無線充電裝置
TWI287962B (en) Heat-dissipating fan
CN111165910A (zh) 一种用于低温卷烟的分子共振烟具
CN220712932U (zh) 加热装置及电子雾化装置
CN221284673U (zh) 一种加热模组及气溶胶生成装置
JP2024062929A (ja) エアロゾル発生装置及びエアロゾル発生システム
CN109442543B (zh) 一种壁炉
JP2005079242A (ja) 電子機器
CN208029127U (zh) 加热组件及加热器具
CN220123958U (zh) 雾化结构及电子雾化装置
CN220675794U (zh) 液体加热容器
WO2022252575A1 (zh) 烟支的加热装置
CN214038323U (zh) 一种高散热性能灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818773

Country of ref document: EP

Kind code of ref document: A1