WO2023231933A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023231933A1
WO2023231933A1 PCT/CN2023/096665 CN2023096665W WO2023231933A1 WO 2023231933 A1 WO2023231933 A1 WO 2023231933A1 CN 2023096665 W CN2023096665 W CN 2023096665W WO 2023231933 A1 WO2023231933 A1 WO 2023231933A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
performance difference
value
performance
access network
Prior art date
Application number
PCT/CN2023/096665
Other languages
English (en)
French (fr)
Inventor
杭海存
陈家璇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231933A1 publication Critical patent/WO2023231933A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the wireless communication system formulated by the 3rd generation partnership project (3GPP) has developed to the fifth generation (the 5th generation, 5G), that is, the new radio (NR) system.
  • the 5G communication system has higher requirements for system capacity, spectrum efficiency and other aspects.
  • massive-MIMO massive multiple-input multiple-output
  • base stations can provide high-quality services to more user equipment (UE) at the same time.
  • UE user equipment
  • One of the more critical links is that the base station precodes the downlink data. Precoding can achieve spatial multiplexing, reduce interference between different data streams, and improve the signal to interference plus noise ratio at the receiving end. ratio, SINR), thereby improving system throughput.
  • the UE can feed back the channel state information (CSI) of the downlink channel to the base station, recover the downlink channel information based on the CSI, and use the recovered downlink channel information to determine the precoding.
  • CSI channel state information
  • Coding matrix for precoding. How to enable the base station to obtain more accurate channel state information is a technical issue worthy of study.
  • This application provides a communication method and device to enable the network side to obtain more accurate channel state information.
  • a first aspect provides a first communication method, which method can be executed on the terminal device side.
  • the method can be executed by software, hardware, or a combination of software and hardware.
  • the method is performed by a terminal device, or by a circuit system, or by a larger device including the terminal device, the circuit system being able to implement the functions of the terminal device.
  • the method includes: a terminal device receiving first information from an access network device, the first information being used to determine the performance of a first decoder in the access network device and a second decoder in the terminal device. The first performance difference between the performances; decoding the encoded bit stream corresponding to the channel data according to the second decoder to obtain the channel information; determining the rank of the first performance difference according to the first performance difference and the channel information.
  • a value sending a rank indication and a channel quality indication corresponding to the first value to the access network device, where the rank indication is used to indicate the first value.
  • the terminal device determines the first value of rank based on the first performance difference value fed back by the access network device, so that the first value fed back by the terminal device to the access network device is consistent with the predetermined value determined by the access network device.
  • the encoding matrices are better matched, thus improving the precision and accuracy of the feedback.
  • the method further includes: sending an encoded bit stream corresponding to the channel data to the access network device.
  • the first information and the first performance difference satisfy a preset functional relationship, so The method further includes: using the output value of the preset function with the first information as the input value as the first performance difference value.
  • the first information and the first performance difference satisfy a preset functional relationship, thereby improving the flexibility of feedback of the first performance difference and improving system efficiency.
  • the first information is an index of a first performance difference
  • the method further includes: using the performance difference indexed as the first information as the first performance difference.
  • the first information is an index of the first performance difference, which is more flexible to implement and can also reduce the overhead of sending the first information.
  • the first information is an index of a second performance difference
  • the second performance difference is a performance difference between the performance of the first decoder and a preconfigured baseline performance
  • the method further includes determining the first performance difference based on the second performance difference and the baseline performance.
  • the first information is the first performance difference value.
  • the terminal device can directly determine the first performance difference based on the first information.
  • This implementation has low complexity and can reduce system complexity.
  • the maximum value of the rank is N
  • the first information is used to indicate N first performance difference values
  • N is an integer greater than 0.
  • Each first performance difference value among the N first performance difference values corresponds to one stream.
  • each stream of the channel corresponds to a first performance difference value, thereby improving the accuracy of feedback.
  • determining the first value of rank based on the first performance difference and the channel information includes: determining N values of rank based on the first performance difference and the channel information.
  • the channel index corresponding to each of the values, N is an integer greater than 0; the value in which the channel index corresponding to the N values is the optimal channel index is used as the first value.
  • the value of the optimal channel index is used as the first value, which can improve channel throughput and system efficiency.
  • the second aspect provides a first communication method, which can be executed on the access network device side.
  • the method can be executed by software, hardware, or a combination of software and hardware.
  • the method is performed by the access network device, or by a circuit system, or by a larger device including the access network device, and the circuit system is capable of realizing the functions of the access network device.
  • the method includes: the access network device determines a first performance difference between the performance of the first decoder in the access network device and the performance of the second decoder in the terminal device; sending first information to the terminal device , the first information is used to determine the first performance difference; receiving a rank indication from the terminal device and a channel quality indication corresponding to the first value, the rank indication being used to indicate the first value ; The first value is determined based on the first performance difference and channel information, and the channel information is obtained by decoding the encoded bit stream corresponding to the channel data by the second decoder.
  • the method further includes: sending an encoded bit stream corresponding to the channel data to the access network device.
  • the first information and the first performance difference satisfy a preset functional relationship.
  • the preset function When the input value of the preset function is the first information, the preset function
  • the output value is the first performance difference value.
  • the first information is an index of the first performance difference value.
  • the first information is an index of a second performance difference
  • the second performance difference is a performance difference between the performance of the first decoder and a preconfigured baseline performance;
  • the first performance difference is determined based on the second performance difference and the baseline performance.
  • the maximum value of the rank is N
  • the first information is used to indicate N first performance difference values
  • N is an integer greater than 0.
  • the channel indicator corresponding to the N values of rank is the value of the optimal channel indicator, and N is an integer greater than 0; wherein, among the N values of rank The channel index corresponding to each value is determined based on the first performance difference value and the channel information.
  • inventions of the present application provide a communication device.
  • the communication device may be a terminal device, a module capable of implementing functions on the terminal device side, or a chip that can be disposed inside the terminal device.
  • the communication device has the function of implementing the first aspect.
  • the communication device includes a module or unit or means corresponding to executing part or all of the steps involved in the first aspect.
  • the function, unit or means can be implemented through software. Implementation, either through hardware implementation, or through hardware execution of corresponding software implementation.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive signals from The information of the second device; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned first aspect.
  • the communication device includes a processor and may also include a transceiver, the transceiver is used to send and receive signals, and the processor uses the transceiver to complete any possible method in the first aspect.
  • the communication device may further include one or more memories, the memories being used to couple with the processor, and the memories may store computer programs or instructions that implement the functions involved in the first aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store computer programs or instructions that implement the functions involved in the first aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device may be an access network device, a module that can implement functions on the access network device side, or a chip that can be disposed inside the access network device.
  • the communication device has the function of implementing the second aspect.
  • the communication device includes a module or unit or means corresponding to performing part or all of the operations involved in the second aspect.
  • the module, unit or means can be implemented through software. , or implemented through hardware, or corresponding software implementation can be executed through hardware.
  • the communication device includes a processing unit and a communication unit, where the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive signals from The information of the first device; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned second aspect.
  • the communication device includes a processor and may also include a transceiver, the transceiver is used to send and receive signals, and the processor uses the transceiver to complete any possible method in the second aspect.
  • the communication device may further include one or more memories, the memories being used to couple with the processor, and the memories may store computer programs or instructions that implement the functions involved in the second aspect. described
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the second aspect.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store computer programs or instructions that implement the functions involved in the second aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the second aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the second aspect.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect.
  • a sixth aspect provides a chip, which includes a processor and may also include a memory for executing computer programs or instructions stored in the memory, so that the chip implements the aforementioned first aspect and any possible aspects of the first aspect.
  • the method in the implementation mode, or the chip realizes the method in the aforementioned second aspect and any possible implementation mode in the second aspect.
  • embodiments of the present application provide a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer storage medium.
  • the computer reads and executes the computer-readable instructions, the computer implements the above-mentioned first step. Any possible method in the design from the aspect to the second aspect.
  • embodiments of the present application provide a computer program product.
  • the computer When a computer reads and executes the computer program product, the computer implements the method in any possible design of the first aspect to the second aspect. .
  • inventions of the present application provide a chip.
  • the chip includes a processor.
  • the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement the above-mentioned first aspect. Any possible method in the design of the second aspect.
  • a communication device including a processor and an interface circuit.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor.
  • the processor is configured to implement the method in the aforementioned first aspect and any possible implementation manner in the first aspect through logic circuits or execution of computer programs or instructions.
  • a communication device including a processor and an interface circuit.
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit them to the processor or to transfer signals from the processor.
  • the processor is configured to implement the method in the aforementioned second aspect and any possible implementation manner in the second aspect through logic circuits or execution of computer programs or instructions, or implement the aforementioned third aspect. Three aspects, and methods in any possible implementation of the third aspect.
  • a communication device including a processor and a memory, the processor is coupled to the memory, and the processor is used to execute computer programs or instructions stored in the memory, so that the communication device Implement the method in the aforementioned first aspect and any possible implementation manner in the first aspect.
  • a communication device including a processor and a memory, the processor is coupled to the memory, and the processor is used to execute computer programs or instructions stored in the memory, so that the communication device Implement the method in the aforementioned second aspect and any possible implementation manner in the second aspect.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an application framework provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a reference model provided by the embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Communication system 10 includes one or more communication devices 30 (eg, terminal devices).
  • the one or more communication devices 30 are connected to one or more core network (core network, CN) devices via one or more access network (radio access network, RAN) devices 20 to achieve communication between multiple communication devices.
  • communication is a communication system that supports the 4th generation (4G) (including long term evolution (LTE)) access technology, and supports 5G (sometimes also called new radio (NR)). )) access technology communication systems, wireless fidelity (Wi-Fi) systems, cellular systems related to the 3rd generation partnership project (3GPP), communication systems that support the integration of multiple wireless technologies , or future-oriented evolutionary systems, etc., are not restricted.
  • 4G including long term evolution (LTE)
  • 5G sometimes also called new radio (NR)
  • Wi-Fi wireless fidelity
  • 3GPP 3rd generation partnership project
  • the number of each device in the communication system shown in Figure 1 is only for illustration, and the application is not limited thereto.
  • the communication system may also include more terminal devices and more access network devices. It may also include other devices, such as core network devices, and/or nodes used to implement artificial intelligence functions.
  • the network architecture shown in Figure 1 above can be applied to various radio access technology (RAT) communication systems, such as 4G communication systems, or 5G (or new radio (NR)).
  • the communication system may also be a transition system between the LTE communication system and the 5G communication system.
  • the transition system may also be called a 4.5G communication system, or it may be a future communication system, such as a 6G communication system.
  • the network architecture and business scenarios described in this application are for the purpose of explaining the technical solution of this application more clearly and do not constitute a limitation on the technical solution provided by this application. Those of ordinary skill in the art will know that with the evolution of communication network architecture and new technologies, As business scenarios arise, the technical solutions provided in this application are also applicable to similar technical problems.
  • the terminal device may be referred to as a terminal for short.
  • the terminal device may be a device with wireless transceiver function.
  • Terminal equipment can be mobile or fixed. Terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal equipment may include a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal equipment, an augmented reality (AR) terminal equipment, an industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety Wireless terminal equipment in safety), wireless terminal equipment in smart city (smart city), and/or wireless terminal equipment in smart home (smart home).
  • a mobile phone mobile phone
  • a tablet computer pad
  • AR augmented reality
  • an industrial control Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety Wireless terminal equipment in safety), wireless terminal equipment in smart city (smart city), and/or wireless terminal equipment in smart home (smart home).
  • the terminal device can also be Cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, or Computing equipment, vehicle equipment, wearable devices, terminal equipment in the future fifth generation (the 5th generation, 5G) network or terminal equipment in the future evolved public land mobile communication network (public land mobile network, PLMN), etc. Terminal equipment may also be called user equipment (UE) sometimes.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports LTE, can also communicate with an access network device that supports 5G, and can also communicate with an access network device that supports 5G. Dual connectivity of access network equipment that supports LTE and access network equipment that supports 5G. This application is not limited.
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module.
  • the device It can be installed in the terminal device or used in conjunction with the terminal device.
  • the device for realizing the functions of the terminal device is a terminal device and the terminal device is a UE as an example to describe the technical solution provided by this application.
  • the access network device is a node or device that connects the terminal device to the wireless network, and the access network device can also be called a network device or a base station.
  • Access network equipment includes, for example, but is not limited to: base stations, next generation node B (gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), Node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (base band unit, BBU), transmitting and receiving point (TRP), transmitting point (TP), and/or mobile switching center, etc.
  • gNB next generation node B
  • eNB evolved node B
  • RNC radio network controller
  • Node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • the access network equipment can also be a module used to implement some or all functions of the base station.
  • the access network equipment can be a centralized unit (centralized unit, CU), a distributed unit (distributed unit, DU), or a centralized unit control plane.
  • CU control plane, CU-CP centralized unit user plane
  • CU-UP centralized unit user plane
  • IAB integrated access and backhaul
  • cloud radio access network cloud radio At least one of the wireless controllers in access network, CRAN) scenarios, etc.
  • the access network equipment may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, an access network device in a 5G network, or an access network device in a future evolved public land mobile network (PLMN). Access network equipment, etc.
  • PLMN public land mobile network
  • the device used to realize the function of the access network device may be the access network device; it may also be a device that can support the access network device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit
  • the device can be installed in access network equipment or used in conjunction with access network equipment.
  • the technical solution provided by this application is described by taking the device for realizing the function of the access network device being the access network device and the access network device being the base station as an example.
  • the protocol layer structure may include a control plane protocol layer structure and a user plane protocol layer structure.
  • the control plane protocol layer structure may include at least one of the following: a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, and a radio link control (radio link control) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • radio link control radio link control
  • RLC radio link control
  • media access control media access control
  • MAC media access control
  • physical layer physical layer
  • the user plane protocol layer structure may include at least one of the following: service data adaptation protocol (SDAP) layer, PDCP layer, RLC layer, MAC layer, physical layer, etc.
  • SDAP service data adaptation protocol
  • the above protocol layer structure between the access network equipment and the terminal equipment can be regarded as the access layer (access stratum, AS) structure.
  • AS access layer
  • NAS non-access stratum
  • Core network equipment forwards information from terminal equipment.
  • the access network device can forward information between the terminal device and the core network device through transparent transmission.
  • the NAS message may be mapped to or included in RRC signaling as an element of RRC signaling.
  • the protocol layer structure between the access network device and the terminal device may also include an artificial intelligence (artificial intelligence, AI) layer for transmitting data related to the AI function.
  • AI artificial intelligence
  • the method provided by this application can also be used for communication between other communication equipment, such as communication between macro base stations and micro base stations in wireless backhaul links.
  • communication between the first terminal device and the second terminal device in the sidelink (SL) is not restricted.
  • This application takes the communication between the access network equipment and the terminal equipment as an example to describe.
  • precoding can be performed based on the channel state information (CSI) fed back by the terminal device.
  • CSI channel state information
  • the access network equipment can process the signal to be sent with the help of a precoding matrix that matches the channel conditions when the channel state information is known.
  • the precoded signal to be sent can be adapted to the channel, thereby improving the quality of the signal received by the terminal device (such as signal to interference plus noise ratio (SINR), etc.) , thereby improving system throughput.
  • the sending device such as access network equipment
  • multiple receiving devices such as terminal equipment
  • multiple input multiple output, MU-MIMO multiple input multiple output
  • the sending device (such as access network equipment) and the receiving device (such as terminal equipment) can effectively transmit multiple data streams on the same time-frequency resources, that is, single-user multiple input and multiple output (multiple input and multiple output) can be effectively realized. single user multiple input multiple output, SU-MIMO).
  • the relevant description of the precoding technology is only an example to facilitate understanding and is not used to limit the disclosure scope of the present application.
  • the sending device can also perform precoding in other ways. For example, when the channel information (such as but not limited to the channel matrix) cannot be obtained, a preset precoding matrix or weighting processing method is used to perform precoding. For the sake of brevity, its specific content will not be repeated in this article.
  • the access network equipment When the access network equipment performs precoding, it uses the precoding matrix to precode the downlink data. In order to obtain the precoding matrix, the access network equipment needs to obtain the CSI of the downlink channel, so as to determine the precoding matrix based on the CSI.
  • CSI feedback is in the wireless communication system, from the receiving end (such as terminal equipment) of data (such as but not limited to data carried on the physical downlink shared channel (PDSCH)) to the transmitting end (such as access network equipment) ) reports information describing the channel attributes of the communication link.
  • PDSCH physical downlink shared channel
  • CSI includes one or more of the downlink channel matrix, precoding matrix indicator (precoding matrix indicator, PMI), rank indicator (rank indicator, RI), or channel quality indicator (channel quality indicator, CQI) and other information.
  • precoding matrix indicator precoding matrix indicator, PMI
  • rank indicator rank indicator
  • CQI channel quality indicator
  • Neural network is a specific implementation form of machine learning technology. According to the universal approximation theorem, neural networks can theoretically approximate any continuous function, which enables neural networks to have the ability to learn arbitrary mappings.
  • Traditional communication systems require the use of rich expert knowledge to design communication modules, while deep learning communication systems based on neural networks can automatically discover implicit pattern structures from a large number of data sets, establish mapping relationships between data, and obtain better results than traditional Performance of modeling methods.
  • DNN deep neural network
  • MLP multi-layer perceptron
  • CNN convolutional neural networks
  • RNN recurrent neural network
  • FIG. 2 it is a schematic diagram of an application framework of AI in communication systems.
  • Data source is used to store training data and inference data.
  • the model training node (model training host) obtains the AI model by analyzing or training the training data (training data) provided by the data source, and deploys the AI model in the model inference node (model inference host).
  • the model inference node uses the AI model to perform inference based on the inference data provided by the data source to obtain inference results.
  • the reasoning results are planned uniformly by the execution (actor) entity and sent to one or more execution objects (for example, network entities) for execution.
  • a CSI compression feedback technology based on deep learning is to perform CSI compression feedback through a CNN-based auto-encoder (AE) model.
  • the AE model includes the AI encoder model and the AI decoder model used for matching.
  • the AI encoder model and the AI decoder model can be AI models obtained by analyzing or training the training data provided by the data source.
  • the AI encoder model is The encoder model is referred to as the encoder, and the AI decoder model is referred to as the decoder.
  • the terminal device preprocesses the downlink channel data through the encoder, encodes it through the encoder, and obtains the encoded bit stream.
  • the bit stream is then quantized by the quantizer to obtain the quantized bit stream.
  • the terminal device can feed back the quantized bit stream to the access network device.
  • the access network equipment processes the received bit stream through the inverse quantizer and then inputs it into the decoder for decoding to obtain restored downlink channel data.
  • the entity for training the AI encoder model and the AI decoder model may be an access network device, a terminal device, or a third-party network entity.
  • the access network device can deliver the trained AI encoder model and AI decoder model to the terminal device, and the terminal device can send the trained AI encoder model and AI decoder model to the terminal device according to the received The network model is used directly or after certain adjustments.
  • the training entity of the AI encoder model and AI decoder model is a terminal device
  • the terminal device can upload the trained AI encoder model and AI decoder model to the network side device.
  • the access network device or terminal device can download the AI encoder model and AI decoder model from the third-party network entity.
  • the encoder and decoder exist at the same time. After the terminal equipment side performs the encoding operation, the access network equipment side must perform the corresponding decoding operation, which requires the terminal equipment and the access network equipment to communicate with each other. Knowing the learning characteristics of the peer does not require that the devices fully know the network structure and network parameters of the peer, that is, the specific implementation method. It only requires knowing the functions implemented by the peer.
  • One possible implementation is to use a reference model, that is, define a set of reference models on the protocol, including a reference encoder and a reference decoder. Both terminal equipment and access network equipment can obtain the reference encoder and reference decoder according to the description on the protocol. The terminal equipment can train an encoder that matches the reference decoder based on the reference decoder, and the access network equipment can train an encoder that matches the reference encoder based on the reference encoder. decoder.
  • the terminal equipment feeds back the bit stream encoded by the encoder to the access network equipment, and the terminal equipment can only determine the reference decoder, it cannot determine the decoder trained by the access network equipment based on the reference decoder. Therefore, the terminal equipment is It is impossible to know the downlink channel data finally restored by the access network equipment. Moreover, this method requires the access network equipment to determine the CSI of the downlink channel based on the restored downlink channel data, resulting in a large overhead for the access network equipment. Especially when a large number of terminal equipment is connected, the access network equipment will increase load and power consumption.
  • this application will provide a technical solution to solve the above problems.
  • first and second indication information are used to distinguish multiple objects and are not used to limit the size, content, order, timing, application scenarios, priority or importance of multiple objects.
  • first indication information and the second indication information may be the same indication information, or they may be different indication information, and such names do not indicate the size, transmission mode, or instruction content of the two indication information. , priority, application scenarios or importance, etc.
  • FIG. 4 it is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method includes:
  • the access network device determines a first performance difference between the performance of the first decoder in the access network device and the performance of the second decoder in the terminal device.
  • a reference encoder and a reference decoder are agreed upon between the terminal equipment and the access network equipment.
  • the reference decoder is a decoder that matches the reference encoder.
  • the first decoder is obtained by training based on the reference encoder.
  • the second decoder is a reference decoder, and the access network device can determine the performance of the second decoder, thereby determining the first performance difference.
  • the unit of the first performance difference value may be decibel (dB) or a linear value, which is not limited by this application.
  • the access network device sends the first information to the terminal device; correspondingly, the terminal device receives the first information from the access network device.
  • the first information is used to determine the first performance difference.
  • the difference between the performance of the first decoder and the performance of the second decoder may be related to the value of the rank of the channel, or may also be related to the value of the rank. None to do.
  • the first performance difference has nothing to do with the value of rank, then the first performance difference remains unchanged for different values of rank, that is, the first performance difference corresponding to different values of rank is the same; if the first The performance difference is related to the value of rank, then different values of rank correspond to different first performance differences.
  • the maximum value of rank is N
  • the channel includes N flows, and the first information is used Indicates N first performance difference values, each first performance difference value corresponds to a stream, and N is an integer greater than 0.
  • the first information may be implemented in the following ways.
  • the first information is the first performance difference value.
  • the first performance difference is 0.5
  • the first information is 0.5.
  • the terminal device can directly determine the first performance difference based on the first information.
  • This implementation has low complexity and can reduce system complexity.
  • the first information and the first performance difference satisfy a preset functional relationship.
  • the terminal device uses the first information as the input value of the preset function, and uses the output value using the first information as the input value as the first performance difference value.
  • y represents the first performance difference
  • PD_index represents the first information
  • a represents the step size
  • the value of a is preset
  • the specific form of f(PD_index,a) is not limited by this application.
  • This implementation method can reduce the overhead of sending the first information and improve system efficiency.
  • each performance difference value corresponds to an index
  • the first information is the index of the first performance difference value
  • the corresponding relationship between the performance difference value and the index may be agreed upon by the protocol or configured by the access network device, which is not limited by this application.
  • the performance difference indexed to the first information is used as the first performance difference.
  • the protocol defines multiple indexes of performance differences.
  • the relationship between the performance difference and the index can be shown in Table 1.
  • the index here is assumed to be 4 bits. This application does not specify the number of bits included in the index. limit.
  • This implementation method is relatively flexible and can also reduce the overhead of sending the first information.
  • the access network device can pre-configure a baseline performance for the terminal device, and the access network device can indicate the performance difference between the performance of the first decoder and the pre-configured baseline performance through the first information, The terminal device can thereby determine the first performance difference value based on the second performance difference value and the baseline performance.
  • the terminal device may use the sum of the first information and the baseline performance as the first performance difference value.
  • the terminal device uses the first information as the input value of the preset function, and uses the first information as the output value as the second performance difference. , and the sum of the second performance difference and the baseline performance is used as the first performance difference.
  • the terminal device can determine the second performance difference based on the first information, and then use the sum of the second performance difference and the baseline performance as the first performance difference.
  • the baseline performance is PD_base
  • the relationship between the performance difference and the index defined in the protocol can be shown in Table 2.
  • the first information when the first performance difference is related to the value of rank, the first information may be implemented in the following ways.
  • the first information includes N first performance difference values, and the first performance difference values corresponding to different rank values are different.
  • the value of rank represents the number of flows in the channel
  • the rank corresponds to X first performance difference values
  • each of the X flows corresponds to X first performance difference values.
  • the first information includes two first performance difference values of 0.5 and 0.75 respectively.
  • the rank value is 1, the first performance difference value is 0.5; when the rank value is 2, the channel includes There are 2 streams, where the first performance difference corresponding to the first stream is 0.5, and the first performance difference corresponding to the second stream is 0.75.
  • the first information and the first performance difference satisfy a preset functional relationship.
  • y represents the first performance difference
  • PD_index represents the first information
  • a represents the step size
  • the value of a is preset
  • a can also be configured by the access network device, and different values of rank correspond to different values of a. value.
  • the first information is an index corresponding to N first performance difference values, and each performance difference value corresponds to a different value of rank.
  • the corresponding relationship between the performance difference value and the index may be agreed upon by the protocol or configured by the access network device, which is not limited by this application.
  • one index corresponds to N first performance difference values, which can reduce the overhead of the first information.
  • the first information received by the terminal device is 0000, then when the rank is 1, the first performance difference is 0.5. When the rank is 2, the first performance difference corresponding to the second stream is 0.25. In other cases No longer.
  • the first information is an index corresponding to the first performance difference value, and different values of rank correspond to different indexes of the performance difference value.
  • the corresponding relationship between the performance difference value and the index may be agreed upon by the protocol or configured by the access network device, which is not limited by this application.
  • one index corresponds to a first performance difference value, which can improve the flexibility of indicating the performance difference value.
  • the first performance difference is 0.5, and the corresponding rank is 1; if the first information received by the terminal device is 1000, the first performance difference is 0.25 , the corresponding rank is 2.
  • the terminal device decodes the encoded bit stream corresponding to the channel data according to the second decoder to obtain the channel information.
  • the terminal equipment can measure the reference signal from the access network equipment to obtain channel data.
  • the channel data can represent the information of the downlink channel matrix.
  • the terminal equipment can use the reference encoder to encode the channel data and obtain the encoded bit stream.
  • the channel information obtained by the terminal device using the second decoder to decode the encoded bit stream is information used to predict the access network device to decode the encoded bit stream.
  • S404 The terminal device determines the first value of rank based on the first performance difference value and channel information.
  • the terminal device determines the channel index corresponding to each of the N values of rank based on the first performance difference value and the channel information, and uses the corresponding channel index among the N values as the value of the optimal channel index. as the first value.
  • the channel indicator is throughput.
  • the maximum value of rank is 2.
  • the value of rank can be 1 or 2.
  • the terminal device calculates the throughput of the downlink channel when the rank is 1, and calculates the throughput of the downlink channel when the rank is 2. If the throughput of the downlink channel is maximum when the rank is 1, then the first value is 1; if the throughput of the downlink channel is maximum when the rank is 2, the first value is 2.
  • the maximum value of rank is the maximum value of the number of sending ports of the access network device and the number of receiving ports of the terminal device.
  • the calculation method of throughput is not limited by this application. For example, assuming that the rank is 2, that is, the number of flows corresponding to the downlink channel between the terminal device and the access network device is 2, the terminal device can determine the corresponding flows of these two flows based on the channel data. codewords of the precoding matrix. Assume that these two codewords are P1 and P2 respectively. For these two streams, the terminal device can calculate the SINR corresponding to these two streams respectively. For example, the SINR of the first stream among the two streams is expressed as SINR1, and the SINR of the first stream is expressed as SINR2. SINR1 and SINR2 can satisfy the following formula.
  • H represents the channel data
  • (.) H represents the conjugate transpose operation
  • pow represents the power of each stream
  • R represents the interference obtained when the terminal equipment measures the channel data
  • M represents the noise obtained when the terminal equipment measures the channel data.
  • the terminal device can determine the throughput of these two flows respectively based on SINR1 and SINR2.
  • SINR1 and SINR2 There are many ways to calculate throughput.
  • B represents the bandwidth of the channel.
  • the terminal device can also determine the CQI corresponding to the first value. For example, there is a mapping relationship between CQI and SINR, and the mapping relationship can be configured by the protocol or by other methods.
  • the terminal device determines the SINR corresponding to the first value, it can determine the CQI corresponding to the first value according to the mapping relationship between the CQI and the SINR.
  • the terminal device may also determine the decoding performance of the first decoder based on the first performance difference value. For example, the terminal device may calculate a first correlation between the input P of the reference encoder and the output Q of the second decoder, and the first correlation corr1 may satisfy the following form:
  • abs() represents absolute value operation.
  • the value range of corr1 is [0,1]. The higher the value of corr1, the better the decoding performance of the first decoder.
  • the terminal device may send indication information to the access network device, where the indication information is used to indicate the second correlation of the first decoder. If the access network device determines that the performance of the first decoder is poor based on the indication information, the first decoder may be further trained to optimize the performance of the first decoder.
  • the terminal device sends the rank indication and the channel quality indication corresponding to the first value to the access network device; accordingly, the access network device receives the first value of rank and the channel quality corresponding to the first value from the terminal device. instruct.
  • the rank indication is used to indicate the first value.
  • the rank indication may be the first value itself or the index of the first value, which is not limited by this application.
  • the terminal device can also send an encoded bit stream corresponding to the channel data to the access network device.
  • Access network equipment can determine channel data based on the encoded bit stream. Further, the access network device may determine the precoding matrix according to one or more items of the first value of the rank, the channel quality indication corresponding to the first value, and the channel data, When the access network equipment transmits downlink data to the terminal equipment, the precoding matrix can be used to precode the downlink data, thereby improving the signal quality of the downlink signal and the downlink throughput.
  • the terminal device determines the first value of rank based on the first performance difference value fed back by the access network device, so that the first value fed back by the terminal device to the access network device is determined by the access network device.
  • the precoding matrix is more matched, thereby improving the precision and accuracy of feedback.
  • the access network device or the terminal device may include a hardware structure and/or a software module to implement the above in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a hardware structure and/or a software module to implement the above in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • an embodiment of the present application also provides a communication device, which is used to implement the functions of the access network equipment or terminal equipment in the above method.
  • the communication device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 500 may include: a processing unit 501 and a communication unit 502.
  • the communication unit may also be called a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the steps of sending and receiving by the access network device or the terminal device in the above method embodiment.
  • the communication unit may also be called an interface circuit, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the device used to implement the receiving function in the communication unit 502 can be regarded as a receiving unit
  • the device used to implement the sending function in the communication unit 502 can be regarded as a sending unit, that is, the communication unit 502 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, an interface circuit, or a transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • a communication unit configured to receive first information from an access network device, where the first information is used to determine the performance of a first decoder in the access network device and the performance of a second decoder in the terminal device.
  • a processing unit configured to decode the encoded bit stream corresponding to the channel data according to the second decoder to obtain channel information; and determine a first value of rank according to the first performance difference and the channel information;
  • the communication unit is configured to send a rank indication and a channel quality indication corresponding to the first value to the access network device, where the rank indication is used to indicate the first value.
  • a processing unit configured to determine a first performance difference between the performance of the first decoder in the access network device and the performance of the second decoder in the terminal device;
  • a communication unit configured to send first information to the terminal device, where the first information is used to determine the first performance difference; Receive a rank indication from the terminal equipment and a channel quality indication corresponding to a first value, where the rank indication is used to indicate the first value; the first value is based on the first performance difference and The channel information is determined by the second decoder decoding the encoded bit stream corresponding to the channel data.
  • the processing unit 501 and the communication unit 502 can also perform other functions.
  • the processing unit 501 and the communication unit 502 can also perform other functions.
  • Figure 6 shows a communication device provided by an embodiment of the present application.
  • the communication device shown in Figure 6 can be an implementation of a hardware circuit of the communication device shown in Figure 5.
  • the communication device can be adapted to the flow chart shown above to perform the functions of the terminal device or the access network device in the above method embodiment.
  • FIG. 6 shows only the main components of the communication device.
  • the communication device 600 includes a processor 610 and an interface circuit 620 .
  • the processor 610 and the interface circuit 620 are coupled to each other.
  • the interface circuit 620 may be an interface circuit, a pin, an interface circuit or an input-output interface.
  • the communication device 600 may also include a memory 630 for storing instructions executed by the processor 610 or input data required for the processor 610 to run the instructions or data generated after the processor 610 executes the instructions.
  • the processor 610 is used to implement the functions of the above-mentioned processing unit 501
  • the interface circuit 620 is used to implement the functions of the above-mentioned communication unit 502.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal equipment chip receives information from other modules (such as radio frequency modules or antennas) in the terminal equipment, and the information is sent by the access network equipment to the terminal equipment; or, the terminal equipment chip sends information to other modules (such as radio frequency modules) in the terminal equipment. module or antenna) to send information, which is sent by the terminal device to the access network device.
  • the access network equipment chip When the above communication device is a chip applied to access network equipment, the access network equipment chip implements the functions of the access network equipment in the above method embodiment.
  • the access network equipment chip receives information from other modules (such as radio frequency modules or antennas) in the access network equipment, and the information is sent by the terminal equipment to the access network equipment; or, the access network equipment chip sends information to the access network equipment.
  • Other modules in the device (such as radio frequency modules or antennas) send information, which is sent by the access network device to the terminal device.
  • processor in the embodiment of the present application may be a central processing unit, or other general-purpose processor, digital signal processor, application-specific integrated circuit or other programmable logic device, transistor logic device, hardware component or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the memory may be random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile phone hard drive or any other form of storage media well known in the art.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,可以应用于通信领域,其中方法包括:接收来自接入网设备的第一信息,所述第一信息用于指示所述接入网设备中的第一解码器的性能与所述终端设备中的第二解码器的性能之间的第一性能差值;根据所述第二解码器对信道数据对应的编码比特流进行解码,获得信道信息;根据所述第一性能差值以及所述信道信息确定秩的第一取值;向所述接入网设备发送所述第一取值以及所述第一取值对应的信道质量指示。通过本申请提供的方法,终端设备根据接入网设备反馈的第一性能差值,确定秩的第一取值,使得终端设备向接入网设备反馈的第一取值与接入网设备确定的预编码矩阵更匹配,从而提高反馈的精度和准确度。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年06月01日提交中国专利局、申请号为202210617141.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
由第三代伙伴计划(the 3rd generation partnership project,3GPP)制定的无线通信系统已经发展到第五代(the 5th generation,5G),即新无线(new radio,NR)系统。5G通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多输入多输出(massive multiple-input multiple-output,massive-MIMO)技术的应用对提高系统的频谱效率起到了至关重要的作用。利用massive-MIMO技术,基站可以同时为更多的用户设备(user equipment,UE)提供高质量的服务。这其中较为关键的环节就是基站对下行数据进行预编码,通过预编码可以实现空分复用(spatial multiplexing),降低不同数据流间的干扰,提升接收端的信干噪比(signal to interference plus noise ratio,SINR),由此提升系统吞吐量。基站为了更加准确地对UE的下行数据进行预编码,UE可以向基站反馈下行信道的信道状态信息(channel state information,CSI),根据CSI恢复出下行信道信息,并利用恢复的下行信道信息确定预编码矩阵,以进行预编码。如何使得基站能够获得更为准确的信道状态信息,是一个值得研究的技术问题。
发明内容
本申请提供一种通信方法及装置,用以使得网络侧获得更为准确的信道状态信息。
第一方面,提供第一种通信方法,该方法可在终端设备侧执行。该方法可通过软件、硬件、或软硬件结合的方式执行。例如,该方法由终端设备执行,或由电路系统执行,或者由包括终端设备的较大设备执行,该电路系统能够实现终端设备的功能。该方法包括:终端设备接收来自接入网设备的第一信息,所述第一信息用于确定所述接入网设备中的第一解码器的性能与所述终端设备中的第二解码器的性能之间的第一性能差值;根据所述第二解码器对信道数据对应的编码比特流进行解码,获得信道信息;根据所述第一性能差值以及所述信道信息确定秩的第一取值;向所述接入网设备发送秩指示以及所述第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值。
通过上面的方法,终端设备根据接入网设备反馈的第一性能差值,确定秩的第一取值,使得终端设备向接入网设备反馈的第一取值与接入网设备确定的预编码矩阵更匹配,从而提高反馈的精度和准确度。
一种可能的实现方式,所述方法还包括:向所述接入网设备发送所述信道数据对应的编码比特流。
一种可能的实现方式,所述第一信息与所述第一性能差值之间满足预设函数关系,所 述方法还包括:将所述预设函数以所述第一信息作为输入值的输出值作为所述第一性能差值。
该实现方式中,第一信息与第一性能差值之间满足预设函数关系,从而可以提高反馈第一性能差值的灵活性,提高系统效率。
一种可能的实现方式,所述第一信息为第一性能差值的索引,所述方法还包括:将索引为所述第一信息的性能差值作为所述第一性能差值。
该实现方式中,第一信息为第一性能差值的索引,实现比较灵活,也可以降低发送第一信息的开销。
一种可能的实现方式,所述第一信息为第二性能差值的索引,所述第二性能差值为所述第一解码器的性能与预配置的基准性能之间的性能差值;所述方法还包括:根据所述第二性能差值以及所述基准性能确定所述第一性能差值。
一种可能的实现方式中,第一信息就是第一性能差值。
在该实现方式中,终端设备根据第一信息能够直接确定第一性能差值。这种实现方式的复杂度较低,可以降低系统复杂度。
一种可能的实现方式,所述秩的最大取值为N,所述第一信息用于指示N个所述第一性能差值,N为大于0的整数。N个所述第一性能差值中的每个第一性能差值与一个流对应。
在该实现方式中,信道的每个流对应一个第一性能差值,从而可以提高反馈的精确度。
一种可能的实现方式,所述根据所述第一性能差值以及所述信道信息确定秩的第一取值,包括:根据所述第一性能差值以及所述信道信息确定秩的N个取值中每个取值对应的信道指标,N为大于0的整数;将所述N个取值中对应的信道指标为最优信道指标的取值作为所述第一取值。
在该实现方式中,将最优信道指标的取值作为第一取值,可以提高信道吞吐量,提高系统效率。
第二方面,提供第一种通信方法,该方法可在接入网设备侧执行。该方法可通过软件、硬件、或软硬件结合的方式执行。例如,该方法由接入网设备执行,或由电路系统执行,或者由包括接入网设备的较大设备执行,该电路系统能够实现接入网设备的功能。该方法包括:接入网设备确定所述接入网设备中的第一解码器的性能与终端设备中的第二解码器的性能之间的第一性能差值;向终端设备发送第一信息,所述第一信息用于确定所述第一性能差值;接收来自所述终端设备的秩指示以及第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值;所述第一取值为根据所述第一性能差值以及信道信息确定的,所述信道信息根据所述第二解码器对信道数据对应的编码比特流进行解码获得的。
一种可能的实现方式,所述方法还包括:向所述接入网设备发送所述信道数据对应的编码比特流。
一种可能的实现方式,所述第一信息与所述第一性能差值之间满足预设函数关系,所述预设函数的输入值为所述第一信息时,所述预设函数的输出值为所述第一性能差值。
一种可能的实现方式,所述第一信息为第一性能差值的索引。
一种可能的实现方式,所述第一信息为第二性能差值的索引,所述第二性能差值为所述第一解码器的性能与预配置的基准性能之间的性能差值;所述第一性能差值根据所述第二性能差值以及所述基准性能确定。
一种可能的实现方式,所述秩的最大取值为N,所述第一信息用于指示N个所述第一性能差值,N为大于0的整数。
一种可能的实现方式,所述第一取值为秩的N个取值中对应的信道指标为最优信道指标的取值,N为大于0的整数;其中,秩的N个取值中每个取值对应的信道指标根据所述第一性能差值以及所述信道信息确定。
第三方面,本申请实施例提供一种通信装置,所述通信装置可以为终端设备、能够实现终端设备侧功能的模块、或者能够设置于终端设备内部的芯片。所述通信装置具备实现上述第一方面的功能,比如,所述通信装置包括执行上述第一方面涉及的部分或全部步骤所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元和通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自第二设备的信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器利用所述收发器,以完成上述第一方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第一方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面任意可能的设计或实现方式中的方法。
第四方面,本申请实施例提供一种通信装置,所述通信装置可以为接入网设备、能够实现接入网设备侧功能的模块、或者能够设置于接入网设备内部的芯片。所述通信装置具备实现上述第二方面的功能,比如,所述通信装置包括执行上述第二方面涉及部分或全部操作所对应的模块或单元或手段,所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自第一设备的信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器利用所述收发器,以完成上述第二方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第二方面涉及的功能的计算机程序或指令。所述 处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第二方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面任意可能的设计或实现方式中的方法。
第五方面,本申请实施例提供一种通信系统,该通信系统包括上述第三方面所述的通信装置和上述第四方面所述的通信装置。
第六方面,提供一种芯片,该芯片包括处理器,还可以包括存储器,用于执行所述存储器中存储的计算机程序或指令,使得芯片实现前述第一方面、以及第一方面的任意可能的实现方式中的方法,或者使得芯片实现前述第二方面、以及第二方面中任意可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机实现上述第一方面至第二方面中的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机实现上述第一方面至第二方面中的任一种可能的设计中的方法。
第九方面,本申请实施例提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第二方面中的任一种可能的设计中的方法。
第十方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于通过逻辑电路或执行计算机程序或指令,实现前述第一方面、以及第一方面中任意可能的实现方式中的方法。
第十一方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于通过逻辑电路或执行计算机程序或指令,实现前述第二方面、以及第二方面中任意可能的实现方式中的方法,或者实现前述第三方面、以及第三方面中任意可能的实现方式中的方法。
第十二方面,提供了一种通信装置,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现前述第一方面、以及第一方面中任意可能的实现方式中的方法。
第十三方面,提供了一种通信装置,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现前述第二方面、以及第二方面中任意可能的实现方式中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种通信系统示意图;
图2为本申请实施例提供的一种应用框架的示意图;
图3为本申请实施例提供的一种参考模型示意图;
图4为本申请实施例提供的一种通信方法流程示意图;
图5为本申请实施例提供的一种通信装置结构示意图;
图6为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请提供的技术可以应用于图1所示的通信系统10中。通信系统10包括一个或多个通信装置30(例如,终端设备)。该一个或多个通信装置30经由一个或多个接入网(radio access network,RAN)设备20连接到一个或多个核心网(core network,CN)设备,以实现多个通信设备之间的通信。例如,通信系统10是支持第四代(the 4th generation,4G)(包括长期演进(long term evolution,LTE))接入技术的通信系统,支持5G(有时也称为新无线(new radio,NR))接入技术的通信系统,无线保真(wireless fidelity,Wi-Fi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,支持多种无线技术融合的通信系统,或者是面向未来的演进系统等,不予限制。
应理解,图1所示的通信系统中各个设备的数量仅作为示意,本申请并不限于此,实际应用中在通信系统中还可以包括更多的终端设备、更多的接入网设备,还可以包括其它设备,例如可以包括核心网设备,和/或用于实现人工智能功能的节点。
上述图1所示的网络架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统,例如4G通信系统,也可以是5G(或者称为新无线(new radio,NR))通信系统,也可以是LTE通信系统与5G通信系统之间的过渡系统,该过渡系统也可以称为4.5G通信系统,或者也可以是未来的通信系统,例如6G通信系统。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
下面分别对图1所涉及的终端设备和接入网设备进行详细说明。
本申请中,终端设备可以简称为终端。终端设备可以是一种具有无线收发功能的设备。终端设备可以是移动的,或固定的。终端设备可以部署在陆地上,包括室内或室外,手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以包括手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、和/或智慧家庭(smart home)中的无线终端设备。终端设备还可以是 蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备或计算设备、车载设备、可穿戴设备,未来第五代(the 5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为用户设备(user equipment,UE)。可选的,终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持LTE的接入网设备通信,也可以与支持5G的接入网设备通信,又可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请并不限定。
本申请中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在终端设备中或可以与终端设备匹配使用。本申请提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,终端设备是UE为例,描述本申请提供的技术方案。
本申请中,接入网设备为将终端设备接入到无线网络的节点或设备,接入网设备又可以称为网络设备或基站。接入网设备例如包括但不限于:基站、5G中的下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、和/或移动交换中心等。或者,接入网设备还可以是用于实现基站的部分或全部功能的模块,例如接入网设备可以是集中单元(centralized unit,CU)、分布单元(distributed unit,DU)、集中单元控制面(CU control plane,CU-CP)节点、集中单元用户面(CU user plane,CU-UP)节点、接入回传一体化(integrated access and backhaul,IAB)、或云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等中的至少一个。或者,接入网设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备、5G网络中的接入网设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的接入网设备等。
本申请中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在接入网设备中或可以与接入网设备匹配使用。在本申请提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备,接入网设备是基站为例,描述本申请提供的技术方案。
接入网设备和终端设备之间的通信遵循一定的协议层结构。该协议层结构可以包括控制面协议层结构和用户面协议层结构。例如,控制面协议层结构可以包括以下至少一项:无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层或物理层(physical,PHY)等。例如,用户面协议层结构可以包括以下至少一项:业务数据适配协议(service data adaptation protocol,SDAP)层、PDCP层、RLC层、MAC层和物理层等。
上述接入网设备和终端设备之间的协议层结构可以看作接入层(access stratum,AS) 结构。可选的,在AS之上,还可以存在非接入层(non-access stratum,NAS),用于接入网设备向终端设备转发来自核心网设备的信息,或者用于接入网设备向核心网设备转发来自终端设备的信息。此时,可以认为终端设备和核心网设备之间存在逻辑接口。可选的,接入网设备可以通过透传的方式转发终端设备和核心网设备之间的信息。例如,NAS消息可以映射到或者包含于RRC信令中,作为RRC信令的元素。
可选的,接入网设备和终端设备之间的协议层结构还可以包括人工智能(artificial intelligence,AI)层,用于传输AI功能相关的数据。
本申请提供的方法除了可以用于接入网设备和终端设备之间的通信,也可以用于其他通信设备之间的通信,例如无线回传链路中宏基站和微基站之间的通信,例如侧行链路(sidelink,SL)中第一终端设备和第二终端设备之间的通信,不予限制。本申请以接入网设备和终端设备之间的通信为例进行描述。
接入网设备向终端设备发送数据时,可以基于终端设备反馈的信道状态信息(channel state information,CSI)进行预编码。为了便于理解本申请,下面对本申请中涉及的一些技术术语做简单说明。
1、预编码技术。
接入网设备可以在已知信道状态信息的情况下,借助与信道条件相匹配的预编码矩阵对待发送的信号进行处理。通过该技术,可以使得经过预编码的待发送的信号与信道相适配,从而使得终端设备接收到的信号的质量(例如信干噪比(signal to interference plus noise ratio,SINR)等)得以提升,从而可以提升系统吞吐率。采用预编码技术,可以实现发送设备(如接入网设备)与多个接收设备(如终端设备)在相同的时频资源上有效地传输,即有效地实现多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。采用预编码技术,可以实现发送设备(如接入网设备)与接收设备(如终端设备)在相同的时频资源上有效地进行多数据流传输,即有效地实现单用户多输入多输出(single user multiple input multiple output,SU-MIMO)。应注意,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请的公开范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、CSI。
接入网设备在进行预编码时,使用预编码矩阵对下行数据进行预编码。为了获得预编码矩阵,接入网设备需要获得下行信道的CSI,从而根据CSI确定预编码矩阵。CSI反馈是在无线通信系统中,由数据(例如但不限于物理下行共享信道(physical downlink shared channel,PDSCH)上承载的数据)的接收端(如终端设备)向发送端(如接入网设备)上报用于描述通信链路的信道属性的信息。终端设备所反馈的CSI精度越高,反馈的信道信息越完整,接入网设备根据CSI确定的预编码矩阵越准确,使得下行空分复用性能越好,终端设备的接收信干噪比越高,系统容量越高。CSI包括下行信道矩阵、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、或信道质量指示(channel quality indicator,CQI)等信息中的一项或多项。以上列举的CSI包括的内容仅为示例性说明,不应对本申请构成任何限定。
3、神经网络(neural network,NN)。
神经网络是机器学习技术的一种具体实现形式。根据通用近似定理,神经网络在理论上可以逼近任意连续函数,从而使得神经网络具备学习任意映射的能力。传统的通信系统需要借助丰富的专家知识来设计通信模块,而基于神经网络的深度学习通信系统可以从大量的数据集中自动发现隐含的模式结构,建立数据之间的映射关系,获得优于传统建模方法的性能。
例如,深度神经网络(deep neural network,DNN)是层数较多的一种神经网络。按照网络结构和/或使用场景的不同,DNN可以包括多层感知机(multi-layer perceptron,MLP)、卷积神经网络(convolutional neural networks,CNN)和递归神经网络(recurrent neural network,RNN)等。本申请不限制DNN的具体形式。
如图2所示,为AI在通信系统中的一种应用框架的示意图。数据源(data source)用于存储训练数据和推理数据。模型训练节点(model trainning host)通过对数据源提供的训练数据(training data)进行分析或训练,得到AI模型,且将AI模型部署在模型推理节点(model inference host)中。模型推理节点使用AI模型,基于数据源提供的推理数据进行推理,得到推理结果。该推理结果,由执行(actor)实体统一规划,并发送给一个或多个执行对象(例如,网络实体)去执行。
4、参考编码器(encoder)模型和参考解码器(decoder)模型。
为了提高系统容量,降低CSI的反馈开销,可以采用深度学习的CSI压缩方式来反馈CSI。一种基于深度学习的CSI压缩反馈技术为,通过基于CNN的自编码器(auto-encoder,AE)模型进行CSI压缩反馈。AE模型包括匹配使用的AI编码器模型和AI解码器模型,AI编码器模型和AI解码器模型可以为通过对数据源提供的训练数据进行分析或训练得到的AI模型,本申请中将AI编码器模型简称为编码器,将AI解码器模型简称为解码器。举例来说,如图3所示,终端设备通过编码器将下行信道数据进行预处理后,通过编码器进行编码,获得编码后的比特流,然后经过量化器对该比特流进行量化,获得量化后的比特流,终端设备可以将量化后的比特流反馈给接入网设备。相应的,接入网设备将接收到的比特流经过反量化器处理之后,输入解码器进行解码,获得恢复的下行信道数据。
本申请中,AI编码器模型以及AI解码器模型的训练的实体可以是接入网设备,也可以是终端设备,或者是第三方网络实体。例如AI编码器模型以及AI解码器模型的训练实体是接入网设备时,接入网设备可以将训练的AI编码器模型以及AI解码器模型下发给终端设备,终端设备可以根据接收到的网络模型直接使用,或者加以一定的调整后使用。AI编码器模型以及AI解码器模型的训练实体是终端设备时,终端设备可以将训练的AI编码器模型以及AI解码器模型上传给网络侧设备。设备可以将训练的AI编码器模型以及AI解码器模型的训练实体是第三方网络实体时,接入网设备或者终端设备可以从第三方网络实体下载AI编码器模型以及AI解码器模型。
常用的基于AI的CSI压缩量化中编码器和解码器是同时存在的,终端设备侧进行编码操作后,接入网设备侧要进行相应的解码操作,这就要求终端设备和接入网设备互相知道对端学习的特征,这并不要求设备之间完全知道对端的网络结构和网络参数,即具体的实现方法,只要求知道对端实现的功能。一种可能的实现方式,是使用参考模型,即在协议上定义一套参考模型,包括参考编码器和参考解码器。无论是终端设备还是接入网设备都可以根据协议上的描述获得参考编码器和参考解码器。终端设备可以根据参考解码器训练与参考解码器匹配的编码器,接入网设备可以根据参考编码器训练与参考编码器匹配的 解码器。
由于终端设备向接入网设备反馈的是通过编码器编码后的比特流,而终端设备只能确定参考解码器,不能确定接入网设备根据参考解码器训练后的解码器,因此终端设备是无法获知接入网设备最终恢复的下行信道数据。而且这种方法需要接入网设备根据恢复的下行信道数据确定下行信道的CSI,导致接入网设备的开销较大,特别是存在海量终端设备接入的情况下,会增加接入网设备的负载和功耗。
鉴于此,本申请将提供一种技术方案以解决上述问题。
本申请提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,第一指示信息和第二指示信息,可以是同一个指示信息,也可以是不同的指示信息,且,这种名称也并不是表示这两个指示信息的大小、传输方式、指示的内容、优先级、应用场景或者重要程度等的不同。
下面结合附图介绍本申请提供的方法。在这些方法中,所包括的步骤或操作仅是示例,本申请还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请呈现的不同的顺序来执行,并且有可能并非要执行全部操作。
下面的流程中,主要以终端设备与接入网设备之间交互为例进行描述,当本申请提供的技术方案应用于其他设备之间的交互时,可以按照本申请提供的方法进行适应性调整。
如图4所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
S401:接入网设备确定接入网设备中的第一解码器的性能与终端设备中的第二解码器的性能之间的第一性能差值。
本申请中,终端设备与接入网设备之间约定了参考编码器以及参考解码器,参考解码器是与参考编码器匹配的解码器,第一解码器是根据参考编码器训练获得的。第二解码器是参考解码器,接入网设备能够确定第二解码器的性能,从而能够确定第一性能差值。
本申请中,第一性能差值的单位可以是分贝(dB),也可以是线性值,本申请不做限制。
S402:接入网设备向终端设备发送第一信息;相应的,终端设备接收来自接入网设备的第一信息。
其中,第一信息用于确定第一性能差值。
本申请中,第一解码器的性能与第二解码器的性能之间的差值,即第一性能差值,可以与信道的秩(rank)的取值有关,也可以与秩的取值无关。
如果第一性能差值与秩的取值无关,那么秩的不同取值的情况下,第一性能差值不变,即秩的不同取值对应的第一性能差值都相同;如果第一性能差值与秩的取值有关,那么秩的不同取值对应不同的第一性能差值,在该情况下,秩的最大取值为N时,信道包括N个流,第一信息用于指示N个第一性能差值,每个第一性能差值对应一个流,N为大于0的整数。
本申请中,第一性能差值与秩的取值无关的情况下,第一信息可能存在以下实现方式。
第一种实现方式中,第一信息就是第一性能差值。例如第一性能差值为0.5,那么第一信息为0.5。
在该实现方式中,终端设备根据第一信息能够直接确定第一性能差值。这种实现方式的复杂度较低,可以降低系统复杂度。
第二种实现方式中,第一信息与第一性能差值之间满足预设函数关系。
在该实现方式中,终端设备将第一信息作为预设函数的输入值,并将以第一信息作为输入值的输出值作为第一性能差值。
例如,该预设函数可以满足以下形式:y=f(PD_index,a)。其中,y表示第一性能差值,PD_index表示第一信息,a表示步长,a的取值为预设的,a也可以由接入网设备配置,例如a=0.5。f(PD_index,a)的具体形式,本申请对此并不限定。例如该预设函数可以为y=PD_index+a,此时,当PD_index=0时,第一性能差值为a;当PD_index=1时,第一性能差值为1+a,其他情况以此类推。
以上只是示例,该预设函数还可能存在其他形式,在此不再逐一举例说明。
该实现方式可以降低发送第一信息的开销,提高系统效率。
第三种实现方式中,每个性能差值对应一个索引,第一信息为第一性能差值的索引。
在该实现方式中,性能差值与索引的对应关系可以为协议约定的,也可以为接入网设备配置的,本申请对此并不限定。
在该实现方式中,终端设备获取到第一信息,则将索引为第一信息的性能差值作为第一性能差值。
举例来说,协议中定义多个性能差值的索引,例如性能差值与索引的关系可以如表1所示,这里的索引假设以4比特为例,本申请对索引包括的比特数量不做限制。
表1
结合表1,如果终端设备收到的第一信息为0000,那么第一性能差值为0.5;如果终端设备收到的第一信息为1111,那么第一性能差值为0,其他情况不再赘述。
该实现方式实现比较灵活,也可以降低发送第一信息的开销。
第四种实现方式中,接入网设备可以为终端设备预配置一个基准性能,接入网设备可以通过第一信息指示第一解码器的性能与预配置的基准性能之间的性能差值,终端设备从而可以根据第二性能差值以及基准性能确定第一性能差值。
在该实现方式中,如果第一信息就是第二性能差值,那么终端设备可以将第一信息与基准性能之和作为第一性能差值。
如果第一信息与第二性能差值之间满足预设函数关系,终端设备将第一信息作为预设函数的输入值,并将以第一信息作为输入值的输出值作为第二性能差值,并将第二性能差值与基准性能之和作为第一性能差值。
如果第一信息为第二性能差值的索引,终端设备可以根据第一信息确定第二性能差值,再将第二性能差值与基准性能之和作为第一性能差值。
举例来说,基准性能为PD_base,协议中定义的性能差值与索引的关系可以如表2所示。
表2
结合表2,如果终端设备收到的第一信息为0000,那么第二性能差值为0.1,第一性能差值=0.1+PD_base;如果终端设备收到的第一信息为0011,那么第二性能差值为0.4,第一性能差值=0.4+PD_base,其他情况不再赘述。
本申请中,第一性能差值与秩的取值有关的情况下,第一信息可能存在以下实现方式。
第五种实现方式中,第一信息包括N个第一性能差值,不同的秩的取值所对应的第一性能差值是不同的。示例性的,由于秩的取值表示信道中流的数量,秩的取值为X时,该秩对应X个第一性能差值,X个流中的每个流对应X个第一性能差值中的一个第一性能差值。例如,第一信息包括2个第一性能差值分别为0.5和0.75,其中,当秩的取值为1时,第一性能差值为0.5;当秩的取值为2时,信道中包括2个流,其中第一流所对应第一性能差值为0.5,第二流所对应第一性能差值为0.75。
第六种实现方式中,第一信息与第一性能差值之间满足预设函数关系。
举例来说,该预设函数可以满足以下形式:y=f(PD_index,a)。其中,y表示第一性能差值,PD_index表示第一信息,a表示步长,a的取值为预设的,a也可以由接入网设备配置,秩的不同取值对应a的不同取值。
例如,秩的取值为1时,a的取值为0.25,该预设函数为:y=f(PD_index,0.25);秩的取值为2时,a的取值为0.5,该预设函数为:y=f(PD_index,0.5)。例如该预设函数可以为y=PD_index+a。当PD_index=0,秩的取值为1时,第一性能差值为0.25=0+0.25;当PD_index=0,秩的取值为2时,第一性能差值为0.5=0+0.5,其他情况以此类推。
以上只是示例,该预设函数还可能存在其他形式,在此不再逐一举例说明。
第七种实现方式中,第一信息为N个第一性能差值共同对应的索引,每个性能差值对应秩的不同取值。
在该实现方式中,性能差值与索引的对应关系可以为协议约定的,也可以为接入网设备配置的,本申请对此并不限定。
该实现方式中,一个索引对应N个第一性能差值,可以降低第一信息的开销。
举例来说,假设秩的最大取值为2,信道中流的数量为2,性能差值与索引的关系可以如表3所示。
表3

结合表3,如果终端设备收到的第一信息为0000,那么秩为1时,第一性能差值为0.5,秩为2时,第二流对应的第一性能差值为0.25,其他情况不再赘述。
第八种实现方式中,第一信息为第一性能差值对应的索引,秩的不同取值对应的性能差值的索引不同。
在该实现方式中,性能差值与索引的对应关系可以为协议约定的,也可以为接入网设备配置的,本申请对此并不限定。
在该实现方式中,一个索引对应一个第一性能差值,可以提高指示性能差值的灵活性。
举例来说,假设秩的最大取值为2,信道中流的数量为2,性能差值与索引的关系可以如表4所示。
表4
结合表4,如果终端设备收到的第一信息为0000,那么第一性能差值为0.5,对应的秩为1;如果终端设备收到的第一信息为1000,第一性能差值为0.25,对应的秩为2。
以上只是示例,第一信息还可能存在其他实现方式,本申请对此并不限定,在此不再逐一举例说明。
S403:终端设备根据第二解码器对信道数据对应的编码比特流进行解码,获得信道信息。
本申请中,终端设备可以对来自接入网设备的参考信号进行测量,从而获得信道数据,该信道数据能够表征下行信道矩阵的信息。终端设备可以采用参考编码器对信道数据进行编码,获得编码比特流。终端设备采用第二解码器对编码比特流进行解码获得的信道信息,是预测接入网设备对编码比特流进行解码的信息。
S404:终端设备根据第一性能差值以及信道信息确定秩的第一取值。
本申请中,终端设备根据第一性能差值以及信道信息确定秩的N个取值中每个取值对应的信道指标,将N个取值中对应的信道指标为最优信道指标的取值作为第一取值。
举例来说,信道指标为吞吐量,假设秩的最大取值为2,此时秩的取值可以为1或2。终端设备计算秩为1时,下行信道的吞吐量,以及计算秩为2时,下行信道的吞吐量。如果秩为1时,下行信道的吞吐量最大,那么第一取值为1;如果秩为2时,下行信道的吞吐量最大,那么第一取值为2。其中,秩的最大取值是接入网设备的发送端口数和终端设备的接收端口数中的最大值。
吞吐量的计算方法,本申请并不限定。举例来说,假设秩为2,即终端设备与接入网设备之间的下行信道对应的流数为2,终端设备可以根据信道数据确定这2个流分别对应 的预编码矩阵的码字。假设这2个码字分别为P1和P2,针对这2个流,终端设备可以分别计算这2个流对应的SINR。例如,这2个流中的第一个流的SINR表示为SINR1,第一个流的SINR表示为SINR2,SINR1和SINR2可以满足如下公式。

其中,H表示信道数据,(.)H表示共轭转置运算;pow表示每个流的功率,R表示终端设备测量信道数据时获得的干扰,M表示终端设备测量信道数据时获得的噪声。
进一步的,终端设备可以根据SINR1和SINR2,分别确定这2个流的吞吐量。吞吐量的计算方法有很多,例如可以通过香农公式计算吞吐量,具体公式如下:
throughput1=B*log10(1+SINR1)   (3)
throughput2=B*log10(1+SINR2)   (4)
其中,B表示信道的带宽。
最终,将SINR1对应的吞吐量throughout1和SINR2对应的吞吐量throughout2相加,就可以获得秩的取值为2时,下行信道的吞吐量。
本申请中,终端设备还可以确定第一取值对应的CQI。举例来说,CQI和SINR之间存在映射关系,该映射关系可以为协议配置的,也可以为通过其他方式配置的。终端设备确定第一取值对应的SINR,则可以根据CQI和SINR之间的映射关系确定第一取值对应的CQI。
本申请中,终端设备还可以根据第一性能差值确定第一解码器的解码性能。例如,终端设备可以计算参考编码器的输入P与第二解码器的输出Q之间的第一相关性,第一相关性corr1可以满足以下形式:
其中,abs()表示绝对值运算。corr1的取值范围为[0,1],corr1的取值越高表示第一解码器的解码性能越优。
进一步的,终端设备再根据第一性能差值和第一相关性确定参考编码器的输入与第一解码器的输出之间的第二相关性。例如,第一性能差值为PD,那么第二相关性corr2满足以下形式:
corr2=corr1+PD   (6)
如果终端设备确定第二相关性小于或等于预设阈值,终端设备可以向接入网设备发送指示信息,该指示信息用于指示第一解码器的第二相关性。接入网设备根据该指示信息确定第一解码器的性能较差,则可以进一步的对第一解码器进行训练,以优化第一解码器的性能。
S405:终端设备向接入网设备发送秩指示以及第一取值对应的信道质量指示;相应的,接入网设备接收来自终端设备的秩的第一取值以及第一取值对应的信道质量指示。
其中,秩指示用于指示第一取值。秩指示可以是第一取值本身,也可以是第一取值的索引,本申请对此并不限定。
本申请中,终端设备还可以向接入网设备发送信道数据对应的编码比特流。
接入网设备可以根据编码比特流确定信道数据。进一步的,接入网设备可以根据秩的第一取值、第一取值对应的信道质量指示以及信道数据中的一项或多项确定预编码矩阵, 接入网设备在向终端设备传输下行数据时,可以采用该预编码矩阵对下行数据进行预编码,从而提高下行信号的信号质量以及下行吞吐量。
通过本申请提供的方法,终端设备根据接入网设备反馈的第一性能差值,确定秩的第一取值,使得终端设备向接入网设备反馈的第一取值与接入网设备确定的预编码矩阵更匹配,从而提高反馈的精度和准确度。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,接入网设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图5所示,本申请实施例还提供一种通信装置,该通信装置用于实现上述方法中接入网设备或终端设备的功能。例如,该通信装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置500可以包括:处理单元501和通信单元502。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中接入网设备或终端设备发送和接收的步骤。
以下,结合图5至图6详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为接口电路、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元502中用于实现接收功能的器件视为接收单元,将通信单元502中用于实现发送功能的器件视为发送单元,即通信单元502包括接收单元和发送单元。通信单元有时也可以称为收发机、接口电路、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置500执行上面实施例中图4所示的流程中终端设备的功能时:
通信单元,用于接收来自接入网设备的第一信息,所述第一信息用于确定所述接入网设备中的第一解码器的性能与所述终端设备中的第二解码器的性能之间的第一性能差值;
处理单元,用于根据所述第二解码器对信道数据对应的编码比特流进行解码,获得信道信息;根据所述第一性能差值以及所述信道信息确定秩的第一取值;
所述通信单元,用于向所述接入网设备发送秩指示以及所述第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值。
通信装置500执行上面实施例中图4所示的流程中接入网设备的功能时:
处理单元,用于确定所述接入网设备中的第一解码器的性能与终端设备中的第二解码器的性能之间的第一性能差值;
通信单元,用于向终端设备发送第一信息,所述第一信息用于确定所述第一性能差值; 接收来自所述终端设备的秩指示以及第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值;所述第一取值为根据所述第一性能差值以及信道信息确定的,所述信道信息根据所述第二解码器对信道数据对应的编码比特流进行解码获得的。
以上只是示例,处理单元501和通信单元502还可以执行其他功能,更详细的描述可以参考图4所示的方法实施例中相关描述,这里不加赘述。
如图6所示为本申请实施例提供的通信装置,图6所示的通信装置可以为图5所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者接入网设备的功能。为了便于说明,图6仅示出了该通信装置的主要部件。
如图6所示,通信装置600包括处理器610和接口电路620。处理器610和接口电路620之间相互耦合。可以理解的是,接口电路620可以为接口电路、管脚、接口电路或输入输出接口。可选的,通信装置600还可以包括存储器630,用于存储处理器610执行的指令或存储处理器610运行指令所需要的输入数据或存储处理器610运行指令后产生的数据。
当通信装置600用于实现图4所示的方法时,处理器610用于实现上述处理单元501的功能,接口电路620用于实现上述通信单元502的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给接入网设备的。
当上述通信装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中接入网设备的功能。该接入网设备芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给接入网设备的;或者,该接入网设备芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元,还可以是其它通用处理器、数字信号处理器、专用集成电路或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生 一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种通信方法,其特征在于,应用于终端设备侧,包括:
    接收来自接入网设备的第一信息,所述第一信息用于确定所述接入网设备中的第一解码器的性能与所述终端设备中的第二解码器的性能之间的第一性能差值;
    根据所述第二解码器对信道数据对应的编码比特流进行解码,获得信道信息;
    根据所述第一性能差值以及所述信道信息确定秩的第一取值;
    向所述接入网设备发送秩指示以及所述第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送所述信道数据对应的编码比特流。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息与所述第一性能差值之间满足预设函数关系,所述方法还包括:
    将所述预设函数以所述第一信息作为输入值的输出值作为所述第一性能差值。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一信息为第一性能差值的索引,所述方法还包括:
    将索引为所述第一信息的性能差值作为所述第一性能差值。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一信息为第二性能差值的索引,所述第二性能差值为所述第一解码器的性能与预配置的基准性能之间的性能差值;所述方法还包括:
    根据所述第二性能差值以及所述基准性能确定所述第一性能差值。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述秩的最大取值为N,所述第一信息用于指示N个所述第一性能差值,N为大于0的整数。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述根据所述第一性能差值以及所述信道信息确定秩的第一取值,包括:
    根据所述第一性能差值以及所述信道信息确定秩的N个取值中每个取值对应的信道指标,N为大于0的整数;
    将所述N个取值中对应的信道指标为最优信道指标的取值作为所述第一取值。
  8. 一种通信方法,其特征在于,应用于接入网设备侧,包括:
    确定所述接入网设备中的第一解码器的性能与终端设备中的第二解码器的性能之间的第一性能差值;
    向终端设备发送第一信息,所述第一信息用于确定所述第一性能差值;
    接收来自所述终端设备的秩指示以及第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值;所述第一取值为根据所述第一性能差值以及信道信息确定的,所述信道信息根据所述第二解码器对信道数据对应的编码比特流进行解码获得的。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送所述信道数据对应的编码比特流。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信息与所述第一性能差值之间满足预设函数关系,所述预设函数的输入值为所述第一信息时,所述预设函数的输出值为所述第一性能差值。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第一信息为第一性能差值的索引。
  12. 根据权利要求8或9所述的方法,其特征在于,所述第一信息为第二性能差值的索引,所述第二性能差值为所述第一解码器的性能与预配置的基准性能之间的性能差值;所述第一性能差值根据所述第二性能差值以及所述基准性能确定。
  13. 根据权利要求8至12任一所述的方法,其特征在于,所述秩的最大取值为N,所述第一信息用于指示N个所述第一性能差值,N为大于0的整数。
  14. 根据权利要求8至13任一所述的方法,其特征在于,所述第一取值为秩的N个取值中对应的信道指标为最优信道指标的取值,N为大于0的整数;其中,秩的N个取值中每个取值对应的信道指标根据所述第一性能差值以及所述信道信息确定。
  15. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自接入网设备的第一信息,所述第一信息用于确定所述接入网设备中的第一解码器的性能与所述终端设备中的第二解码器的性能之间的第一性能差值;
    处理单元,用于根据所述第二解码器对信道数据对应的编码比特流进行解码,获得信道信息;根据所述第一性能差值以及所述信道信息确定秩的第一取值;
    所述通信单元,用于向所述接入网设备发送秩指示以及所述第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定所述接入网设备中的第一解码器的性能与终端设备中的第二解码器的性能之间的第一性能差值;
    通信单元,用于向终端设备发送第一信息,所述第一信息用于确定所述第一性能差值;接收来自所述终端设备的秩指示以及第一取值对应的信道质量指示,所述秩指示用于指示所述第一取值;所述第一取值为根据所述第一性能差值以及信道信息确定的,所述信道信息根据所述第二解码器对信道数据对应的编码比特流进行解码获得的。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,实现如权利要求1-14中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,实现如权利要求1-14中任一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器和通信电路,所述处理器用于执行如权利要求1-14中任一项所述的方法。
  20. 一种通信系统,其特征在于,包括权利要求15所述的通信装置,和权利要求16所述的通信装置。
PCT/CN2023/096665 2022-06-01 2023-05-26 一种通信方法及装置 WO2023231933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210617141.2 2022-06-01
CN202210617141.2A CN117200838A (zh) 2022-06-01 2022-06-01 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023231933A1 true WO2023231933A1 (zh) 2023-12-07

Family

ID=88983831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096665 WO2023231933A1 (zh) 2022-06-01 2023-05-26 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117200838A (zh)
WO (1) WO2023231933A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901024A (zh) * 2020-07-29 2020-11-06 燕山大学 基于抗拟合深度学习的mimo信道状态信息反馈方法
WO2021142605A1 (zh) * 2020-01-14 2021-07-22 华为技术有限公司 用于信道测量的方法和装置
CN113810086A (zh) * 2020-06-12 2021-12-17 华为技术有限公司 信道信息反馈方法、通信装置及存储介质
WO2022004927A1 (ko) * 2020-07-03 2022-01-06 엘지전자 주식회사 오토 인코더를 이용하는 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142605A1 (zh) * 2020-01-14 2021-07-22 华为技术有限公司 用于信道测量的方法和装置
CN113810086A (zh) * 2020-06-12 2021-12-17 华为技术有限公司 信道信息反馈方法、通信装置及存储介质
WO2022004927A1 (ko) * 2020-07-03 2022-01-06 엘지전자 주식회사 오토 인코더를 이용하는 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN111901024A (zh) * 2020-07-29 2020-11-06 燕山大学 基于抗拟合深度学习的mimo信道状态信息反馈方法

Also Published As

Publication number Publication date
CN117200838A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
TWI692261B (zh) 資料傳輸方法、基地台和終端
US11005550B2 (en) Method and apparatus for transmitting downlink control information (DCI)
WO2021217519A1 (zh) 用于调整神经网络的方法和装置
WO2019105484A1 (zh) 数据传输的方法和设备
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2020221118A1 (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2018202071A1 (zh) 数据传输方法、终端设备和网络设备
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2021083157A1 (zh) 一种预编码矩阵的处理方法和通信装置
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2021035492A1 (zh) 一种信道状态信息处理方法、电子设备及存储介质
WO2023231933A1 (zh) 一种通信方法及装置
WO2022012256A1 (zh) 通信的方法及通信装置
WO2019001221A1 (zh) 一种秩指示上报方法和装置、指示方法和装置
WO2024169659A1 (zh) Ptrs传输方法、装置及存储介质
WO2023125240A1 (zh) 信道数据处理或反处理方法与装置、终端和网络设备
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置
WO2024008004A1 (zh) 一种通信方法及装置
WO2023207783A1 (zh) 一种通信方法、装置及系统
WO2021207895A1 (zh) 一种用于传输上行信号的方法和通信装置
WO2023186010A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2024131889A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2023201460A1 (zh) 参数发送和接收的方法、装置和通信系统
WO2024026793A1 (zh) 数据传输方法、装置、设备、存储介质及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815116

Country of ref document: EP

Kind code of ref document: A1