WO2023231792A1 - 一种时隙分配方法及通信装置 - Google Patents

一种时隙分配方法及通信装置 Download PDF

Info

Publication number
WO2023231792A1
WO2023231792A1 PCT/CN2023/094976 CN2023094976W WO2023231792A1 WO 2023231792 A1 WO2023231792 A1 WO 2023231792A1 CN 2023094976 W CN2023094976 W CN 2023094976W WO 2023231792 A1 WO2023231792 A1 WO 2023231792A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
type
target
time slots
representation
Prior art date
Application number
PCT/CN2023/094976
Other languages
English (en)
French (fr)
Inventor
徐文
史永杰
周勇波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231792A1 publication Critical patent/WO2023231792A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a time slot allocation method and a communication device.
  • V2X Vehicle to X
  • V2X technology has received strong support and development, and various car companies have also promoted Internet of Vehicles technology on a large scale.
  • the promotion and application of Internet of Vehicles technology and the technology of mobile communication system platforms complement each other. How to use network slicing technology to provide better services for Internet of Vehicles is the focus of the industry.
  • Ethernet hard dedicated line technology based on automotive slicing network (ASN)/flexible Ethernet (FlexE) technology
  • ASN provides deterministic low latency, low jitter, hard isolation and other requirements for vehicle-mounted deterministic network scenarios.
  • ASN is based on small-granularity Ethernet hard dedicated line technology. Its bearer pipes can be various types of physical Ethernet ports. The minimum service granularity is 10Mbps, and the maximum The bandwidth is 96% of the bandwidth of the carrying pipe. For example, for a 5Gbps Ethernet pipe, the service bandwidth distribution can be divided into 10Mbps ⁇ 480*10Mbps.
  • this time slot allocation method completely depends on software.
  • the execution requires not only knowing the service bandwidth of the time slots to be allocated, but also needing to calculate the time slot configuration table in real time, and also need to recalculate the time slot configuration table based on the changing number of service time slots, which takes a long time and the allocation is not flexible enough. , unable to meet the application requirements of vehicle networking. In view of this, it is necessary to propose a time slot allocation method that is more flexible and even and occupies less resources.
  • This application provides a time slot allocation method and device to achieve a more flexible and even allocation of time slots in Internet of Vehicles communications and occupy less resources, thereby better meeting the application requirements of vehicle networking.
  • this application provides a time slot allocation method, which method includes: receiving a time slot allocation request sent by a terminal device, where the time slot allocation request includes indication information of the target number of time slots required by the terminal device to transmit a target service signal; according to Instruction information determines the number of target time slots required to transmit the target service signal; determines the representation of the first type of number based on the number of remaining time slots in the service transmission channel, and uses the representation of the first type of number to determine the number of target time slots
  • the first type of numerical representation in the first type of numerical representation that determines the number of target time slots, the number of bits is the number of code bits of the set number.
  • the corresponding number of bits is the target identification; among the time slot identifications corresponding to the remaining time slots in the business transmission channel, search for the time slot identification that is the same as the target identification; among them, the time slots corresponding to each time slot in the business transmission channel
  • the identification is represented based on each sequence element included in the time slot sequence.
  • Each sequence element in the time slot sequence is represented by a second type number determined based on the total number of time slots included in the service transmission channel, and the total number included in the second type number. Determined by the number of digits; the representation of the first type of number and the representation of the second type of number are binary arrays represented by two numbers: 0 and 1 respectively; allocate the target service signal to the time slot identifier found Transmit on the corresponding time slot.
  • the total number of time slots in the business transmission channel is used to determine the representation of the second type number, so that Determine the time slot sequence to achieve uniform identification of each time slot in the service channel.
  • determine the representation method of the first type number according to the number of remaining time slots, and use the first type number
  • the representation method determines the first type of numerical representation of the number of target time slots required to transmit the service to be transmitted, so as to find the target identifier corresponding to the target service signal on the first type of numerical representation corresponding to the number of target time slots, and obtain the target identifier from the remaining time slots.
  • search for the same logo as the target logo determine the time slot corresponding to the logo as the target time slot, and allocate the target service signal to the target time slot for transmission, so the allocation is more flexible And takes up less resources.
  • the representation method of the first type number is determined according to the number of remaining time slots in the service transmission channel, including:
  • N Assume that the total number of digits of the first type of number is N, and N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N ;
  • M is the total number of time slots included in the service transmission channel
  • bit weights corresponding to each digit in the first type of number are ⁇ N , ⁇ N-1 ,... ⁇ 1 , ⁇ N , ⁇ N-1 ,... ⁇ 1 respectively, which conform to the following formulas:
  • P is the number of remaining time slots.
  • using the representation of the first type of number to determine the first type of number representation of the target number of time slots includes:
  • the first type number representation of the target time slot number Q conforms to the following formula:
  • determining the representation of the first type number of the target time slot number also includes:
  • the number of target time slots can be represented by a unique first type number.
  • the time slot sequence is determined based on the total number of time slots included in the service transmission channel and the total number of bits included in the second type of number, including:
  • the representation method of the second type number is determined, where the second type number
  • the total number of digits in the type number is N, and N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N ;
  • the time slot sequence includes M sequence elements, and the time slot sequence conforms to the following formula: ⁇ NY 0 , NY 1 , NY 2 ...NY M-1 ⁇ ;
  • Y 0 ...Y M-1 is the representation based on the second type number, accumulating from 0 to M, corresponding to the number of carry bits during accumulation, where Y 0 is the accumulation from 0 expressed based on the second type number.
  • the number of carry bits when reaching 1 based on the second type number representation,...and so on, Y M-1 is the carry bit when accumulating from M-1 based on the second type number representation to M based on the second type number representation number of digits.
  • the carry the number of carry digits will be the value of that digit. If the carry occurs in the third bit, the number of carry digits will be 3, and so on.
  • the time slot sequence can be reused by each time slot.
  • the time slot identifier corresponding to each time slot in the service transmission channel is represented, including:
  • Each time slot in each time slot in the traffic transmission channel is identified using a sequence element in the time slot sequence.
  • the method also includes: determining that the number of target time slots required to transmit the target service signal is greater than the number of the service transmission channel. When the number of remaining time slots is reached, an indication message indicating insufficient bandwidth of the service transmission channel is returned to the terminal device.
  • this application provides a communication device.
  • the device includes a transceiver unit and a processing unit: the transceiver unit is used to receive a time slot allocation request sent by a terminal device.
  • the time slot allocation request includes the target required by the terminal device to transmit a target service signal. Indication of the number of time slots; processing unit for:
  • the indication information determine the number of target time slots required to transmit the target service signal; according to the number of remaining time slots in the service transmission channel, determine the representation method of the first type number, and use the representation method of the first type number to determine the target number of time slots
  • the first type of number representation in the first type of number representation to determine the number of target time slots, the number of bits corresponding to the set number of code bits is the target identification; the remaining time slots in the service transmission channel correspond to Among the time slot identifications, search for the time slot identification that is the same as the target identification; among them, the time slot identification corresponding to each time slot in the service transmission channel is represented based on each sequence element included in the time slot sequence, and the time slot identification in the time slot sequence
  • Each sequence element is determined based on the representation of the second type number determined by the total number of time slots included in the service transmission channel, and the total number of bits included in the second type number; the representation of the first type number and the representation of the second type number
  • the representation methods are binary arrays represented by two numbers:
  • the processing unit may determine the representation of the first type number according to the number of remaining time slots in the service transmission channel in the following manner, specifically for:
  • N Assume that the total number of digits of the first type of number is N, and N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N ;
  • M is the total number of time slots included in the service transmission channel
  • bit weights corresponding to each digit in the first type of number are ⁇ N , ⁇ N-1 ,... ⁇ 1 , ⁇ N , ⁇ N-1 ,... ⁇ 1 respectively, which conform to the following formulas:
  • P is the number of remaining time slots.
  • the processing unit may use the representation of the first type of number in the following manner to determine the first type of number representation of the target number of time slots, specifically for:
  • the first type number representation of the target time slot number Q conforms to the following formula:
  • the processing unit determines the first type number representation of the target number of time slots, It is also used to determine whether the target time slot number Q is greater than or equal to ⁇ N.
  • a N is set to 1, otherwise A N is set to 0; to determine whether Q- ⁇ N ⁇ A N is greater than or equal to ⁇ N- 1 , if it is greater than or equal to, then A N-1 is set to 1, otherwise A N-1 is set to 0; and so on, determine whether Q- ⁇ N ⁇ A N ...- ⁇ N ⁇ A 2 is greater than or equal to ⁇ 1 , if greater than or equal to, A 1 is set to 1, otherwise A 1 is set to 0.
  • the processing unit may determine the time slot sequence based on the total number of time slots included in the service transmission channel and the total number of bits included in the second type of number in the following manner, specifically for:
  • the representation method of the second type number is determined, where the total number of digits of the second type number is N, and N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N ;
  • the time slot sequence includes M sequence elements, and the time slot sequence conforms to the following formula: ⁇ NY 0 , NY 1 , NY 2 ...NY M-1 ⁇ ;
  • Y 0 ...Y M-1 is the representation based on the second type number, accumulating from 0 to M, corresponding to the number of carry bits during accumulation, where Y 0 is the accumulation from 0 expressed based on the second type number.
  • the number of carry bits when reaching 1 based on the second type number representation,...and so on, Y M-1 is the carry bit when accumulating from M-1 based on the second type number representation to M based on the second type number representation number of digits.
  • the processing unit when the processing unit represents the time slot identifier corresponding to each time slot in the service transmission channel based on each sequence element included in the time slot sequence, it is specifically used to: utilize the sequence in the time slot sequence The element identifies each of the various time slots in the traffic transmission channel.
  • the transceiver unit is also configured to return an indication message of insufficient bandwidth of the service transmission channel to the terminal device when the number of target time slots required by the terminal device to transmit the target service signal is greater than the number of remaining time slots in the service transmission channel.
  • the present application also provides a communication device, including a processor.
  • the processor is used to couple with a memory.
  • the memory can be provided inside the communication device or outside the communication device.
  • the processor is used to execute a computer program stored in the memory. , so that any possible design solution in the first aspect above can be realized.
  • the present application also provides a computer-readable storage medium, including computer program instructions.
  • the computer program instructions are executed by a computer, any possible design solution in the first aspect above is realized.
  • this application also provides a computer program.
  • the computer program is executed by a computer, any possible design solution in the above first aspect is realized.
  • Figure 1 is a schematic structural diagram of a vehicle-mounted slicing network system
  • Figure 2 is a schematic diagram of the steps of a time slot allocation method
  • Figure 3 is a schematic diagram of time slot allocation
  • Figure 4 is a schematic diagram of a time slot allocation configuration table
  • Figure 5 is a schematic structural diagram of a communication device
  • Figure 6 is a schematic structural diagram of a communication device.
  • the time slot allocation method provided by the embodiment of the present application is mainly used in the vehicle-mounted slicing network ASN system.
  • Figure 1 is a schematic diagram of a vehicle-mounted slicing network system; wherein, the vehicle-mounted slicing network includes an ASN controller ( controller), ASN encoding (MAP) unit, ASN decoding (DeMAP) unit, ASN slot mapping (Switch) unit and ASN reassembly (RSM) unit.
  • controller ASN controller
  • MAP ASN encoding
  • DeMAP ASN decoding
  • Switch ASN slot mapping
  • RBM ASN reassembly
  • the ASN controller is used to allocate and configure time slots for service signals transmitted on the ASN system.
  • the ASN encoding unit is used to receive the service signal sent by the terminal device, slice the application data (application data) contained in the service signal sent by the terminal device to obtain multiple application data slices, and slice the corresponding data of the multiple application data
  • the message is encoded according to the set encoding format.
  • the ASN decoding unit is used to receive the service signal sent by the Ethernet interface, slice the Ethernet data (ethernet data) contained in the service signal sent by the Ethernet interface to obtain multiple Ethernet data slices, and slice the multiple Ethernet data.
  • the data packet corresponding to the data slice is decoded according to the set decoding format.
  • the ASN time slot mapping unit is used to receive the time slot allocation results issued by the ASN controller, map the coded or decoded data slices to the corresponding time slots according to the time slot allocation results, and slice the coded or decoded data into Transmits over the Ethernet interface on its mapped time slot.
  • the ASN reassembly unit is used to reassemble the decoded Ethernet data slices belonging to the same service signal, and send the reassembled service signal containing Ethernet data to the terminal device.
  • the ASN controller can be a general central processing unit (CPU), general processor, digital signal processing (DSP), application specific integrated circuits (ASIC), on-site Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • CPU central processing unit
  • DSP digital signal processing
  • ASIC application specific integrated circuits
  • FPGA Field programmable gate array
  • the terminal equipment may include but is not limited to mobile telephones, mobile phones, tablet computers and portable equipment, vehicle-mounted equipment, vehicle-mounted information boxes (telematics box, TBOX), etc. Equipment that transmits business signals.
  • the existing technology usually uses the delta integral algorithm to achieve uniform configuration of service signal time slots in the ASN system.
  • This time slot allocation method not only needs to know the service bandwidth of the time slot to be allocated, but also needs to calculate the time slot configuration table in real time, and The time slot configuration table needs to be recalculated based on the continuous changes in the number of service time slots. Therefore, this method is time-consuming and the allocation is not flexible enough to meet the application requirements of vehicle networking.
  • this application proposes a time slot allocation method to achieve a more flexible and even allocation of time slots in Internet of Vehicles communications, thereby solving the problem of high resource consumption and configuration issuance time of Internet of Vehicles communication in the existing technology. long question.
  • the time slot allocation method provided by this application can be applied to the ASN controller shown in Figure 1 to complete the time slot configuration for the service signals to be transmitted, and use the ASN controller in the ASN system to allocate time slots for the service signals to achieve For the reuse of hardware resources, it solves the problems of high consumption of existing Internet of Vehicles communication resources and long time slot configuration time.
  • first type of numbers and the second type of numbers mentioned in the embodiments of this application are binary arrays represented by two numbers: 0 and 1.
  • the bit weight corresponding to each digit in the binary array is based on As stipulated by specific rules, the position weight is the unit value corresponding to each fixed position, which is called position weight.
  • Figure 2 is a schematic diagram of the steps of a time slot allocation method provided by an embodiment of the present application.
  • Step S101 Determine the total number of time slots M in the service transmission channel used to transmit service signals.
  • the total number of time slots in the service transmission channel conforms to the following formula:
  • the total bandwidth of the service transmission channel used to transmit service signals is 300Mbps, and the bandwidth of a single time slot is 10Mbps in the scenario of a vehicle-mounted slicing network, then the total number of time slots in the service transmission channel is 30.
  • the following embodiments The total number of time slots M is 30 for example.
  • Step S102 Determine a time slot sequence based on the total number M of time slots in the service transmission channel that transmits service signals, and use sequence elements in the time slot sequence to identify each time slot in the remaining time slots in the service transmission channel. This process can be specifically implemented through the following steps S1021 to step 1023.
  • Step S1021 Determine the representation method of the second type number according to the total number M of time slots in the service transmission channel that transmits the service signal, wherein the second type number is a binary array represented by two numbers: 0 and 1, The total number of digits of the second type number is N, and the N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N . If M is 30, it can be seen that N should be 5.
  • the method of expressing M as a second type number is:
  • M a N *2 N-1 +...a 2 *2 1 +a 1 *2 0 .
  • a 1 ⁇ is the second type number representation of M.
  • Table 1 is a comparison table of the second type of number representation corresponding to M from 0 to 30.
  • Step S1022 The time slot sequence includes M sequence elements, and the time slot sequence conforms to the following formula: ⁇ NY 0 , NY 1 , NY 2 ...NY M-1 ⁇ .
  • the Y 0 ... Y M-1 is a representation based on the second type of number, accumulating from 0 to M (accumulating according to the second type of number representation), corresponding to the number of carry bits during accumulation, where , Y 0 is the number of carry bits when accumulating from 0 to 1, Y M-1 is the number of carry bits when accumulating from M-1 to M.
  • Y 0 is the number of carry bits when accumulating from 0 to 1
  • Y M-1 is the number of carry bits when accumulating from M-1 to M.
  • the number of carry bits is 0.
  • Whichever bit the carry occurs in, the number of carry digits is the value of that digit. For example: if the carry occurs in the third bit, then the number of carry digits is 3, and so on.
  • the obtained time slot sequence is ⁇ 5, 4, 5, 3, 5, 4, 5, 2, 5, 4, 5, 3, 5, 4, 5, 1, 5 ,4,5,3,5,4,5,2,5,4,5,3,5,4 ⁇ .
  • Step S1023 Use sequence elements in the time slot sequence to identify each time slot in each time slot in the service transmission channel. Assume that the total time slots are 30, that is, when all time slots in the current business transmission channel are not occupied, 30 sequence elements ⁇ 5, 4, 5, 3, 5, 4, 5 in the time slot sequence are used , 2, 5, 4, 5, 3, 5, 4, 5, 1, 5, 4, 5, 3, 5, 4, 5, 2, 5, 4, 5, 3, 5, 4 ⁇ is 30 Each time slot in the time slot is identified in turn, thereby obtaining the following time slot identification table 2.
  • Step S103 Based on the identifier on each time slot in the remaining time slots and the number of target time slots Q required by the target service signal to be allocated, allocate the target service signal to the target time slot in the remaining time slots. Make the transfer.
  • the number of target time slots Q required by the target service signal to be allocated can be determined in the following way:
  • step S103 can be specifically implemented through the following steps S1031 to step S1033.
  • Step S1031 Determine the representation of the first type number according to the number of time slots P of the remaining time slots, and determine the first type number representation of the target number of time slots Q using the representation of the first type of number.
  • the first type of number is a binary array represented by two numbers: 0 and 1.
  • the total number of digits in the first type of number is N.
  • the bit weight corresponding to each digit in the first type of number is respectively ⁇ N , ⁇ N-1 , ... ⁇ 1 , where ⁇ N , ⁇ N-1 , ... ⁇ 1 are numerical values respectively related to the number of time slots P of the remaining time slots.
  • the method of expressing the target number of time slots Q as a first type number is:
  • a 1 ⁇ is the first type number representation of Q.
  • the bit weight corresponding to each digit in the first type number is:
  • Table 3 is a comparison table of the first type of number representation corresponding to Q from 0 to 10.
  • step S1031 the process of making the target number of time slots Q correspond to the unique number of the first type is represented by step S1031 Specifically, this can be achieved through the following steps S10311 to S1031N.
  • the A N is the first bit in the first type number representation corresponding to the target time slot number Q
  • the A 1 is the Nth bit in the first type number representation corresponding to the target time slot number Q.
  • Step S10311 Determine whether the target number of time slots Q is greater than or equal to ⁇ N . If it is greater than or equal to ⁇ N , then AN is set to 1; otherwise, AN is set to 0;
  • Step S10312 Determine whether Q- ⁇ N ⁇ A N is greater than or equal to ⁇ N-1 . If it is greater than or equal to, A N-1 is set to 1, otherwise A N-1 is set to 0;
  • step S1031N Determine whether Q- ⁇ N ⁇ A N ...- ⁇ N ⁇ A 2 is greater than or equal to ⁇ 1 . If it is greater than or equal to ⁇ 1 , A 1 is set to 1, otherwise A 1 is set to 0.
  • a 5 is set to 0;
  • the first type number that determines the target time slot number Q(10) is expressed as ⁇ 0, 1, 0, 1, 0 ⁇ .
  • Step S1032 Determine that in the first type of numerical representation of the target time slot number Q, the number of bits corresponding to the set number of code bits is the target identifier.
  • the target time slot number Q(10) is ⁇ 0, 1, 0, 1, 0 ⁇ , and the Set the number to 1. Since the numbers in the second and fourth digits are 1, the target identifiers are determined to be 2 and 4. The order of the digits here is from right to left of the first type of number. Order.
  • Step S1033 From the identifiers on each time slot in the remaining time slots, search for an identifier that is the same as the target identifier, determine the time slot corresponding to the identifier as the target time slot, and allocate the target service signal to the target Transmit in time slot.
  • the target time slots determined from the remaining time slots are shown in Table 4 below.
  • the time slot corresponding to the shaded part is the target time slot.
  • slots, that is, the time slots identified as 2 and 4 in the time slot identifier represented by the second type number are the target time slots, so that the target service signal is transmitted in the following 10 target time slots.
  • Figure 3 is a schematic diagram of time slot allocation according to an embodiment of the present application; the terminal device sends a queue of target service signals of time slots to be allocated, and the queue includes multiple target service signals of time slots to be allocated and Its corresponding target time slot number.
  • the queue in Figure 3 may include the first target service signal to the fifth target service signal, and the corresponding target time slot numbers respectively are: 10, 7, 4, 2, and 1.
  • the target identifier can be determined, and each time slot in the remaining time slots in the service transmission channel can be processed through the sequence elements in the time slot sequence. identification, search for an identification that is the same as the target identification on each time slot, determine the time slot corresponding to the identification as the target time slot, and allocate the target service signal to the target time slot for transmission, thereby completing flexible, Uniform slot allocation.
  • the following embodiment takes as an example that the first target service signal has been allocated corresponding time slots in the manner of the above embodiment, and time slots are allocated from the second target service signal (the corresponding target number of time slots Q' is 7).
  • This allocation includes the following steps:
  • steps S201 to S2022 in this process are the same as steps S101 to S1022 in the above embodiment, and will not be described again here.
  • Step S2023 Use the sequence element in the time slot sequence to identify each time slot in the remaining time slots in the service transmission channel.
  • Step S203 Based on the identifier on each time slot in the remaining time slots and the number of target time slots Q' required by the target service signal to be allocated, allocate the target service signal to the target time slot in the remaining time slots. transfer in. (Taking the target number of time slots Q' as 7 as an example), the process of this step can be specifically implemented through the following steps S2031 to step S2033.
  • Step S2031 Re-determine the representation of the first type number according to the number of time slots P' of the remaining time slots, and use the re-determined representation of the first type of number to determine the first type number representation of the target number of time slots Q' , the first type number is a binary array represented by two numbers 0 and 1, and the bit weight corresponding to each digit in the redetermined first type number is ⁇ N ', ⁇ N-1 ',... ⁇ 1 '.
  • bit weight corresponding to each digit in the first type number is:
  • Table 6 is a comparison table of the first type of number representation corresponding to Q' from 0 to 7 when P' is 20.
  • the process of determining the first type number expression of the target number of time slots Q' is, Specifically, this can be achieved through the following steps S20311 to S2031N.
  • the A N ' is the first bit in the first type number representation corresponding to the target time slot number Q'
  • the A 1 ' is the Nth bit in the first type number representation corresponding to the target time slot number Q'.
  • Step S20311 Determine whether the target number of time slots Q' is greater than or equal to ⁇ N '. If it is greater than or equal to ⁇ N ', then AN ' is set to 1, otherwise AN ' is set to 0;
  • Step S20312 Determine whether Q'- ⁇ N ' ⁇ A N ' is greater than or equal to ⁇ N-1 '. If it is greater than or equal to, A N-1 ' is set to 1, otherwise A N-1 ' is set to 0;
  • step S20311N Determine whether Q'- ⁇ N ' ⁇ A N '...- ⁇ N ' ⁇ A 2 ' is greater than or equal to ⁇ 1 '. If greater than or equal to, A 1 ' is set to 1, Otherwise A 1 ' is set to 0.
  • the first type number representation of the target number of time slots Q' is determined ⁇ A 5 ', A 4 ' , A 3 ', A 2 ', A 1 ' ⁇ The steps are:
  • Step S2032 Determine that the number of bits corresponding to the set number of code bits in the first type number corresponding to the target time slot number Q' is the target identifier.
  • the target identifiers are 1, 2, and 4.
  • Step S2033 From the time slot identifiers of the remaining time slots, search for an identifier that is the same as the target identifier, determine the time slot corresponding to the identifier as the target time slot, and allocate the target service signal to the target time slot for transmission. .
  • the target number determined from the remaining time slots is For the target time slots, please refer to Table 7 below.
  • the time slots corresponding to the shaded part are the target time slots, that is, the time slots identified as 1, 2 and 4 in the time slot identifier represented by the second type number are the target time slots. , thereby transmitting the second target service signal in the following 7 target time slots.
  • FIG 4 is a time slot allocation configuration table.
  • Each target service signal (first target service signal) in the queue of each target service signal to be allocated in the embodiment shown in Figure 3 is (10), the second target service signal (7), the third target service signal (4), the fourth target service signal (2) and the fifth target service signal (1)), the time slot allocation will result as shown in Figure 4
  • the time slot corresponding to C1 is the time slot allocated to the first target service signal, that is, 10;
  • the time slot corresponding to C2 is the time slot allocated to the second target service signal.
  • the time slot corresponding to C3 is the time slot allocated to the third target service signal, that is, 4;
  • the time slot corresponding to C4 is the time slot allocated to the fourth target service signal, that is, 2;
  • the time slot corresponding to C5 is The slot is the time slot allocated to the fifth target service signal, that is, 1. It can be seen from the example shown in Figure 4 that the first target service signal, the second target service signal, the third target service signal, the fourth target service signal and the fifth target service signal can occupy the transmission time slots evenly and flexibly. They are well spaced from each other and can better avoid interference between each target service signal.
  • time slot allocation method Using the time slot allocation method provided by this application, a more flexible and even allocation of time slots in Internet of Vehicles communications can be achieved.
  • the total number of time slots in the business transmission channel is used to determine the representation of the second type number, so that Determine the time slot sequence to achieve uniform identification of each time slot in the remaining time slots.
  • the representation of the first type number After uniform identification, determine the representation of the first type number according to the number of remaining time slots, and use the third A representation method of a type of number, determining the first type of number representation of the target time slot number, so as to find the target identifier corresponding to the target service signal on the first type of number representation corresponding to the target time slot number, and from the remaining time slots On the identifier of each time slot, search for an identifier that is the same as the target identifier, determine the time slot corresponding to the identifier as the target time slot, and allocate the target service signal to the target time slot for transmission.
  • the time slot sequence can be reused, and each When time slot allocation is performed for the first time, the target service signal can be allocated to the target time slot for transmission only by determining the target identifier based on the number of time slots in the remaining time slots and the number of target time slots. Therefore, the allocation is more convenient. Flexible and more evenly occupied resources.
  • FIG. 5 is a schematic structural diagram of a communication device provided by the present application; the communication device 500 includes a transceiver unit 501 and a processing unit 502:
  • the transceiver unit 501 is configured to receive a time slot allocation request sent by a terminal device, where the time slot allocation request includes indication information of a target number of time slots required by the terminal device to transmit a target service signal.
  • the processing unit 502 is configured to determine the number of target time slots required to transmit the target service signal according to the indication information; determine the representation method of the first type number according to the number of remaining time slots in the service transmission channel, and use the first type number
  • the representation method is a first type of numerical representation that determines the target number of time slots; in the first type of numerical representation that determines the target number of time slots, the number of digits corresponding to the code bits of the set number is the target identification; among the time slot identifications corresponding to the remaining time slots in the service transmission channel, search for the time slot identification that is the same as the target identification; wherein, the time slots corresponding to each time slot in the business transmission channel
  • the identification is represented based on each sequence element included in the time slot sequence.
  • Each sequence element in the time slot sequence is a second type number representation determined according to the total number of time slots included in the service transmission channel, and the second type number includes The total number of digits is determined; the representation mode of the first type number and the representation mode of the second type number are binary arrays represented by two numbers: 0 and 1 respectively; the transceiver unit 501 converts the target The service signal is allocated to the time slot corresponding to the found time slot identifier for transmission.
  • the transceiver unit 501 may also be called a transceiver module, a transceiver, a transceiver, or a transceiver device, etc.
  • the processing unit 502 may also be called a processor, a processing board, a processing module, or a processing device.
  • the transceiver unit 501 is used to perform the sending operation and the receiving operation in the above method.
  • the devices used to implement the receiving function in the transceiving unit 501 can be regarded as receiving units, and the devices used in the transceiving unit 501 to implement the transmitting function can be regarded as Considered as a sending unit, that is, the sending and receiving unit 501 includes a receiving unit and a sending unit.
  • the aforementioned transceiver unit 501 and/or processing unit 502 can be implemented through a virtual module.
  • the transceiver unit 501 can be implemented through a software function or a virtual device, and the processing unit 502 can be implemented through a software function unit or a virtual device.
  • the transceiver unit 501 and/or the processing unit 502 can also be implemented by a physical device.
  • the communication device 500 is implemented using a chip/chip circuit
  • the transceiver unit 501 can be an input-output circuit and/or a communication interface to perform input operations. (corresponding to the aforementioned receiving operation) and output operation (corresponding to the aforementioned sending operation);
  • the processing unit 502 is an integrated processor, microprocessor, or integrated circuit.
  • each functional unit in each embodiment of the embodiments of the present application may be integrated in In a processor, it may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the processing unit 502 determines the representation method of the first type number according to the number of remaining time slots in the service transmission channel, it is specifically used to:
  • N the total number of digits of the first type number
  • N the N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N ;
  • the M is the total number of time slots included in the service transmission channel
  • bit weights corresponding to each digit in the first type of number are ⁇ N , ⁇ N-1 ,... ⁇ 1 respectively, and the ⁇ N , ⁇ N-1 ,... ⁇ 1 respectively comply with the following formulas:
  • P is the number of remaining time slots.
  • the processing unit 502 uses the first type number representation to determine the first type number representation of the target time slot number, specifically for:
  • the first type number representation of the target time slot number Q conforms to the following formula:
  • the representation of the first type of number is used to determine that there are multiple first type numbers of the target number of time slots, then determine the first type of the target number of time slots.
  • the representation of the first type of number is used to determine that there are multiple first type numbers of the target number of time slots.
  • determine the first type of the target number of time slots When expressed as a number, it is also used:
  • the processing unit 502 determines the time slot sequence according to the total number of time slots included in the service transmission channel and the total number of bits included in the second type of number, it is specifically used to:
  • the representation mode of the second type number is determined, wherein the total number of digits of the second type number is N, and the N conforms to the following formula: 2 N-1 ⁇ M ⁇ 2 N ;
  • the time slot sequence includes M sequence elements, and the time slot sequence conforms to the following formula: ⁇ NY 0 , NY 1 , NY 2 ...NY M-1 ⁇ ;
  • the Y 0 ...Y M-1 is a representation based on the second type of number, accumulating from 0 to M, corresponding to the number of carry bits during accumulation, wherein the Y 0 is based on the The number of carry bits when the 0 represented by the second type of number is accumulated to the 1 represented by the second type of number, ....
  • the Y M-1 is from the M- represented by the second type of number. The number of carry bits when 1 is accumulated to M based on the second type of number representation.
  • the processing unit 502 represents the time slot identifier corresponding to each time slot in the service transmission channel based on each sequence element included in the time slot sequence, it is specifically used to:
  • Each time slot in each time slot in the traffic transmission channel is identified using a sequence element in the time slot sequence.
  • the transceiver unit 501 is also configured to return the target time slots required by the terminal device to transmit the target service signal to the terminal device when the number of remaining time slots in the service transmission channel is greater than the number of remaining time slots in the service transmission channel. Indicates that the bandwidth of the service transmission channel is insufficient.
  • the embodiment of the present application also provides a communication device 600.
  • the communication device 600 may include at least one processor 610.
  • the processor 610 is coupled with a memory 620.
  • the memory 620 may be located between the communication device 600.
  • the memory 620 may be integrated with the processor 610 , or the memory 620 may be located outside the communication device 600 .
  • communication device 600 may also include at least one memory 620.
  • the memory 620 stores the necessary computer programs, computer programs or instructions and/or data to implement any of the above embodiments; the processor 610 may execute the computer program stored in the memory 620 to complete any of the solutions in the above embodiments.
  • the communication device 600 may also include a communication interface 630, and the communication device 600 may interact with other devices through the communication interface 630.
  • the communication interface 630 may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
  • the communication interface 630 in the communication device 600 can also be an input-output circuit, which can input information (or receive information) and output information (or send information).
  • the processor is an integrated processor or a microprocessor or an integrated circuit or a logic circuit, and the processor can determine the output information according to the input information.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 610 may cooperate with the memory 620 and the communication interface 630.
  • the specific connection medium between the above-mentioned processor 610, memory 620 and communication interface 630 is not limited in the embodiment of the present application.
  • the processor 610 , the memory 620 and the communication interface 630 are connected to each other through a bus 640 .
  • the bus 640 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 6, but it does not mean that there is only one bus or one type of bus.
  • the processor 610 may be a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the memory 620 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • embodiments of the present application also provide a computer-readable storage medium, including computer program instructions.
  • the computer program instructions are executed by a computer, any one of the embodiments shown in FIGS. 2 to 4 can be performed. plan was implemented.
  • an embodiment of the present application also provides a computer program.
  • the computer program is executed by a computer, any one of the solutions in the embodiments shown in FIGS. 2 to 4 can be realized.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种时隙分配方法及通信装置,通过由总时隙数量确定时隙序列为业务传输信道中的各个时隙进行标识,接收终端设备发送的时隙分配请求,根据指示信息确定传输目标业务信号需要的目标时隙数量,根据业务传输信道中的剩余时隙数量以及目标时隙数量,确定目标标识,在业务传输信道中的剩余时隙分别对应的时隙标识中,查找与所述目标标识相同的时隙标识,将目标业务信号分配到与查找到的所述时隙标识对应的时隙上进行传输。利用本申请提供的时隙分配方法,能实现对车联网通信中的时隙进行更加灵活且均匀的分配,从而解决现有技术中车联网通信资源耗费大、配置下发时间长的问题。

Description

一种时隙分配方法及通信装置
相关申请的交叉引用
本申请要求在2022年05月30日提交中国专利局、申请号为202210598644.X、申请名称为“一种时隙分配方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种时隙分配方法及通信装置。
背景技术
车联网(vehicle to X,V2X),指的是车辆可以与外界设备进行通信。随着智能网联汽车发展规划的提出,V2X技术得到大力支持与发展,各车企也大规模地推广车联网技术。车联网技术的推广和应用与移动通信系统平台的技术相辅相成,如何利用网络切片技术来为车联网提供更好的服务是行业关注的焦点。
随着以太硬专线技术的提出,在车载切片网络(automotive slicing network,ASN)/灵活以太网(flex ethernet,FlexE)技术的基础上,可以提供更小带宽粒度(10Mbps)、更广阔的带宽分布(1~N*10Mbps)。ASN针对车载确定性网络场景提供确定性低时延,低抖动,硬隔离等需求,ASN基于小颗粒以太硬专线技术开创,其承载管道可以为各类物理以太端口,业务最小粒度为10Mbps,最大带宽为承载管道带宽的96%。例如,针对一个5Gbps的以太管道,可以划分出10Mbps~480*10Mbps的业务带宽分布。
相应的,对于上述需要精细粒度带宽的业务流合理分配调度资源,既能满足调度公平、又要控制调度延时抖动,成为亟待解决的问题。
若要使用数学算法(例如:三角积分(sigma-delta)算法等)来进行时隙的均匀化配置,则需要进行复杂的软件计算以及CPU配置,因此,该时隙分配方法完全需要依赖于软件的执行,既需要知道待分配时隙的业务带宽,还需要实时计算时隙配置表,并且还需要基于业务时隙数的不断变化来重新计算时隙配置表,耗时时间长并且分配不够灵活,无法满足车载组网的应用要求。有鉴于此,需要提出一种分配更加灵活均匀且占用资源更少的时隙分配方法。
发明内容
本申请提供一种时隙分配方法及装置,以实现对车联网通信中的时隙进行更加灵活均匀的分配,且占用资源较少,从而更好满足车载组网的应用要求。
第一方面,本申请提供一种时隙分配方法,该方法包括:接收终端设备发送的时隙分配请求,时隙分配请求包括终端设备传输目标业务信号需要的目标时隙数量的指示信息;根据指示信息,确定传输目标业务信号需要的目标时隙数量;根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,利用第一类型数的表示方式,确定目标时隙数量的第一类型数表示;确定目标时隙数量的第一类型数表示中,数码位上为设定数的码位所 对应的位数为目标标识;在业务传输信道中的剩余时隙分别对应的时隙标识中,查找与目标标识相同的时隙标识;其中,业务传输信道中的各个时隙分别对应的时隙标识是基于时隙序列包括的各个序列元素表示的,时隙序列中的各个序列元素是根据业务传输信道包括的总时隙数量确定的第二类型数表示方式、以及第二类型数包括的总位数确定出的;第一类型数的表示方式和第二类型数的表示方式均为分别使用0和1两个数来表示的二进制数组;将目标业务信号分配到与查找到的时隙标识对应的时隙上进行传输。
利用本申请提供的时隙分配方法,能实现对车联网通信中的时隙进行更加灵活且均匀的分配,其中首先利用业务传输信道中的时隙总数量确定第二类型数的表示方式,从而确定时隙序列,以实现对于业务信道中的每个时隙的均匀标识,在进行均匀标识后,根据剩余时隙的时隙数量,确定第一类型数的表示方式,并利用第一类型数的表示方式,确定传输待传输业务所需的目标时隙数量的第一类型数表示,从而在目标时隙数量对应的第一类型数表示上找到目标业务信号对应的目标标识,并从剩余时隙中的每个时隙上的标识上,查找与目标标识相同的标识,将该标识对应的时隙确定为目标时隙,将目标业务信号分配到目标时隙中进行传输,因此分配更加灵活且占用资源更少。
作为一种可能的实施方式,根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,包括:
假设第一类型数的总位数为N,N符合以下公式:
2N-1≤M<2N
其中,M为业务传输信道包括的总时隙数量;
第一类型数中的每位数码对应的位权分别为βN,βN-1,…β1,βN,βN-1,…β1分别符合如下公式:
其中,P为剩余时隙数量。
作为一种可能的实施方式,利用第一类型数的表示方式,确定目标时隙数量的第一类型数表示,包括:
目标时隙数量Q的第一类型数表示,符合如下公式:
{AN,…A2,A1},Q=ANN+…A22+A11,A1…AN为0或1。
由于第一类型数的表示方式,存在相同数对应不同第一类型数的表示方式的情况,作为一种可能的实施方式,确定目标时隙数量的第一类型数表示,还包括:
判断目标时隙数量Q是否大于或等于βN,若大于或等于,则AN设置为1,否则AN设置为0;
判断Q-βN×AN是否大于或等于βN-1,若大于或等于,则AN-1设置为1,否则AN-1设置为0;
以此类推,判断Q-βN×AN...-βN×A2是否大于或等于β1,若大于或等于,则A1设置为1,否则A1设置为0。
通过上式第一类型数的表示方式,来使目标时隙数量能对应唯一的第一类型数表示。
作为一种可能的实施方式,根据业务传输信道包括的总时隙数量以及第二类型数包括的总位数,确定时隙序列,包括:
根据业务传输信道包括的总时隙数量M,确定第二类型数的表示方式,其中,第二类 型数的总位数为N,N符合以下公式:
2N-1≤M<2N
将0到M分别使用如下第二类型数表示,得到M个第二类型数:
{aN,…a2,a1},M=aN*2N-1+…a2*21+a1*20
时隙序列中包括M个序列元素,时隙序列符合以下公式:
{N-Y0,N-Y1,N-Y2…N-YM-1};
其中,Y0...YM-1为基于第二类型数的表示方式,从0累加到M,对应累加时的进位位数,其中,Y0为从基于第二类型数表示的0累加到基于第二类型数表示的1时的进位位数,….以此类推,YM-1为从基于第二类型数表示的M-1累加到基于第二类型数表示的M时的进位位数。其中,进位发生在哪位,则进位位数就为哪位的数值,若进位发生在第三位,则进位的位数就为3,以此类推。此外,本申请中,因业务信道包括的时隙总数量不变,所以该时隙序列可以被各个时隙重复使用。
作为一种可能的实施方式,基于时隙序列包括的各个序列元素,表示业务传输信道中的各个时隙分别对应的时隙标识,包括:
利用时隙序列中的序列元素对业务传输信道中的各个时隙中的每个时隙进行标识。
在某些场景下,业务传输信道中的时隙数量可能不足以传输目标业务信号,作为一种可能的实施方式,方法还包括:在确定传输目标业务信号需要的目标时隙数量大于业务传输信道中的剩余时隙数量时,向终端设备返回业务传输信道带宽不足的指示消息。
第二方面,本申请提供一种通信装置,该装置包括收发单元以及处理单元:收发单元,用于接收终端设备发送的时隙分配请求,时隙分配请求包括终端设备传输目标业务信号需要的目标时隙数量的指示信息;处理单元,用于:
根据指示信息,确定传输目标业务信号需要的目标时隙数量;根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,利用第一类型数的表示方式,确定目标时隙数量的第一类型数表示;确定目标时隙数量的第一类型数表示中,数码位上为设定数的码位所对应的位数为目标标识;在业务传输信道中的剩余时隙分别对应的时隙标识中,查找与目标标识相同的时隙标识;其中,业务传输信道中的各个时隙分别对应的时隙标识是基于时隙序列包括的各个序列元素表示的,时隙序列中的各个序列元素是根据业务传输信道包括的总时隙数量确定的第二类型数表示方式、以及第二类型数包括的总位数确定出的;第一类型数的表示方式和第二类型数的表示方式均为分别使用0和1两个数来表示的二进制数组;通过收发单元将目标业务信号分配到与查找到的时隙标识对应的时隙上进行传输。
作为一种可能的实施方式,处理单元可以根据下述方式,来实现根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式时,具体用于:
假设第一类型数的总位数为N,N符合以下公式:
2N-1≤M<2N
M为业务传输信道包括的总时隙数量;
第一类型数中的每位数码对应的位权分别为βN,βN-1,…β1,βN,βN-1,…β1分别符合如下公式:
其中,P为剩余时隙数量。
作为一种可能的实施方式,处理单元可以根据下述方式,利用第一类型数的表示方式,确定目标时隙数量的第一类型数表示时,具体用于:
目标时隙数量Q的第一类型数表示,符合如下公式:
{AN,…A2,A1},Q=ANN+…A22+A11,A1…AN为0或1。
作为一种可能的实施方式,若利用第一类型数的表示方式,确定目标时隙数量的第一类型数表示存在多种时,则处理单元确定目标时隙数量的第一类型数表示时,还用于判断目标时隙数量Q是否大于或等于βN,若大于或等于,则AN设置为1,否则AN设置为0;判断Q-βN×AN是否大于或等于βN-1,若大于或等于,则AN-1设置为1,否则AN-1设置为0;以此类推,判断Q-βN×AN...-βN×A2是否大于或等于β1,若大于或等于,则A1设置为1,否则A1设置为0。
作为一种可能的实施方式,处理单元可以基于下述方式,根据业务传输信道包括的总时隙数量以及第二类型数包括的总位数,确定时隙序列时,具体用于:
根据业务传输信道包括的总时隙数量M,确定第二类型数的表示方式,其中,第二类型数的总位数为N,N符合以下公式:
2N-1≤M<2N
将0到M分别使用如下第二类型数表示,得到M个第二类型数:
{aN,…a2,a1},M=aN*2N-1+…a2*21+a1*20
时隙序列中包括M个序列元素,时隙序列符合以下公式:
{N-Y0,N-Y1,N-Y2…N-YM-1};
其中,Y0...YM-1为基于第二类型数的表示方式,从0累加到M,对应累加时的进位位数,其中,Y0为从基于第二类型数表示的0累加到基于第二类型数表示的1时的进位位数,….以此类推,YM-1为从基于第二类型数表示的M-1累加到基于第二类型数表示的M时的进位位数。
作为一种可能的实施方式,处理单元基于时隙序列包括的各个序列元素,表示所述业务传输信道中的各个时隙分别对应的时隙标识时,具体用于:利用时隙序列中的序列元素对业务传输信道中的各个时隙中的每个时隙进行标识。
作为一种可能的实施方式,收发单元还用于在终端设备传输目标业务信号需要的目标时隙数量大于业务传输信道中的剩余时隙数量时,向终端设备返回业务传输信道带宽不足的指示消息。
第三方面,本申请还提供一种通信设备,包括处理器,处理器用于与存储器耦合,存储器可以设置于通信设备内部,也可以设置于通信设备外部,处理器用于执行存储器中存储的计算机程序,以使得如上第一方面中的任一可能设计的方案被实现。
第四方面,本申请还提供一种计算机可读存储介质,包括计算机程序指令,当计算机程序指令被计算机执行时,以使得如上第一方面中的任一可能设计的方案被实现。
第五方面,本申请还提供一种计算机程序,计算机程序被计算机执行时,以使得如上第一方面中的任一可能设计的方案被实现。
上述第二方面至第五方面中任一方面可以达到的技术效果描述请参照上述第一方面中任一可能设计可以达到的技术效果描述,重复之处不予论述。
附图说明
图1为一种车载切片网络系统的结构示意图;
图2为一种时隙分配方法的步骤示意图;
图3为一种时隙分配示意图;
图4为一种时隙分配配置表的示意图;
图5为一种通信装置的结构示意图;
图6为一种通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
在车载切片网络场景下,需要将精细粒度带宽的业务流合理的分配调度,既能满足调度公平、又要控制调度延时抖动,成为亟待解决的问题。
本申请实施例提供的时隙分配方法,主要应用于车载切片网络ASN系统中,参阅图1所示,图1为一种车载切片网络系统的示意图;其中,车载切片网络中包括ASN控制器(controller)、ASN编码(MAP)单元、ASN解码(DeMAP)单元、ASN时隙映射(Switch)单元以及ASN重组(RSM)单元。
其中,ASN控制器,用于为在ASN系统上传输的业务信号进行时隙分配与配置。
ASN编码单元,用于接收终端设备发送的业务信号,将终端设备发送的业务信号中包含的应用数据(application data)进行切片处理得到多个应用数据切片,并将多个应用数据切片对应的数据报文按照设定的编码格式进行编码。
ASN解码单元,用于接收以太网接口发送的业务信号,将以太网接口发送的业务信号中包含的以太网数据(ethernet data)进行切片处理得到多个以太网数据切片,并将多个以太网数据切片对应的数据报文按照设定的解码格式进行解码。
ASN时隙映射单元,用于接收ASN控制器下发的时隙分配结果,根据时隙分配结果将编码或解码后的数据切片映射到对应的时隙上,并将编码或解码后的数据切片通过以太网接口,在其映射的时隙上进行传输。
ASN重组单元,用于将解码后属于同一业务信号的以太网数据切片进行重组,将重组后得到的包含以太网数据的业务信号发送给终端设备。
需要说明的是,ASN控制器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。
在本申请实施例中,终端设备可以包括但不限于移动电话(mobile telephone)、手机(phone)、平板电脑及便携设备(portable equipment)、车载设备、车载信息盒(telematics box,TBOX)等需要传输业务信号的设备。
目前,现有技术通常采用三角积分算法来实现ASN系统中的业务信号时隙均匀化配置,该时隙分配方法既需要知道待分配时隙的业务带宽,还需要实时计算时隙配置表,而且需要基于业务时隙数的不断变化来重新计算时隙配置表,因此,该方法耗时时间长并且分配不够灵活,无法满足车载组网的应用要求。
有鉴于此,本申请提出一种时隙分配方法,用于实现对车联网通信中的时隙进行更加灵活且均匀的分配,从而解决现有技术中车联网通信资源耗费大、配置下发时间长的问题。
本申请提供的时隙分配方法可以应用在图1所示的ASN控制器上,以完成为待传输业务信号进行时隙配置,利用ASN系统中的ASN控制器为业务信号进行时隙分配,实现对于硬件资源的复用,解决现有车联网通信资源耗费大以及时隙配置时间长等问题。
需要说明的是,本申请实施例中提及的第一类型数以及第二类型数均为用0和1两个数来表示的二进制数组,二进制数组中的每位数码对应的位权是根据特定规则规定的,所述位权为每一固定位置对应的单位值称为位权。
参阅图2所示,图2为本申请实施例提供的一种时隙分配方法的步骤示意图。
步骤S101:确定用于传输业务信号的业务传输信道中的时隙总数量M,所述业务传输信道中的时隙总数量符合如下公式:
例如,若用于传输业务信号的业务传输信道的总带宽为300Mbps,在车载切片网络的场景下单个时隙的带宽为10Mbps,则业务传输信道中的时隙总数量为30个,以下实施例均以时隙总数量M为30进行举例。
步骤S102:根据传输业务信号的业务传输信道中的时隙总数量M确定时隙序列,利用时隙序列中的序列元素对业务传输信道中的剩余时隙中的每个时隙进行标识。该过程具体可以通过如下步骤S1021至步骤1023实现。
步骤S1021:根据传输业务信号的业务传输信道中的时隙总数量M,确定第二类型数的表示方式,其中,所述第二类型数为用0和1两个数来表示的二进制数组,所述第二类型数的总位数为N,所述N符合以下公式:2N-1≤M<2N,如果M为30,可见N应为5。
其中,将M以第二类型数进行表示的方法为:
将M按如下公式展开:M=aN*2N-1+…a2*21+a1*20
{aN,…a2,a1}为M的第二类型数表示。
示例性的,下表1为M从0到30对应的第二类型数表示的对照表。
表1
从上表1中可得知,如果M为30,且N为5时,则M的第二类型数表示为{1,1,1,1,0}。
步骤S1022:时隙序列中包括M个序列元素,所述时隙序列符合以下公式:{N-Y0,N-Y1,N-Y2…N-YM-1}。
其中,所述Y0...YM-1为基于所述第二类型数的表示方式,从0累加到M(按照第二类型数表示做累加),对应累加时的进位位数,其中,Y0为从0累加到1时的进位位数,YM-1为从M-1累加到M时的进位位数。在从0累加到M时,若未发生进位,则进位位数为0。进位发生在哪位,则进位位数就为哪位的数值,比如:若进位发生在第三位,则进位位数就为3,以此类推。
示例性的,从0对应的第二类型数表示{0,0,0,0,0}到1对应的第二类型数表示{0,0,0,0,1}进行累加时,因未发生进位,因此Y0为0;而从1对应的第二类型数表示{0,0,0,0,1}到从2对应的第二类型数表示{0,0,0,1,0}进行累加时,因进位发生在第一位,因此Y1为1;若从7对应的第二类型数表示{0,0,1,1,1}到8对应的第二类型数表示{0,1,0,0,0}进行累加时,因进位发生在第三位,因此Y7为3。
依据上面原理,在M为30时,得到的时隙序列为{5,4,5,3,5,4,5,2,5,4,5,3,5,4,5,1,5,4,5,3,5,4,5,2,5,4,5,3,5,4}。
步骤S1023:利用时隙序列中的序列元素对业务传输信道中的各个时隙中的每个时隙进行标识。假设以总时隙为30个为例,即目前业务传输信道中所有时隙均未被占用时,利用时隙序列中的30个序列元素{5,4,5,3,5,4,5,2,5,4,5,3,5,4,5,1,5,4,5,3,5,4,5,2,5,4,5,3,5,4}为30个时隙中的每个时隙依次进行标识,从而得到如下时隙标识表2。
时隙标识表2
步骤S103:基于剩余时隙中的每个时隙上的标识,以及根据待分配的目标业务信号需要的目标时隙数量Q,将目标业务信号分配到所述剩余时隙中的目标时隙中进行传输。
其中,待分配的目标业务信号需要的目标时隙数量Q可以通过如下方式确定:
接收终端设备发送的时隙分配请求,所述时隙分配请求包括所述终端设备传输目标业务信号需要的目标时隙数量的指示信息;根据所述指示信息,确定传输目标业务信号需要的目标时隙数量。
然后,基于剩余时隙中的每个时隙上的标识,以及根据待分配的目标业务信号需要的目标时隙数量Q,将目标业务信号分配到所述剩余时隙中的目标时隙中进行传输,该步骤S103的实施过程具体可以通过如下步骤S1031至步骤S1033实现。
步骤S1031:根据剩余时隙的时隙数量P,确定第一类型数的表示方式,利用所述第一类型数的表示方式,确定目标时隙数量Q的第一类型数表示。
所述第一类型数为用0和1两个数来表示的二进制数组,所述第一类型数的总位数为N,所述第一类型数中的每位数码对应的位权分别为βN,βN-1,…β1,其中,βN,βN-1,…β1为分别与剩余时隙的时隙数量P相关的数值。
βN,βN-1,…β1分别符合如下公式:



其中,将目标时隙数量Q以第一类型数进行表示的方法为:
将Q按如下公式展开:Q=ANN+…A22+A11
{AN,…A2,A1}为Q的第一类型数表示。
示例性的,若剩余时隙的时隙数量P为30,则第一类型数中的每位数码对应的位权分别为:
第五位数码对应的位权:
第四位数码对应的位权:
第三位数码对应的位权:
第二位数码对应的位权:
第一位数码对应的位权:
示例性的,以目标时隙数量Q为10为例,下表3为Q从0到10对应的第一类型数表示的对照表。
表3
需要说明的是,对于上述第一类型数的表示方式,存在相同数对应不同第一类型数的表示方式的情况。示例性的,依据上面原理,在P为12时,第一类型数中的每位数码对 应的位权分别为:
第五位数码对应的位权:
第四位数码对应的位权:
第三位数码对应的位权:
第二位数码对应的位权:
第一位数码对应的位权:
而在Q=9时,若用上述位权对应的第一类型数的表示方式,来确定Q=9的第一类型数表示,可以发现,{1,1,0,0,0}即(β5*1+β4*1+β3*0+β2*0+β1*0=9)、{1,0,1,1,0}即(β5*1+β4*0+β3*1+β2*1+β1*0=9)以及{1,0,1,0,1}即(β5*1+β4*0+β3*1+β2*0+β1*1=9)均可以来表示Q=9的情况。
由上述表示方式可知,需要选取一个固定的方式,来使目标时隙数量Q对应唯一的第一类型数表示。
若目标时隙数量Q对应的第一类型数表示为{AN,AN-1,…,A1},则使目标时隙数量Q对应唯一的第一类型数表示的过程,该步骤S1031具体可以通过如下步骤S10311至步骤S1031N来实现。其中,所述AN为目标时隙数量Q对应的第一类型数表示中的第一位,所述A1为目标时隙数量Q对应的第一类型数表示中的第N位。
步骤S10311:判断所述目标时隙数量Q是否大于或等于βN,若大于或等于,则AN设置为1,否则AN设置为0;
步骤S10312:判断Q-βN×AN是否大于或等于βN-1,若大于或等于,则AN-1设置为1,否则AN-1设置为0;
以此类推,步骤S1031N:判断Q-βN×AN...-βN×A2是否大于或等于β1,若大于或等于,则A1设置为1,否则A1设置为0。
示例性的,若剩余时隙的时隙数量P为30,且目标时隙数量Q为10时,则确定目标时隙数量Q的第一类型数表示{A5,A4,A3,A2,A1}的步骤为:
因Q(10)小于β5(15),所以A5设置为0;
因(Q(10)-β5(15)*0大于β4(8)),所以A4设置为1;
因(Q(10)-β5(15)*0-β4(8)*1)小于β3(4),所以A3设置为0;
因(Q(10)-β5(15)*0-β4(8)*1-β3(4)*0)等于β2(2),所以A2设置为1;
因(Q(10)-β5(15)*0-β4(8)*1-β3(4)*0-β2(2)*1)小于β1(1),所以A1设置为0。
因此,确定目标时隙数量Q(10)的第一类型数表示为{0,1,0,1,0}。
步骤S1032:确定目标时隙数量Q的第一类型数表示中,数码位上为设定数的码位所对应的位数为所述目标标识。
示例性的,若目标时隙数量Q(10)对应的第一类型数为{0,1,0,1,0},且所述 设定数为1,因在第二位数码位和第四位数码位上的数为1,所以目标标识确定为2和4,这里数码位的顺序是从第一类型数的右往左数的顺序。
步骤S1033:从剩余时隙中的每个时隙上的标识上,查找与所述目标标识相同的标识,将该标识对应的时隙确定为目标时隙,将目标业务信号分配到所述目标时隙中进行传输。
示例性的,在目标时隙数量Q为10,剩余时隙数量为30时,从剩余时隙中确定的目标时隙参见下表4,在表4中,阴影部分对应的时隙为目标时隙,即按照第二类型数表示的时隙标识中标识为2和4的时隙为目标时隙,从而将目标业务信号在以下这10个目标时隙中进行传输。
表4
以上为本申请实施例为一个目标业务信号分配时隙的完整过程,在某些场景下,终端设备会发送多个待分配目标业务信号的信号发送请求。参阅图3所示,图3为本申请实施例的一种时隙分配示意图;终端设备发送待分配时隙的目标业务信号的队列,该队列中包括多个待分配时隙的目标业务信号及其对应的目标时隙数量。例如,图3中队列中可以包括第一目标业务信号到第五目标业务信号,分别对应的目标时隙数量:10,7,4,2,1。利用目标业务信号的队列对应的目标时隙数量,采用本申请上述的方案,可以确定目标标识,通过时隙序列中的序列元素能对业务传输信道中的剩余时隙中的每个时隙进行标识,在每个时隙上查找与所述目标标识相同的标识,将该标识对应的时隙确定为目标时隙,将目标业务信号分配到所述目标时隙中进行传输,从而完成灵活、均匀的时隙分配。
以下实施例以第一目标业务信号已按照上述实施例的方式分配完对应的时隙,从第二目标业务信号(对应的目标时隙数量Q’为7)进行时隙分配来举例,该分配过程包括如下步骤:
由于业务传输信道中时隙总数量仍为30个,因此本过程中步骤S201到步骤S2022与上述实施例的步骤S101到步骤S1022的实施方式相同,这里不做过多赘述。
步骤S2023:利用时隙序列中的序列元素对业务传输信道中的剩余时隙中的每个时隙进行标识。
因业务传输信道中时隙总数量M为30,且已有10个时隙被占用,因此剩余时隙P’为30-10=20,利用时隙序列中的前20个序列元素{5,4,5,3,5,4,5,2,5,4,5,3,5,4,5,1,5,4,5,3}为剩余时隙中的每个时隙依次进行标识,得到如下时隙标识表5。其中,时隙标识表5中黑色部分为业务传输信道中已被占用的时隙。
时隙标识表5
步骤S203:基于剩余时隙中的每个时隙上的标识,以及根据待分配的目标业务信号需要的目标时隙数量Q’,将目标业务信号分配到所述剩余时隙中的目标时隙中进行传输。(以目标时隙数量Q’为7为例),该步骤的过程具体可以通过如下步骤S2031至步骤S2033实现。
步骤S2031:根据剩余时隙的时隙数量P’,重新确定第一类型数的表示方式,利用重新确定的第一类型数的表示方式,来确定目标时隙数量Q’的第一类型数表示,所述第一类型数为用0和1两个数来表示的二进制数组,重新确定的第一类型数中的每位数码对应的位权分别为βN’,βN-1’,…β1’。
βN’,βN-1’,…β1’分别符合如下公式:



示例性的,若剩余时隙的时隙数量P’为20,则第一类型数中的每位数码对应的位权分别为:
时隙数量P’为20时,第五位数码对应的位权:
第四位数码对应的位权:
第三位数码对应的位权:
第二位数码对应的位权:
第一位数码对应的位权:
示例性的,下表6为在P’为20时,Q’从0到7对应的第一类型数表示的对照表。
表6
若目标时隙数量Q’对应的第一类型数表示为{AN’,AN-1’,…,A1’},则确定目标时隙数量Q’的第一类型数表示的过程,具体可以通过如下步骤S20311至步骤S2031N来实现。所述AN’为目标时隙数量Q’对应的第一类型数表示中的第一位,所述A1’为目标时隙数量Q’对应的第一类型数表示中的第N位。
步骤S20311:判断所述目标时隙数量Q’是否大于或等于βN’,若大于或等于,则AN’设置为1,否则AN’设置为0;
步骤S20312:判断Q’-βN’×AN’是否大于或等于βN-1’,若大于或等于,则AN-1’设置为1,否则AN-1’设置为0;
以此类推,步骤S20311N:判断Q’-βN’×AN’...-βN’×A2’是否大于或等于β1’,若大于或等于,则A1’设置为1,否则A1’设置为0。
示例性的,若剩余时隙的时隙数量P’为20,且目标时隙数量Q’为7时,则确定目标时隙数量Q’的第一类型数表示{A5’,A4’,A3’,A2’,A1’}的步骤为:
因Q’(7)小于β5’(10),所以A5’设置为0;
因(Q’(7)-β5’(10)*0)大于β4’(5),所以A4’设置为1;
因(Q’(7)-β5’(10)*0-β4’(5))小于β3’(3),所以A3’设置为0;
因(Q’(7)-β5’(10)*0-β4’(5)*1-β3’(3)*0)大于β2’(1),所以A2’设置为1;
因(Q’(7)-β5’(10)*0-β4’(8)*1-β3’(4)*0-β2’(1)*1)等于β1’(1),所以A1’为1;因此,确定目标时隙数量Q’(7)对应的第一类型数为{0,1,0,1,1}。
步骤S2032:确定所述目标时隙数量Q’对应的第一类型数中,数码位上为设定数的码位所对应的位数为所述目标标识。
示例性的,若目标时隙数量Q’(7)对应的第一类型数为{0,1,0,1,1},且所述设定数为1,按照从第一类型数的码位从右往左数的顺序,因在第一位数码位、第二位数码位和第四位数码位上的数为1,所以目标标识为1、2以及4。
步骤S2033:从剩余时隙的时隙标识上,查找与所述目标标识相同的标识,将该标识对应的时隙确定为目标时隙,将目标业务信号分配到所述目标时隙中进行传输。
示例性的,在目标时隙数量Q’为7,剩余时隙数量为20时,从剩余时隙中确定的目 标时隙参见下表7,在表7中,阴影部分对应的时隙为目标时隙,即按照第二类型数表示的时隙标识中标识为1、2和4的时隙为目标时隙,从而将第二目标业务信号在以下这7个目标时隙中进行传输。
表7
后续对待分配目标业务信号的队列中的其他目标业务信号进行时隙分配的步骤以及实施方式与上述实施例相同,这里不做赘述。
示例性的,参阅图4所示,图4为一种时隙分配配置表,将上述图3所示实施例的各个待分配目标业务信号的队列中的各个目标业务信号(第一目标业务信号(10)、第二目标业务信号(7)、第三目标业务信号(4)、第四目标业务信号(2)以及第五目标业务信号(1))进行时隙分配会得到如图4所示的时隙分配表,在图4中,C1对应的时隙为给第一目标业务信号分配的时隙,即10个;C2对应的时隙为给第二目标业务信号分配的时隙,即7个;C3对应的时隙为给第三目标业务信号分配的时隙,即4个;C4对应的时隙为给第四目标业务信号分配的时隙,即2个;C5对应的时隙为给第五目标业务信号分配的时隙,即1个。从图4所示示例中可以看出,第一目标业务信号、第二目标业务信号、第三目标业务信号、第四目标业务信号以及第五目标业务信号可以均匀且灵活的占用传输时隙,互相间隔较好,可以较好避免各个目标业务信号之间的干扰。
利用本申请提供的时隙分配方法,能实现对车联网通信中的时隙进行更加灵活且均匀的分配,其中首先利用业务传输信道中的时隙总数量确定第二类型数的表示方式,从而确定时隙序列,以实现对于剩余时隙中的每个时隙的均匀标识,在进行均匀标识后,根据剩余时隙的时隙数量,确定第一类型数的表示方式,并利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示,从而在目标时隙数量对应的第一类型数表示上找到目标业务信号对应的目标标识,并从剩余时隙中的每个时隙上的标识上,查找与所述目标标识相同的标识,将该标识对应的时隙确定为目标时隙,将目标业务信号分配到所述目标时隙中进行传输,如此,因时隙总数量不变,所以时隙序列可以被重复使用,并且,每 次进行时隙分配时,仅需根据剩余时隙的时隙数量以及所述目标时隙数量确定目标标识,即可将所述目标业务信号分配到所述目标时隙中进行传输,因此分配更加灵活且占用资源更均匀。
基于同样的构思,本申请实施例提供一种通信装置,参阅图5所示,图5为本申请提供的一种通信装置的结构示意图;通信装置500包括收发单元501以及处理单元502:
收发单元501用于接收终端设备发送的时隙分配请求,所述时隙分配请求包括所述终端设备传输目标业务信号需要的目标时隙数量的指示信息。
处理单元502用于根据所述指示信息,确定传输目标业务信号需要的目标时隙数量;根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示;确定所述目标时隙数量的第一类型数表示中,数码位上为设定数的码位所对应的位数为目标标识;在所述业务传输信道中的剩余时隙分别对应的时隙标识中,查找与所述目标标识相同的时隙标识;其中,所述业务传输信道中的各个时隙分别对应的时隙标识是基于时隙序列包括的各个序列元素表示的,所述时隙序列中的各个序列元素是根据业务传输信道包括的总时隙数量确定的第二类型数表示方式、以及第二类型数包括的总位数确定出的;所述第一类型数的表示方式和所述第二类型数的表示方式均为分别使用0和1两个数来表示的二进制数组;收发单元501将所述目标业务信号分配到与查找到的所述时隙标识对应的时隙上进行传输。
其中,收发单元501也可以称为收发模块、收发器、收发机、或收发装置等。处理单元502也可以称为处理器,处理单板,处理模块、或处理装置等。可选的,收发单元501用于执行上述方法中的发送操作和接收操作,可以将收发单元501中用于实现接收功能的器件视为接收单元,将收发单元501中用于实现发送功能的器件视为发送单元,即收发单元501包括接收单元和发送单元。
此外需要说明的是,前述收发单元501和/或处理单元502可通过虚拟模块实现,例如收发单元501可以通过软件功能或虚拟装置实现,处理单元502可通过软件功能单元或虚拟装置实现。或者,收发单元501和/或处理单元502也可以通过实体装置实现,例如若该通信装置500采用芯片/芯片电路实现,所述收发单元501可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理单元502为集成的处理器或者微处理器或者集成电路。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请实施例各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
作为一种可能的实施方式,处理单元502根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式时,具体用于:
假设所述第一类型数的总位数为N,所述N符合以下公式:
2N-1≤M<2N
所述M为所述业务传输信道包括的总时隙数量;
所述第一类型数中的每位数码对应的位权分别为βN,βN-1,…β1,所述βN,βN-1,…β1分别符合如下公式:
其中,P为所述剩余时隙数量。
作为一种可能的实施方式,处理单元502利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示时,具体用于:
所述目标时隙数量Q的第一类型数表示,符合如下公式:
{AN,…A2,A1},所述Q=ANN+…A22+A11,所述A1…AN为0或1。
作为一种可能的实施方式,若利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示存在多种时,则确定所述目标时隙数量的第一类型数表示时,还用于:
判断所述目标时隙数量Q是否大于或等于βN,若大于或等于,则AN设置为1,否则AN设置为0;
判断Q-βN×AN是否大于或等于βN-1,若大于或等于,则AN-1设置为1,否则AN-1设置为0;
以此类推,判断Q-βN×AN...-βN×A2是否大于或等于β1,若大于或等于,则A1设置为1,否则A1设置为0。
作为一种可能的实施方式,处理单元502根据业务传输信道包括的总时隙数量以及第二类型数包括的总位数,确定所述时隙序列时,具体用于:
根据所述业务传输信道包括的总时隙数量M,确定第二类型数的表示方式,其中,所述第二类型数的总位数为N,所述N符合以下公式:
2N-1≤M<2N
将0到所述M分别使用如下第二类型数表示,得到M个第二类型数:
{aN,…a2,a1},M=aN*2N-1+…a2*21+a1*20
所述时隙序列中包括M个序列元素,所述时隙序列符合以下公式:
{N-Y0,N-Y1,N-Y2…N-YM-1};
其中,所述Y0...YM-1为基于所述第二类型数的表示方式,从0累加到M,对应累加时的进位位数,其中,所述Y0为从基于所述第二类型数表示的0累加到基于所述第二类型数表示的1时的进位位数,….以此类推,所述YM-1为从基于所述第二类型数表示的M-1累加到基于所述第二类型数表示的M时的进位位数。
作为一种可能的实施方式,处理单元502基于时隙序列包括的各个序列元素,表示所述业务传输信道中的各个时隙分别对应的时隙标识时,具体用于:
利用时隙序列中的序列元素对业务传输信道中的各个时隙中的每个时隙进行标识。
作为一种可能的实施方式,收发单元501还用于在所述终端设备传输目标业务信号需要的目标时隙数量大于所述业务传输信道中的剩余时隙数量时,向所述终端设备返回所述业务传输信道带宽不足的指示消息。
基于同样的构思,本申请实施例还提供一种通信设备600,通信设备600可以包括至少一个处理器610,该处理器610与存储器620耦合,可选的,存储器620可以位于该通信设备600之内,存储器620可以和处理器610集成在一起,存储器620也可以位于该通信设备600之外。例如,通信设备600还可以包括至少一个存储器620。存储器620保存实施上述任一实施例中必要计算机程序、计算机程序或指令和/或数据;处理器610可能执行存储器620中存储的计算机程序,完成上述实施例中的任一种方案。
通信设备600中还可以包括通信接口630,通信设备600可以通过通信接口630和其它设备进行信息交互。示例性的,所述通信接口630可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。当该通信设备600为芯片类的装置或者电路时,该通信设备600中的通信接口630也可以是输入输出电路,可以输入信息(或称,接收信息)和输出信息(或称,发送信息),处理器为集成的处理器或者微处理器或者集成电路或则逻辑电路,处理器可以根据输入信息确定输出信息。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器610可能和存储器620、通信接口630协同操作。本申请实施例中不限定上述处理器610、存储器620以及通信接口630之间的具体连接介质。
可选的,参见图6,所述处理器610、所述存储器620以及所述通信接口630之间通过总线640相互连接。所述总线640可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器610可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器620可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
基于同样的构思,本申请实施例还提供一种计算机可读存储介质,包括计算机程序指令,当计算机程序指令被计算机执行时,以使得上述图2至图4所示的实施例中的任一种方案被实现。
基于同样的构思,本申请实施例还提供一种计算机程序,所述计算机程序被计算机执行时,以使得上述图2至图4所示的实施例中的任一种方案被实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生 一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种时隙分配方法,其特征在于,所述方法包括:
    接收终端设备发送的时隙分配请求,所述时隙分配请求包括所述终端设备传输目标业务信号需要的目标时隙数量的指示信息;
    根据所述指示信息,确定传输目标业务信号需要的目标时隙数量;
    根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示;
    确定所述目标时隙数量的第一类型数表示中,数码位上为设定数的码位所对应的位数为目标标识;
    在所述业务传输信道中的剩余时隙分别对应的时隙标识中,查找与所述目标标识相同的时隙标识;其中,所述业务传输信道中的各个时隙分别对应的时隙标识是基于时隙序列包括的各个序列元素表示的,所述时隙序列中的各个序列元素是根据业务传输信道包括的总时隙数量确定的第二类型数表示方式、以及第二类型数包括的总位数确定出的;所述第一类型数的表示方式和所述第二类型数的表示方式均为分别使用0和1两个数来表示的二进制数组;
    将所述目标业务信号分配到与查找到的所述时隙标识对应的时隙上进行传输。
  2. 根据权利要求1所述的方法,其特征在于,根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,包括:
    假设所述第一类型数的总位数为N,所述N符合以下公式:
    2N-1≤M<2N
    所述M为所述业务传输信道包括的总时隙数量;
    所述第一类型数中的每位数码对应的位权分别为βN,βN-1,…β1,所述βN,βN-1,…β1分别符合如下公式:
    其中,P为所述剩余时隙数量。
  3. 根据权利要求2所述的方法,其特征在于,利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示,包括:
    所述目标时隙数量Q的第一类型数表示,符合如下公式:
    {AN,…A2,A1},所述Q=ANN+…A22+A11,所述A1…AN为0或1。
  4. 根据权利要求3所述的方法,其特征在于,若利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示存在多种时,则确定所述目标时隙数量的第一类型数表示,还包括:
    判断所述目标时隙数量Q是否大于或等于βN,若大于或等于,则AN设置为1,否则AN设置为0;
    判断Q-βN×AN是否大于或等于βN-1,若大于或等于,则AN-1设置为1,否则AN-1设置为0;
    以此类推,判断Q-βN×AN...-βN×A2是否大于或等于β1,若大于或等于,则A1设置为1,否则A1设置为0。
  5. 根据权利要求1-4任一所述的方法,其特征在于,根据业务传输信道包括的总时隙数量以及第二类型数包括的总位数,确定所述时隙序列,包括:
    根据所述业务传输信道包括的总时隙数量M,确定第二类型数的表示方式,其中,所述第二类型数的总位数为N,所述N符合以下公式:
    2N-1≤M<2N
    将0到所述M分别使用如下第二类型数表示,得到M个第二类型数:
    {aN,…a2,a1},M=aN*2N-1+…a2*21+a1*20
    所述时隙序列中包括M个序列元素,所述时隙序列符合以下公式:
    {N-Y0,N-Y1,N-Y2…N-YM-1};
    其中,所述Y0...YM-1为基于所述第二类型数的表示方式,从0累加到M,对应累加时的进位位数,其中,所述Y0为从基于所述第二类型数表示的0累加到基于所述第二类型数表示的1时的进位位数,….以此类推,所述YM-1为从基于所述第二类型数表示的M-1累加到基于所述第二类型数表示的M时的进位位数。
  6. 根据权利要求1-5任一所述的方法,其特征在于,基于时隙序列包括的各个序列元素,表示所述业务传输信道中的各个时隙分别对应的时隙标识,包括:
    利用所述时隙序列中的序列元素对业务传输信道中的各个时隙中的每个时隙进行标识。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    在确定传输目标业务信号需要的目标时隙数量大于所述业务传输信道中的剩余时隙数量时,向所述终端设备返回所述业务传输信道带宽不足的指示消息。
  8. 一种通信装置,其特征在于,所述装置包括收发单元以及处理单元:
    所述收发单元,用于接收终端设备发送的时隙分配请求,所述时隙分配请求包括所述终端设备传输目标业务信号需要的目标时隙数量的指示信息;
    所述处理单元,用于:
    根据所述指示信息,确定传输目标业务信号需要的目标时隙数量;根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式,利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示;
    确定所述目标时隙数量的第一类型数表示中,数码位上为设定数的码位所对应的位数为目标标识;
    在所述业务传输信道中的剩余时隙分别对应的时隙标识中,查找与所述目标标识相同的时隙标识;其中,所述业务传输信道中的各个时隙分别对应的时隙标识是基于时隙序列包括的各个序列元素表示的,所述时隙序列中的各个序列元素是根据业务传输信道包括的总时隙数量确定的第二类型数表示方式、以及第二类型数包括的总位数确定出的;所述第一类型数的表示方式和所述第二类型数的表示方式均为分别使用0和1两个数来表示的二进制数组;
    通过所述收发单元将所述目标业务信号分配到与查找到的所述时隙标识对应的时隙上进行传输。
  9. 根据权利要求8所述的通信装置,其特征在于,所述处理单元根据业务传输信道中的剩余时隙数量,确定第一类型数的表示方式时,具体用于:
    假设所述第一类型数的总位数为N,所述N符合以下公式:
    2N-1≤M<2N
    所述M为所述业务传输信道包括的总时隙数量;
    所述第一类型数中的每位数码对应的位权分别为βN,βN-1,…β1,所述βN,βN-1,…β1分别符合如下公式:
    其中,P为所述剩余时隙数量。
  10. 根据权利要求9所述的通信装置,其特征在于,所述处理单元利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示时,具体用于:
    所述目标时隙数量Q的第一类型数表示,符合如下公式:
    {AN,…A2,A1},所述Q=ANN+…A22+A11,所述A1…AN为0或1。
  11. 根据权利要求10所述的通信装置,其特征在于,若利用所述第一类型数的表示方式,确定所述目标时隙数量的第一类型数表示存在多种时,则所述处理单元确定所述目标时隙数量的第一类型数表示时,还用于:
    判断所述目标时隙数量Q是否大于或等于βN,若大于或等于,则AN设置为1,否则AN设置为0;
    判断Q-βN×AN是否大于或等于βN-1,若大于或等于,则AN-1设置为1,否则AN-1设置为0;
    以此类推,判断Q-βN×AN...-βN×A2是否大于或等于β1,若大于或等于,则A1设置为1,否则A1设置为0。
  12. 根据权利要求8-11任一所述的通信装置,其特征在于,所述处理单元根据业务传输信道包括的总时隙数量以及第二类型数包括的总位数,确定所述时隙序列时,具体用于:
    根据所述业务传输信道包括的总时隙数量M,确定第二类型数的表示方式,其中,所述第二类型数的总位数为N,所述N符合以下公式:
    2N-1≤M<2N
    将0到所述M分别使用如下第二类型数表示,得到M个第二类型数:
    {aN,…a2,a1},M=aN*2N-1+…a2*21+a1*20
    所述时隙序列中包括M个序列元素,所述时隙序列符合以下公式:
    {N-Y0,N-Y1,N-Y2…N-YM-1};
    其中,所述Y0...YM-1为基于所述第二类型数的表示方式,从0累加到M,对应累加时的进位位数,其中,所述Y0为从基于所述第二类型数表示的0累加到基于所述第二类型数表示的1时的进位位数,….以此类推,所述YM-1为从基于所述第二类型数表示的M-1累加到基于所述第二类型数表示的M时的进位位数。
  13. 根据权利要求8-12任一所述的通信装置,其特征在于,所述处理单元基于时隙序列包括的各个序列元素,表示所述业务传输信道中的各个时隙分别对应的时隙标识时,具体用于:
    利用所述时隙序列中的序列元素对业务传输信道中的各个时隙中的每个时隙进行标识。
  14. 根据权利要求8-13任一所述的通信装置,其特征在于,所述收发单元,还用于在所述终端设备传输目标业务信号需要的目标时隙数量大于所述业务传输信道中的剩余时 隙数量时,向所述终端设备返回所述业务传输信道带宽不足的指示消息。
  15. 一种通信设备,其特征在于,包括处理器,所述处理器用于与存储器耦合,用于执行所述存储器中存储的计算机程序,以使得如权利要求1至7任一所述的方法被实现。
  16. 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当所述计算机程序指令被计算机执行时,如权利要求1至7任一所述的方法被实现。
PCT/CN2023/094976 2022-05-30 2023-05-18 一种时隙分配方法及通信装置 WO2023231792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210598644.X 2022-05-30
CN202210598644.XA CN117221849A (zh) 2022-05-30 2022-05-30 一种时隙分配方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023231792A1 true WO2023231792A1 (zh) 2023-12-07

Family

ID=89026939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094976 WO2023231792A1 (zh) 2022-05-30 2023-05-18 一种时隙分配方法及通信装置

Country Status (2)

Country Link
CN (1) CN117221849A (zh)
WO (1) WO2023231792A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688294A (zh) * 2015-06-02 2017-05-17 华为技术有限公司 资源分配方法及装置
US20170181146A1 (en) * 2015-12-17 2017-06-22 Honeywell International Inc. Cognitive allocation of tdma resources in the presence of a radio altimeter
WO2018130148A1 (zh) * 2017-01-12 2018-07-19 维沃移动通信有限公司 一种资源调度指示方法、网络设备及终端设备
CN114222370A (zh) * 2021-12-15 2022-03-22 成都航天通信设备有限责任公司 组网通信时隙分配方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688294A (zh) * 2015-06-02 2017-05-17 华为技术有限公司 资源分配方法及装置
US20170181146A1 (en) * 2015-12-17 2017-06-22 Honeywell International Inc. Cognitive allocation of tdma resources in the presence of a radio altimeter
WO2018130148A1 (zh) * 2017-01-12 2018-07-19 维沃移动通信有限公司 一种资源调度指示方法、网络设备及终端设备
CN114222370A (zh) * 2021-12-15 2022-03-22 成都航天通信设备有限责任公司 组网通信时隙分配方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "Mode 1 resource allocation schemes on sidelink", 3GPP TSG RAN WG1 #98BIS, R1-1910278, 5 October 2019 (2019-10-05), XP051789083 *

Also Published As

Publication number Publication date
CN117221849A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN111651253B (zh) 算力资源的调度方法及装置
CN114780458B (zh) 数据处理的方法和存储系统
CN107436855B (zh) 用于具有可重配置多端口的pcie存储系统的qos认知io管理
WO2023137763A1 (zh) 一种资源指示方法、资源确定方法及其装置
CN111066275B (zh) 数据传输方法、网络设备及终端设备
KR20130107618A (ko) Usb 디바이스 장치의 데이터를 클라이언트 단말을 통해 서버로 전송하는 데이터 처리 방법 및 클라이언트 단말
JP7507876B2 (ja) リソース決定方法及び機器
CN112311693A (zh) 业务数据的传输方法和装置
CN111026697A (zh) 核间通信方法、系统、电子器件以及电子设备
WO2019214524A1 (zh) 一种进行资源分配的方法和装置
CN111158905A (zh) 调整资源的方法和装置
WO2019109902A1 (zh) 队列调度方法及装置、通信设备、存储介质
WO2023231792A1 (zh) 一种时隙分配方法及通信装置
CN116225346B (zh) 一种内存数据访问方法及电子设备
CN116340246B (zh) 用于直接内存访问读取操作的数据预读方法及介质
CN111679918B (zh) 一种消息传输方法及装置
CN115412502A (zh) 一种网络端口扩展和报文快速均衡处理方法
CN115576661A (zh) 数据处理系统、方法和控制器
CN113541992A (zh) 一种数据传输的方法和装置
WO2023125430A1 (zh) 流量管理装置、报文缓存方法、芯片及网络设备
CN118368293B (zh) 一种数据传输方法、计算机设备及介质
WO2017185907A1 (zh) 一种共享物理资源的方法和装置
WO2023207378A1 (zh) 一种时隙分配方法及相关设备
WO2023246339A1 (zh) 资源调度方法及使用方法、网络设备、终端设备及介质
CN111225379B (zh) 基带资源处理的方法及基带管理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814977

Country of ref document: EP

Kind code of ref document: A1