WO2023223488A1 - Internal combustion engine control device and internal combustion engine control method - Google Patents

Internal combustion engine control device and internal combustion engine control method Download PDF

Info

Publication number
WO2023223488A1
WO2023223488A1 PCT/JP2022/020789 JP2022020789W WO2023223488A1 WO 2023223488 A1 WO2023223488 A1 WO 2023223488A1 JP 2022020789 W JP2022020789 W JP 2022020789W WO 2023223488 A1 WO2023223488 A1 WO 2023223488A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
signal
temperature
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2022/020789
Other languages
French (fr)
Japanese (ja)
Inventor
英一郎 大畠
健夫 高橋
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/020789 priority Critical patent/WO2023223488A1/en
Priority to JP2024521473A priority patent/JPWO2023223488A1/ja
Publication of WO2023223488A1 publication Critical patent/WO2023223488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Definitions

  • the present invention relates to an internal combustion engine control device and an internal combustion engine control method.
  • hydrocarbons hydrocarbons
  • the first is that due to the low in-cylinder temperature, unvaporized fuel is discharged as hydrocarbons without being oxidized (unburned).
  • the second problem is that due to the low in-cylinder temperature, less fuel is vaporized by the ignition timing, and the air-fuel ratio of the in-cylinder mixture increases (fuel becomes diluted). In this case, the required ignition energy increases, resulting in more ignition failures and extinguishing (misfires), which increases the amount of hydrocarbons.
  • control is performed to increase the fuel injection amount to be greater than the fuel injection amount after warm-up.
  • the amount of hydrocarbons generated during cold engine startup increases further.
  • an exhaust catalyst is provided in the exhaust pipe.
  • Exhaust catalysts use expensive precious metals such as platinum.
  • the manufacturing cost of the exhaust catalyst will increase significantly. Therefore, attempts have been made to reduce the amount of hydrocarbons generated by controlling the ignition device to reduce ignition failure and flame extinction in response to the increase in required ignition energy during cold engine starts.
  • Patent Document 1 discloses a control device for an internal combustion engine in which additional ignition is performed immediately after the normal ignition timing (main ignition) near compression top dead center in one combustion cycle of the internal combustion engine. has been done. According to this technique, ignition failure and flame extinction are reduced compared to the case where discharge is performed only once per combustion cycle with normal ignition timing. In addition, the amount of hydrocarbons generated during cold engine startup is reduced.
  • the ignition coil may be damaged by heat damage.
  • ignition failure occurs. Therefore, in the control device for an internal combustion engine described in Patent Document 1, ignition failure (extinction) is likely to occur under the multiple ignition permission condition, making it difficult to suppress the generation of hydrocarbons.
  • an object of the present invention to provide an internal combustion engine control device and an internal combustion engine control method that suppress the generation of hydrocarbons during cold starting of an internal combustion engine.
  • an internal combustion engine control device of the present invention controls an internal combustion engine that includes an ignition device that has a spark plug and an ignition coil that causes the spark plug to generate discharge.
  • the internal combustion engine control device includes a control section that outputs an output signal to the ignition device.
  • the output signals are a multiple ignition signal for preheating the spark plug, a frequency different from the multiple ignition signal, a main ignition signal for igniting the air-fuel mixture by discharging the spark plug, and a main ignition signal for precharging the ignition coil. and a pre-charging signal for performing.
  • the present invention it is possible to increase the charging energy to the ignition coil as much as possible to ensure appropriate implementation of ignition control during cold engine startup, and to suppress the generation of hydrocarbons from the internal combustion engine.
  • FIG. 1 is an overall configuration diagram showing an example of the basic configuration of an internal combustion engine according to an embodiment.
  • FIG. 2 is a partially enlarged view illustrating a spark plug according to an embodiment.
  • FIG. 1 is a functional block diagram illustrating a functional configuration of an internal combustion engine control device according to an embodiment.
  • FIG. 3 is a diagram illustrating the relationship between electrode temperature, minimum ignition energy, and air-fuel ratio.
  • FIG. 2 is a circuit diagram showing an example of an electric circuit including an ignition coil. This is an example of a discharge waveform of multiple ignitions. It is a figure explaining the relationship between the number of misfires and the amount of hydrocarbon emissions.
  • FIG. 3 is a diagram showing the relationship between the number of misfires and the environmental temperature.
  • FIG. 3 is a diagram showing the relationship between hydrocarbons and environmental temperature.
  • FIG. 3 is a diagram showing transitions when multiple ignition and main ignition are executed.
  • FIG. 2 is a conceptual diagram showing the relationship between the amount of heat generated and ignitability with respect to the frequency of an ignition signal.
  • FIG. 2 is a conceptual diagram showing the relationship between the transition time and the temperature of the ignition coil in the case of multiple ignition and the case of no multiple ignition. 2 is a timing chart showing changes in temperature and HC concentration of a conventional ignition coil.
  • FIG. 1 is a circuit diagram showing an example of an electric circuit including an ignition coil according to an embodiment.
  • 7 is a flowchart showing multiple ignition switching processing according to one embodiment. It is a flow chart which shows fuel injection amount switching processing concerning one embodiment.
  • 5 is a timing chart showing multiple ignition switching processing according to one embodiment. It is a flow chart which shows an example of fuel injection amount switching processing concerning one embodiment.
  • 2 is a timing chart showing the relationship between the operating state of an internal combustion engine installed in a general automobile and a multiple discharge permission period. It is a correlation graph showing the relationship between equivalence ratio and minimum ignition energy.
  • FIG. 1 is an overall configuration diagram showing an example of the basic configuration of an internal combustion engine according to an embodiment of the present invention.
  • the internal combustion engine 100 shown in FIG. 1 may have a single cylinder or multiple cylinders, in the embodiment, the internal combustion engine 100 having four cylinders will be described as an example.
  • air (intake) sucked in from the outside flows through an air cleaner 110, an intake pipe 111, and an intake manifold 112. Air that has passed through the intake manifold 112 flows into each cylinder 150 when the intake valve 151 opens. The amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113. The amount of air adjusted by the throttle valve 113 is measured by a flow sensor 114.
  • the throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle. Opening information of the throttle valve 113 detected by the throttle opening sensor 113a is output to a control device (Electronic Control Unit: ECU) 1.
  • ECU Electronic Control Unit
  • an electronic throttle valve driven by an electric motor is used as the throttle valve 113.
  • the throttle valve according to the present invention may be of any other type as long as it can appropriately adjust the flow rate of air.
  • the temperature of the air flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
  • crank angle sensor 121 is provided on the radially outer side of the ring gear 120 attached to the crankshaft 123.
  • Crank angle sensor 121 detects the rotation angle of crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 degrees and every combustion cycle.
  • a water temperature sensor 122 is provided in the water jacket (not shown) of the cylinder head. Water temperature sensor 122 detects the temperature of the cooling water of internal combustion engine 100 .
  • the vehicle is provided with an accelerator position sensor 126 that detects the amount of displacement (depression amount) of the accelerator pedal 125.
  • the accelerator position sensor 126 detects the driver's requested torque.
  • the driver's requested torque detected by the accelerator position sensor 126 is output to the internal combustion engine control device 1, which will be described later.
  • Internal combustion engine control device 1 controls throttle valve 113 based on this requested torque.
  • the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131.
  • the fuel sucked and pressurized by the fuel pump 131 is regulated to a predetermined pressure by a pressure regulator 132 provided in a fuel pipe 133.
  • the fuel adjusted to a predetermined pressure is injected into each cylinder 150 from a fuel injection device (injector) 134.
  • Excess fuel after the pressure is regulated by the pressure regulator 132 is returned to the fuel tank 130 via a return pipe (not shown).
  • Control of the fuel injection device 134 is performed based on a fuel injection pulse (control signal) from a fuel injection control section 82 (see FIG. 3) of the internal combustion engine control device 1, which will be described later.
  • a cylinder pressure sensor 140 (also referred to as a combustion pressure sensor) 140 is provided in the cylinder head (not shown) of the internal combustion engine 100.
  • the cylinder pressure sensor 140 is provided inside the cylinder 150 and detects the pressure (combustion pressure) inside the cylinder 150.
  • a piezoelectric pressure sensor or a gauge pressure sensor is applied as the cylinder pressure sensor 140. Thereby, the cylinder pressure inside the cylinder 150 can be detected over a wide temperature range.
  • An exhaust valve 152 and an exhaust manifold 160 are attached to each cylinder 150.
  • exhaust valve 152 opens, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160.
  • the exhaust manifold 160 discharges the gas (exhaust gas) after combustion to the outside of the cylinder 150.
  • a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. The three-way catalyst 161 purifies exhaust gas. Exhaust gas purified by the three-way catalyst 161 is discharged into the atmosphere.
  • An upstream air-fuel ratio sensor 162 is provided upstream of the three-way catalyst 161.
  • the upstream air-fuel ratio sensor 162 continuously (linearly) detects the air-fuel ratio of exhaust gas discharged from each cylinder 150.
  • the upstream air-fuel ratio sensor 162 of this embodiment is a linear air-fuel ratio sensor.
  • a downstream air-fuel ratio sensor 163 is provided downstream of the three-way catalyst 161.
  • the downstream air-fuel ratio sensor 163 outputs a detection signal that changes binary depending on whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio.
  • the downstream air-fuel ratio sensor 163 of this embodiment is an O2 sensor.
  • a spark plug 200 is provided above each cylinder 150.
  • the spark plug 200 generates a spark by electric discharge (ignition), and the spark ignites the air-fuel mixture in the cylinder 150. This causes an explosion within the cylinder 150, and the piston 170 is pushed down. By pushing down the piston 170, the crankshaft 123 rotates.
  • An ignition coil 300 that generates electrical energy (voltage) to be supplied to the ignition plug 200 is connected to the ignition plug 200 .
  • Control device 1 detects the operating state of internal combustion engine 100 based on output signals from these various sensors. The control device 1 controls the amount of air sucked into the cylinder 150, the amount of fuel injected from the fuel injection device 134, the ignition timing of the spark plug 200, and the like.
  • FIG. 2 is a partially enlarged view illustrating the spark plug 200.
  • the spark plug 200 has a center electrode 210 and an outer electrode 220.
  • the center electrode 210 is supported by a plug base (not shown) via an insulator 230. Thereby, the center electrode 210 is insulated.
  • the outer electrode 220 is grounded.
  • a predetermined voltage for example, 20,000V to 40,000V
  • a discharge occurs between the center electrode 210 and the outer electrode 220. Then, the spark generated by the discharge ignites the air-fuel mixture (gas component) in the cylinder 150.
  • the voltage that causes dielectric breakdown of the gas components in the cylinder 150 and generates discharge depends on the state of the gas (air mixture in the cylinder) existing between the center electrode 210 and the outer electrode 220, and the state of the gas component in the cylinder 150. It varies depending on the cylinder pressure. The voltage at which this discharge occurs is called the dielectric breakdown voltage.
  • Discharge control (ignition control) of the spark plug 200 is performed by an ignition control section 83 (see FIG. 3) of the control device 1, which will be described later.
  • the control device 1 includes an analog input section 10, a digital input section 20, an A/D (Analog/Digital) conversion section 30, a RAM (Random Access Memory) 40, and an MPU (Micro- It has a ROM (Read Only Memory) 60, an I/O (Input/Output) port 70, and an output circuit 80.
  • the analog input section 10 receives signals from various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air-fuel ratio sensor 162, a downstream air-fuel ratio sensor 163, a cylinder pressure sensor 140, and a water temperature sensor 122. An analog output signal is input.
  • sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air-fuel ratio sensor 162, a downstream air-fuel ratio sensor 163, a cylinder pressure sensor 140, and a water temperature sensor 122.
  • An analog output signal is input.
  • An A/D conversion section 30 is connected to the analog input section 10. Analog output signals from various sensors input to the analog input section 10 are converted into digital signals by the A/D conversion section 30. The digital signal converted by the A/D converter 30 is then stored in the RAM 40.
  • a digital output signal from the crank angle sensor 121 is input to the digital input section 20.
  • An I/O port 70 is connected to the digital input section 20.
  • the digital output signal input to the digital input section 20 is stored in the RAM 40 via the I/O port 70.
  • Each output signal stored in the RAM 40 is processed by the MPU 50.
  • the MPU 50 executes a control program (not shown) stored in the ROM 60 to process the output signal stored in the RAM 40 according to the control program.
  • the MPU 50 calculates a control value that defines the operating amount of each actuator (for example, the throttle valve 113, the fuel pump 131, the spark plug 200, etc.) that drives the internal combustion engine 100 according to the control program, and temporarily stores the control value in the RAM 40. remember exactly.
  • the control value that defines the amount of operation of the actuator stored in the RAM 40 is output to the output circuit 80 via the I/O port 70.
  • the output circuit 80 is provided with functions such as an overall control section 81, a fuel injection control section 82, and an ignition control section 83 (see FIG. 3).
  • the overall control unit 81 performs overall control of the internal combustion engine based on output signals from various sensors (for example, the cylinder pressure sensor 140).
  • the fuel injection control unit 82 controls driving of a plunger rod (not shown) of the fuel injection device 134.
  • the ignition control section 83 controls the voltage applied to the spark plug 200.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1. As shown in FIG. 3,
  • Each function of the control device 1 is realized as various functions in the output circuit 80 by the MPU 50 executing a control program stored in the ROM 60.
  • Various functions in the output circuit 80 include, for example, control of the fuel injection device 134 by the fuel injection control section 82 and control of the ignition coil 300 by the ignition control section 83.
  • the output circuit 80 of the control device 1 includes an overall control section 81, a fuel injection control section 82, and an ignition control section 83.
  • the overall control unit 81 receives requested torque (acceleration information S1) from the accelerator position sensor 126 and cylinder pressure information S2 from the cylinder pressure sensor 140, which are stored in the RAM 40.
  • the overall control unit 81 controls the overall control of the fuel injection control unit 82 and the ignition control unit 83 based on the required torque (acceleration information S1) from the accelerator position sensor 126 and the cylinder pressure information S2 from the cylinder pressure sensor 140. control.
  • the fuel injection control unit 82 includes an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and an angle information generation unit 85 that measures the crank angle of the crankshaft 123. It is connected to a cylinder determining section 84 that determines whether the engine is in a compression stroke (compression, intake, or compression stroke), and a rotation speed information generating section 86 that measures the engine speed.
  • the fuel injection control section 82 receives cylinder discrimination information S3 from the cylinder discrimination section 84, crank angle information S4 from the angle information generation section 85, and engine rotation speed information S5 from the rotation speed information generation section 86.
  • the fuel injection control unit 82 also includes an intake air amount measuring unit 87 that measures the amount of air taken into the cylinder 150, a load information generating unit 88 that measures the engine load, and a temperature of engine cooling water. It is connected to the water temperature measuring section 89.
  • the fuel injection control section 82 receives intake air amount information S6 from the intake air amount measurement section 87, engine load information S7 from the load information generation section 88, and cooling water temperature information S8 from the water temperature measurement section 89.
  • the fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection device 134 based on the received information. The fuel injection control unit 82 then transmits the fuel injection pulse S9 generated based on the calculated fuel injection amount and injection time to the fuel injection device 134.
  • the ignition control section 83 is connected to the overall control section 81, a cylinder discrimination section 84, an angle information generation section 85, a rotation speed information generation section 86, a load information generation section 88, and a water temperature measurement section 89. We accept information from these sources.
  • the ignition control unit 83 determines the amount of current to be applied to the primary coil 310 (see FIG. 5) of the ignition coil 300, the energization start time (energization angle), and the amount of current to be applied to the primary coil 310 of the ignition coil 300 (see FIG. 5). Calculate the time to cut off the applied current (ignition time).
  • the ignition control unit 83 outputs an ignition signal SA to the primary coil 310 of the ignition coil 300 based on the calculated energization amount, energization start time, and ignition time, thereby controlling the discharge by the ignition plug 200 ( ignition control).
  • FIG. 4 is a diagram illustrating the relationship between electrode temperature, minimum ignition energy, and air-fuel ratio.
  • FIG. 4 shows the air-fuel ratio values corresponding to the minimum ignition energy values.
  • the vertical direction indicates a voltage scale value corresponding to the minimum ignition energy of the air-fuel mixture
  • the left-right direction in FIG. 4 indicates an air-fuel ratio scale value corresponding to the air-fuel ratio of the air-fuel mixture.
  • the air-fuel ratio P1 shown in FIG. 4 is an air-fuel ratio value corresponding to a predetermined value of the minimum ignition energy that can ignite the air-fuel mixture when the electrode temperature of the spark plug is low (for example, -7 degC).
  • the air-fuel ratio P2 is an air-fuel ratio value corresponding to a predetermined value of the minimum ignition energy that can ignite the air-fuel mixture when the electrode temperature of the spark plug is high (for example, 25 degC).
  • a value equivalent to the minimum ignition energy corresponding to the air-fuel ratio P2 when the spark plug electrode temperature is high is obtained when the spark plug electrode temperature is low.
  • the discharge (ignition) from the spark plug 200 cannot exceed the minimum ignition energy unless the air-fuel ratio is set to the air-fuel ratio P1, which is smaller (fuel richer) than the air-fuel ratio P2. Therefore, conventionally, as a setting with a safety margin that does not cause problems such as misfires in the internal combustion engine 100, a rich air-fuel ratio (P1), which assumes that the temperature of the electrode of the spark plug 200 is always low, is used for fuel injection. It was set in the control unit 82. As a result, in the internal combustion engine 100, as the ratio of fuel in the air-fuel mixture increased, more hydrocarbons (HC) were generated during combustion.
  • the higher the temperature of the electrode of the spark plug 200 at the time of cold start (see the thick arrow in FIG. 4), the lower the minimum ignition energy for igniting the air-fuel mixture. Therefore, even if the air-fuel ratio is increased (the fuel is made thinner), the discharge (ignition) from the spark plug exceeds the minimum ignition energy, making it possible to ignite the air-fuel mixture. As a result, generation of hydrocarbons (HC) in internal combustion engine 100 can be reduced. Therefore, in the internal combustion engine 100, as will be described later, the temperature of the electrode of the spark plug 200 during cold start is raised before discharge (ignition). This makes it possible to increase the air-fuel ratio during cold engine startup and suppress the generation of hydrocarbons (HC).
  • FIG. 5 is a diagram illustrating an electric circuit including an ignition coil.
  • the electric circuit 500 shown in FIG. 5 includes an ignition coil 300.
  • the ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns, and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
  • One end of the primary coil 310 is connected to a DC power source 330.
  • a predetermined voltage for example, 12V
  • the other end of the primary coil 310 is connected to a drain (D) terminal of an igniter (energization control circuit) 340 and grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the gate (G) terminal of the igniter 340 is connected to the ignition control section 83 via the temperature switch section 350.
  • the temperature switch section 350 is installed for the purpose of preventing damage to the ignition coil 300 due to overheating.
  • the temperature switch section 350 includes a temperature detection section 351.
  • Temperature detection section 351 detects the temperature of ignition coil 300 via igniter 340.
  • the temperature switch section 350 cuts off the ignition signal SA output from the ignition control section 83 to the igniter 340 when the temperature detected by the temperature detection section 351 becomes equal to or higher than a predetermined threshold value A (first temperature).
  • the ignition signal SA output from the ignition control unit 83 when the temperature detected by the temperature detection unit 351 is less than the first temperature is input to the gate (G) terminal of the igniter 340.
  • the ignition signal SA When the ignition signal SA is input to the gate (G) terminal of the igniter 340, the drain (D) terminal and the source (S) terminal of the igniter 340 become energized, and the drain (D) terminal and the source (S) terminal become energized. A current flows through. As a result, the ignition signal SA is output from the ignition control section 83 to the primary coil 310 of the ignition coil 300 via the igniter 340. As a result, current flows through the primary coil 310 and electric power (electrical energy) is accumulated.
  • the high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIG. 2) of the spark plug 200. This generates a potential difference between the center electrode 210 and the outer electrode 220 of the spark plug 200.
  • Vm dielectric breakdown voltage of the surrounding gas
  • the gas component undergoes dielectric breakdown and the center electrode 210 and the outer electrode 220 A discharge occurs between the As a result, the fuel (air mixture) is ignited (ignition).
  • An electric circuit 500 having a spark plug 200 and an ignition coil 300 corresponds to an ignition device according to the present invention.
  • the discharge path generated between the center electrode 210 and the outer electrode 220 reaches a high temperature of several thousand degrees Celsius. Since the discharge path is in contact with the surrounding gas and the electrodes 210 and 220, the exothermic energy of the discharge is distributed to the surrounding gas and the electrodes 210 and 220. The exothermic energy distributed to the surrounding gas heats (preheats) the surrounding gas and the electrodes 210 and 220 to promote ignition.
  • FIG. 6 is an example of a discharge waveform of multiple ignitions.
  • multiple ignitions are performed by adding multiple discharges by repeating ON and OFF of the ignition signal.
  • the temperature of the electrodes 210 and 220 of the spark plug 200 can be increased before the discharge (ignition) that preheats the electrodes of the spark plug 200.
  • Multiple ignition by this additional discharge can be performed at a timing that does not overlap with the ignition timing of the main ignition. That is, multiple ignition by additional discharge can be performed at least during the period from the ignition (start of discharge) of the main ignition until the start of fuel injection (the period from the expansion stroke to the intake stroke in the embodiment of FIG. 6).
  • FIG. 7 is a diagram illustrating the relationship between the number of misfires counted in 15 seconds and the amount of hydrocarbon discharged (integrated mass) in the same 15 seconds.
  • FIG. 8 is a diagram showing the relationship between the number of misfires counted during a period of 60 seconds from the start of the internal combustion engine and the multiple ignition period (heating period) due to additional discharge performed within the period.
  • FIG. 9 is a diagram showing the relationship between the cumulative mass of hydrocarbons discharged from the start of the internal combustion engine until 60 seconds have elapsed and the heating period.
  • misfire occurs when a flame kernel generated by ignition is unable to grow and is extinguished. In order to grow the flame kernel and suppress the generation of hydrocarbons (HC), it is necessary to suppress misfires.
  • HC hydrocarbons
  • the ignition device performs multiple ignitions to preheat the electrodes 210 and 220 of the spark plug 200, the temperature difference between the discharge path and the flame kernel and the electrodes 210 and 220 will be reduced. As a result, the amount of heat transmitted from the discharge path or flame kernel to the electrodes 210, 220 can be suppressed.
  • the heating period of the electrodes 210 and 220 there is an inversely proportional relationship between the heating period of the electrodes 210 and 220 and the number of misfires, and the longer the heating period, the more the number of misfires can be reduced.
  • the temperature of the electrodes 210 and 220 changes depending on the environmental temperature. Therefore, the higher the environmental temperature, the higher the temperature of the electrodes 210 and 220 of the spark plug 200. Therefore, as shown in FIG. 8, the number of misfires when the environmental temperature is 80 degC is smaller than the number of misfires when the environmental temperature is 20 degC.
  • the broken line in FIG. 9 the longer the heating period and the higher the environmental temperature, the more the amount of hydrocarbon emissions can be reduced.
  • FIG. 10 is a diagram showing the transition when performing multiple ignition and main ignition.
  • FIG. 11 is a conceptual diagram showing the relationship between the calorific value and ignitability with respect to the frequency of the ignition signal.
  • FIG. 12 is a conceptual diagram showing the relationship between the transition time and the temperature of the ignition coil in the case of multiple ignition and the case of no multiple ignition.
  • FIG. 13 is a timing chart showing changes in temperature and HC concentration of a conventional ignition coil.
  • the purpose of the multiple ignition performed in this embodiment is to preheat the electrode of the spark plug 200 before main ignition. Therefore, multiple ignitions are performed before the main ignition. Moreover, multiple ignition can also be called preheating ignition. As shown in FIG. 10, the ignition performance of the main ignition can be improved by increasing the ignition energy per discharge. On the other hand, preheating by multiple ignitions can improve the amount of electrode heating by increasing the discharge duration per unit time.
  • the main ignition is set so that the ignition energy per discharge is equal to or higher than the above-mentioned dielectric breakdown voltage Vm. Thereby, a discharge is generated between the center electrode 210 and the outer electrode 220, and the air-fuel mixture is ignited (flame kernel formation).
  • the multiple ignition (preheat ignition) performed in this embodiment electric discharge is generated between the center electrode 210 and the outer electrode 220 before the main ignition, and the electrodes 210 and 220 of the spark plug 200 can be preheated. It is a purpose. Therefore, multiple ignition (preheat ignition) is performed at a time point before main ignition in time series.
  • ignition In multiple ignition (preheat ignition), ignition (discharge) is repeated multiple times to increase the power conversion amount of the ignition coil 300 and increase the discharge duration per unit time. Thereby, the amount of heating (preheating) of the electrodes 210 and 220 can be increased. Therefore, in multiple ignition (preheat ignition), it is necessary to set the switching frequency of the ignition signal SA higher than that in main ignition. That is, the ignition control unit 83 (see FIG. 3) outputs a low-frequency main ignition signal for performing main ignition and a high-frequency multiple ignition signal for performing multiple ignition (preheat ignition). Thus, as shown in FIG. 11, when the frequency of the ignition signal SA is increased, the amount of heat generated by the electrodes 210 and 220 of the spark plug 200 increases. As a result, the ignitability of the spark plug 200 is improved.
  • FIG. 14 is a circuit diagram showing an example of an electric circuit including an ignition coil according to the present invention.
  • an electric circuit 501 includes an ignition coil 300.
  • the ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns, and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
  • One end of the primary coil 310 is connected to a DC power source 330.
  • a predetermined voltage for example, 12V
  • the other end of the primary coil 310 is connected to a drain (D) terminal of an igniter (energization control circuit) 340 and grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the gate (G) terminal of the igniter 340 is connected to the ignition control section 83 via the temperature switch section 360 or the temperature switch section 360 and the filter section 370.
  • Filter section 370 is, for example, a low-pass filter. Filter section 370 passes the main ignition signal having a low frequency. The filter section 370 then blocks the multiple ignition signal, which is a high frequency signal.
  • the temperature switch section 360 is installed for the purpose of adjusting the temperature of the ignition coil 300.
  • the temperature switch section 360 includes a temperature detection section 351.
  • the temperature switch unit 360 switches the connection destination according to the coil temperature range (low temperature range, medium temperature range, high temperature range) detected by the temperature detection unit 351.
  • the medium temperature range is a region above the threshold A (first temperature) described above and below the predetermined threshold B (second temperature).
  • the temperature switch section 360 connects the ignition control section 83 and the igniter 340 via the filter section 370.
  • the high frequency multiple ignition signal output from the ignition control section 83 is blocked by the filter section 370.
  • the low-frequency main ignition signal output from the ignition control section 83 passes through the filter section 370 and is transmitted to the igniter 340.
  • the high temperature range is a range above the threshold B (second temperature) described above and below the upper limit of the design rated temperature of the ignition coil 300.
  • the temperature switch section 360 disconnects the ignition control section 83 and the igniter 340. As a result, the multiple ignition signal and the main ignition signal output from the ignition control section 83 are not transmitted to the igniter 340.
  • the low temperature region is a region below the threshold value A (first temperature) described above.
  • the temperature switch section 360 directly connects the ignition control section 83 and the igniter 340. Thereby, the multiple ignition signal and the main ignition signal output from the ignition control section 83 are transmitted to the igniter 340.
  • the coil temperature in the low temperature range, the coil temperature is lower than in the medium temperature range or the high temperature range, and the temperature difference (temperature margin) from the upper limit of the design rated temperature of the ignition coil 300 is large. Therefore, in addition to main ignition for igniting the air-fuel mixture, multiple ignition (preheating ignition) in which the ignition coil 300 generates a large amount of heat can be performed. Moreover, in the present embodiment, the temperature detection unit 351 accurately detects the coil temperature and performs multiple ignition (preheat ignition) until the coil temperature reaches a medium temperature range equal to or higher than the threshold value B (second temperature).
  • the temperature margin with respect to the upper limit of the rated temperature can be minimized, and the period for performing multiple ignitions can be extended, rather than performing multiple ignitions (preheating ignition) in the estimated low temperature range without providing the temperature detection unit 351. It can be set as long as possible.
  • the ignition signal SA main ignition signal only, or main ignition signal and multiple signals
  • the main ignition signal is input to the gate (G) terminal of the igniter 340 via the temperature switch section 360.
  • the ignition signal SA is input to the gate (G) terminal of the igniter 340, the drain (D) terminal and the source (S) terminal of the igniter 340 become energized, and the drain (D) terminal and the source (S) terminal become energized.
  • the ignition signal SA is output from the ignition control section 83 to the primary coil 310 of the ignition coil 300 via the igniter 340.
  • electric power electric energy
  • the high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIG. 2) of the spark plug 200. This generates a potential difference between the center electrode 210 and the outer electrode 220 of the spark plug 200.
  • Vm dielectric breakdown voltage of the surrounding gas
  • the gas component undergoes dielectric breakdown and the center electrode 210 and the outer electrode 220 A discharge occurs between the As a result, the fuel (air mixture) is ignited (ignition).
  • An electric circuit 500 having a spark plug 200 and an ignition coil 300 corresponds to an ignition device according to the present invention.
  • the ignition control section 83 has an energization control circuit 831 and an output monitor circuit 832.
  • the energization control circuit 831 controls the output of the ignition signal SA.
  • the output monitor circuit 832 has a return detection function that detects the ignition signal SA output from the energization control circuit 831 as a return signal, and transmits the detection result of the return signal to the energization control circuit 831.
  • the energization control circuit 831 transmits the output state of the ignition signal SA and the detection result of the return signal corresponding to the ignition signal SA to the overall control unit 81 (see FIG. 3).
  • the overall control unit 81 compares the output state of the ignition signal SA and the detection result of the return signal, and if the states of the ignition signal SA and the return signal are different, the filter unit 370 outputs a multiple ignition signal or an overheat detection signal to be described later. is determined to have been blocked. Furthermore, when the ignition signal SA and the return signal are the same, the overall control section 81 determines that the multiple ignition signal and the overheat detection signal are not blocked in the filter section 370.
  • the amount of heat generated by the ignition coil 300 is larger than that in normal ignition, so the actual temperature of the ignition coil 300 reaches the intermediate temperature range in a relatively short time. Then, when the actual temperature of the ignition coil 300 reaches the intermediate temperature range, the temperature switch section 360 cuts off the transmission of the multiple ignition signal to the igniter 340.
  • the filter section 370 determines whether the main ignition signal or the multiple ignition signal is blocked. Furthermore, based on the determination result, the actual temperature of the ignition coil 300 reaches the medium temperature range and only the multiple ignition signal is cut off, or the actual temperature of the ignition coil 300 returns to the low temperature range and the main ignition is started. The point in time when the signal and the multiple ignition signal are transmitted to the igniter 340 again is detected. Then, the coil temperature of the temperature detection unit 351 is calibrated by assuming that the coil temperature at the time of detection is the threshold value A (first temperature).
  • the ignition coil 300 is cooled due to the temperature difference with its surroundings (see FIG. 13).
  • the temperature detected by the temperature detection section 351 returns to the low temperature range.
  • the temperature switch section 360 selects a path in which the ignition signal SA is transmitted to the igniter 340 without passing through the filter section 370. Thereby, the main ignition signal and the multiple ignition signal are transmitted to the igniter 340 again. Therefore, multiple ignitions can be repeated while suppressing misfires, and generation of hydrocarbons can be suppressed.
  • T the fuel injection amount after warming up the internal combustion engine, which is not at the time of cold start.
  • T the fuel injection amount after warming up the internal combustion engine, which is not at the time of cold start.
  • the amount of fuel vaporized by the main ignition timing decreases due to the low in-cylinder temperature, so the amount of fuel involved in combustion after ignition decreases.
  • the fuel injection amount is increased from the injection amount T after warm-up at the time of cold engine startup. Assuming that this amount of increase is a, the fuel injection amount at the time of cold engine start is T+a.
  • the amount of fuel that is vaporized by the main ignition timing and participates in post-ignition combustion is substantially increased. If the contribution of this multiple ignition (preheating ignition) is b1, the fuel injection amount when multiple ignition is executed is T+a ⁇ b1.
  • the temperature of the electrodes 210 and 220 of the spark plug 200 may be inferred based on the coil temperature detected by the above-mentioned temperature detection unit 351 or the operating state of the internal combustion engine 100 such as water temperature or intake air temperature. be.
  • the temperature of the electrodes 210, 220 at the time when the coil temperature reaches the intermediate temperature range and multiple ignition is interrupted is set based on the above-mentioned threshold value A (first temperature). Then, it is inferred that the temperatures of the electrodes 210 and 220 are sequentially lowered based on the elapse of time after the multiple ignition was interrupted or the elapse of the combustion cycle (such as the number of times main ignition was performed).
  • FIG. 15 is a flowchart illustrating an example of multiple ignition switching processing.
  • the temperature detection unit 351 acquires the coil temperature of the ignition coil 300. Then, the temperature switch section 360 determines whether the coil temperature detected by the temperature detection section 351 is equal to or higher than a predetermined threshold value B (second temperature) (S110).
  • step S110 when it is determined that the coil temperature is equal to or higher than the predetermined threshold B (YES in S110), the temperature switch section 360 selects a path (circuit) that completely cuts off the ignition signal SA ( S120). As a result, the ignition signal SA output from the ignition control section 83 is not transmitted to the igniter 340, and ignition (ignition) by the spark plug 200 is stopped.
  • the ignition device electrical circuit 501 moves the process to step S110.
  • step S110 when it is determined in step S110 that the coil temperature is not equal to or higher than the predetermined threshold B (if NO in S110), the temperature switch unit 360 sets the coil temperature to a predetermined threshold A (first temperature). It is determined whether or not it is the above (S130).
  • step S130 when it is determined that the coil temperature is equal to or higher than the predetermined threshold value A (YES in S130), the temperature switch section 360 selects a path for the ignition signal SA to pass through the filter section 370 ( S140). As a result, multiple ignition signals in the ignition signal SA are blocked by the filter section 370, and only the main ignition signal is transmitted to the igniter 340. As a result, in the spark plug 200, multiple ignition for the purpose of preheating is not performed, and only main ignition is performed. After the process in step S140, the ignition device moves the process to step S110.
  • step S130 when it is determined in step S130 that the coil temperature is not equal to or higher than the predetermined threshold A (if NO in S130), the temperature switch section 360 switches the ignition signal SA to the igniter 340 without passing through the filter section 370. A route to be transmitted to is selected (S150). Thereby, the multiple ignition signal and the main ignition signal in the ignition signal SA are transmitted to the igniter 340. As a result, multiple ignition for the purpose of preheating and main ignition are performed in the ignition plug 200. After the process in step S150, the ignition device moves the process to step S110.
  • FIG. 16 is a flowchart illustrating an example of fuel injection amount switching processing.
  • the overall control unit 81 acquires the time that has passed since the start of the internal combustion engine. Then, the overall control unit 81 determines whether the time that has passed from the start to the present is within a predetermined value (S210).
  • the predetermined value corresponds to the period until the warm-up described above is completed.
  • step S210 When it is determined in step S210 that the time that has passed from the start to the present is not within a predetermined value (NO in S210), the overall control unit 81 ends the fuel injection amount switching process (S220). .
  • step S210 when it is determined in step S210 that the time that has passed from the start to the present is within a predetermined value (YES in S210), the overall control unit 81 sends an ignition signal including a multiple ignition signal. SA is output (S230). Next, the overall control unit 81 determines whether the ignition signal SA and the return signal obtained from the output monitor circuit 832 are different (S240).
  • step S240 when it is determined that the ignition signal SA and the return signal are different (YES in S240), the overall control unit 81 sets the fuel injection amount to the first fuel injection amount (S250).
  • the overall control unit 81 determines that the filter unit 370 has blocked the multiple ignition signal when the ignition signal SA and the return signal are different.
  • the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature).
  • the overall control unit 81 moves the process to step S210.
  • step S240 when it is determined in step S240 that the ignition signal SA and the return signal match (if NO in S240), the overall control unit 81 sets the fuel injection amount to the second fuel injection amount (S260). The overall control unit 81 determines that the multiple ignition signal has been transmitted to the igniter 340 when the ignition signal SA and the return signal match. After the process in step S260, the overall control unit 81 moves the process to step S210.
  • the first fuel injection amount is the fuel injection amount when the multiple ignition signal is cut off during cold start.
  • the first fuel injection amount corresponds to T+a described above.
  • the second fuel injection amount is the fuel injection amount when the multiple ignition signal is transmitted to the igniter 340 during cold engine startup.
  • FIG. 17 is a timing chart showing multiple ignition switching processing.
  • a method is needed to efficiently raise the temperature of the electrode without unnecessarily increasing the ignition energy due to multiple ignitions.
  • the duration of discharge per unit time can be extended, and in turn, the duration of multiple ignitions can be extended.
  • the time for the electrodes 210, 220 to cool down between the discharges of the main ignition can be shortened as much as possible (see the first stage of FIG. 17). As a result, the heating efficiency due to multiple ignitions can be improved, and the temperature of the electrode after the discharge period can be efficiently raised.
  • a typical passive ignition coil has the ability to store a certain amount of charge. Therefore, the amount of charge increases until a certain charging time. Then, as the amount of charge increases, the output voltage and output current during discharging increase, and the electrodes 210 and 220 are heated strongly. Therefore, by outputting a low frequency precharge pulse (precharge signal) with sufficient precharging immediately before outputting a high frequency multiple discharge pulse (multiple ignition signal) for performing multiple ignitions, the above-mentioned As shown in FIG. 17, the temperature of the electrodes 210 and 220 can be further increased while making the interval between multiple ignitions as high as possible (see the second row of FIG. 17). That is, the precharge pulse is an energizing waveform that has a lower frequency than the multiple discharge pulse and has an output period such that the capacitive discharge of the ignition coil is reliably activated.
  • the electric circuit 501 including the ignition coil 300 described above cuts only the high frequency component of the ignition signal SA when the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). Therefore, the electric circuit 501 continues the low-frequency precharge signal even when the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). As a result, high-frequency multiple ignition cannot be performed (the multiple ignition signal is cut), and the heating efficiency of the electrodes 210 and 220 decreases.
  • the control device (ECU) 1 has a return detection function (output monitor circuit 832) that performs self-diagnosis of the ignition signal SA output to the ignition coil 300.
  • This return detection function allows the control device 1 to detect the cutting of high frequency components performed by the electric circuit 501 in the high temperature range or medium temperature range of the ignition coil 300.
  • the control device 1 recognizes that the temperature state of the ignition coil 300 is equal to or higher than the threshold value A (first temperature)
  • the control device 1 recognizes that the temperature state of the ignition coil 300 is equal to or higher than the threshold value A (first temperature).
  • the output of the discharge pulse is cut off from the ignition signal SA. That is, the control device 1 outputs only the main ignition signal when the coil temperature is equal to or higher than the threshold value A (first temperature). As a result, the amount of heat generated by the ignition coil 300 can be suppressed.
  • control device 1 cannot detect the cutting of high frequency components by the electric circuit 501 in a state where only the main ignition signal is output. Therefore, even if the temperature state of the ignition coil 300, which has once increased, converges to below the threshold value A (first temperature), the control device 1 may not be able to resume outputting the multiple ignition signal. Therefore, the control device 1 outputs an overheat detection pulse (overheat detection signal) after the coil temperature becomes equal to or higher than the threshold value A (first temperature) and transitions to a state where only the main ignition signal is output (see FIG. 17). (See third row).
  • overheat detection pulse overheat detection signal
  • the overheat detection pulse is at least one high frequency pulse (single pulse). This can reduce wasteful charging and wasteful signal output operations. Moreover, the frequency of the overheat detection pulse is within a frequency band that exceeds the rated frequency at which the filter section 370 of the electric circuit 501 blocks the ignition signal SA, and the return detection function (output monitor circuit 832) of the control device 1 allows the ignition signal to be ignited.
  • the return signal of signal SA is set within a detectable range. As a result, the overheat detection pulse is cut by the filter section 370 in the medium temperature range, and is not cut by the filter section 370 in the low temperature range. Therefore, the control device 1 can correctly recognize the temperature state of the ignition coil 300 by using the return detection function to detect whether or not the overheating detection pulse is cut by the filter section 370 (the 4 stages shown in FIG. 17). (see item).
  • the control device 1 When the control device 1 recognizes that the coil temperature is less than the threshold value A (first temperature), it resumes outputting the ignition signal SA including the precharge signal and the multiple ignition signal (see the fifth stage in FIG. 17). . After restarting the output of the precharge signal and the multiple ignition signal, the output of the overheat detection pulse is stopped (see the fifth stage in FIG. 17). Thereby, the amount of heat generated by the ignition coil 300 can be suppressed while reducing the calculation load on the control device 1 and the load on the ignition control section 83.
  • the threshold value A first temperature
  • the phase of the overheating detection pulse is set at a timing that is later than the previous main ignition signal but before the next precharge signal and that allows the time required for switching the ignition signal of the control device 1 to be secured.
  • the time required to switch the ignition signal is the time required to output the overheat detection pulse of the control device 1, detect the return signal of the overheat detection pulse, and determine whether or not precharging is possible. is the sum of Thereby, the control device 1 can switch the output of the precharge pulse and the multiple discharge pulse within a cycle.
  • the phase of the overheating detection pulse is preferably set as late as possible within the time period necessary for switching the ignition signal described above.
  • the latest (recent) temperature status of the ignition coil 300 according to the previous main ignition signal is reflected in the return signal of the overheat detection pulse, reducing the delay in switching the ignition signal and increasing the output of the precharge pulse and multiple discharge pulse. It can be carried out without waste.
  • the overheat detection pulse may be output at every predetermined cycle of the combustion cycle of the internal combustion engine. For example, if the temperature of the ignition coil 300 exceeds the threshold value B (second temperature) (high temperature range) and the main ignition signal is also cut, the precharge pulse, multiple discharge pulse, and main ignition signal control device 1 (not shown), and only an overheat detection pulse is output at regular intervals (intermittently). Thereby, it is possible to quickly detect that the temperature of the ignition coil 300 has decreased and the air-fuel mixture can be ignited again while reducing the calculation load on the control device 1 and the load on the ignition control section 83. Note that such output control of (intermittent) overheating detection pulses at regular intervals may also be performed asynchronously to the combustion cycle when the rotation of the internal combustion engine is stopped due to idle stop control, etc., which will be described later. It is possible.
  • B second temperature
  • main ignition signal control device 1 not shown
  • FIG. 18 is a flowchart illustrating an example of fuel injection amount switching processing.
  • the overall control unit 81 (see FIG. 3) of the control device 1 acquires the time that has passed from the start of the internal combustion engine to the present. Then, the overall control unit 81 determines whether the time elapsed from the start to the present time is within a predetermined value (S310).
  • the predetermined value corresponds to the period until the warm-up described above is completed.
  • step S310 when it is determined that the time that has passed from startup to the present is not within a predetermined value (NO in S310), the overall control unit 81 ends the fuel injection amount switching process (S320). .
  • step S310 when it is determined in step S310 that the time that has passed from the start to the present is within a predetermined value (YES in S310), the overall control unit 81 transmits the precharge signal and the multiple ignition signal.
  • the ignition signal SA including the following is output (S330).
  • the overall control unit 81 determines whether or not the multiple ignition signal portion of the ignition signal SA is different from the portion corresponding to the multiple ignition signal of the return signal obtained from the output monitor circuit 832. (S340). If it is determined in step S340 that the ignition signal SA and the return signal are different, the overall control section 81 determines that the filter section 370 has blocked the multiple ignition signal. As described above, when the filter section 370 blocks the multiple ignition signal, the coil temperature of the ignition coil 300 is at least equal to or higher than the threshold value A (first temperature).
  • step S340 when it is determined that the ignition signal SA and the return signal are different (YES in S340), the overall control unit 81 sets the fuel injection amount to the first fuel injection amount (S350).
  • the overall control unit 81 turns off the precharge signal and the multiple ignition signal, and turns on the overheat detection pulse (overheat detection signal) (step S360). That is, the overall control unit 81 stops outputting the precharge signal and the multiple ignition signal, and outputs the overheat detection signal.
  • the overall control unit 81 stops outputting the precharge signal and the multiple ignition signal it is possible to reduce the amount of heat generated by the ignition coil 300 and lower the coil temperature.
  • the overall control unit 81 determines whether the overheat detection signal portion of the ignition signal SA is different from the portion of the return signal that corresponds to the overheat detection signal (S370). In step S370, when it is determined that the ignition signal SA and the return signal are different, the overall control section 81 determines that the filter section 370 has cut off the overheat detection pulse. When the filter section 370 cuts off the overheat detection pulse, the coil temperature of the ignition coil 300 is still equal to or higher than the threshold value A (first temperature).
  • step S370 when it is determined that the ignition signal SA and the return signal are different (YES in S370), the overall control unit 81 repeats step S370. That is, the overall control unit 81 repeats step S370 until the coil temperature becomes less than the threshold value A (first temperature).
  • step S370 when it is determined in step S370 that the ignition signal SA and the return signal match (if NO in S370), the overall control unit 81 determines that the coil temperature is less than the threshold value A (first temperature). Then, the overall control unit 81 stops outputting the overheat detection pulse and outputs a precharge signal and a multiple ignition signal (S380).
  • step S380 After the processing in step S380, or when it is determined in step S340 that the ignition signal SA and the return signal match (if NO in S340), the overall control unit 81 sets the fuel injection amount to the second fuel injection amount ( S390). After the process in step S390, the overall control unit 81 moves the process to step S310.
  • FIG. 19 is a timing chart showing the relationship between the operating state of an engine (internal combustion engine) installed in a typical automobile and the multiple ignition permission period.
  • Some modern engine (internal combustion engine) controls are equipped with idle stop control.
  • idle stop control the engine also stops when the vehicle stops, so the number of engine starts increases.
  • the lower the temperature of the electrode immediately before multiple ignition is performed the larger the temperature difference between the electrodes when multiple ignition is performed and when multiple ignition is not performed. Therefore, the lower the temperature of the electrode immediately before performing multiple ignition, the more heat-retaining effect of the flame core can be expected when multiple ignition is performed. Therefore, it is desirable to perform multiple ignitions when the electrode is at a low temperature when starting or restarting the engine.
  • the temperatures of the ignition coil 300 and the electrodes 210, 220 are sufficiently low. Therefore, it is also possible to start multiple ignition before the engine starts rotating. In this case, since there is no air flow within the cylinder, a high temperature-raising effect can be expected due to multiple ignitions.
  • FIG. 20 is a correlation graph showing the relationship between equivalence ratio and minimum ignition energy.
  • the horizontal axis of the graph shown in FIG. 20 is the equivalence ratio of the air-fuel mixture.
  • Equivalence ratio indicates the mass ratio of air and fuel. When the equivalence ratio is large, the fuel becomes rich, and when the equivalence ratio is small, the fuel becomes lean. When the equivalence ratio is 1, it becomes the stoichiometric air-fuel ratio.
  • the vertical axis of the graph shown in FIG. 20 is the minimum ignition energy in the main ignition.
  • Minimum ignition energy is a typical indicator of ignition performance. A common unit of minimum ignition energy is the joule.
  • Minimum ignition energy is the minimum discharge energy required to combust a mixture. If the minimum ignition energy is large, the ignition performance will be low, and if the minimum ignition energy is small, the ignition performance will be high.
  • the main determining factors for ignition performance are the equivalence ratio of the air-fuel mixture and multiple ignitions.
  • the equivalence ratio deviates from the stoichiometric mixture ratio (air-fuel ratio)
  • the minimum ignition energy increases and the ignition performance decreases.
  • the vaporization of the fuel is delayed, so the equivalence ratio of the mixture becomes smaller than the stoichiometric mixture ratio. Therefore, in the case of a cold start, the temperature of the engine (internal combustion engine) and the environment decreases, and the minimum ignition energy increases.
  • the ignition performance improves because the electrode absorbs heat from the flame kernel. Therefore, as shown by the dotted line in FIG. 20, it is possible to combust the air-fuel mixture with smaller ignition energy than when multiple ignition is not performed. In other words, if the minimum ignition energy at engine startup can be satisfied even when multiple ignitions are not performed, the improvement in ignition performance due to multiple ignitions is converted into a reduction in the equivalence ratio of the air-fuel mixture. be able to. This makes it possible to satisfy the minimum ignition energy and at the same time reduce the fuel injection amount. As a result, it is possible to improve fuel efficiency and reduce hydrocarbons.
  • the control device 1 controls an internal combustion engine including an ignition device having a spark plug 200 and an ignition coil 300 that causes the spark plug 200 to generate discharge.
  • the control device 1 includes an overall control section 81 (control section) that outputs an output signal to the ignition device.
  • the output signal is a multiple ignition signal for preheating the ignition plug 200 and a frequency different from the multiple ignition signal, a main ignition signal for igniting the air-fuel mixture by discharge of the ignition plug 200, and a main ignition signal for igniting the ignition coil 300. and a precharge signal for precharging.
  • the temperature of the electrodes 210, 220 can be increased, and the minimum ignition energy can be reduced as much as possible to improve ignition performance.
  • the ignitability of the spark plug 200 during main ignition can be improved, and generation of hydrocarbons can be suppressed.
  • the overall control unit 81 (control unit) according to the present embodiment outputs a multiple ignition signal before outputting the main ignition signal, and outputs a precharge signal before outputting the multiple ignition signal.
  • the electrodes 210, 220 and the intake air around the electrodes 210, 220 can be efficiently warmed before the air-fuel mixture is ignited by the discharge of the spark plug 200.
  • the precharge signal according to this embodiment has a lower frequency than the multiple ignition signal. Thereby, the charging energy of the ignition coil 300 can be increased as much as possible.
  • the overall control unit 81 (control unit) according to the present embodiment outputs a precharge signal when the temperature of the ignition coil 300 is less than the threshold value A (predetermined temperature). Thereby, when the temperature of the ignition coil 300 is less than the threshold value A and the ignition coil 300 is not in an overheated state, the charging energy of the ignition coil 300 can be increased.
  • the overall control unit 81 (control unit) according to the present embodiment stops outputting the precharge signal, and starts when outputting the precharge signal. also increases the amount of fuel injection.
  • the temperature of the ignition coil 300 is equal to or higher than the threshold value A and the ignition coil 300 is in an overheated state, it is possible to suppress the temperature of the ignition coil 300 from increasing.
  • the fuel injection amount it is possible to prevent the dielectric breakdown voltage from increasing even if the temperature of the ignition coil 300 decreases. As a result, misfires can be suppressed and generation of hydrocarbons can be suppressed.
  • the overall control unit 81 (control unit) according to the present embodiment reduces the fuel injection amount when outputting the precharge signal than when not outputting the precharge signal. Thereby, generation of hydrocarbons can be suppressed.
  • the output signal includes an overheat detection signal for detecting the state of the ignition coil 300.
  • the ignition device includes a temperature detection unit 351 that detects the temperature of the ignition coil 300, and cuts off a multiple ignition signal and an overheat detection signal among the output signals when the temperature of the ignition coil 300 becomes equal to or higher than a threshold value A (first temperature). It has a filter section 370.
  • the control device 1 internal combustion engine control device
  • the overall control section 81 compares the overheat detection signal and the return signal to determine whether the overheat detection signal is blocked by the filter section.
  • the overall control unit 81 can accurately determine whether the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). As a result, precharging and multiple ignitions can be performed to the maximum extent while avoiding heat damage to the ignition coil 300.
  • the overall control unit 81 (control unit) according to this embodiment outputs an overheat detection signal at a timing after outputting the main ignition signal. This allows the ignition signal to be switched within the cycle. Further, the latest status of the temperature of the ignition coil 300 is reflected in the return signal of the overheat detection pulse, so that the delay in switching the ignition signal can be shortened.
  • the overall control unit 81 (control unit) according to the present embodiment outputs an overheat detection signal for each predetermined cycle among the combustion cycles of the internal combustion engine.
  • the overheat detection pulse can be output intermittently.
  • the overall control unit 81 (control unit) according to the present embodiment outputs a precharge signal when determining that the temperature of the ignition coil 300 is less than the threshold value A (first temperature).
  • the threshold value A first temperature
  • the charging energy of the ignition coil 300 is increased to start discharging between the electrodes 210 and 220, and the discharge causes the electrode to The temperature of 210 and 220 can be increased.
  • the overall control unit 81 controls at least one of a precharge signal and a multiple ignition signal. Stop outputting. Thereby, when the temperature of the ignition coil 300 is equal to or higher than the threshold value A and the ignition coil 300 is in an overheated state, it is possible to suppress the temperature of the ignition coil 300 from increasing.
  • the overall control unit 81 (control unit) according to the present embodiment outputs an overheat detection signal before outputting the main ignition signal when performing idle stop control (the internal combustion engine is restarted within a predetermined period). do. Then, when it is determined that the temperature of the ignition coil 300 is less than the threshold value A (first temperature), a precharge signal and a multiple ignition signal are output. Thereby, when the internal combustion engine is restarted and the ignition coil 300 is not in an overheated state, the charging energy of the ignition coil 300 can be increased as much as possible. Furthermore, the temperature of the electrodes 210 and 220 of the spark plug 200 can be increased without increasing the ignition energy due to multiple ignitions. As a result, the ignitability of the spark plug 200 can be improved, and generation of hydrocarbons can be suppressed.
  • the overall control unit 81 (control unit) determines that the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature)
  • the overall control unit 81 stops outputting the precharge signal, and outputs the precharge signal.
  • Increase the fuel injection amount compared to when outputting.
  • the temperature of the ignition coil 300 is equal to or higher than the threshold value A and the ignition coil 300 is in an overheated state
  • by increasing the fuel injection amount it is possible to prevent the dielectric breakdown voltage from increasing even if the temperature of the ignition coil 300 decreases. As a result, misfires can be suppressed and generation of hydrocarbons can be suppressed.
  • the overheat detection signal according to this embodiment is a single pulse signal. This can reduce wasteful charging and wasteful signal output operations. Further, it is possible to prevent the overheat detection signal from affecting the temperature rise of the ignition coil 300. Note that the overheat detection signal according to the present invention is not limited to a single pulse, but can be set to a number of pulses within a range that does not affect the temperature rise of the ignition coil.
  • the overheating detection signal has a frequency at which the output monitor circuit 832 (return detection function) can detect the return signal and the filter section 370 can cut it off. Thereby, by detecting that the overheat detection signal is not blocked by the filter section 370, it is possible to detect that the coil temperature is less than the threshold value A (first temperature). Further, even if the overheat detection signal is input to the igniter 340, it is possible to prevent sparks from flying to the electrodes 210, 220. As a result, the overheat detection signal can be prevented from affecting the temperature rise of the ignition coil 300.
  • the internal combustion engine control method is a method for controlling an internal combustion engine including an ignition device having a spark plug 200 and an ignition coil 300 that causes the spark plug 200 to generate discharge.
  • the overall control unit 81 (control unit) generates a multiple ignition signal for preheating the ignition plug 200 and a multiple ignition signal that have different frequencies, and generates a mixture by discharging the ignition plug 200.
  • a main ignition signal for igniting the ignition coil 300 and a precharge signal for precharging the ignition coil 300 are output to the ignition device.
  • the charging energy of the ignition coil 300 can be increased as much as possible.
  • the temperature of the electrodes 210 and 220 of the spark plug 200 can be increased without increasing the ignition energy due to multiple ignitions. As a result, the ignitability of the spark plug 200 can be improved, and generation of hydrocarbons can be suppressed.
  • Flow rate sensor 115... Intake Air temperature sensor, 120... Ring gear, 121... Crank angle sensor, 122... Water temperature sensor, 123... Crankshaft, 125... Accelerator pedal, 126... Accelerator position sensor, 130... Fuel tank, 131... Fuel pump, 132... Pressure regulator, 133... Fuel pipe, 134... Fuel injection device, 140... Cylinder pressure sensor, 150... Cylinder, 151... Intake valve, 152... Exhaust valve, 160... Exhaust manifold, 161... Three-way catalyst, 162... Upstream air-fuel ratio sensor, 163... Downstream air-fuel ratio sensor, 170... Piston, 200... Spark plug, 210... Center electrode, 220... Outer electrode, 230... Insulator, 300...
  • Ignition coil 310... Primary coil, 320... Secondary coil , 330... DC power supply, 340... Igniter, 350, 360... Temperature switch section, 351... Temperature detection section, 370... Filter section 500, 501... Electric circuit, 831... Energization control circuit, 832... Output monitor circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The purpose of the present invention is to suppress the generation of hydrocarbon from an internal combustion engine. This internal combustion engine control device controls an internal combustion engine including an ignition device having an ignition plug and an ignition coil that causes the ignition plug to generate a discharge. The internal combustion engine control device comprises a control unit that outputs an output signal to the ignition device. The output signal includes a multiple-ignition signal for preheating the ignition plug, a main ignition signal for igniting an air-fuel mixture by means of the discharge of the ignition plug, the main ignition signal having a frequency different from that of the multiple-ignition signal, and a pre-charge signal for pre-charging the ignition coil.

Description

内燃機関制御装置及び内燃機関制御方法Internal combustion engine control device and internal combustion engine control method
 本発明は、内燃機関制御装置及び内燃機関制御方法に関する。 The present invention relates to an internal combustion engine control device and an internal combustion engine control method.
 従来、内燃機関では、各部の温度が外気温と同程度となっている冷機始動時に多量の炭化水素(Hydrocarbon:HC)が発生することが知られている。冷機始動時に炭化水素が発生する要因は、主に2つある。1つ目は、筒内温度が低いことにより、未気化の燃料が酸化されない(未燃焼)まま炭化水素として排出されることである。2つ目は、筒内温度が低いことにより点火時期までに気化される燃料が減り、筒内混合気の空燃比が大きくなる(燃料が希薄化する)ことである。この場合は、要求点火エネルギーが増大して、点火不良や消炎(失火)が増えることにより、炭化水素が増える。 Conventionally, it is known that an internal combustion engine generates a large amount of hydrocarbons (HC) when the engine is started cold, when the temperature of each part is about the same as the outside air temperature. There are two main reasons why hydrocarbons are generated during cold engine startup. The first is that due to the low in-cylinder temperature, unvaporized fuel is discharged as hydrocarbons without being oxidized (unburned). The second problem is that due to the low in-cylinder temperature, less fuel is vaporized by the ignition timing, and the air-fuel ratio of the in-cylinder mixture increases (fuel becomes diluted). In this case, the required ignition energy increases, resulting in more ignition failures and extinguishing (misfires), which increases the amount of hydrocarbons.
 さらに、冷機始動時には、燃料の噴射量を暖機後の燃料噴射量よりも多くする制御が行われる。この結果、冷機始動時の炭化水素の発生量はいっそう増加する。 Furthermore, at the time of cold start, control is performed to increase the fuel injection amount to be greater than the fuel injection amount after warm-up. As a result, the amount of hydrocarbons generated during cold engine startup increases further.
 ところで、内燃機関から発生する炭化水素等を浄化するために、排気管には、排気触媒が配備されている。排気触媒には、プラチナなどの高価な貴金属が使用されている。排気性能を向上させるために、排気触媒に従来よりも多くの貴金属を使用すると、排気触媒の製造コストが大きく増加してしまう。そのため、冷機始動時の要求点火エネルギー増大に対応し、点火不良や消炎を減らすように点火装置を制御して、炭化水素の発生量を削減することが試みられている。 Incidentally, in order to purify hydrocarbons and the like generated from the internal combustion engine, an exhaust catalyst is provided in the exhaust pipe. Exhaust catalysts use expensive precious metals such as platinum. In order to improve exhaust performance, if a larger amount of precious metal than before is used in an exhaust catalyst, the manufacturing cost of the exhaust catalyst will increase significantly. Therefore, attempts have been made to reduce the amount of hydrocarbons generated by controlling the ignition device to reduce ignition failure and flame extinction in response to the increase in required ignition energy during cold engine starts.
 例えば、特許文献1には、内燃機関の一度の燃焼サイクルにおいて、圧縮上死点付近となる通常の点火タイミング(主点火)の直後に追加的な点火が実行される内燃機関の制御装置が開示されている。この技術によれば、通常の点火タイミングで一度の燃焼サイクルに一回のみ放電を実行する場合と比較して、点火不良や消炎が減る。そして、冷機始動時の炭化水素の発生量が削減される。 For example, Patent Document 1 discloses a control device for an internal combustion engine in which additional ignition is performed immediately after the normal ignition timing (main ignition) near compression top dead center in one combustion cycle of the internal combustion engine. has been done. According to this technique, ignition failure and flame extinction are reduced compared to the case where discharge is performed only once per combustion cycle with normal ignition timing. In addition, the amount of hydrocarbons generated during cold engine startup is reduced.
特開2020-165352号公報Japanese Patent Application Publication No. 2020-165352
 ところで、一つの気筒の一度の燃焼サイクル中に点火を目的として2回以上の放電を実行する場合には、点火コイルの発熱量が増大する。これにより、点火コイルが熱害を受けて損傷するおそれがある。 By the way, when discharge is performed two or more times for the purpose of ignition during one combustion cycle of one cylinder, the amount of heat generated by the ignition coil increases. As a result, the ignition coil may be damaged by heat damage.
 特許文献1に開示された内燃機関の制御装置においては、一度の燃焼サイクル中に2回以上の放電を実行するマルチ点火許可条件が成立すると、点火コイルに通電する時間の長さが短縮される。その結果、主点火の通電時間、すなわち、点火コイルへの充電エネルギーは、一度のサイクル中に一回のみ点火を実行する場合よりも低減されてしまう。 In the control device for an internal combustion engine disclosed in Patent Document 1, when a multi-ignition permission condition for performing two or more discharges during one combustion cycle is satisfied, the length of time that the ignition coil is energized is shortened. . As a result, the main ignition energization time, ie, the charging energy to the ignition coil, is reduced compared to when ignition is performed only once during one cycle.
 このように、点火コイルへの充電エネルギーが低減されると、放電時に絶縁破壊できない場合や、要求点火エネルギーへ達しない場合がある。その結果、点火不良(消炎)が生じてしまう。そのため、特許文献1に記載された内燃機関の制御装置は、マルチ点火許可条件時に点火不良(消炎)が発生し易くなり、炭化水素の発生を抑えることが困難になる。 If the charging energy to the ignition coil is reduced in this way, dielectric breakdown may not occur during discharge, or the required ignition energy may not be reached. As a result, ignition failure (extinction) occurs. Therefore, in the control device for an internal combustion engine described in Patent Document 1, ignition failure (extinction) is likely to occur under the multiple ignition permission condition, making it difficult to suppress the generation of hydrocarbons.
 本発明は、上記の問題点に鑑み、内燃機関の冷機始動時における炭化水素の発生を抑える内燃機関制御装置及び内燃機関制御方法を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide an internal combustion engine control device and an internal combustion engine control method that suppress the generation of hydrocarbons during cold starting of an internal combustion engine.
 上記課題を解決し、本目的を達成するため、本発明の内燃機関制御装置は、点火プラグと、点火プラグに放電を生じさせる点火コイルとを有する点火装置を含む内燃機関を制御する。内燃機関制御装置は、点火装置に出力信号を出力する制御部を備える。出力信号は、点火プラグを予熱するための多重点火信号と、多重点火信号とは異なる周波数であり、点火プラグの放電により混合気に点火するための主点火信号と、点火コイルに予充電を行うための予充電信号とを含む。 In order to solve the above problems and achieve the present object, an internal combustion engine control device of the present invention controls an internal combustion engine that includes an ignition device that has a spark plug and an ignition coil that causes the spark plug to generate discharge. The internal combustion engine control device includes a control section that outputs an output signal to the ignition device. The output signals are a multiple ignition signal for preheating the spark plug, a frequency different from the multiple ignition signal, a main ignition signal for igniting the air-fuel mixture by discharging the spark plug, and a main ignition signal for precharging the ignition coil. and a pre-charging signal for performing.
 本発明によれば、点火コイルへの充電エネルギーを可及的に高めて冷機始動時における点火制御の適切な実施を担保し、内燃機関からの炭化水素の発生を抑制することができる。 According to the present invention, it is possible to increase the charging energy to the ignition coil as much as possible to ensure appropriate implementation of ignition control during cold engine startup, and to suppress the generation of hydrocarbons from the internal combustion engine.
一実施形態に係る内燃機関の基本構成例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing an example of the basic configuration of an internal combustion engine according to an embodiment. 一実施形態に係る点火プラグを説明する部分拡大図である。FIG. 2 is a partially enlarged view illustrating a spark plug according to an embodiment. 一実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。FIG. 1 is a functional block diagram illustrating a functional configuration of an internal combustion engine control device according to an embodiment. 電極の温度と最小点火エネルギーと空燃比との関係を説明する図である。FIG. 3 is a diagram illustrating the relationship between electrode temperature, minimum ignition energy, and air-fuel ratio. 点火コイルを含む電気回路の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of an electric circuit including an ignition coil. 多重点火の放電波形例である。This is an example of a discharge waveform of multiple ignitions. 失火回数と炭化水素排出量の関係を説明する図である。It is a figure explaining the relationship between the number of misfires and the amount of hydrocarbon emissions. 失火回数と環境温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the number of misfires and the environmental temperature. 炭化水素と環境温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between hydrocarbons and environmental temperature. 多重点火と主点火を実行する際の遷移を示す図である。FIG. 3 is a diagram showing transitions when multiple ignition and main ignition are executed. 点火信号の周波数に対する発熱量と着火性の関係を示した概念図である。FIG. 2 is a conceptual diagram showing the relationship between the amount of heat generated and ignitability with respect to the frequency of an ignition signal. 多重点火ありの場合と多重点火無しの場合における遷移時間と点火コイルの温度の関係を示した概念図である。FIG. 2 is a conceptual diagram showing the relationship between the transition time and the temperature of the ignition coil in the case of multiple ignition and the case of no multiple ignition. 従来の点火コイルの温度とHC濃度の変化を示すタイミングチャートである。2 is a timing chart showing changes in temperature and HC concentration of a conventional ignition coil. 一実施形態に係る点火コイルを含む電気回路の一例を示す回路図である。FIG. 1 is a circuit diagram showing an example of an electric circuit including an ignition coil according to an embodiment. 一実施形態に係る多重点火切替処理を示すフローチャートである。7 is a flowchart showing multiple ignition switching processing according to one embodiment. 一実施形態に係る燃料噴射量切替処理を示すフローチャートである。It is a flow chart which shows fuel injection amount switching processing concerning one embodiment. 一実施形態に係る多重点火切替処理を示すタイミングチャートである。5 is a timing chart showing multiple ignition switching processing according to one embodiment. 一実施形態に係る燃料噴射量切替処理の例を示すフローチャートである。It is a flow chart which shows an example of fuel injection amount switching processing concerning one embodiment. 一般的な自動車へ搭載された内燃機関の動作状態と多重放電許可期間の関係を示すタイミングチャートである。2 is a timing chart showing the relationship between the operating state of an internal combustion engine installed in a general automobile and a multiple discharge permission period. 当量比と最小点火エネルギーの関係を示す相関グラフである。It is a correlation graph showing the relationship between equivalence ratio and minimum ignition energy.
<実施形態>
 以下、実施の形態例にかかる内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
<Embodiment>
An internal combustion engine control device according to an embodiment will be described below. Note that common members in each figure are given the same reference numerals.
[内燃機関システム]
 まず、一実施形態に係る内燃機関システムの構成について説明する。図1は、本発明の一実施形態に係る内燃機関の基本構成例を示す全体構成図である。
[Internal combustion engine system]
First, the configuration of an internal combustion engine system according to an embodiment will be described. FIG. 1 is an overall configuration diagram showing an example of the basic configuration of an internal combustion engine according to an embodiment of the present invention.
 図1に示す内燃機関100は、単気筒でも複数気筒を有するものでもよいが、実施形態では、4気筒を有する内燃機関100を例示して説明する。 Although the internal combustion engine 100 shown in FIG. 1 may have a single cylinder or multiple cylinders, in the embodiment, the internal combustion engine 100 having four cylinders will be described as an example.
 図1に示すように、内燃機関100では、外部から吸引された空気(吸気)は、エアクリーナ110、吸気管111、吸気マニホールド112を通流する。吸気マニホールド112を通った空気は、吸気弁151が開いたときに各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整される。スロットル弁113で調整された空気量は、流量センサ114により測定される。 As shown in FIG. 1, in the internal combustion engine 100, air (intake) sucked in from the outside flows through an air cleaner 110, an intake pipe 111, and an intake manifold 112. Air that has passed through the intake manifold 112 flows into each cylinder 150 when the intake valve 151 opens. The amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113. The amount of air adjusted by the throttle valve 113 is measured by a flow sensor 114.
 スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。スロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。 The throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle. Opening information of the throttle valve 113 detected by the throttle opening sensor 113a is output to a control device (Electronic Control Unit: ECU) 1.
 本実施形態では、スロットル弁113として、電動機で駆動される電子スロットル弁を適用する。しかし、本発明に係るスロットル弁としては、空気の流量を適切に調整できるものであれば、その他の方式によるものを適用してもよい。 In this embodiment, an electronic throttle valve driven by an electric motor is used as the throttle valve 113. However, the throttle valve according to the present invention may be of any other type as long as it can appropriately adjust the flow rate of air.
 各気筒150に流入した空気の温度は、吸気温センサ115で検出される。 The temperature of the air flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
 クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。クランク角センサ121は、クランクシャフト123の回転角度を検出する。本実施形態では、クランク角センサ121は、10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。 A crank angle sensor 121 is provided on the radially outer side of the ring gear 120 attached to the crankshaft 123. Crank angle sensor 121 detects the rotation angle of crankshaft 123. In this embodiment, the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 degrees and every combustion cycle.
 シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。水温センサ122は、内燃機関100の冷却水の温度を検出する。 A water temperature sensor 122 is provided in the water jacket (not shown) of the cylinder head. Water temperature sensor 122 detects the temperature of the cooling water of internal combustion engine 100 .
 また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor)126が設けられている。アクセルポジションセンサ126は、運転者の要求トルクを検出する。アクセルポジションセンサ126で検出された運転者の要求トルクは、後述する内燃機関制御装置1に出力される。内燃機関制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。 Additionally, the vehicle is provided with an accelerator position sensor 126 that detects the amount of displacement (depression amount) of the accelerator pedal 125. The accelerator position sensor 126 detects the driver's requested torque. The driver's requested torque detected by the accelerator position sensor 126 is output to the internal combustion engine control device 1, which will be described later. Internal combustion engine control device 1 controls throttle valve 113 based on this requested torque.
 燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧される。燃料ポンプ131によって吸引及び加圧された燃料は、燃料配管133に設けられたプレッシャレギュレータ132で所定の圧力に調整される。そして、所定の圧力に調整された燃料は、燃料噴射装置(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された後の余分な燃料は、戻り配管(図示せず)を介して燃料タンク130に戻される。 The fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131. The fuel sucked and pressurized by the fuel pump 131 is regulated to a predetermined pressure by a pressure regulator 132 provided in a fuel pipe 133. Then, the fuel adjusted to a predetermined pressure is injected into each cylinder 150 from a fuel injection device (injector) 134. Excess fuel after the pressure is regulated by the pressure regulator 132 is returned to the fuel tank 130 via a return pipe (not shown).
 燃料噴射装置134の制御は、後述する内燃機関制御装置1の燃料噴射制御部82(図3参照)の燃料噴射パルス(制御信号)に基づいて行われる。 Control of the fuel injection device 134 is performed based on a fuel injection pulse (control signal) from a fuel injection control section 82 (see FIG. 3) of the internal combustion engine control device 1, which will be described later.
 内燃機関100のシリンダヘッド(図示せず)には、筒内圧センサ(Cylinder Pressure Sensor、燃焼圧センサとも言う)140が設けられている。筒内圧センサ140は、気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。筒内圧センサ140は、例えば、圧電式又はゲージ式の圧力センサが適用されている。これにより、広い温度領域に渡って気筒150内の筒内圧を検出することができる。 A cylinder pressure sensor (also referred to as a combustion pressure sensor) 140 is provided in the cylinder head (not shown) of the internal combustion engine 100. The cylinder pressure sensor 140 is provided inside the cylinder 150 and detects the pressure (combustion pressure) inside the cylinder 150. As the cylinder pressure sensor 140, for example, a piezoelectric pressure sensor or a gauge pressure sensor is applied. Thereby, the cylinder pressure inside the cylinder 150 can be detected over a wide temperature range.
 各気筒150には、排気弁152と、排気マニホールド160が取り付けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。排気マニホールド160は、燃焼後のガス(排気ガス)を、気筒150の外側に排出する。排気マニホールド160の排気側には、三元触媒161が設けられている。三元触媒161は、排気ガスを浄化する。三元触媒161により浄化された排気ガスは、大気に排出される。 An exhaust valve 152 and an exhaust manifold 160 are attached to each cylinder 150. When the exhaust valve 152 opens, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. The exhaust manifold 160 discharges the gas (exhaust gas) after combustion to the outside of the cylinder 150. A three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. The three-way catalyst 161 purifies exhaust gas. Exhaust gas purified by the three-way catalyst 161 is discharged into the atmosphere.
 三元触媒161の上流側には、上流側空燃比センサ162が設けられている。上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的(リニア)に検出する。本実施形態の上流側空燃比センサ162は、リニア空燃比センサである。 An upstream air-fuel ratio sensor 162 is provided upstream of the three-way catalyst 161. The upstream air-fuel ratio sensor 162 continuously (linearly) detects the air-fuel ratio of exhaust gas discharged from each cylinder 150. The upstream air-fuel ratio sensor 162 of this embodiment is a linear air-fuel ratio sensor.
 また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。下流側空燃比センサ163は、理論空燃比より濃い(リッチ)と薄い(リーン)に応じた2値的に変化する検出信号を出力する。本実施形態の下流側空燃比センサ163は、O2センサである。 Further, downstream of the three-way catalyst 161, a downstream air-fuel ratio sensor 163 is provided. The downstream air-fuel ratio sensor 163 outputs a detection signal that changes binary depending on whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio. The downstream air-fuel ratio sensor 163 of this embodiment is an O2 sensor.
 各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200は、放電(点火)により火花を発生させ、その火花が、気筒150内の空気と燃料との混合気に着火する。これにより、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。 A spark plug 200 is provided above each cylinder 150. The spark plug 200 generates a spark by electric discharge (ignition), and the spark ignites the air-fuel mixture in the cylinder 150. This causes an explosion within the cylinder 150, and the piston 170 is pushed down. By pushing down the piston 170, the crankshaft 123 rotates. An ignition coil 300 that generates electrical energy (voltage) to be supplied to the ignition plug 200 is connected to the ignition plug 200 .
 前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、筒内圧センサ140等の各種センサからの出力信号は、内燃機関制御装置1(以下、「制御装置1」とする)に出力される。制御装置1は、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出する。そして、制御装置1は、気筒150内に吸引する空気量、燃料噴射装置134からの燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。 Output signals from various sensors such as the aforementioned throttle opening sensor 113a, flow rate sensor 114, crank angle sensor 121, accelerator position sensor 126, water temperature sensor 122, cylinder pressure sensor 140, etc. device 1). Control device 1 detects the operating state of internal combustion engine 100 based on output signals from these various sensors. The control device 1 controls the amount of air sucked into the cylinder 150, the amount of fuel injected from the fuel injection device 134, the ignition timing of the spark plug 200, and the like.
[点火プラグ]
 次に、点火プラグ200について、図2を参照して説明する。
 図2は、点火プラグ200を説明する部分拡大図である。
[Spark plug]
Next, the spark plug 200 will be explained with reference to FIG. 2.
FIG. 2 is a partially enlarged view illustrating the spark plug 200.
 図2に示すように、点火プラグ200は、中心電極210と、外側電極220とを有している。中心電極210は、絶縁体230を介してプラグベース(不図示)に支持されている。これにより、中心電極210は、絶縁されている。外側電極220は接地されている。 As shown in FIG. 2, the spark plug 200 has a center electrode 210 and an outer electrode 220. The center electrode 210 is supported by a plug base (not shown) via an insulator 230. Thereby, the center electrode 210 is insulated. The outer electrode 220 is grounded.
 点火コイル300(図1参照)において電圧が発生すると、中心電極210に所定の電圧(例えば20,000V~40,000V)が印加される。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。そして、放電により発生した火花が、気筒150内の空気と燃料との混合気(ガス成分)に着火する。 When a voltage is generated in the ignition coil 300 (see FIG. 1), a predetermined voltage (for example, 20,000V to 40,000V) is applied to the center electrode 210. When a predetermined voltage is applied to the center electrode 210, a discharge (ignition) occurs between the center electrode 210 and the outer electrode 220. Then, the spark generated by the discharge ignites the air-fuel mixture (gas component) in the cylinder 150.
 なお、気筒150内におけるガス成分の絶縁破壊を起こして放電(点火)が発生する電圧は、中心電極210と外側電極220との間に存在する気体(気筒内の混合気)の状態や気筒150の筒内圧に応じて変動する。この放電が発生する電圧を絶縁破壊電圧と言う。 Note that the voltage that causes dielectric breakdown of the gas components in the cylinder 150 and generates discharge (ignition) depends on the state of the gas (air mixture in the cylinder) existing between the center electrode 210 and the outer electrode 220, and the state of the gas component in the cylinder 150. It varies depending on the cylinder pressure. The voltage at which this discharge occurs is called the dielectric breakdown voltage.
 点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83(図3参照)により行われる。 Discharge control (ignition control) of the spark plug 200 is performed by an ignition control section 83 (see FIG. 3) of the control device 1, which will be described later.
[制御装置のハードウェア構成]
 次に、制御装置1のハードウェアの全体構成を説明する。
[Hardware configuration of control device]
Next, the overall hardware configuration of the control device 1 will be explained.
 図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digital)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。 As shown in FIG. 1, the control device 1 includes an analog input section 10, a digital input section 20, an A/D (Analog/Digital) conversion section 30, a RAM (Random Access Memory) 40, and an MPU (Micro- It has a ROM (Read Only Memory) 60, an I/O (Input/Output) port 70, and an output circuit 80.
 アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、筒内圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。 The analog input section 10 receives signals from various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air-fuel ratio sensor 162, a downstream air-fuel ratio sensor 163, a cylinder pressure sensor 140, and a water temperature sensor 122. An analog output signal is input.
 アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、A/D変換部30でデジタル信号に変換される。そして、A/D変換部30により変換されたデジタル信号は、RAM40に記憶される。 An A/D conversion section 30 is connected to the analog input section 10. Analog output signals from various sensors input to the analog input section 10 are converted into digital signals by the A/D conversion section 30. The digital signal converted by the A/D converter 30 is then stored in the RAM 40.
 デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。 A digital output signal from the crank angle sensor 121 is input to the digital input section 20.
 デジタル入力部20には、I/Oポート70が接続されている。デジタル入力部20に入力されたデジタル出力信号は、I/Oポート70を介してRAM40に記憶される。 An I/O port 70 is connected to the digital input section 20. The digital output signal input to the digital input section 20 is stored in the RAM 40 via the I/O port 70.
 RAM40に記憶された各出力信号は、MPU50で演算処理される。 Each output signal stored in the RAM 40 is processed by the MPU 50.
 MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、燃料ポンプ131、点火プラグ200等)の作動量を規定する制御値を算出し、その制御値をRAM40に一時的に記憶する。 The MPU 50 executes a control program (not shown) stored in the ROM 60 to process the output signal stored in the RAM 40 according to the control program. The MPU 50 calculates a control value that defines the operating amount of each actuator (for example, the throttle valve 113, the fuel pump 131, the spark plug 200, etc.) that drives the internal combustion engine 100 according to the control program, and temporarily stores the control value in the RAM 40. remember exactly.
 RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。 The control value that defines the amount of operation of the actuator stored in the RAM 40 is output to the output circuit 80 via the I/O port 70.
 出力回路80には、全体制御部81、燃料噴射制御部82、点火制御部83などの機能が設けられている(図3参照)。全体制御部81は、各種センサ(例えば、筒内圧センサ140)からの出力信号に基づいて内燃機関の全体制御を行う。燃料噴射制御部82は、燃料噴射装置134のプランジャロッド(不図示)の駆動を制御する。点火制御部83は、点火プラグ200に印加する電圧を制御する。 The output circuit 80 is provided with functions such as an overall control section 81, a fuel injection control section 82, and an ignition control section 83 (see FIG. 3). The overall control unit 81 performs overall control of the internal combustion engine based on output signals from various sensors (for example, the cylinder pressure sensor 140). The fuel injection control unit 82 controls driving of a plunger rod (not shown) of the fuel injection device 134. The ignition control section 83 controls the voltage applied to the spark plug 200.
[制御装置の機能ブロック]
 次に、制御装置1の機能構成を、図3を参照して説明する。
 図3は、制御装置1の機能構成を説明する機能ブロック図である。
[Functional block of control device]
Next, the functional configuration of the control device 1 will be explained with reference to FIG. 3.
FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1. As shown in FIG.
 制御装置1の各機能は、MPU50がROM60に記憶された制御プログラムを実行することにより、出力回路80における各種機能として実現される。出力回路80における各種機能は、例えば、燃料噴射制御部82による燃料噴射装置134の制御や、点火制御部83による点火コイル300の制御がある。 Each function of the control device 1 is realized as various functions in the output circuit 80 by the MPU 50 executing a control program stored in the ROM 60. Various functions in the output circuit 80 include, for example, control of the fuel injection device 134 by the fuel injection control section 82 and control of the ignition coil 300 by the ignition control section 83.
 図3に示すように、制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。 As shown in FIG. 3, the output circuit 80 of the control device 1 includes an overall control section 81, a fuel injection control section 82, and an ignition control section 83.
[全体制御部]
 全体制御部81は、RAM40に記憶されたアクセルポジションセンサ126からの要求トルク(加速情報S1)と、筒内圧センサ140からの筒内圧情報S2とを受け付ける。
[Overall control section]
The overall control unit 81 receives requested torque (acceleration information S1) from the accelerator position sensor 126 and cylinder pressure information S2 from the cylinder pressure sensor 140, which are stored in the RAM 40.
 全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速情報S1)と、筒内圧センサ140からの筒内圧情報S2とに基づいて、燃料噴射制御部82と、点火制御部83の全体的な制御を行う。 The overall control unit 81 controls the overall control of the fuel injection control unit 82 and the ignition control unit 83 based on the required torque (acceleration information S1) from the accelerator position sensor 126 and the cylinder pressure information S2 from the cylinder pressure sensor 140. control.
[燃料噴射制御部]
 燃料噴射制御部82は、クランクシャフト123のクランク角を計測する角度情報生成部85と、計測された現在のクランク角が内燃機関の各気筒150の行程(例えば、図6に示すような膨張、圧縮、吸気または圧縮行程)のいずれに該当するかを判別する気筒判別部84と、エンジン回転数を計測する回転数情報生成部86と、に接続されている。燃料噴射制御部82は、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
[Fuel injection control section]
The fuel injection control unit 82 includes an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and an angle information generation unit 85 that measures the crank angle of the crankshaft 123. It is connected to a cylinder determining section 84 that determines whether the engine is in a compression stroke (compression, intake, or compression stroke), and a rotation speed information generating section 86 that measures the engine speed. The fuel injection control section 82 receives cylinder discrimination information S3 from the cylinder discrimination section 84, crank angle information S4 from the angle information generation section 85, and engine rotation speed information S5 from the rotation speed information generation section 86.
 また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されている。燃料噴射制御部82は、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。 The fuel injection control unit 82 also includes an intake air amount measuring unit 87 that measures the amount of air taken into the cylinder 150, a load information generating unit 88 that measures the engine load, and a temperature of engine cooling water. It is connected to the water temperature measuring section 89. The fuel injection control section 82 receives intake air amount information S6 from the intake air amount measurement section 87, engine load information S7 from the load information generation section 88, and cooling water temperature information S8 from the water temperature measurement section 89.
 燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射装置134から噴射される燃料の噴射量と噴射時間を算出する。そして、燃料噴射制御部82は、算出した燃料の噴射量と噴射時間とに基づいて生成した燃料噴射パルスS9を燃料噴射装置134に送信する。 The fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection device 134 based on the received information. The fuel injection control unit 82 then transmits the fuel injection pulse S9 generated based on the calculated fuel injection amount and injection time to the fuel injection device 134.
[点火制御部]
 点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
[Ignition control section]
The ignition control section 83 is connected to the overall control section 81, a cylinder discrimination section 84, an angle information generation section 85, a rotation speed information generation section 86, a load information generation section 88, and a water temperature measurement section 89. We accept information from these sources.
 点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル310(図5参照)に通電する電流量と、通電開始時間(通電角)と、1次側コイル310に通電した電流を遮断する時間(点火時間)を算出する。 Based on the received information, the ignition control unit 83 determines the amount of current to be applied to the primary coil 310 (see FIG. 5) of the ignition coil 300, the energization start time (energization angle), and the amount of current to be applied to the primary coil 310 of the ignition coil 300 (see FIG. 5). Calculate the time to cut off the applied current (ignition time).
 点火制御部83は、算出した通電量と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイル310に点火信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。 The ignition control unit 83 outputs an ignition signal SA to the primary coil 310 of the ignition coil 300 based on the calculated energization amount, energization start time, and ignition time, thereby controlling the discharge by the ignition plug 200 ( ignition control).
[電極の温度と最小点火エネルギーと空燃比]
 次に、点火プラグ200の電極の温度と最小点火エネルギーと空燃比との関係について、図4を参照して説明する。
 図4は、電極の温度と最小点火エネルギーと空燃比との関係を説明する図である。
[Electrode temperature, minimum ignition energy, and air-fuel ratio]
Next, the relationship between the temperature of the electrode of the spark plug 200, the minimum ignition energy, and the air-fuel ratio will be described with reference to FIG. 4.
FIG. 4 is a diagram illustrating the relationship between electrode temperature, minimum ignition energy, and air-fuel ratio.
 図4は、最小点火エネルギーの値に対応する空燃比の値を掲出したものである。図4において上下方向は、混合気の最小点火エネルギーに対応する電圧目盛値を示し、図4において左右方向は、混合気の空燃比に対応する空燃比目盛値を示す。図4に示す空燃比P1は、点火プラグの電極温度が低い状態(例えば、マイナス7degC)で混合気に点火することが可能な最小点火エネルギーの所定値に対応する空燃比の値である。一方、空燃比P2は、点火プラグの電極温度が高い状態(例えば、25degC)で混合気に点火することが可能な最小点火エネルギーの所定値に対応する空燃比の値である。 FIG. 4 shows the air-fuel ratio values corresponding to the minimum ignition energy values. In FIG. 4, the vertical direction indicates a voltage scale value corresponding to the minimum ignition energy of the air-fuel mixture, and the left-right direction in FIG. 4 indicates an air-fuel ratio scale value corresponding to the air-fuel ratio of the air-fuel mixture. The air-fuel ratio P1 shown in FIG. 4 is an air-fuel ratio value corresponding to a predetermined value of the minimum ignition energy that can ignite the air-fuel mixture when the electrode temperature of the spark plug is low (for example, -7 degC). On the other hand, the air-fuel ratio P2 is an air-fuel ratio value corresponding to a predetermined value of the minimum ignition energy that can ignite the air-fuel mixture when the electrode temperature of the spark plug is high (for example, 25 degC).
 図4に示すように、内燃機関100では、空燃比が大きく(燃料が薄く)なるほど、混合気の最小点火エネルギーの値が高まるため、点火プラグからの放電(点火)による混合気への着火が成され難くなる。また、点火プラグの電極温度が低いほど、混合気の最小点火エネルギーの値が高まるため、点火プラグからの放電(点火)による混合気への着火が成され難くなる。 As shown in FIG. 4, in the internal combustion engine 100, the larger the air-fuel ratio (the thinner the fuel), the higher the value of the minimum ignition energy of the air-fuel mixture. It becomes difficult to accomplish. Furthermore, the lower the electrode temperature of the spark plug, the higher the value of the minimum ignition energy of the air-fuel mixture, which makes it more difficult for the air-fuel mixture to be ignited by discharge (ignition) from the spark plug.
 例えば、点火プラグの電極温度が高い状態における空燃比P2に対応する最小点火エネルギーと同等の値を、点火プラグの電極温度が低い状態において得るとする。この場合は、空燃比を空燃比P2よりも小さい(燃料が濃い)値である空燃比P1に設定しなければ、点火プラグ200からの放電(点火)が最小点火エネルギーを越えることができない。したがって、従来は、内燃機関100に失火等の不都合を生じることがない、安全マージンを有する設定として、点火プラグ200の電極の温度が常に低いことを前提としたリッチ空燃比(P1)が燃料噴射制御部82に設定されていた。その結果、内燃機関100では、混合気における燃料の割合が多くなった分、燃焼した際の炭化水素(HC)の発生が多くなっていた。 For example, assume that a value equivalent to the minimum ignition energy corresponding to the air-fuel ratio P2 when the spark plug electrode temperature is high is obtained when the spark plug electrode temperature is low. In this case, the discharge (ignition) from the spark plug 200 cannot exceed the minimum ignition energy unless the air-fuel ratio is set to the air-fuel ratio P1, which is smaller (fuel richer) than the air-fuel ratio P2. Therefore, conventionally, as a setting with a safety margin that does not cause problems such as misfires in the internal combustion engine 100, a rich air-fuel ratio (P1), which assumes that the temperature of the electrode of the spark plug 200 is always low, is used for fuel injection. It was set in the control unit 82. As a result, in the internal combustion engine 100, as the ratio of fuel in the air-fuel mixture increased, more hydrocarbons (HC) were generated during combustion.
 他方、冷機始動時における点火プラグ200の電極の温度を高くするほど(図4の太線矢印参照)混合気に着火させるための最小点火エネルギーは低くなる。したがって、空燃比を大きく(燃料を薄く)しても点火プラグからの放電(点火)が最小点火エネルギーを越え、混合気へ着火させることが可能となる。その結果、内燃機関100における炭化水素(HC)の発生を少なくすることができる。そこで、内燃機関100では、後述の如く、冷機始動時における点火プラグ200の電極の温度を、放電(点火)前に高めておくようにする。これにより、冷機始動時の空燃比を大きくして、炭化水素(HC)の発生を抑えることができる。 On the other hand, the higher the temperature of the electrode of the spark plug 200 at the time of cold start (see the thick arrow in FIG. 4), the lower the minimum ignition energy for igniting the air-fuel mixture. Therefore, even if the air-fuel ratio is increased (the fuel is made thinner), the discharge (ignition) from the spark plug exceeds the minimum ignition energy, making it possible to ignite the air-fuel mixture. As a result, generation of hydrocarbons (HC) in internal combustion engine 100 can be reduced. Therefore, in the internal combustion engine 100, as will be described later, the temperature of the electrode of the spark plug 200 during cold start is raised before discharge (ignition). This makes it possible to increase the air-fuel ratio during cold engine startup and suppress the generation of hydrocarbons (HC).
[点火コイルを含む電気回路]
 次に、点火コイルを含む電気回路について、図5を参照して説明する。
 図5は、点火コイルを含む電気回路を説明する図である。
[Electrical circuit including ignition coil]
Next, an electric circuit including the ignition coil will be explained with reference to FIG.
FIG. 5 is a diagram illustrating an electric circuit including an ignition coil.
 図5に示す電気回路500は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 The electric circuit 500 shown in FIG. 5 includes an ignition coil 300. The ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns, and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、イグナイタ(通電制御回路)340のドレイン(D)端子に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 One end of the primary coil 310 is connected to a DC power source 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310. The other end of the primary coil 310 is connected to a drain (D) terminal of an igniter (energization control circuit) 340 and grounded via the igniter 340. For the igniter 340, a transistor, a field effect transistor (FET), or the like is used.
 イグナイタ340のゲート(G)端子は、温度スイッチ部350を介して点火制御部83に接続されている。温度スイッチ部350は、点火コイル300の過熱による破損防止を目的として設置されている。温度スイッチ部350は、温度検出部351を備えている。温度検出部351は、イグナイタ340を介して点火コイル300の温度を検出する。温度スイッチ部350は、温度検出部351が検出した温度が予め定めた閾値A(第1の温度)以上になると、点火制御部83からイグナイタ340へ出力された点火信号SAを遮断する。 The gate (G) terminal of the igniter 340 is connected to the ignition control section 83 via the temperature switch section 350. The temperature switch section 350 is installed for the purpose of preventing damage to the ignition coil 300 due to overheating. The temperature switch section 350 includes a temperature detection section 351. Temperature detection section 351 detects the temperature of ignition coil 300 via igniter 340. The temperature switch section 350 cuts off the ignition signal SA output from the ignition control section 83 to the igniter 340 when the temperature detected by the temperature detection section 351 becomes equal to or higher than a predetermined threshold value A (first temperature).
 温度スイッチ部350が点火信号SAを遮断すると、1次側コイル310への通電が停止するため、イグナイタ340の過熱を回避できる。温度検出部351が検出した温度が第1の温度未満の場合に点火制御部83から出力された点火信号SAは、イグナイタ340のゲート(G)端子に入力される。 When the temperature switch section 350 cuts off the ignition signal SA, the power supply to the primary coil 310 is stopped, so overheating of the igniter 340 can be avoided. The ignition signal SA output from the ignition control unit 83 when the temperature detected by the temperature detection unit 351 is less than the first temperature is input to the gate (G) terminal of the igniter 340.
 イグナイタ340のゲート(G)端子に点火信号SAが入力されると、イグナイタ340のドレイン(D)端子とソース(S)端子間が通電状態となり、ドレイン(D)端子とソース(S)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力される。その結果、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。 When the ignition signal SA is input to the gate (G) terminal of the igniter 340, the drain (D) terminal and the source (S) terminal of the igniter 340 become energized, and the drain (D) terminal and the source (S) terminal become energized. A current flows through. As a result, the ignition signal SA is output from the ignition control section 83 to the primary coil 310 of the ignition coil 300 via the igniter 340. As a result, current flows through the primary coil 310 and electric power (electrical energy) is accumulated.
 点火制御部83からの点火信号SAの出力が停止すると、1次側コイル310に流れる電流が遮断される。その結果、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the ignition signal SA from the ignition control section 83 stops, the current flowing through the primary coil 310 is cut off. As a result, a high voltage is generated in the secondary coil 320 according to the ratio of turns of the coil to the primary coil 310.
 2次側コイル320に発生する高電圧は、点火プラグ200の中心電極210(図2参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、周囲ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。点火プラグ200と、点火コイル300を有する電気回路500は、本発明に係る点火装置に対応する。 The high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIG. 2) of the spark plug 200. This generates a potential difference between the center electrode 210 and the outer electrode 220 of the spark plug 200. When the potential difference generated between the center electrode 210 and the outer electrode 220 exceeds the dielectric breakdown voltage Vm of the surrounding gas (air mixture in the cylinder 150), the gas component undergoes dielectric breakdown and the center electrode 210 and the outer electrode 220 A discharge occurs between the As a result, the fuel (air mixture) is ignited (ignition). An electric circuit 500 having a spark plug 200 and an ignition coil 300 corresponds to an ignition device according to the present invention.
 中心電極210と外側電極220の間に発生する放電経路は、数千℃の高温となる。放電経路は、周囲ガスと電極210,220に接しているため、放電の発熱エネルギーは、周囲ガスと電極210,220へ分配される。そして、周囲ガスへ分配された分の発熱エネルギーは、周囲ガス及び電極210,220を加熱(予熱)して着火を促進する。 The discharge path generated between the center electrode 210 and the outer electrode 220 reaches a high temperature of several thousand degrees Celsius. Since the discharge path is in contact with the surrounding gas and the electrodes 210 and 220, the exothermic energy of the discharge is distributed to the surrounding gas and the electrodes 210 and 220. The exothermic energy distributed to the surrounding gas heats (preheats) the surrounding gas and the electrodes 210 and 220 to promote ignition.
[多重点火の放電波形]
 次に、多重点火の放電波形について、図6を参照して説明する。
 図6は、多重点火の放電波形例である。
[Multiple ignition discharge waveform]
Next, the discharge waveform of multiple ignition will be explained with reference to FIG. 6.
FIG. 6 is an example of a discharge waveform of multiple ignitions.
 図6に示すように、点火信号のONとOFFを繰り返すことで、複数回の放電を追加して多重点火を行う。これにより、点火プラグ200の電極を予熱する放電(点火)前に、点火プラグ200の電極210,220の温度を高めることができる。この追加放電による多重点火は、主点火の点火時期と重畳しないタイミングで実施可能である。すなわち、追加放電による多重点火は、少なくとも主点火の点火(放電開始)後から燃料噴射開始までの期間(図6の実施形態において膨張行程から吸気行程までの期間)で実施することができる。 As shown in FIG. 6, multiple ignitions are performed by adding multiple discharges by repeating ON and OFF of the ignition signal. Thereby, the temperature of the electrodes 210 and 220 of the spark plug 200 can be increased before the discharge (ignition) that preheats the electrodes of the spark plug 200. Multiple ignition by this additional discharge can be performed at a timing that does not overlap with the ignition timing of the main ignition. That is, multiple ignition by additional discharge can be performed at least during the period from the ignition (start of discharge) of the main ignition until the start of fuel injection (the period from the expansion stroke to the intake stroke in the embodiment of FIG. 6).
[空燃比と要求点火エネルギー]
 次に、失火回数と炭化水素排出量について、図7~図9を参照して説明する。
 図7は、15秒間に計数される失火回数と、同15秒間に排出される炭化水素排出量(積算質量)の関係を説明する図である。図8は、内燃機関の始動から60秒経過までの期間に計数される失火回数と、該期間内に実行される追加放電による多重点火期間(加熱期間)との関係を示す図である。図9は、内燃機関の始動から60秒経過時点までの間に排出される炭化水素の積算質量と加熱期間との関係を示す図である。
[Air-fuel ratio and required ignition energy]
Next, the number of misfires and the amount of hydrocarbon emissions will be explained with reference to FIGS. 7 to 9.
FIG. 7 is a diagram illustrating the relationship between the number of misfires counted in 15 seconds and the amount of hydrocarbon discharged (integrated mass) in the same 15 seconds. FIG. 8 is a diagram showing the relationship between the number of misfires counted during a period of 60 seconds from the start of the internal combustion engine and the multiple ignition period (heating period) due to additional discharge performed within the period. FIG. 9 is a diagram showing the relationship between the cumulative mass of hydrocarbons discharged from the start of the internal combustion engine until 60 seconds have elapsed and the heating period.
 図7に示すように、失火回数と炭化水素排出量の間には、1次元の相関関係がある。つまり、炭化水素の主たる発生原因は、失火である。失火は、点火によって生成した火炎核が成長できず、消炎した際に生じる。火炎核を成長させ炭化水素(HC)の発生を抑えるためには、失火を抑制する必要がある。 As shown in FIG. 7, there is a one-dimensional correlation between the number of misfires and the amount of hydrocarbon emissions. In other words, the main cause of hydrocarbon generation is misfire. A misfire occurs when a flame kernel generated by ignition is unable to grow and is extinguished. In order to grow the flame kernel and suppress the generation of hydrocarbons (HC), it is necessary to suppress misfires.
 火炎核を成長させて失火を抑制するためには、点火プラグ200の電極210,220間を臨む放電経路の周囲ガスや火炎核から電極210,220へ伝わる(逃げる)熱量を抑制する必要がある。例えば、点火装置において多重点火を実行して、点火プラグ200の電極210,220を予熱しておくと、放電経路及び火炎核と電極210,220間の温度差が縮小する。その結果、放電経路や火炎核から電極210,220へ伝わる熱量を抑制することができる。 In order to grow the flame kernel and suppress misfires, it is necessary to suppress the amount of heat that is transmitted (escaped) from the surrounding gas and flame kernel of the discharge path facing between the electrodes 210 and 220 of the spark plug 200 to the electrodes 210 and 220. . For example, if the ignition device performs multiple ignitions to preheat the electrodes 210 and 220 of the spark plug 200, the temperature difference between the discharge path and the flame kernel and the electrodes 210 and 220 will be reduced. As a result, the amount of heat transmitted from the discharge path or flame kernel to the electrodes 210, 220 can be suppressed.
 図8に破線として示すように、電極210,220の加熱期間と失火回数とは反比例の関係があり、加熱期間が長いほど失火回数を低減することができる。なお、環境温度に応じて電極210,220の温度が変化する。そのため、環境温度が高いほど点火プラグ200の電極210,220の温度は高まる。したがって、図8に示すように、環境温度が80degCである場合の失火回数は、環境温度が20degCである場合の失火回数よりも減少する。そして、図9に破線として示すように、加熱期間が長く、且つ、環境温度が高いほど炭化水素の排出量を低減することができる。 As shown by the broken line in FIG. 8, there is an inversely proportional relationship between the heating period of the electrodes 210 and 220 and the number of misfires, and the longer the heating period, the more the number of misfires can be reduced. Note that the temperature of the electrodes 210 and 220 changes depending on the environmental temperature. Therefore, the higher the environmental temperature, the higher the temperature of the electrodes 210 and 220 of the spark plug 200. Therefore, as shown in FIG. 8, the number of misfires when the environmental temperature is 80 degC is smaller than the number of misfires when the environmental temperature is 20 degC. As shown by the broken line in FIG. 9, the longer the heating period and the higher the environmental temperature, the more the amount of hydrocarbon emissions can be reduced.
[点火信号の周波数と点火コイルの温度]
 次に、点火信号SAの周波数と点火コイルの温度の関係について、図10~図13を参照して説明する。
 図10は、多重点火と主点火を実行する際の遷移を示す図である。図11は、点火信号の周波数に対する発熱量と着火性の関係を示した概念図である。図12は、多重点火ありの場合と多重点火無しの場合における遷移時間と点火コイルの温度の関係を示した概念図である。図13は、従来の点火コイルの温度とHC濃度の変化を示すタイミングチャートである。
[Ignition signal frequency and ignition coil temperature]
Next, the relationship between the frequency of the ignition signal SA and the temperature of the ignition coil will be explained with reference to FIGS. 10 to 13.
FIG. 10 is a diagram showing the transition when performing multiple ignition and main ignition. FIG. 11 is a conceptual diagram showing the relationship between the calorific value and ignitability with respect to the frequency of the ignition signal. FIG. 12 is a conceptual diagram showing the relationship between the transition time and the temperature of the ignition coil in the case of multiple ignition and the case of no multiple ignition. FIG. 13 is a timing chart showing changes in temperature and HC concentration of a conventional ignition coil.
 本実施形態において実行する多重点火は、主点火前に点火プラグ200の電極を予熱することが目的である。そのため、多重点火は、主点火の前に実施される。また、多重点火は、予熱点火とも言える。図10に示すように、主点火は、1放電当たりの点火エネルギーを増やすことで、着火性を向上できる。一方、多重点火による予熱は、単位時間当たりの放電持続期間を増やすことで電極加熱量を向上できる。 The purpose of the multiple ignition performed in this embodiment is to preheat the electrode of the spark plug 200 before main ignition. Therefore, multiple ignitions are performed before the main ignition. Moreover, multiple ignition can also be called preheating ignition. As shown in FIG. 10, the ignition performance of the main ignition can be improved by increasing the ignition energy per discharge. On the other hand, preheating by multiple ignitions can improve the amount of electrode heating by increasing the discharge duration per unit time.
 図10に示すように、主点火は、1放電当たりの点火エネルギーを上述の絶縁破壊電圧Vm以上と成るように設定する。これにより、中心電極210と外側電極220との間に放電を生じさせるとともに、混合気への点火(火炎核形成)を行っている。一方、本実施形態において実行する多重点火(予熱点火)は、主点火前に中心電極210と外側電極220との間に放電を生じさせ、点火プラグ200の電極210、220を予熱することが目的である。そのため、多重点火(予熱点火)は、時系列において主点火よりも前の時点に実施される。 As shown in FIG. 10, the main ignition is set so that the ignition energy per discharge is equal to or higher than the above-mentioned dielectric breakdown voltage Vm. Thereby, a discharge is generated between the center electrode 210 and the outer electrode 220, and the air-fuel mixture is ignited (flame kernel formation). On the other hand, in the multiple ignition (preheat ignition) performed in this embodiment, electric discharge is generated between the center electrode 210 and the outer electrode 220 before the main ignition, and the electrodes 210 and 220 of the spark plug 200 can be preheated. It is a purpose. Therefore, multiple ignition (preheat ignition) is performed at a time point before main ignition in time series.
 多重点火(予熱点火)では、複数回の点火(放電)を繰り返し行うことで、点火コイル300の電力変換量を増加させて単位時間当たりの放電持続期間を増やす。これにより、電極210、220の加熱(予熱)量を増やすことができる。したがって、多重点火(予熱点火)では、主点火と比べて、点火信号SAのスイッチング周波数を高く設定する必要がある。すなわち、点火制御部83(図3参照)は、主点火を実行させるための低周波の主点火信号と、多重点火(予熱点火)を実行させるための高周波の多重点火信号を出力する。而して、図11に示すように、点火信号SAの周波数を高めると、点火プラグ200の電極210,220の発熱量が増える。その結果、点火プラグ200の着火性が向上する。 In multiple ignition (preheat ignition), ignition (discharge) is repeated multiple times to increase the power conversion amount of the ignition coil 300 and increase the discharge duration per unit time. Thereby, the amount of heating (preheating) of the electrodes 210 and 220 can be increased. Therefore, in multiple ignition (preheat ignition), it is necessary to set the switching frequency of the ignition signal SA higher than that in main ignition. That is, the ignition control unit 83 (see FIG. 3) outputs a low-frequency main ignition signal for performing main ignition and a high-frequency multiple ignition signal for performing multiple ignition (preheat ignition). Thus, as shown in FIG. 11, when the frequency of the ignition signal SA is increased, the amount of heat generated by the electrodes 210 and 220 of the spark plug 200 increases. As a result, the ignitability of the spark plug 200 is improved.
 上述したように、冷機始動における炭化水素を低減するためには、内燃機関の暖機が完了するまでの期間(例えば、内燃機関の始動から60秒程の期間)に、多重点火(予熱点火)を実行して電極210,220を予熱する必要がある。しかし、図12に示すように、多重点火(予熱点火)による点火コイル300の発熱量は、主点火と比べて大きい。このため、多重点火(予熱点火)を行う場合は、図13に示すように、温度検出部351(図5参照)が検出した点火コイル300の温度(以下、「コイル温度」とする)が予め定めた閾値A(第1温度)に達した場合に、点火制御部83からイグナイタ340への多重点火信号を遮断して発熱量を調節することが好ましい。 As mentioned above, in order to reduce hydrocarbons during cold engine starting, multiple ignitions (preheating ignition ) to preheat the electrodes 210, 220. However, as shown in FIG. 12, the amount of heat generated by the ignition coil 300 due to multiple ignition (preheat ignition) is larger than that during main ignition. Therefore, when performing multiple ignition (preheat ignition), as shown in FIG. 13, the temperature of the ignition coil 300 detected by the temperature detection section 351 (see FIG. When a predetermined threshold value A (first temperature) is reached, it is preferable to cut off the multiple ignition signal from the ignition control unit 83 to the igniter 340 to adjust the amount of heat generated.
[点火コイルを含む電気回路]
 次に、本発明に係る点火コイルを含む電気回路について、図14を参照して説明する。
 図14は、本発明に係る点火コイルを含む電気回路の一例を示す回路図である。
[Electrical circuit including ignition coil]
Next, an electric circuit including an ignition coil according to the present invention will be described with reference to FIG. 14.
FIG. 14 is a circuit diagram showing an example of an electric circuit including an ignition coil according to the present invention.
 図14に示すように、本発明に係る電気回路501は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 As shown in FIG. 14, an electric circuit 501 according to the present invention includes an ignition coil 300. The ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns, and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、イグナイタ(通電制御回路)340のドレイン(D)端子に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 One end of the primary coil 310 is connected to a DC power source 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310. The other end of the primary coil 310 is connected to a drain (D) terminal of an igniter (energization control circuit) 340 and grounded via the igniter 340. For the igniter 340, a transistor, a field effect transistor (FET), or the like is used.
 イグナイタ340のゲート(G)端子は、温度スイッチ部360又は温度スイッチ部360とフィルタ部370を介して点火制御部83に接続されている。フィルタ部370は、例えば、ローパスフィルタである。フィルタ部370は、低周波である主点火信号を通過させる。そして、フィルタ部370は、高周波である多重点火信号を遮断する。 The gate (G) terminal of the igniter 340 is connected to the ignition control section 83 via the temperature switch section 360 or the temperature switch section 360 and the filter section 370. Filter section 370 is, for example, a low-pass filter. Filter section 370 passes the main ignition signal having a low frequency. The filter section 370 then blocks the multiple ignition signal, which is a high frequency signal.
 温度スイッチ部360は、点火コイル300の温度調節を目的として設置されている。温度スイッチ部360は、温度検出部351を備えている。温度スイッチ部360は、温度検出部351が検知したコイル温度の領域(低温域、中温域、高温域)に応じて接続先を切り替える。 The temperature switch section 360 is installed for the purpose of adjusting the temperature of the ignition coil 300. The temperature switch section 360 includes a temperature detection section 351. The temperature switch unit 360 switches the connection destination according to the coil temperature range (low temperature range, medium temperature range, high temperature range) detected by the temperature detection unit 351.
 中温域は、上述した閾値A(第1温度)以上で、予め定められた閾値B(第2温度)未満の領域である。コイル温度が中温域である場合に、温度スイッチ部360は、フィルタ部370を介して点火制御部83とイグナイタ340を接続する。これにより、点火制御部83から出力された高周波である多重点火信号は、フィルタ部370によって遮断される。一方、点火制御部83から出力された低周波である主点火信号は、フィルタ部370を通過して、イグナイタ340へ伝達される。 The medium temperature range is a region above the threshold A (first temperature) described above and below the predetermined threshold B (second temperature). When the coil temperature is in the medium temperature range, the temperature switch section 360 connects the ignition control section 83 and the igniter 340 via the filter section 370. As a result, the high frequency multiple ignition signal output from the ignition control section 83 is blocked by the filter section 370. On the other hand, the low-frequency main ignition signal output from the ignition control section 83 passes through the filter section 370 and is transmitted to the igniter 340.
 高温域は、上述した閾値B(第2温度)以上で、点火コイル300の設計上の定格温度の上限値未満の領域である。コイル温度が高温域である場合に、温度スイッチ部360は、点火制御部83とイグナイタ340の接続を切断する。これにより、点火制御部83から出力された多重点火信号及び主点火信号は、イグナイタ340へ伝達されない。 The high temperature range is a range above the threshold B (second temperature) described above and below the upper limit of the design rated temperature of the ignition coil 300. When the coil temperature is in the high temperature range, the temperature switch section 360 disconnects the ignition control section 83 and the igniter 340. As a result, the multiple ignition signal and the main ignition signal output from the ignition control section 83 are not transmitted to the igniter 340.
 低温域は、上述した閾値A(第1温度)未満の領域である。コイル温度が低温域である場合に、温度スイッチ部360は、点火制御部83とイグナイタ340を直結する。これにより、点火制御部83から出力された多重点火信号及び主点火信号は、イグナイタ340へ伝達される。 The low temperature region is a region below the threshold value A (first temperature) described above. When the coil temperature is in the low temperature range, the temperature switch section 360 directly connects the ignition control section 83 and the igniter 340. Thereby, the multiple ignition signal and the main ignition signal output from the ignition control section 83 are transmitted to the igniter 340.
 すなわち、低温域においては、中温域または高温域と比べてコイル温度が低く、且つ、点火コイル300の設計上の定格温度の上限との温度差(温度マージン)が大きい。そのため、混合気に点火するための主点火に加えて、点火コイル300の発熱量が大きい多重点火(予熱点火)を実行することができる。しかも、本実施形態においては、温度検出部351によりコイル温度を正確に検出して、閾値B(第2の温度)以上となる中温域に達するまで多重点火(予熱点火)を実行する。これにより、温度検出部351を設けずに、推定した低温域で多重点火(予熱点火)を実行するよりも、定格温度の上限に対する温度マージンを極小化し、多重点火を実行する期間を可及的に長く設定することができる。 That is, in the low temperature range, the coil temperature is lower than in the medium temperature range or the high temperature range, and the temperature difference (temperature margin) from the upper limit of the design rated temperature of the ignition coil 300 is large. Therefore, in addition to main ignition for igniting the air-fuel mixture, multiple ignition (preheating ignition) in which the ignition coil 300 generates a large amount of heat can be performed. Moreover, in the present embodiment, the temperature detection unit 351 accurately detects the coil temperature and performs multiple ignition (preheat ignition) until the coil temperature reaches a medium temperature range equal to or higher than the threshold value B (second temperature). As a result, the temperature margin with respect to the upper limit of the rated temperature can be minimized, and the period for performing multiple ignitions can be extended, rather than performing multiple ignitions (preheating ignition) in the estimated low temperature range without providing the temperature detection unit 351. It can be set as long as possible.
 斯くして、温度検出部351によって検出したコイル温度が、閾値B(第2温度)未満の場合に、点火制御部83から出力された点火信号SA(主点火信号のみ、又は主点火信号と多重点火信号)は、温度スイッチ部360を経てイグナイタ340のゲート(G)端子に入力される。イグナイタ340のゲート(G)端子に点火信号SAが入力されると、イグナイタ340のドレイン(D)端子とソース(S)端子間が通電状態となり、ドレイン(D)端子とソース(S)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力される。その結果、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。 In this way, when the coil temperature detected by the temperature detection section 351 is less than the threshold value B (second temperature), the ignition signal SA (main ignition signal only, or main ignition signal and multiple signals) output from the ignition control section 83 is The main ignition signal) is input to the gate (G) terminal of the igniter 340 via the temperature switch section 360. When the ignition signal SA is input to the gate (G) terminal of the igniter 340, the drain (D) terminal and the source (S) terminal of the igniter 340 become energized, and the drain (D) terminal and the source (S) terminal become energized. A current flows through. As a result, the ignition signal SA is output from the ignition control section 83 to the primary coil 310 of the ignition coil 300 via the igniter 340. As a result, current flows through the primary coil 310 and electric power (electrical energy) is accumulated.
 点火制御部83からの点火信号SAの出力が停止すると、1次側コイル310に流れる電流が遮断される。その結果、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the ignition signal SA from the ignition control section 83 stops, the current flowing through the primary coil 310 is cut off. As a result, a high voltage is generated in the secondary coil 320 according to the ratio of turns of the coil to the primary coil 310.
 2次側コイル320に発生する高電圧は、点火プラグ200の中心電極210(図2参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、周囲ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。点火プラグ200と、点火コイル300を有する電気回路500は、本発明に係る点火装置に対応する。 The high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIG. 2) of the spark plug 200. This generates a potential difference between the center electrode 210 and the outer electrode 220 of the spark plug 200. When the potential difference generated between the center electrode 210 and the outer electrode 220 exceeds the dielectric breakdown voltage Vm of the surrounding gas (air mixture in the cylinder 150), the gas component undergoes dielectric breakdown and the center electrode 210 and the outer electrode 220 A discharge occurs between the As a result, the fuel (air mixture) is ignited (ignition). An electric circuit 500 having a spark plug 200 and an ignition coil 300 corresponds to an ignition device according to the present invention.
 点火制御部83は、通電制御回路831と、出力モニタ回路832とを有する。通電制御回路831は、点火信号SAの出力を制御する。出力モニタ回路832は、通電制御回路831から出力された点火信号SAをリターン信号として検出するリターン検出機能に対応しており、当該リターン信号の検出結果を通電制御回路831に送信する。 The ignition control section 83 has an energization control circuit 831 and an output monitor circuit 832. The energization control circuit 831 controls the output of the ignition signal SA. The output monitor circuit 832 has a return detection function that detects the ignition signal SA output from the energization control circuit 831 as a return signal, and transmits the detection result of the return signal to the energization control circuit 831.
 通電制御回路831は、全体制御部81(図3参照)に、点火信号SAの出力状態と、当該点火信号SAに対応するリターン信号の検出結果とを送信する。全体制御部81は、点火信号SAの出力状態とリターン信号の検出結果とを比較し、点火信号SAとリターン信号の状態が異なる場合に、フィルタ部370において多重点火信号や後述する過熱検知信号が遮断されたと判断する。また、全体制御部81は、点火信号SAとリターン信号が同じである場合に、フィルタ部370において多重点火信号や過熱検知信号が遮断されてないと判断する。 The energization control circuit 831 transmits the output state of the ignition signal SA and the detection result of the return signal corresponding to the ignition signal SA to the overall control unit 81 (see FIG. 3). The overall control unit 81 compares the output state of the ignition signal SA and the detection result of the return signal, and if the states of the ignition signal SA and the return signal are different, the filter unit 370 outputs a multiple ignition signal or an overheat detection signal to be described later. is determined to have been blocked. Furthermore, when the ignition signal SA and the return signal are the same, the overall control section 81 determines that the multiple ignition signal and the overheat detection signal are not blocked in the filter section 370.
 なお、上述したように、冷機始動では、炭化水素を低減するために、内燃機関の暖機が完了するまで(例えば、60秒程度の期間で)多重点火を実行する必要がある。しかし、多重点火(予熱点火)は、通常点火と比べて点火コイル300の発熱量が大きいため、比較的短時間で点火コイル300の実温度が、中温域に達する。そして、点火コイル300の実温度が中温域に達すると、温度スイッチ部360により多重点火信号のイグナイタ340への伝達が遮断される。 Note that, as described above, in cold engine starting, in order to reduce hydrocarbons, it is necessary to perform multiple ignitions until warm-up of the internal combustion engine is completed (for example, in a period of about 60 seconds). However, in multiple ignition (preheat ignition), the amount of heat generated by the ignition coil 300 is larger than that in normal ignition, so the actual temperature of the ignition coil 300 reaches the intermediate temperature range in a relatively short time. Then, when the actual temperature of the ignition coil 300 reaches the intermediate temperature range, the temperature switch section 360 cuts off the transmission of the multiple ignition signal to the igniter 340.
 そこで、本実施形態では、上述したようにフィルタ部370において主点火信号または多重点火信号が遮断されたか否かを判定する。さらに、判定結果に基づいて、点火コイル300の実温度が中温域に達して多重点火信号のみが遮断されるに至った時点、または、点火コイル300の実温度が低温域に戻り、主点火信号及び多重点火信号が再びイグナイタ340へ伝達されるに至った時点を検知する。そして、検知した時点におけるコイル温度を閾値A(第1温度)であるものとして温度検出部351のコイル温度を較正する。 Therefore, in this embodiment, as described above, the filter section 370 determines whether the main ignition signal or the multiple ignition signal is blocked. Furthermore, based on the determination result, the actual temperature of the ignition coil 300 reaches the medium temperature range and only the multiple ignition signal is cut off, or the actual temperature of the ignition coil 300 returns to the low temperature range and the main ignition is started. The point in time when the signal and the multiple ignition signal are transmitted to the igniter 340 again is detected. Then, the coil temperature of the temperature detection unit 351 is calibrated by assuming that the coil temperature at the time of detection is the threshold value A (first temperature).
 点火プラグ200の多重点火(予熱点火)が停止されると、点火コイル300は、その周囲との温度差があることで冷却される(図13参照)。これにより、温度検出部351で検出した温度が低温域に戻る。低温域では、温度スイッチ部360は、点火信号SAがフィルタ部370を通過しないでイグナイタ340に伝達される経路を選択する。これにより、主点火信号及び多重点火信号は、再びイグナイタ340へ伝達される。したがって、失火を抑制しながら多重点火を繰り返すことができ、炭化水素の発生を抑制することができる。 When the multiple ignition (preheat ignition) of the ignition plug 200 is stopped, the ignition coil 300 is cooled due to the temperature difference with its surroundings (see FIG. 13). As a result, the temperature detected by the temperature detection section 351 returns to the low temperature range. In the low temperature range, the temperature switch section 360 selects a path in which the ignition signal SA is transmitted to the igniter 340 without passing through the filter section 370. Thereby, the main ignition signal and the multiple ignition signal are transmitted to the igniter 340 again. Therefore, multiple ignitions can be repeated while suppressing misfires, and generation of hydrocarbons can be suppressed.
 次に、燃料噴射制御について説明する。例えば、冷機始動時ではない内燃機関の暖機後の燃料噴射量をTとする。冷機始動時は、筒内温度が低いことにより主点火時期までに気化される燃料が減少することから、点火後の燃焼に関与する燃料量が目減りする。これにより、希薄化する筒内混合気の空燃比を補償するために、冷機始動時には暖機後の噴射量Tよりも燃料噴射量を増量する。この増量分をaとすると、冷機始動時の燃料噴射量は、T+aとなる。そして、冷機始動時に、低温域において多重点火(予熱点火)を行うことにより、主点火時期までに気化されて点火後の燃焼に関与する燃料量が、実質的に増加する。この多重点火(予熱点火)の寄与分をb1とすると、多重点火を実行する場合の燃料噴射量は、T+a-b1となる。 Next, fuel injection control will be explained. For example, let T be the fuel injection amount after warming up the internal combustion engine, which is not at the time of cold start. During a cold engine start, the amount of fuel vaporized by the main ignition timing decreases due to the low in-cylinder temperature, so the amount of fuel involved in combustion after ignition decreases. As a result, in order to compensate for the air-fuel ratio of the in-cylinder air-fuel mixture becoming leaner, the fuel injection amount is increased from the injection amount T after warm-up at the time of cold engine startup. Assuming that this amount of increase is a, the fuel injection amount at the time of cold engine start is T+a. By performing multiple ignitions (preheat ignition) in a low temperature range during cold engine startup, the amount of fuel that is vaporized by the main ignition timing and participates in post-ignition combustion is substantially increased. If the contribution of this multiple ignition (preheating ignition) is b1, the fuel injection amount when multiple ignition is executed is T+a−b1.
 コイル温度が中温域に達して、多重点火が中止されて主点火のみが実行される場合は、上述の多重点火(予熱点火)の寄与分b1の値を減らして、例えば、寄与分をb2(b2<b1)とする。そして、多重点火が実行される場合に減量した分の燃料量を増やして、燃料噴射量をT+a-b2にする。これにより、電極210,220の温度の低下に伴う混合気の最小点火エネルギーの高騰(図4参照)を抑制して失火を防ぐことができる。その結果、全体として炭化水素の発生を抑制することができる。 When the coil temperature reaches the medium temperature range and multiple ignition is stopped and only main ignition is executed, reduce the value of the above-mentioned multiple ignition (preheat ignition) contribution b1, e.g. Let b2 (b2<b1). Then, when multiple ignition is executed, the amount of fuel is increased by the amount reduced, so that the amount of fuel injection becomes T+a−b2. Thereby, it is possible to suppress a rise in the minimum ignition energy of the air-fuel mixture (see FIG. 4) due to a decrease in the temperature of the electrodes 210 and 220, and to prevent misfires. As a result, generation of hydrocarbons can be suppressed as a whole.
 なお、点火プラグ200の電極210,220の温度を上述の温度検出部351により検出したコイル温度や、水温や吸気温度等の内燃機関100の運転状態に基づいて類推する構成とすることも可能である。例えば、コイル温度が中温域に達して多重点火が中断された時点での電極210,220の温度を、上述の閾値A(第1温度)に基づいて設定する。そして、多重点火が中断されて以降の時間の経過或いは燃焼サイクルの経過(主点火を実行した回数など)に基づいて、電極210,220の温度を順次低くするように類推する。 Note that the temperature of the electrodes 210 and 220 of the spark plug 200 may be inferred based on the coil temperature detected by the above-mentioned temperature detection unit 351 or the operating state of the internal combustion engine 100 such as water temperature or intake air temperature. be. For example, the temperature of the electrodes 210, 220 at the time when the coil temperature reaches the intermediate temperature range and multiple ignition is interrupted is set based on the above-mentioned threshold value A (first temperature). Then, it is inferred that the temperatures of the electrodes 210 and 220 are sequentially lowered based on the elapse of time after the multiple ignition was interrupted or the elapse of the combustion cycle (such as the number of times main ignition was performed).
[多重点火切替処理]
 次に、本実施形態に係る多重点火切替処理について、図15を参照して説明する。
 図15は、多重点火切替処理の例を示すフローチャートである。
[Multiple ignition switching processing]
Next, multiple ignition switching processing according to this embodiment will be described with reference to FIG. 15.
FIG. 15 is a flowchart illustrating an example of multiple ignition switching processing.
 多重点火切替処理を開始すると、温度検出部351は、点火コイル300のコイル温度を取得する。そして、温度スイッチ部360は、温度検出部351により検出されたコイル温度が予め定められた閾値B(第2温度)以上であるか否かを判定する(S110)。 When the multiple ignition switching process is started, the temperature detection unit 351 acquires the coil temperature of the ignition coil 300. Then, the temperature switch section 360 determines whether the coil temperature detected by the temperature detection section 351 is equal to or higher than a predetermined threshold value B (second temperature) (S110).
 ステップS110において、コイル温度が予め定められた閾値B以上であると判定したとき(S110がYES判定の場合)、温度スイッチ部360は、点火信号SAを全て遮断する経路(回路)を選択する(S120)。これにより、点火制御部83から出力された点火信号SAは、イグナイタ340に伝達されず、点火プラグ200による点火(着火)が停止される。ステップS120の処理後、点火装置(電気回路501)は、処理をステップS110に移す。 In step S110, when it is determined that the coil temperature is equal to or higher than the predetermined threshold B (YES in S110), the temperature switch section 360 selects a path (circuit) that completely cuts off the ignition signal SA ( S120). As a result, the ignition signal SA output from the ignition control section 83 is not transmitted to the igniter 340, and ignition (ignition) by the spark plug 200 is stopped. After the process in step S120, the ignition device (electric circuit 501) moves the process to step S110.
 一方、ステップS110において、コイル温度が予め定められた閾値B以上でないと判定したとき(S110がNO判定の場合)、温度スイッチ部360は、コイル温度が予め定められた閾値A(第1温度)以上であるか否かを判定する(S130)。 On the other hand, when it is determined in step S110 that the coil temperature is not equal to or higher than the predetermined threshold B (if NO in S110), the temperature switch unit 360 sets the coil temperature to a predetermined threshold A (first temperature). It is determined whether or not it is the above (S130).
 ステップS130において、コイル温度が予め定められた閾値A以上であると判定したとき(S130がYES判定の場合)、温度スイッチ部360は、点火信号SAがフィルタ部370を通過する経路を選択する(S140)。これにより、点火信号SAにおける多重点火信号がフィルタ部370によって遮断され、主点火信号のみがイグナイタ340に伝達される。その結果、点火プラグ200では、予熱を目的とした多重点火が行われず、主点火のみが行われる。ステップS140の処理後、点火装置は、処理をステップS110に移す。 In step S130, when it is determined that the coil temperature is equal to or higher than the predetermined threshold value A (YES in S130), the temperature switch section 360 selects a path for the ignition signal SA to pass through the filter section 370 ( S140). As a result, multiple ignition signals in the ignition signal SA are blocked by the filter section 370, and only the main ignition signal is transmitted to the igniter 340. As a result, in the spark plug 200, multiple ignition for the purpose of preheating is not performed, and only main ignition is performed. After the process in step S140, the ignition device moves the process to step S110.
 一方、ステップS130において、コイル温度が予め定められた閾値A以上でないと判定したとき(S130がNO判定の場合)、温度スイッチ部360は、点火信号SAがフィルタ部370を通過せずにイグナイタ340へ伝達される経路を選択する(S150)。これにより、点火信号SAにおける多重点火信号及び主点火信号がイグナイタ340に伝達される。その結果、点火プラグ200では、予熱を目的とした多重点火と、主点火とが行われる。ステップS150の処理後、点火装置は、処理をステップS110に移す。 On the other hand, when it is determined in step S130 that the coil temperature is not equal to or higher than the predetermined threshold A (if NO in S130), the temperature switch section 360 switches the ignition signal SA to the igniter 340 without passing through the filter section 370. A route to be transmitted to is selected (S150). Thereby, the multiple ignition signal and the main ignition signal in the ignition signal SA are transmitted to the igniter 340. As a result, multiple ignition for the purpose of preheating and main ignition are performed in the ignition plug 200. After the process in step S150, the ignition device moves the process to step S110.
[燃料噴射量切替処理]
 次に、本実施形態に係る燃料噴射量切替処理について、図16を参照して説明する。
 図16は、燃料噴射量切替処理の例を示すフローチャートである。
[Fuel injection amount switching process]
Next, the fuel injection amount switching process according to this embodiment will be explained with reference to FIG. 16.
FIG. 16 is a flowchart illustrating an example of fuel injection amount switching processing.
 燃料噴射量切替処理を開始すると、全体制御部81(図3参照)は、内燃機関の始動から現在まで経過した時間を取得する。そして、全体制御部81は、始動から現在まで経過した時間が、予め定めた規定値以内であるか否かを判定する(S210)。予め定めた規定値は、上述した暖機が完了するまでの期間に相当する。 When the fuel injection amount switching process is started, the overall control unit 81 (see FIG. 3) acquires the time that has passed since the start of the internal combustion engine. Then, the overall control unit 81 determines whether the time that has passed from the start to the present is within a predetermined value (S210). The predetermined value corresponds to the period until the warm-up described above is completed.
 ステップS210において、始動から現在まで経過した時間が、予め定めた規定値以内でないと判定したとき(S210がNO判定の場合)、全体制御部81は、燃料噴射量切替処理を終了する(S220)。 When it is determined in step S210 that the time that has passed from the start to the present is not within a predetermined value (NO in S210), the overall control unit 81 ends the fuel injection amount switching process (S220). .
 一方、ステップS210において、始動から現在まで経過した時間が、予め定めた規定値以内であると判定したとき(S210がYES判定の場合)、全体制御部81は、多重点火信号を含む点火信号SAを出力する(S230)。次に、全体制御部81は、点火信号SAと、出力モニタ回路832から得たリターン信号が異なるか否かを判定する(S240)。 On the other hand, when it is determined in step S210 that the time that has passed from the start to the present is within a predetermined value (YES in S210), the overall control unit 81 sends an ignition signal including a multiple ignition signal. SA is output (S230). Next, the overall control unit 81 determines whether the ignition signal SA and the return signal obtained from the output monitor circuit 832 are different (S240).
 ステップS240において、点火信号SAとリターン信号が異なると判定したとき(S240がYES判定の場合)、全体制御部81は、燃料噴射量を第1燃料噴射量に設定する(S250)。全体制御部81は、点火信号SAとリターン信号が異なる場合に、フィルタ部370が多重点火信号を遮断したと判断する。フィルタ部370が多重点火信号を遮断した場合は、点火コイル300が閾値A(第1温度)以上である。ステップS250の処理後、全体制御部81は、処理をステップS210に移す。 In step S240, when it is determined that the ignition signal SA and the return signal are different (YES in S240), the overall control unit 81 sets the fuel injection amount to the first fuel injection amount (S250). The overall control unit 81 determines that the filter unit 370 has blocked the multiple ignition signal when the ignition signal SA and the return signal are different. When the filter section 370 blocks the multiple ignition signal, the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). After the process in step S250, the overall control unit 81 moves the process to step S210.
 一方、ステップS240において、点火信号SAとリターン信号が一致すると判定したとき(S240がNO判定の場合)、全体制御部81は、燃料噴射量を第2燃料噴射量に設定する(S260)。全体制御部81は、点火信号SAとリターン信号が一致する場合に、多重点火信号がイグナイタ340に伝達されたと判断する。ステップS260の処理後、全体制御部81は、処理をステップS210に移す。 On the other hand, when it is determined in step S240 that the ignition signal SA and the return signal match (if NO in S240), the overall control unit 81 sets the fuel injection amount to the second fuel injection amount (S260). The overall control unit 81 determines that the multiple ignition signal has been transmitted to the igniter 340 when the ignition signal SA and the return signal match. After the process in step S260, the overall control unit 81 moves the process to step S210.
 第1燃料噴射量は、冷機始動時に多重点火信号が遮断された場合の燃料噴射量である。第1燃料噴射量は、上述したT+aに相当する。一方、第2燃料噴射量は、冷機始動時に多重点火信号がイグナイタ340に伝達された場合の燃料噴射量である。第2燃料噴射量は、上述したT+a-bn(n=1、2)に相当する。したがって、第2燃料噴射量は、第1燃料噴射量よりも少ない。 The first fuel injection amount is the fuel injection amount when the multiple ignition signal is cut off during cold start. The first fuel injection amount corresponds to T+a described above. On the other hand, the second fuel injection amount is the fuel injection amount when the multiple ignition signal is transmitted to the igniter 340 during cold engine startup. The second fuel injection amount corresponds to the above-mentioned T+a−bn (n=1, 2). Therefore, the second fuel injection amount is less than the first fuel injection amount.
[多重点火切替処理]
 次に、本実施形態に係る多重点火切替処理について、図17を参照して説明する。
 図17は、多重点火切替処理を示すタイミングチャートである。
[Multiple ignition switching processing]
Next, multiple ignition switching processing according to this embodiment will be described with reference to FIG. 17.
FIG. 17 is a timing chart showing multiple ignition switching processing.
 点火性能を向上させるには、火花放電により生じた火炎核を保温することが有効である。火炎核を保温するためには、火炎核と接触する電極の温度を高温にする必要がある。前述したように、多重点火(放電)による予熱は、単位時間当たりの放電持続期間を増やすことで電極加熱量を向上できる。一方、多重点火による点火エネルギーを増やすと、電力消費が増加して燃費にも影響する。 In order to improve ignition performance, it is effective to keep the flame core generated by spark discharge warm. In order to keep the flame core warm, it is necessary to raise the temperature of the electrode that comes into contact with the flame core. As described above, preheating by multiple ignitions (discharges) can improve the amount of electrode heating by increasing the discharge duration per unit time. On the other hand, increasing ignition energy through multiple ignitions increases power consumption and affects fuel efficiency.
 点火性能の向上と電力消費増加のトレードオフを緩和するには、いたずらに多重点火による点火エネルギーを増やさずに電極の温度を効率よく上昇させる方策が必要である。この方策としては、例えば、多重点火の間隔を放電が持続される範囲で可及的に短縮する(高周波にする)ことで、単位時間あたりの放電持続期間を伸長させることができ、ひいては多重点火の放電の合間に電極210,220が冷却する時間を可及的に短縮することができる(図17の1段目参照)。その結果、多重点火による加熱効率を向上して放電期間後の電極の温度を効率よく上昇させることができる。 In order to alleviate the trade-off between improving ignition performance and increasing power consumption, a method is needed to efficiently raise the temperature of the electrode without unnecessarily increasing the ignition energy due to multiple ignitions. As a measure for this, for example, by shortening the interval between multiple ignitions as much as possible within the range where the discharge is sustained (by making the frequency higher), the duration of discharge per unit time can be extended, and in turn, the duration of multiple ignitions can be extended. The time for the electrodes 210, 220 to cool down between the discharges of the main ignition can be shortened as much as possible (see the first stage of FIG. 17). As a result, the heating efficiency due to multiple ignitions can be improved, and the temperature of the electrode after the discharge period can be efficiently raised.
 一般的な受動式点火コイルは、一定の充電量を蓄電する機能がある。そのため、一定の充電時間までは充電量が増加する。そして、充電量が増大するのに伴って、放電時の出力電圧や出力電流は増加し電極210,220が強く加熱されることとなる。したがって、多重点火を行うための高周波の多重放電パルス(多重点火信号)を出力する直前に、十分な予充電を伴う低周波の予充電パルス(予充電信号)を出力することで、上述の如く多重点火の間隔を可及的に高周波としながら電極210,220の温度をいっそう上昇させることができる(図17の2段目参照)。すなわち、予充電パルスは、多重放電パルスよりも周波数が低く、点火コイルの容量放電が確実に作用するような出力期間を有する通電波形である。 A typical passive ignition coil has the ability to store a certain amount of charge. Therefore, the amount of charge increases until a certain charging time. Then, as the amount of charge increases, the output voltage and output current during discharging increase, and the electrodes 210 and 220 are heated strongly. Therefore, by outputting a low frequency precharge pulse (precharge signal) with sufficient precharging immediately before outputting a high frequency multiple discharge pulse (multiple ignition signal) for performing multiple ignitions, the above-mentioned As shown in FIG. 17, the temperature of the electrodes 210 and 220 can be further increased while making the interval between multiple ignitions as high as possible (see the second row of FIG. 17). That is, the precharge pulse is an energizing waveform that has a lower frequency than the multiple discharge pulse and has an output period such that the capacitive discharge of the ignition coil is reliably activated.
 ところで、前述した点火コイル300を含む電気回路501は、点火コイル300の温度が閾値A(第1温度)以上である時に、点火信号SAのうちの高周波成分のみをカットする。そのため、電気回路501は、点火コイル300の温度が閾値A(第1温度)以上である時であっても低周波の予充電信号を継続する。その結果、高周波の多重点火ができない(多重点火信号がカットされる)ことになり、電極210,220の加熱効率が低下する。 By the way, the electric circuit 501 including the ignition coil 300 described above cuts only the high frequency component of the ignition signal SA when the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). Therefore, the electric circuit 501 continues the low-frequency precharge signal even when the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). As a result, high-frequency multiple ignition cannot be performed (the multiple ignition signal is cut), and the heating efficiency of the electrodes 210 and 220 decreases.
 上述したように、制御装置(ECU)1は、点火コイル300へ出力した点火信号SAの自己診断を行うリターン検出機能(出力モニタ回路832)を有する。このリターン検出機能により、制御装置1は、点火コイル300の高温域または中温域で電気回路501が行う高周波成分のカットを検出することができる。而して制御装置1は、高周波成分のカットを検出することで、点火コイル300の温度状態が閾値A(第1温度)以上であることを認識し、予充電パルスおよび予充電パルスに続く多重放電パルスの出力を点火信号SAから自らカットする。すなわち、制御装置1は、コイル温度が閾値A(第1温度)以上である時に、主点火信号のみを出力する。その結果、点火コイル300の発熱量を抑制することができる。 As described above, the control device (ECU) 1 has a return detection function (output monitor circuit 832) that performs self-diagnosis of the ignition signal SA output to the ignition coil 300. This return detection function allows the control device 1 to detect the cutting of high frequency components performed by the electric circuit 501 in the high temperature range or medium temperature range of the ignition coil 300. By detecting the cut of the high frequency component, the control device 1 recognizes that the temperature state of the ignition coil 300 is equal to or higher than the threshold value A (first temperature), and the control device 1 recognizes that the temperature state of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). The output of the discharge pulse is cut off from the ignition signal SA. That is, the control device 1 outputs only the main ignition signal when the coil temperature is equal to or higher than the threshold value A (first temperature). As a result, the amount of heat generated by the ignition coil 300 can be suppressed.
 しかし、制御装置1は、主点火信号のみを出力する状態において、電気回路501による高周波成分のカットを検出することができない。そのため、制御装置1は、いったん上昇した点火コイル300の温度状態が閾値A(第1温度)未満へと収束しても、多重点火信号の出力を再開できなくなる虞がある。そこで、制御装置1は、コイル温度が閾値A(第1温度)以上となって主点火信号のみを出力する状態へと遷移した後、過熱検知パルス(過熱検知信号)を出力する(図17の3段目参照)。 However, the control device 1 cannot detect the cutting of high frequency components by the electric circuit 501 in a state where only the main ignition signal is output. Therefore, even if the temperature state of the ignition coil 300, which has once increased, converges to below the threshold value A (first temperature), the control device 1 may not be able to resume outputting the multiple ignition signal. Therefore, the control device 1 outputs an overheat detection pulse (overheat detection signal) after the coil temperature becomes equal to or higher than the threshold value A (first temperature) and transitions to a state where only the main ignition signal is output (see FIG. 17). (See third row).
 過熱検知パルスは、少なくとも1回の高周波パルス(単発パルス)である。これにより、無駄な充電や無駄な信号の出力動作を減らすことができる。また、過熱検知パルスの周波数は、電気回路501のフィルタ部370が点火信号SAを遮断する定格周波数を上回るような周波数帯域でありつつ、制御装置1のリターン検出機能(出力モニタ回路832)により点火信号SAのリターン信号を検出可能な範囲に設定する。これにより、過熱検知パルスは、中温域でフィルタ部370にカットされ、低温域でフィルタ部370にカットされない。したがって、制御装置1は、過熱検知パルスがフィルタ部370でカットされているか否かをリターン検出機能で検出することで、点火コイル300の温度状態を正しく認識することができる(図17の4段目参照)。 The overheat detection pulse is at least one high frequency pulse (single pulse). This can reduce wasteful charging and wasteful signal output operations. Moreover, the frequency of the overheat detection pulse is within a frequency band that exceeds the rated frequency at which the filter section 370 of the electric circuit 501 blocks the ignition signal SA, and the return detection function (output monitor circuit 832) of the control device 1 allows the ignition signal to be ignited. The return signal of signal SA is set within a detectable range. As a result, the overheat detection pulse is cut by the filter section 370 in the medium temperature range, and is not cut by the filter section 370 in the low temperature range. Therefore, the control device 1 can correctly recognize the temperature state of the ignition coil 300 by using the return detection function to detect whether or not the overheating detection pulse is cut by the filter section 370 (the 4 stages shown in FIG. 17). (see item).
 制御装置1は、コイル温度が閾値A(第1温度)未満であることを認識すると、予充電信号と多重点火信号を含む点火信号SAの出力を再開する(図17の5段目参照)。そして、予充電信号と多重点火信号の出力を再開した後は、過熱検知パルスの出力を停止する(図17の5段目参照)。これにより、制御装置1の演算負荷や、点火制御部83の負担を軽減しつつ点火コイル300の発熱量を抑制することができる。 When the control device 1 recognizes that the coil temperature is less than the threshold value A (first temperature), it resumes outputting the ignition signal SA including the precharge signal and the multiple ignition signal (see the fifth stage in FIG. 17). . After restarting the output of the precharge signal and the multiple ignition signal, the output of the overheat detection pulse is stopped (see the fifth stage in FIG. 17). Thereby, the amount of heat generated by the ignition coil 300 can be suppressed while reducing the calculation load on the control device 1 and the load on the ignition control section 83.
 過熱検知パルスの位相は、先回の主点火信号よりも後で次回の予充電信号よりも前、且つ制御装置1の点火信号の切り替えに必要な時間を確保できるタイミングに設定する。なお、点火信号の切り替えに必要な時間とは、制御装置1の過熱検知パルスの出力、当該過熱検知パルスのリターン信号の検出、及び予充電を実行可能であるか否かの判定に夫々要する時間の合計である。これにより、制御装置1は、サイクル内で予充電パルスおよび多重放電パルスの出力の切り替えを行うことができる。 The phase of the overheating detection pulse is set at a timing that is later than the previous main ignition signal but before the next precharge signal and that allows the time required for switching the ignition signal of the control device 1 to be secured. Note that the time required to switch the ignition signal is the time required to output the overheat detection pulse of the control device 1, detect the return signal of the overheat detection pulse, and determine whether or not precharging is possible. is the sum of Thereby, the control device 1 can switch the output of the precharge pulse and the multiple discharge pulse within a cycle.
 また、過熱検知パルスの位相は、上述の点火信号の切り替えに必要な時間を確保できる期間の中で、できるだけ遅い時期にするとよい。換言すれば、過熱検知パルスは、内燃機関の行程のうち、上述の予充電信号を出力する予定のタイミングよりも点火信号の切り替えに必要な時間だけ早めた時期に出力するとよい(図17の3~5段目参照)。これにより、過熱検知パルスのリターン信号に先回の主点火信号による点火コイル300の温度の最新(直近)の状況が反映され、点火信号の切り替え遅れを短縮し予充電パルスおよび多重放電パルス出力を無駄なく実施することができる。 Additionally, the phase of the overheating detection pulse is preferably set as late as possible within the time period necessary for switching the ignition signal described above. In other words, it is preferable to output the overheat detection pulse at a time during the stroke of the internal combustion engine that is earlier than the timing at which the above-mentioned precharge signal is scheduled to be output by the time necessary for switching the ignition signal (see 3 in FIG. 17). (See row 5). As a result, the latest (recent) temperature status of the ignition coil 300 according to the previous main ignition signal is reflected in the return signal of the overheat detection pulse, reducing the delay in switching the ignition signal and increasing the output of the precharge pulse and multiple discharge pulse. It can be carried out without waste.
 また、過熱検知パルスは、内燃機関の燃焼サイクルうちの所定のサイクル毎に出力してもよい。例えば、点火コイル300の温度が閾値B(第2温度)以上(高温域)になって、主点火信号までカットされた場合は、予充電パルス、多重放電パルス及び主点火信号の制御装置1からの出力を夫々停止する(図示せず)とともに、一定時間毎に(間欠的に)過熱検知パルスだけを出力する。これにより、制御装置1の演算負荷や、点火制御部83の負担を軽減しつつ点火コイル300の温度が下がって再び混合気に点火が可能な状態になったことをいち早く検出することができる。なお、このような一定時間毎の(間欠的)過熱検知パルスの出力制御は、後述するアイドルストップ制御等によって内燃機関の回転が停止している場合には、燃焼サイクルに非同期で実施することも可能である。 Furthermore, the overheat detection pulse may be output at every predetermined cycle of the combustion cycle of the internal combustion engine. For example, if the temperature of the ignition coil 300 exceeds the threshold value B (second temperature) (high temperature range) and the main ignition signal is also cut, the precharge pulse, multiple discharge pulse, and main ignition signal control device 1 (not shown), and only an overheat detection pulse is output at regular intervals (intermittently). Thereby, it is possible to quickly detect that the temperature of the ignition coil 300 has decreased and the air-fuel mixture can be ignited again while reducing the calculation load on the control device 1 and the load on the ignition control section 83. Note that such output control of (intermittent) overheating detection pulses at regular intervals may also be performed asynchronously to the combustion cycle when the rotation of the internal combustion engine is stopped due to idle stop control, etc., which will be described later. It is possible.
[燃料噴射量切替処理]
 次に、本実施形態に係る燃料噴射量切替処理について、図18を参照して説明する。
 図18は、燃料噴射量切替処理の例を示すフローチャートである。
[Fuel injection amount switching process]
Next, the fuel injection amount switching process according to this embodiment will be explained with reference to FIG. 18.
FIG. 18 is a flowchart illustrating an example of fuel injection amount switching processing.
 燃料噴射量切替処理を開始すると、制御装置1の全体制御部81(図3参照)は、内燃機関の始動から現在まで経過した時間を取得する。そして、全体制御部81は、始動から現在まで経過した時間が、予め定めた規定値以内であるか否かを判定する(S310)。予め定めた規定値は、上述した暖機が完了するまでの期間に相当する。 When the fuel injection amount switching process is started, the overall control unit 81 (see FIG. 3) of the control device 1 acquires the time that has passed from the start of the internal combustion engine to the present. Then, the overall control unit 81 determines whether the time elapsed from the start to the present time is within a predetermined value (S310). The predetermined value corresponds to the period until the warm-up described above is completed.
 ステップS310において、始動から現在まで経過した時間が、予め定めた規定値以内でないと判定したとき(S310がNO判定の場合)、全体制御部81は、燃料噴射量切替処理を終了する(S320)。 In step S310, when it is determined that the time that has passed from startup to the present is not within a predetermined value (NO in S310), the overall control unit 81 ends the fuel injection amount switching process (S320). .
 一方、ステップS310において、始動から現在まで経過した時間が、予め定めた規定値以内であると判定したとき(S310がYES判定の場合)、全体制御部81は、予充電信号及び多重点火信号を含む点火信号SAを出力する(S330)。 On the other hand, when it is determined in step S310 that the time that has passed from the start to the present is within a predetermined value (YES in S310), the overall control unit 81 transmits the precharge signal and the multiple ignition signal. The ignition signal SA including the following is output (S330).
 次に、全体制御部81は、点火信号SAの多重点火信号の部分と、出力モニタ回路832から得たリターン信号の上記多重点火信号に該当する部分とが異なっているか否かを判定する(S340)。ステップS340において、点火信号SAとリターン信号が異なると判定した場合に、全体制御部81は、フィルタ部370が多重点火信号を遮断したと判断する。上述のように、フィルタ部370が多重点火信号を遮断した場合は、点火コイル300のコイル温度は少なくとも閾値A(第1温度)以上である。 Next, the overall control unit 81 determines whether or not the multiple ignition signal portion of the ignition signal SA is different from the portion corresponding to the multiple ignition signal of the return signal obtained from the output monitor circuit 832. (S340). If it is determined in step S340 that the ignition signal SA and the return signal are different, the overall control section 81 determines that the filter section 370 has blocked the multiple ignition signal. As described above, when the filter section 370 blocks the multiple ignition signal, the coil temperature of the ignition coil 300 is at least equal to or higher than the threshold value A (first temperature).
 ステップS340において、点火信号SAとリターン信号が異なると判定したとき(S340がYES判定の場合)、全体制御部81は、燃料噴射量を第1燃料噴射量に設定する(S350)。 In step S340, when it is determined that the ignition signal SA and the return signal are different (YES in S340), the overall control unit 81 sets the fuel injection amount to the first fuel injection amount (S350).
 次に、全体制御部81は、予充電信号及び多重点火信号をOFFして、過熱検知パルス(過熱検知信号)をONする(ステップS360)。すなわち、全体制御部81は、予充電信号及び多重点火信号の出力を停止して、過熱検知信号を出力する。全体制御部81が予充電信号及び多重点火信号の出力を停止することにより、点火コイル300の発熱量を低減してコイル温度を低下させることができる。 Next, the overall control unit 81 turns off the precharge signal and the multiple ignition signal, and turns on the overheat detection pulse (overheat detection signal) (step S360). That is, the overall control unit 81 stops outputting the precharge signal and the multiple ignition signal, and outputs the overheat detection signal. When the overall control unit 81 stops outputting the precharge signal and the multiple ignition signal, it is possible to reduce the amount of heat generated by the ignition coil 300 and lower the coil temperature.
 次に、全体制御部81は、点火信号SAの過熱検知信号の部分とリターン信号の上記過熱検知信号に該当する部分とが異なるか否かを判定する(S370)。ステップS370において、点火信号SAとリターン信号が異なると判定した場合に、全体制御部81は、フィルタ部370が過熱検知パルスを遮断したと判断する。フィルタ部370が過熱検知パルスを遮断した場合は、点火コイル300のコイル温度は依然として閾値A(第1温度)以上である。 Next, the overall control unit 81 determines whether the overheat detection signal portion of the ignition signal SA is different from the portion of the return signal that corresponds to the overheat detection signal (S370). In step S370, when it is determined that the ignition signal SA and the return signal are different, the overall control section 81 determines that the filter section 370 has cut off the overheat detection pulse. When the filter section 370 cuts off the overheat detection pulse, the coil temperature of the ignition coil 300 is still equal to or higher than the threshold value A (first temperature).
 ステップS370において、点火信号SAとリターン信号が異なると判定したとき(S370がYES判定の場合)、全体制御部81は、ステップS370を繰り返す。すなわち、全体制御部81は、コイル温度が閾値A(第1温度)未満となるまで、ステップS370を繰り返す。 In step S370, when it is determined that the ignition signal SA and the return signal are different (YES in S370), the overall control unit 81 repeats step S370. That is, the overall control unit 81 repeats step S370 until the coil temperature becomes less than the threshold value A (first temperature).
 一方、ステップS370において、点火信号SAとリターン信号が一致すると判定したとき(S370がNO判定の場合)、全体制御部81は、コイル温度が閾値A(第1温度)未満であると判断する。そして、全体制御部81は、過熱検知パルスの出力を停止して、予充電信号及び多重点火信号を出力する(S380)。 On the other hand, when it is determined in step S370 that the ignition signal SA and the return signal match (if NO in S370), the overall control unit 81 determines that the coil temperature is less than the threshold value A (first temperature). Then, the overall control unit 81 stops outputting the overheat detection pulse and outputs a precharge signal and a multiple ignition signal (S380).
 ステップS380の処理後、又はステップS340において点火信号SAとリターン信号が一致すると判定したとき(S340がNO判定の場合)、全体制御部81は、燃料噴射量を第2燃料噴射量に設定する(S390)。ステップS390の処理後、全体制御部81は、処理をステップS310に移す。 After the processing in step S380, or when it is determined in step S340 that the ignition signal SA and the return signal match (if NO in S340), the overall control unit 81 sets the fuel injection amount to the second fuel injection amount ( S390). After the process in step S390, the overall control unit 81 moves the process to step S310.
[多重点火実施可能期間]
 次に、本実施形態に係る多重点火を実施可能な期間について、図19を参照して説明する。
 図19は、一般的な自動車へ搭載されたエンジン(内燃機関)の動作状態と多重点火許可期間の関係を示すタイミングチャートである。
[Multiple ignition possible period]
Next, a period during which multiple ignitions can be performed according to this embodiment will be described with reference to FIG. 19.
FIG. 19 is a timing chart showing the relationship between the operating state of an engine (internal combustion engine) installed in a typical automobile and the multiple ignition permission period.
 近年のエンジン(内燃機関)制御には、アイドルストップ制御が搭載されているものがある。アイドルストップ制御を実施する場合は、自動車の停止とともにエンジンも停止するため、エンジン始動回数が増加する。一方、多重点火を実行する直前の電極の温度が低いほど、多重点火を実行する場合と実行しない場合の電極の温度差が大きくなる。そのため、多重点火を実行する直前の電極の温度が低いほど、多重点火を実施した際の火炎核の保温作用を期待できる。そのため、エンジン始動時又はエンジン再始動時の電極が低温である時期に、多重点火を行うことが望ましい。 Some modern engine (internal combustion engine) controls are equipped with idle stop control. When implementing idle stop control, the engine also stops when the vehicle stops, so the number of engine starts increases. On the other hand, the lower the temperature of the electrode immediately before multiple ignition is performed, the larger the temperature difference between the electrodes when multiple ignition is performed and when multiple ignition is not performed. Therefore, the lower the temperature of the electrode immediately before performing multiple ignition, the more heat-retaining effect of the flame core can be expected when multiple ignition is performed. Therefore, it is desirable to perform multiple ignitions when the electrode is at a low temperature when starting or restarting the engine.
 具体的には、燃料噴射の開始に伴う初爆又は再初爆の後に加え、初爆前の一定期間に多重点火を行うことで、電極の更なる昇温を期待できる。なお、燃料噴射の開始前は、燃焼が起きないため、電極昇温に特化した、連続的な多重点火(多重放電制御)を実行することが可能である。 Specifically, by performing multiple ignitions for a certain period of time before the first explosion in addition to after the first explosion or second first explosion accompanying the start of fuel injection, further temperature rise of the electrode can be expected. Note that since combustion does not occur before the start of fuel injection, it is possible to perform continuous multiple ignition (multiple discharge control) specialized for raising the temperature of the electrode.
 但し、連続的な多重点火は、燃料噴射後の多重点火よりも発熱量が増大する。このため、連続的な多重点火の実行期間を長くすると、燃料噴射開始前に点火コイル300が過熱状態となる。その結果、燃料噴射開始後に多重点火を実行できなくなる。そこで、エンジンの運転履歴、外気温、冷却水温などから点火コイル300や電極210,220の温度を推定し、燃料噴射開始前と燃料噴射開始後の多重点火を実行する期間を予め定めておくとよい。 However, continuous multiple ignitions generate more heat than multiple ignitions after fuel injection. Therefore, if the execution period of continuous multiple ignition is lengthened, the ignition coil 300 becomes overheated before the start of fuel injection. As a result, multiple ignition cannot be performed after the start of fuel injection. Therefore, the temperatures of the ignition coil 300 and electrodes 210, 220 are estimated from the engine operating history, outside temperature, cooling water temperature, etc., and the periods for performing multiple ignition before and after the start of fuel injection are determined in advance. Good.
 特に、寒冷地における冷間始動時は、点火コイル300と電極210,220の温度が十分に低くなる。そのため、エンジン回転開始前から多重点火を開始することも可能である。この場合は、筒内の空気流動が無いため、多重点火による高い昇温効果を期待できる。 Particularly, during a cold start in a cold region, the temperatures of the ignition coil 300 and the electrodes 210, 220 are sufficiently low. Therefore, it is also possible to start multiple ignition before the engine starts rotating. In this case, since there is no air flow within the cylinder, a high temperature-raising effect can be expected due to multiple ignitions.
[点火性能と当量比と多重点火の関係]
 次に、本実施形態に係る点火性能と当量比と多重点火の関係について、図20を参照して説明する。
 図20は、当量比と最小点火エネルギーの関係を示す相関グラフである。
[Relationship between ignition performance, equivalence ratio and multiple ignitions]
Next, the relationship between ignition performance, equivalence ratio, and multiple ignition according to this embodiment will be described with reference to FIG. 20.
FIG. 20 is a correlation graph showing the relationship between equivalence ratio and minimum ignition energy.
 図20に示すグラフの横軸は、混合気の当量比である。当量比は、空気と燃料の質量比を示す。当量比が大きい場合は燃料が濃くなり、当量比が小さい場合は燃料が薄くなる。そして、当量比が1の場合は、理論空燃比となる。 The horizontal axis of the graph shown in FIG. 20 is the equivalence ratio of the air-fuel mixture. Equivalence ratio indicates the mass ratio of air and fuel. When the equivalence ratio is large, the fuel becomes rich, and when the equivalence ratio is small, the fuel becomes lean. When the equivalence ratio is 1, it becomes the stoichiometric air-fuel ratio.
 図20に示すグラフの縦軸は、主点火における最小点火エネルギーである。最小点火エネルギーが、点火性能の代表的な指標である。最小点火エネルギーの一般的な単位は、ジュールである。最小点火エネルギーは、混合気を燃焼させるために必要な最小の放電エネルギーのことである。最小点火エネルギーが大きい場合は点火性能が低くなり、最少点火エネルギーが小さい場合は点火性能が高くなる。 The vertical axis of the graph shown in FIG. 20 is the minimum ignition energy in the main ignition. Minimum ignition energy is a typical indicator of ignition performance. A common unit of minimum ignition energy is the joule. Minimum ignition energy is the minimum discharge energy required to combust a mixture. If the minimum ignition energy is large, the ignition performance will be low, and if the minimum ignition energy is small, the ignition performance will be high.
 ここで、点火性能についての主な決定要因に、混合気の当量比と多重点火がある。図20に示すように、当量比が理論混合比(空燃比)から乖離すると、最小点火エネルギーが大きくなり、点火性能が低くなる。冷機始動の場合は、燃料の気化が遅れるため、混合気の当量比は理論混合比よりも小さくなる。したがって、冷機始動の場合は、エンジン(内燃機関)や環境の温度が低下すると共に、最小点火エネルギーが大きくなる。 Here, the main determining factors for ignition performance are the equivalence ratio of the air-fuel mixture and multiple ignitions. As shown in FIG. 20, when the equivalence ratio deviates from the stoichiometric mixture ratio (air-fuel ratio), the minimum ignition energy increases and the ignition performance decreases. In the case of a cold engine start, the vaporization of the fuel is delayed, so the equivalence ratio of the mixture becomes smaller than the stoichiometric mixture ratio. Therefore, in the case of a cold start, the temperature of the engine (internal combustion engine) and the environment decreases, and the minimum ignition energy increases.
 一方、多重点火により電極が加熱された状態では、電極による火炎核からの吸熱が低下するため、点火性能が向上する。そのため、図20に点線で示すように、多重点火を実行しない場合よりも、より小さな点火エネルギーで混合気を燃焼させることが可能となる。すなわち、多重点火を実行しない場合であってもエンジン始動時の最小点火エネルギーを満足できる場合は、多重点火によって点火性能が向上した分を、混合気の当量比を小さくすることに転化することができる。これにより、最小点火エネルギーを充足すると同時に、燃料噴射量を低減することができる。その結果、燃費の向上と炭化水素の削減を実現することができる。 On the other hand, in a state where the electrode is heated by multiple ignitions, the ignition performance improves because the electrode absorbs heat from the flame kernel. Therefore, as shown by the dotted line in FIG. 20, it is possible to combust the air-fuel mixture with smaller ignition energy than when multiple ignition is not performed. In other words, if the minimum ignition energy at engine startup can be satisfied even when multiple ignitions are not performed, the improvement in ignition performance due to multiple ignitions is converted into a reduction in the equivalence ratio of the air-fuel mixture. be able to. This makes it possible to satisfy the minimum ignition energy and at the same time reduce the fuel injection amount. As a result, it is possible to improve fuel efficiency and reduce hydrocarbons.
 最小点火エネルギーを充足できない状態が生じると、失火となり、大量の炭化水素を含有する未燃混合気が排出されて、且つ、排気と燃費が悪化する。したがって、多重点火の有無の切り替えは、最小点火エネルギーを充足した状態を維持しながら行う必要がある。そのため、混合気の当量比を大きく(燃料噴射量の増大)した後に多重点火を停止する、又は多重点火を開始後に混合気の当量比を小さく(燃料噴射量を削減)するとよい。 If a situation arises in which the minimum ignition energy cannot be satisfied, a misfire will occur, and unburned air-fuel mixture containing a large amount of hydrocarbons will be exhausted, and exhaust emissions and fuel efficiency will deteriorate. Therefore, it is necessary to switch between the presence and absence of multiple ignition while maintaining a state in which the minimum ignition energy is satisfied. Therefore, it is preferable to stop multiple ignition after increasing the equivalence ratio of the air-fuel mixture (increase the fuel injection amount), or to decrease the equivalence ratio of the mixture (reduce the fuel injection amount) after starting multiple ignition.
 このように、本実施形態に係る制御装置1(内燃機関制御装置)は、点火プラグ200と、点火プラグ200に放電を生じさせる点火コイル300とを有する点火装置を含む内燃機関を制御する。制御装置1は、点火装置に出力信号を出力する全体制御部81(制御部)を備える。出力信号は、点火プラグ200を予熱するための多重点火信号と、多重点火信号とは異なる周波数であり、点火プラグ200の放電により混合気に点火するための主点火信号と、点火コイル300に予充電を行うための予充電信号とを含む。
 これにより、電極210,220の温度を高め、ひいては最小点火エネルギーを可及的に小さくして点火性能を高めることができる。その結果、主点火における点火プラグ200の着火性を向上させることができ、炭化水素の発生を抑制することができる。
In this way, the control device 1 (internal combustion engine control device) according to the present embodiment controls an internal combustion engine including an ignition device having a spark plug 200 and an ignition coil 300 that causes the spark plug 200 to generate discharge. The control device 1 includes an overall control section 81 (control section) that outputs an output signal to the ignition device. The output signal is a multiple ignition signal for preheating the ignition plug 200 and a frequency different from the multiple ignition signal, a main ignition signal for igniting the air-fuel mixture by discharge of the ignition plug 200, and a main ignition signal for igniting the ignition coil 300. and a precharge signal for precharging.
Thereby, the temperature of the electrodes 210, 220 can be increased, and the minimum ignition energy can be reduced as much as possible to improve ignition performance. As a result, the ignitability of the spark plug 200 during main ignition can be improved, and generation of hydrocarbons can be suppressed.
 本実施形態に係る全体制御部81(制御部)は、主点火信号を出力する前に多重点火信号を出力し、多重点火信号を出力する前に予充電信号を出力する。
 これにより、点火プラグ200の放電により混合気に点火する前に、電極210,220や電極210,220周りの吸気を効率よく暖めることができる。
The overall control unit 81 (control unit) according to the present embodiment outputs a multiple ignition signal before outputting the main ignition signal, and outputs a precharge signal before outputting the multiple ignition signal.
Thereby, the electrodes 210, 220 and the intake air around the electrodes 210, 220 can be efficiently warmed before the air-fuel mixture is ignited by the discharge of the spark plug 200.
 本実施形態に係る予充電信号は、多重点火信号よりも低周波である。
 これにより、点火コイル300の充電エネルギーを可及的に高めることができる。
The precharge signal according to this embodiment has a lower frequency than the multiple ignition signal.
Thereby, the charging energy of the ignition coil 300 can be increased as much as possible.
 本実施形態に係る全体制御部81(制御部)は、点火コイル300の温度が閾値A(所定温度)未満である場合に、予充電信号を出力する。
 これにより、点火コイル300の温度が閾値A未満であって点火コイル300が過熱状態でない場合に、点火コイル300の充電エネルギーを高めることができる。
The overall control unit 81 (control unit) according to the present embodiment outputs a precharge signal when the temperature of the ignition coil 300 is less than the threshold value A (predetermined temperature).
Thereby, when the temperature of the ignition coil 300 is less than the threshold value A and the ignition coil 300 is not in an overheated state, the charging energy of the ignition coil 300 can be increased.
 本実施形態に係る全体制御部81(制御部)は、点火コイル300の温度が閾値A(所定温度)以上である場合に、予充電信号の出力を停止し、予充電信号を出力するときよりも燃料噴射量を増加させる。
 これにより、点火コイル300の温度が閾値A以上であって点火コイル300が過熱状態である場合に、点火コイル300の温度が上昇することを抑制できる。また、燃料噴射量を増加させることにより、点火コイル300の温度が下がっても絶縁破壊電圧が高くならないようにすることができる。その結果、失火を抑制して、炭化水素の発生を抑制することができる。
When the temperature of the ignition coil 300 is equal to or higher than the threshold value A (predetermined temperature), the overall control unit 81 (control unit) according to the present embodiment stops outputting the precharge signal, and starts when outputting the precharge signal. also increases the amount of fuel injection.
Thereby, when the temperature of the ignition coil 300 is equal to or higher than the threshold value A and the ignition coil 300 is in an overheated state, it is possible to suppress the temperature of the ignition coil 300 from increasing. Furthermore, by increasing the fuel injection amount, it is possible to prevent the dielectric breakdown voltage from increasing even if the temperature of the ignition coil 300 decreases. As a result, misfires can be suppressed and generation of hydrocarbons can be suppressed.
 本実施形態に係る全体制御部81(制御部)は、予充電信号を出力しているときに、予充電信号を出力していないときよりも燃料噴射量を減少させる。
 これにより、炭化水素の発生を抑制することができる。
The overall control unit 81 (control unit) according to the present embodiment reduces the fuel injection amount when outputting the precharge signal than when not outputting the precharge signal.
Thereby, generation of hydrocarbons can be suppressed.
 本実施形態に係る出力信号は、点火コイル300の状態を検知するための過熱検知信号を含む。点火装置は、点火コイル300の温度を検出する温度検出部351と、点火コイル300の温度が閾値A(第1温度)以上になると出力信号のうち多重点火信号と過熱検知信号とを遮断するフィルタ部370とを有する。制御装置1(内燃機関制御装置)は、出力信号の自己診断を行うためのリターン信号を検出する出力モニタ回路832(リターン検出機能)を備える。全体制御部81(制御部)は、過熱検知信号とリターン信号とを比較して、フィルタ部で過熱検知信号が遮断されているか否かを判断する。そして、過熱検知信号が遮断されていると判断した場合に、点火コイル300の温度が閾値A(第1温度)以上であると判断する。一方、過熱検知信号が遮断されてないと判断した場合に、点火コイル300の温度が閾値A(第1温度)未満であると判断する。
 これにより、全体制御部81は、点火コイル300の温度は閾値A(第1温度)以上であるか否かを正確に把握することができる。その結果、点火コイル300の熱害を回避しながら予充電と多重点火を最大限に実行することができる。
The output signal according to this embodiment includes an overheat detection signal for detecting the state of the ignition coil 300. The ignition device includes a temperature detection unit 351 that detects the temperature of the ignition coil 300, and cuts off a multiple ignition signal and an overheat detection signal among the output signals when the temperature of the ignition coil 300 becomes equal to or higher than a threshold value A (first temperature). It has a filter section 370. The control device 1 (internal combustion engine control device) includes an output monitor circuit 832 (return detection function) that detects a return signal for self-diagnosing the output signal. The overall control section 81 (control section) compares the overheat detection signal and the return signal to determine whether the overheat detection signal is blocked by the filter section. Then, when it is determined that the overheat detection signal is cut off, it is determined that the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). On the other hand, if it is determined that the overheat detection signal is not interrupted, it is determined that the temperature of the ignition coil 300 is less than the threshold value A (first temperature).
Thereby, the overall control unit 81 can accurately determine whether the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature). As a result, precharging and multiple ignitions can be performed to the maximum extent while avoiding heat damage to the ignition coil 300.
 本実施形態に係る全体制御部81(制御部)は、主点火信号を出力した後のタイミングで過熱検知信号を出力する。
 これにより、サイクル内で点火信号の切り替えを行うことができる。また、過熱検知パルスのリターン信号に点火コイル300の温度の最新の状況が反映され、点火信号の切り替え遅れを短縮することができる。
The overall control unit 81 (control unit) according to this embodiment outputs an overheat detection signal at a timing after outputting the main ignition signal.
This allows the ignition signal to be switched within the cycle. Further, the latest status of the temperature of the ignition coil 300 is reflected in the return signal of the overheat detection pulse, so that the delay in switching the ignition signal can be shortened.
 本実施形態に係る全体制御部81(制御部)は、内燃機関の燃焼サイクルのうち所定のサイクル毎に過熱検知信号を出力する。
 これにより、例えば、主点火信号がカットされるほど点火コイルが過熱状態になった場合に、間欠的に過熱検知パルスを出力することができる。その結果、点火コイル300の温度が下がって再び混合気に点火が可能な状態になったことをいち早く検出することができる。
The overall control unit 81 (control unit) according to the present embodiment outputs an overheat detection signal for each predetermined cycle among the combustion cycles of the internal combustion engine.
Thereby, for example, when the ignition coil becomes so overheated that the main ignition signal is cut off, the overheat detection pulse can be output intermittently. As a result, it is possible to quickly detect that the temperature of the ignition coil 300 has decreased and the air-fuel mixture is ready to be ignited again.
 本実施形態に係る全体制御部81(制御部)は、点火コイル300の温度が閾値A(第1温度)未満であると判断した場合に、予充電信号を出力する。
 これにより、点火コイル300の温度が閾値A未満であって点火コイル300が過熱状態でない場合に、点火コイル300の充電エネルギーを高めて電極210,220間での放電を開始させ、当該放電により電極210,220の温度を高めることができる。
The overall control unit 81 (control unit) according to the present embodiment outputs a precharge signal when determining that the temperature of the ignition coil 300 is less than the threshold value A (first temperature).
As a result, when the temperature of the ignition coil 300 is less than the threshold value A and the ignition coil 300 is not in an overheated state, the charging energy of the ignition coil 300 is increased to start discharging between the electrodes 210 and 220, and the discharge causes the electrode to The temperature of 210 and 220 can be increased.
 本実施形態に係る全体制御部81(制御部)は、点火コイル300の温度が閾値A(第1温度)以上であると判断したした場合に、予充電信号及び多重点火信号のうち少なくとも一方の出力を停止する。
 これにより、点火コイル300の温度が閾値A以上であって点火コイル300が過熱状態である場合に、点火コイル300の温度が上昇することを抑制できる。
When the overall control unit 81 (control unit) according to the present embodiment determines that the temperature of the ignition coil 300 is equal to or higher than a threshold value A (first temperature), the overall control unit 81 (control unit) controls at least one of a precharge signal and a multiple ignition signal. Stop outputting.
Thereby, when the temperature of the ignition coil 300 is equal to or higher than the threshold value A and the ignition coil 300 is in an overheated state, it is possible to suppress the temperature of the ignition coil 300 from increasing.
 本実施形態に係る全体制御部81(制御部)は、アイドルストップ制御を実施する(内燃機関が所定の期間内に再起動した)場合に、主点火信号を出力する前に過熱検知信号を出力する。そして、点火コイル300の温度が閾値A(第1温度)未満であると判断した場合に、予充電信号及び多重点火信号を出力する。
 これにより、内燃機関の再始動時で合って点火コイル300が過熱状態ではない場合に、点火コイル300の充電エネルギーを可及的に高めることができる。そして、多重点火による点火エネルギーを増やさずに点火プラグ200の電極210,220の温度を上昇させることができる。その結果、点火プラグ200の着火性を向上させることができ、炭化水素の発生を抑制することができる。
The overall control unit 81 (control unit) according to the present embodiment outputs an overheat detection signal before outputting the main ignition signal when performing idle stop control (the internal combustion engine is restarted within a predetermined period). do. Then, when it is determined that the temperature of the ignition coil 300 is less than the threshold value A (first temperature), a precharge signal and a multiple ignition signal are output.
Thereby, when the internal combustion engine is restarted and the ignition coil 300 is not in an overheated state, the charging energy of the ignition coil 300 can be increased as much as possible. Furthermore, the temperature of the electrodes 210 and 220 of the spark plug 200 can be increased without increasing the ignition energy due to multiple ignitions. As a result, the ignitability of the spark plug 200 can be improved, and generation of hydrocarbons can be suppressed.
 本実施形態に係る全体制御部81(制御部)は、点火コイル300の温度が閾値A(第1温度)以上であると判断した場合に、予充電信号の出力を停止し、予充電信号を出力するときよりも燃料噴射量を増加させる。
 これにより、点火コイル300の温度が閾値A以上であって点火コイル300が過熱状態である場合に、点火コイル300の温度が上昇することを抑制できる。また、燃料噴射量を増加させることにより、点火コイル300の温度が下がっても絶縁破壊電圧が高くならないようにすることができる。その結果、失火を抑制して、炭化水素の発生を抑制することができる。
When the overall control unit 81 (control unit) according to the present embodiment determines that the temperature of the ignition coil 300 is equal to or higher than the threshold value A (first temperature), the overall control unit 81 (control unit) stops outputting the precharge signal, and outputs the precharge signal. Increase the fuel injection amount compared to when outputting.
Thereby, when the temperature of the ignition coil 300 is equal to or higher than the threshold value A and the ignition coil 300 is in an overheated state, it is possible to suppress the temperature of the ignition coil 300 from increasing. Furthermore, by increasing the fuel injection amount, it is possible to prevent the dielectric breakdown voltage from increasing even if the temperature of the ignition coil 300 decreases. As a result, misfires can be suppressed and generation of hydrocarbons can be suppressed.
 本実施形態に係る過熱検知信号は、単発パルス信号である。
 これにより、無駄な充電や無駄な信号の出力動作を減らすことができる。また、過熱検知信号が点火コイル300の温度上昇に影響しないようにすることができる。なお、本発明に係る過熱検知信号は、単発パルスに限定されず、点火コイルの温度上昇に影響しない範囲内のパルス数に設定することができる。
The overheat detection signal according to this embodiment is a single pulse signal.
This can reduce wasteful charging and wasteful signal output operations. Further, it is possible to prevent the overheat detection signal from affecting the temperature rise of the ignition coil 300. Note that the overheat detection signal according to the present invention is not limited to a single pulse, but can be set to a number of pulses within a range that does not affect the temperature rise of the ignition coil.
 本実施形態に係る過熱検知信号は、出力モニタ回路832(リターン検出機能)がリターン信号を検出可能であり、フィルタ部370が遮断できる周波数である。
 これにより、過熱検知信号がフィルタ部370で遮断されてないことを検出することで、コイル温度が閾値A(第1温度)未満であることを検知することができる。また、過熱検知信号がイグナイタ340に入力されても、電極210,220に火花が飛ばないようにすることができる。その結果、過熱検知信号が点火コイル300の温度上昇に影響しないようにすることができる。
The overheating detection signal according to this embodiment has a frequency at which the output monitor circuit 832 (return detection function) can detect the return signal and the filter section 370 can cut it off.
Thereby, by detecting that the overheat detection signal is not blocked by the filter section 370, it is possible to detect that the coil temperature is less than the threshold value A (first temperature). Further, even if the overheat detection signal is input to the igniter 340, it is possible to prevent sparks from flying to the electrodes 210, 220. As a result, the overheat detection signal can be prevented from affecting the temperature rise of the ignition coil 300.
 本実施形態に係る内燃機関制御方法は、点火プラグ200と、点火プラグ200に放電を生じさせる点火コイル300とを有する点火装置を含む内燃機関を制御する方法である。この内燃機関制御方法において、全体制御部81(制御部)は、点火プラグ200を予熱するための多重点火信号と、多重点火信号とは異なる周波数であり、点火プラグ200の放電により混合気に点火するための主点火信号と、点火コイル300に予充電を行うための予充電信号を点火装置に出力する。
 これにより、点火コイル300の充電エネルギーを可及的に高めることができる。そして、多重点火による点火エネルギーを増やさずに点火プラグ200の電極210,220の温度を上昇させることができる。その結果、点火プラグ200の着火性を向上させることができ、炭化水素の発生を抑制することができる。
The internal combustion engine control method according to the present embodiment is a method for controlling an internal combustion engine including an ignition device having a spark plug 200 and an ignition coil 300 that causes the spark plug 200 to generate discharge. In this internal combustion engine control method, the overall control unit 81 (control unit) generates a multiple ignition signal for preheating the ignition plug 200 and a multiple ignition signal that have different frequencies, and generates a mixture by discharging the ignition plug 200. A main ignition signal for igniting the ignition coil 300 and a precharge signal for precharging the ignition coil 300 are output to the ignition device.
Thereby, the charging energy of the ignition coil 300 can be increased as much as possible. Furthermore, the temperature of the electrodes 210 and 220 of the spark plug 200 can be increased without increasing the ignition energy due to multiple ignitions. As a result, the ignitability of the spark plug 200 can be improved, and generation of hydrocarbons can be suppressed.
 本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The present invention is not limited to the embodiments described above and shown in the drawings, and various modifications can be made without departing from the gist of the invention as set forth in the claims.
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Furthermore, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 1…内燃機関制御装置、 10…アナログ入力部、 20…デジタル入力部、 30…A/D変換部、 40…RAM、 50…MPU、 60…ROM、 70…I/Oポート、 80…出力回路、 81…全体制御部、 82…燃料噴射制御部、 83…点火制御部、 84…気筒判別部、 85…角度情報生成部、 86…回転数情報生成部、 87…吸気量計測部、 88…負荷情報生成部、 89…水温計測部、 100…内燃機関、 110…エアクリーナ、 111…吸気管、 112…吸気マニホールド、 113…スロットル弁、 113a…スロットル開度センサ、 114…流量センサ、 115…吸気温センサ、 120…リングギア、 121…クランク角センサ、 122…水温センサ、 123…クランクシャフト、 125…アクセルペダル、 126…アクセルポジションセンサ、 130…燃料タンク、 131…燃料ポンプ、 132…プレッシャレギュレータ、 133…燃料配管、 134…燃料噴射装置、 140…筒内圧センサ、 150…気筒、 151…吸気弁、 152…排気弁、 160…排気マニホールド、 161…三元触媒、 162…上流側空燃比センサ、 163…下流側空燃比センサ、 170…ピストン、 200…点火プラグ、 210…中心電極、 220…外側電極、 230…絶縁体、 300…点火コイル、 310…1次側コイル、 320…2次側コイル、 330…直流電源、 340…イグナイタ、350,360…温度スイッチ部、 351…温度検出部、 370…フィルタ部 500,501…電気回路、 831…通電制御回路、 832…出力モニタ回路 1... Internal combustion engine control device, 10... Analog input section, 20... Digital input section, 30... A/D conversion section, 40... RAM, 50... MPU, 60... ROM, 70... I/O port, 80... Output circuit , 81...Overall control section, 82...Fuel injection control section, 83...Ignition control section, 84...Cylinder discrimination section, 85...Angle information generation section, 86...Rotational speed information generation section, 87...Intake amount measurement section, 88... Load information generation section, 89... Water temperature measurement section, 100... Internal combustion engine, 110... Air cleaner, 111... Intake pipe, 112... Intake manifold, 113... Throttle valve, 113a... Throttle opening sensor, 114... Flow rate sensor, 115... Intake Air temperature sensor, 120... Ring gear, 121... Crank angle sensor, 122... Water temperature sensor, 123... Crankshaft, 125... Accelerator pedal, 126... Accelerator position sensor, 130... Fuel tank, 131... Fuel pump, 132... Pressure regulator, 133... Fuel pipe, 134... Fuel injection device, 140... Cylinder pressure sensor, 150... Cylinder, 151... Intake valve, 152... Exhaust valve, 160... Exhaust manifold, 161... Three-way catalyst, 162... Upstream air-fuel ratio sensor, 163... Downstream air-fuel ratio sensor, 170... Piston, 200... Spark plug, 210... Center electrode, 220... Outer electrode, 230... Insulator, 300... Ignition coil, 310... Primary coil, 320... Secondary coil , 330... DC power supply, 340... Igniter, 350, 360... Temperature switch section, 351... Temperature detection section, 370... Filter section 500, 501... Electric circuit, 831... Energization control circuit, 832... Output monitor circuit

Claims (16)

  1.  点火プラグと、前記点火プラグに放電を生じさせる点火コイルとを有する点火装置を含む内燃機関を制御する内燃機関制御装置であって、
     前記点火装置に出力信号を出力する制御部を備え、
     前記出力信号は、前記点火プラグを予熱するための多重点火信号と、前記多重点火信号とは異なる周波数であり、前記点火プラグの放電により混合気に点火するための主点火信号と、前記点火コイルに予充電を行うための予充電信号と、を含む
     内燃機関制御装置。
    An internal combustion engine control device for controlling an internal combustion engine including an ignition device having a spark plug and an ignition coil that causes the spark plug to generate discharge,
    comprising a control unit that outputs an output signal to the ignition device,
    The output signal includes a multiple ignition signal for preheating the ignition plug, a main ignition signal that has a different frequency from the multiple ignition signal and for igniting the air-fuel mixture by discharge of the ignition plug, and a main ignition signal for igniting the air-fuel mixture by discharge of the ignition plug; A precharge signal for precharging an ignition coil.
  2.  前記制御部は、前記主点火信号を出力する前に前記多重点火信号を出力し、前記多重点火信号を出力する前に前記予充電信号を出力する
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the control unit outputs the multiple ignition signal before outputting the main ignition signal, and outputs the precharge signal before outputting the multiple ignition signal. .
  3.  前記予充電信号は、前記多重点火信号よりも低周波である
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the precharge signal has a lower frequency than the multiple ignition signal.
  4.  前記制御部は、前記点火コイルの温度が所定温度未満である場合に、前記予充電信号を出力する
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the control unit outputs the precharge signal when the temperature of the ignition coil is less than a predetermined temperature.
  5.  前記制御部は、前記点火コイルの温度が所定温度以上である場合に、前記予充電信号の出力を停止し、前記予充電信号を出力するときよりも燃料噴射量を増加させる
     請求項1に記載の内燃機関制御装置。
    The control unit stops outputting the precharge signal and increases the fuel injection amount compared to when outputting the precharge signal when the temperature of the ignition coil is equal to or higher than a predetermined temperature. internal combustion engine control device.
  6.  前記制御部は、前記予充電信号を出力しているときに、前記予充電信号を出力していないときよりも燃料噴射量を減少させる
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the control unit reduces the fuel injection amount when outputting the precharge signal than when not outputting the precharge signal.
  7.  前記出力信号は、前記点火コイルの状態を検知するための過熱検知信号を含み、
     前記点火装置は、前記点火コイルの温度を検出する温度検出部と、前記点火コイルの温度が第1温度以上になると前記出力信号のうち前記多重点火信号と過熱検知信号とを遮断するフィルタ部と、を有し、
     前記出力信号の自己診断を行うためのリターン信号を検出するリターン検出機能をさらに備え、
     前記制御部は、
     前記過熱検知信号と前記リターン信号とを比較して、前記フィルタ部で前記過熱検知信号が遮断されているか否かを判断し、
     前記過熱検知信号が遮断されていると判断した場合に、前記点火コイルの温度が前記第1温度以上であると判断し、
     前記過熱検知信号が遮断されてないと判断した場合に、前記点火コイルの温度が前記第1温度未満であると判断する
     請求項1に記載の内燃機関制御装置。
    The output signal includes an overheat detection signal for detecting a state of the ignition coil,
    The ignition device includes a temperature detection unit that detects the temperature of the ignition coil, and a filter unit that blocks the multiple ignition signal and the overheat detection signal from among the output signals when the temperature of the ignition coil becomes a first temperature or higher. and,
    further comprising a return detection function for detecting a return signal for self-diagnosing the output signal,
    The control unit includes:
    comparing the overheating detection signal and the return signal to determine whether the overheating detection signal is blocked by the filter section;
    If it is determined that the overheating detection signal is interrupted, determining that the temperature of the ignition coil is equal to or higher than the first temperature,
    The internal combustion engine control device according to claim 1, wherein when it is determined that the overheat detection signal is not interrupted, it is determined that the temperature of the ignition coil is lower than the first temperature.
  8.  前記制御部は、前記主点火信号を出力した後のタイミングで前記過熱検知信号を出力する
     請求項7に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 7, wherein the control unit outputs the overheat detection signal at a timing after outputting the main ignition signal.
  9.  前記制御部は、前記内燃機関の燃焼サイクルのうち所定のサイクル毎に前記過熱検知信号を出力する
     請求項8に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 8, wherein the control unit outputs the overheat detection signal every predetermined cycle among combustion cycles of the internal combustion engine.
  10.  前記制御部は、前記点火コイルの温度が前記第1温度未満であると判断した場合に、前記予充電信号を出力する
     請求項7に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 7, wherein the control unit outputs the precharge signal when determining that the temperature of the ignition coil is lower than the first temperature.
  11.  前記制御部は、前記点火コイルの温度が前記第1温度以上であると判断したした場合に、前記予充電信号及び前記多重点火信号のうち少なくとも一方の出力を停止する
     請求項7に記載の内燃機関制御装置。
    The control unit stops outputting at least one of the precharge signal and the multiple ignition signal when determining that the temperature of the ignition coil is equal to or higher than the first temperature. Internal combustion engine control device.
  12.  前記制御部は、前記内燃機関が所定の期間内に再起動した場合に、前記主点火信号を出力する前に前記過熱検知信号を出力して、前記点火コイルの温度が前記第1温度未満であると判断した場合に、前記予充電信号及び前記多重点火信号を出力する
     請求項7に記載の内燃機関制御装置。
    The control unit outputs the overheat detection signal before outputting the main ignition signal when the internal combustion engine is restarted within a predetermined period, and the controller outputs the overheat detection signal when the temperature of the ignition coil is lower than the first temperature. The internal combustion engine control device according to claim 7, wherein the internal combustion engine control device outputs the precharge signal and the multiple ignition signal when it is determined that the precharge signal and the multiple ignition signal exist.
  13.  前記制御部は、前記点火コイルの温度が前記第1温度以上であると判断した場合に、前記予充電信号の出力を停止し、前記予充電信号を出力するときよりも燃料噴射量を増加させる
     請求項7に記載の内燃機関制御装置。
    When the control unit determines that the temperature of the ignition coil is equal to or higher than the first temperature, the control unit stops outputting the precharge signal and increases the fuel injection amount compared to when outputting the precharge signal. The internal combustion engine control device according to claim 7.
  14.  前記過熱検知信号は、単発パルス信号である
     請求項7に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 7, wherein the overheat detection signal is a single pulse signal.
  15.  前記過熱検知信号は、前記リターン検出機能がリターン信号を検出可能であり、前記フィルタ部が遮断できる周波数である
     請求項7に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 7, wherein the overheat detection signal has a frequency at which the return detection function can detect the return signal and the filter section can cut it off.
  16.  点火プラグと、前記点火プラグに放電を生じさせる点火コイルとを有する点火装置を含む内燃機関を制御する内燃機関制御方法であって、
     制御部が、前記点火プラグを予熱するための多重点火信号と、前記多重点火信号とは異なる周波数であり、前記点火プラグの放電により混合気に点火するための主点火信号と、前記点火コイルに予充電を行うための予充電信号を前記点火装置に出力する
     内燃機関制御方法。
    An internal combustion engine control method for controlling an internal combustion engine including an ignition device having an ignition plug and an ignition coil that causes the ignition plug to generate an electric discharge, the method comprising:
    A control unit includes a multiple ignition signal for preheating the spark plug, a main ignition signal that has a different frequency from the multiple ignition signal, and for igniting the air-fuel mixture by discharge of the spark plug, and a main ignition signal for igniting the air-fuel mixture by discharging the spark plug; An internal combustion engine control method, comprising: outputting a precharge signal to the ignition device to precharge a coil.
PCT/JP2022/020789 2022-05-19 2022-05-19 Internal combustion engine control device and internal combustion engine control method WO2023223488A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/020789 WO2023223488A1 (en) 2022-05-19 2022-05-19 Internal combustion engine control device and internal combustion engine control method
JP2024521473A JPWO2023223488A1 (en) 2022-05-19 2022-05-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020789 WO2023223488A1 (en) 2022-05-19 2022-05-19 Internal combustion engine control device and internal combustion engine control method

Publications (1)

Publication Number Publication Date
WO2023223488A1 true WO2023223488A1 (en) 2023-11-23

Family

ID=88834917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020789 WO2023223488A1 (en) 2022-05-19 2022-05-19 Internal combustion engine control device and internal combustion engine control method

Country Status (2)

Country Link
JP (1) JPWO2023223488A1 (en)
WO (1) WO2023223488A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202682U (en) * 1985-06-07 1986-12-19
JPH0326872A (en) * 1989-06-26 1991-02-05 Hanshin Electric Co Ltd Capacity electric discharge type ignitor
JP2017072045A (en) * 2015-10-06 2017-04-13 株式会社日本自動車部品総合研究所 Ignition device
WO2019087748A1 (en) * 2017-10-31 2019-05-09 日立オートモティブシステムズ株式会社 Ignition device for internal combustion engines, and control device for vehicles
WO2020085042A1 (en) * 2018-10-24 2020-04-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
US20210348588A1 (en) * 2019-12-06 2021-11-11 Weichai Torch Technology Co., Ltd. Spark plug heat up method via transient control of the spark discharge current

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202682U (en) * 1985-06-07 1986-12-19
JPH0326872A (en) * 1989-06-26 1991-02-05 Hanshin Electric Co Ltd Capacity electric discharge type ignitor
JP2017072045A (en) * 2015-10-06 2017-04-13 株式会社日本自動車部品総合研究所 Ignition device
WO2019087748A1 (en) * 2017-10-31 2019-05-09 日立オートモティブシステムズ株式会社 Ignition device for internal combustion engines, and control device for vehicles
WO2020085042A1 (en) * 2018-10-24 2020-04-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
US20210348588A1 (en) * 2019-12-06 2021-11-11 Weichai Torch Technology Co., Ltd. Spark plug heat up method via transient control of the spark discharge current

Also Published As

Publication number Publication date
JPWO2023223488A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US11198425B2 (en) Ignition device for internal combustion engines, and control device for vehicles
JP7260664B2 (en) Control device for internal combustion engine
JP2018071485A (en) Device for controlling internal combustion engine
JP6942885B2 (en) Control device for internal combustion engine
WO2023223488A1 (en) Internal combustion engine control device and internal combustion engine control method
JP4000926B2 (en) Control device and control method for direct-injection spark ignition engine
JP4075341B2 (en) Control device for direct injection spark ignition engine
WO2023084573A1 (en) Ignition device for internal combustion engine, electronic control device, and method for controlling internal combustion engine
CN118632981A (en) Internal combustion engine control device and internal combustion engine control method
US20210396201A1 (en) Control Device for Internal Combustion Engine
JP7454109B2 (en) Internal combustion engine control device and ignition engine control method
JP2008232066A (en) Ignition control system for internal combustion engine
CN113950578B (en) Control device for internal combustion engine
WO2022230146A1 (en) Internal combustion engine control device
JP5946338B2 (en) Control device for internal combustion engine
JP6095413B2 (en) Control device for spark ignition internal combustion engine
JP3651304B2 (en) Ignition device for internal combustion engine
JP6742675B2 (en) Control device for internal combustion engine
JP6537317B2 (en) Control device for internal combustion engine
JP2017194006A (en) Control device of internal combustion engine
JP4061870B2 (en) Control device for direct injection spark ignition engine
JP2021195874A (en) Internal combustion engine control device
JP2021195875A (en) Internal combustion engine control device
JP6304937B2 (en) Control device for internal combustion engine
JP2007239744A (en) Fuel injection control method of direct injection engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521473

Country of ref document: JP

Kind code of ref document: A