WO2023206842A1 - 无线通信结构、显示面板和无线通信装置 - Google Patents

无线通信结构、显示面板和无线通信装置 Download PDF

Info

Publication number
WO2023206842A1
WO2023206842A1 PCT/CN2022/109239 CN2022109239W WO2023206842A1 WO 2023206842 A1 WO2023206842 A1 WO 2023206842A1 CN 2022109239 W CN2022109239 W CN 2022109239W WO 2023206842 A1 WO2023206842 A1 WO 2023206842A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
wave antenna
wireless communication
connection
circuit board
Prior art date
Application number
PCT/CN2022/109239
Other languages
English (en)
French (fr)
Inventor
黄奂衢
武杰
崔霜
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to EP22785682.0A priority Critical patent/EP4290691A4/en
Publication of WO2023206842A1 publication Critical patent/WO2023206842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of display devices, and in particular, to a wireless communication structure, a display panel and a wireless communication device.
  • the functions of handheld wireless communication devices are changing with each passing day, and the market's requirements for device appearance and wireless communication performance are also constantly increasing.
  • 5G fifth generation mobile communications
  • mm-wave millimeter-wave
  • non-millimeter-wave non-millimeter-wave, non-mm- wave
  • NFC near field communication
  • the screen-to-body ratio of handheld wireless communication devices is also getting higher and higher.
  • the overall device cannot be significantly enlarged, how to install the wireless communication module in the display panel is a key technology trend in the foreseeable future.
  • the internal space of the display panel is limited and has optical requirements. Therefore, how to install a wireless communication module in the display panel has become an important technical issue that needs to be solved urgently.
  • Embodiments of the present application provide a wireless communication structure, a display panel and a wireless communication device, aiming to solve the problem of how to install a wireless communication module in a limited space and better ensure the optical performance of the display panel.
  • the embodiment of the first aspect of the present application provides a wireless communication structure, including: a loop structure, the loop structure includes a first feeding end, a second feeding end and a coil body, at least part of the coil body is connected to the first feeding end and the second feed end; the antenna includes a millimeter-wave antenna unit for transmitting and receiving millimeter-wave band wireless signals, and at least one millimeter-wave antenna unit is connected to the coil body, wherein the antenna includes at least two millimeter-wave antenna units, two The above millimeter wave antenna units form a millimeter wave antenna array, and more than two millimeter wave antenna units in the millimeter wave antenna array are connected to the coil body.
  • the coil body includes a first connection section, a second connection section and a third connection section.
  • a connection section is connected between the first connection end and the millimeter wave antenna array, a second connection section is connected between the millimeter wave antenna array and the second connection end, and a third connection section is connected between two adjacent millimeter wave antenna arrays. between millimeter wave antenna units.
  • a second aspect embodiment of the present application also provides a display panel, including the wireless communication structure of any of the above-mentioned first aspect embodiments.
  • a third aspect embodiment of the present application also provides a wireless communication device, including the display panel of any of the above-mentioned first aspect embodiments.
  • the wireless communication structure includes a loop structure and an antenna.
  • the loop structure includes a first connection end, a second connection end and a coil body. The first connection end and the second connection end are connected to the coil body.
  • the antenna includes a millimeter-wave antenna unit.
  • the millimeter-wave antenna unit is used to transmit and receive millimeter-wave band wireless signals.
  • the millimeter-wave antenna unit is connected to the coil body, so that at least part of the coil body can simultaneously transmit and receive wireless signals of the loop structure and millimeter-wave band wireless signals.
  • the loop structure and the antenna can reduce the overall area occupied by the loop structure and the antenna, so that multiple modules for wireless communication can be installed in a limited space; on the other hand, at least one loop structure is connected to the millimeter wave antenna unit, which can better ensure The optical performance of the display screen can be improved, and the antenna patterning process can be simplified, thereby improving the production efficiency of the wireless communication module and reducing the production cost.
  • Figure 1 is a schematic structural diagram of a display panel provided by the first embodiment of the first aspect of the present application.
  • Figure 2 is a schematic structural diagram of a display panel provided by the first aspect and the second embodiment of the present application;
  • Figure 3 is a schematic structural diagram of a display panel provided by the third embodiment of the first aspect of the present application.
  • Figure 4 is a schematic structural diagram of a display panel provided by the fourth embodiment of the first aspect of the present application.
  • Figure 5 is a partially enlarged structural schematic diagram of Figure 4.
  • Figure 6 is a partially enlarged structural schematic diagram of the millimeter wave antenna unit in the fifth embodiment
  • Figure 7 is a schematic structural diagram of a display panel provided by the sixth embodiment of the first aspect of the present application.
  • Figure 8 is a schematic structural diagram of a display panel provided by the seventh embodiment of the first aspect of the present application.
  • Figure 9 is a partially enlarged structural schematic diagram of Figure 8.
  • Figure 10 is a schematic structural diagram of a display panel provided by the eighth embodiment of the first aspect of the present application.
  • Figure 11 is a schematic structural diagram of a display panel provided by the ninth embodiment of the first aspect of the present application.
  • Figure 12 is a schematic structural diagram of a display panel provided by the tenth embodiment of the first aspect of the present application.
  • Figure 13 is a schematic structural diagram of a display panel provided by the eleventh embodiment of the first aspect of the present application.
  • Figure 14 is a schematic structural diagram of a display panel provided by the twelfth embodiment of the first aspect of the present application.
  • Figure 15 is a schematic structural diagram of a display panel provided by the thirteenth embodiment of the first aspect of the present application.
  • Figure 16 is a schematic structural diagram of a display panel provided by the fourteenth embodiment of the first aspect of the present application.
  • Figure 17 is a schematic structural diagram of a display panel provided by the fifteenth embodiment of the first aspect of the present application.
  • Figure 18 is a partial cross-sectional view of Figure 17;
  • Figure 19 is a schematic structural diagram of a display panel provided by the sixteenth embodiment of the first aspect of the present application.
  • Figure 20 is a partial cross-sectional view of Figure 19;
  • Figure 21 is a schematic structural diagram of a display panel provided by the seventeenth embodiment of the first aspect of the present application.
  • Figure 22 is a schematic structural diagram of a display panel provided by the eighteenth embodiment of the first aspect of the present application.
  • Figure 23 is a schematic structural diagram of a display panel provided by the nineteenth embodiment of the first aspect of the present application.
  • Figure 24 is a schematic structural diagram of a display panel provided by the twentieth embodiment of the first aspect of the present application.
  • Figure 25 is a schematic structural diagram of a display panel provided by the twenty-first embodiment of the first aspect of the present application.
  • Figure 26 is a schematic structural diagram of a display panel provided by the twenty-second embodiment of the first aspect of the present application.
  • Figure 27 is a schematic structural diagram of a display panel provided by the twenty-third embodiment of the first aspect of the present application.
  • Figure 28 is a schematic structural diagram of a display panel provided by the twenty-fourth embodiment of the first aspect of the present application.
  • Figure 29 is a partial cross-sectional view of Figure 5;
  • Figure 30 is a schematic structural diagram of a wireless communication device provided by the first embodiment of the second aspect of the present application.
  • Figure 31 is a schematic structural diagram of a wireless communication device provided by the second embodiment of the second aspect of the present application.
  • Figure 32 is a schematic structural diagram of a wireless communication device provided by the third embodiment of the second aspect of the present application.
  • Figure 33 is a schematic structural diagram of a wireless communication device provided by the fourth embodiment of the second aspect of the present application.
  • Figure 34 is a schematic structural diagram of a wireless communication device provided by the fifth embodiment of the second aspect of the present application.
  • Figure 35 is a schematic structural diagram of a wireless communication device provided by the sixth embodiment of the second aspect of the present application.
  • Figure 36 is a schematic structural diagram of a wireless communication device provided by the seventh embodiment of the second aspect of the present application.
  • Figure 37 is a schematic structural diagram of a wireless communication device in the related art.
  • wireless communication devices with 5G millimeter wave capabilities such as mobile phones, in addition to being equipped with first-type antennas that can cover millimeter wave bands, are often also equipped with wireless communication modules that can cover non-millimeter wave bands, such as: 5G, 4G, WLAN (wireless local area network), BT (Bluetooth), GNSS (global navigation satellite system), etc.
  • NFC Near Field Communication
  • the higher the screen-to-body ratio of the display device in the wireless communication device the easier it is to limit the position where the wireless communication module can be placed, and the wireless communication module is often more difficult to place when in use (such as being held in the hand or placed on a metal table). It is easily blocked, causing significant degradation in the performance of the wireless communication module and affecting the user's wireless experience.
  • it is considered to integrate a wireless communication module into the display device of the wireless communication device, for example, using an on-screen antenna (Antenna-on-Display, AoD for short) design method, which becomes a method for designing wireless communication modules in wireless communication devices. possible trends.
  • the wireless communication module integrated in the display device 10 of the mobile phone may include: 5G millimeter wave antenna 01, WiFi/BT antenna 021, LTE ( Long Term Evolution) antenna 022, NFC coil 023 and 5G non-millimeter wave antenna 024.
  • 5G millimeter wave antenna 01, WiFi/BT antenna 021, LTE antenna 022, NFC coil 023 and 5G non-millimeter wave antenna 024 are provided in the display device 10 independently of each other.
  • the internal space of the display device 10 is limited. How to install the wireless communication module in the limited space and better ensure the optical and touch effects of the display panel has become an urgent technical problem to be solved.
  • FIG. 1 is a schematic structural diagram of a display panel provided by the first embodiment of the present application.
  • the display panel provided by the embodiment of the present application includes a wireless communication structure.
  • the wireless communication structure provided by the embodiment of the present application includes a loop structure 100 and an antenna 200.
  • the loop structure 100 includes a first connection end 110, a second connection end 120 and a coil body 130. At least part of the coil body 130 is connected between the first connection end 110 and the second connection end 120; the antenna 200 includes a wireless transmitter for transmitting and receiving millimeter wave band wireless signals.
  • the millimeter wave antenna unit 210 of the signal is connected to the coil body 130 of at least one loop structure 100 .
  • the millimeter wave antenna unit 210 for transmitting and receiving millimeter wave band wireless signals refers to the millimeter wave antenna unit 210 for receiving and/or transmitting millimeter wave band wireless signals. That is, sending and receiving in this article refers to receiving and/or sending.
  • the millimeter wave antenna unit 210 includes a millimeter wave feeding part and a millimeter wave radiating part. Optionally, the millimeter wave feeding part and/or the millimeter wave radiating part is connected to the coil body 130 of at least one loop structure 100 .
  • the wireless communication structure includes at least one loop structure 100 and an antenna 200.
  • the loop structure 100 sends and receives signals on the coil body 130 through the first connection end 110 and the second connection end 120.
  • the antenna 200 includes a millimeter wave antenna unit 210, which is used to transmit and receive millimeter wave band wireless signals.
  • the millimeter wave antenna unit 210 is connected to the coil body 130 of at least one loop structure 100, which can not only reduce the total area occupied by the loop structure 100 and the antenna 200, so that multiple wireless communication modules can be installed in a limited space; in addition, at least one The loop structure 100 and the millimeter wave antenna unit 210 of the antenna 200 are connected to each other, which can better ensure the optical performance of the display screen and simplify the antenna patterning process, thus improving the production efficiency of the wireless communication module and reducing the production cost.
  • the display panel also includes a touch layer 300.
  • the touch layer 300 includes mesh-like metal wires, shown in light color in Figure 1.
  • the grid-like lines illustrate the grid-like metal conductors.
  • some of the metal wires used to connect at least one loop structure 100 and the millimeter-wave antenna unit 210 do not need to be cut in the connection direction, so the number of grid-shaped metal wires can be reduced.
  • the number of cutting points improves the problems of increased touch blind areas and deterioration of touch performance and experience caused by the arrangement of the wireless communication structure on the touch layer 300, and can better ensure the touch performance of the display screen.
  • connection part between at least one loop structure 100 and the millimeter-wave antenna unit 210 does not need to be cut in the connection direction. It can also make the shapes of the grid-like metal wires in different areas more consistent, so it can also improve the performance of the display panel. Optical effects.
  • the coil body 130 is a ring coil and can be arranged in a variety of ways.
  • the loop structure 100 includes an NFC coil, a wireless power charging (Wireless Power Charging; WPC) coil, an LTE coil, a GNSS coil, a WLAN coil, a BT coil and a frequency modulation (Frequency) coil. Modulation; FM) coil, etc. at least one.
  • NFC coils, WPC coils, LTE coils, GNSS coils, WLAN coils, BT coils, FM coils, etc. can all be set as loop coils to facilitate the connection of the millimeter wave antenna unit 210 therein.
  • the loop structure 100 includes at least one of an NFC coil and a WPC coil. Because the loop structures 100 of NFC coils and WPC coils are usually larger in size.
  • the loop structure 100 of the NFC coil or WPC coil is disposed close to and around the edge of the display panel, so that the millimeter wave antenna unit 210 is connected in series to the loop structure 100 of the NFC coil or WPC coil. And the millimeter wave antenna unit 210 can be placed closer to the edge of the display panel. In this way, the deterioration of the optical and tactile effects of the display panel caused by the millimeter wave antenna unit 210 can be less significant, and the feed path of the millimeter wave antenna unit 210 can be less significant. It can be shorter, so it can have lower feed loss, so as to achieve better radiation performance of the millimeter wave antenna unit 210.
  • FIG. 2 is a schematic structural diagram of a display panel provided by a second embodiment of the first aspect.
  • the embodiment in FIG. 2 has the same partial structure as that in the embodiment in FIG. 1 and will not be described in detail here. The differences between the two will be described below. In addition, the following content in this article will describe different parts of each embodiment involved in each drawing.
  • the antenna 200 includes more than two millimeter wave antenna units 210.
  • the combination of the two or more millimeter wave antenna units 210 forms a millimeter wave antenna array 201.
  • At least one millimeter wave antenna unit in the millimeter wave antenna array 201 210 is connected to the coil body 130.
  • the location of the millimeter wave antenna array 201 is shown with a dotted line.
  • the dotted line frame is not enough to structurally limit the wireless communication structure of the embodiment of the present application.
  • each millimeter wave antenna unit 210 in the millimeter wave antenna array 201 is connected to the coil body 130 .
  • the coil body 130 connected to the millimeter wave antenna array 201 includes a first connection section 131, a second connection section 132 and a third connection section 133.
  • the first connection section 131 is connected between the first connection end 110 and the millimeter wave antenna array 201.
  • the second connection section 132 is connected between the millimeter wave antenna array 201 and the second connection end 120 .
  • the third connection section 133 is connected between two adjacent millimeter wave antenna units 210 in the same millimeter wave antenna array 201 .
  • the millimeter wave antenna array 201 can be connected between the first connection end 110 and the second connection end 120.
  • the third connection section 133 is connected between two adjacent millimeter wave antenna units 210 in the same millimeter wave antenna array 201, which can reduce the total area occupied by the loop structure 100 and the antenna 200, and can further simplify the loop structure 100 and the antenna 200. graphics.
  • FIG. 3 is a schematic structural diagram of a display panel provided by a third embodiment of the present application.
  • the second connection section 132 includes a first subsection 132a and a second subsection 132b.
  • the first subsection 132a is connected between two adjacent millimeter wave antenna arrays 201
  • the second subsection 132b is connected to another millimeter wave antenna. between the array 201 and the second connection end 120 .
  • the first subsection 132a is used to realize the connection between two adjacent millimeter wave antenna arrays 201
  • the second subsection 132b is used to realize the connection between the millimeter wave antenna array 201 and the second connection end 120.
  • the second connection section 132 is divided into multiple sections. Part of the second connection section 132 (for example, the first subsection 132a) is used to connect two adjacent millimeter wave antenna arrays 201, and part of the second connection section 132 (for example, the second subsection 132a) Subsection 132b) is used to realize the connection between the millimeter wave antenna array 201 and the second connection terminal 120.
  • the number of millimeter wave antenna arrays 201 may be three, and two millimeter wave antenna arrays 201 are arranged oppositely along the first direction X. That is to say, the two millimeter wave antenna arrays 201 are respectively arranged on the display
  • the positions of the opposite sides of the panel along the first direction 120 are arranged relatively along the second direction Y, so that the first connection end 110, the second connection end 120 and the three millimeter wave antenna arrays 201 are spaced around the periphery of the display panel, and the millimeter wave antenna arrays 201 are distributed on different sides of the display panel. Location.
  • the millimeter wave antenna array 201 can always be in a position that is not blocked by the user. Therefore, the stability of the millimeter wave antenna array 201 for sending and receiving wireless signals can be improved, and the user's wireless security can be better protected. experience.
  • the first connection terminal 110 and the second connection terminal 120 can also be spaced apart from the millimeter wave antenna array 201 along the first direction X, that is, the first connection terminal 110 ,
  • the second connection terminal 120 is disposed beside a millimeter wave antenna array 201 thereof.
  • the shape of the millimeter wave antenna unit 210 can be arranged in various ways.
  • the shape of the millimeter wave antenna unit 210 can be a square, a rhombus, etc.
  • the first connecting section 131 , the second connecting section 132 and the third connecting section 133 can be arranged in various ways.
  • the first connecting section 131 can include a wire
  • the first connecting section 131 can include A plurality of conductors arranged side by side
  • the first connection section 131 includes a plurality of conductors arranged side by side and a bridge wire connecting the conductors arranged side by side.
  • the second connection section 132 and/or the third connection section 133 may include one wire, or the second connection section 132 and/or the third connection section 133 may include multiple wires arranged side by side, or the second connection section 132 and /Or the third connection section 133 includes a plurality of conductors arranged side by side and a bridge wire connecting the conductors arranged side by side.
  • the third connection section 133 between two adjacent millimeter wave antenna units 210 includes a wire.
  • the third connection section 133 between two adjacent millimeter wave antenna units 210 includes more than two wires.
  • the impedance of a conductor includes resistance and reactance.
  • Resistance ⁇ (L/A), where ⁇ is the resistivity of the conductor, L is the length of the conductor, and A is the current distribution area corresponding to the external current applied to the conductor.
  • Reactance inductive reactance – capacitive reactance, so reactance and inductive reactance are positively correlated.
  • the inductance faced by high-frequency signals will also increase, thus further causing an increase in inductive reactance.
  • the frequency of the signal will increase, which will hinder the flow distribution of its corresponding current on the conductor. Therefore, under the same conductor conditions, the current corresponding to a high-frequency signal is more likely to be blocked than the current corresponding to a low-frequency signal. Moreover, as the width of the conductor becomes smaller, the inductance of the conductor will increase, thus increasing the inductive reactance again, which will further prevent the flow and distribution of current corresponding to high-frequency signals. That is, by adjusting the size of the conductor, currents corresponding to signals of different frequencies can be better blocked or passed.
  • the millimeter-wave wireless signal frequency band sent and received by the millimeter-wave antenna unit 210 is higher than the NFC frequency band. Therefore, under the same conductor conditions, the millimeter-wave current corresponding to the millimeter-wave wireless signal frequency band is relative to the millimeter-wave current corresponding to the NFC frequency band. Electric current is more likely to be blocked and difficult to pass through. Therefore, by adjusting the size of the coil body 130, the millimeter wave current can be better blocked and the current corresponding to the NFC frequency band can pass.
  • the line width of at least a partial area of at least one of the first connection section 131 , the second connection section 132 and the third connection section 133 is smaller than the width of the millimeter wave antenna unit 210 .
  • the millimeter wave antenna unit 210 includes a millimeter wave wire, and the line width of at least a partial area of at least one of the first connection section 131 , the second connection section 132 and the third connection section 133 is not greater than that in the millimeter wave antenna unit 210 The width of millimeter wave wires.
  • the line width of at least part of the first connection section 131 is not greater than the width of the millimeter wave antenna unit.
  • the millimeter wave antenna unit 210 can be understood to include one millimeter wave conductor; when the millimeter wave antenna unit 210 includes a plurality of millimeter wave conductors, at least part of the line of the first connecting section 131
  • the width being smaller than the width of the millimeter wave antenna unit 210 means that the line width of at least part of the first connecting section 131 is smaller than the sum of the widths of the plurality of millimeter wave conductors in the millimeter wave antenna unit 210 .
  • the line width of at least part of the first connection section 131 is not greater than the width of the millimeter wave conductor in the millimeter wave antenna unit 210, the line width of the first connection section 131 is narrower, so the first connection section 131 has a narrower line width.
  • Segment 131 has a higher impedance; and as mentioned above, because the millimeter-wave wireless signal frequency band sent and received by the millimeter-wave antenna unit 210 is higher, the millimeter-wave current corresponding to the millimeter-wave wireless signal frequency band sent and received by the millimeter-wave antenna unit 210 is less able to flow.
  • the first connection section 131 has a better filtering and blocking effect on millimeter wave current.
  • the first connection section 131 can have a better passing effect for non-millimeter wave currents in 5G and its previous generation mobile communications, WLAN or Bluetooth, and non-millimeter wave currents in the NFC frequency band. Therefore, in the embodiment of the present application, the current of the loop structure 100 can pass through the first connection section 131 well, while the millimeter wave current is obviously blocked by the first connection section 131 .
  • the millimeter-wave current refers to the current corresponding to the frequency band of the millimeter-wave wireless signal sent and received by the millimeter-wave antenna unit 210
  • the wireless signal current refers to the current corresponding to the frequency band of the wireless signal sent and received by the loop structure 100.
  • the arrangement of the line width of at least part of the second connecting section 132 and/or the third connecting section 133 is not greater than the width of the millimeter wave antenna unit 210 and its beneficial effects are the same as above, and will not be described again here.
  • the line widths of the first connection section 131, the second connection section 132, and the third connection section 133 are all set to be no larger than the line width of the millimeter wave conductor. It can make the millimeter wave current obviously blocked by the first connection section 131, the second connection section 132, and the third connection section 133, better ensure the independence of each millimeter wave antenna unit 210 in the millimeter wave antenna array 201, and ensure the Wave antenna array 201 performance.
  • the line width of at least part of the third connection section 133 is not greater than the width of the millimeter wave antenna unit 210, as shown in FIG. 5, when the third connection between two adjacent millimeter wave antenna units 210 When the section 133 includes one wire, the line width of one wire in the third connecting section 133 is not greater than the sum of the line widths of the millimeter wave wires in the millimeter wave antenna unit 210 that extend in the same direction as the third connecting section 133 . As shown in FIG.
  • the third connection section 133 between two adjacent millimeter wave antenna units 210 includes multiple wires
  • the sum of the line widths of the multiple wires in the third connection section 133 is not greater than that of the millimeter wave antenna unit 210
  • the line width direction of the third connecting section 133 is the first direction X, mm
  • the width direction of the waveguide line is also the first direction X.
  • the third connecting section 133 extends along the first direction X
  • the line width direction of the third connecting section 133 is the second direction Y.
  • the third connection section 133 when the sum of the line widths of the conductors in the third connection section 133 is not greater than the sum of the line widths of the millimeter wave conductors in the millimeter wave antenna unit 210 that extend in the same direction as the third connection section 133 , that is, the third connection section 133
  • the width of the third connection section 133 is relatively narrow, so the third connection section 133 has a higher impedance, so the third connection section 133 has a better filtering and blocking effect on the current in the millimeter wave band.
  • the third connection section 133 can have a better passing effect for non-millimeter wave currents in 5G and its previous generations of mobile communications, WLAN, BT or GNSS, and non-millimeter wave currents in the NFC frequency band. Therefore, in the embodiment of the present application, the current of the loop structure 100 can pass through the third connection section 133 better, while the millimeter wave current is obviously blocked by the third connection section 133; however, the millimeter wave current can pass through the third connection section 133 better.
  • the flow within the millimeter wave antenna unit 210 can better ensure the independence of each millimeter wave antenna unit 210 in the millimeter wave antenna array 201 and ensure the performance of the millimeter wave antenna array 201.
  • the sum of the line widths of the conductors in the second connection section 132 is no greater than the sum of the line widths of the millimeter wave conductors in the millimeter wave antenna unit 210 that are in the same extension direction as the second connection section 132 .
  • the line width direction of the second connecting section 132 is the second direction Y.
  • the line width direction of the second connecting section 132 is the first direction X.
  • the line width of the second connection section 132 is narrower, which can better block the millimeter wave current and better allow the current in the non-millimeter wave band and NFC frequency band to pass. That is, the second connection section 132 can achieve millimeter wave current control.
  • the band current is better blocked and the performance of the millimeter wave antenna array 201 and the millimeter wave antenna unit 210 is better ensured, but the current in other non-millimeter wave bands and NFC frequency bands is less affected.
  • the total line width of the conductors in the first connection section 131 is no greater than the total line width of the millimeter wave conductors in the millimeter wave antenna unit 210 in the same extension direction as the first connection section 131 .
  • the line width direction of the first connecting section 131 is the second direction Y.
  • the line width direction of the first connecting section 131 is the first direction X.
  • the line width of the first connection section 131 is narrow, which can better block the millimeter wave current and better allow the current in the non-millimeter wave band and NFC frequency band to pass. That is, the millimeter wave band can be realized through the first connection section 131 The current is better blocked and the performance of the millimeter wave antenna array 201 and the millimeter wave antenna unit 210 is better guaranteed, but the current in other non-millimeter wave bands and NFC frequency bands is less affected.
  • the number of millimeter wave antenna units 210 in the embodiment of the present application is multiple.
  • the plurality of millimeter wave antenna units 210 are arranged adjacently or arranged in an array to form a millimeter wave antenna array 201, which can increase the antenna gain and compensate for the larger antenna. Large radiation path loss, and can achieve the effect of beam scanning and cover a wider space to reduce wireless communication blind spots and achieve a better user wireless experience.
  • the shape of the third connecting section 133 can also be arranged in various ways.
  • the shape of the third connecting section 133 can be linear, that is, the third connecting section 133 extends in the same direction.
  • the third connecting section 133 may also be in the shape of a folded line, that is, the third connecting section 133 extends along a curved path.
  • the third connecting section 133 may also be in an arc shape.
  • the third connecting section 133 is formed by a combination of at least two of a straight line shape, a broken line shape, and an arc shape.
  • the first connection section 131 is connected to multiple millimeter wave antenna units in the direction from the first connection end 110 to the second connection end 120.
  • the first antenna unit among the antenna units 210 or the second connection section 132 is connected to the last antenna unit of the plurality of millimeter wave antenna units 210 .
  • the millimeter wave antenna array 201 includes four millimeter wave antenna units 210 , and along its arrangement direction (the second direction Y), they are the first antenna unit, the second antenna unit, and the third antenna unit. antenna unit and a fourth antenna unit.
  • the first antenna unit On the extending path from the first connection end 110 to the second connection end 120, the first antenna unit is located on the side of the four millimeter wave antenna units 210 close to the first connection end 110, and the fourth antenna unit is located on the side of the four millimeter wave antenna units 210. The side of the unit 210 close to the second connection end 120 .
  • the first antenna unit is the first antenna unit, and the first connection section 131 is connected between the first antenna unit and the first connection terminal 110; the fourth antenna unit is the last antenna unit, and the second connection section 132 is connected to the fourth antenna. between the unit and the second connection end 120.
  • a third connection section 133 is connected between each first antenna unit and second antenna unit, second antenna unit and third antenna unit, third antenna unit and fourth antenna unit.
  • the antenna 200 also includes a non-millimeter wave antenna 202 for transmitting and receiving non-millimeter wave band wireless signals.
  • the non-millimeter wave antenna 202 is connected to the coil body 130 .
  • the millimeter wave antenna unit 210 and the non-millimeter wave antenna 202 are connected to the coil body 130, which can further improve the luminous effect of the display panel.
  • the antenna 200 and the loop structure 100 are disposed on the touch layer 300, the number of cutting points can be further reduced and the touch effect can be improved.
  • At least one millimeter wave antenna unit 210 is multiplexed as a part of the non-millimeter wave antenna 202 .
  • the multiplexing of at least one millimeter wave antenna unit 210 as a part of the non-millimeter wave antenna 202 may be: one millimeter wave antenna unit 210 is multiplexed as a part of the non-millimeter wave antenna 202; or at least two adjacent millimeter wave antenna units 210 are multiplexed by
  • the third connection section 133 is connected and multiplexed as a part of the non-millimeter wave antenna 202 .
  • At least two adjacent millimeter wave antenna units 210 are connected through the third connection section 133 and multiplexed as part of the non-millimeter wave antenna 202 means that at least two adjacent millimeter wave antenna units 210 are connected through the third connection section 133 It may have the function of a non-millimeter wave antenna 202 and be used to send and receive non-millimeter wave wireless signals.
  • the non-millimeter wave antenna 202 includes a first part 2021 and a second part 2022.
  • the first part 2021 is a radiation part
  • the second part 2022 is a feed part.
  • One millimeter wave antenna unit 210 can be multiplexed as part of the first part 2021,
  • a millimeter wave antenna unit 210 and a partial coil body 130 are connected to each other and multiplexed as part of the first part 2021 .
  • two or more millimeter wave antenna units 210 can be connected to each other and multiplexed into the first part 2021, and the first part 2021 is connected to the second part 2022.
  • the at least one millimeter wave antenna unit 210 may be connected to the feed portion of the non-millimeter wave antenna 202, that is, the at least one millimeter wave antenna unit 210 may be connected to the second portion 2022 of the non-millimeter wave antenna 202.
  • the at least one millimeter wave antenna unit 210 may be connected to the second portion 2022 of the non-millimeter wave antenna 202 through a portion of the coil body 130 . So that the at least one millimeter wave antenna unit 210 can be connected to the radio frequency integrated circuit of the non-millimeter wave antenna 202, thereby realizing the function of the non-millimeter wave antenna 202.
  • the at least two adjacent millimeter wave antenna units 210 When at least two adjacent millimeter wave antenna units 210 are connected through the third connection section 133 and multiplex at least a part of the non-millimeter wave antenna 202, the at least two adjacent millimeter wave antenna units 210 may be connected in series with each other or They are connected in parallel and multiplexed into at least part of the non-millimeter wave antenna 202 .
  • At least part of the non-millimeter wave antenna 202, the millimeter wave antenna unit 210 and the loop structure 100 are multiplexed, which can further simplify the area occupied by multiple antennas and simplify the layout pattern of the multiple antennas. Therefore, the number of cutting grid-shaped metal wirings can be reduced and the display performance and touch performance of the display panel can be better ensured.
  • a blocking portion 140 is provided on the coil body 130 .
  • the blocking portion 140 is used to allow the wireless signal current sent and received by the loop structure 100 to pass through, but to largely block the non-millimeter wave antenna 202 sending and receiving.
  • the millimeter-wave band current and the millimeter-wave band current transmitted and received by the millimeter-wave antenna unit 210 are blocked to a large extent. Therefore, by providing the blocking part 140, the non-millimeter wave band current can be blocked, and the performance of the non-millimeter wave antenna 202 can be designed and guaranteed in a better controllable manner.
  • the blocking part 140 is used to allow the wireless signal current in the NFC frequency band to pass through.
  • the blocking part 140 is used to allow the wireless signal current in the WPC frequency band to pass.
  • the blocking portion 140 can be provided by changing at least part of the width of the coil body 130, that is, changing the thickness of the coil body 130, to achieve the purpose of blocking non-millimeter wave band currents.
  • the user can set the position, width, length, shape, film layer position and quantity of the blocking part 140 according to the frequency band of the non-millimeter wave band wireless signals sent and received by the non-millimeter wave antenna 202 and the wireless signal sent and received by the loop structure 100 in actual use, so as to Designed to block non-millimeter-wave band currents and achieve non-millimeter-wave band target operating frequencies.
  • the width of the blocking portion 140 is set to be larger than the width of the coil body 130 itself.
  • the width of the blocking portion 140 may be no greater than the width of the coil body 130 itself.
  • the blocking portion 140 can be disposed.
  • the blocking portion 140 can be disposed on any one of the first line segment 131 , the second line segment 132 and the third line segment 133 .
  • the millimeter-wave antenna units 210 of the millimeter-wave antenna array 201 between the first sub-section 132a and the first connection end 110 are multiplexed into non-millimeter-wave antenna units.
  • Wave antenna 202, the feed portion (ie, the second portion 2022) of the non-millimeter wave antenna 202 is disposed between the first sub-section 132a and the first connection end 110.
  • the current of the non-millimeter wave antenna 202 can flow toward the blocking portion 140 , or the current of the non-millimeter wave antenna 202 can flow toward the first connection end 110 , thereby forming a dual-band non-millimeter wave antenna 202 .
  • more than two blocking parts 140 may be provided on the coil body 130 .
  • two blocking portions 140 are provided on the coil body 130 .
  • One of the blocking parts 140 is located in the first sub-section 132a, and the other blocking part 140 is located in the first connecting section 131 between the second part 2022 and the first connecting end 110.
  • the current of the non-millimeter wave antenna 202 can flow toward the blocking portion 140 located in the first sub-section 132a, or the current of the non-millimeter wave antenna 202 can flow toward the blocking portion 140 located in the first connecting section 131, thereby forming a dual-band non-millimeter wave antenna.
  • Millimeter wave antenna 202 and by setting the position of the blocking part 140 appropriately, the frequency band of the non-millimeter wave antenna 202 can be controlled, so as to achieve the purpose of more accurately controlling the frequency band of wireless signals sent and received by the non-millimeter wave antenna 202.
  • the blocking portion 140 can also be provided on the third connecting section 133 .
  • the blocking portion 140 can also be provided on the third connecting section 133 .
  • the blocking parts 140 are the first blocking part 140a, the second blocking part 140b and the third blocking part 140c respectively.
  • the current flowing out from the second part 2022 of the non-millimeter wave antenna 202 may flow to the first blocking part 140a.
  • the blocking portion 140a, or the current flowing out of the second portion 2022 of the non-millimeter wave antenna 202 can flow to the second blocking portion 140b.
  • the non-millimeter wave antenna 202 in Figure 11 is a non-millimeter wave antenna 202 covering multiple target frequency bands, that is, the current flowing from the second part 200 to the first blocking part 140a and the second blocking part 140b is non-millimeter wave.
  • the current in the frequency band of wave antenna 202 is not limited to, the current flowing from the second part 200 to the first blocking part 140a and the second blocking part 140b is non-millimeter wave.
  • the non-millimeter wave antenna 202 in FIG. 11 is a non-millimeter wave antenna 202 covering a single target frequency band.
  • the current flowing out of the second part 2022 of the non-millimeter wave antenna 202 flows to the second blocking part 140b, the current is a current in the target frequency band of the non-millimeter wave antenna 202.
  • the wire path between 140a can have a beneficial impact on the performance of the non-millimeter wave antenna 202 in the target frequency band.
  • multiple millimeter wave antenna units 210 in the millimeter wave antenna array 201 can be multiplexed into two non-millimeter wave antennas 202, and the blocking portion 140 can be provided on multiple units 210 that are multiplexed into different non-millimeter wave antenna arrays 201. between millimeter wave antenna units 210.
  • the millimeter wave antenna array 201 in Figure 11 includes four millimeter wave antenna units 210, and two adjacent millimeter wave antenna units 210 are multiplexed as non-millimeter wave antennas 202, then the blocking portion 140 can be disposed at 4 millimeter wave antenna units 210. The middle part of the wave antenna unit 210.
  • the blocking portion 140 in the millimeter wave antenna array 201 may be disposed on three between one millimeter wave antenna unit 210 and another millimeter wave antenna unit 210 .
  • the blocking part 140 may be disposed between two millimeter wave antenna units 210 and the other three millimeter wave antenna units 210 , or the blocking part 140 may be disposed between one millimeter wave antenna unit 210 and the other four millimeter wave antenna units 210 .
  • the blocking part 140 can block non-millimeter wave band currents
  • the blocking part 140 can also block millimeter wave band currents.
  • the line width of the blocking part 140 may be smaller than the coil body 130 , or the line width of the blocking part 140 may be larger than that of the coil body 130 .
  • At least one millimeter wave antenna unit 210 of one of the millimeter wave antenna arrays 201 may be multiplexed as part of the non-millimeter wave antenna 202 .
  • at least one millimeter wave antenna unit 210 of each millimeter wave antenna array 201 can be multiplexed as a part of the non-millimeter wave antenna 202 to increase the number of non-millimeter wave antennas 202 .
  • the number of millimeter wave antennas 202 is more than two.
  • the display panel also includes a touch layer 300, and the touch layer 300 includes grid-like metal wiring.
  • the loop structure 100 and the antenna 200 are both located on the touch layer 300.
  • the loop structure 100 and the antenna 200 are disposed on the touch layer 300, so that the loop structure 100 and the antenna 200 can reuse grid-like metal wiring, without adding new structural layers, and the display panel can be thinned. overall thickness.
  • the cutting points of the mesh-like metal wiring can be reduced to better simultaneously ensure the touch effect of the touch layer 300 and the optical effect of the display panel.
  • the millimeter wave antenna unit 210 includes a plurality of first wires 211 extending along the first direction X and a plurality of first wires 211 extending along the second direction Y.
  • the plurality of second wires 212 intersect the first direction X and the second direction Y.
  • the first direction X and the second direction Y are perpendicular to each other, or the angle between the first direction X and the second direction Y is 30 degrees, 45 degrees, 60 degrees, etc., as long as the first direction X and the second direction Y intersect Can.
  • the millimeter wave antenna unit 210 includes intersecting first wires 211 and second wires 212, that is, the millimeter wave antenna unit 210 is in a grid shape, which can increase the number of millimeter wave wires in the millimeter wave antenna unit 210. distribution area, thereby reducing the impedance of the millimeter wave antenna unit 210, which can reduce the energy loss of the millimeter wave antenna unit 210 and the energy reflection caused by impedance mismatch, so that the millimeter wave antenna unit 210 can better transmit and receive millimeter waves. band wireless signal.
  • the millimeter wave antenna unit 210 can also directly use metal wires in the mesh metal wiring as the first wire 211 and the second wire 212, which can further simplify the preparation of the millimeter wave antenna unit 210.
  • the millimeter wave antenna unit 210 includes intersecting first conductors 211 and second conductors 212 , that is, the millimeter wave conductors include intersecting first conductors 211 and second conductors 212 .
  • the touch layer 300 may be formed by crossing a plurality of first touch lines parallel to the first conductive lines 211 and second touch lines parallel to the second conductive lines 212 .
  • the display panel may also include an antenna layer, and the loop structure 100 and the antenna 200 are located on the antenna layer.
  • the impedance of the antenna 200 and the loop structure 100 can be reduced, and the energy loss of the antenna 200 and the loop structure 100 and the damage due to impedance mismatch can be reduced. The energy reflection caused thereby improves the performance of the antenna 200 and the loop structure 100 .
  • etching may be used to prepare the loop structure 100 and the antenna 200 in the antenna layer.
  • the antenna layer can also be set independently and mounted on the display panel; other implementation methods can also be used to prepare the loop structure 100 and the antenna 200 in the antenna layer.
  • the millimeter wave antenna unit 210 can be in a block shape to increase the distribution area of the conductive material in the millimeter wave antenna unit 210 and reduce the impedance and cause of the millimeter wave antenna unit 210.
  • the energy reflection caused by the impedance mismatch enables the millimeter wave antenna unit 210 to have better performance in transmitting and receiving millimeter wave wireless signals.
  • the millimeter wave antenna unit 210 When the millimeter wave antenna unit 210 is in a block shape, the millimeter wave antenna unit 210 may be in a square, rhombus, circular, etc. shape.
  • the antenna layer can be arranged on a side of the touch layer 300 facing the display panel cover. side, or the antenna layer is arranged on the side of the touch layer 300 facing away from the display panel cover.
  • the millimeter wave antenna unit 210 is connected to at least one coil. Multiple coils can be connected in series, parallel or coupled to each other. Multiple coils can also be arranged across or separated from each other.
  • the millimeter wave antenna unit 210 When the number of the millimeter wave antenna unit 210 is one, the millimeter wave antenna unit 210 may be connected to one of the coils. When the number of millimeter wave antenna units 210 is multiple, different millimeter wave antenna units 210 may be connected to different coils, or different millimeter wave antenna units 210 may be connected to the same coil.
  • the plurality of coils include an inner ring 101a and an outer ring 101b surrounding the inner ring 101a away from the center of the wireless communication structure.
  • the inner ring 101a and the outer ring 101b are both connected to the first connection end 110 and the second connection end 120 between. That is, the outer ring 101b is placed closer to the edge of the wireless communication structure.
  • the millimeter wave antenna unit 210 may be connected to the inner ring 101a and/or the outer ring 101b.
  • the millimeter wave antenna unit 210 is connected to the outer ring 101b.
  • the millimeter wave antenna unit 210 is disposed closer to the edge of the display panel, which can reduce the impact of the millimeter wave antenna unit 210 on the display effect of the display panel.
  • the antenna 200 is disposed on the touch layer 300, since the edge frequency of the user's touch of the display panel is less, the millimeter wave antenna array unit 210 is disposed close to the edge of the display panel, which can also reduce its impact on the touch effect.
  • part of the millimeter wave antenna array 201 is connected in series to the inner ring 101a, and another part of the millimeter wave antenna array 201 is connected in series to the outer ring 101b.
  • the antenna 200 further includes a millimeter wave feed part 220 connected to the millimeter wave antenna unit 210 , and the millimeter wave antenna unit 210 is connected to the inner ring 101 a.
  • the millimeter wave antenna unit 210 may be placed on the same layer as the inner ring 101a and the outer ring 101b. At least a part of the millimeter wave feed part 220 is disposed in a different layer from the outer ring 101b.
  • the millimeter wave feed portion 220 intersects with the outer ring 101b.
  • At least a part of the millimeter wave feed portion 220 and the outer ring 101b are arranged in different layers to ensure that the millimeter wave feed portion 220 and the outer ring 101b are in different layers.
  • 101b are insulated from each other.
  • the millimeter wave feed part 220 includes a first conductive part 221, a second conductive part 222, and a bridge section 223 connected between the first conductive part 221 and the second conductive part 222.
  • the second conductive part 222 and the outer ring 101b can be arranged on the same layer, and the bridge section 223 and the outer ring 101b can be arranged on different layers to ensure that the millimeter wave feed part 220 and the outer ring 101b are insulated from each other.
  • the entire millimeter wave feed part 220 may be disposed in a different layer from the outer ring 101b.
  • the touch layer 300 when the loop structure 100 and the antenna 200 are disposed on the touch layer 300, the touch layer 300 includes a first touch electrode and a second touch electrode disposed on the same layer.
  • the adjacent first touch electrode When the connecting portion and the first touch electrode are arranged in the same layer, the adjacent second touch electrodes need to be connected to each other through a bridge, and the bridge and the second touch electrode are arranged in different layers.
  • the cross-bridge section 223 can be provided on the same layer as the cross-bridge of the touch layer 300 to further reduce the number of layers of the display panel and make the display panel thinner and lighter.
  • the inner ring 101a and the outer ring 101b are spaced apart from each other and arranged in parallel.
  • the inner ring 101a and the outer ring 101b are arranged independently of each other. Both the inner ring 101a and the outer ring 101b are connected to the between the first connection end 110 and the second connection end 120 .
  • the coil bodies 130 are connected in series and arranged in a spiral shape.
  • the inner ring 101a and the outer ring 101b may be the inner ring part and the outer ring part of the spiral coil, that is, the inner ring 101a and the outer ring 101b are arranged in series with each other.
  • the inner ring 101a and the outer ring 101b are spiral coils, at least one of the first feeding end 110 and the second feeding end 120 overlaps with part of the coil, and the first connecting end 110 and the second connecting end 120 overlap each other. At least one of them may be disposed in a different layer from part of the coil body 130 .
  • the embodiment of the present application takes as an example that the first connection end 110 and part of the coil body 130 overlap and are arranged in different layers.
  • the first connecting end 110 may be overlapped with the multi-turn coil body 130 on the extension path of the first connecting end 110 .
  • the first connection end 110 and the coil body 130 are overlapped.
  • the first connection end 110 includes a first section 111 and a second section 112 located on both sides of the body 130 and a spanning section 113 connecting the first section 111 and the second section 112.
  • the segment 113 and the body 130 are arranged in different layers, and an insulating layer is arranged across the segment 113 and the body 130 .
  • the spanning section 113 can be disposed on the same layer as the spanning bridge connecting the touch electrodes.
  • the plurality of coils include a first turn 101e and a second turn 101f.
  • the first turn 101e and the second turn 101f are both connected between the first connection end 110 and the second connection end 120 .
  • Part of the first circle 101e is located on the side of the second circle 101f away from the center of the wireless communication structure, and part of the second circle 101f is located on the side of the first circle 101e away from the center of the wireless communication structure.
  • the millimeter wave antenna unit 210 may be connected to the first ring 101e and/or the second ring 101f.
  • the top of the first ring 101e is located within the top of the second ring 101f, and the sides of the first ring 101e are located outside the sides of the second ring 101f.
  • the lengths of the first circle 101e and the second circle 101f can be better made close to or the same, so that the current in the same frequency band can flow on the first circle 101e and the second circle 101f.
  • the plurality of coils include a coupled coil 101c and a direct-fed coil 101d.
  • the direct-fed coil 101d is connected between the first connection end 110 and the second connection end 120.
  • the coupled coil 101c is arranged at intervals beside the direct-fed coil 101d.
  • the coupled coil 101c is coupled to the direct-fed coil 101d means that the coupled coil 101c does not have a direct connection relationship with other coils (including the direct-fed coil 101d).
  • the coupled coil 101c is used to couple with the direct-fed coil 101d. Signal.
  • the millimeter-wave antenna unit 210 may be connected to the coupling coil 101c and/or the direct-fed coil 101d.
  • the coupling coil 101c is located on a side of the direct-fed coil 101d away from the center of the wireless communication structure, and the millimeter wave antenna unit 210 is connected to the coupling coil 101c.
  • the coupling coil 101c is located on the side of the direct-fed coil 101d close to the edge of the display panel, and the millimeter wave antenna unit 210 is connected to the coupling coil 101c, so that The millimeter wave antenna unit 210 is disposed closer to the edge of the display panel.
  • the millimeter wave antenna unit 210 is disposed on the touch layer 300, the impact of the millimeter wave antenna unit 210 on the touch effect of the touch layer 300 can be reduced.
  • disposing the millimeter wave antenna unit 210 close to the edge of the display panel rather than close to the center of the display panel can also reduce the impact of the millimeter wave antenna unit 210 on the display effect of the display panel.
  • the direct-fed coil 101d is located on the side of the coupling coil 101c away from the center of the wireless communication structure, and the millimeter-wave antenna unit 210 is connected to the direct-fed coil 101d.
  • the millimeter wave antenna unit 210 is disposed closer to the edge of the display panel.
  • the embodiment of the present application can also enhance the performance of the loop structure 100 in transmitting and receiving wireless signals by arranging the coupling coil 101c.
  • the coupling coil 101c can enhance the performance of the NFC coil in transmitting and receiving wireless signals in the NFC frequency band.
  • the display panel includes a first area M and a second area N arranged around the first area M, and the loop structure 100 is located in the second area N.
  • the second area N surrounds the first area M, so the second area N is located closer to the edge of the display panel.
  • the loop structure 100 is located in the second area N, which can improve the impact of the loop structure 100 and the antenna 200 on the display effect of the display panel, and when When the loop structure 100 and the antenna 200 are disposed on the touch layer 300, the impact of the loop structure 100 and the antenna 200 on the touch effect can also be reduced.
  • the antenna 200 may be located in the second area N, or the antenna 200 may also be partially disposed in the first area M.
  • the second area N may include a display area; and/or the second area N may include a non-display area.
  • the loop structure 100 is located in the non-display area, which can better reduce the impact of the loop structure 100 on the display effect and touch effect.
  • the loop structure 100 is arranged in the first area M.
  • the loop structure 100 is arranged around the first area M in the second area N, which can lengthen the extension length of the loop structure 100.
  • the extension length of the coil body 130 of the loop structure 100 is to achieve the design target frequency band and enhance the wireless performance of the frequency band.
  • the first connection end 110 and the second connection end 120 are arranged close to each other, and the coil body 130 extends from the first connection end 110 around the first area M and then is connected to the second connection end 120.
  • the distance between the first connection end 110 and the second connection end 120 is small.
  • the extension length of the coil body 130 can also be lengthened to achieve the design target frequency band, thereby enhancing the wireless performance of the frequency band.
  • the coil body 130 is extended and shaped along a bending path, and the same coil body 130 includes a first extension section 130a and a second extension section 130b that overlap in a direction close to the edge of the wireless communication structure.
  • the coil body 130 extends along a curved path, and part of the coil body 130 is overlapped in a direction close to the edge of the wireless communication structure, which can increase the extension length of the coil body 130 to achieve the design target frequency band. Improve the wireless performance of the coil body 130 .
  • the millimeter wave antenna unit 210 is connected to the second extension section 130b.
  • the second extension section 130b is closer to the edge of the display panel than the first extension section 130a.
  • the millimeter wave antenna array 201 is connected in series to the second extension section 130b, the millimeter wave antenna array 201 is closer to the edge of the display panel. Being close to the edge of the display panel can reduce the impact of the millimeter wave antenna array 201 on the touch effect and display effect of the display panel.
  • the first extension section 130a and the second extension section 130b can also be provided on the inner ring 101a, which can also increase the strength of the coil body 130.
  • the length is extended to reach the design target frequency band and improve the signal wireless performance of the coil body 130 .
  • At least part of the coil body 130 is extended and formed along a bending path.
  • at least part of the coil body 130 is continuously bent and extended along a serpentine path, so that the extension length of the coil body 130 can be increased.
  • At least part of the coil body 130 includes a first segment 130c and a second segment 130d connected to each other, that is, at least a part of the coil body 130 is configured as a double-stranded wire, which can reduce The impedance of the coil body 130 reduces energy loss and energy reflection caused by impedance mismatch, thereby improving the wireless performance of the coil body 130 .
  • the millimeter wave antenna unit 210 and the first segment 130c and the second segment 130d are arranged in an offset manner, that is, the millimeter wave antenna array 201 is connected to the non-double wire portion of the coil body 130, which can simplify the millimeter wave antenna array 201 and the second segment 130d.
  • the millimeter wave antenna unit 210 may be a single polarization millimeter wave antenna unit. Or as shown in Figure 28, the millimeter wave antenna unit 210 is a dual polarization millimeter wave antenna unit.
  • different parts of the coil body 130 can be located on the same layer, that is, the first connecting section 131 , the second connecting section 132 and the third connecting section 133 can be located on the same layer.
  • different parts of the coil body 130 may be located at different levels.
  • at least two of the first connecting section 131, the second connecting section 132, and the third connecting section 133 are located on different film layers. Different locations of at least one of the first connecting section 131 , the second connecting section 132 and the third connecting section 133 may be located on the same layer. Or different parts of at least one of the first connecting section 131 , the second connecting section 132 and the third connecting section 133 can be located on different layers.
  • different parts of the first connecting section 131 can be located on different layers, and different parts of the second connecting section 132 can be located on different layers. Different parts may be located on different layers, and/or different parts of the third connecting section 133 may be located on different layers.
  • Figure 29 is a partial cross-sectional view taken at A-A in Figure 5 in the twenty-seventh embodiment.
  • the second connection section 132 and the millimeter wave antenna unit 210 can be arranged on the same layer, and the third connection section 133 and the second connection section 132 can be arranged on different layers.
  • embodiments of the present application also provide a wireless communication device, including the display panel of any of the above first aspects. Since the wireless communication device provided by the embodiment of the present application includes the display panel of any of the above embodiments, the wireless communication device provided by the embodiment of the present application has the beneficial effects of the display panel of any of the embodiments of the first aspect, which are not mentioned here. Again.
  • Wireless communication devices in the embodiments of this application include but are not limited to mobile phones, wireless wearable devices, personal digital assistants (Personal Digital Assistant, PDA for short), tablet computers, e-books, televisions, access control, smart landline phones, consoles, etc.
  • PDA Personal Digital Assistant
  • a device with display capabilities include but are not limited to mobile phones, wireless wearable devices, personal digital assistants (Personal Digital Assistant, PDA for short), tablet computers, e-books, televisions, access control, smart landline phones, consoles, etc.
  • PDA Personal Digital Assistant
  • the wireless communication device further includes a first circuit board 400 and a second circuit board 500.
  • the first circuit board 400 is provided with a first transmission line, which is connected with the first connection end 110 and/or the second connection end 120 of at least one coil body 130 .
  • the second circuit board 500 is provided with a second transmission line, and the first transmission line is connected with the millimeter wave antenna unit 210 .
  • the antenna 200 includes at least two millimeter wave antenna units 210, and more than two millimeter wave antenna units 210 form a millimeter wave antenna array 201, and the number of the millimeter wave antenna array 201 is multiple;
  • the plurality of millimeter wave antenna arrays 201 are respectively provided with independent circuit boards.
  • the circuit board provided correspondingly to the plurality of millimeter wave antenna arrays 201 may be the second circuit board 500, so that the millimeter wave antenna array 201 can perform signal transmission with the corresponding second circuit board 500 nearby.
  • the first circuit board 400 and the second circuit board 500 can be arranged in various ways.
  • the first circuit board 400 and the second circuit board 500 can be arranged separately from each other.
  • the first circuit board 400 and the second circuit board 500 are integrated, which can simplify the structure of the wireless communication device.
  • the wireless communication device may further include a first integrated circuit, and the first integrated circuit is connected to the first connection terminal 110 and/or the second connection terminal 120 through a first transmission line.
  • first integrated circuit can be placed on the first circuit board 400, or the first integrated circuit can be directly placed on the PCB (Printed Circuit Board) of the wireless communication device.
  • the wireless communication device may also include a second integrated circuit 510, and the second integrated circuit 510 is connected to the millimeter wave antenna unit 210 through a second transmission line.
  • the second integrated circuit 510 can be disposed in various locations.
  • the second integrated circuit 510 can be disposed on the second circuit board 500, or the second integrated circuit 510 can be directly disposed on the PCB of the wireless communication device.
  • the embodiment of the present application takes as an example that the first integrated circuit is disposed on the PCB of the wireless communication device, and the second integrated circuit 510 is disposed on the second circuit board 500.
  • the first integrated circuit is an NFC radio frequency integrated circuit.
  • the second integrated circuit 510 is connected to the millimeter wave antenna unit 210, the second integrated circuit 510 is a millimeter wave radio frequency integrated circuit. Due to the filtering and frequency selectivity of millimeter wave radio frequency circuits, the current in the NFC frequency band and the currents in other non-millimeter wave bands will be greatly blocked by the millimeter wave radio frequency circuit, so the signals in the NFC frequency band will not interact with the signals in other non-millimeter wave bands. The performance of millimeter wave radio frequency circuits has a significant impact, so the performance of millimeter wave radio frequency circuits can be better guaranteed.
  • the number of millimeter wave antenna arrays 201 is multiple, the number of second circuit boards 500 and second integrated circuits 510 is multiple, and each second integrated circuit 510 passes through each second circuit board 500 respectively.
  • the second transmission line on the antenna array 201 is interconnected with each millimeter wave antenna array 201 .
  • the plurality of second circuit boards 500 may be provided separately from each other, and the first circuit board 400 may be provided integrally with any second circuit board 500 .
  • the plurality of second circuit boards 500 can be integrally provided, that is, the first circuit board 400 and the plurality of second circuit boards 500 can be integrally provided, which can further simplify the structure of the wireless communication device.
  • the wireless communication device further includes a first connection socket 420 and a second connection socket 520.
  • the first connection socket 420 is disposed on the first circuit board 400 and is connected to the first transmission line on the first circuit board 400. Communication is used to interconnect the first integrated circuit and the coil body 130 through the first connection socket 420 .
  • the second connection socket 520 is disposed on the second circuit board 500 and communicates with the second integrated circuit 510 on the second circuit board 500, and is used for signal transmission between the second integrated circuit 510 and the PCB of the wireless communication device.
  • the first connection socket 420 is used to realize the connection between the coil body 130 and the first integrated circuit
  • the second connection is used to realize communication between the second integrated circuit 510 and the wireless communication device PCB.
  • the first connection base 420 and the second connection base 520 can be arranged in various ways. For example, when the first circuit board 400 and the second circuit board 500 are separated, the first connection base 420 and the second connection base 520 are separated. set up.
  • the first connection base 420 and the second connection base 520 are integrally provided, which can further simplify wireless communication.
  • the structure of the device when the first circuit board 400 and the second circuit board 500 are integrally provided, the first connection base 420 and the second connection base 520 are integrally provided, which can further simplify wireless communication.
  • the antenna 200 also includes a non-millimeter wave antenna 202 .
  • a non-millimeter wave antenna 202 For example, at least one millimeter wave antenna unit 210 is multiplexed as part of the non-millimeter wave antenna 202 .
  • the wireless communication device may further include a third circuit board 600, the third circuit board 600 is provided with a third transmission line, and the third transmission line is connected to the non-millimeter wave antenna 202.
  • At least two of the third circuit board 600, the second circuit board 500 and the first circuit board 400 are integrally provided to simplify the structure of the wireless communication device.
  • at least one of the third circuit board 600 and the first circuit board 400 can be integrally formed with at least one second circuit board 500 .
  • the wireless communication device further includes a third connection socket 620.
  • the third connection socket 620 is provided on the third circuit board 600 and is connected to the third transmission line.
  • the third circuit board 600 further includes a third integrated circuit 610.
  • the third connection socket 620 is connected with the third integrated circuit 610 and is used to connect the third integrated circuit 610 with the PCB of the wireless communication device.
  • the third integrated circuit 610 is connected to the non-millimeter wave antenna 202, so the third integrated circuit 610 is a non-millimeter wave radio frequency integrated circuit. Since both non-millimeter wave radio frequency integrated circuits and NFC radio frequency integrated circuits have filtering and frequency selectivity, other non-millimeter wave band signals will not have a significant impact on NFC radio frequency integrated circuits, or NFC signals will not affect other non-millimeter wave band signals. Radio frequency integrated circuits have a significant impact, so the performance of NFC or other non-millimeter wave band radio frequency integrated circuits can be better guaranteed.
  • the third integrated circuit 610 is a non-millimeter wave radio frequency integrated circuit
  • the second integrated circuit 510 is a millimeter wave radio frequency integrated circuit
  • the first integrated circuit 410 is not an NFC radio frequency integrated circuit. Due to the filtering and frequency selectivity of the NFC radio frequency circuit, Therefore, millimeter wave band and non-millimeter wave band signals will not have a significant impact on the performance of NFC radio frequency integrated circuits.
  • connection bases the first connection base 420 , the second connection base 520 and the third connection base 620 , the first connection base 420 , the second connection base 520 and the third connection base 620 At least the two are integrated to simplify the structure of the wireless communication device.
  • the third connection socket 620 and the first connection socket 420 can be integrally formed with at least one second connection socket 520 .
  • the first circuit board 400, one of the second circuit boards 500 and the third circuit board 600 are integrally provided, and the first connection base 420, one of the second connection bases 520 and the third connection base are
  • the base 620 is provided in one piece to simplify the structure of the wireless communication device as much as possible.
  • the wireless communication device includes a display panel.
  • a loop structure 100 and an antenna 200 are provided on the display panel.
  • the antenna 200 includes a millimeter wave antenna unit 210 and a non-millimetre wave antenna 202.
  • the millimeter wave antenna unit 210 and non-millimeter wave antenna 202 are both connected to loop structure 100 .
  • the millimeter wave antenna unit 210 and the millimeter wave feed part 220 are connected to each other. Multiple millimeter wave antenna units 210 are combined to form a millimeter wave antenna array 201.
  • the non-millimeter wave antenna 202 includes a first part 2021 and a second part 2022. At least part of the first part 2021 is formed by multiplexing at least one millimeter wave antenna unit 210.
  • the second part 2022 is the feed part of the non-millimeter wave antenna array 202.
  • the wireless communication device also includes a first circuit board 400, a second circuit board 500 and a third circuit board 600.
  • the first circuit board 400 is provided with a first connection socket 420.
  • the first connection socket 420 is used to interconnect with the loop structure 100 .
  • the second circuit board 500 is provided with a second integrated circuit 510 and a second connection socket 520
  • the third circuit board 600 is provided with a third integrated circuit 610 and a third connection socket 620.
  • the embodiment of the present application takes as an example that the second circuit board 500 and the third circuit board 600 are integrally formed, and the second connection base 520 and the third connection base 620 are integrally formed.
  • the first circuit board 400 , the second circuit board 500 and the third circuit board 600 can be integrally formed, and the first connection base 420 , the second connection base 520 and the third connection base 620 It can also be molded in one piece.
  • the wireless communication device further includes a substrate 700 , the loop structure 100 and the antenna 200 are disposed on the touch layer 300 , and the touch layer 300 is disposed on the substrate 700 .
  • the second circuit board 500 and the third circuit board 600 may be disposed in the non-display area of the wireless communication device.
  • the second circuit board 500 and the third circuit board 600 are flexible circuit boards, and the second integrated circuit 510 and the third integrated circuit 610 can be bonded using a Chip On Film (COF) process.
  • COF Chip On Film
  • the first circuit board 400 may also be a flexible circuit board and be bent to the non-display side of the wireless communication device.
  • the second integrated circuit 510 and the third integrated circuit 610 can be bonded to the same circuit board using the COF process.
  • the loop structure 100, the millimeter wave antenna array 201 and the non-millimeter wave antenna 202 are all used for wireless communication, and wireless communication has corresponding frequency bands.
  • the loop structure 100 may include a coupling portion and a feed portion, while the non-millimeter wave antenna 202 includes a radiating portion and a feed portion.
  • the coil body 130 is the coupling part of the loop structure 100 .
  • the first connection end 110 and the second connection end 120 are feed portions of the loop structure 100 .
  • the loop structure 100 may be short-range fixed-point wireless communication.
  • the millimeter wave antenna array 201 and the non-millimeter wave antenna 202 have different transmission frequencies.
  • the frequency of the currently commonly used millimeter wave band of mobile wireless communications is higher than 24.25 GHz, that is, the millimeter wave antenna array 201 refers to an antenna array that transmits and receives wireless signals with a frequency higher than 24.25 GHz.
  • the frequency of the currently commonly used non-millimeter wave band of mobile wireless communication is higher than 410 MHz and lower than 7.125 GHz. That is, the non-millimeter wave antenna 202 refers to an antenna that transmits and receives wireless signals with a frequency higher than 410 MHz and lower than 7.125 GHz.
  • the coil body 130 transmits wireless signals in a coupling manner, and the frequency of the coupled transmission wireless signals of the coil body 130 can be lower than 410 MHz.
  • the millimeter wave antenna array 201 and the non-millimeter wave antenna 202 are antennas for mobile wireless communication. That is, both the millimeter wave antenna array 201 and the non-millimeter wave antenna 202 are used for mobile wireless communications.
  • the communication frequency band of non-millimeter wave antennas in mobile wireless communications is 410MHz ⁇ 7.125GHz.
  • the non-millimeter wave antenna 202 in this article usually refers to the antennas in the non-millimeter wave band of mobile wireless communications (including 5G and previous generation cellular antennas and WLAN antennas). , Bluetooth antenna, GNSS antenna, etc.).
  • the loop structure 100 is, for example, an NFC coil, and the NFC coil communication frequency band is, for example, 13.56 MHz. Or the loop structure 100 is, for example, a WPC coil, and the commonly used WPC coil communication frequency band is, for example, greater than or equal to 100 kHz.
  • NFC coils and WPC coils are coupling coils used in non-mobile wireless communications (because currently NFC coils and WPC coils require a certain spatial alignment with the communication counterpart device).
  • the loop structure 100 may also include a broadcast frequency modulation (Frequency Modulation; FM) coil.
  • FM Frequency Modulation
  • the common FM frequency band is 87MHz to 108MHz, and the FM coil is a long-distance wireless application for non-mobile communications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Near-Field Transmission Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供一种无线通信结构、显示面板和无线通信装置,无线通信结构包括:回路结构,回路结构包括第一连接端、第二连接端和线圈本体,至少部分线圈本体连接于第一连接端和第二连接端之间;天线,包括用于收发毫米波段无线信号的毫米波天线单元,毫米波天线单元连接于线圈本体。本申请实施例通过将毫米波天线单元连接于线圈本体中,不仅能够实现在有限的空间内设置多个无线通信模块,且能更好地保障显示面板的光学性能。

Description

无线通信结构、显示面板和无线通信装置
相关申请的交叉引用
本申请要求享有于2022年04月24日提交的名称为“无线通信结构、显示面板和无线通信装置”的中国专利申请第202210433198.7号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示设备技术领域,尤其涉及一种无线通信结构、显示面板和无线通信装置。
背景技术
手持无线通信装置(例如手机、智能手表等)的功能日新月异,且市场对于装置外观与无线通信性能的要求也不断的提高。而在第五代移动通信(the 5th generation mobile communications,即5G)时代,因覆盖了毫米波(millimeter-wave,即mm-wave)与非毫米波(non-millimeter-wave,即non-mm-wave)段,故用于无线通信模块的种类及数量也越来越多;此外近场通信(near field communication,即NFC)的功能日益普及,故越来越多手持无线通信装置亦配置了NFC线圈。
同时,手持无线通信装置中的屏占比也日渐趋高,而在整体装置不能显著增大下,如何将无线通信模块设置于显示面板内,是可预见的未来关键技术趋势。然而显示面板内部空间有限且有光学要求,故如何在显示面板内设置无线通信模块成为亟待解决的重要技术问题。
发明内容
本申请实施例提供一种无线通信结构、显示面板和无线通信装置,旨在解决如何在有限空间内设置无线通信模块并较好地保证显示面板的光学性能的问题。
本申请第一方面的实施例提供了一种无线通信结构,包括:回路结构,回路结构包括第一馈电端、第二馈电端和线圈本体,至少部分线圈本体连接于第一馈电端和第二馈电端之间;天线,包括用于收发毫米波段无线信号的毫米波天线单元,至少一个毫米波天线单元连接于线圈本体,其中,天线包括至少两个毫米波天线单元,两个以上的毫米波天线单元组成毫米波天线阵列,毫米波天线阵列中的两个以上毫米波天线单元连接于线圈本体中,线圈本体包括第一连接段、第二连接段和第三连接段,第一连接段连接于第一连接端和毫米波天线阵列之间,第二连接段连接于毫米波天线阵列和第二连接端之间,第三连接段连接于毫米波天线阵列内相邻的两个毫米波天线单元之间。
本申请第二方面的实施例还提供一种显示面板,包括上述任一第一方面实施例的无线通信结构。
本申请第三方面的实施例还提供了一种无线通信装置,包括上述任一第一方面实施例的显示面板。
在本申请实施例提供的无线通信结构中,无线通信结构包括回路结构和天线,回路结构包括第一连接端、第二连接端和线圈本体,通过第一连接端和第二连接端在线圈本体上收发无线信号。天线包括毫米波天线单元,毫米波天线单元用于收发毫米波段无线信号,毫米波天线单元连接于线圈本体,那么线圈本体的至少一部分可以同时收发回路结构的无线信号和毫米波段无线信号。一方面能够减少回路结构和天线占据的总体面积,使得在有限的空间内可以设置多个用于无线通信的模块;另一方面,至少一个回路结构和毫米波天线单元连接,能更好地确保显示屏的光学性能,且能简化天线图案化处理工艺,进而提高无线通信模块的制备效率及降低制备的成本。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本申请第一方面第一实施例提供的一种显示面板的结构示意图;
图2是本申请第一方面另第二实施例提供的一种显示面板的结构示意图;
图3是本申请第一方面第三实施例提供的一种显示面板的结构示意图;
图4是本申请第一方面第四实施例提供的一种显示面板的结构示意图;
图5是图4的局部放大结构示意图;
图6是第五实施例中毫米波天线单元的局部放大结构示意图;
图7是本申请第一方面第六实施例提供的一种显示面板的结构示意图;
图8是本申请第一方面第七实施例提供的一种显示面板的结构示意图;
图9是图8的局部放大结构示意图;
图10是本申请第一方面第八实施例提供的一种显示面板的结构示意图;
图11是本申请第一方面第九实施例提供的一种显示面板的结构示意图;
图12是本申请第一方面第十实施例提供的一种显示面板的结构示意图;
图13是本申请第一方面第十一实施例提供的一种显示面板的结构示意图;
图14是本申请第一方面第十二实施例提供的一种显示面板的结构示意图;
图15是本申请第一方面第十三实施例提供的一种显示面板的结构示意图;
图16是本申请第一方面第十四实施例提供的一种显示面板的结构示意图;
图17是本申请第一方面第十五实施例提供的一种显示面板的结构示意图;
图18是图17的局部剖视图;
图19是本申请第一方面第十六实施例提供的一种显示面板的结构示意图;
图20是图19的局部剖视图;
图21是本申请第一方面第十七实施例提供的一种显示面板的结构示意图;
图22是本申请第一方面第十八实施例提供的一种显示面板的结构示意图;
图23是本申请第一方面第十九实施例提供的一种显示面板的结构示意图;
图24是本申请第一方面第二十实施例提供的一种显示面板的结构示意图;
图25是本申请第一方面第二十一实施例提供的一种显示面板的结构示意图;
图26是本申请第一方面第二十二实施例提供的一种显示面板的结构示意图;
图27是本申请第一方面第二十三实施例提供的一种显示面板的结构示意图;
图28是本申请第一方面第二十四实施例提供的一种显示面板的结构示意图;
图29是图5的局部剖视图;
图30是本申请第二方面第一实施例提供的一种无线通信装置的结构示意图;
图31是本申请第二方面第二实施例提供的一种无线通信装置的结构示意图;
图32是本申请第二方面第三实施例提供的一种无线通信装置的结构示意图;
图33是本申请第二方面第四实施例提供的一种无线通信装置的结构示意图;
图34是本申请第二方面第五实施例提供的一种无线通信装置的结构示意图;
图35是本申请第二方面第六实施例提供的一种无线通信装置的结构示意图;
图36是本申请第二方面第七实施例提供的一种无线通信装置的结构示意图;
图37是相关技术中无线通信装置的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
随着显示技术及无线通信技术的发展,具备无线通信功能的装置中显示装置的屏占比(screen-to-body ratio)往往越来越高,而设备中用于实现无线通信模块的种类及数量也越来越多。例如,在5G移动通信时代,无线通信的频谱即覆盖了毫米波段与非毫米波段。故具有5G毫米波功能的无线通信装置,如手机,其内除了设置有可覆盖毫米波段的第一类天线外,往往亦设置有可覆盖非毫米波段的无线通讯模块,例如:5G、4G、WLAN(wireless local area network)、BT(Bluetooth)、 GNSS(global navigation satellite system)等。同时,NFC(Near Field Communication)的应用亦日益广泛,故越来越多手机也配置了NFC线圈。
然而,无线通信装置中显示装置的屏占比越高,则越易限制无线通信模块可摆放的位置,且无线通信模块往往在使用时(如:手握或置放于金属桌上)更容易受遮挡,而造成无线通信模块性能的显著劣化,影响用户的无线体验。有鉴于此,考虑在无线通信装置的显示装置中集成无线通信模块,例如采用屏上天线(Antenna-on-Display,简称AoD)的设计方式,便成为一种无线通信装置中无线通信模块设计的可能发展趋势。
在一些实施例中,请参阅图37,以无线通信装置1是手机为例,集成于手机的显示装置10中的无线通信模块可以包括:5G毫米波天线01、WiFi/BT天线021、LTE(Long Term Evolution)天线022、NFC线圈023及5G非毫米波天线024。通常地,上述5G毫米波天线01、WiFi/BT天线021、LTE天线022、NFC线圈023和5G非毫米波天线024相互独立地设置在显示装置10中。然而显示装置10内部空间有限,如何在有限的空间内设置无线通信模块并较好地确保显示面板的光学及触控效果成为亟待解决的技术问题。
为了解决上述问题,提出了本申请,为了更好地理解本申请,下面结合图1至图36对本申请实施例的无线通信结构、显示面板和无线通信装置进行详细描述。
请参阅图1,图1是本申请第一实施例提供的一种显示面板的结构示意图。
如图1所示,本申请实施例提供的显示面板包括无线通信结构。无线通信结构的设置方式有多种。如图1所示,本申请实施例提供的无线通信结构包括回路结构100和天线200。回路结构100包括第一连接端110、第二连接端120和线圈本体130,至少部分线圈本体130连接于第一连接端110和第二连接端120之间;天线200包括用于收发毫米波段无线信号的毫米波天线单元210,毫米波天线单元210连接于至少一个回路结构100的线圈本体130。
收发毫米波段无线信号的毫米波天线单元210是指,用于收和/或发毫米波段无线信号的毫米波天线单元210。即本文中收发是指收和/或发。毫米波天线单元210包括毫米波馈入部和毫米波辐射部。可选的,毫米波馈入部和/或毫米波辐射部连接于至少一个回路结构100的线圈本体130。
在本申请实施例提供的无线通信结构中,无线通信结构包括至少一个回路结构100和天线200,回路结构100通过第一连接端110和第二连接端120在线圈本体130上收发信号。天线200包括毫米波天线单元210,毫米波天线单元210用于收发毫米波段无线信号。毫米波天线单元210连接于至少一个回路结构100的线圈本体130,不仅能够减少回路结构100和天线200占据的总面积,以使得在有限的空间内可以设置多个无线通信模块;此外,至少一个回路结构100和天线200的毫米波天线单元210相互连接,能更好地确保显示屏的光学性能,且能简化天线图案化处理工艺,进而提高无线通信模块的制备效率及降低制备的成本。
作为一种可选的实施例,请继续参阅图1,当无线通信结构用于显示面板时,显示面板还包括触控层300,触控层300包括网格状金属导线,图1中以浅色网格状线条示意出了网格状金属导线。当回路结构100和天线200设置于触控层300时,用于连接至少一个回路结构100和毫米波天线单元210的部分金属导线在连接方向上无需切割处理,故能够减少网格状金属导线的切割点数量,改善因无线通信结构布置于触控层300而导致的触控盲区增多、触控性能与体验劣化的问题,而能更好地确保显示屏的触控性能。且至少一个回路结构100和毫米波天线单元210之间的连接部分在连接方向上无需切割处理,还能够使得不同区域的网格状金属导线的形状更加趋于一致,故亦可改善显示面板的光学效果。
所述线圈本体130为环式线圈,设置方式有多种,例如回路结构100包括NFC线圈、无线充电(Wireless Power Charging;WPC)线圈、LTE线圈、GNSS线圈、WLAN线圈、BT线圈和调频(Frequenncy Modulation;FM)线圈等中的至少一者。NFC线圈、WPC线圈、LTE线圈、GNSS线圈、与WLAN线圈、BT线圈和FM线圈等均可设置为环式线圈,便于毫米波天线单元210连接其中。
可选的,回路结构100包括NFC线圈、WPC线圈中的至少一者。因NFC线圈、WPC线圈的回路结构100通常尺寸较大。例如NFC线圈、WPC线圈的回路结构100靠近显示面板的边缘并环绕显示面板的边缘设置,便于毫米波天线单元210串联于NFC线圈、WPC线圈的回路结构100。且使得毫米波天线单元210能够更加靠近显示面板的边缘设置,如此,毫米波天线单元210所造成的显示面板光学与触觉效果的劣化影响可较不显著,且毫米波天线单元210的馈入路径可较短,故 可有较低的馈入损耗,以达毫米波天线单元210较优的辐射性能。
请参阅图2,图2是第一方面第二实施例提供的显示面板的结构示意图。图2涉及实施例与图1涉及实施例的部分结构相同,在此不再详述,以下将对两者不同之处进行说明。此外,本文中以下内容将针对各附图所涉及的各实施例的不同部分进行说明。
如图2所示,天线200包括两个以上的毫米波天线单元210,两个以上的毫米波天线单元210组合形成了毫米波天线阵列201,毫米波天线阵列201中的至少一个毫米波天线单元210连接于线圈本体130。图2中以点划线示意出了毫米波天线阵列201所在的位置,虚线框并不够成对本申请实施例无线通信结构的结构上的限定。
如图2所示,毫米波天线阵列201中的每一个毫米波天线单元210均连接于线圈本体130。毫米波天线阵列201连接的线圈本体130包括第一连接段131、第二连接段132和第三连接段133,第一连接段131连接于第一连接端110和毫米波天线阵列201之间,第二连接段132连接于毫米波天线阵列201和第二连接端120之间。第三连接段133连接于同一毫米波天线阵列201中相邻的两个毫米波天线单元210之间。通过第一连接段131和第二连接段132,使得毫米波天线阵列201能够连接于第一连接端110和第二连接端120之间。第三连接段133连接于同一毫米波天线阵列201内相邻的两个毫米波天线单元210之间,能减少回路结构100和天线200占据的总面积,且能够进一步简化回路结构100和天线200的图形。
请参阅图3,图3是本申请第三实施例提供的一种显示面板的结构示意图。
可选的,如图3所示,毫米波天线阵列201的个数为多个,第一连接段131连接于其中一毫米波天线阵列201和第一连接端110之间。第二连接段132包括第一子段132a和第二子段132b,第一子段132a连接于相邻的两个毫米波天线阵列201之间,第二子段132b连接于另一毫米波天线阵列201和第二连接端120之间。第一子段132a用于实现相邻两个毫米波天线阵列201的连接,第二子段132b用于实现毫米波天线阵列201和第二连接端120的连接。即第二连接段132被分割为多段,部分第二连接段132(例如第一子段132a)用于实现相邻两个毫米波天线阵列201的连接,部分第二连接段132(例如第二子段132b)用于实现毫米波天线阵列201和第二连接端120的连接。
如图3所示,毫米波天线阵列201的个数可以为三个,其中两个毫米波天线阵列201沿第一方向X相对设置,也就是说两个毫米波天线阵列201分别对应设置在显示面板沿第一方向X相对的两侧边缘位置,并非限定两个毫米波天线阵列201的在显示面板边缘的位置严格一致;另一毫米波天线阵列201与第一连接端110和第二连接端120沿第二方向Y相对设置,使得第一连接端110、第二连接端120与三个毫米波天线阵列201环绕于显示面板的周侧间隔分布,毫米波天线阵列201分布于显示面板的不同位置。当用户使用不同的手势操作显示面板时,始终可有毫米波天线阵列201处于不被用户遮挡的位置,故能够提高毫米波天线阵列201收发无线信号的稳定性,而更好地保障用户的无线体验。
在另一些可选的实施例中,如图4所示,第一连接端110、第二连接端120还可以与毫米波天线阵列201沿第一方向X间隔设置,即第一连接端110、第二连接端120设置在其一毫米波天线阵列201的旁侧。
可选的,毫米波天线单元210的形状设置方式可以有多种,例如毫米波天线单元210的形状可以为正方形、菱形等。
在上述任一实施例中,第一连接段131、第二连接段132和第三连接段133的设置方式有多种,例如第一连接段131可以包括一条导线,或者第一连接段131包括多条并排设置的导线,或者第一连接段131包括多条并排设置的导线和连接该并排设置导线的桥线。同样的,第二连接段132和/或第三连接段133可以包括一条导线,或者第二连接段132和/或第三连接段133包括多条并排设置的导线,或者第二连接段132和/或第三连接段133包括多条并排设置的导线和连接该并排设置导线的桥线。
如图5所示,相邻两个毫米波天线单元210之间的第三连接段133包括一个导线。或者,如图6所示,相邻两个毫米波天线单元210之间的第三连接段133包括两条以上的导线。
导体的阻抗(impedance)包括电阻(resistance)和电抗(reactance)。
电阻=ρ(L/A),其中ρ为导体的电阻率,L为导体的长度,A则为在此导体上外加电流所对应的电流分布面积。当导体的本征电气与结构尺寸参数固定时,当信号频率升高时,因趋肤效应(即 信号的频率越高,其对应的电流越容易集中在导体接近表面的薄层),电流在导体的分布面积会减小,即A会减小,而导致电阻上升。
电抗=感抗(inductive reactance)–容抗(capacitive reactance),故电抗和感抗呈正相关。而感抗=jwL,其中w为角频率,w=2πf,f为频率,L为电感;因此,当信号频率升高时,感抗亦会上升。此外,亦因上述的趋肤效应,高频率信号所面对的电感亦会上升,故进一步也造成感抗上升。
综上,信号会因其频率升高,而使其对应的电流于导体上的流动分布受阻。故在同样的导体条件下,高频率信号对应的电流相对低频率信号对应的电流更易受阻。且,导体宽度变小,会使导体的电感上升,故会再次提升感抗,而会进一步阻止高频率信号对应的电流的流动分布。即,通过调整导体的尺寸能够较好地阻隔或通过不同频率的信号对应的电流。
当回路结构100包括NFC线圈时,毫米波天线单元210收发的毫米波段无线信号频段高于NFC频段,故在同样的导体条件下,毫米波段无线信号频段对应的毫米波电流相对NFC频段所对应的电流则更易受阻而不易通过。因此通过调整线圈本体130的尺寸能够较好地阻隔毫米波电流且通过NFC频段对应的电流。
第一连接段131、第二连接段132和第三连接段133中至少一者的至少部分区域的线宽小于毫米波天线单元210的宽度。可选的,毫米波天线单元210包括毫米波导线,第一连接段131、第二连接段132和第三连接段133中至少一者的至少部分区域的线宽不大于毫米波天线单元210内毫米波导线的宽度。
例如,第一连接段131的至少部分区域的线宽不大于毫米波天线单元的宽度。当毫米波天线单元210呈块状时,毫米波天线单元210可理解为包括一条毫米波导线;当毫米波天线单元210包括多条毫米波导线时,第一连接段131的至少部分区域的线宽小于毫米波天线单元210的宽度是指:第一连接段131的至少部分区域的线宽小于毫米波天线单元210内多条毫米波导线的宽度总和。
在本申请实施例中,当第一连接段131的至少部分区域的线宽不大于毫米波天线单元210内毫米波导线的宽度时,第一连接段131的线宽较窄,故第一连接段131具有较高的阻抗;而如上所述,因毫米波天线单元210收发的毫米波段无线信号频段较高,故毫米波天线单元210收发的毫米波段无线信号频段对应的毫米波电流较无法流过第一连接段131,因此第一连接段131对毫米波电流具有较好的滤波阻隔效果。但是第一连接段131对于5G及其前世代的移动通信、WLAN或蓝牙等的非毫米波频段,和NFC频段等的非毫米波电流皆可有较好的通过效果。因此,在本申请实施例中,回路结构100的电流可以较好地通过第一连接段131,而毫米波电流则明显地被第一连接段131所阻隔。
毫米波电流是指毫米波天线单元210收发的毫米波段无线信号频段对应的电流,无线信号电流是指回路结构100收发的无线信号频段对应的电流。
第二连接段132和/或第三连接段133的至少部分区域的线宽不大于毫米波天线单元210的宽度的设置方式及其具有的有益效果同上,此处不再赘述。
可选的,第一连接段131、第二连接段132、第三连接段133的线宽均设置不大于毫米波导线的线宽。能够使得毫米波电流明显地被第一连接段131、第二连接段132、第三连接段133所阻隔,更好地确保毫米波天线阵列201内各毫米波天线单元210的独立性,保证毫米波天线阵列201的性能。
可选的,当第三连接段133的至少部分区域的线宽不大于毫米波天线单元210的宽度时,如图5所示,当两个相邻毫米波天线单元210之间的第三连接段133包括一条导线时,第三连接段133内一条导线的线宽不大于毫米波天线单元210中与第三连接段133延伸方向相同的毫米波导线线宽总和。如图6所示,当两个相邻毫米波天线单元210之间的第三连接段133包括多条导线时,第三连接段133内多条导线的线宽总和不大于毫米波天线单元210中与第三连接段133延伸方向相同的毫米波导线线宽总和。如图5和图6所示,当第一方向X和第二方向Y垂直,第三连接段133沿第二方向Y延伸时,第三连接段133的线宽方向为第一方向X,毫米波导线的宽度方向也是第一方向X。在另一些实施例中,当第三连接段133沿第一方向X延伸时,第三连接段133的线宽方向为第二方向Y。
在本申请实施例中,第三连接段133内导线的线宽总和不大于毫米波天线单元210中与第三连接段133延伸方向相同的毫米波导线线宽总和时,即第三连接段133的宽度较窄,故第三连接段133具有较高的阻抗,因此第三连接段133对毫米波段的电流具有较好的滤波阻隔效果。但是第三 连接段133对于5G及其前世代的移动通信、WLAN、BT或GNSS等的非毫米波频段,和NFC频段等的非毫米波电流皆可有较好的通过效果。因此,在本申请实施例中,回路结构100的电流可以较好地通过第三连接段133,而毫米波电流则明显地被第三连接段133所阻隔;但毫米波电流能够较好地在毫米波天线单元210内流动,能够较好地确保毫米波天线阵列201内各毫米波天线单元210的独立性,保证毫米波天线阵列201的性能。
可选的,第二连接段132内导线的线宽总和不大于毫米波天线单元210中与第二连接段132延伸方向相同的毫米波导线线宽总和。如图2至图4所示,当第二连接段132沿第一方向X延伸时,第二连接段132的线宽方向为第二方向Y,当第二连接段132沿第二方向Y延伸时,第二连接段132的线宽方向为第一方向X。
如上所述,第二连接段132的线宽较窄,能够更好地阻隔毫米波电流,并较好地使得非毫米波段与NFC频段的电流通过,即通过第二连接段132能够实现对毫米波段电流更好的阻隔,而更好的保障毫米波天线阵列201与毫米波天线单元210的性能,但可较不影响其他非毫米波段与NFC频段的电流。
可选的,第一连接段131内导线的线宽总和不大于毫米波天线单元210中与第一连接段131延伸方向相同的毫米波导线线宽总和。如图2至图4所示,当第一连接段131沿第一方向X延伸时,第一连接段131的线宽方向为第二方向Y,当第一连接段131沿第二方向Y延伸时,第一连接段131的线宽方向为第一方向X。
如上所述,第一连接段131的线宽较窄,能够更好地阻隔毫米波电流,并较好地使得非毫米波段与NFC频段的电流通过,即通过第一连接段131能够实现毫米波段电流更好的阻隔,而更好的保障毫米波天线阵列201与毫米波天线单元210的性能,但可较不影响其他非毫米波段与NFC频段的电流。
此外,本申请实施例的毫米波天线单元210的个数为多个,多个毫米波天线单元210相邻布设或采用阵列的方式布设以构成毫米波天线阵列201,可以提高天线增益而补偿较大的辐射路径损耗,并可达到波束扫描的效果而覆盖较广的空间以减少无线通信盲区,而达到较佳的用户无线体验。
第三连接段133的形状设置方式也有多种,第三连接段133的形状可以为直线状,即第三连接段133沿同一方向延伸。或者,第三连接段133也可以呈折线状,即第三连接段133沿弯折路径延伸。或者,第三连接段133也可以呈弧线状。或者,第三连接段133由直线状、折线状和弧状中的至少两者结合形成。
可选的,当毫米波天线阵列201中的毫米波天线单元210个数为多个时,在第一连接端110至第二连接端120的方向,第一连接段131连接于多个毫米波天线单元210中的首位天线单元,或者第二连接段132连接于多个毫米波天线单元210的末位天线单元。
例如,如图5和图6所示,毫米波天线阵列201包括四个毫米波天线单元210,且沿其排列方向(第二方向Y)依次为第一天线单元、第二天线单元、第三天线单元和第四天线单元。在第一连接端110至第二连接端120的延伸路径上,第一天线单元位于四个毫米波天线单元210中靠近第一连接端110的一侧,第四天线单元位于四个毫米波天线单元210中靠近第二连接端120的一侧。那么第一天线单元为首位天线单元,第一连接段131连接于第一天线单元和第一连接端110之间;第四天线单元为末位天线单元,第二连接段132连接于第四天线单元和第二连接端120之间。
可选的,各第一天线单元和第二天线单元、第二天线单元和第三天线单元、第三天线单元和第四天线单元之间均连接有第三连接段133。
在一些可选的实施例中,如图7所示,天线200还包括用于收发非毫米波段无线信号的非毫米波天线202,非毫米波天线202连接于线圈本体130。在本申请实施例中,线圈本体130上连接有毫米波天线单元210和非毫米波天线202,能够进一步改善显示面板的发光效果。且当天线200和回路结构100设置于触控层300时,能够进一步减少切割点的数量,改善触控效果。
可选的,至少一个毫米波天线单元210复用为非毫米波天线202的一部分。
至少一个毫米波天线单元210复用为非毫米波天线202的一部分可以为:一个毫米波天线单元210复用为非毫米波天线202的一部分;或者至少两个相邻的毫米波天线单元210通过第三连接段133连接并复用为非毫米波天线202的一部分。至少两个相邻的毫米波天线单元210通过第三连接段133连接并复用为非毫米波天线202的一部分是指,至少两个相邻的毫米波天线单元210通过第 三连接段133连接可以具有非毫米波天线202的功能,并用于收发非毫米波的无线信号。
可选的,非毫米波天线202包括第一部分2021和第二部分2022,第一部分2021为辐射部,第二部分2022为馈入部,一个毫米波天线单元210可以复用为第一部分2021的一部分,例如一个毫米波天线单元210和部分线圈本体130相互连接并复用为第一部分2021的一部分。或者两个以上的毫米波天线单元210可以相互连接复用为第一部分2021,且第一部分2021与第二部分2022连接。
当至少一个毫米波天线单元210复用非毫米波天线202的至少一部分时,所述至少一个毫米波天线单元210可以连接于非毫米波天线202的馈入部,即所述至少一个毫米波天线单元210可以连接于非毫米波天线202的第二部分2022。例如所述至少一个毫米波天线单元210可以通过线圈本体130的一部分连接于非毫米波天线202的第二部分2022。以使所述至少一个毫米波天线单元210可以连接于非毫米波天线202的射频集成电路,从而实现非毫米波天线202的功能。
当至少两个相邻的毫米波天线单元210通过第三连接段133连接并复用非毫米波天线202的至少一部分时,所述至少两个相邻的毫米波天线单元210可以是相互串联或并联连接而复用为非毫米波天线202的至少一部分。
在这些可选的实施例中,非毫米波天线202、毫米波天线单元210和回路结构100的至少一部分复用,能够进一步简化多种天线所占据的面积,并简化多种天线的布置图形,故可减少切割网格状金属布线的数量而能更好地确保显示面板的显示性能和触控性能。
可选的,如图7所示,线圈本体130上设置有阻隔部140,阻隔部140用于令回路结构100收发的无线信号电流通过、但较大程度地阻隔非毫米波天线202收发的非毫米波段电流及较大程度地阻隔毫米波天线单元210收发的毫米波段电流。故通过设置阻隔部140,能够阻隔非毫米波段电流,而更好可控地设计和保障非毫米波天线202的性能。
例如,回路结构100为NFC线圈时,阻隔部140用于令NFC频段的无线信号电流通过。当回路结构100为WPC时,阻隔部140用于令WPC频段的无线信号电流通过。
阻隔部140的设置方式有多种,例如可以通过改变至少部分线圈本体130的宽度,即改变线圈本体130的粗细来设置阻隔部140,来达到阻隔非毫米波段电流的目的。用户可以根据实际使用中非毫米波天线202收发的非毫米波段无线信号和回路结构100收发的无线信号的频段,来设置阻隔部140的位置、宽度、长度、形状、膜层位置及数量,以阻隔非毫米波段电流,而达到非毫米波段目标工作频率的设计。
可选的,如图7所示,为了更明显地示意出阻隔部140的设置位置,故将阻隔部140的宽度设置为大于线圈本体130本身的宽度。
在一些可选的实施例中,如图8和图9所示,阻隔部140的宽度可以不大于线圈本体130本身的宽度。
阻隔部140的设置位置有多种,阻隔部140可以设置于第一线段131、第二线段132和第三线段133中的任一者上。例如当阻隔部140设置于图7所示的第一子段132a上时,第一子段132a和第一连接端110之间的毫米波天线阵列201的毫米波天线单元210复用为非毫米波天线202,非毫米波天线202的馈入部(即第二部分2022)设置于第一子段132a和第一连接端110之间。如此,则非毫米波天线202的电流可以朝向阻隔部140流动,或者非毫米波天线202的电流可以朝向第一连接端110流动,进而形成一双频段的非毫米波天线202。
在另一些可选的实施例中,还可以在线圈本体130上设置两个以上的阻隔部140。例如,如图10所示,线圈本体130上设置有两个阻隔部140。其中一个阻隔部140位于第一子段132a,另一阻隔部140位于第二部分2022和第一连接端110之间的第一连接段131。那么非毫米波天线202的电流可以朝向位于第一子段132a的阻隔部140流动,或者非毫米波天线202的电流可以朝向位于第一连接段131的阻隔部140流动,进而形成一双频段的非毫米波天线202。且通过合理设置阻隔部140的位置,可以控制非毫米波天线202的频段,达到较精准地控制非毫米波天线202收发的无线信号频段的目的。
在还一些可选的实施例中,阻隔部140还可以设置于第三连接段133。例如,如图11所示,图11中的毫米波天线阵列201的两个以上毫米波天线单元210复用为非毫米波天线202,阻隔部140可以设置于复用为非毫米波天线阵列201的多个天线单元210和其他毫米波天线单元210之间。
可选的,图11中,例如阻隔部140分别为第一阻隔部140a、第二阻隔部140b和第三阻隔部 140c,由非毫米波天线202的第二部分2022流出的电流可以流向第一阻隔部140a,或者由非毫米波天线202的第二部分2022流出的电流可以流向第二阻隔部140b。
可选的,图11中的非毫米波天线202为覆盖多个目标频段的非毫米波天线202,即由第二部分200流向第一阻隔部140a和第二阻隔部140b的电流均为非毫米波天线202频段内的电流。
或者,图11中的非毫米波天线202为覆盖单个目标频段的非毫米波天线202。例如当非毫米波天线202的第二部分2022流出的电流流向第二阻隔部140b时,该电流为非毫米波天线202的目标频段内的电流,通过合理设计第二部分2022至第一阻隔部140a之间的导线路径可以对非毫米波天线202的目标频段的性能产生有益影响。
可选的,毫米波天线阵列201中的多个毫米波天线单元210可以复用为两个非毫米波天线202,阻隔部140可以设置于复用为不同的非毫米波天线阵列201的多个毫米波天线单元210之间。例如,图11中的毫米波天线阵列201包括4个毫米波天线单元210,其中两个相邻的毫米波天线单元210复用为非毫米波天线202,那么阻隔部140可以设置于4个毫米波天线单元210中间部位。
在其他实施例中,如图12所示,当至少一个毫米波天线单元210复用为非毫米波天线202的第一部分2021的一部分时,毫米波天线阵列201中的阻隔部140可以设置于三个毫米波天线单元210与其他一个毫米波天线单元210之间。
在其他实施例中,如图13所示,当毫米波天线单元210的个数为5个时,阻隔部140可以设置于两个毫米波天线单元210和其他三个毫米波天线单元210之间,或者阻隔部140可以设置于一个毫米波天线单元210和其他四个毫米波天线单元210之间。
可选的,当阻隔部140能够阻隔非毫米波段电流时,阻隔部140也能够阻隔毫米波段电流。
可选的,阻隔部140的线宽可以比线圈本体130小,或者阻隔部140的线宽可以比线圈本体130的大。
可选的,当毫米波天线阵列201的个数为两个以上时,可以是其中一个毫米波天线阵列201的至少一个毫米波天线单元210复用为非毫米波天线202的一部分。或者,如图14所示,也可以是两个以上的毫米波天线阵列201中,各毫米波天线阵列201的至少一个毫米波天线单元210复用为非毫米波天线202的一部分,以增加非毫米波天线202的个数。
回路结构100和天线200的设置位置有多种,如图1至图14所示,在一些可选的实施例中,显示面板还包括触控层300,触控层300包括网格状金属布线,回路结构100和天线200均位于触控层300。
在这些可选的实施例中,将回路结构100和天线200设置于触控层300,使得回路结构100和天线200能够复用网格状金属布线,无需新增结构层,能够减薄显示面板的整体厚度。此外,当至少一个回路结构100和天线200相互连接时,能够减少网格状金属布线的切割点,以更好地同时确保触控层300的触控效果和显示面板的光学效果。
可选的,当天线200位于触控层300时,如图5和图6所示,毫米波天线单元210包括沿第一方向X延伸的多条第一导线211和沿第二方向Y延伸的多条第二导线212,第一方向X和第二方向Y相交。例如,第一方向X和第二方向Y相互垂直,或者第一方向X和第二方向Y的夹角呈30度、45度、60度等,只要第一方向X和第二方向Y相交即可。
在这些可选的实施例中,毫米波天线单元210包括相交的第一导线211和第二导线212,即毫米波天线单元210呈网格状,能够增大毫米波天线单元210内毫米波导线的分布面积,进而减小毫米波天线单元210的阻抗,而可降低毫米波天线单元210的能量损耗与因阻抗失配所造成的能量反射,以使得毫米波天线单元210能够更好地收发毫米波段无线信号。另外,毫米波天线单元210还可以直接利用网格状金属布线中的金属导线作为第一导线211和第二导线212,能够进一步简化毫米波天线单元210的制备。
毫米波天线单元210包括相交的第一导线211和第二导线212,即毫米波导线包括相交的第一导线211和第二导线212。
可选的,触控层300可以由多条与第一导线211平行的第一触控线和与第二导线212平行的第二触控线交叉形成。
在另一些实施例中,如图15所示,显示面板还可以包括天线层,回路结构100和天线200位于天线层。在这些可选的实施例中,通过在显示面板中增设非网格状的天线层,可减少天线200与 回路结构100的阻抗,降低天线200与回路结构100的能量损耗与因阻抗失配所造成的能量反射,以提升天线200与回路结构100的性能。可选的,可以选用刻蚀的方式制备天线层中的回路结构100和天线200。在其他实施例中,天线层也可以独立设置并贴装在显示面板上;还可以选用其他实施方式制备天线层中的回路结构100和天线200。
当回路结构100和天线200设置于天线层时,毫米波天线单元210可以呈块状,以增大毫米波天线单元210内导电材料的分布面积,并减小毫米波天线单元210的阻抗与因阻抗失配所造成的能量反射,使得毫米波天线单元210能有更好的性能进行毫米波无线信号的收发。
当毫米波天线单元210呈块状时,毫米波天线单元210可以呈正方形、菱形、圆形等形状。
可选的,当通过在显示面板内增设天线层布置回路结构100和天线200时,且显示面板本身具有触控层300时,可以将天线层布置于触控层300朝向显示面板盖板的一侧,或者将天线层布置于触控层300背离显示面板盖板的一侧。
在一些可选的实施例中,如图16所示,当线圈本体130包括多个线圈,毫米波天线单元210连接于至少一个线圈。多个线圈可以相互串联、并联或耦合连接。多个线圈也可以相互交叉或分隔设置。
当毫米波天线单元210的个数为一个时,毫米波天线单元210可以连接于其中一个线圈。当毫米波天线单元210的个数为多个时,不同的毫米波天线单元210可以连接于不同的线圈,或者不同的毫米波天线单元210可以连接于同一线圈。
可选的,多个线圈包括内圈101a和环绕于内圈101a远离无线通信结构中心一侧的外圈101b,内圈101a和外圈101b均连接于第一连接端110和第二连接端120之间。即外圈101b更加靠近无线通信结构的边缘设置。
当线圈本体130包括内圈101a和外圈101b时,毫米波天线单元210可以连接于内圈101a和/或外圈101b。
例如,如图16所示,毫米波天线单元210连接于外圈101b。当无线通信结构用于显示面板时,使得毫米波天线单元210更加靠近显示面板的边缘设置,能够减低毫米波天线单元210对显示面板显示效果的影响。且当天线200设置于触控层300时,由于用户触控显示面板边缘频率较少,毫米波天线阵单元210靠近显示面板的边缘设置,也还能降低其对触控效果的影响。
或者,部分毫米波天线阵列201串联于内圈101a,另一部分毫米波天线阵列201串联于外圈101b。
在另一些实施例中,如图17和图18所示,天线200还包括连接于毫米波天线单元210的毫米波馈入部220,毫米波天线单元210连接于内圈101a。毫米波天线单元210可以和内圈101a、外圈101b同层设置。毫米波馈入部220的至少一部分与外圈101b异层设置。当毫米波天线单元210连接于内圈101a时,毫米波馈入部220与外圈101b存在交叉,毫米波馈入部220的至少一部分与外圈101b异层设置能够保证毫米波馈入部220与外圈101b相互绝缘。
可选的,毫米波馈入部220包括第一传导部221、第二传导部222和连接于第一传导部221和第二传导部222之间的跨桥段223,第一传导部221、第二传导部222与外圈101b可以同层设置,跨桥段223和外圈101b异层设置,以保证毫米波馈入部220和外圈101b相互绝缘。
在另一些实施例中,毫米波馈入部220整体也可以与外圈101b异层设置。
可选的,当回路结构100和天线200设置于触控层300时,触控层300包括同层设置的第一触控电极和第二触控电极,当相邻的第一触控电极的连接部与第一触控电极同层设置时,相邻的第二触控电极需要通过跨桥相互连接,跨桥与第二触控电极异层设置。可选的,跨桥段223可以与触控层300的跨桥同层设置,以进一步减小显示面板的层数,使得显示面板更加轻薄化。
可选的,请继续参阅图16和图17,内圈101a和外圈101b相互间隔且相互并联设置,内圈101a和外圈101b相互独立地设置,内圈101a和外圈101b均连接于第一连接端110和第二连接端120之间。
可选的,如图19所示,线圈本体130相互串联且呈螺旋状设置。
内圈101a和外圈101b可以为螺旋状线圈的内圈部分和外圈部分,即内圈101a和外圈101b相互串联设置。
当内圈101a和外圈101b为螺旋状线圈时,第一馈电端110和第二馈电端120的至少一者与部分线圈相互交叠,第一连接端110和第二连接端120的至少一者可以与部分线圈本体130异层设 置。
如图19和图20所示,本申请实施例以第一连接端110和部分线圈本体130交叠并与之异层设置为例进行举例说明。当线圈本体130呈多圈设置时,在第一连接端110的延伸路径上,第一连接端110可以与多圈线圈本体130交叠设置。如图19所示,第一连接端110与线圈本体130交叠设置。
可选的,如图20所示,第一连接端110包括位于本体130两侧的第一段111和第二段112及连接第一段111和第二段112的跨设段113,跨设段113和本体130异层设置,且跨设段113与本体130之间设置有绝缘层。
可选的,当回路结构100设置于触控层300时,跨设段113可以与连接触控电极的跨桥同层设置。
可选的,如图21所示,多个线圈包括第一圈101e和第二圈101f,第一圈101e和第二圈101f均连接于第一连接端110和第二连接端120之间。部分第一圈101e位于第二圈101f远离无线通信结构中心的一侧,部分第二圈101f位于第一圈101e远离无线通信结构中心的一侧。毫米波天线单元210可以连接于第一圈101e和/或第二圈101f。
如图21所示,第一圈101e的顶部位于第二圈101f的顶部内,第一圈101e的侧部位于第二圈101f的侧部外。如此能够更好地使得第一圈101e和第二圈101f的长度接近或相同,使得同一频段内的电流可于第一圈101e和第二圈101f上流动。
在一些可选的实施例中,如图22所示,多个线圈包括耦合式线圈101c和直馈式线圈101d,直馈式线圈101d连接于第一连接端110和第二连接端120之间,耦合式线圈101c间隔设置于直馈式线圈101d的旁侧。耦合式线圈101c耦合连接于直馈式线圈101d是指即耦合式线圈101c不与其他线圈(包括直馈式线圈101d)产生直接连接关系,耦合式线圈101c用于与直馈式线圈101d耦合产生信号。
当线圈本体130包括耦合式线圈101c和直馈式线圈101d时,毫米波天线单元210可以连接于耦合式线圈101c和/或直馈式线圈101d。例如,如图22所示,耦合式线圈101c位于直馈式线圈101d远离无线通信结构中心的一侧,毫米波天线单元210连接于耦合式线圈101c。
在这些可选的实施例中,当无线通信结构用于显示面板时,耦合式线圈101c位于直馈式线圈101d靠近显示面板边缘的一侧,毫米波天线单元210连接于耦合式线圈101c,令毫米波天线单元210更加靠近显示面板的边缘设置。例如当毫米波天线单元210设置于触控层300时,能够降低毫米波天线单元210对触控层300触控效果的影响。此外,毫米波天线单元210靠近显示面板的边缘设置而非靠近显示面板的中心设置,也还能降低毫米波天线单元210对显示面板显示效果的影响。
在另一些可选的实施例中,如图23所示,直馈式线圈101d位于耦合式线圈101c远离无线通信结构中心的一侧,毫米波天线单元210连接于直馈式线圈101d。当无线通信结构用于显示面板时,使得毫米波天线单元210更加靠近显示面板的边缘设置。
此外,本申请实施例通过设置耦合式线圈101c,还能够增强回路结构100收发无线信号的性能。例如当回路结构100为NFC线圈时,耦合式线圈101c能够增强NFC线圈收发NFC频段无线信号的性能。
在一些可选的实施例中,如图24所示,显示面板包括第一区M和环绕第一区M设置的第二区N,回路结构100位于第二区N。第二区N环绕第一区M,因此第二区N更加靠近显示面板的边缘设置,回路结构100位于第二区N,能够改善回路结构100和天线200对显示面板显示效果的影响,且当回路结构100和天线200设置于触控层300时,还能够降低回路结构100和天线200对触控效果的影响。可选的,天线200可以位于第二区N,或者所述天线200也可以部分设置在第一区M。
第二区N的设置方式有多种,例如第二区N可以包括显示区;和/或第二区N可以包括非显示区。当第二区N包括非显示区时,回路结构100位于非显示区,能够更好降低善回路结构100对显示效果和触控效果的影响。
回路结构100在第一区M内的设置方式有多种,例如,如图24所示,回路结构100在第二区N内环绕第一区M设置,能够加长回路结构100的延伸长度,加长回路结构100的线圈本体130的延伸长度,以达到设计目标频段,而增强频段的无线性能。
可选的,如图24所示,第一连接端110和第二连接端120相互靠近设置,线圈本体130由第 一连接端110环绕第一区M延伸之后连接于第二连接端120。第一连接端110和第二连接端120之间的距离较小,一方面便于将用于和第一连接端110传输信号的接头与用于和第二连接端120传输信号的接头集成设置,另一方面还能够加长线圈本体130的延伸长度以达到设计目标频段,而增强频段的无线性能。
在一些实施例中,如图25所示,线圈本体130沿弯折路径延伸成型,同一线圈本体130包括在靠近无线通信结构边缘方向上交叠的第一延伸段130a和第二延伸段130b。在这些可选的实施例中,线圈本体130沿弯折路径延伸,且部分线圈本体130在靠近无线通信结构边缘的方向上重叠设置,能够增加线圈本体130的延伸长度,以达到设计目标频段,提高线圈本体130的无线性能。
可选的,毫米波天线单元210连接于第二延伸段130b。当无线通信结构用于显示面板时,第二延伸段130b相对于第一延伸段130a更加靠近显示面板的边缘,当毫米波天线阵列201串联于第二延伸段130b时,毫米波天线阵列201更加靠近显示面板的边缘,能够降低毫米波天线阵列201对显示面板触控效果和显示效果的影响。
可选的,如图26所示,当线圈本体130包括内圈101a和外圈101b时,第一延伸段130a和第二延伸段130b还可以设置于内圈101a,也能够增加线圈本体130的延伸长度,以达到设计目标频段,提高线圈本体130的信号无线性能。
可选的,如图26所示,至少部分线圈本体130沿弯折路径延伸成型,例如至少部分线圈本体130沿蛇形路径连续弯折延伸成型,使得能够增加线圈本体130的延伸长度,以达到设计目标频段,提高线圈本体130的信号无线性能。
在一些可选的实施例中,如图27所示,至少部分线圈本体130包括相互连接的第一分段130c和第二分段130d,即至少部分线圈本体130为双股导线设置,能够降低线圈本体130的阻抗,而降低能量损耗与因阻抗失配所造成的能量反射,故提高线圈本体130的无线性能。
可选的,毫米波天线单元210和第一分段130c、第二分段130d错位设置,即毫米波天线阵列201连接于线圈本体130的非双股导线部分,能够简化毫米波天线阵列201和线圈本体130之间的连接方式。
在上述任一实施例中,毫米波天线单元210可以为单极化毫米波天线单元。或者如图28所示,毫米波天线单元210为双极化毫米波天线单元。
在上述任一实施例中,线圈本体130的不同部位可以位于同一层设置,即第一连接段131、第二连接段132和第三连接段133可以位于同一层设置。
或者,线圈本体130的不同部位可以位于不同层设置。例如第一连接段131、第二连接段132和第三连接段133中的至少两者位于不同膜层。第一连接段131、第二连接段132和第三连接段133中至少一者的不同部位可以位于同一层。或者第一连接段131、第二连接段132和第三连接段133中至少一者的不同部位可以位于不同层,例如第一连接段131的不同部位可以位于不同层,第二连接段132的不同部位可以位于不同层,和/或,第三连接段133的不同部位可以位于不同层。
如图29所示,图29是第二十七实施例中图5中A-A处的局部剖视图。可选的,第二连接段132和毫米波天线单元210可以同层设置,第三连接段133与第二连接段132异层设置。
如图30至图36所示,本申请的实施例还提供一种无线通信装置,包括上述任一第一方面的显示面板。由于本申请实施例提供的无线通信装置包括上述任一实施例的显示面板,因此本申请实施例提供的无线通信装置具有上述第一方面任一实施例的显示面板具有的有益效果,在此不再赘述。
本申请实施例中的无线通信装置包括但不限于手机、无线穿戴设备、个人数字助理(Personal Digital Assistant,简称:PDA)、平板电脑、电子书、电视机、门禁、智能固定电话、控制台等具有显示功能的设备。
在一些可选的实施例中,如图30所示,无线通信装置还包括第一电路板400和第二电路板500。第一电路板400设置有第一传输线,第一传输线与至少一个线圈本体130的第一连接端110和/或第二连接端120连通。第二电路板500设置有第二传输线,第一传输线与毫米波天线单元210连通。
可选的,如图30所示,天线200包括至少两个毫米波天线单元210,两个以上的毫米波天线单元210组成毫米波天线阵列201,毫米波天线阵列201的个数为多个;多个毫米波天线阵列201分别对应设置有相互独立的电路板。多个毫米波天线阵列201分别对应设置的电路板可以为第二电路板500,使得毫米波天线阵列201能够就近地与对应的第二电路板500之间进行信号传输。
第一电路板400和第二电路板500的设置方式有多种,例如,第一电路板400和第二电路板500可以相互分体设置。
在一些可选的实施例中,如图30所示,第一电路板400和第二电路板500一体设置,能够简化无线通信装置的结构。
可选的,无线通信装置还可以包括第一集成电路,第一集成电路通过第一传输线与第一连接端110和/或第二连接端120连通。第一集成电路的设置位置有多种,第一集成电路可以设置于第一电路板400,或者第一集成电路可以直接设置于无线通信装置的PCB(Printed Circuit Board,印刷电路板)上。
可选的,无线通信装置还可以包括第二集成电路510,第二集成电路510通过第二传输线与毫米波天线单元210连通。第二集成电路510的设置位置有多种,第二集成电路510可以设置于第二电路板500,或者第二集成电路510可以直接设置于无线通信装置的PCB上。
本申请实施例以第一集成电路设置于无线通信装置的PCB,第二集成电路510设置于第二电路板500进行举例说明。
当回路结构100为NFC线圈时,第一集成电路为NFC射频集成电路。当第二集成电路510与毫米波天线单元210连通时,第二集成电路510为毫米波射频集成电路。因毫米波射频电路的滤波与频率选择性,故NFC频段的电流与其他非毫米波段的电流会受毫米波射频电路较大的阻隔,故NFC频段的信号与其他非毫米波段的信号不会对毫米波射频电路性能有明显的影响,故毫米波射频电路的性能可得到较好的保障。
可选的,当毫米波天线阵列201的个数为多个时,第二电路板500和第二集成电路510的个数为多个,各第二集成电路510分别通过各第二电路板500上的第二传输线与各毫米波天线阵列201相互连通。多个第二电路板500可以相互分体设置,第一电路板400可以与任一第二电路板500一体设置。或者多个第二电路板500可以一体设置,即第一电路板400与多个第二电路板500一体设置,能够进一步简化无线通信装置的结构。
在一些可选的实施例中,无线通信装置还包括第一连接座420和第二连接座520,第一连接座420设置于第一电路板400且与第一电路板400上的第一传输线连通,用于令第一集成电路通过第一连接座420与线圈本体130相互连通。第二连接座520设置于第二电路板500且与第二电路板500上的第二集成电路510连通,用于令第二集成电路510与无线通信装置的PCB之间进行信号传输。
即当第一集成电路设置于无线通信装置的PCB,第二集成电路510设置于第二电路板500时,第一连接座420用于实现线圈本体130和第一集成电路的连通,第二连接座520用于实现第二集成电路510和无线通信装置PCB之间的连通。
第一连接座420和第二连接座520的设置方式有多种,例如,当第一电路板400和第二电路板500分体设置时,第一连接座420和第二连接座520分体设置。
在一些可选的实施例中,如图30所示,当第一电路板400和第二电路板500一体设置时,第一连接座420和第二连接座520一体设置,能够进一步简化无线通信装置的结构。
在一些可选的实施例中,如图31所示,天线200还包括非毫米波天线202。例如,至少一个毫米波天线单元210复用为非毫米波天线202的一部分。无线通信装置还可以包括第三电路板600,第三电路板600设置有第三传输线,第三传输线与非毫米波天线202连通。
第三电路板600、第二电路板500和第一电路板400中的至少两者一体设置,以简化无线通信装置的结构。当毫米波天线阵列201有多个时,第二电路板500有多个,第三电路板600、第一电路板400中的至少一者可以与至少一个第二电路板500一体成型设置。
可选的,无线通信装置还包括第三连接座620,第三连接座620设置于第三电路板600且与第三传输线连通。可选的,第三电路板600还包括第三集成电路610,第三连接座620与第三集成电路610连通并用于令第三集成电路610与无线通信装置的PCB连通。
第三集成电路610与非毫米波天线202连通,因此第三集成电路610为非毫米波射频集成电路。因非毫米波射频集成电路与NFC射频集成电路都具有滤波与频率选择性,故其他非毫米波段的信号不会对NFC射频集成电路有明显的影响,或NFC信号不会对其他非毫米波段的射频集成电路有明显的影响,故可NFC或其他非毫米波段射频集成电路的性能可得到较好的保障。
同理,第三集成电路610为非毫米波射频集成电路,第二集成电路510为毫米波射频集成电 路,第一集成电路410非NFC射频集成电路,因NFC射频电路的滤波与频率选择性,故毫米波段与非毫米波段的信号对NFC的射频集成电路性能也不会有明显的影响。
当无线通信装置包括第一连接座420、第二连接座520和第三连接座620三种不同类型的连接座时,第一连接座420、第二连接座520和第三连接座620中的至少两者一体设置,以简化无线通信装置的结构。当毫米波天线阵列201有多个时,第二连接座520有多个,第三连接座620、第一连接座420可以与至少一个第二连接座520一体成型设置。
可选的,如图31所示,第一电路板400、其中一个第二电路板500和第三电路板600一体设置,且第一连接座420、其中一个第二连接座520和第三连接座620一体设置,以尽可能的简化无线通信装置的结构。
如图32所示,本申请实施例提供的无线通信装置包括显示面板,显示面板上设置有回路结构100和天线200,天线200包括毫米波天线单元210和非毫米波天线202,毫米波天线单元210和非毫米波天线202均连接于回路结构100。毫米波天线单元210和毫米波馈入部220相互连接。多个毫米波天线单元210组合形成毫米波天线阵列201。非毫米波天线202包括第一部分2021和第二部分2022,第一部分2021的至少一部分由至少一个毫米波天线单元210复用形成,第二部分2022为非毫米波天线阵列202的馈入部。
请一并参阅33至图34,无线通信装置还包括第一电路板400、第二电路板500和第三电路板600,第一电路板400上设置有第一连接座420,第一连接座420用于与回路结构100相互连通。第二电路板500上设置有第二集成电路510和第二连接座520,第三电路板600上设置有第三集成电路610和第三连接座620。本申请实施例以第二电路板500和第三电路板600一体成型、第二连接座520和第三连接座620一体成型进行举例说明。
在其他实施例中,如图34所示,第一电路板400、第二电路板500和第三电路板600可以一体成型,第一连接座420、第二连接座520和第三连接座620还可以一体成型。
如图35和图36所示,无线通信装置还包括基板700,回路结构100和天线200设置于触控层300,且触控层300设置于基板700。如图35所示,第二电路板500和第三电路板600可以设置于无线通信装置的非显示区。或者,如图36所示,第二电路板500和第三电路板600为柔性电路板,第二集成电路510和第三集成电路610可以选用覆晶薄膜(Chip On Film;COF)工艺绑定于第二电路板500和第三电路板600上,第二电路板500和第三电路板600弯折至无线通信装置的非显示侧。
在另一些可选的实施例中,第一电路板400也可以为柔性电路板并弯折至无线通信装置的非显示侧。
当第一电路板400、第二电路板500和第三电路板600一体成型时,第二集成电路510和第三集成电路610可以共同选用COF工艺绑定于同一电路板。
在上述任一实施例中,回路结构100、毫米波天线阵列201和非毫米波天线202均用于无线通信,而无线通信都有相对应的频段。回路结构100可以包括耦合部和馈入部,而非毫米波天线202包括辐射部和馈入部。例如线圈本体130是回路结构100的耦合部。第一连接端110和第二连接端120是回路结构100的馈入部。回路结构100可以为近距离定点无线通信。
可选的,毫米波天线阵列201和非毫米波天线202的传输频率不同。例如,当前常用的移动无线通信毫米波段的频率高于24.25GHz,即毫米波天线阵列201是指收发频率高于24.25GHz无线信号的天线阵列。
例如,当前常用的移动无线通信非毫米波段的频率为高于410MHz而低于7.125GHz,即非毫米波天线202是指收发频率高于410MHz而低于7.125GHz无线信号的天线。而线圈本体130则是以耦合式传输无线信号,线圈本体130耦合传输无线信号的频率可以低于410MHz。
在上述任一实施例中,可选的,毫米波天线阵列201和非毫米波天线202为移动无线通信的天线。即毫米波天线阵列201和非毫米波天线202均用于移动无线通信。
移动无线通信中的非毫米波天线的通信频段410MHz~7.125GHz,本文中的非毫米波天线202通常是指此移动无线通信的非毫米波段的天线(包含5G及之前世代的蜂窝天线、WLAN天线、蓝牙天线、GNSS天线等)。
回路结构100例如为NFC线圈,NFC线圈通信频段例如为13.56MHz。或者回路结构100例如为WPC线圈,而常用的WPC线圈通信频段例如大于等于100kHz。而NFC线圈和WPC线圈是 应用于非移动无线通信的耦合线圈(因目前NFC线圈和WPC线圈要与通信对手装置进行一定的空间对位)。
可选的,回路结构100还可以包括广播调频(Frequency Modulation;FM)线圈,常见的FM的频段为87MHz~108MHz,而FM线圈为非移动通信的远距离无线应用。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种无线通信结构,包括:
    回路结构,所述回路结构包括第一连接端、第二连接端和线圈本体,至少部分所述线圈本体连接于所述第一连接端和所述第二连接端之间;
    天线,包括用于收发毫米波段无线信号的毫米波天线单元,至少一个所述毫米波天线单元连接于所述线圈本体,其中,所述天线包括至少两个毫米波天线单元,两个以上的所述毫米波天线单元组成毫米波天线阵列;
    所述毫米波天线阵列中的两个以上所述毫米波天线单元连接于所述线圈本体中,所述线圈本体包括第一连接段、第二连接段和第三连接段,所述第一连接段连接于所述第一连接端和所述毫米波天线阵列之间,所述第二连接段连接于所述毫米波天线阵列和所述第二连接端之间,所述第三连接段连接于所述毫米波天线阵列内相邻的两个所述毫米波天线单元之间。
  2. 根据权利要求1所述的无线通信结构,其中,所述毫米波天线阵列的个数为多个,所述第一连接段连接于其一所述毫米波天线阵列与第一连接端之间;所述第二连接段包括第一子段和第二子段,所述第一子段连接于两个所述毫米波天线阵列之间,所述第二子段连接于另一所述毫米波天线阵列和所述第二连接端之间。
  3. 根据权利要求1所述的无线通信结构,其中,
    所述毫米波天线单元包括毫米波导线;
    所述第一连接段、第二连接段、第三连接段三者至少其一的线宽设置不大于所述毫米波导线的线宽。
  4. 根据权利要求1所述的无线通信结构,其中,所述天线还包括用于收发非毫米波段无线信号的非毫米波天线,所述非毫米波天线连接于所述线圈本体。
  5. 根据权利要求4所述的无线通信结构,其中,至少一个所述毫米波天线单元复用为所述非毫米波天线的一部分。
  6. 根据权利要求4所述的无线通信结构,其中,所述线圈本体上还设置有阻隔部,所述阻隔部用于令所述回路结构收发的信号电流通过、并阻隔所述非毫米波天线收发的非毫米波段无线信号电流。
  7. 根据权利要求6所述的无线通信结构,其中,所述阻隔部设置为至少两个,至少两个所述阻隔部间隔分布于所述线圈本体。
  8. 根据权利要求1所述的无线通信结构,其中,所述回路结构用于收发非毫米波段的无线信号,所述线圈本体通过耦合方式收发非毫米波段的无线信号。
  9. 根据权利要求1至8任一项所述的无线通信结构,其中,所述线圈本体包括多个线圈,所述毫米波天线单元连接于至少一个所述线圈。
  10. 根据权利要求9所述的无线通信结构,其中,多个所述线圈包括内圈和外圈,所述内圈与外圈两者均连接于所述第一连接端与第二连接端之间,所述外圈位于所述内圈远离所述无线通信结构中心一侧,
    所述毫米波天线单元连接于所述外圈,或,
    所述毫米波天线单元连接于所述内圈,所述天线还包括连接于所述毫米波天线单元的毫米波馈入部,所述毫米波馈入部的至少部分与所述外圈异层设置。
  11. 根据权利要求9所述的无线通信结构,其中,多个所述线圈相互串联且呈螺旋状设置。
  12. 根据权利要求9所述的无线通信结构,其中,多个所述线圈包括第一圈和第二圈,所述第一圈与第二圈两者均连接于所述第一连接端与第二连接端之间,部分所述第一圈位于所述第二圈远离所述无线通信结构中心的一侧,且部分所述第二圈位于所述第一圈远离所述无线通信结构中心的一侧,所述毫米波天线单元连接于所述第一圈或所述第二圈。
  13. 根据权利要求9所述的无线通信结构,其中,多个所述线圈包括直馈式线圈和耦合式线圈,所述直馈式线圈连接于所述第一连接端和所述第二连接端之间,所述耦合式线圈耦合间隔设置于所述直馈式线圈的旁侧;所述毫米波天线阵列连接于所述耦合式线圈或所述直馈式线圈。
  14. 一种显示面板,包括权利要求1-13任一项所述的无线通信结构。
  15. 根据权利要求14所述的显示面板,还包括触控层,所述触控层包括网格状金属布线,所述回路结构和所述天线均位于所述触控层。
  16. 根据权利要求14所述的显示面板,其中,所述显示面板包括第一区和环绕所述第一区设置的第二区,所述第一区为显示区,所述第二区包括显示区和/或非显示区,所述回路结构位于第二区;其中,所述线圈本体在所述第二区内环绕所述第一区设置。
  17. 一种无线通信装置,包括权利要求14-16任一项所述的显示面板,其中,所述天线包括至少两个毫米波天线单元,两个以上的所述毫米波天线单元组成毫米波天线阵列,所述毫米波天线阵列的个数为多个;
    多个所述毫米波天线阵列分别对应设置有相互独立的电路板。
  18. 根据权利要求17所述的无线通信装置,还包括:
    第一电路板和设置于第一电路板的第一传输线,所述第一传输线与所述回路结构的所述第一连接端和/或所述第二连接端连通;
    第二电路板和设置于第二电路板的第二传输线,所述第二传输线与所述毫米波天线单元连通;
    所述第一电路板与所述第二电路板一体设置。
  19. 根据权利要求18所述的无线通信装置,其中,所述第一电路板上还设置有第一连接座,所述第一传输线连接至所述第一连接座;
    所述第二电路板上还设置有第二连接座,所述第二传输线连接至所述第二连接座;
    所述第一连接座和所述第二连接座一体设置。
  20. 根据权利要求19所述的无线通信装置,其中,所述天线还包括用于收发非毫米波段无线信号的非毫米波天线,所述无线通信装置还包括:
    第三电路板和设置于所述第三电路板的第三传输线,所述第三传输线与所述非毫米波天线连通;
    所述第一电路板、所述第二电路板和所述第三电路板一体设置;
    所述第三电路板上还设置有第三连接座,所述第三传输线连接至所述第三连接座,所述第一连接座、所述第二连接座和所述第三连接座三者一体设置。
PCT/CN2022/109239 2022-04-24 2022-07-29 无线通信结构、显示面板和无线通信装置 WO2023206842A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22785682.0A EP4290691A4 (en) 2022-04-24 2022-07-29 WIRELESS COMMUNICATIONS STRUCTURE, DISPLAY PANEL AND WIRELESS COMMUNICATIONS DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210433198.7A CN114530694B (zh) 2022-04-24 2022-04-24 无线通信结构、显示面板和无线通信装置
CN202210433198.7 2022-04-24

Publications (1)

Publication Number Publication Date
WO2023206842A1 true WO2023206842A1 (zh) 2023-11-02

Family

ID=81628279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109239 WO2023206842A1 (zh) 2022-04-24 2022-07-29 无线通信结构、显示面板和无线通信装置

Country Status (7)

Country Link
US (1) US11631930B2 (zh)
EP (1) EP4290691A4 (zh)
JP (1) JP7261925B1 (zh)
KR (1) KR102443597B1 (zh)
CN (1) CN114530694B (zh)
TW (1) TWI784920B (zh)
WO (1) WO2023206842A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530694B (zh) 2022-04-24 2022-07-05 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信装置
WO2024174199A1 (zh) * 2023-02-24 2024-08-29 京东方科技集团股份有限公司 一种毫米波天线、电子设备及其驱动方法
CN117410674B (zh) * 2023-11-17 2024-06-14 云谷(固安)科技有限公司 天线装置及无线移动终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301241A (ja) * 2007-05-31 2008-12-11 Toshiba Corp ループアンテナ及びループアンテナを備えた無線送受信装置
JP2016001609A (ja) * 2015-07-15 2016-01-07 東京エレクトロン株式会社 プラズマ処理装置
CN110941113A (zh) * 2019-11-27 2020-03-31 上海天马微电子有限公司 显示装置及其制作方法
CN111952733A (zh) * 2020-07-03 2020-11-17 深圳捷豹电波科技有限公司 天线板及应用其的无线充电与通讯模块
EP3823175A1 (en) * 2019-11-14 2021-05-19 Samsung Electronics Co., Ltd. Electronic device including antenna
CN114204286A (zh) * 2022-02-15 2022-03-18 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备
CN114530694A (zh) * 2022-04-24 2022-05-24 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信装置
CN114530693A (zh) * 2022-04-24 2022-05-24 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信设备

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153855B2 (en) * 2009-08-28 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Antenna, antenna unit, and communication device using them
US9094057B2 (en) * 2010-08-25 2015-07-28 Qualcomm Incorporated Parasitic circuit for device protection
WO2013147823A1 (en) * 2012-03-30 2013-10-03 Intel Corporation Near field communications (nfc) coil with embedded wireless antenna
CN203481369U (zh) * 2013-08-30 2014-03-12 斯凯威科技(北京)有限公司 天线结构
CN104681988B (zh) * 2013-11-26 2017-11-21 启碁科技股份有限公司 近场通信天线
KR102139217B1 (ko) * 2014-09-25 2020-07-29 삼성전자주식회사 안테나 장치
CN105990679B (zh) * 2015-02-13 2019-03-05 鸿富锦精密工业(深圳)有限公司 电子装置
KR102511755B1 (ko) * 2015-06-12 2023-03-21 삼성전자주식회사 근거리 무선 통신 안테나 및 이를 포함하는 근거리 무선 통신 장치
CN205282647U (zh) * 2015-12-31 2016-06-01 北京橙鑫数据科技有限公司 天线及无线通信设备
KR102482836B1 (ko) * 2016-01-07 2022-12-29 삼성전자주식회사 안테나 장치를 구비하는 전자 장치
CN205581826U (zh) * 2016-03-08 2016-09-14 广东欧珀移动通信有限公司 一种触控显示面板及终端
CN205882163U (zh) * 2016-05-26 2017-01-11 惠州硕贝德无线科技股份有限公司 全闭合金属边框的nfc天线结构
CN106229672B (zh) * 2016-07-28 2019-02-15 维沃移动通信有限公司 一种nfc天线结构及移动终端
JP2018033031A (ja) * 2016-08-25 2018-03-01 株式会社ジャパンディスプレイ 電子機器及び表示装置
CN106329114B (zh) * 2016-08-29 2019-04-30 青岛海信移动通信技术股份有限公司 天线装置及具有该天线装置的移动终端
US10205224B2 (en) * 2016-09-23 2019-02-12 Apple Inc. Electronic device with millimeter wave antenna arrays
CN206194944U (zh) * 2016-09-27 2017-05-24 广东欧珀移动通信有限公司 Nfc天线及终端设备
CN206163493U (zh) * 2016-10-31 2017-05-10 昆山工研院新型平板显示技术中心有限公司 一种oled显示装置
CN207572519U (zh) * 2017-06-06 2018-07-03 惠州Tcl移动通信有限公司 具有显示屏的移动终端及其近场通信天线
CN107302128B (zh) * 2017-06-15 2020-08-28 昆山睿翔讯通通信技术有限公司 一种基于方向图可调的毫米波阵列天线的通信终端
CN107317097B (zh) * 2017-07-03 2020-01-17 昆山睿翔讯通通信技术有限公司 一种毫米波阵列和非毫米波一体化天线
CN109411873B (zh) * 2017-08-17 2021-05-11 Lg电子株式会社 电子装置
CN207572520U (zh) * 2017-10-12 2018-07-03 长峰电子科技(深圳)有限公司 一种nfc天线
KR101940797B1 (ko) * 2017-10-31 2019-01-21 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치
WO2019109630A1 (zh) * 2017-12-06 2019-06-13 华为技术有限公司 天线组件及移动终端
CN108172973B (zh) * 2018-01-02 2020-06-23 联想(北京)有限公司 一种电子设备及天线处理方法
CN110323531B (zh) * 2018-03-31 2022-01-04 Oppo广东移动通信有限公司 壳体及电子装置
CN111788869A (zh) * 2018-04-09 2020-10-16 Lg电子株式会社 柔性印刷电路板以及包含柔性印刷电路板的移动终端
US11050138B2 (en) * 2018-07-12 2021-06-29 Futurewei Technologies, Inc. Combo sub 6GHz and mmWave antenna system
CN109066068B (zh) * 2018-07-24 2021-03-02 Oppo广东移动通信有限公司 天线组件及电子设备
CN109088160B (zh) * 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 天线系统及移动终端
CN208738417U (zh) * 2018-09-21 2019-04-12 北京小米移动软件有限公司 Nfc天线与点阵列集成结构、背盖和电子设备
KR102671154B1 (ko) * 2018-12-31 2024-05-30 엘지디스플레이 주식회사 안테나 일체형 표시장치
CN210270842U (zh) 2019-08-05 2020-04-07 维沃移动通信有限公司 一种显示面板及终端设备
CN112350050B (zh) * 2019-08-09 2022-06-24 北京小米移动软件有限公司 应用于终端的天线以及终端
CN112350053B (zh) * 2019-08-09 2023-09-15 富泰华工业(深圳)有限公司 天线结构及具有该天线结构的无线通信装置
KR20210052792A (ko) * 2019-10-31 2021-05-11 삼성디스플레이 주식회사 무선 주파수 소자 및 이를 포함하는 전자 장치
CN110931944A (zh) * 2019-12-24 2020-03-27 天通凯美微电子有限公司 一种集成毫米波阵列天线的电子设备
KR102137082B1 (ko) * 2020-02-17 2020-07-23 서영진 카드용 nfc 안테나 제조방법 및 이로부터 제조된 카드용 nfc 안테나
CN111541032B (zh) 2020-04-30 2021-08-06 深圳市睿德通讯科技有限公司 一种毫米波与非毫米波天线整合模块系统和电子设备
CN212517503U (zh) * 2020-07-29 2021-02-09 Oppo广东移动通信有限公司 天线装置及电子设备
US11784673B2 (en) * 2020-09-16 2023-10-10 Apple Inc. Electronic device housing having a radio-frequency transmissive component
CN114389013A (zh) * 2022-01-17 2022-04-22 Oppo广东移动通信有限公司 天线装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301241A (ja) * 2007-05-31 2008-12-11 Toshiba Corp ループアンテナ及びループアンテナを備えた無線送受信装置
JP2016001609A (ja) * 2015-07-15 2016-01-07 東京エレクトロン株式会社 プラズマ処理装置
EP3823175A1 (en) * 2019-11-14 2021-05-19 Samsung Electronics Co., Ltd. Electronic device including antenna
CN110941113A (zh) * 2019-11-27 2020-03-31 上海天马微电子有限公司 显示装置及其制作方法
CN111952733A (zh) * 2020-07-03 2020-11-17 深圳捷豹电波科技有限公司 天线板及应用其的无线充电与通讯模块
CN114204286A (zh) * 2022-02-15 2022-03-18 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备
CN114530694A (zh) * 2022-04-24 2022-05-24 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信装置
CN114530693A (zh) * 2022-04-24 2022-05-24 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290691A4 *

Also Published As

Publication number Publication date
KR102443597B1 (ko) 2022-09-16
EP4290691A1 (en) 2023-12-13
JP2023161059A (ja) 2023-11-06
CN114530694B (zh) 2022-07-05
TW202301737A (zh) 2023-01-01
JP7261925B1 (ja) 2023-04-20
EP4290691A4 (en) 2023-12-13
KR20220120524A (ko) 2022-08-30
US11631930B2 (en) 2023-04-18
CN114530694A (zh) 2022-05-24
US20220393336A1 (en) 2022-12-08
TWI784920B (zh) 2022-11-21

Similar Documents

Publication Publication Date Title
WO2023206843A1 (zh) 无线通信结构、显示面板和无线通信设备
WO2023206842A1 (zh) 无线通信结构、显示面板和无线通信装置
CN110034374A (zh) 电子设备
CN103050781B (zh) 分布式环形天线
US20030090426A1 (en) Dual band slot antenna with single feed line
CN110970709B (zh) 天线结构及具有该天线结构的无线通信装置
JP2014533474A (ja) マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
CN112421207B (zh) 显示屏模组及电子设备
US7598912B2 (en) Planar antenna structure
CN113594687A (zh) 天线模组及电子设备
CN110957586A (zh) 一种集成新型毫米波阵列天线的电子设备
CN117673705A (zh) 天线单元及通信设备
CN108400436B (zh) 天线模块
TWI769323B (zh) 雙頻天線
CN112928470A (zh) 天线组件及电子设备
CN113540790B (zh) Mimo天线及电子设备
CN214254722U (zh) 一种双频毫米波天线
TWI844852B (zh) 微型化天線饋入模組及電子裝置
CN101192710B (zh) 嵌入式系统的单极天线
CN113922058A (zh) 电子设备
CN112510350A (zh) 天线装置
CN116706514A (zh) 一种天线单元、天线系统和电子设备
CN115566392A (zh) 天线装置及通信设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022785682

Country of ref document: EP

Effective date: 20221104