WO2023206473A1 - 故障诊断的方法和故障诊断设备 - Google Patents

故障诊断的方法和故障诊断设备 Download PDF

Info

Publication number
WO2023206473A1
WO2023206473A1 PCT/CN2022/090566 CN2022090566W WO2023206473A1 WO 2023206473 A1 WO2023206473 A1 WO 2023206473A1 CN 2022090566 W CN2022090566 W CN 2022090566W WO 2023206473 A1 WO2023206473 A1 WO 2023206473A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault diagnosis
fault
battery
instruction
diagnosis equipment
Prior art date
Application number
PCT/CN2022/090566
Other languages
English (en)
French (fr)
Inventor
程康
翟江浪
Original Assignee
时代电服科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代电服科技有限公司 filed Critical 时代电服科技有限公司
Priority to PCT/CN2022/090566 priority Critical patent/WO2023206473A1/zh
Priority to CN202280029805.1A priority patent/CN117242412A/zh
Publication of WO2023206473A1 publication Critical patent/WO2023206473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present application relates to the field of battery technology, and in particular to a fault diagnosis method and fault diagnosis equipment.
  • Embodiments of the present application provide a fault diagnosis method and fault diagnosis equipment, which can improve the convenience of diagnostic personnel, save fault diagnosis time, and improve efficiency.
  • a fault diagnosis method includes: after the fault diagnosis equipment establishes a wireless connection with the first electrical device, the fault diagnosis device sends a first instruction to the first electrical device, and the first instruction uses Requesting to read the fault information of the first battery on the first electrical device; the fault diagnosis device receives the fault information of the first battery sent by the first electrical device based on the first instruction; the fault diagnosis device analyzes the fault information of the first battery , and controls the output device of the fault diagnosis equipment to output the current fault of the first battery to the diagnostic personnel.
  • the fault diagnosis equipment obtains the fault information of the battery on the electrical device through a wireless connection with the electrical device.
  • the communication method of the CAN line is no longer used, which can improve the convenience of the diagnostic personnel's operation and save money. Reduce troubleshooting time and improve efficiency.
  • the method further includes: the fault diagnosis device sending a second instruction to the first electrical device, where the second instruction is used to instruct to clear the current fault of the first battery.
  • the fault diagnosis device sends a second instruction to the first electrical device, so that the current fault of the first battery can be quickly cleared.
  • the method further includes: the fault diagnosis device obtains a software upgrade version of the first power device from the cloud platform, and the software upgrade version is used to upgrade the software of the first power device; The first power-consuming device sends a software upgrade version to clear the current fault of the first battery.
  • the fault diagnosis device can send the software upgrade version obtained from the cloud platform to the first power-consuming device, so that the first power-consuming device can upgrade its internal software, thereby clearing the current status of the first battery from failure.
  • the method further includes: before the fault diagnosis device disconnects the wireless connection with the first electrical device, and after the fault diagnosis device establishes the wireless connection with the second electrical device, the fault diagnosis device The device sends a third instruction to the second electric device, where the third instruction is used to request to read the fault information of the second battery on the second electric device.
  • the fault diagnosis device can perform fault diagnosis on multiple electrical devices at the same time and summarize the diagnosis results. For example, a taxi company can detect faults on the batteries of multiple parked taxis at the same time and analyze the battery status of multiple vehicles in a short time, which can greatly save fault detection time.
  • the method further includes: the fault diagnosis device obtains MAC address information of the first power device; and the fault diagnosis device initiates a Bluetooth connection request to the first power device according to the MAC address information.
  • the fault diagnosis equipment interacts with the electrical device through Bluetooth connection, which can ensure the reliability of data transmission and reduce maintenance costs.
  • the fault diagnosis equipment obtains the MAC address information of the first electrical device, including: the fault diagnosis equipment obtains the MAC address information from a cloud server.
  • the fault diagnosis equipment can find the MAC address information of the electric device in the cloud server, and then can initiate a Bluetooth connection request to the electric device based on the MAC address information, and then can communicate with the electric device through Bluetooth connection.
  • Information exchange can ensure the stability of data transmission and reduce maintenance costs.
  • the fault diagnosis equipment sending the second instruction to the first electric device includes: according to the input operation of the diagnostician, the fault diagnosis equipment sends the second instruction to the first electric device.
  • the fault diagnosis equipment can send a second instruction to the first power-consuming device based on the input operation of the diagnostician, thereby avoiding invalid instructions sent when the fault in the first battery is not cleared by software.
  • the output device includes a display screen.
  • the current fault of the first battery is displayed to the diagnostician through the display screen, which is convenient and intuitive.
  • a fault diagnosis device including: a sending unit, configured to send a first instruction to the first electric device after the fault diagnosis device establishes a wireless connection with the first electric device, and the first instruction is used to Requesting to read the fault information of the first battery on the first electric device; the receiving unit, used to receive the fault information of the first battery sent by the first electric device based on the first instruction; the processing unit, used to analyze the first battery fault information,
  • the sending unit is further configured to: send a second instruction to the first electrical device, where the second instruction is used to instruct to clear the current fault of the first battery.
  • the processing unit is also used to: obtain a software upgrade version of the first power device from the cloud platform, and the software upgrade version is used to upgrade the software of the first power device; the sending unit is also used to: :
  • the sending unit is further configured to: before the fault diagnosis device disconnects the wireless connection with the first power device, and after the fault diagnosis device establishes the wireless connection with the second power device, According to the third input operation of the diagnostician, a third instruction is sent to the second electric device, and the third instruction is used to request to read the fault information of the second battery on the second electric device.
  • the processing unit is further configured to obtain MAC address information of the first powered device; and the sending unit is further configured to initiate a Bluetooth connection request to the first powered device based on the MAC address information.
  • the processing unit is specifically configured to obtain MAC address information from the cloud server.
  • the sending unit is specifically configured to: send the second instruction to the first electrical device according to the input operation of the diagnostician.
  • the output device includes a display screen.
  • the fault diagnosis device is a mobile terminal.
  • battery fault diagnosis is no longer limited. For example, if a battery failure is sufficient to cause the electrical device to be unable to drive, that is to say, the electrical device cannot reach the repair location, the diagnostician can use a mobile terminal installed with diagnostic software that he carries to check the battery of the electrical device at the scene of the incident. Perform troubleshooting, thereby greatly improving user experience.
  • a fault diagnosis device in a third aspect, includes a memory and a processor.
  • the memory is used to store instructions.
  • the processor is used to read the instructions and execute the first aspect and any possible method of the first aspect based on the instructions. Methods in the implementation.
  • Figure 1 is a schematic diagram of an application scenario disclosed in the embodiment of the present application.
  • FIG. 2 is a schematic block diagram of the fault diagnosis method disclosed in the embodiment of the present application.
  • FIG. 3 is a schematic flow chart of the fault diagnosis method disclosed in the embodiment of the present application.
  • Figure 4 is a schematic block diagram of the fault diagnosis device disclosed in the embodiment of the present application.
  • FIG. 5 is another schematic block diagram of the fault diagnosis device disclosed in the embodiment of the present application.
  • embodiments of the present application provide a fault diagnosis method and fault diagnosis equipment.
  • the fault diagnosis equipment obtains fault information of the battery on the vehicle through a wireless connection with the vehicle, and no longer uses the CAN line communication method. , which can improve the convenience of diagnostic personnel, save fault diagnosis time and improve efficiency.
  • FIG. 1 shows a schematic diagram of an application scenario of the fault diagnosis method according to the embodiment of the present application.
  • the method involves wireless interaction between the fault diagnosis device 11 and the vehicle 10 .
  • it involves wireless interaction between the fault diagnosis device 11 and the battery management unit 12 on the vehicle 10 .
  • the battery management unit 12 is used to manage the battery 13 on the vehicle 10 .
  • it is used to control the opening and closing of the relay in the battery 13.
  • it is used to collect the voltage, temperature, current, etc. of the battery 13 .
  • the fault diagnosis equipment 11 is used to perform fault diagnosis on the vehicle 10 so that the diagnostic personnel can repair the vehicle 10 . More specifically, the fault diagnosis device 11 is used to perform fault diagnosis on the battery 13 on the vehicle 10 .
  • wireless communication between the fault diagnosis device 11 and the vehicle 10 may include but is not limited to Bluetooth communication, WiFi communication, ZigBee communication and other methods, which are not limited here.
  • multiple batteries 13 can be installed on the vehicle 10 , and a first battery management unit can be provided on the vehicle 10 .
  • the first battery management unit can be used to manage multiple batteries installed on the vehicle 10 .
  • the management unit is the Master Battery Management Unit (MBMU).
  • MBMU Master Battery Management Unit
  • Each battery 10 may be provided with a second battery management unit.
  • SBMU slave battery management unit
  • MBMU can obtain the battery's current value, cell voltage, relay status, power and other status from SBMU.
  • the communication methods between MBMU and SBMU are not limited to wireless Bluetooth, CAN bus, Ethernet, 5G network communication and other methods.
  • the SBMU can be implemented using the battery management system (Battery Management System, BMS) of the corresponding battery; the MBMU can be implemented through the control module of the battery disconnect unit (Battery Disconnect Unit, BDU), or through one of the batteries. BMS to achieve.
  • BMS Battery Management System
  • BDU Battery Disconnect Unit
  • the fault diagnosis device 11 can wirelessly communicate with multiple vehicles 10 at the same time. That is, the fault diagnosis device 11 can perform fault diagnosis on multiple vehicles 10 at the same time.
  • FIG. 2 shows a schematic block diagram of a fault diagnosis method 200 according to an embodiment of the present application. It should be understood that the method 200 can be performed by the fault diagnosis device 11 shown in FIG. 1 .
  • the first electrical device may be the vehicle 10 as shown in FIG. 1 .
  • the method 200 includes part or all of the following content.
  • the fault diagnosis equipment After the fault diagnosis equipment establishes a wireless connection with the first power consumption device, the fault diagnosis equipment sends a first instruction to the first power consumption device.
  • the first instruction is used to request reading of the first battery on the first power consumption device. accident details.
  • the fault diagnosis device receives the fault information of the first battery sent by the first power device based on the first instruction.
  • the fault diagnosis equipment analyzes the fault information of the first battery, and controls the output device of the fault diagnosis equipment to output the current fault of the first battery to the diagnostician.
  • the fault diagnosis equipment in the maintenance location can establish a wireless connection with the first electrical device.
  • the fault diagnosis device may establish a wireless connection with a battery management unit (for example, MBMU or SBMU) on the powered device. That is to say, the fault diagnosis equipment is provided with a wireless communication module, and the battery management unit on the electrical device is also provided with a wireless communication module.
  • the fault diagnosis equipment and the battery management unit on the electrical device establish wireless connections through their respective wireless communication modules. It should be noted that, in this embodiment of the present application, after the fault diagnosis device establishes a wireless connection with the first power device, the interaction between the fault diagnosis device and the first power device may be implemented through the wireless connection.
  • the fault diagnosis equipment may send a first instruction to the first power consumption device, that is, an instruction to read the fault information of the first battery.
  • the first power-consuming device may send fault information of the first battery on the first power-consuming device to the fault diagnosis device. That is, the fault diagnosis device may receive the fault information of the first battery on the first power device sent by the first power device based on the first instruction.
  • the fault diagnosis equipment can analyze the fault information of the first battery, and control the output device of the fault diagnosis equipment, such as a display screen, to output the current fault of the first battery to the diagnostician.
  • the fault diagnosis device may autonomously send the first command to the first power device.
  • the diagnostician can also perform input operations on the fault diagnosis equipment. For example, the fault diagnosis equipment has a display screen, and an icon is displayed on the display screen to guide the diagnostician to click. The icon can indicate the first instruction. The diagnostician triggers the fault diagnosis equipment to send a signal to the first electrical device by clicking on the icon. Send the first command.
  • the first battery refers to the battery on the first power-consuming device, and may refer to one battery or multiple batteries.
  • the first power-consuming device may send fault information of all faulty batteries to the fault diagnosis device.
  • the fault diagnosis equipment obtains the fault information of the battery on the electrical device through a wireless connection with the electrical device.
  • the communication method of the CAN line is no longer used, and diagnosis can be improved.
  • the convenience of personnel operation saves troubleshooting time and improves efficiency.
  • the electric device in the embodiment of the present application may be a vehicle, and in the future, it may also be a device as small as a robot or as large as a ship, an airplane, or other devices that use batteries to provide power or power.
  • the embodiments of this application do not limit the electrical devices.
  • the battery status is monitored in real time by the battery management unit on the electrical device.
  • the battery management unit can query the fault code table stored in it to generate a corresponding fault code.
  • the battery The management unit can control the storage unit to store the generated fault codes.
  • the fault diagnosis equipment can read the fault code stored in the storage unit. That is to say, the fault information in the embodiment of the present application may be a fault code generated in advance by the battery management unit.
  • the battery management unit may not generate a fault code first, but after the electrical device arrives at the repair location, when the electrical device receives the fault diagnosis equipment sent After the first instruction, the battery management unit queries the fault code table stored in it to generate the corresponding fault code and sends it to the fault diagnosis equipment.
  • the first power device may also send parameters of the first battery, such as the power of the first battery, to the fault diagnosis device. , voltage and temperature, etc.
  • the fault diagnosis device may determine the current fault of the first battery based on the received parameter information of the first battery.
  • the fault diagnosis equipment can control the output device of the fault diagnosis equipment to output the current fault of the first battery to the diagnostician.
  • the method further includes: the fault diagnosis device sending a second instruction to the first electrical device, where the second instruction is used to instruct to clear the current fault of the first battery.
  • Battery faults are usually divided into two categories, one can be cleared through software, and the other requires battery maintenance. That is to say, the fault diagnosis device can determine which category the current fault of the first battery belongs to after analyzing the fault information of the first battery. If it belongs to the first category, the fault diagnosis equipment can send a second instruction to the first electrical device, that is, an instruction to clear the current fault of the first battery.
  • the fault diagnosis device sends a second instruction to the first electrical device, so that the current fault of the first battery can be quickly cleared.
  • the fault diagnosis device can autonomously send a second instruction to the first power device.
  • the first power device determines that the first battery currently exists. If the fault is the first type of fault, the fault currently existing in the first battery can be cleared. For example, the fault code stored in the first electrical device can be cleared.
  • the fault diagnosis equipment sending the second instruction to the first electric device includes: according to the input operation of the diagnostician, the fault diagnosis equipment sends the second instruction to the first electric device.
  • an icon that guides the diagnostician to click may be displayed on the display screen of the fault diagnosis equipment, and the icon may indicate a second instruction, that is, an instruction to clear the current fault of the first battery.
  • the diagnostician triggers the fault diagnosis equipment to send the second instruction to the first electrical device by clicking on the icon. After receiving the second instruction, the first power-consuming device can clear the fault of the first battery.
  • the fault diagnosis equipment can send a second instruction to the first power-consuming device based on the input operation of the diagnostician, thereby avoiding invalid instructions sent when the fault in the first battery is not cleared by software.
  • the diagnostician needs to conduct a subjective analysis of the current fault of the first battery, review the data, and contact the manufacturer's technicians to repair the first battery.
  • the fault diagnosis equipment can query the cloud platform according to the operation of the diagnostician, which is related to the fault of the first battery of the first electrical device.
  • the matching fault case is then queried for the case information corresponding to the fault case, and is displayed to the diagnostician through the output device of the fault diagnosis equipment, so that the diagnostician can repair the first battery.
  • diagnostic personnel can be staff or technicians stationed at the maintenance station, or they can be the drivers themselves.
  • the method 200 further includes: before the fault diagnosis equipment disconnects the wireless connection with the first power consumption device, and after the fault diagnosis equipment establishes a wireless connection with the second power consumption device.
  • the fault diagnosis equipment sends a third instruction to the second electric device, where the third instruction is used to request reading of fault information of the second battery on the second electric device.
  • the second power-consuming device refers to a power-consuming device different from the first power-consuming device.
  • the second battery refers to the battery on the second power-consuming device.
  • the second power-consuming device and the first power-consuming device can be of the same type.
  • the electrical devices may also be different types of electrical devices.
  • the second electrical device and the first electrical device are both vehicles. It should be understood that the interaction between the second power-consuming device and the fault diagnosis equipment in the embodiment of the present application may refer to the interaction between the first power-consuming device and the fault diagnosis equipment. For the sake of brevity, no further description is given here.
  • the fault diagnosis device can perform fault diagnosis on multiple electrical devices at the same time and summarize the diagnosis results. For example, a taxi company can detect faults on the batteries of multiple parked taxis at the same time and analyze the battery status of multiple vehicles in a short time, which can greatly save fault detection time.
  • the method further includes: the fault diagnosis device obtains the MAC address information of the first powered device; and the fault diagnosis device initiates a Bluetooth connection request to the first powered device based on the MAC address information.
  • the interaction between the fault diagnosis equipment and the first power consumption device can be realized through the Bluetooth connection.
  • the fault diagnosis equipment interacts with the electrical device through Bluetooth connection, which can ensure the reliability of data transmission and reduce maintenance costs.
  • the fault diagnosis equipment obtains the MAC address information of the first electrical device, including: the fault diagnosis equipment obtains the MAC address information from the cloud server.
  • the fault diagnosis equipment can obtain the license plate information of the first vehicle through the camera of the fault diagnosis equipment, and search for the license plate information of the first vehicle through the cloud server.
  • the license plate information of the first vehicle matches the MAC address information, and further, based on the MAC address, a Bluetooth connection request is initiated to the first vehicle.
  • the fault diagnosis equipment can find the MAC address information of the electric device in the cloud server, and then can initiate a Bluetooth connection request to the electric device based on the MAC address information, and then can communicate with the electric device through Bluetooth connection.
  • Information exchange can ensure the stability of data transmission and reduce maintenance costs.
  • the fault diagnosis device may obtain the MAC address information of the first power-consuming device through other systems.
  • the fault diagnosis equipment can obtain the MAC address information of the electrical device through a radio frequency identification system, which is not limited in the embodiments of the present application.
  • the method 200 further includes: after receiving the fault information of the first battery or after receiving a fault clearing completion instruction sent by the first electrical device, the fault diagnosis device disconnects the connection with the first battery. Wireless connection between powered devices.
  • battery faults can be divided into two categories. If the current fault of the first battery is a fault that requires battery repair, then after the fault diagnosis equipment shows the diagnostic personnel the current fault of the first battery or after receiving the fault clearing completion instruction sent by the first electrical device, an icon that guides the diagnostician to click may be displayed on the display screen of the fault diagnosis equipment, and the icon indicates to disconnect the wireless connection with the first electrical device.
  • the output device may be a display screen.
  • the output device may also be a speaker.
  • the current fault of the first battery is displayed to the diagnostician through the display screen, which is convenient and intuitive.
  • the fault diagnosis device may be a mobile terminal.
  • the fault diagnosis device may be a mobile phone or a tablet computer.
  • fault diagnosis software is installed on the mobile phone or tablet, the embodiments of the present application can be implemented.
  • FIG 3 shows a schematic flowchart of a fault detection method 300 according to an embodiment of the present application. As shown in Figure 3, this method involves various interactions between cloud servers, fault diagnosis equipment, and MBMU and SBMU. Specifically, the method 300 may include part or all of the following content.
  • SBMU obtains battery parameter information.
  • S302 MBMU receives the battery parameter information sent by SBMU.
  • the battery parameter information may be, for example, battery power, battery voltage, battery temperature, etc.
  • each battery has an SMBU
  • the MBMU is installed on the vehicle to centrally control the SBMUs of multiple batteries.
  • the MBMU can obtain the status information of multiple batteries sent by multiple SBMUs respectively.
  • the vehicle may not have an MBMU, and an SBMU of one battery among multiple batteries may be used to implement the functions of the MBMU.
  • the fault diagnosis equipment can generate battery fault information based on the battery parameter information.
  • the fault diagnosis equipment can obtain the license plate information of the vehicle.
  • the fault diagnosis equipment may have a camera, and the fault diagnosis equipment may obtain the license plate information of the vehicle through the camera.
  • the fault diagnosis device can send the vehicle's license plate information to the cloud server to find MAC address information matching the vehicle's license plate information on the cloud server.
  • the cloud server can send the queried MAC address information of the vehicle to the fault diagnosis device.
  • the fault diagnosis device can initiate a Bluetooth connection request to the MBMU on the vehicle based on the MAC address information sent by the cloud server.
  • the MBMU can send the first instruction to the fault diagnosis equipment through the Bluetooth connection, that is, an instruction to read the battery fault.
  • the fault diagnosis device receives the battery fault information sent by the MBMU based on the first instruction.
  • the fault diagnosis equipment can analyze the fault information of the battery and output the current fault of the battery.
  • the fault diagnosis equipment can play the current faults of the battery to the diagnostic personnel through the display screen or speakers.
  • the fault diagnosis equipment can also send a second instruction to the MBMU, that is, an instruction to clear the battery fault.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the fault detection method of the embodiment of the present application is described in detail above.
  • the fault diagnosis device of the embodiment of the present application will be described in detail below with reference to FIG. 4 .
  • the technical features described in the method embodiments are applicable to the following device embodiments.
  • FIG. 4 shows a schematic block diagram of the fault diagnosis device 400 according to the embodiment of the present application. As shown in Figure 4, the fault diagnosis device 400 includes part or all of the following content.
  • the sending unit 410 is configured to send a first instruction to the first electric device after the fault diagnosis equipment establishes a wireless connection with the first electric device.
  • the first instruction is used to request to read the first battery on the first electric device. fault information;
  • the receiving unit 420 is configured to receive the fault information of the first battery sent by the first electrical device based on the first instruction
  • the processing unit 430 is configured to analyze the fault information of the first battery, and control the output device of the fault diagnosis equipment to output the current fault of the first battery to the diagnostician.
  • the sending unit 410 is further configured to: send a second instruction to the first electrical device, where the second instruction is used to instruct to clear the current fault of the first battery.
  • the processing unit 410 is also used to: obtain the software upgrade version of the first electric device from the cloud platform, and the software upgrade version is used to upgrade the software of the first electric device; the sending unit 410 is also used to: send the software to the first electric device.
  • a power-consuming device sends a software upgrade version to clear the current fault of the first battery.
  • the sending unit 410 is further configured to: before the fault diagnosis equipment disconnects the wireless connection with the first power consumption device, and before the fault diagnosis equipment establishes a wireless connection with the second power consumption device. After the connection, according to the third input operation of the diagnostician, a third instruction is sent to the second electric device, and the third instruction is used to request to read the fault information of the second battery on the second electric device.
  • the processing unit 430 is also configured to: obtain the MAC address information of the first powered device; the sending unit 410 is further configured to: initiate a Bluetooth connection to the first powered device according to the MAC address information. ask.
  • the processing unit 430 is specifically configured to obtain MAC address information from the cloud server.
  • the sending unit 410 is specifically configured to: send the second instruction to the first electrical device according to the input operation of the diagnostician.
  • the output device includes a display screen.
  • the fault diagnosis device is a mobile terminal.
  • the mobile terminal may be a mobile phone, a tablet computer, or other mobile devices.
  • battery fault diagnosis is no longer limited. For example, if the battery failure is enough to cause the vehicle to be unable to drive, that is, the vehicle cannot reach the repair location, the diagnostician can conduct fault diagnosis on the vehicle's battery at the scene of the incident through a mobile terminal installed with diagnostic software, which can greatly reduce the risk of battery failure. Dadi improves the user experience.
  • FIG. 5 shows a schematic block diagram of the fault diagnosis device 500 according to the embodiment of the present application.
  • the fault diagnosis device 500 includes a processor 510 and a memory 520 , where the memory 520 is used to store instructions, and the processor 510 is used to read instructions and execute the aforementioned methods of various embodiments of the present application based on the instructions.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
  • the fault diagnosis device 500 may also include a transceiver 530 , and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, you can send information or data to other devices, or receive information or data sent by other devices.
  • Embodiments of the present application also provide a computer storage medium for storing a computer program, and the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the fault diagnosis equipment in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the fault diagnosis equipment in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the fault diagnosis equipment in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the fault diagnosis equipment in the various methods of the embodiments of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the fault diagnosis equipment in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the fault diagnosis equipment in the various methods of the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the fault diagnosis equipment in the various methods of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Telephone Function (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Abstract

本申请实施例提供一种故障诊断的方法和故障诊断设备。该方法包括:在故障诊断设备与第一用电装置建立无线连接之后,故障诊断设备向第一用电装置发送第一指令,第一指令用于请求读取第一用电装置上的第一电池的故障信息;故障诊断设备接收第一用电装置基于第一指令发送的第一电池的故障信息;故障诊断设备解析第一电池的故障信息,并控制故障诊断设备的输出装置向诊断人员输出第一电池当前存在的故障。本申请实施例提供的方法和故障诊断设备,可以提高诊断人员操作的便利性,节约故障诊断时间,提高效率。

Description

故障诊断的方法和故障诊断设备 技术领域
本申请涉及电池技术领域,特别涉及一种故障诊断的方法和故障诊断设备。
背景技术
随着新能源技术的发展,电池的应用领域越来越广泛,如可以为用电装置提供动力或者为用电装置供电。在用电装置中,作为动力源的电池是其中最为关键的部分。因此,对于电池的故障诊断就尤为重要。
传统的对于用电装置上电池的故障诊断操作较为繁琐。
发明内容
本申请实施例提供了一种故障诊断的方法和故障诊断设备,可以提高诊断人员操作的便利性,节约故障诊断时间,提高效率。
第一方面,提供了一种故障诊断的方法,该方法包括:在故障诊断设备与第一用电装置建立无线连接之后,故障诊断设备向第一用电装置发送第一指令,第一指令用于请求读取第一用电装置上的第一电池的故障信息;故障诊断设备接收第一用电装置基于第一指令发送的第一电池的故障信息;故障诊断设备解析第一电池的故障信息,并控制故障诊断设备的输出装置向诊断人员输出第一电池当前存在的故障。
在该实施例中,故障诊断设备通过与用电装置之间的无线连接来获取用电装置上的电池的故障信息,不再使用CAN线的通讯方式,可以提高诊断人员操作的便利性,节约故障诊断时间,提高效率。
在一种可能的实现方式中,方法还包括:故障诊断设备向第一用电装置发送第二指令,第二指令用于指示清除第一电池当前存在的故障。
在该实施例中,故障诊断设备向第一用电装置发送第二指令,从而可以快速清除第一电池当前存在的故障。
在一种可能的实现方式中,方法还包括:故障诊断设备从云平台获取第一用电装置的软件升级版本,软件升级版本用于对第一用电装置的软件进行升级;故障诊断设备向第一用电装置发送软件升级版本,以清除第一电池当前存在的故障。
在该实施例中,故障诊断设备可以向第一用电装置发送从云平台获取的软件升级版本,使得第一用电装置可以对其内部的软件进行升级,从而可以清除第一电池当前从在的故障。
在一种可能的实现方式中,方法还包括:在故障诊断设备断开与第一用电装置之间的无线连接之前,且在故障诊断设备与第二用电装置建立无线连接之后,故障诊断设备向第二用电装置发送第三指令,第三指令用于请求读取第二用电装置上的第二电池的故障信息。
在该实施例中,由于用电装置与故障诊断设备之间通过无线连接通信,因此,故障诊断设备可以同时对多个用电装置进行故障诊断,并将诊断结果汇总。例如,出租车公司,可以同时对停放的多辆出租车电池进行故障检测,短时间内分析多辆车的电池状态,可以很大程度地节省故障检测时间。
在一种可能的实现方式中,方法还包括:故障诊断设备获取第一用电装置的MAC地址信息;故障诊断设备根据MAC地址信息,向第一用电装置发起蓝牙连接请求。
在该实施例中,故障诊断设备通过蓝牙连接与用电装置交互,可以确保数据传输的可靠性,并且可以降低维修成本。
在一种可能的实现方式中,故障诊断设备获取第一用电装置的MAC地址信息,包括:故障诊断设备从云端服务器获取MAC地址信息。
在该实施例中,故障诊断设备可以在云端服务器查找到用电装置的MAC地址信息,进而可以基于该MAC地址信息,向用电装置发起蓝牙连接请求,而后可以通过蓝牙连接与用电装置进行信息交互,可以确保数据传输的稳定性,并且可以降低维修成本。
在一种可能的实现方式中,故障诊断设备向第一用电装置发送第二指令,包括:根据诊断人员的输入操作,故障诊断设备向第一用电装置发送第二指令。
在该实施例中,故障诊断设备可以基于诊断人员的输入操作,向第一用电装置发送第二指令,从而可以避免在第一电池所存在的故障为非软件清除时发送的无效指令。
在一种可能的实现方式中,输出装置包括显示屏。
在该实施例中,通过显示屏向诊断人员展示第一电池当前存在的故障,方便直观。
第二方面,提供了一种故障诊断设备,包括:发送单元,用于在故障诊断设备与第一用电装置建立无线连接之后,向第一用电装置发送第一指令,第一指令用于请求读取第一用电装置上的第一电池的故障信息;接收单元,用于接收第一用电装置基于第一指令发送的第一电池的故障信息;处理单元,用于解析第一电池的故障信息,
并控制故障诊断设备的输出装置向诊断人员输出第一电池当前存在的故障。
在一种可能的实现方式中,发送单元还用于:向第一用电装置发送第二指令,第二指令用于指示清除第一电池当前存在的故障。
在一种可能的实现方式中,处理单元还用于:从云平台获取第一用电装置的软件升级版本,软件升级版本用于对第一用电装置的软件进行升级;发送单元还用于:
向第一用电装置发送软件升级版本,以清除第一电池当前存在的故障。
在一种可能的实现方式中,发送单元还用于:在故障诊断设备断开与第一用电装置之间的无线连接之前,且在故障诊断设备与第二用电装置建立无线连接之后,根据诊断人员的第三输入操作,向第二用电装置发送第三指令,第三指令用于请求读取第二用电装置上的第二电池的故障信息。
在一种可能的实现方式中,处理单元还用于:获取第一用电装置的MAC地址信息;发送单元还用于:根据MAC地址信息,向第一用电装置发起蓝牙连接请求。
在一种可能的实现方式中,处理单元具体用于:从云端服务器获取MAC地址信息。
在一种可能的实现方式中,发送单元具体用于:根据诊断人员的输入操作,向第一用电装置发送第二指令。
在一种可能的实现方式中,输出装置包括显示屏。
在一种可能的实现方式中,故障诊断设备为移动终端。
在该实施例中,通过在移动终端上安装诊断软件,使得电池的故障诊断不再受限。例如,若电池故障足以导致用电装置无法行驶,也就是说,用电装置无法到达维修地点,则诊断人员可以通过随身携带的安装有诊断软件的移动终端在事发地对用电装置的电池进行故障诊断,从而极大地提高了用户体验。
第三方面,提供了一种故障诊断设备,故障诊断设备包括存储器和处理器,存储器用于存储指令,处理器用于读取指令并基于指令执行第一方面及其第一方面任一种可能的实现方式中的方法。
附图说明
图1是本申请实施例公开的一种应用场景的示意图。
图2是本申请实施例公开的故障诊断的方法的示意性框图。
图3是本申请实施例公开的故障诊断的方法的示意性流程图。
图4是本申请实施例公开的故障诊断设备的示意性框图。
图5是本申请实施例公开的故障诊断设备的另一示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接, 或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着新能源汽车在市场占有率的逐渐升高,新能源汽车电池是影响汽车运行的重要部件,当前汽车动力域出现问题首先需要对汽车电池进行故障检测,所以电池的故障检测频率较高。
传统的汽车电池的故障诊断需要使用专用的故障诊断设备,通过在汽车的OBD诊断接口插入CAN线读取故障信息,操作较为繁琐。
有鉴于此,本申请实施例提供了一种故障诊断的方法和故障诊断设备,故障诊断设备通过与车辆之间的无线连接来获取车辆上的电池的故障信息,不再使用CAN线的通讯方式,可以提高诊断人员操作的便利性,节约故障诊断时间,提高效率。
图1示出了本申请实施例的故障诊断的方法的应用场景的一种示意图。该方法涉及到故障诊断设备11和车辆10之间的无线交互。具体地,涉及到故障诊断设备11和车辆10上的电池管理单元12之间的无线交互。电池管理单元12用于管理车辆10上的电池13。例如,用于控制电池13中的继电器的断开和闭合。再例如,用于采集电池13的电压、温度、电流等。故障诊断设备11用于对车辆10,进行故障诊断,以便于诊断人员对车辆10进行维修。更具体地,故障诊断设备11用于对车辆10上的电池13进行故障诊断。
可选地,在本申请实施例中,故障诊断设备11和车辆10之间的无线通信,可以包括但不限于蓝牙通信、WiFi通信、ZigBee通信等各种方式,在此并不限定。
可选地,车辆10上可以安装多个电池13,车辆10上可以设置第一电池管理单元,该第一电池管理单元可用于管理车辆10上安装的多个电池,例如,可称第一电池管理单元为主电池管理单元(Master Battery Management Unit,MBMU)。每个电池10可对应设置一个第二电池管理单元,例如,可称该第二电池管理单元为从电池管理单元(Slave Battery Management Unit,SBMU)。MBMU可以从SBMU获取电池的电流值、电芯电压、继电器状态以及功率等状态。其中,MBMU与SBMU之间的通讯方式不限于无线蓝牙、CAN总线、以太网、5G网络通讯等方式。
在一些实施例中,SBMU可利用对应电池的电池管理系统(Battery Management System,BMS)来实现;MBMU可以通过电池断路单元(Battery Disconnect Unit,BDU)的控制模块来实现,也可以通过其中一个电池的BMS来实现。
需要说明的是,由于车辆10和故障诊断设备11之间通过无线连接进行通信,因此,如图1所示,故障诊断设备11可以同时与多个车辆10进行无线通信。也就是是,故障诊断设备11可以同时对多个车辆10进行故障诊断。
图2示出了本申请实施例的故障诊断的方法200的示意性框图。应理解,该方法200可以由图1所示的故障诊断设备11执行。第一用电装置可以是如图1所示的车辆10。具体地,如图2所示,该方法200包括以下部分或全部内容。
S210,在故障诊断设备与第一用电装置建立无线连接之后,故障诊断设备向第一用电装置发送第一指令,第一指令用于请求读取第一用电装置上的第一电池的故障信息。
S220,故障诊断设备接收第一用电装置基于第一指令发送的第一电池的故障信息。
S230,故障诊断设备解析第一电池的故障信息,并控制故障诊断设备的输出装置向诊断人员输出第一电池当前存在的故障。
当第一用电装置到达厂家指定的维修地点时,维修地点内的故障诊断设备可以与第一用电装置建立无线连接。例如蓝牙连接、WiFi连接、ZigBee连接等。具体地,故障诊断设备可以与用电装置上的电池管理单元(例如,MBMU或SBMU)建立无线连接。也就是说,故障诊断设备设置有无线通信模块,而用电装置上的电池管理单元也设置有无线通信模块。故障诊断设备和用电装置上的电池管理单元通过各自的无线通信模块建立无线连接。需要说明的是,在本申请实施例中,在故障诊断设备与第一用电装置建立无线连接之后,故障诊断设备与第一用电装置之间的交互可以均通过无线连接实现。
在故障诊断设备与第一用电装置建立无线连接之后,故障诊断设备可以向第一用电装置发送第一指令,即读取第一电池的故障信息的指令。在第一用电装置接收到该第一指令之后,第一用电装置可以向故障诊断设备发送该第一用电装置上的第一电池的故障信息。即故障诊断设备可以接收第一用电装置基于该第一指令发送的该第一用电装置上的第一电池的故障信息。进一步地,故障诊断设备可以对该第一电池的故障信息进行解析,并控制故障诊断设备的输出装置,例如,显示屏,向诊断人员输出第一电池当前存在的故障。
在一种实施例中,在故障诊断设备与第一用电装置建立无线连接之后,故障诊断设备可以自主向第一用电装置发送第一命令。在另一种实施例中,在故障诊断设备与第一用电装置建立无线连接之后,诊断人员也可以对故障诊断设备进行输入操作。例如,故障诊断设备具有显示屏,显示屏上显示有引导诊断人员点击的图标,该图标可以指示第一指令,诊断人员通过在该图标上的点击操作,触发故障诊断设备向第一用电装置发送该第一指令。
需要说明的是,第一电池是指第一用电装置上的电池,可以是指一个电池,也可以是指多个电池。当第一用电装置上安装有多个电池时,第一用电装置可以向故障诊断设备发送存在故障的所有电池的故障信息。
因此,本申请实施例提供的故障诊断的方法,故障诊断设备通过与用电装置之间的无线连接来获取用电装置上的电池的故障信息,不再使用CAN线的通讯方式,可以提高诊断人员操作的便利性,节约故障诊断时间,提高效率。
可选地,本申请实施例的用电装置可以是车辆,未来也有可能是小到机器人,大到轮船和飞机等利用电池提供动力或供电的装置。本申请实施例对用电装置不作限定。
通常情况下,是由用电装置上的电池管理单元实时监测电池状态,当监测到电池发生故障时,电池管理单元可以查询存储在其内部的故障码表生成对应的故障码,进一步地,电池管理单元可以控制存储单元存储生成的故障码。在用电装置到达维修地点时,故障诊断设备可以读取存储在存储单元的故障码。也就是说,本申请实施例 中的故障信息可以是电池管理单元提前生成的故障码。在其他示例中,当用电装置根据电池状态监测到电池发生故障时,电池管理单元可以先不生成故障码,而是在用电装置到达维修地点后,当用电装置接收到故障诊断设备发送的第一指令之后,电池管理单元才查询存储在其内部的故障码表生成对应的故障码,并发送给故障诊断设备。
可选地,在其他实施例中,在故障诊断设备与第一用电装置建立无线连接之后,第一用电装置也可以向故障诊断设备发送第一电池的参数,例如,第一电池的电量、电压和温度等。故障诊断设备可以根据接收到的该第一电池的参数信息,确定第一电池当前存在的故障。进而故障诊断设备可以控制故障诊断设备的输出装置向诊断人员输出第一电池当前存在的故障。
可选地,在本申请实施例中,方法还包括:故障诊断设备向第一用电装置发送第二指令,第二指令用于指示清除第一电池当前存在的故障。
电池存在的故障,通常分为两大类,一种是可以通过软件清除的,一种是需要对电池进行维修的。也就是说,故障诊断设备可以在对第一电池的故障信息解析之后,可以确定第一电池当前存在的故障属于哪一类。若属于第一类,则故障诊断设备可以向第一用电装置发送第二指令,即清除第一电池当前存在的故障的指令。
在该实施例中,故障诊断设备向第一用电装置发送第二指令,从而可以快速清除第一电池当前存在的故障。
同样地,在一种实施例中,故障诊断设备一旦接收到第一电池的故障信息之后,可以自主向第一用电装置发送第二指令,第一用电装置在确定第一电池当前存在的故障为第一类故障,则可以清除第一电池当前存在的故障,例如,可以清除存储在第一用电装置内部的故障码。
而在另一种实施例中,故障诊断设备向第一用电装置发送第二指令,包括:根据诊断人员的输入操作,故障诊断设备向第一用电装置发送第二指令。
具体地,可以在故障诊断设备的显示屏显示引导诊断人员点击的图标,该图标可以指示第二指令,即清除第一电池当前存在故障的指令。诊断人员通过在该图标上的点击操作,触发故障诊断设备向第一用电装置发送该第二指令。第一用电装置在接收到该第二指令之后,就可以清除该第一电池存在的故障。
在该实施例中,故障诊断设备可以基于诊断人员的输入操作,向第一用电装置发送第二指令,从而可以避免在第一电池所存在的故障为非软件清除时发送的无效指令。
对于第二类电池故障,则需要诊断人员对第一电池当前存在的故障进行主观分析、查阅资料以及联系厂家技术人员来对第一电池进行维修。
可选地,在诊断人员确定第一电池当前存在的故障为第二类电池故障,故障诊断设备可以根据诊断人员的操作在云平台中查询与该第一用电装置的第一电池的故障相匹配的故障案例,进而查询该故障案例对应的案例信息,并通过故障诊断设备的输出装置向诊断人员展示,以使得诊断人员对所述第一电池进行维修。
需要说明的是,诊断人员,可以是驻维修站的工作人员或技术员,也可以是驾驶员自身。
可选地,在本申请实施例中,方法200还包括:在故障诊断设备断开与第一用电装置之间的无线连接之前,且在故障诊断设备与第二用电装置建立无线连接之后,
故障诊断设备向第二用电装置发送第三指令,第三指令用于请求读取第二用电装置上的第二电池的故障信息。
第二用电装置是指与第一用电装置不同的用电装置,第二电池是指第二用电装置上的电池,第二用电装置与第一用电装置可以是同一类型的用电装置,也可以是不同类型的用电装置,例如,第二用电装置与第一用电装置均为车辆。应理解,本申请实施例的第二用电装置与故障诊断设备之间的交互可以参考第一用电装置与故障诊断设备之间的交互,为了简洁,此处不作过多描述。
在该实施例中,由于用电装置与故障诊断设备之间通过无线连接通信,因此,故障诊断设备可以同时对多个用电装置进行故障诊断,并将诊断结果汇总。例如,出租车公司,可以同时对停放的多辆出租车电池进行故障检测,短时间内分析多辆车的电池状态,可以很大程度地节省故障检测时间。
可选地,在本申请实施例中,方法还包括:故障诊断设备获取第一用电装置的MAC地址信息;故障诊断设备根据MAC地址信息,向第一用电装置发起蓝牙连接请求。
需要说明的是,在故障诊断设备与第一用电装置建立起蓝牙连接之后,故障诊断设备和第一用电装置之间的交互均可以通过蓝牙连接实现。
在该实施例中,故障诊断设备通过蓝牙连接与用电装置交互,可以确保数据传输的可靠性,并且可以降低维修成本。
可选地,在本申请实施例中,故障诊断设备获取第一用电装置的MAC地址信息,包括:故障诊断设备从云端服务器获取MAC地址信息。
例如,该第一用电装置为第一车辆,故障诊断设备可以在到达维修地点时,故障诊断设备可以通过该故障诊断设备的摄像头获取第一车辆的车牌信息,并通过在云端服务器查找与该第一车辆的车牌信息匹配的MAC地址信息,并进一步地,基于该MAC地址向第一车辆发起蓝牙连接请求。
在该实施例中,故障诊断设备可以在云端服务器查找到用电装置的MAC地址信息,进而可以基于该MAC地址信息,向用电装置发起蓝牙连接请求,而后可以通过蓝牙连接与用电装置进行信息交互,可以确保数据传输的稳定性,并且可以降低维修成本。
在其他实施例中,故障诊断设备可以通过其他系统获取第一用电装置的MAC地址信息。例如,故障诊断设备可以通过射频识别系统获取用电装置的MAC地址信息,本申请实施例对此不作限定。
可选地,在本申请实施例中,方法200还包括:故障诊断设备在接收到第一电池的故障信息之后或者接收到第一用电装置发送的故障清除完成指令之后,断开与第一用电装置之间的无线连接。
正如上文描述的,电池故障可以分为两类,若第一电池当前存在的故障属于需要对电池进行维修的故障,那么在故障诊断设备向诊断人员展示第一电池当前存在的 故障之后或者在接收到第一用电装置发送的故障清除完成指令之后,可以在故障诊断设备的显示屏显示引导诊断人员点击的图标,该图标指示断开与第一用电装置之间的无线连接。
可选地,在本申请实施例中,该输出装置可以是显示屏。该输出装置也可以是扬声器。
在该实施例中,通过显示屏向诊断人员展示第一电池当前存在的故障,方便直观。
可选地,该故障诊断设备可以是移动终端,例如,该故障诊断设备可以是手机或平板电脑等。只要该手机或平板电脑上安装有故障诊断软件,就可以实现本申请实施例。
图3示出了本申请实施例的故障检测的方法300的示意性流程图。如图3所示,该方法涉及到云端服务器、故障诊断设备以及MBMU以及SBMU之间的各种交互。具体地,该方法300可以包括以下部分或全部内容。
S301,SBMU获取电池的参数信息。
S302,MBMU接收SBMU发送的电池的参数信息。
可选地,电池的参数信息例如可以是电池的电量、电池的电压以及电池的温度等。
需要说明的是,当车辆安装多个电池时,每个电池具有一个SMBU,而MBMU则安装于车辆上,用于集中控制多个电池的SBMU。也就是说,MBMU可以获取多个SBMU分别发送的多个电池的状态信息。可选地,车辆上也可以不具有MBMU,采用多个电池中的一个电池的SBMU来实现MBMU的功能。
S303,故障诊断设备可以基于电池的参数信息,生成电池的故障信息。
S304,当车辆到达维修地点时,故障诊断设备可以获取车辆的车牌信息。
可选地,故障诊断设备可以具有摄像头,故障诊断设备可以通过摄像头获取车辆的车牌信息。
S305,故障诊断设备可以向云端服务器发送车辆的车牌信息,以在云端服务器查找与该车辆的车牌信息匹配的MAC地址信息。
S306,云端服务器可以将查询到的该车辆的MAC地址信息发送给故障诊断设备。
S307,故障诊断设备可以基于云端服务器发送的MAC地址信息,向车辆上的MBMU发起蓝牙连接请求。
S308,在故障诊断设备与MBMU之间建立蓝牙连接之后,MBMU可以通过蓝牙连接向故障诊断设备发送第一指令,即读取电池故障的指令。
S309,故障诊断设备接收MBMU基于该第一指令发送的电池的故障信息。
S310,故障诊断设备可以解析电池的故障信息,并输出电池当前存在的故障。
可选地,故障诊断设备可以通过显示屏或者扬声器向诊断人员播放电池当前存在的故障。
S311,故障诊断设备还可以向MBMU发送第二指令,即清除电池故障的指令。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文详细描述了本申请实施例的故障检测的方法,下面将结合图4详细描述本申请实施例的故障诊断设备。方法实施例所描述的技术特征适用于以下装置实施例。
图4示出了本申请实施例的故障诊断设备400的示意性框图。如图4所示,该故障诊断设备400包括以下部分或全部内容。
发送单元410,用于在故障诊断设备与第一用电装置建立无线连接之后,向第一用电装置发送第一指令,第一指令用于请求读取第一用电装置上的第一电池的故障信息;
接收单元420,用于接收第一用电装置基于第一指令发送的第一电池的故障信息;
处理单元430,用于解析第一电池的故障信息,并控制故障诊断设备的输出装置向诊断人员输出第一电池当前存在的故障。
可选地,在本申请实施例中,发送单元410还用于:向第一用电装置发送第二指令,第二指令用于指示清除第一电池当前存在的故障。
可选地,处理单元410还用于:从云平台获取第一用电装置的软件升级版本,软件升级版本用于对第一用电装置的软件进行升级;发送单元410还用于:向第一用电装置发送软件升级版本,以清除第一电池当前存在的故障。
可选地,在本申请实施例中,发送单元410还用于:在故障诊断设备断开与第一用电装置之间的无线连接之前,且在故障诊断设备与第二用电装置建立无线连接之后,根据诊断人员的第三输入操作,向第二用电装置发送第三指令,第三指令用于请求读取第二用电装置上的第二电池的故障信息。
可选地,在本申请实施例中,处理单元430还用于:获取第一用电装置的MAC地址信息;发送单元410还用于:根据MAC地址信息,向第一用电装置发起蓝牙连接请求。
可选地,在本申请实施例中,处理单元430具体用于:从云端服务器获取MAC地址信息。
可选地,在本申请实施例中,发送单元410具体用于:根据诊断人员的输入操作,向第一用电装置发送第二指令。
可选地,在本申请实施例中,输出装置包括显示屏。
可选地,在本申请实施例中,故障诊断设备为移动终端。
例如,该移动终端可以是手机、平板电脑或者是其他可移动设备。
在该实施例中,通过在移动终端上安装诊断软件,使得电池的故障诊断不再受限。例如,若电池故障足以导致车辆无法行驶,也就是说,车辆无法到达维修地点,则诊断人员可以通过随身携带的安装有诊断软件的移动终端在事发地对车辆的电池进行故障诊断,从而极大地提高了用户体验。
图5示出了本申请实施例的故障诊断设备500的示意性框图。如图5所示,该故障诊断设备500包括处理器510和存储器520,其中,存储器520用于存储指令,处理器510用于读取指令并基于指令执行前述本申请各种实施例的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图5所示,该故障诊断设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信。具体地,可以向其他设备发送信息或数据,或者接收其他设备发送的信息或数据。
本申请实施例还提供了一种计算机存储介质,用于存储计算机程序,计算机程序用于执行前述本申请各种实施例的方法。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的故障诊断设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由故障诊断设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的故障诊断设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由故障诊断设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的故障诊断设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由故障诊断设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种故障诊断的方法,其特征在于,包括:
    在故障诊断设备与第一用电装置建立无线连接之后,所述故障诊断设备向所述第一用电装置发送第一指令,所述第一指令用于请求读取所述第一用电装置上的第一电池的故障信息;
    所述故障诊断设备接收所述第一用电装置基于所述第一指令发送的所述第一电池的故障信息;
    所述故障诊断设备解析所述第一电池的故障信息,并控制所述故障诊断设备的输出装置向所述诊断人员输出所述第一电池当前存在的故障。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述故障诊断设备向所述第一用电装置发送第二指令,所述第二指令用于指示清除所述第一电池当前存在的故障。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述故障诊断设备从云平台获取所述第一用电装置的软件升级版本,所述软件升级版本用于对所述第一用电装置的软件进行升级;
    所述故障诊断设备向所述第一用电装置发送所述软件升级版本,以清除所述第一电池当前存在的故障。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    在所述故障诊断设备断开与所述第一用电装置之间的无线连接之前,且在所述故障诊断设备与第二用电装置建立无线连接之后,所述故障诊断设备向所述第二用电装置发送第三指令,所述第三指令用于请求读取所述第二用电装置上的第二电池的故障信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述故障诊断设备获取所述第一用电装置的MAC地址信息;
    所述故障诊断设备根据所述MAC地址信息,向所述第一用电装置发起蓝牙连接请求。
  6. 根据权利要求5所述的方法,其特征在于,所述故障诊断设备获取所述第一用电装置的MAC地址信息,包括:
    所述故障诊断设备从云端服务器获取所述MAC地址信息。
  7. 根据权利要求2所述的方法,其特征在于,所述故障诊断设备向所述第一用电装置发送第二指令,包括:
    根据所述诊断人员的输入操作,所述故障诊断设备向所述第一用电装置发送所述第二指令。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述输出装置包括显示屏。
  9. 一种故障诊断设备,其特征在于,包括:
    发送单元,用于在所述故障诊断设备与第一用电装置建立无线连接之后,向所述 第一用电装置发送第一指令,所述第一指令用于请求读取所述第一用电装置上的第一电池的故障信息;
    接收单元,用于接收所述第一用电装置基于所述第一指令发送的所述第一电池的故障信息;
    处理单元,用于解析所述第一电池的故障信息,并控制所述故障诊断设备的输出装置向所述诊断人员输出所述第一电池当前存在的故障。
  10. 根据权利要求9所述的故障诊断设备,其特征在于,所述发送单元还用于:
    向所述第一用电装置发送第二指令,所述第二指令用于指示清除所述第一电池当前存在的故障。
  11. 根据权利要求9所述的故障诊断设备,其特征在于,所述处理单元还用于:
    从云平台获取所述第一用电装置的软件升级版本,所述软件升级版本用于对所述第一用电装置的软件进行升级;
    所述发送单元还用于:
    向所述第一用电装置发送所述软件升级版本,以清除所述第一电池当前存在的故障。
  12. 根据权利要求9至11中任一项所述的故障诊断设备,其特征在于,所述发送单元还用于:
    在所述故障诊断设备断开与所述第一用电装置之间的无线连接之前,且在所述故障诊断设备与第二用电装置建立无线连接之后,根据所述诊断人员的第三输入操作,向所述第二用电装置发送第三指令,所述第三指令用于请求读取所述第二用电装置上的第二电池的故障信息。
  13. 根据权利要求9至12中任一项所述的故障诊断设备,其特征在于,所述处理单元还用于:
    获取所述第一用电装置的MAC地址信息;
    所述发送单元还用于:
    根据所述MAC地址信息,向所述第一用电装置发起蓝牙连接请求。
  14. 根据权利要求13所述的故障诊断设备,其特征在于,所述处理单元具体用于:
    从云端服务器获取所述MAC地址信息。
  15. 根据权利要求10所述的故障诊断设备,其特征在于,所述发送单元具体用于:
    根据所述诊断人员的输入操作,向所述第一用电装置发送所述第二指令。
  16. 根据权利要求9至15中任一项所述的故障诊断设备,其特征在于,所述输出装置包括显示屏。
  17. 根据权利要求9至16中任一项所述的故障诊断设备,其特征在于,所述故障诊断设备为移动终端。
  18. 一种故障诊断设备,其特征在于,包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行如权利要求1至8中任一项所述的方法。
PCT/CN2022/090566 2022-04-29 2022-04-29 故障诊断的方法和故障诊断设备 WO2023206473A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090566 WO2023206473A1 (zh) 2022-04-29 2022-04-29 故障诊断的方法和故障诊断设备
CN202280029805.1A CN117242412A (zh) 2022-04-29 2022-04-29 故障诊断的方法和故障诊断设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090566 WO2023206473A1 (zh) 2022-04-29 2022-04-29 故障诊断的方法和故障诊断设备

Publications (1)

Publication Number Publication Date
WO2023206473A1 true WO2023206473A1 (zh) 2023-11-02

Family

ID=88516764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090566 WO2023206473A1 (zh) 2022-04-29 2022-04-29 故障诊断的方法和故障诊断设备

Country Status (2)

Country Link
CN (1) CN117242412A (zh)
WO (1) WO2023206473A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117914421A (zh) * 2024-01-17 2024-04-19 北京小鸟科技股份有限公司 一种内置无线诊断模块的接收卡及调试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020461A (ja) * 2002-06-19 2004-01-22 Nissan Motor Co Ltd 車両用故障診断装置
CN102097636A (zh) * 2011-01-07 2011-06-15 武汉理工大学 一种燃料电池系统的故障诊断装置及方法
CN102565719A (zh) * 2012-02-21 2012-07-11 上海航天电源技术有限责任公司 一种电池组故障无线诊断系统
CN103901825A (zh) * 2012-12-27 2014-07-02 博世汽车部件(苏州)有限公司 电动踏板车的电控单元及使用该电控单元的电动踏板车
CN108008717A (zh) * 2017-12-06 2018-05-08 成都优购科技有限公司 一种通用电脑式汽车故障诊断设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020461A (ja) * 2002-06-19 2004-01-22 Nissan Motor Co Ltd 車両用故障診断装置
CN102097636A (zh) * 2011-01-07 2011-06-15 武汉理工大学 一种燃料电池系统的故障诊断装置及方法
CN102565719A (zh) * 2012-02-21 2012-07-11 上海航天电源技术有限责任公司 一种电池组故障无线诊断系统
CN103901825A (zh) * 2012-12-27 2014-07-02 博世汽车部件(苏州)有限公司 电动踏板车的电控单元及使用该电控单元的电动踏板车
CN108008717A (zh) * 2017-12-06 2018-05-08 成都优购科技有限公司 一种通用电脑式汽车故障诊断设备

Also Published As

Publication number Publication date
CN117242412A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US10227010B2 (en) Power management in electric vehicles
WO2020107905A1 (zh) 一种设备的监控、管理方法及终端设备
JP2021529388A (ja) 車載制御ユニット、fpgaベースの車両自動運転方法及び装置
WO2019057188A1 (zh) 汽车远程诊断方法和装置、移动终端、电子设备及服务器
WO2019174504A1 (zh) 逻辑通道的建立方法、装置和交通工具通信接口vci
WO2021249083A1 (zh) 车辆的电池管理方法和系统、车辆和服务器
CN111158718A (zh) 本地通讯服务器及其ota升级方法和云端服务器
CN103809587A (zh) 一种基于无线网络的电动汽车自动诊断系统及方法
CN103259826A (zh) 用于充电机和电动车之间的数据传输装置及方法
WO2023206473A1 (zh) 故障诊断的方法和故障诊断设备
US10055233B2 (en) Multimedia terminal for vehicle and data processing method thereof
CN113401000B (zh) 一种电动卡车智能换电控制方法及系统
TWI767508B (zh) 電池服務管理方法、電池服務管理平臺以及電子設備
WO2022267828A1 (zh) 蓄电池的连接器、蓄电池的检测系统及方法
CN115080299B (zh) 软件故障反馈处理方法、装置、介质及设备
JP2023516417A (ja) ログ取得方法、端末及びサーバ
WO2019037634A1 (zh) 车辆状态信息的显示方法、装置及移动终端
CN111338951A (zh) 无线智能家电检测方法及系统
WO2019232677A1 (zh) 权限管理方法、系统、移动终端、共享充电设备及服务器
CN113650523A (zh) 换电控制方法、装置、设备及存储介质
CN111132056B (zh) 一种电池管理方法、装置、电池及服务器
TWM524521U (zh) 運用雲端架構以物聯網為基礎的電池能源分配管理系統
KR20170022274A (ko) 실시간 충전 데이터 모니터링 방법 및 그를 위한 장치 및 시스템
CN115230522A (zh) 一种电动汽车自动充电方法、装置和车辆
CN114714979A (zh) 车辆控制方法、装置、介质、电子设备和自动驾驶车辆

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280029805.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939320

Country of ref document: EP

Kind code of ref document: A1