WO2023202648A1 - 光伏组件制作方法及光伏组件 - Google Patents

光伏组件制作方法及光伏组件 Download PDF

Info

Publication number
WO2023202648A1
WO2023202648A1 PCT/CN2023/089364 CN2023089364W WO2023202648A1 WO 2023202648 A1 WO2023202648 A1 WO 2023202648A1 CN 2023089364 W CN2023089364 W CN 2023089364W WO 2023202648 A1 WO2023202648 A1 WO 2023202648A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic module
battery
bonding
welding strip
adhesive material
Prior art date
Application number
PCT/CN2023/089364
Other languages
English (en)
French (fr)
Inventor
丁常林
尹丙伟
朱保保
陈登运
孙俊
周华明
石刚
Original Assignee
通威太阳能(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(合肥)有限公司 filed Critical 通威太阳能(合肥)有限公司
Publication of WO2023202648A1 publication Critical patent/WO2023202648A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of photovoltaic modules, and in particular to a photovoltaic module manufacturing method and photovoltaic module.
  • Photovoltaic cells use sunlight to perform photoelectric conversion to generate electricity through the photovoltaic effect. Due to the high carrier recombination effect in the metal aluminum film layer on the back surface of early BSF batteries, the passivation effect was poor, and the battery conversion efficiency could only reach about 19%. By setting dielectric film passivation on the back surface of the battery and using local metal contact, the recombination rate on the back surface is greatly reduced, and the light reflection on the back surface is improved to form a PERC structure battery. In order to further improve the passivation effect, an intrinsic thin film layer and a doped amorphous silicon layer were introduced to develop a HJT structure battery.
  • the half-chip symmetrical structure is currently the most widely used packaging circuit structure.
  • Photovoltaic cells are symmetrically cut in half, and then connected in series and then in parallel circuits to form an effective half-chip structure, which can effectively improve module power and efficiency.
  • the battery cells form a power generation unit after processes such as cutting, high-temperature welding, appearance inspection, and lamination.
  • the welding strips will expand and easily cause bending defects, which affects the production quality of photovoltaic modules.
  • a photovoltaic module manufacturing method and photovoltaic module are provided.
  • a photovoltaic module manufacturing method including the following steps:
  • Two or more of the battery sheets are respectively bonded to opposite sides of the welding strip through an adhesive material to form an interconnected repeating unit; wherein, the battery sheets are respectively bonded to the welding strip through an adhesive material to form an interconnected repeating unit.
  • the method includes: laying a welding strip on the surface of the battery sheet, having an adhesive portion provided on the surface of the battery sheet, connecting the welding ribbon and the adhesive portion through an adhesive material to form an interconnected repeating unit; repeating the interconnection The unit is subjected to illumination and heating treatment, or the adhesive material and the welding strip are respectively subjected to illumination and heating treatment; the adhesive material is solidified, and the battery piece is electrically connected to the welding strip.
  • the printing method of the adhesive material on the adhesive part is one or more of dispensing, spraying, screen printing, and stencil printing.
  • the steps are: subjecting the interconnected repeating units to illumination and heating, or subjecting the bonding material and the welding strip to illumination and heating respectively.
  • the specific method is: first heating the welding strip, and then heating the bonding strip. Connect the material to light curing; or,
  • the interconnected repeating units are illuminated and heated simultaneously.
  • a welding strip is laid on the surface of the battery piece, and an adhesive portion is provided on the surface of the battery piece.
  • the welding strip is connected to the adhesive portion through an adhesive material to form an interconnected repeating unit.
  • welding tape is laid on the surface of the battery sheet
  • the surface of the welding strip is coated with flux
  • solder strip coated with flux is bonded to the bonding part through an adhesive material.
  • the step of bonding two or more battery sheets to opposite sides of the welding strip through an adhesive material to form an interconnected repeating unit includes:
  • the welding ribbon is clamped between two adjacent battery sheets, and a gap is provided between the two battery sheets along the length direction of the welding ribbon.
  • the photovoltaic module further includes a buffer member, the buffer member is disposed between two adjacent battery sheets, and the buffer member is used to buffer the impact force suffered by the battery sheets.
  • the step of bonding two or more battery sheets to opposite sides of the welding strip using an adhesive material to form an interconnected repeating unit also includes the following steps:
  • Photovoltaic modules are laid out and stacked in positive and negative electrodes according to the module circuit diagram and layout size diagram;
  • the power generation unit is formed by lamination
  • the steps are: subjecting the interconnected repeating unit to light and heating, or subjecting the bonding material and the welding strip to light and heating respectively; allowing the bonding material to solidify, and the battery sheet and the In electrical connection with welding tape, the heating temperature is 20°C ⁇ 250°C.
  • a photovoltaic component which is made according to any one of the above photovoltaic component manufacturing methods.
  • Figure 1 is a schematic structural diagram of a battery sheet according to an embodiment
  • Figure 2 is a schematic structural diagram of an interconnected repeating unit in an embodiment
  • FIG. 3 is a flowchart 1 of the battery component manufacturing method described in an embodiment
  • Figure 4 is a specific method flow chart of step S30 in Figure 3;
  • Figure 5 is a schematic structural diagram of a negative pitch interconnection of interconnected repeating units in an embodiment
  • Figure 6 is a schematic structural diagram of zero-pitch interconnection of interconnected repeating units in an embodiment
  • Figure 7 is a schematic diagram 1 of the structure of positive-spacing interconnections of interconnected repeating units described in an embodiment
  • Figure 8 is a schematic diagram 2 of the structure of positive-pitch interconnection of interconnected repeating units in an embodiment.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature "below”, “below” and “below” the second feature may be the first feature "below” the second feature The sign is directly below or diagonally below, or simply means that the horizontal height of the first feature is smaller than that of the second feature.
  • Figure 1 shows a schematic structural diagram of the battery sheet 110 described in an embodiment of the present application
  • Figure 2 shows a structure diagram of the interconnected repeating unit described in an embodiment of the present application. Structural diagram
  • Figure 3 shows a flow chart of the photovoltaic module 100 manufacturing method described in an embodiment of the application
  • a photovoltaic module 100 manufacturing method provided by an embodiment of the application includes the following steps:
  • the method of repeating the unit includes: laying the welding strip 120 on the surface of the battery piece 110, providing an adhesive portion 111 on the surface of the battery piece 110, connecting the welding strip 120 and the adhesive portion 111 through the adhesive material to form an interconnected repeating unit; repeating the interconnection
  • the unit is subjected to illumination and heating treatment, or the adhesive material and the welding strip are respectively subjected to illumination and heating treatment, so that the adhesive material is solidified, and the battery piece 110 and the welding strip 120 are electrically connected.
  • the cells 110 mentioned in the manufacturing method of the photovoltaic module 100 are not limited to heterojunction cells (Hetero junction Technology), PERC cells (Passivated Emitter and Rear Cell), Topcon cells ((Tunnel Oxide Passivated Contact)), and TBC cells , HBC cells and IBC cells and other back contact solar cells or other types of solar cells.
  • heterojunction cells Hetero junction Technology
  • PERC cells Passivated Emitter and Rear Cell
  • Topcon cells (Tunnel Oxide Passivated Contact)
  • TBC cells HBC cells and IBC cells and other back contact solar cells or other types of solar cells.
  • the battery piece 110 has a main grid-less structure and is provided with several grid lines 130 for collecting current.
  • the welding ribbon 120 and the grid line 130 form an intersecting relationship, and preferably converge and transmit in a vertical direction. In this way, it is helpful to reduce the consumption of silver paste.
  • the welding ribbon 120 and the semi-finished battery grid line 130 form an intersecting relationship, which greatly reduces the high alignment accuracy requirements of traditional string welding machines and makes the process simple.
  • step: S10 pre-cut the silicon wafer to form two or more silicon wafer bodies, specifically including pre-cutting the silicon wafer, according to the standard silicon wafer size after drawing, squaring and slicing.
  • pre-cut to 1/2, 1/3 or 1/4 silicon wafers pre-cut to 1/2, 1/3 or 1/4 silicon wafers, and choose to use different wafer sizes according to the photovoltaic module layout design. In this way, for different module types, cutting the silicon wafer body into different sizes can avoid the heat loss effect caused by high-temperature laser cutting, avoid the loss of cell efficiency, and improve the production quality of the photovoltaic module 100 .
  • step S30 the interconnected repeating units are subjected to illumination and heating treatment, or the bonding material and the welding strip 120 are respectively subjected to illumination and heating treatment.
  • the specific method is: first heating the welding strip 120 , and then light-curing the bonding material.
  • interconnected repeating units can be illuminated and heated simultaneously. In this way, the steps of the process can be adjusted according to actual production needs to meet the rhythm requirements of different production lines. Both processing methods can avoid bending of the welding strip 120 .
  • step: S30 lay the welding strip 120 on the surface of the battery piece 110.
  • the surface of the battery piece 110 is provided with an adhesive part 111.
  • the welding strip 120 and the adhesive part 111 are connected through the adhesive material to form an interconnected repeating unit.
  • the two bonding portions 111 are spaced apart at opposite ends of the battery sheet 110 along the length direction of the battery sheet 110 .
  • the soldering strip 120 and the two bonding portions 111 are passed through the bonding material. bonding.
  • the adhesive material is applied on the surface of the battery sheet 110 to form an adhesive portion 111.
  • the adhesive portion 111 It can be continuous or discontinuous, that is, the shape of the bonding portion 111 can be strip-shaped or point-shaped.
  • connection stability between the soldering ribbon 120 and the battery sheet 110 can be improved by using more than two bonding parts 111 , and on the other hand, the entire soldering ribbon 120 is covered with adhesive to bond the entire soldering ribbon 120 to the battery sheet 110
  • the point-like connection of the adhesive portion 111 can save the use of adhesive materials; on the other hand, the adhesive used is only used to fix the soldering strip 120, and its pressing effect has no decisive impact on the formation of the final electrical connection.
  • the electrical connection is formed by forming a metallized electrical connection between the surface solder of the solder ribbon 120 and the battery grid line 130 under the combined action of temperature and pressure during the lamination stage. There are significant differences in structure and process. At the same time, it can solve the problem of poor bending of the welding strip 120 under the process conditions of the adhesive welding strip 120 and solve the problem of production efficiency.
  • the bonding material is light-curing glue
  • the curing conditions of the light-curing glue include UV, red light or blue light.
  • the light-curable glue is preferably a UV-curable glue.
  • Optical adhesive can be used for dispensing, spraying, screen printing and stencil printing. In this way, different bonding methods can be selected for different cell sheets 110, thereby adapting to the production of different photovoltaic modules 100 and improving production compatibility.
  • the heating method can be one of heat transfer, heat convection, and heat radiation.
  • the cell wafer 110 manufacturing process includes pre-cut silicon wafers that undergo cleaning, texturing, amorphous silicon film deposition, TCO deposition and other manufacturing processes to produce cell wafers from the silicon wafer body.
  • the simultaneous lighting and heating treatment of the interconnected repeating units should be understood to mean that after the battery sheets 110 and the soldering strips 120 are formed into interconnected repeating units through adhesive materials, the entire interconnected repeating units are heated and illuminated, so that the adhesive materials are It is cured under light conditions, and at the same time, the welding strip 120 is heated to avoid bending deformation. Illuminating and heating the adhesive material and the welding strip 120 respectively should be understood to mean that the adhesive material is illuminated and the welding strip 120 is heated.
  • FIG. 1 is taken as an example.
  • the length direction of the battery piece 110 is the direction pointed by any arrow on the straight line S 1 in FIG. 1 .
  • step S30 lay solder tape 120 on the surface of the battery piece 110, and the surface of the battery piece 110 is provided with an adhesive Part 111, the soldering strip 120 and the adhesive part 111 are connected through an adhesive material to form an interconnected repeating unit, specifically Includes the following steps:
  • soldering ribbon 120 can peel off the surface oxide layer of the flux through the action of the flux, which helps to improve the connection strength between the soldering ribbon 120 and the grid line 130 of the battery piece 110 and improve the connection reliability.
  • step: S30, before bonding two or more battery sheets 110 to opposite sides of the welding strip 120 using an adhesive material to form an interconnected repeating unit further includes:
  • a battery sheet 110 and the soldering ribbon 120 are bonded with a photo-curable adhesive.
  • the photo-cured adhesive is solidified by illumination and heating, and the soldering ribbon 120 is heated, so that the battery sheet 110 is stably connected to the soldering strip 120; after curing, the bonding and curing operations are repeated on the other battery piece 110 of the interconnected repeating unit, and the two battery pieces 110 form an interconnected repeating unit on the soldering strip 120.
  • Such a processing method is conducive to simplifying the processing technology, improving connection stability, improving the production quality of the photovoltaic module 100, and reducing the number of processing equipment used.
  • step S30 of bonding two or more battery sheets 110 to opposite sides of the welding strip 120 using an adhesive material to form an interconnected repeating unit may also be: firstly, the battery sheets 110 are divided into half sheets. The symmetrical structure is arranged up and down on the front and back sides of the welding strip 120. After the arrangement, the welding strip 120 is bonded uniformly. The welding strip 120 is bonded to the bonding portion of the battery sheet 110 through light-curing glue. After the connection, the interconnected repeating units are uniformly photo-cured and heated to solidify the photo-cured glue. The soldering ribbon 120 is heated to prevent bending. The soldering ribbon 120 is electrically connected to the grid line 130 of each cell piece 110 to form the photovoltaic module 100 . Such a process is conducive to improving production efficiency and thereby increasing production capacity.
  • step: S30 adhere two or more battery sheets 110 respectively through an adhesive material.
  • the steps of forming interconnected repeating units on opposite sides of the solder strip 120 specifically include:
  • the bonding material is solidified by illumination or heating, and the solder ribbon 120 penetrates between two adjacent battery cells 110 to form an interconnected repeating unit;
  • the photocurable adhesive is cured through illumination and heating operations to automatically form a battery string, which is beneficial to improving the production efficiency of the photovoltaic module 100 .
  • the interconnected repeating unit is the photovoltaic module 100 with a half-chip symmetrical structure in the interconnection process of the photovoltaic module
  • the battery string is composed of multiple interconnected repeating units connected in series through solder ribbons 120 .
  • the welding ribbon 120 matches the spacing between battery strings, and optionally special-shaped metal wires, segmented round metal wires, and segmented flat metal wires.
  • the welding ribbon 120 is a segmented flat metal wire. In this way, it is beneficial to increase the bonding area between the soldering strip 120 and the battery piece 110 and improve the connection strength.
  • This embodiment only provides one specific selection of the welding ribbon 120, but is not limited thereto.
  • the photovoltaic module 100 can have a negative pitch, a zero pitch, or a positive pitch.
  • FIG. 5 shows a schematic structural diagram of the negative pitch interconnection of the interconnection repeating units described in an embodiment of the present application; the solder ribbon 120 is clamped between two adjacent battery sheets 110 Between them, along the length direction of the welding strip 120, the two battery pieces 110 are staggered and matched, and the gap is a negative value. In this way, it is helpful to improve the compactness of the structure and improve the overall quality of the photovoltaic module 100 .
  • FIG. 6 shows a schematic structural diagram of the zero-pitch interconnection of interconnected repeating units described in an embodiment of the present application; the welding ribbon 120 is clamped between two adjacent battery sheets 110 Between them, along the length direction of the welding strip 120, two battery pieces 110 are arranged adjacently, and the gap between them is zero. In this way, the production of the photovoltaic module 100 is facilitated, the accuracy of the photovoltaic module 100 is eliminated, and the yield rate is improved.
  • the photovoltaic module 100 also includes a buffer member 140 .
  • the buffer member 140 is disposed between two adjacent battery sheets 110 .
  • the buffer member 140 cooperates with the battery sheet 110 for buffering.
  • the member 140 is used to buffer the impact force suffered by the battery piece 110 . In this way, the problem of cracks in interconnections between chips is effectively reduced and the production yield is improved.
  • the buffer member 140 is non-conductive glue and is filled between two adjacent battery sheets 110 .
  • FIG. 7 is a structural schematic diagram 1 of the positive-spacing interconnection of interconnection repeating units described in an embodiment; the solder ribbon 120 is clamped between two adjacent battery sheets 110 along the There is a gap between the two battery pieces 110 in the length direction of the welding strip 120 .
  • FIG. 8 is a schematic diagram 2 of the structure of positive-pitch interconnection of interconnected repeating units in an embodiment.
  • the welding ribbon 120 is clamped between two adjacent battery sheets 110 , and a gap is provided between the two battery sheets 110 along the length direction of the welding ribbon 120 .
  • a buffer member 140 is provided between two adjacent battery sheets 110 .
  • the buffer member 140 cooperates with the battery sheet 110 .
  • the buffer member 140 is used to buffer the impact force suffered by the battery sheet 110 . In this way, the problem of cracks in the interconnection between the battery cells 110 is reduced, and the production yield is improved.
  • step: S30 after bonding two or more battery sheets 110 to opposite sides of the welding strip 120 using an adhesive material to form an interconnected repeating unit, the following steps are also included:
  • Photovoltaic modules are laid out and stacked in positive and negative electrodes according to the component circuit diagram and layout size diagram;
  • step: S30 perform illumination and heating treatment on the interconnected repeating units, or perform illumination and heating treatment on the adhesive material and the welding strip 120 respectively; the adhesive material is solidified, and the electrical When the pool piece 110 and the welding strip 120 are electrically connected, the heating temperature is 20°C to 250°C. In this way, the low-temperature process is conducive to matching the low-temperature processing requirements of the photovoltaic module 100 and supports thin silicon wafer applications.
  • the layout of the photovoltaic module 100 is preferably connected in series first and then in parallel.
  • the packaging materials include EVA (ethylene-vinyl acetate copolymer), POE (thermoplastic elastomer that uses metallocene catalysts to achieve in-situ polymerization of ethylene and octene). ), EPE (polyethylene foam), PVB (Polyvinyl Butyral) and other materials.
  • the layout structure of the photovoltaic module 100 may be a double glass strip full frame structure, a single glass structure or other structures.
  • a photovoltaic module 100 is produced according to any one of the above photovoltaic module 100 manufacturing methods.
  • the silicon wafer is pre-cut to avoid high-temperature cutting at the cell 110 stage, which is helpful to avoid the loss of cell efficiency due to the thermal effect.
  • the bonding portion 111 on the soldering strip 120 and the battery piece 110 is cured by heating to ensure that the thermal expansion of the soldering strip 120 and the curing of the adhesive material are carried out at the same time. This helps to avoid bonding problems while ensuring the connection strength.
  • the solder ribbon 120 expands and causes bending, thereby improving the production quality of the photovoltaic module 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及一种光伏组件制作方法及光伏组件(100),光伏组件制作方法包括以下步骤:对硅片进行预切割,形成两个以上硅片本体;将所述硅片本体制作成电池片(110),使得所述电池片(110)上形成栅线(130);将两个以上所述电池片(110)通过粘接材料分别粘接在焊带(120)的相对两侧形成互联重复单元;所述电池片(110)通过粘接材料分别粘接在焊带(120)上的方法包括:在所述电池片(110)的表面铺设焊带(120),所述电池片(110)表面设有粘接部(111),通过粘接材料将所述焊带(120)与所述粘接部(111)连接;对互联重复单元同时进行光照和加热处理,或,分别对粘接材料和焊带(120)光照和加热处理,使得粘接材料固化,所述电池片(110)与所述焊带(120)电性连接,上述光照和加热处理过程有利于避免焊带(120)的弯曲情况发生。

Description

光伏组件制作方法及光伏组件
相关申请的交叉引用
本公开要求于2022年4月21日提交中国专利局、申请号为2022104198340、名称为“光伏组件制作方法及光伏组件”的中国专利的优先权,所述专利申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及光伏组件技术领域,特别是涉及一种光伏组件制作方法及光伏组件。
背景技术
随着清洁能源技术的发展,出现了光伏电池片技术,光伏电池片通过光生伏特效应,利用太阳光进行光电转换实现发电。早期BSF电池由于背表面的金属铝膜层中的高载流子复合效应存在,钝化效果较差,电池转换效率只能达到19%左右。通过电池背表面设置介质膜钝化,采用局域金属接触,大大降低背表面复合速率,同时提升了背表面的光反射,形成PERC结构电池。为进一步提升钝化效果,引入本征薄膜层和掺杂非晶硅层,研发出HJT结构电池。在封装阶段,目前半片对称结构是应用最为广泛的封装电路结构,采用对光伏电池进行对称切半,再利用先串后并电路连接形成有效半片结构,可以有效提高组件功率和效率。
相关技术中,电池片经过切割、高温焊接焊带、外观检查、层叠层压等工序后,形成发电单元。但是现有的电池片胶接焊带的工艺条件下,焊带会发生膨胀容易形成弯曲不良,影响光伏组件的生产品质。
发明内容
根据本申请的各种实施例,提供一种光伏组件制作方法及光伏组件。
其技术方案如下:一种光伏组件制作方法,包括以下步骤:
对硅片进行预切割,形成两个以上硅片本体;
将所述硅片本体制作成电池片,使得所述电池片形成栅线;
将两个以上所述电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元;其中,所述电池片通过粘接材料分别粘接在焊带上形成互联重复单元的方法包括:对所述电池片的表面铺设焊带,所述电池片表面设有粘接部,通过粘接材料将所述焊带与所述粘接部连接形成互联重复单元;对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理;使得粘接材料固化,所述电池片与所述焊带电性连接。
在其中一个实施例中,所述粘接部为至少两个,沿所述电池片的长度方向,两个所述粘接部间隔设置于所述电池片的相对两端,所述焊带与两个所述粘接部通过粘接材料粘接。
在其中一个实施例中,所述粘接材料在粘接部上的印刷方式为点胶、喷涂、丝网印刷、钢网印刷中的一种或两种以上。
在其中一个实施例中,步骤:对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理中,具体方法为:先加热焊带,再对粘接材料进行光照固化;或,
对互联重复单元同时进行光照和加热处理。
在其中一个实施例中,对所述电池片的表面铺设焊带,所述电池片表面设有粘接部,通过粘接材料将所述焊带与所述粘接部连接形成互联重复单元的步骤具体包括:
电池片制成后,对电池片的表面铺设焊带;
对焊带表面涂覆助焊剂;
将涂覆有助焊剂的焊带通过粘接材料粘接到所述粘接部上。
在其中一个实施例中,将两个以上所述电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元的步骤包括:
将两个以上电池片依次分别设置在焊带的相对两侧。
在其中一个实施例中,所述焊带夹持在相邻两个所述电池片之间,沿所述焊带的长度方向,两个所述电池片之间设有间隙。
在其中一个实施例中,所述光伏组件还包括缓冲件,所述缓冲件设置于相邻两个所述电池片之间,所述缓冲件用于缓冲所述电池片受到的冲击力。
在其中一个实施例中,将两个以上所述电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元的步骤后还包括以下步骤:
对光伏组件进行外观和隐裂检查;
光伏组件按照组件电路图和排版尺寸图,进行正负极排版层叠;
通过层压形成发电单元;
安装接线盒与装框,形成成品组件;
对成品组件进行测试与包装。
在其中一个实施例中,步骤:对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理;使得粘接材料固化,所述电池片与所述焊带电性连接中,加热温度为20℃~250℃。
一种光伏组件,所述光伏组件按照上述中任意一项所述的光伏组件制作方法制作而成。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中所述的电池片的结构示意图;
图2为一实施例中所述的互联重复单元的结构示意图;
图3为一实施例中所述的电池组件制作方法的流程图一;
图4为图3中S30步骤的具体方法流程图;
图5为一实施例中所述的互联重复单元的负间距互联的结构示意图;
图6为一实施例中所述的互联重复单元的零间距互联的结构示意图;
图7为一实施例中所述的互联重复单元的正间距互联的结构示意图一;
图8为一实施例中所述的互联重复单元的正间距互联的结构示意图二。
附图标记说明:
100、光伏组件;110、电池片;111、粘接部;120、焊带;130、栅线;140、
缓冲件。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实 施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特 征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参阅图1、图2与图3,图1示出了本申请一实施例中所述的电池片110的结构示意图;图2示出了本申请一实施例中所述的互联重复单元的结构示意图;图3示出了本申请一实施例中所述的光伏组件100制作方法的流程图一;本申请一实施例提供了的一种光伏组件100制作方法,包括以下步骤:
S10、对硅片进行预切割,形成两个以上硅片本体;
S20、将硅片本体制作成电池片110,使得所述电池片110形成栅线130;
S30、将两个以上电池片110通过粘接材料分别粘接在焊带120的相对两侧形成互联重复单元;其中,所述电池片110通过粘接材料分别粘接在焊带120上形成互联重复单元的方法包括:对电池片110的表面铺设焊带120,电池片110表面设有粘接部111,通过粘接材料将焊带120与粘接部111连接形成互联重复单元;对互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理,使得粘接材料固化,电池片110与焊带120电性连接。
上述光伏组件100制作方法,在光伏组件100的制作过程中,首先,通过对硅片的预切割,避免在电池片110阶段进行高温切割,有利于规避因热敏效应导致的电池效率损失,另外,由于采用光照辅以加热的方式对焊带120和电池片110上的粘接部111进行固化处理,确保焊带120的热膨胀与粘接材料的固化同时进行,在保证连接强度的情况下,有利于避免因粘接材料固化后焊带120发生膨胀产生弯曲的不良现象,进而提高光伏组件100的生产品质。
其中,本光伏组件100制作方法所提及的电池片110不限于异质结电池(Hetero junction Technology),PERC电池(Passivated Emitter and Rear Cell),Topcon电池((Tunnel Oxide Passivated Contact)),TBC电池,HBC电池和IBC电池等背接触式太阳电池或其他类型的太阳电池。
进一步地,电池片110为无主栅结构,设置若干根收集电流的栅线130。焊带120与栅线130形成相交关系,优选垂直方向汇流传输。如此,有利于降低银浆消耗量。焊带120与半成品电池栅线130形成相交关系,大大降低了传统串焊机对位精度的高要求,工艺简单。
在一个实施例中,步骤:S10、对硅片进行预切割,形成两个以上硅片本体中,具体包括硅片预切,根据拉棒、开方及切片后的标准硅片尺寸,在开方或切片阶段,预先切割至1/2片、1/3片或1/4硅片,根据光伏组件版型设计,选择使用不同分片尺寸。如此,对于不同的组件类型,切割成不同大小的硅片本体,能够避免高温激光切割引起的热损失效应,避免电池效率损失,提高光伏组件100的制作品质。
在一个实施例中,步骤:S30、对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带120分别进行光照和加热处理中,具体的方法为:先加热焊带120,再对粘接材料进行光照固化。或者,对互联重复单元同时进行光照和加热处理。如此,能够根据实际生产需要调整工序的步骤,满足不同产线的节拍要求,两种加工方式都能够避免焊带120的弯曲情况发生。
在一个实施例中,步骤:S30、对电池片110的表面铺设焊带120,电池片110表面设有粘接部111,通过粘接材料将焊带120与粘接部111连接形成互联重复单元中,粘接部111为至少两个,沿电池片110的长度方向,两个粘接部111间隔设置于电池片110的相对两端,焊带120与两个粘接部111通过粘接材料粘接。具体地,粘接材料施加在电池片110表面形成粘接部111,粘接部111 可为连续或非连续,即粘接部111的形状可为长条形或点状。如此,一方面,通过两个以上粘接部111能够提高焊带120与电池片110的连接稳定性,另外,与用胶粘剂覆盖整根焊带120将整根焊带120与电池片110粘接相比,粘接部111的点状连接一方面能够节省粘接材料的使用,另一方面,使用的胶粘剂仅用于固定焊带120,其压合效果对最终电连接的形成无决定性影响。电气连接是通过层压阶段温度及压力的共同作用下,焊带120的表面焊料与电池栅线130形成金属化电性连接而形成,结构及工艺均存在显著差异。同时,能够解决胶粘焊带120工艺条件下,焊带120的弯曲不良,并且能够解决生产效率的问题。
具体地,粘接材料为光固胶,光固胶固化条件包括UV紫外,红光或蓝光等。例如,光固胶优选紫外光固类型胶。光固胶可选点胶、喷涂、丝网印刷及钢网印刷。如此,针对不同的电池片110能够选择不同的粘接方式,进而适配不同光伏组件100的生产,提高生产兼容性。加热方式可以是热传递、热对流、热辐射其中一种。电池片110制程包括预切硅片经过清洗制绒、非晶硅薄膜沉积、TCO沉积等制作工序,从硅片本体制作成电池片。
其中,对互联重复单元同时进行光照和加热处理应理解为,电池片110和焊带120通过粘接材料制成互联重复单元后,对互联重复单元整体进行加热和光照处理,使得粘接材料在光照条件下固化,同时对焊带120加热避免形成弯曲变形。对粘接材料和焊带120分别进行光照和加热处理应理解为,对粘接材料进行光照处理,对焊带120进行加热处理。
为了进一步理解与说明电池片110的长度方向,以图1为例,电池片110的长度方向为图1中直线S1上任意一箭头所指的方向。
请参阅图4,图4示出了图3中S30步骤的具体方法流程图,在一个实施例中,步骤:S30、对电池片110的表面铺设焊带120,电池片110表面设有粘接部111,通过粘接材料将焊带120与粘接部111连接形成互联重复单元中,具体 包括如下步骤:
S31、电池片110制成后,对电池片110的表面铺设焊带120;
S32、对焊带120表面涂覆助焊剂;
S33、将涂覆有助焊剂的焊带120通过粘接材料粘接到粘接部111上。
如此,焊带120通过助焊剂的作用,能够剥离助焊剂的表面氧化层,有助于提高焊带120与电池片110栅线130的连接强度,提高连接可靠性。
在一个实施例中,步骤:S30、将两个以上电池片110通过粘接材料分别粘接在焊带120的相对两侧形成互联重复单元前,还包括:
S21、将两个以上电池片110分别依次分别设置在焊带120的相对两侧。两个以上电池片110通过粘接材料与所述焊带120粘接,粘接位置为粘接部111。
如此,在对电池片110加工时,首先对一个电池片110与焊带120通过光固胶进行粘接,粘接后通过光照和加热将光固胶固化,将焊带120加热,使得电池片110稳定连接于焊带120上;固化后,再对互联重复单元的另一电池片110重复进行粘接、固化操作,两个电池片110在焊带120上形成一个互联重复单元。这样的加工方式有利于简化加工工艺,提高连接稳定性,提升光伏组件100的生产品质,减少加工设备的使用数量。
在另一个实施例中,步骤:S30、将两个以上电池片110通过粘接材料分别粘接在焊带120的相对两侧形成互联重复单元的方式还可为:首先将电池片110按照半片对称结构的形式上下排布在焊带120的正反相对两侧,排布后,再进行统一粘接,将焊带120通过光固胶粘接在电池片110的粘接部上,统一粘接后,对互联重复单元统一进行光固和加热操作,使得光固胶固化,焊带120加热防止弯曲,焊带120与每一个电池片110的栅线130电性连接,形成光伏组件100。这样的工艺有利于提高生产效率,进而提高产能。
在一个实施例中,步骤:S30、将两个以上电池片110通过粘接材料分别粘 接在焊带120的相对两侧形成互联重复单元的步骤具体还包括:
S31、粘接后,通过光照或加热对粘接材料固化,焊带120在相邻两个电池片110间贯通形成互联重复单元;
S32、依次串接更多数量的电池片110,形成电池串。
如此,按照粘接材料的粘接方式,再通过光照和加热操作固化光固胶,自动形成电池串,有利于提高光伏组件100的生产效率。其中,互联重复单元为光伏组件中互联工艺中的半片对称结构的光伏组件100,电池串为多个互联重复单元通过焊带120串接而成。
可选地,焊带120匹配电池串片间距大小,可选异形金属丝、分段圆金属丝和分段扁金属丝。
具体在本实施例中,焊带120为分段扁金属丝。如此,有利于提高焊带120与电池片110的粘接面积,提高连接强度。本实施例仅提供一种焊带120的具体选择,但并不以此为限。
可选地,所述光伏组件100的片间距可选负间距、零间距、正间距。
在一个实施例中,请参阅图5,图5示出了本申请一实施例中所述的互联重复单元的负间距互联的结构示意图;焊带120夹持在相邻两个电池片110之间,沿焊带120的长度方向,两个电池片110之间交错配合,其间隙为负值。如此,有利于提高结构紧凑性,提高光伏组件100的整体品质。
在另外一个实施例中,请参阅图6,图6示出了本申请一实施例中所述的互联重复单元的零间距互联的结构示意图;焊带120夹持在相邻两个电池片110之间,沿焊带120的长度方向,两个电池片110之间相邻设置,其间隙为零。如此,方便光伏组件100的生产,消除光伏组件100的精度,提高良品率。
进一步地,请参阅图6,光伏组件光伏组件100还包括缓冲件140,缓冲件140设置于相邻两个电池片110之间,缓冲件140与电池片110缓冲配合,缓冲 件140用于缓冲电池片110受到的冲击力。如此,有效降片间互联的隐裂问题,提高生产良率。具体地,缓冲件140为非导电胶,填充在相邻两个电池片110之间。
在一个实施例中,请参阅图7,图7为一实施例中所述的互联重复单元的正间距互联的结构示意图一;焊带120夹持在相邻两个电池片110之间,沿焊带120的长度方向,两个电池片110之间存在间隙。如此,有利于方便光伏组件100的生产,降低光伏组件100的精度要求,简化生产工艺,提高良品率。
在一个实施例中,请参阅图8,图8为一实施例中所述的互联重复单元的正间距互联的结构示意图二。焊带120夹持在相邻两个电池片110之间,沿焊带120的长度方向,两个电池片110之间设有间隙。且相邻两个电池片110之间设有缓冲件140,缓冲件140与电池片110缓冲配合,缓冲件140用于缓冲电池片110受到的冲击力。如此,有利用降低电池片110间互联的隐裂问题,提高了生产良率。
在一个实施例中,步骤:S30、将两个以上电池片110通过粘接材料分别粘接在焊带120的相对两侧形成互联重复单元后,还包括以下步骤:
S40、对光伏组件进行外观和隐裂检查;
S50、光伏组件按照组件电路图和排版尺寸图,进行正负极排版层叠;
S60、通过层压形成发电单元;
S70、安装接线盒与装框,形成成品组件;
S80、对成品组件进行测试与包装。
如此,有利于提高光伏组件100的制作品质和生产效率,进而有利于提高产能。
在一个实施例中,步骤:S30、对互联重复单元进行光照和加热处理,或,对粘接材料和焊带120分别进行光照和加热处理;使得粘接材料固化,所述电 池片110与焊带120电性连接中,加热温度为20℃~250℃。如此,低温工艺有利于匹配光伏组件100的低温加工要求,支持薄硅片应用。
进一步地,光伏组件100的排版优选先串联再并联的电路连接,封装材料包括EVA(乙烯-醋酸乙烯酯共聚物)、POE(采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体)、EPE(聚乙烯发泡棉)、PVB(聚乙烯醇缩丁醛Polyvinyl Butyral)等材料。光伏组件100的排版结构可为双玻带全边框结构、单玻结构或其它结构。
在一个实施例中,请参阅图2,一种光伏组件100,光伏组件100按照上述中任意一项的光伏组件100制作方法制作而成。
上述光伏组件100,在制作过程中,首先,通过对硅片的预切割,避免在电池片110阶段进行高温切割,有利于规避因热敏效应导致的电池效率损失,另外,由于采用光照辅以加热的方式对焊带120和电池片110上的粘接部111进行固化处理,确保焊带120的热膨胀与粘接材料的固化同时进行,在保证连接强度的情况下,有利于避免因粘接材料固化后焊带120发生膨胀产生弯曲的不良现象,进而提高光伏组件100的生产品质。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光伏组件制作方法,所述光伏组件制作方法包括以下步骤:
    对硅片进行预切割,形成两个以上硅片本体;
    将所述硅片本体制作成电池片,使得所述电池片形成栅线;
    将两个以上所述电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元;其中,所述电池片通过粘接材料分别粘接在焊带上形成互联重复单元的方法包括:对所述电池片的表面铺设焊带,所述电池片表面设有粘接部,通过粘接材料将所述焊带与所述粘接部连接形成互联重复单元;对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理;使得粘接材料固化,所述电池片与所述焊带电性连接。
  2. 根据权利要求1所述的光伏组件制作方法,其中,所述粘接部为至少两个,沿所述电池片的长度方向,两个所述粘接部间隔设置于所述电池片的相对两端,所述焊带与两个所述粘接部通过粘接材料粘接。
  3. 根据权利要求1或2所述的光伏组件制作方法,其中,所述粘接材料在粘接部上的印刷方式为点胶、喷涂、丝网印刷、钢网印刷中的一种或两种以上。
  4. 根据权利要求1至3任一项所述的光伏组件制作方法,其中,步骤:对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理中,具体方法为:先加热焊带,再对粘接材料进行光照固化;或,
    对互联重复单元同时进行光照和加热处理。
  5. 根据权利要求1至4任一项所述的光伏组件制作方法,其中,对所述电池片的表面铺设焊带,所述电池片表面设有粘接部,通过粘接材料将所述焊带与所述粘接部连接形成互联重复单元的步骤具体包括:
    电池片制成后,对电池片的表面铺设焊带;
    对焊带表面涂覆助焊剂;
    将涂覆有助焊剂的焊带通过粘接材料粘接到所述粘接部上。
  6. 根据权利要求1至5任一项所述的光伏组件制作方法,其中,将两个以上所述电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元的步骤之前,还包括:
    将两个以上电池片依次分别设置在焊带的相对两侧。
  7. 根据权利要求6所述的光伏组件制作方法,其中,两个以上所述电池片通过粘接材料与所述焊带粘接,粘接位置为粘接部。
  8. 根据权利要求1至7任一项所述的光伏组件制作方法,其中,所述焊带夹持在相邻两个所述电池片之间,沿所述焊带的长度方向,两个所述电池片之间设有间隙。
  9. 根据权利要求8所述的光伏组件制作方法,其中,所述光伏组件还包括缓冲件,所述缓冲件设置于相邻两个所述电池片之间,所述缓冲件用于缓冲所述电池片受到的冲击力。
  10. 根据权利要求9所述的光伏组件制作方法,其中,将两个以上所述电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元的步骤后还包括以下步骤:
    对光伏组件进行外观和隐裂检查;
    光伏组件按照组件电路图和排版尺寸图,进行正负极排版层叠;
    通过层压形成发电单元;
    安装接线盒与装框,形成成品组件;
    对成品组件进行测试与包装。
  11. 根据权利要求1至10任一项所述的光伏组件制作方法,其中,步骤:对所述互联重复单元进行光照和加热处理,或,对粘接材料和焊带分别进行光照和加热处理;使得粘接材料固化,所述电池片与所述焊带电性连接中,加热 温度为20℃~250℃。
  12. 根据权利要求1至11任一项所述的光伏组件制作方法,其中,所述粘接材料为光固胶。
  13. 根据权利要求12所述的光伏组件制作方法,其中,所述光固胶为紫外光固类型胶。
  14. 根据权利要求1所述的光伏组件制作方法,其中,步骤:将两个以上电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元的方式还可为:首先将电池片按照半片对称结构的形式上下排布在焊带的正反相对两侧;排布后,再进行统一粘接,将焊带通过粘接材料粘接在电池片的粘接部上;统一粘接后,对互联重复单元统一进行光固和加热操作,使得粘接材料固化,焊带加热防止弯曲,焊带与每一个电池片的栅线电性连接,形成光伏组件。
  15. 根据权利要求14所述的光伏组件制作方法,其中,步骤:将两个以上电池片通过粘接材料分别粘接在焊带的相对两侧形成互联重复单元的步骤具体还包括:
    粘接后,通过光照或加热对粘接材料固化,焊带在相邻两个电池片间贯通形成互联重复单元;
    依次串接更多数量的电池片,形成电池串。
  16. 根据权利要求15所述的光伏组件制作方法,其中,焊带匹配电池串片的片间距大小,可选异形金属丝、分段圆金属丝和分段扁金属丝。
  17. 根据权利要求16所述的光伏组件制作方法,其中,所述光伏组件的片间距可选负间距、零间距、正间距。
  18. 根据权利要求17所述的光伏组件制作方法,其中,所述焊带夹持在相邻两个电池片之间,沿焊带的长度方向,两个电池片之间交错配合或相邻设置。
  19. 根据权利要求1所述的光伏组件制作方法,其中,步骤:对硅片进行 预切割,形成两个以上硅片本体中,具体包括硅片预切,根据拉棒、开方及切片后的标准硅片尺寸,在开方或切片阶段,预先切割至1/2片、1/3片或1/4硅片,根据光伏组件版型设计,选择相应尺寸的硅片本体。
  20. 一种光伏组件,其中,所述光伏组件按照权利要求1-19中任意一项所述的光伏组件制作方法制作而成。
PCT/CN2023/089364 2022-04-21 2023-04-20 光伏组件制作方法及光伏组件 WO2023202648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210419834.0A CN114744079B (zh) 2022-04-21 2022-04-21 光伏组件制作方法及光伏组件
CN202210419834.0 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023202648A1 true WO2023202648A1 (zh) 2023-10-26

Family

ID=82282928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089364 WO2023202648A1 (zh) 2022-04-21 2023-04-20 光伏组件制作方法及光伏组件

Country Status (2)

Country Link
CN (1) CN114744079B (zh)
WO (1) WO2023202648A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744079B (zh) * 2022-04-21 2024-07-09 通威太阳能(合肥)有限公司 光伏组件制作方法及光伏组件
CN117976751B (zh) * 2024-04-01 2024-06-28 苏州智慧谷激光智能装备有限公司 电池串、电池串制备方法以及电池串制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951824B1 (en) * 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
CN113037210A (zh) * 2021-03-05 2021-06-25 浙江晶科能源有限公司 电池串结构和光伏组件及其制造方法
CN114023840A (zh) * 2021-11-03 2022-02-08 东方日升新能源股份有限公司 太阳能电池串的连接方法、太阳能电池组件的制作方法
CN114744079A (zh) * 2022-04-21 2022-07-12 通威太阳能(合肥)有限公司 光伏组件制作方法及光伏组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090172A2 (en) * 2008-01-14 2009-07-23 Oerlikon Trading Ag, Trübbach Apparatus and method for manufacturing fast and low cost electrical contacts to solar modules
WO2012058053A2 (en) * 2010-10-29 2012-05-03 Applied Materials, Inc. Monolithic module assembly using back contact solar cells and metal ribbon
JP5719573B2 (ja) * 2010-11-25 2015-05-20 芝浦メカトロニクス株式会社 半導体セルのリード線接続装置及び接続方法
CN105374897A (zh) * 2014-08-15 2016-03-02 英稳达科技股份有限公司 太阳能电池模组及其制造方法
CN104810423B (zh) * 2015-04-24 2017-12-08 苏州中来光伏新材股份有限公司 新型无主栅高效率背接触太阳能电池和组件及制备工艺
JP6877897B2 (ja) * 2016-06-22 2021-05-26 シャープ株式会社 太陽電池モジュール
CN212303684U (zh) * 2020-05-19 2021-01-05 泰州隆基乐叶光伏科技有限公司 一种背接触太阳电池组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951824B1 (en) * 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
CN113037210A (zh) * 2021-03-05 2021-06-25 浙江晶科能源有限公司 电池串结构和光伏组件及其制造方法
CN114023840A (zh) * 2021-11-03 2022-02-08 东方日升新能源股份有限公司 太阳能电池串的连接方法、太阳能电池组件的制作方法
CN114744079A (zh) * 2022-04-21 2022-07-12 通威太阳能(合肥)有限公司 光伏组件制作方法及光伏组件

Also Published As

Publication number Publication date
CN114744079A (zh) 2022-07-12
CN114744079B (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
WO2023202648A1 (zh) 光伏组件制作方法及光伏组件
CN105870216B (zh) 一种具有透明电极晶体硅光伏电池的连接结构
WO2023284100A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
US20170323989A1 (en) Solar module structures and assembly methods for three-dimensional thin-film solar cells
US8742249B2 (en) Solar module structures and assembly methods for three-dimensional thin-film solar cells
US20110124145A1 (en) Template for three-dimensional thin-film solar cell manufacturing and methods of use
CN107799615B (zh) 太阳能电池片单元、光伏电池模组及其制备工艺
CN113013297B (zh) 一种无栅线异质结电池组件的制备方法
EP4246599A1 (en) Photovoltaic module manufacturing method, battery module, battery string and photovoltaic module
CN102496644A (zh) 一种晶硅光伏组件
CN112768539A (zh) 一种光伏双面电池排版及其组装方法
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
CN217280809U (zh) 一种具有薄膜的无主栅光伏组件
WO2023016582A1 (zh) 光伏电池串及其制备方法、串焊设备和光伏组件
CN209544366U (zh) 一种可降低电池效率损失的太阳能电池结构
CN114864721A (zh) 一种无主栅的光伏组件及其制备方法、焊带焊接方法
CN215815903U (zh) 一种光伏组件
US20240105871A1 (en) Photovoltaic module and method for preparing the photovoltaic module
CN116247120A (zh) 光伏电池组件的制造方法及光伏电池组件
CN109087961A (zh) 一种光伏组件及其制作方法
CN219873559U (zh) 无焊接光伏组件
CN211125669U (zh) 一种高可靠性晶体硅太阳能电池封装组件
CN117153951A (zh) 一种背接触光伏组件的生产方法及背接触光伏组件
EP4109743B1 (en) Method for preparing a flexible and rollable back-contact solar cell module
CN110335920B (zh) 一种可降低电池效率损失的太阳能电池结构制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791302

Country of ref document: EP

Kind code of ref document: A1