WO2023197724A1 - 叠片式电极组件、电池单体、电池及用电装置 - Google Patents

叠片式电极组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023197724A1
WO2023197724A1 PCT/CN2023/073598 CN2023073598W WO2023197724A1 WO 2023197724 A1 WO2023197724 A1 WO 2023197724A1 CN 2023073598 W CN2023073598 W CN 2023073598W WO 2023197724 A1 WO2023197724 A1 WO 2023197724A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
electrode assembly
laminated electrode
pole piece
along
Prior art date
Application number
PCT/CN2023/073598
Other languages
English (en)
French (fr)
Inventor
王伟伟
林江
程启
林传冬
黄权壮
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP23787372.4A priority Critical patent/EP4507114A1/en
Priority to CN202390000152.4U priority patent/CN221861892U/zh
Publication of WO2023197724A1 publication Critical patent/WO2023197724A1/zh
Priority to US18/912,004 priority patent/US20250038375A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, specifically, to a laminated electrode assembly, a battery cell, a battery and an electrical device.
  • the battery is composed of a box and multiple battery cells contained in the box.
  • the battery cells are composed of positive electrode plates, negative electrode plates and isolation films, which are assembled into electrode assemblies (bare cells) by winding or lamination. Then put it into the case, cover it with the end cap, and finally inject the electrolyte.
  • higher requirements have been put forward for the cycle life and safety of batteries.
  • batteries in the prior art have a short cycle life, and there are major safety hazards during later use, which is not conducive to the safety of consumers.
  • Embodiments of the present application provide a laminated electrode assembly, a battery cell, a battery and an electrical device, which can effectively reduce potential safety hazards in the later use of the battery.
  • embodiments of the present application provide a laminated electrode assembly, including a first pole piece and a second pole piece with opposite polarities, the first pole piece and the second pole piece being stacked along a first direction.
  • the first pole piece includes a first coating area and a first blank area arranged along the second direction, the first blank area includes a first connection part and a first pole part, the first connection part
  • the first coating area and the first tab part are connected together.
  • the size of the first connection part is larger than the size of the first tab part.
  • the The second direction and the third direction are perpendicular to each other; wherein, the first connecting portions of the plurality of first pole pieces are gathered at one end of the laminated electrode assembly in the second direction, and A first gathering area is formed, and the first tab portions of the plurality of first pole pieces are stacked and protrude from the first gathering area along the second direction.
  • the first pole piece has a first coating area and a first blank area arranged along the second direction, and the first blank area is formed with a first connection part and a first pole part that are connected to each other,
  • the first gathered area formed by the plurality of first connecting portions can cover the laminated electrode assembly.
  • One end of the first pole piece, and the first tab portions of the plurality of first pole pieces are stacked and protrude from the first gathering area, so that the first tab portion can realize the input of electric energy of the stacked electrode assembly through the first gathering area.
  • the laminated electrode assembly using this structure can effectively improve the over-current performance of the first blank area of the first pole piece to ensure the stability of the over-current, which is beneficial to improving the performance of the laminated electrode assembly. performance, and is conducive to alleviating the local temperature rise caused by insufficient flow area of the laminated electrode assembly. On the other hand, it can effectively improve the toughness and structural stability of the first pole part to reduce the risk of the first pole part. There is a risk of breakage during production or use, which is beneficial to extending the service life of the laminated electrode assembly.
  • the laminated electrode assembly further includes a separator; the separator is disposed between the first pole piece and the second pole piece, and is used to separate the first pole piece and the second pole piece.
  • the isolation member covers the first coating area along the first direction, and the first connecting portion protrudes from the isolation member along the second direction.
  • the structure of the laminated electrode assembly facilitates the first connecting portions of the plurality of first pole pieces to be gathered at one end of the laminated electrode assembly in the second direction, which facilitates manufacturing and production; on the other hand, it can realize the first connection of the plurality of first pole pieces.
  • the first pole pieces are stacked and then cut uniformly to form a first gathering area and a plurality of first pole tab portions arranged in a stack, which is beneficial to improving the production efficiency of the stacked electrode assembly.
  • the thickness of the first gathered area in the second direction is 2 mm-4 mm.
  • the thickness of the first gathered area between 2 mm and 4 mm, on the one hand, it can effectively alleviate the gap between the first gathered area and the first tab portion caused by the too small thickness of the first gathered area.
  • the risk of low structural strength and insufficient flow area on the other hand, can effectively alleviate the phenomenon that the stacked electrode assembly occupies an excessively large space due to the excessive thickness of the first convergence area, thereby conducive to improving the stacking The energy density of the electrode assembly.
  • the second pole piece includes a second coating area and a second blank area arranged along the second direction; the second blank area includes a second connection portion and a second tab portion.
  • the second connecting part is connected to the second coating area and the second lug part, and along the third direction, the size of the second connecting part is larger than the size of the second lug part.
  • the second connecting portions of the plurality of second pole pieces are gathered at one end of the laminated electrode assembly away from the first gathering area in the second direction, and form a second gathering area
  • the second pole tab portions of the plurality of second pole pieces are stacked and protrude out of the second gathering area along the second direction as a whole.
  • the laminated electrode assembly using this structure can Effectively improves the overcurrent performance of the second blank area of the second pole piece to ensure the stability of overcurrent, and is conducive to improving the toughness and structural stability of the second pole lug, thereby reducing the need for production or maintenance of the second pole lug. There is a risk of breakage during use, which is conducive to further improving the overall structural stability and performance of the laminated electrode assembly.
  • the second pole piece includes a second coating area and a second blank area arranged along the third direction; the second blank area includes a second connecting portion and a second tab portion.
  • the second connecting part is connected to the second coating area and the second lug part, and along the second direction, the size of the second connecting part is larger than the size of the second lug part.
  • the second connecting portions of the plurality of second pole pieces are gathered at the laminated electrode
  • One end of the assembly is in the third direction and forms a second gathering area.
  • the second tab portions of the plurality of second pole pieces are stacked and protrude from the second pole portion along the third direction as a whole. Gathering area.
  • embodiments of the present application further provide a battery cell, including a casing and the above-mentioned laminated electrode assembly; the laminated electrode assembly is accommodated in the casing.
  • the battery cell further includes a first insulating member; the first insulating member covers the first gathering area, and the first insulating member is used to separate the first tab portion and The shell.
  • the first insulating member by disposing the first insulating member at one end of the laminated electrode assembly, the first insulating member can cover the first gathering area, so that on the one hand, the first tab portion can be exposed to the first insulating member. It is insulated and isolated from the casing to reduce the phenomenon of overlapping short circuit between the first pole lug and the casing. On the other hand, it can also achieve isolation between the first folding area and the casing, which is beneficial to improving the safety of the battery cells. .
  • the first connecting portions of the plurality of first pole pieces are gathered from one side of the laminated electrode assembly to the other side, so as to be in the first direction.
  • a gathered area forms a first inclined surface, and the first insulating member covers the first inclined surface.
  • the plurality of first connecting portions are gathered toward the side of the stacked electrode assembly.
  • One end thereby forming a first gathered area, and correspondingly covering the first inclined surface of the first gathered area with a matching first insulating piece to realize the connection between the first pole part and the shell and the first gathered area and the shell.
  • the battery cells using this structure can reduce the manufacturing difficulty of the first insulating member, reduce manufacturing costs, and improve production efficiency.
  • the first connecting portions of the plurality of first pole pieces are gathered from both sides of the laminated electrode assembly toward the middle, so that in the first folded The area forms two second slopes, and the first insulation member covers the two second slopes.
  • the plurality of first connecting portions are gathered in the center of the stacked electrode assembly.
  • One end thereby forming a first gathered area, and correspondingly covering the two second inclined surfaces of the first gathered area with matching first insulating pieces to realize the connection between the first pole part and the shell and the first gathered area and the shell.
  • the insulation isolation between the battery cells using this structure is beneficial to reducing the manufacturing difficulty of the first gathered area, and facilitates the electrical connection between the first lug portion and the electrode terminal on the casing.
  • the first insulator includes two first insulators; the two first insulators respectively cover the two second slopes, and the two first insulators are along the first They are arranged in opposite directions and spliced to each other, and a first gap is formed between the two first insulators for the first tab portion to pass through.
  • the first insulating member by arranging the first insulating member as two first insulating bodies, so that each first insulating body can cover the corresponding second inclined surface, it can be realized that the first insulating member can cover the two second inclined surfaces.
  • the structure On the second slope, the structure is simple and easy to implement.
  • the two first insulators in a structure that is spliced to each other along the first direction, and a first gap for the first pole part to pass through is formed between the two first insulators, the first device using this structure Insulation parts are easy to manufacture and assemble, and are convenient for later maintenance and replacement.
  • embodiments of the present application further provide a battery, including at least one of the above-mentioned battery cells.
  • embodiments of the present application further provide an electrical device, including the above-mentioned battery; the battery is used to provide electrical energy.
  • embodiments of the present application further provide a method for manufacturing a laminated electrode assembly, including: stacking a first pole piece and a second pole piece with opposite polarities along a first direction, and the first pole piece includes The first coating area and the first blank area are arranged along a second direction, the second direction is perpendicular to the first direction; the first blank areas of the plurality of first pole pieces are gathered and cut cut.
  • the manufacturing method can effectively reduce the phenomenon of misalignment and overlap of multiple first pole pieces to improve the performance and safety performance of the laminated electrode assembly.
  • it can greatly optimize the production cycle of the laminated electrode assembly. It is beneficial to improve the production efficiency of laminated electrode assemblies.
  • gathering and cutting the first blank areas of the plurality of first pole pieces includes: gathering the first blank areas of the plurality of first pole pieces; welding multiple first blank areas. the first blank area of the first pole piece to form a cutting portion; cut the cutting portion.
  • this manufacturing method facilitates cutting of the cutting parts on the one hand, and It is beneficial to reduce the difficulty of cutting. On the other hand, it can effectively reduce the slippage or misalignment of the multiple first blank areas after being gathered during the cutting process, thereby helping to improve the cutting quality of the multiple first blank areas. , to improve the production quality of laminated electrode assemblies.
  • the first blank areas of the plurality of first pole pieces after the first blank areas of the plurality of first pole pieces are gathered and cut, the first blank areas form the first connecting portion and the first tab portion, so
  • the first connecting part connects the first coating area and the first lug part, and along the third direction, the size of the first connecting part is larger than the size of the first lug part, and the third The direction is perpendicular to the first direction and the second direction; wherein, the first connecting portions of the plurality of first pole pieces are gathered at one end of the laminated electrode assembly in the second direction. , and form a first gathering area, and the first pole tab portions of the plurality of first pole pieces are stacked and protrude out of the first gathering area along the second direction as a whole.
  • the first blank area after cutting is formed with a first connecting portion and a first tab portion that are connected to each other, and the first connecting portions of the plurality of blank areas are gathered at one end of the laminated electrode assembly, so as to A first gathering area is formed, and a plurality of first pole portions are stacked on each other and protrude from the first gathering area, so that the laminated electrode assembly formed has better overcurrent performance and higher structural stability.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of the structure of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a cross-sectional view of a laminated electrode assembly provided by some embodiments of the present application.
  • Figure 5 is a schematic structural diagram of the first pole piece provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of a laminated electrode assembly provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of the second pole piece provided by some embodiments of the present application.
  • Figure 8 is a schematic structural diagram of the first gathering area of the laminated electrode assembly provided by some embodiments of the present application.
  • Figure 9 is a schematic diagram of the connection between the first gathering area and the first insulating member provided by some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of the first insulating member provided by some embodiments of the present application.
  • Figure 11 is a schematic structural diagram of the first gathering area of the laminated electrode assembly provided by some embodiments of the present application.
  • Figure 12 is a schematic diagram of the connection between the first gathering area and the first insulating member provided by some embodiments of the present application.
  • Figure 13 is an exploded view of the structure of the first insulating member provided by some further embodiments of the present application.
  • Figure 14 is a schematic structural diagram of the second gathering area of the laminated electrode assembly provided by some embodiments of the present application.
  • Figure 15 is a schematic diagram of the connection between the second gathering area and the second insulating member provided by some embodiments of the present application.
  • Figure 16 is an exploded view of the structure of the second insulating member provided by some embodiments of the present application.
  • Figure 17 is a schematic structural diagram of the second shrinking area of the laminated electrode assembly provided by some embodiments of the present application.
  • Figure 18 is a schematic diagram of the connection between the second gathering area and the second insulating member provided by some embodiments of the present application.
  • Figure 19 is a schematic structural diagram of a second insulating member provided by some embodiments of the present application.
  • Figure 20 is a schematic flow chart of a manufacturing method of a laminated electrode assembly provided by some embodiments of the present application.
  • FIG. 21 is a schematic flowchart of step S200 of the manufacturing method of the laminated electrode assembly shown in FIG. 20 .
  • Icon 1000-vehicle; 100-battery; 10-box; 11-first box body; 12-second box body; 20-battery cell; 21-outer shell; 211-casing; 2111-opening; 212- End cap; 22-laminated electrode assembly; 221-first pole piece; 2211-first coating area; 2212-first blank area; 2212a-first connection part; 2212b-first pole part; 2212c- The first gathering area; 2212d-the first bevel; 2212e-the second bevel; 222-the second pole piece; 2221-the second coating area; 2222-the second blank area; 2222a-the second connection part; 2222b-the second 2222c-second gathering area; 2222d-third bevel; 2222e-fourth bevel; 223-isolation member; 23-positive electrode terminal; 24-negative electrode terminal; 25-pressure relief mechanism; 26-first Insulator; 261-first receiving cavity; 262-first through hole; 263-first receiving groove; 264-first gap; 2
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the casing is used to accommodate the electrode assembly and the electrolyte.
  • the electrode assembly consists of a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector to form a coating area of the positive electrode sheet. The portion of the positive electrode current collector that is not coated with the positive electrode active material layer forms the positive electrode.
  • the blank area of the electrode piece, the blank area of the positive electrode piece is used as the positive electrode tab after being cut, so that the electric energy input or output of the positive electrode piece can be realized through the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector to form a coating area of the negative electrode sheet.
  • the part of the negative electrode current collector that is not coated with the negative electrode active material layer forms the negative electrode.
  • the blank area of the pole piece and the blank area of the negative electrode piece are used as negative electrode tabs after cutting, so that the electric energy input or output of the negative electrode tab can be realized through the negative electrode tabs.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon. In order to ensure that large currents can pass through without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the battery is composed of a box and multiple battery cells contained in the box.
  • the battery cells are composed of positive electrode plates, negative electrode plates and isolation films, which are assembled into electrode assemblies (bare cells) by winding or lamination. Then put it into the case, cover it with the end cap, and finally inject the electrolyte.
  • higher requirements have been put forward for the cycle life and safety of batteries. Therefore, the safety performance of the battery cell determines the safety of the battery during use.
  • the positive electrode tabs, negative electrode tabs and isolation films of the laminated electrode assembly are usually arranged in a sequential stacking manner, and the size of the isolation film is larger than the positive electrode tabs and negative electrode tabs. , so that the isolation film can completely cover the positive electrode piece and the negative electrode piece.
  • the positive electrode tab and the negative electrode tab need to be punched out using a mold respectively before being stacked with the separator. That is to say, it is usually necessary to first cut out the positive electrode tab and the negative electrode tab.
  • the current collector without a single pole piece coated with the active material layer is cut to form a pole tab with a width smaller than the width of the pole piece on one side of the coating area of the pole piece, and then multiple pole pieces are stacked and arranged, and The tab pieces of the plurality of pole pieces are stacked along the thickness direction of the pole piece to form tabs for inputting or outputting electric energy.
  • the structural strength of the tabs of the laminated electrode assembly using this structure is weak, which easily leads to the risk of the tabs breaking during assembly or later use, which is not conducive to extending the service life of the battery cells.
  • the overcurrent area of the tabs of this structure is small, which leads to poor overcurrent performance of the laminated electrode assembly, which in turn can easily cause local temperature rise in the battery cells due to insufficient overcurrent, resulting in battery failure. There are great safety risks in the later use of the monomer.
  • the inventors designed a laminated electrode assembly after in-depth research, including electrodes with opposite polarity.
  • the first pole piece and the second pole piece are stacked along the first direction.
  • the first pole piece includes a first coating area and a first blank area arranged along the second direction.
  • the first blank area includes a first connecting portion and a first tab portion.
  • the first connecting portion connects the first coating area and the first blank area.
  • the size of the first connecting part is larger than the size of the first pole part, and the first direction, the second direction and the third direction are two perpendicular to each other.
  • the first connecting portions of the plurality of first pole pieces are gathered at one end of the laminated electrode assembly in the second direction and form a first gathering area.
  • the first tab portions of the plurality of first pole pieces are stacked and arranged along the first The two directions protrude from the first gathering area.
  • the laminated electrode assembly by gathering the first connecting portions of the plurality of first pole pieces at one end of the laminated electrode assembly in the second direction, the first connecting portions formed by the plurality of first connecting portions are The gathering area can cover one end of the laminated electrode assembly, and the first tab portions of the plurality of first pole pieces are stacked and protrude from the first gathering area, so that the first tab portions can pass through the first gathering area
  • the laminated electrode assembly adopting this structure can effectively improve the overcurrent performance of the first blank area of the first pole piece to ensure the stability of the overcurrent.
  • This is conducive to improving the performance of the laminated electrode assembly, and is conducive to alleviating the phenomenon of local temperature rise due to insufficient flow area of the laminated electrode assembly.
  • it can effectively improve the toughness and structure of the first pole lug. Stability to reduce the risk of the first pole lug breaking during production or use, thereby conducive to increasing the service life of the laminated electrode assembly.
  • the first blank areas of the plurality of first pole pieces are formed at one end of the laminated electrode assembly with a first converging area and a third protruding area protruding from the first converging area.
  • a pole lug is used to realize the input or output of electric energy to the laminated electrode assembly, so that in the process of producing the laminated electrode assembly of this structure, the first pole piece and the second pole piece can be stacked first, and then Then, the first blank areas of the plurality of first pole pieces are gathered and cut uniformly to form the first connecting portion and the first pole portion, so that there is no need to modify the first pole piece before stacking the first pole piece and the second pole piece.
  • the pole pieces are individually cut, which on the one hand can effectively reduce the misalignment, overlap or folding of the first pole tabs of multiple first pole pieces, and on the other hand can greatly optimize the production cycle of the laminated electrode assembly. , which is conducive to improving the production efficiency of laminated electrode assemblies.
  • the laminated electrode assembly disclosed in the embodiment of the present application can be used in, but is not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery cells and batteries disclosed in this application. In this way, the risk of local temperature rise of the battery cells during later use can be effectively reduced, thereby improving the safety of the battery.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are used to be accommodated in the case 10 .
  • the box 10 is used to provide an assembly space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box body 10 may include a first box body 11 and a second box body 12 .
  • the first box body 11 and the second box body 12 cover each other.
  • the first box body 11 and the second box body 12 share a common
  • An assembly space for accommodating the battery cells 20 is defined.
  • the second box body 12 can be a hollow structure with one end open, and the first box body 11 can be a plate-like structure.
  • the first box body 11 is covered with the open side of the second box body 12 so that the first box body 11 and the second box body 11 can be connected to each other.
  • the two box bodies 12 jointly define an assembly space; the first box body 11 and the second box body 12 can also be hollow structures with one side open, and the open side cover of the first box body 11 is closed with the second box body 12 Open side.
  • the box 10 formed by the first box body 11 and the second box body 12 can be in various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • the battery 100 may not be provided with a box 10 , and multiple battery cells 20 may be directly integrated into the vehicle 1000 , and the multiple battery cells 20 are used to provide electric energy to the vehicle 1000 .
  • FIG. 3 is an exploded view of the structure of the battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 includes a casing 21 and a laminated electrode assembly 22.
  • the casing 21 is used to accommodate the laminated electrode assembly 22.
  • the housing 21 can also be used to contain electrolyte, such as electrolyte.
  • the housing 21 can be of various structural forms.
  • the housing 21 may include a housing 211 and an end cover 212.
  • the housing 211 is a hollow structure with an opening 2111 on one side.
  • the end cover 212 covers the opening 2111 of the housing 211 and forms a sealed connection to form a A sealed space used to accommodate the stacked electrode assembly 22 and the electrolyte.
  • the housing 211 can be in various shapes, such as cylinder, cuboid, etc.
  • the shape of the housing 211 can be determined according to the specific shape of the stacked electrode assembly 22 .
  • a cylindrical shell can be used; if the stacked electrode assembly 22 has a rectangular parallelepiped structure, a cuboid shell can be used.
  • the end cap 212 can also have a variety of structures.
  • the end cap 212 has a plate-like structure, a hollow structure with an opening 2111 at one end, etc.
  • the housing 211 has a rectangular parallelepiped structure
  • the end cover 212 has a plate-like structure
  • the end cover 212 covers the opening 2111 of the housing 211 .
  • the battery cell 20 may further include a positive electrode terminal 23 , a negative electrode terminal 24 and a pressure relief mechanism 25 .
  • the positive electrode terminal 23 and the pressure relief mechanism are both installed on the end cover 212, and the negative electrode terminal 24 is installed on the end of the housing 211 opposite to the end cover 212. Both the positive electrode terminal 23 and the negative electrode terminal 24 are used to electrically connect with the stacked electrode assembly 22 to realize the input and output of electric energy of the battery cell 20 .
  • the pressure relief mechanism 25 is used to release the pressure inside the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined value.
  • the pressure relief mechanism 25 may be a component such as an explosion-proof valve, explosion-proof disk, air valve, pressure relief valve or safety valve.
  • the housing 21 is not limited to the above structure, and the housing 21 can also be of other structures.
  • the housing 21 includes a housing 211 and two end caps 212.
  • the housing 211 is a hollow structure with openings 2111 on opposite sides.
  • an end cap 212 correspondingly covers an opening 2111 of the housing 211 and forms a sealed connection to form a sealed space for accommodating the laminated electrode assembly 22 and the electrolyte, and the positive electrode terminal 23 and the negative electrode terminal 24 are respectively Installed on the corresponding end cap 212.
  • the pressure relief mechanism 25 may be installed on one end cover 212 , or the pressure relief mechanism 25 may be installed on both end covers 212 .
  • the number of laminated electrode components 22 accommodated in the housing 21 may be one or multiple.
  • the laminated electrode assembly 22 is a component in the battery cell 20 where electrochemical reactions occur.
  • FIG. 4 is a cross-sectional view of the laminated electrode assembly 22 provided in some embodiments of the present application.
  • the laminated electrode assembly 22 may include a first pole piece 221 and a second pole piece 222 with opposite polarities. The first pole piece 221 and the second pole piece 222 are stacked along the first direction X to form a laminated structure. Laminated electrode assembly 22.
  • Figure 5 is a schematic structural diagram of the first pole piece 221 provided in some embodiments of the present application.
  • the present application provides a laminated electrode assembly 22.
  • the laminated electrode assembly 22 includes a first pole piece 221 and a second pole piece 222 with opposite polarities.
  • the first pole piece 221 and the second pole piece 222 are along the first pole piece.
  • the first pole piece 221 includes a first coating area 2211 and a first blank area 2212 arranged along the second direction Y.
  • the first blank area 2212 includes a first connecting part 2212a and a first ear part 2212b.
  • the first connecting part 2212a connects the first coating area 2211 and the first tab portion 2212b.
  • the size of the first connecting portion 2212a is larger than the size of the first tab portion 2212b.
  • the first direction X, the second direction Y and the The three directions Z are vertical in twos and twos.
  • the first connecting portions 2212a of the plurality of first pole pieces 221 are gathered at one end of the laminated electrode assembly 22 in the second direction Y, and form a first gathered area 2212c.
  • the first connecting portions 2212a of the plurality of first pole pieces 221 are The pole portions 2212b are stacked and protrude from the first gathering area 2212c along the second direction Y.
  • the first coating area 2211 and the first blank area 2212 are respectively the current collector area of the first pole piece 221 that is coated with the active material layer and the current collector area that is not coated with the active material layer.
  • the first connecting part 2212a connects the first coating area 2211 and the first lug part 2212b.
  • the size of the first connecting part 2212a is larger than the size of the first lug part 2212b, that is, the first connecting part 2212a is along the third direction Z.
  • the second direction Y is connected between the first coating area 2211 and the first tab area, and the width of the first connecting portion 2212a in the third direction Z is greater than the first tab portion 2212b.
  • the first coating area 2211 and the first connecting portion 2212a have the same width in the third direction Z.
  • the first pole piece using this structure 221 can effectively improve the structural strength of the first connection part 2212a on the one hand, and facilitate processing and manufacturing on the other hand.
  • the first connection part 2212a can be formed in the current collector area of the first pole piece 221 that is not coated with the active material layer, so that the first connection part 2212a can be formed.
  • there is no need to perform other processing processes on the first connecting portion 2212a which can effectively reduce the manufacturing difficulty of the first pole piece 221 and help improve the production efficiency of the first pole piece 221.
  • the first pole piece 221 may be a positive pole piece or a negative pole piece, which is not limited in the embodiment of the present application.
  • the first pole piece 221 has a first coating area 2211 and a first blank area 2212 arranged along the second direction Y, and the first blank area 2212 is formed with a first connection part 2212a and a first pole part 2212b that are connected to each other.
  • the first gathering area 2212c formed by the plurality of first connection portions 2212a can Covering one end of the stacked electrode assembly 22, the first tab portions 2212b of the plurality of first pole pieces 221 are stacked and protrude from the first gathering area 2212c, so that the first tab portions 2212b can pass through the first
  • the gathered area 2212c realizes the input or output of electric energy of the laminated electrode assembly 22.
  • the laminated electrode assembly 22 adopting this structure can effectively improve the overcurrent performance of the first blank area 2212 of the first pole piece 221, so as to Ensuring the stability of the overcurrent will help improve the performance of the laminated electrode assembly 22 and alleviate the phenomenon of local temperature rise in the laminated electrode assembly 22 due to insufficient overflow area. On the other hand, it can effectively improve the performance of the laminated electrode assembly 22.
  • the toughness and structural stability of the first tab portion 2212b can reduce the risk of breakage of the first tab portion 2212b during production or use, thus conducive to increasing the service life of the laminated electrode assembly 22.
  • FIG. 6 is a schematic structural diagram of the laminated electrode assembly 22 provided in some embodiments of the present application.
  • the laminated electrode assembly 22 also includes a spacer 223 .
  • the spacer 223 is disposed between the first pole piece 221 and the second pole piece 222 and is used to separate the first pole piece 221 and the second pole piece 222.
  • the spacer 223 covers the first coating area 2211 along the first direction X.
  • the first connecting portion 2212a protrudes from the isolation member 223 along the second direction Y.
  • the isolator 223 is an isolation film, and the isolation film is disposed between the first pole piece 221 and the second pole piece 222 to isolate the first pole piece 221 and the second pole piece 222 .
  • the material of the isolation member 223 may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), or the like.
  • the laminated electrode assembly 22 with this structure facilitates the first connecting portions 2212a of the plurality of first pole pieces 221 to be gathered at one end of the laminated electrode assembly 22 in the second direction Y, which facilitates manufacturing and production.
  • Productivity It is possible to first stack a plurality of first pole pieces 221 and then cut them uniformly to form a first gathering area 2212c and a plurality of stacked first pole tab portions 2212b, which is beneficial to improving the performance of the stacked electrode assembly 22.
  • the thickness of the first gathered area 2212c in the second direction Y is 2 mm-4 mm.
  • the thickness of the first gathered area 2212c in the second direction Y is 2mm-4mm, that is, the first connecting portions 2212a of the plurality of first pole pieces 221 protrude from one end of the isolation member 223 in the second direction Y after being gathered.
  • the size is 2mm-4mm.
  • the thickness of the first gathered area 2212c in the second direction Y is D1, which satisfies 2mm ⁇ D1 ⁇ 4mm.
  • the thickness of the first gathered area 2212c between 2 mm and 4 mm, on the one hand, the structure between the first gathered area 2212c and the first tab portion 2212b caused by the excessively small thickness of the first gathered area 2212c can be effectively alleviated.
  • the risk of low strength and insufficient flow area on the other hand, can effectively alleviate the phenomenon that the stacked electrode assembly 22 occupies too much space due to the excessive thickness of the first gathered area 2212c, thereby conducive to improving the stacking efficiency.
  • the energy density of the electrode assembly 22 is .
  • Figure 7 is a schematic structural diagram of the second pole piece 222 provided in some embodiments of the present application.
  • the second pole piece 222 includes a second coating area 2221 and a second blank area 2222 arranged along the second direction Y.
  • the second blank area 2222 includes a second connection part 2222a and a second lug part 2222b.
  • the second connection part 2222a is connected to the second coating area 2221 and the second lug part 2222b.
  • the second connection part The size of 2222a is larger than the size of the second tab portion 2222b.
  • the second connecting portions 2222a of the plurality of second pole pieces 222 are gathered at one end of the laminated electrode assembly 22 away from the first gathered area 2212c in the second direction Y, and form a second gathered area 2222c.
  • the plurality of second The second pole tab portions 2222b of the pole pieces 222 are stacked and protrude out of the second gathering area 2222c along the second direction Y as a whole.
  • the second coating area 2221 and the second blank area 2222 are respectively the current collector area of the second pole piece 222 that is coated with the active material layer and the current collector area that is not coated with the active material layer.
  • the second connecting portion 2222a connects the second coating area 2221 and the second tab portion 2222b.
  • the size of the second connecting portion 2222a is larger than the size of the second tab portion 2222b, that is, the second connecting portion 2222a is along the third direction Z.
  • the second direction Y is connected between the second coating area 2221 and the second tab area, and the width of the second connecting portion 2222a in the third direction Z is greater than the second tab portion 2222b.
  • the second coating area 2221 and the second connecting portion 2222a have the same width in the third direction Z.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece
  • the first pole piece 221 can also be a positive pole piece
  • the first pole piece 221 can also be a positive pole piece
  • the diode piece 222 is a negative pole piece.
  • the size of the second gathered area 2222c protruding from one end of the isolation member 223 is 2 mm-4 mm.
  • the thickness of the second gathered area 2222c in the second direction Y is D2, which satisfies 2mm ⁇ D2 ⁇ 4mm.
  • the plurality of second connection portions 2222a are formed by arranging the second connection portions 2222a of the plurality of second pole pieces 222 to be gathered at one end of the stacked electrode assembly 22 away from the first gathering area 2212c in the second direction Y.
  • the second gathered area 2222c covers one end of the laminated electrode assembly 22, and the second tab portions 2222b of the plurality of second pole pieces 222 are stacked and protrude from the second gathered area 2222c.
  • the stack using this structure The chip electrode assembly 22 can effectively improve the overcurrent performance of the second blank area 2222 of the second pole piece 222 to ensure the stability of the overcurrent, and is conducive to improving the toughness and structural stability of the second pole lug portion 2222b, so as to The risk of breakage of the second tab part 2222b during production or use is reduced, thereby further improving the overall structural stability and usability of the laminated electrode assembly 22 .
  • the first gathered area 2212c and the second gathered area 2222c are respectively located at both ends of the laminated electrode assembly 22 in the second direction Y.
  • the structure of the laminated electrode assembly 22 is not It is not limited to this.
  • the second gathering area 2222c may also be formed.
  • One end adjacent to the first gathered area 2212c, for example, the second pole piece 222 includes a second coating area 2221 and a second blank area 2222 arranged along the third direction Z.
  • the second blank area 2222 includes a second connection portion 2222a and a second tab portion 2222b.
  • the second connection portion 2222a is connected to the second coating area 2221 and the second tab portion 2222b.
  • the second connection portion The size of 2222a is larger than the size of the second tab portion 2222b.
  • the second connecting portions 2222a of the plurality of second pole pieces 222 are gathered at one end of the laminated electrode assembly 22 in the third direction Z to form a second gathered area 2222c.
  • the second connecting portions 2222a of the plurality of second pole pieces 222 are The pole portions 2222b are stacked and protrude out of the second gathering area 2222c along the third direction Z as a whole.
  • the second coating area 2221 and the second blank area 2222 of the second pole piece 222 along the third direction Z, so that the second gathering area 2222c is located at the third direction Z of the laminated electrode assembly 22
  • the second gathering area 2222c and the plurality of second tab portions 2222b arranged in a stack can be arranged adjacent to the first gathering area 2212c, thereby facilitating the realization of various manufacturing structures of the laminated electrode assembly 22 to meet the requirements Different usage scenarios.
  • the present application also provides a battery cell 20 , including a casing 21 and a laminated electrode assembly 22 of any of the above solutions.
  • the laminated electrode assembly 22 is accommodated in the casing 21 .
  • the battery cell 20 further includes a first insulating member 26 covering the first gathered area 2212c, and the first insulating member 26 is used to separate the first gathering area 2212c.
  • the first insulating member 26 covers the first gathered area 2212c, and can allow the stacked plurality of first tab portions 2212b to pass through, so that the first tab portions 2212b can be connected with the positive electrode of the battery cell 20 Terminal 23 or negative electrode terminal 24 is connected.
  • the material of the first insulating member 26 may be rubber, plastic, silicone, or the like.
  • the first insulating member 26 By disposing the first insulating member 26 at one end of the laminated electrode assembly 22, the first insulating member 26 can cover the first gathered area 2212c, so that on the one hand, the first tab portion 2212b can be exposed to the first insulating member 26. It is insulated and isolated from the casing 21 to reduce the phenomenon of overlapping short circuit between the first pole part 2212b and the casing 21. On the other hand, it can also realize the isolation between the first folding area 2212c and the casing 21, which is beneficial to improve the battery cell. The safety of use of body 20.
  • Figure 4 is a schematic structural diagram of the first gathered area 2212c of the laminated electrode assembly 22 provided by some embodiments of the present application.
  • Figure 9 is a schematic diagram of the connection between the first gathering area 2212c and the first insulating member 26 provided by some embodiments of the present application
  • Figure 10 is a schematic structural diagram of the first insulating member 26 provided by some embodiments of the present application.
  • the insulating member 26 covers the first slope 2212d.
  • connecting portion 2212a is inclined from one side to the other side of the stacked electrode assembly 22 along the first direction Area 2212c is on one side in the first direction X.
  • the lower surface of the first insulating member 26 in the second direction Y and the first inclined surface 2212d fit with each other, so that the first insulating member 26 can cover the first inclined surface 2212d.
  • a first receiving cavity 261 is formed inside the first insulating member 26 , and the first receiving cavity 261 penetrates the side of the first insulating member 26 close to the first tab portion 2212b along the first direction
  • a pole lug 2212b can be inserted into the first receiving cavity 261, wherein the first insulating member 26 is also provided with a positive electrode terminal 23 or a negative electrode terminal 24 on the side away from the first slope 2212d in the second direction Y.
  • the first through hole 262 communicates with the first receiving cavity 261, so that the first tab portion 2212b can be connected to the positive electrode terminal 23 or the negative electrode terminal 24, thereby realizing a laminated electrode assembly. 22 electrical energy input or output.
  • the battery cell 20 adopting this structure is insulated and isolated between the gathered area 2212c and the casing 21, which is beneficial to reducing the manufacturing difficulty of the first insulating member 26, thereby reducing the manufacturing cost, and improving production efficiency.
  • Figure 11 is a schematic structural diagram of the first gathering area 2212c of the laminated electrode assembly 22 provided by some further embodiments of the present application.
  • Figure 12 is a schematic diagram of the first gathered area 2212c of the laminated electrode assembly 22 provided by some further embodiments of the present application.
  • the embodiment provides a schematic diagram of the connection between the first gathered area 2212c and the first insulating member 26. Along the first direction The insulating member 26 covers the two second slopes 2212e.
  • the portion 2212a is inclined from both sides of the stacked electrode assembly 22 to the middle position along the first direction 2212c is at the middle position in the first direction X.
  • the lower surface of the first insulating member 26 in the second direction Y and the two second inclined surfaces 2212e fit with each other, so that the first insulating member 26 can cover the two second inclined surfaces 2212e.
  • the first insulating member 26 is provided with a first receiving groove 263 on the side facing away from the second slope 2212e in the second direction Y, and the bottom wall of the first receiving groove 263 is provided with a through-hole through the first insulating member 26 .
  • the first gap 264 on the lower surface allows the first tab portion 2212b to pass through the first gap 264 and penetrate into the first receiving groove 263, so that the first tab portion 2212b can connect with the positive electrode terminal 23 or the negative electrode terminal. 24 are connected to realize the electric energy input or output of the laminated electrode assembly 22.
  • the battery cell 20 adopting this structure is helpful to reduce the manufacturing difficulty of the first gathered area 2212c and facilitate The first tab portion 2212b is electrically connected to the electrode terminal on the housing 21 .
  • FIG. 13 is an exploded view of the structure of the first insulating member 26 provided by still other embodiments of the present application.
  • the first insulator 26 includes two first insulators 265 .
  • the two first insulators 265 respectively cover the two second slopes 2212e.
  • the two first insulators 265 are arranged oppositely along the first direction The first gap 264 penetrates.
  • two first insulators 265 are arranged oppositely along the first direction
  • the first docking blocks 2652 are arranged at intervals along the third direction Z.
  • the first docking block 2652 of one first insulator 265 is used to be inserted into the first docking hole 2651 of another first insulator 265 to realize two first docking blocks 2652.
  • the two first insulators 265 can also be detachably connected using bolts or other means.
  • the first insulator 26 By arranging the first insulator 26 as two first insulators 265 so that each first insulator 265 can cover the corresponding second slope 2212e, it can be realized that the first insulator 26 can cover the two second slopes 2212e.
  • the structure On the inclined plane 2212e, the structure is simple and easy to implement.
  • the two first insulators 265 in a structure that is spliced to each other along the first direction
  • the first insulating member 26 of this structure is easy to manufacture and assemble, and is convenient for later maintenance and replacement.
  • Figure 14 is a schematic structural diagram of the second gathering area 2222c of the laminated electrode assembly 22 provided by some embodiments of the present application.
  • Figure 15 is a schematic diagram of the second gathering area 2222c and the second gathering area provided by some embodiments of the present application.
  • Figure 16 is an exploded view of the structure of the second insulating member 27 provided by some embodiments of the present application.
  • the battery cell 20 may further include a second insulating member 27 covering the second gathering area 2222c, and the second insulating member 27 is used to separate the second tab portion 2222b and the housing 21 .
  • the second insulating member 27 covers the two third inclined surfaces 2222d.
  • the portion 2222a is inclined from both sides of the stacked electrode assembly 22 to the middle position along the first direction 2222c is at the middle position in the first direction X.
  • the lower surface of the second insulating member 27 in the second direction Y and the two third inclined surfaces 2222d fit with each other, so that the second insulating member 27 can cover the two third inclined surfaces 2222d.
  • the second insulating member 27 is provided with a second receiving groove 271 on the side facing away from the third slope 2222d in the second direction Y, and the bottom wall of the second receiving groove 271 is provided with a through-hole through the second insulating member 27 .
  • the second gap 272 on the lower surface allows the second lug portion 2222b to be inserted into the second receiving groove 271 through the second gap 272, so that the second lug portion 2222b can be connected with the positive electrode terminal 23 or the negative electrode terminal. 24 are connected to realize the electric energy input or output of the laminated electrode assembly 22.
  • the second insulator 27 includes two second insulators 273 .
  • Two second insulators 273 respectively cover the two third slopes 2222d.
  • the two second insulators 273 are arranged oppositely along the first direction
  • the second gap 272 passes through.
  • two second insulators 273 are arranged oppositely along the first direction
  • the second docking blocks 2732 are arranged at intervals along the third direction Z.
  • the second docking block 2732 of one second insulator 273 is used to be inserted into the second docking hole 2731 of another second insulator 273 to realize two second docking blocks 2732 .
  • the two second insulators 273 can also be detachably connected using bolts or other means.
  • the second insulating member 27 By arranging the second insulating member 27 as two second insulating bodies 273 so that each second insulating body 273 can cover the corresponding third slope 2222d, it can be realized that the second insulating member 27 can cover the two third insulating bodies 2222d.
  • the structure On the inclined plane 2222d, the structure is simple and easy to implement.
  • the two second insulators 273 in a structure that is spliced to each other along the first direction
  • the second insulating member 27 of this structure is easy to manufacture and assemble, and is convenient for later maintenance and replacement.
  • Fig. 17 is a schematic structural diagram of the second gathering area 2222c of the laminated electrode assembly 22 provided in some embodiments of the present application.
  • a schematic diagram of the connection between the second gathering area 2222c and the second insulating member 27 is provided in some embodiments of the application.
  • FIG. 19 is a schematic structural diagram of the second insulating member 27 provided in some embodiments of the application.
  • the insulating member 27 covers the fourth slope 2222e.
  • the two connecting portions 2222a are inclined from one side to the other side of the stacked electrode assembly 22 along the first direction Area 2222c is on one side in the first direction X.
  • the lower surface of the second insulating member 27 in the second direction Y and the fourth inclined surface 2222e fit with each other, so that the second insulating member 27 can cover the fourth inclined surface 2222e.
  • a second accommodating cavity 274 is formed inside the second insulating member 27 , and the second accommodating cavity 274 runs through the side of the second insulating member 27 close to the second tab portion 2222b along the first direction
  • the diode ear portion 2222b can be inserted into the second receiving cavity 274, wherein the second insulating member 27 is
  • a second through hole 275 for the positive electrode terminal 23 or the negative electrode terminal 24 to pass through is also opened on the side away from the fourth slope 2222e in the second direction Y.
  • the second through hole 275 is connected with the second accommodation cavity 274 so that the positive electrode terminal 23 or the negative electrode terminal 24 can pass through.
  • the second tab portion 2222b can be connected to the positive electrode terminal 23 or the negative electrode terminal 24, thereby realizing the electrical energy input or output of the laminated electrode assembly 22.
  • the battery cell 20 adopting this structure is insulated and isolated between the gathered area 2222c and the casing 21, which is beneficial to reducing the manufacturing difficulty of the second insulating member 27, thereby reducing the manufacturing cost, and improving production efficiency.
  • the present application also provides a battery 100 including at least one battery cell 20 of any of the above solutions.
  • the battery cell 20 may be one or multiple.
  • the present application also provides an electrical device, including the battery 100 of any of the above solutions, and the battery 100 is used to provide electrical energy for the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a laminated electrode assembly 22 .
  • the laminated electrode assembly 22 includes first pole pieces 221 stacked along the first direction X. , the isolator 223 and the second pole piece 222, the separator 223 is disposed between the first pole piece 221 and the second pole piece 222.
  • the first pole piece 221 includes a first coating area 2211 and a first blank area 2212 arranged along the second direction Y.
  • the first blank area 2212 includes a first connecting part 2212a and a first ear part 2212b.
  • the first connecting part 2212a connects the first coating area 2211 and the first tab portion 2212b.
  • the size of the first connecting portion 2212a is larger than the size of the first tab portion 2212b.
  • the first direction X, the second direction Y and the The three directions Z are vertical in twos and twos.
  • the first connecting portions 2212a of the plurality of first pole pieces 221 are gathered at one end of the stacked electrode assembly 22 in the second direction Y, and form a first gathered area 2212c.
  • the first tabs of the plurality of first pole pieces 221 The portions 2212b are stacked and protrude from the first gathering area 2212c along the second direction Y.
  • the second pole piece 222 includes a second coating area 2221 and a second blank area 2222 arranged along the second direction Y.
  • the second blank area 2222 includes a second connecting part 2222a and a second ear part 2222b.
  • the second connecting part 2222a is connected to the second coating area 2221 and the second tab portion 2222b.
  • the size of the second connection portion 2222a is larger than the size of the second tab portion 2222b.
  • the second connecting portions 2222a of the plurality of second pole pieces 222 are gathered at one end of the stacked electrode assembly 22 away from the first gathered area 2212c in the second direction Y, and form a second gathered area 2222c.
  • the second tab portions 2222b of 222 are stacked and protrude out of the second gathering area 2222c along the second direction Y as a whole.
  • the first gathered area 2212c and the second gathered area 2222c protrude from both ends of the isolation member 223 respectively, and the thickness of the first gathered area 2212c and the second gathered area 2222c is 2 mm-4 mm.
  • Embodiments of the present application also provide a manufacturing method of the laminated electrode assembly 22. Please refer to FIG. 20.
  • FIG. 20 is a schematic flow chart of a manufacturing method of the laminated electrode assembly 22 provided by some embodiments of the present application.
  • the manufacturing method includes:
  • the first pole piece 221 includes a first coating area 2211 and a first blank area arranged along the second direction Y. 2212, the second direction Y is perpendicular to the first direction X;
  • S200 Collect and cut the first blank areas 2212 of the plurality of first pole pieces 221.
  • the first pole piece 221 is a negative pole piece
  • the second pole piece 222 is a positive pole piece
  • the first pole piece 221 can also be a positive pole piece
  • the second pole piece 222 It is the negative pole piece.
  • step S200 after gathering and cutting the first blank areas 2212 of the plurality of first pole pieces 221, the first blank areas 2212 form the first connecting portion 2212a and the first tab portion 2212b.
  • the portion 2212a connects the first coating area 2211 and the first tab portion 2212b.
  • the third direction Z is perpendicular to the first direction X. and the second direction Y.
  • the first connecting portions 2212a of the plurality of first pole pieces 221 are gathered at one end of the laminated electrode assembly 22 in the second direction Y, and form a first gathered area 2212c.
  • the first connecting portions 2212a of the plurality of first pole pieces 221 are The tab portions 2212b are stacked and protrude from the first gathering area 2212c along the second direction Y as a whole.
  • the second pole piece 222 can also adopt the same manufacturing method as the first pole piece 221 .
  • the first blank areas 2212 of the plurality of first pole pieces 221 are gathered together, and then the first blank areas 2212 of the plurality of first pole pieces 221 are closed.
  • a blank area 2212 is uniformly cut to form tabs for outputting or inputting electric energy of the stacked electrode assembly 22, thereby eliminating the need for a single first pole piece before stacking the first pole piece 221 and the second pole piece 222.
  • 221 cutting process using this manufacturing method can effectively reduce the phenomenon of misalignment and overlap of multiple first pole pieces 221 to improve the performance and safety performance of the laminated electrode assembly 22.
  • it can The production cycle of the stacked electrode assembly 22 is greatly optimized, which is beneficial to improving the production efficiency of the stacked electrode assembly 22 .
  • Step S200 Gather and cut the first blank areas 2212 of the plurality of first pole pieces 221, including:
  • S210 Collect the first blank areas 2212 of the plurality of first pole pieces 221;
  • S220 Weld the first blank areas 2212 of the plurality of first pole pieces 221 to form cutting parts
  • the plurality of gathered first blank areas 2212 are first welded into the cutting parts, and then the cutting parts are uniformly cut.
  • This manufacturing method on the one hand facilitates the cutting of the cutting parts. It is beneficial to reduce the difficulty of cutting, and on the other hand, it can effectively reduce the slippage or misalignment of the plurality of first blank areas 2212 during the cutting process, thereby improving the cutting efficiency of the plurality of first blank areas 2212. cutting quality to improve the production quality of the laminated electrode assembly 22.
  • the device for cutting the cut portion may be a laser cutting device or a die cutting device.
  • the laser cutting device includes a laser cutting gun and a mold.
  • the mold is used to place the laminated electrode assembly 22
  • the laser cutting gun is used to cut the laminated electrode assembly 22 following the trajectory of the mold.
  • the specific structure of the laser cutting device can be found in related technologies and will not be described again here.
  • the die cutting device includes a punching knife and a punching machine.
  • the punching knife is connected to the punching machine.
  • the punching machine is used to drive the punching knife to punch the laminated electrode assembly 22 .
  • the specific structure of the die cutting device can be found in related technologies and will not be described again here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种叠片式电极组件、电池单体、电池及用电装置,属于电池技术领域。其中,叠片式电极组件包括极性相反的第一极片和第二极片,第一极片和第二极片沿第一方向层叠设置。第一极片包括沿第二方向排布的第一涂覆区和第一空白区,第一空白区包括第一连接部和第一极耳部,第一连接部连接第一涂覆区和第一极耳部,沿第三方向,第一连接部的尺寸大于第一极耳部的尺寸,第一方向、第二方向和第三方向两两垂直。多个第一极片的第一连接部收拢于叠片式电极组件在第二方向上的一端,并形成第一收拢区,多个第一极片的第一极耳部层叠设置并沿第二方向凸出于第一收拢区。这种叠片式电极组件具有较高的过流性能,且第一极耳部的韧性和稳定性较好。

Description

叠片式电极组件、电池单体、电池及用电装置
相关申请的交叉引用
本申请要求享有于2022年4月15日提交的名称为“叠片式电极组件、电池单体、电池及用电装置”的中国专利申请202210392427.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种叠片式电极组件、电池单体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池由箱体和容纳于箱体内的多个电池单体构成,电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入壳体,再盖上端盖,最后注入电解液后得到的。但是,随着电池技术的不断发展,对电池的循环使用寿命和使用安全等也提出了更高的要求。然而,现有技术中的电池的循环使用寿命较短,且在后期使用过程中存在较大的安全隐患,从而不利于消费者的使用安全。
发明内容
本申请实施例提供一种叠片式电极组件、电池单体、电池及用电装置,能够有效降低电池在后期使用过程中存在的安全隐患。
第一方面,本申请实施例提供一种叠片式电极组件,包括极性相反的第一极片和第二极片,所述第一极片和所述第二极片沿第一方向层叠设置;所述第一极片包括沿第二方向排布的第一涂覆区和第一空白区,所述第一空白区包括第一连接部和第一极耳部,所述第一连接部连接所述第一涂覆区和所述第一极耳部,沿第三方向,所述第一连接部的尺寸大于所述第一极耳部的尺寸,所述第一方向、所述第二方向和所述第三方向两两垂直;其中,多个所述第一极片的所述第一连接部收拢于所述叠片式电极组件在所述第二方向上的一端,并形成第一收拢区,多个所述第一极片的所述第一极耳部层叠设置并沿所述第二方向凸出于所述第一收拢区。
在上述技术方案中,第一极片具有沿第二方向排布的第一涂覆区和第一空白区,且第一空白区形成有相互连接的第一连接部和第一极耳部,通过将多个第一极片的第一连接部收拢于叠片式电极组件在第二方向上的一端,以使多个第一连接部形成的第一收拢区能够覆盖于叠片式电极组件的一端,并将多个第一极片的第一极耳部层叠后凸出于第一收拢区,从而使得第一极耳部能够通过第一收拢区实现叠片式电极组件的电能的输入或输出,采用这种结构的叠片式电极组件一方面能够有效提升第一极片的第一空白区的过流性能,以保证过流的稳定性,从而有利于提升叠片式电极组件的使用性能,且有利于缓解叠片式电极组件因过流面积不足而出现局部温升的现象,另一方面能够有效提高第一极耳部的韧性和结构稳定性,以减少第一极耳部在生产或使用的过程中出现折断的风险,从而有利于提升叠片式电极组件的使用寿命。
在一些实施例中,所述叠片式电极组件还包括隔离件;所述隔离件设置于所述第一极片和所述第二极片之间,并用于分隔所述第一极片和所述第二极片,所述隔离件沿所述第一方向覆盖于所述第一涂覆区,所述第一连接部沿所述第二方向凸出于所述隔离件。
在上述技术方案中,通过将第一连接部沿第二方向凸出于隔离件,也就是说,第一极片的第一空白区沿第二方向伸出于隔离件的一端,采用这种结构的叠片式电极组件一方面便于多个第一极片的第一连接部收拢于叠片式电极组件在第二方向上的一端,便于制造和生产,另一方面能够实现先对多个第一极片进行堆叠后再统一裁切,以形成第一收拢区和层叠设置的多个第一极耳部,从而有利于提高叠片式电极组件的生产效率。
在一些实施例中,所述第一收拢区在所述第二方向上的厚度为2mm-4mm。
在上述技术方案中,通过将第一收拢区的厚度设置在2mm到4mm之间,一方面能够有效缓解因第一收拢区的厚度过小而造成第一收拢区与第一极耳部之间的结构强度较低且过流面积不足的风险,另一方面能够有效缓解因第一收拢区的厚度过大而造成叠片式电极组件的占地空间过大的现象,从而有利于提高叠片式电极组件的能量密度。
在一些实施例中,所述第二极片包括沿所述第二方向排布的第二涂覆区和第二空白区;所述第二空白区包括第二连接部和第二极耳部,所述第二连接部连接于所述第二涂覆区和所述第二极耳部,沿所述第三方向,所述第二连接部的尺寸大于所述第二极耳部的尺寸;其中,多个所述第二极片的所述第二连接部收拢于所述叠片式电极组件在所述第二方向上背离所述第一收拢区的一端,并形成第二收拢区,多个所述第二极片的所述第二极耳部层叠设置并整体沿所述第二方向凸出于所述第二收拢区。
在上述技术方案中,通过将多个第二极片的第二连接部设置为收拢于叠片式电极组件在第二方向上背离第一收拢区的一端,以使多个第二连接部形成的第二收拢区覆盖于叠片式电极组件的一端,并将多个第二极片的第二极耳部层叠后凸出于第二收拢区,采用这种结构的叠片式电极组件能够有效提升第二极片的第二空白区的过流性能,以保证过流的稳定性,且有利于提升第二极耳部的韧性和结构稳定性,以减少第二极耳部在生产或使用的过程中出现折断的风险,从而有利于进一步提升叠片式电极组件的整体结构稳定性和使用性能。
在一些实施例中,所述第二极片包括沿所述第三方向排布的第二涂覆区和第二空白区;所述第二空白区包括第二连接部和第二极耳部,所述第二连接部连接于所述第二涂覆区和所述第二极耳部,沿所述第二方向,所述第二连接部的尺寸大于所述第二极耳部的尺寸;其中,多个所述第二极片的所述第二连接部收拢于所述叠片式电极 组件在所述第三方向上的一端,并形成第二收拢区,多个所述第二极片的所述第二极耳部层叠设置并整体沿所述第三方向凸出于所述第二收拢区。
在上述技术方案中,通过将第二极片的第二涂覆区和第二空白区沿第三方向进行排布,以使第二收拢区位于叠片式电极组件在第三方向上的一端,从而能够实现第二收拢区和层叠设置的多个第二极耳部与第一收拢区相邻布置,进而有利于实现叠片式电极组件的多种制造结构,以满足不同的使用场景。
第二方面,本申请实施例还提供一种电池单体,包括外壳和上述的叠片式电极组件;所述叠片式电极组件容纳于所述外壳内。
在一些实施例中,所述电池单体还包括第一绝缘件;所述第一绝缘件覆盖于所述第一收拢区,所述第一绝缘件用于分隔所述第一极耳部和所述外壳。
在上述技术方案中,通过在叠片式电极组件的一端设置第一绝缘件,使得第一绝缘件能够覆盖于第一收拢区上,从而通过第一绝缘件一方面能够对第一极耳部和外壳进行绝缘隔离,以减少第一极耳部与外壳出现搭接短路的现象,另一方面还能够实现第一收拢区与外壳之间的隔绝,进而有利于提升电池单体的使用安全性。
在一些实施例中,沿所述第一方向,多个所述第一极片的所述第一连接部从所述叠片式电极组件的一侧向另一侧收拢,以在所述第一收拢区形成第一斜面,所述第一绝缘件覆盖于所述第一斜面上。
在上述技术方案中,通过将多个第一极片的第一连接部沿第一方向往叠片式电极组件的一侧收拢,以实现多个第一连接部收拢于叠片式电极组件的一端,从而形成第一收拢区,并在第一收拢区的第一斜面上对应覆盖相匹配的第一绝缘件,以实现第一极耳部与外壳之间以及第一收拢区与外壳之间的绝缘隔离,采用这种结构的电池单体有利于降低第一绝缘件的制造难度,以降低制造成本,且能够提高生产效率。
在一些实施例中,沿所述第一方向,多个所述第一极片的所述第一连接部从所述叠片式电极组件的两侧向中间收拢,以在所述第一收拢区形成两个第二斜面,所述第一绝缘件覆盖于两个所述第二斜面上。
在上述技术方案中,通过将多个第一极片的第一连接部沿第一方向往叠片式电极组件的中间位置收拢,以实现多个第一连接部收拢于叠片式电极组件的一端,从而形成第一收拢区,并在第一收拢区的两个第二斜面上对应覆盖相匹配的第一绝缘件,以实现第一极耳部与外壳之间以及第一收拢区与外壳之间的绝缘隔离,采用这种结构的电池单体有利于降低第一收拢区的制造难度,且便于第一极耳部与外壳上的电极端子电连接。
在一些实施例中,所述第一绝缘件包括两个第一绝缘体;两个所述第一绝缘体分别覆盖于两个所述第二斜面上,两个所述第一绝缘体沿所述第一方向相对布置且相互拼接,两个所述第一绝缘体之间形成供所述第一极耳部穿出的第一间隙。
在上述技术方案中,通过将第一绝缘件设置为两个第一绝缘体,以使每个第一绝缘体能够覆盖于对应的第二斜面上,从而能够实现第一绝缘件能够覆盖于两个第二斜面上,结构简单,且便于实现。此外,通过将两个第一绝缘体设置为沿第一方向相互拼接的结构,且两个第一绝缘体之间形成有供第一极耳部穿出的第一间隙,采用这种结构的第一绝缘件便于制造和装配,且有利于后期维修和更换。
第三方面,本申请实施例还提供一种电池,包括至少一个上述的电池单体。
第四方面,本申请实施例还提供一种用电装置,包括上述的电池;所述电池用于提供电能。
第五方面,本申请实施例还提供一种叠片式电极组件的制造方法,包括:将极性相反的第一极片和第二极片沿第一方向层叠,所述第一极片包括沿第二方向排布的第一涂覆区和第一空白区,所述第二方向垂直于所述第一方向;将多个所述第一极片的所述第一空白区收拢并裁切。
在上述技术方案中,在第一极片和第二极片相互层叠后,通过对多个第一极片的第一空白区收拢后再对多个第一极片的第一空白区进行统一裁切,以形成用于输出或输入叠片式电极组件的电能的极耳,从而能够取消第一极片和第二极片堆叠前对单个第一极片进行裁切的工艺,采用这种制造方法一方面能够有效减少多个第一极片出现错位搭接的现象,以提升叠片式电极组件的使用性能和安全性能,另一方面能够极大地优化叠片式电极组件的生产节拍,有利于提升叠片式电极组件的生产效率。
在一些实施例中,所述将多个所述第一极片的所述第一空白区收拢并裁切包括:将多个所述第一极片的所述第一空白区收拢;焊接多个所述第一极片的所述第一空白区,以形成裁切部;裁切所述裁切部。
在上述技术方案中,通过将收拢后的多个第一空白区先进行焊接成裁切部,再对裁切部进行统一裁切,这种制造方法一方面便于对裁切部进行裁切,有利于降低裁切难度,另一方面能够有效减少收拢后的多个第一空白区在裁切的过程中出现滑移或错位的现象,从而有利于提高多个第一空白区的裁切质量,以提高叠片式电极组件的生产质量。
在一些实施例中,在所述将多个所述第一极片的所述第一空白区收拢并裁切之后,所述第一空白区形成第一连接部和第一极耳部,所述第一连接部连接所述第一涂覆区和所述第一极耳部,沿第三方向,所述第一连接部的尺寸大于所述第一极耳部的尺寸,所述第三方向垂直于所述第一方向和所述第二方向;其中,多个所述第一极片的所述第一连接部收拢于所述叠片式电极组件在所述第二方向上的一端,并形成第一收拢区,多个所述第一极片的所述第一极耳部层叠设置并整体沿所述第二方向凸出于所述第一收拢区。
在上述技术方案中,裁切后的第一空白区形成有相互连接的第一连接部和第一极耳部,多个空白区的第一连接部收拢于叠片式电极组件的一端,以形成第一收拢区,且多个第一极耳部相互层叠并凸出于第一收拢区,从而形成的叠片式电极组件的过流性能较好,且结构稳定性较高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池单体的结构爆炸图;
图4为本申请一些实施例提供的叠片式电极组件的剖视图;
图5为本申请一些实施例提供的第一极片的结构示意图;
图6为本申请一些实施例提供的叠片式电极组件的结构示意图;
图7为本申请一些实施例提供的第二极片的结构示意图;
图8为本申请一些实施例提供的叠片式电极组件的第一收拢区的结构示意图;
图9为本申请一些实施例提供的第一收拢区与第一绝缘件的连接示意图;
图10为本申请一些实施例提供的第一绝缘件的结构示意图;
图11为本申请又一些实施例提供的叠片式电极组件的第一收拢区的结构示意图;
图12为本申请又一些实施例提供的第一收拢区与第一绝缘件的连接示意图;
图13为本申请又一些实施例提供的第一绝缘件的结构爆炸图;
图14为本申请一些实施例提供的叠片式电极组件的第二收拢区的结构示意图;
图15为本申请一些实施例提供的第二收拢区与第二绝缘件的连接示意图;
图16为本申请一些实施例提供的第二绝缘件的结构爆炸图;
图17为本申请又一些实施例提供的叠片式电极组件的第二收拢区的结构示意图;
图18为本申请又一些实施例提供的第二收拢区与第二绝缘件的连接示意图;
图19为本申请又一些实施例提供的第二绝缘件的结构示意图;
图20为本申请一些实施例提供的叠片式电极组件的制造方法的流程示意图;
图21为图20所示的叠片式电极组件的制造方法的步骤S200的流程示意图。
图标:1000-车辆;100-电池;10-箱体;11-第一箱本体;12-第二箱本体;20-电池单体;21-外壳;211-壳体;2111-开口;212-端盖;22-叠片式电极组件;221-第一极片;2211-第一涂覆区;2212-第一空白区;2212a-第一连接部;2212b-第一极耳部;2212c-第一收拢区;2212d-第一斜面;2212e-第二斜面;222-第二极片;2221-第二涂覆区;2222-第二空白区;2222a-第二连接部;2222b-第二极耳部;2222c-第二收拢区;2222d-第三斜面;2222e-第四斜面;223-隔离件;23-正极电极端子;24-负极电极端子;25-泄压机构;26-第一绝缘件;261-第一容纳腔;262-第一通孔;263-第一容纳槽;264-第一间隙;265-第一绝缘体;2651-第一对接孔;2652-第一对接块;27-第二绝缘件;271-第二容纳槽;272-第二间隙;273-第二绝缘体;2731-第二对接孔;2732-第二对接块;274-第二容纳腔;275-第二通孔;200-控制器;300-马达;X-第一方向;Y-第二方向;Z-第三方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模块的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括壳体、电极组件和电解液,壳体用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离件组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面以形成正极极片的涂覆区,未涂敷正极活性物质层的正极集流体的部分形成正极极片的空白区,正极极片的空白区在经过裁切后作为正极极耳,以通过正极极耳实现正极极片的电能输入或输出。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面以形成负极极片的涂覆区,未涂敷负极活性物质层的负极集流体的部分形成负极极片的空白区,负极极片的空白区在经过裁切后作为负极极耳,以通过负极极耳实现负极极片的电能输入或输出。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池由箱体和容纳于箱体内的多个电池单体构成,电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入壳体,再盖上端盖,最后注入电解液后得到的。但是,随着电池技术的不断发展,对电池的循环使用寿命和使用安全等也提出了更高的要求。因此,电池单体的安全性能决定了电池在使用过程中的安全性。
发明人发现,对于一般的电池单体而言,叠片式电极组件的正极极片、负极极片和隔离膜通常采用依次堆叠的方式布置,且隔离膜的尺寸大于正极极片和负极极片,以使隔离膜能够对正极极片和负极极片进行完全覆盖。然而,在这种结构的叠片式电极组件中,正极极片和负极极片需要在与隔离膜堆叠前采用模具分别冲切出正极极耳和负极极耳,也就是说,通常先需要对单个极片未涂敷活性物质层的集流体进行裁切,以在极片的涂敷区的一侧形成宽度小于极片宽度的极耳片,之后再将多个极片层叠布置,并将多个极片的极耳片沿极片的厚度方向层叠设置,以形成用于输入或输出电能的极耳。但是,采用这种结构的叠片式电极组件的极耳的结构强度较弱,从而极容易导致极耳在装配或后期使用的过程中出现折断的风险,不利于提升电池单体的使用寿命,且这种结构的极耳的过流面积较小,从而导致叠片式电极组件的过流性能较差,进而极容易造成电池单体因过流不足而出现局部温升的现象,以导致电池单体在后期使用过程中存在较大的安全隐患。
基于上述考虑,为了解决电池单体在后期使用过程中存在较大的安全隐患,且使用寿命较短的问题,发明人经过深入研究,设计了一种叠片式电极组件,包括极性相反的第一极片和第二极片,第一极片和第二极片沿第一方向层叠设置。第一极片包括沿第二方向排布的第一涂覆区和第一空白区,第一空白区包括第一连接部和第一极耳部,第一连接部连接第一涂覆区和第一极耳部,沿第三方向,第一连接部的尺寸大于第一极耳部的尺寸,第一方向、第二方向和第三方向两两垂直。多个第一极片的第一连接部收拢于叠片式电极组件在第二方向上的一端,并形成第一收拢区,多个第一极片的第一极耳部层叠设置并沿第二方向凸出于第一收拢区。
在上述的叠片式电极组件中,通过将多个第一极片的第一连接部收拢于叠片式电极组件在第二方向上的一端,以使多个第一连接部形成的第一收拢区能够覆盖于叠片式电极组件的一端,并将多个第一极片的第一极耳部层叠后凸出于第一收拢区,从而使得第一极耳部能够通过第一收拢区实现叠片式电极组件的电能的输入或输出,采用这种结构的叠片式电极组件一方面能够有效提升第一极片的第一空白区的过流性能,以保证过流的稳定性,从而有利于提升叠片式电极组件的使用性能,且有利于缓解叠片式电极组件因过流面积不足而出现局部温升的现象,另一方面能够有效提高第一极耳部的韧性和结构稳定性,以减少第一极耳部在生产或使用的过程中出现折断的风险,从而有利于提升叠片式电极组件的使用寿命。
此外,在这种结构的叠片式电极组件中,由于多个第一极片的第一空白区在叠片式电极组件的一端形成有第一收拢区和凸出于第一收拢区的第一极耳部,以实现对叠片式电极组件的电能的输入或输出,使得在生产这种结构的叠片式电极组件的过程中能够先将第一极片和第二极片堆叠后,再对多个第一极片的第一空白区收拢并进行统一裁切,以形成第一连接部和第一极耳部,从而无需在第一极片和第二极片堆叠前对第一极片进行单个裁切,进而一方面能够有效减少多个第一极片的第一极耳部出现错位搭接或翻折等现象,另一方面能够极大地优化叠片式电极组件的生产节拍,有利于提升叠片式电极组件的生产效率。
本申请实施例公开的叠片式电极组件可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,能够有效降低电池单体在后期使用过程中出现局部温升的风险,以提升电池的使用安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的结构爆炸图。电池100包括箱体10和电池单体20,电池单体20用于容纳于箱体10内。其中,箱体10用于为电池单体20提供装配空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一箱本体11和第二箱本体12,第一箱本体11与第二箱本体12相互盖合,第一箱本体11和第二箱本体12共同限定出用于容纳电池单体20的装配空间。第二箱本体12可以为一端开放的空心结构,第一箱本体11可以为板状结构,第一箱本体11盖合于第二箱本体12的开放侧,以使第一箱本体11与第二箱本体12共同限定出装配空间;第一箱本体11和第二箱本体12也可以是均为一侧开放的空心结构,第一箱本体11的开放侧盖合于第二箱本体12的开放侧。当然,第一箱本体11和第二箱本体12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
需要说明的是,在一些实施例中,电池100也可以不设置箱体10,多个电池单体20可以直接集成于车辆1000上,多个电池单体20用于为车辆1000提供电能。
请参照图3,图3为本申请一些实施例提供的电池单体20的结构爆炸图。电池单体20包括外壳21和叠片式电极组件22,外壳21用于容纳叠片式电极组件22。
其中,外壳21还可用于容纳电解质,例如电解液。外壳21可以是多种结构形式。
在一些实施例中,外壳21可以包括壳体211和端盖212,壳体211为一侧开口2111的空心结构,端盖212盖合于壳体211的开口2111处并形成密封连接,以形成用于容纳叠片式电极组件22和电解质的密封空间。
在组装电池单体20时,可先将叠片式电极组件22放入壳体211内,并向壳体211内填充电解质,再将端盖212盖合于壳体211的开口2111。
壳体211可以是多种形状,比如,圆柱体、长方体等。壳体211的形状可根据叠片式电极组件22的具体形状来确定。比如,若叠片式电极组件22为圆柱体结构,则可选用为圆柱体壳体;若叠片式电极组件22为长方体结构,则可选用长方体壳体。当然,端盖212也可以是多种结构,比如,端盖212为板状结构、一端开口2111的空心结构等。示例性的,在图3中,壳体211为长方体结构,端盖212为板状结构,端盖212盖合于壳体211的开口2111处。
在一些实施例中,电池单体20还可以包括正极电极端子23、负极电极端子24和泄压机构25。正极电极端子23和泄压机构均安装于端盖212上,负极电极端子24安装于壳体211与端盖212相对的一端上。正极电极端子23和负极电极端子24均用于与叠片式电极组件22电连接,以实现电池单体20的电能的输入和输出。泄压机构25用于在电池单体20的内部压力或温度达到预定值时泄放电池单体20内部的压力。
示例性的,泄压机构25可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
可理解的,外壳21并不仅仅局限于上述结构,外壳21也可以是其他结构,比如,外壳21包括壳体211和两个端盖212,壳体211为相对的两侧开口2111的空心结构,一个端盖212对应盖合于壳体211的一个开口2111处并形成密封连接,以形成用于容纳叠片式电极组件22和电解质的密封空间,且正极电极端子23和负极电极端子24分别安装于对应的端盖212上。在这种结构中,可以是在一个端盖212上安装有泄压机构25,也可以是在两个端盖212上均安装有泄压机构25。
需要说明的是,在本申请实施例中,容纳于外壳21内的叠片式电极组件22可以是一个,也可以是多个。示例性的,在图3中,叠片式电极组件22为一个。其中,叠片式电极组件22是电池单体20中发生电化学反应的部件。请参照图4,图4为本申请一些实施例提供的叠片式电极组件22的剖视图。叠片式电极组件22可以包括极性相反的第一极片221和第二极片222,第一极片221和第二极片222沿第一方向X层叠设置,以形成叠片式结构的叠片式电极组件22。
根据本申请的一些实施例,参照图3和图4,并请进一步参照图5,图5为本申请一些实施例提供的第一极片221的结构示意图。本申请提供了一种叠片式电极组件22,叠片式电极组件22包括极性相反的第一极片221和第二极片222,第一极片221和第二极片222沿第一方向X层叠设置。第一极片221包括沿第二方向Y排布的第一涂覆区2211和第一空白区2212,第一空白区2212包括第一连接部2212a和第一极耳部2212b,第一连接部2212a连接第一涂覆区2211和第一极耳部2212b,沿第三方向Z,第一连接部2212a的尺寸大于第一极耳部2212b的尺寸,第一方向X、第二方向Y和第三方向Z两两垂直。其中,多个第一极片221的第一连接部2212a收拢于叠片式电极组件22在第二方向Y上的一端,并形成第一收拢区2212c,多个第一极片221的第一极耳部2212b层叠设置并沿第二方向Y凸出于第一收拢区2212c。
在上述描述中,第一涂覆区2211和第一空白区2212分别为第一极片221涂覆有活性物质层的集流体区域和未涂覆活性物质层的集流体区域。第一连接部2212a连接第一涂覆区2211和第一极耳部2212b,沿第三方向Z,第一连接部2212a的尺寸大于第一极耳部2212b的尺寸,即第一连接部2212a沿第二方向Y连接于第一涂覆区2211和第一极耳区之间,且在第三方向Z上第一连接部2212a的宽度大于第一极耳部2212b。
示例性的,第一涂覆区2211与第一连接部2212a在第三方向Z上的宽度相同。采用这种结构的第一极片 221一方面能够有效提升第一连接部2212a的结构强度,另一方面便于加工和制造,第一极片221未涂覆活性物质层的集流体区域即可形成第一连接部2212a,从而使得在对第一极片221进行加工制造的过程中无需对第一连接部2212a进行其他加工工艺,进而能够有效降低第一极片221的制造难度,有利于提升第一极片221的生产效率。
需要说明的是,在本实施例中,第一极片221可以是正极极片,也可以是负极极片,本申请实施例对此不作限定。
第一极片221具有沿第二方向Y排布的第一涂覆区2211和第一空白区2212,且第一空白区2212形成有相互连接的第一连接部2212a和第一极耳部2212b,通过将多个第一极片221的第一连接部2212a收拢于叠片式电极组件22在第二方向Y上的一端,以使多个第一连接部2212a形成的第一收拢区2212c能够覆盖于叠片式电极组件22的一端,并将多个第一极片221的第一极耳部2212b层叠后凸出于第一收拢区2212c,从而使得第一极耳部2212b能够通过第一收拢区2212c实现叠片式电极组件22的电能的输入或输出,采用这种结构的叠片式电极组件22一方面能够有效提升第一极片221的第一空白区2212的过流性能,以保证过流的稳定性,从而有利于提升叠片式电极组件22的使用性能,且有利于缓解叠片式电极组件22因过流面积不足而出现局部温升的现象,另一方面能够有效提高第一极耳部2212b的韧性和结构稳定性,以减少第一极耳部2212b在生产或使用的过程中出现折断的风险,从而有利于提升叠片式电极组件22的使用寿命。
根据本申请的一些实施例,参照图4和图5,并请进一步参照图6,图6为本申请一些实施例提供的叠片式电极组件22的结构示意图。叠片式电极组件22还包括隔离件223。隔离件223设置于第一极片221和第二极片222之间,并用于分隔第一极片221和第二极片222,隔离件223沿第一方向X覆盖于第一涂覆区2211,第一连接部2212a沿第二方向Y凸出于隔离件223。
其中,隔离件223为隔离膜,隔离膜设置于第一极片221和第二极片222之间,以隔离第一极片221和第二极片222。
示例性的,隔离件223的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
通过将第一连接部2212a沿第二方向Y凸出于隔离件223,也就是说,第一极片221的第一空白区2212沿第二方向Y伸出于隔离件223的一端,采用这种结构的叠片式电极组件22一方面便于多个第一极片221的第一连接部2212a收拢于叠片式电极组件22在第二方向Y上的一端,便于制造和生产,另一方面能够实现先对多个第一极片221进行堆叠后再统一裁切,以形成第一收拢区2212c和层叠设置的多个第一极耳部2212b,从而有利于提高叠片式电极组件22的生产效率。
根据本申请的一些实施例,参见图4和图6所示,第一收拢区2212c在第二方向Y上的厚度为2mm-4mm。
其中,第一收拢区2212c在第二方向Y上的厚度为2mm-4mm,即多个第一极片221的第一连接部2212a收拢后在第二方向Y上凸出于隔离件223的一端的尺寸为2mm-4mm。在图4和图6中可以看出,第一收拢区2212c在第二方向Y上的厚度为D1,满足,2mm≤D1≤4mm。
通过将第一收拢区2212c的厚度设置在2mm到4mm之间,一方面能够有效缓解因第一收拢区2212c的厚度过小而造成第一收拢区2212c与第一极耳部2212b之间的结构强度较低且过流面积不足的风险,另一方面能够有效缓解因第一收拢区2212c的厚度过大而造成叠片式电极组件22的占地空间过大的现象,从而有利于提高叠片式电极组件22的能量密度。
根据本申请的一些实施例,参照图4和图6,并请进一步参照图7,图7为本申请一些实施例提供的第二极片222的结构示意图。第二极片222包括沿第二方向Y排布的第二涂覆区2221和第二空白区2222。第二空白区2222包括第二连接部2222a和第二极耳部2222b,第二连接部2222a连接于第二涂覆区2221和第二极耳部2222b,沿第三方向Z,第二连接部2222a的尺寸大于第二极耳部2222b的尺寸。其中,多个第二极片222的第二连接部2222a收拢于叠片式电极组件22在第二方向Y上背离第一收拢区2212c的一端,并形成第二收拢区2222c,多个第二极片222的第二极耳部2222b层叠设置并整体沿第二方向Y凸出于第二收拢区2222c。
在上述描述中,第二涂覆区2221和第二空白区2222分别为第二极片222涂覆有活性物质层的集流体区域和未涂覆活性物质层的集流体区域。第二连接部2222a连接第二涂覆区2221和第二极耳部2222b,沿第三方向Z,第二连接部2222a的尺寸大于第二极耳部2222b的尺寸,即第二连接部2222a沿第二方向Y连接于第二涂覆区2221和第二极耳区之间,且在第三方向Z上第二连接部2222a的宽度大于第二极耳部2222b。
其中,第二涂覆区2221与第二连接部2222a在第三方向Z上的宽度相同。
示例性的,在图4中,第一极片221为负极极片,第二极片222为正极极片,当然,在其他实施例中,第一极片221也可以为正极极片,第二极片222为负极极片。
可选地,沿第二方向Y,第二收拢区2222c凸出于隔离件223的一端的尺寸为2mm-4mm。在图4和图6中可以看出,第二收拢区2222c在第二方向Y上的厚度为D2,满足,2mm≤D2≤4mm。
通过将多个第二极片222的第二连接部2222a设置为收拢于叠片式电极组件22在第二方向Y上背离第一收拢区2212c的一端,以使多个第二连接部2222a形成的第二收拢区2222c覆盖于叠片式电极组件22的一端,并将多个第二极片222的第二极耳部2222b层叠后凸出于第二收拢区2222c,采用这种结构的叠片式电极组件22能够有效提升第二极片222的第二空白区2222的过流性能,以保证过流的稳定性,且有利于提升第二极耳部2222b的韧性和结构稳定性,以减少第二极耳部2222b在生产或使用的过程中出现折断的风险,从而有利于进一步提升叠片式电极组件22的整体结构稳定性和使用性能。
需要说明的是,在图4中,第一收拢区2212c和第二收拢区2222c分别位于叠片式电极组件22在第二方向Y上的两端,当然,叠片式电极组件22的结构并不局限于此,在其他实施例中,第二收拢区2222c也可以形成 与第一收拢区2212c相邻的一端,比如,第二极片222包括沿第三方向Z排布的第二涂覆区2221和第二空白区2222。第二空白区2222包括第二连接部2222a和第二极耳部2222b,第二连接部2222a连接于第二涂覆区2221和第二极耳部2222b,沿第二方向Y,第二连接部2222a的尺寸大于第二极耳部2222b的尺寸。其中,多个第二极片222的第二连接部2222a收拢于叠片式电极组件22在第三方向Z上的一端,并形成第二收拢区2222c,多个第二极片222的第二极耳部2222b层叠设置并整体沿第三方向Z凸出于第二收拢区2222c。
通过将第二极片222的第二涂覆区2221和第二空白区2222沿第三方向Z进行排布,以使第二收拢区2222c位于叠片式电极组件22在第三方向Z上的一端,从而能够实现第二收拢区2222c和层叠设置的多个第二极耳部2222b与第一收拢区2212c相邻布置,进而有利于实现叠片式电极组件22的多种制造结构,以满足不同的使用场景。
根据本申请的一些实施例,本申请还提供了一种电池单体20,包括外壳21和以上任一方案的叠片式电极组件22,叠片式电极组件22容纳于外壳21内。
根据本申请的一些实施例,参见图3和图4,电池单体20还包括第一绝缘件26,第一绝缘件26覆盖于第一收拢区2212c,第一绝缘件26用于分隔第一极耳部2212b和外壳21。
其中,第一绝缘件26覆盖于第一收拢区2212c上,且能够供层叠后的多个第一极耳部2212b穿出,以使第一极耳部2212b能够与电池单体20的正极电极端子23或负极电极端子24相连。
示例性的,第一绝缘件26的材质可以为橡胶、塑胶或硅胶等。
通过在叠片式电极组件22的一端设置第一绝缘件26,使得第一绝缘件26能够覆盖于第一收拢区2212c上,从而通过第一绝缘件26一方面能够对第一极耳部2212b和外壳21进行绝缘隔离,以减少第一极耳部2212b与外壳21出现搭接短路的现象,另一方面还能够实现第一收拢区2212c与外壳21之间的隔绝,进而有利于提升电池单体20的使用安全性。
根据本申请的一些实施例,参照图4,并请进一步参照图8、图9和图10,图8为本申请一些实施例提供的叠片式电极组件22的第一收拢区2212c的结构示意图,图9为本申请一些实施例提供的第一收拢区2212c与第一绝缘件26的连接示意图,图10为本申请一些实施例提供的第一绝缘件26的结构示意图。沿第一方向X,多个第一极片221的第一连接部2212a从叠片式电极组件22的一侧向另一侧收拢,以在第一收拢区2212c形成第一斜面2212d,第一绝缘件26覆盖于第一斜面2212d上。
在上述描述中,沿第一方向X,多个第一极片221的第一连接部2212a从叠片式电极组件22的一侧向另一侧收拢,即多个第一极片221的第一连接部2212a沿第一方向X从叠片式电极组件22的一侧往另一侧倾斜,从而形成具有第一斜面2212d的第一收拢区2212c,且使得第一连接部2212a位于第一收拢区2212c在第一方向X上的一侧。
其中,第一绝缘件26在第二方向Y上的下表面与第一斜面2212d相互契合,以使第一绝缘件26能够覆盖于第一斜面2212d上。
可选地,第一绝缘件26的内部形成有第一容纳腔261,且第一容纳腔261沿第一方向X贯穿第一绝缘件26靠近第一极耳部2212b的一侧,以使第一极耳部2212b能够穿设于第一容纳腔261内,其中,第一绝缘件26在第二方向Y上背离第一斜面2212d的一侧还开设有供正极电极端子23或负极电极端子24穿过的第一通孔262,第一通孔262与第一容纳腔261连通,以使第一极耳部2212b能够与正极电极端子23或负极电极端子24相连,从而实现叠片式电极组件22的电能输入或输出。
通过将多个第一极片221的第一连接部2212a沿第一方向X往叠片式电极组件22的一侧收拢,以实现多个第一连接部2212a收拢于叠片式电极组件22的一端,从而形成第一收拢区2212c,并在第一收拢区2212c的第一斜面2212d上对应覆盖相匹配的第一绝缘件26,以实现第一极耳部2212b与外壳21之间以及第一收拢区2212c与外壳21之间的绝缘隔离,采用这种结构的电池单体20有利于降低第一绝缘件26的制造难度,以降低制造成本,且能够提高生产效率。
根据本申请的一些实施例,请参照图11和图12,图11为本申请又一些实施例提供的叠片式电极组件22的第一收拢区2212c的结构示意图,图12为本申请又一些实施例提供的第一收拢区2212c与第一绝缘件26的连接示意图。沿第一方向X,多个第一极片221的第一连接部2212a从叠片式电极组件22的两侧向中间收拢,以在第一收拢区2212c形成两个第二斜面2212e,第一绝缘件26覆盖于两个第二斜面2212e上。
在上述描述中,沿第一方向X,多个第一极片221的第一连接部2212a从叠片式电极组件22的两侧向中间收拢,即多个第一极片221的第一连接部2212a沿第一方向X从叠片式电极组件22的两侧往中间位置倾斜,从而形成具有两个第二斜面2212e的第一收拢区2212c,且使得第一连接部2212a位于第一收拢区2212c在第一方向X上的中间位置。
其中,第一绝缘件26在第二方向Y上的下表面与两个第二斜面2212e相互契合,以使第一绝缘件26能够覆盖于两个第二斜面2212e上。
可选地,第一绝缘件26在第二方向Y上背离第二斜面2212e的一侧开设有第一容纳槽263,且第一容纳槽263的槽底壁开设有贯穿第一绝缘件26的下表面的第一间隙264,以使第一极耳部2212b能够通过第一间隙264穿设于第一容纳槽263内,从而使得第一极耳部2212b能够与正极电极端子23或负极电极端子24相连,以实现叠片式电极组件22的电能输入或输出。
通过将多个第一极片221的第一连接部2212a沿第一方向X往叠片式电极组件22的中间位置收拢,以实现多个第一连接部2212a收拢于叠片式电极组件22的一端,从而形成第一收拢区2212c,并在第一收拢区2212c的两个第二斜面2212e上对应覆盖相匹配的第一绝缘件26,以实现第一极耳部2212b与外壳21之间以及第一收拢区2212c与外壳21之间的绝缘隔离,采用这种结构的电池单体20有利于降低第一收拢区2212c的制造难度,且便于 第一极耳部2212b与外壳21上的电极端子电连接。
根据本申请的一些实施例,参照图13,图13为本申请又一些实施例提供的第一绝缘件26的结构爆炸图。第一绝缘件26包括两个第一绝缘体265。两个第一绝缘体265分别覆盖于两个第二斜面2212e上,两个第一绝缘体265沿第一方向X相对布置且相互拼接,两个第一绝缘体265之间形成供第一极耳部2212b穿出的第一间隙264。
示例性的,两个第一绝缘体265沿第一方向X相对布置,第一绝缘体265在第一方向X上的一侧开设有第一对接孔2651和第一对接块2652,第一对接孔2651和第一对接块2652沿第三方向Z间隔排布,一个第一绝缘体265的第一对接块2652用于插设于另一个第一绝缘体265的第一对接孔2651内,以实现两个第一绝缘体265的拼接。当然,在其他实施例中,两个第一绝缘体265也可以采用螺栓螺接等方式可拆卸连接。
通过将第一绝缘件26设置为两个第一绝缘体265,以使每个第一绝缘体265能够覆盖于对应的第二斜面2212e上,从而能够实现第一绝缘件26能够覆盖于两个第二斜面2212e上,结构简单,且便于实现。此外,通过将两个第一绝缘体265设置为沿第一方向X相互拼接的结构,且两个第一绝缘体265之间形成有供第一极耳部2212b穿出的第一间隙264,采用这种结构的第一绝缘件26便于制造和装配,且有利于后期维修和更换。
根据本申请的一些实施例,在第二极片222也在叠片式电极组件22的一端形成有第二收拢区2222c的实施例中,参照图3和图4,并请进一步参照图14、图15和图16,图14为本申请一些实施例提供的叠片式电极组件22的第二收拢区2222c的结构示意图,图15为本申请一些实施例提供的第二收拢区2222c与第二绝缘件27的连接示意图,图16为本申请一些实施例提供的第二绝缘件27的结构爆炸图。电池单体20还可以包括第二绝缘件27,第二绝缘件27覆盖于第二收拢区2222c,第二绝缘件27用于分隔第二极耳部2222b和外壳21。
在一些实施例中,沿第一方向X,多个第二极片222的第二连接部2222a从叠片式电极组件22的两侧向中间收拢,以在第二收拢区2222c形成两个第三斜面2222d,第二绝缘件27覆盖于两个第三斜面2222d上。
在上述描述中,沿第一方向X,多个第二极片222的第二连接部2222a从叠片式电极组件22的两侧向中间收拢,即多个第二极片222的第二连接部2222a沿第一方向X从叠片式电极组件22的两侧往中间位置倾斜,从而形成具有两个第三斜面2222d的第二收拢区2222c,且使得第二连接部2222a位于第二收拢区2222c在第一方向X上的中间位置。
其中,第二绝缘件27在第二方向Y上的下表面与两个第三斜面2222d相互契合,以使第二绝缘件27能够覆盖于两个第三斜面2222d上。
可选地,第二绝缘件27在第二方向Y上背离第三斜面2222d的一侧开设有第二容纳槽271,且第二容纳槽271的槽底壁开设有贯穿第二绝缘件27的下表面的第二间隙272,以使第二极耳部2222b能够通过第二间隙272穿设于第二容纳槽271内,从而使得第二极耳部2222b能够与正极电极端子23或负极电极端子24相连,以实现叠片式电极组件22的电能输入或输出。
通过将多个第二极片222的第二连接部2222a沿第一方向X往叠片式电极组件22的中间位置收拢,以实现多个第二连接部2222a收拢于叠片式电极组件22的一端,从而形成第二收拢区2222c,并在第二收拢区2222c的两个第三斜面2222d上对应覆盖相匹配的第二绝缘件27,以实现第二极耳部2222b与外壳21之间以及第二收拢区2222c与外壳21之间的绝缘隔离,采用这种结构的电池单体20有利于降低第二收拢区2222c的制造难度,且便于第二极耳部2222b与外壳21上的电极端子电连接。
根据本申请的一些实施例,参见图16所示,第二绝缘件27包括两个第二绝缘体273。两个第二绝缘体273分别覆盖于两个第三斜面2222d上,两个第二绝缘体273沿第一方向X相对布置且相互拼接,两个第二绝缘体273之间形成供第二极耳部2222b穿出的第二间隙272。
示例性的,两个第二绝缘体273沿第一方向X相对布置,第二绝缘体273在第一方向X上的一侧开设有第二对接孔2731和第二对接块2732,第二对接孔2731和第二对接块2732沿第三方向Z间隔排布,一个第二绝缘体273的第二对接块2732用于插设于另一个第二绝缘体273的第二对接孔2731内,以实现两个第二绝缘体273的拼接。当然,在其他实施例中,两个第二绝缘体273也可以采用螺栓螺接等方式可拆卸连接。
通过将第二绝缘件27设置为两个第二绝缘体273,以使每个第二绝缘体273能够覆盖于对应的第三斜面2222d上,从而能够实现第二绝缘件27能够覆盖于两个第三斜面2222d上,结构简单,且便于实现。此外,通过将两个第二绝缘体273设置为沿第一方向X相互拼接的结构,且两个第二绝缘体273之间形成有供第二极耳部2222b穿出的第二间隙272,采用这种结构的第二绝缘件27便于制造和装配,且有利于后期维修和更换。
根据本申请的一些实施例,请参照图17、图18和图19,图17为本申请又一些实施例提供的叠片式电极组件22的第二收拢区2222c的结构示意图,图18为本申请又一些实施例提供的第二收拢区2222c与第二绝缘件27的连接示意图,图19为本申请又一些实施例提供的第二绝缘件27的结构示意图。沿第一方向X,多个第二极片222的第二连接部2222a从叠片式电极组件22的一侧向另一侧收拢,以在第二收拢区2222c形成第四斜面2222e,第二绝缘件27覆盖于第四斜面2222e上。
在上述描述中,沿第一方向X,多个第二极片222的第二连接部2222a从叠片式电极组件22的一侧向另一侧收拢,即多个第二极片222的第二连接部2222a沿第一方向X从叠片式电极组件22的一侧往另一侧倾斜,从而形成具有第四斜面2222e的第二收拢区2222c,且使得第二连接部2222a位于第二收拢区2222c在第一方向X上的一侧。
其中,第二绝缘件27在第二方向Y上的下表面与第四斜面2222e相互契合,以使第二绝缘件27能够覆盖于第四斜面2222e上。
可选地,第二绝缘件27的内部形成有第二容纳腔274,且第二容纳腔274沿第一方向X贯穿第二绝缘件27靠近第二极耳部2222b的一侧,以使第二极耳部2222b能够穿设于第二容纳腔274内,其中,第二绝缘件27在 第二方向Y上背离第四斜面2222e的一侧还开设有供正极电极端子23或负极电极端子24穿过的第二通孔275,第二通孔275与第二容纳腔274连通,以使第二极耳部2222b能够与正极电极端子23或负极电极端子24相连,从而实现叠片式电极组件22的电能输入或输出。
通过将多个第二极片222的第二连接部2222a沿第一方向X往叠片式电极组件22的一侧收拢,以实现多个第二连接部2222a收拢于叠片式电极组件22的一端,从而形成第二收拢区2222c,并在第二收拢区2222c的第四斜面2222e上对应覆盖相匹配的第二绝缘件27,以实现第二极耳部2222b与外壳21之间以及第二收拢区2222c与外壳21之间的绝缘隔离,采用这种结构的电池单体20有利于降低第二绝缘件27的制造难度,以降低制造成本,且能够提高生产效率。
根据本申请的一些实施例,本申请还提供了一种电池100,包括至少一个以上任一方案的电池单体20。
示例性的,电池单体20可以为一个,也可以为多个。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图3-图7所示,本申请提供了一种叠片式电极组件22,叠片式电极组件22包括沿第一方向X层叠设置的第一极片221、隔离件223和第二极片222,隔离件223设置于第一极片221和第二极片222之间。第一极片221包括沿第二方向Y排布的第一涂覆区2211和第一空白区2212,第一空白区2212包括第一连接部2212a和第一极耳部2212b,第一连接部2212a连接第一涂覆区2211和第一极耳部2212b,沿第三方向Z,第一连接部2212a的尺寸大于第一极耳部2212b的尺寸,第一方向X、第二方向Y和第三方向Z两两垂直。多个第一极片221的第一连接部2212a收拢于叠片式电极组件22在第二方向Y上的一端,并形成第一收拢区2212c,多个第一极片221的第一极耳部2212b层叠设置并沿第二方向Y凸出于第一收拢区2212c。第二极片222包括沿第二方向Y排布的第二涂覆区2221和第二空白区2222,第二空白区2222包括第二连接部2222a和第二极耳部2222b,第二连接部2222a连接于第二涂覆区2221和第二极耳部2222b,沿第三方向Z,第二连接部2222a的尺寸大于第二极耳部2222b的尺寸。多个第二极片222的第二连接部2222a收拢于叠片式电极组件22在第二方向Y上背离第一收拢区2212c的一端,并形成第二收拢区2222c,多个第二极片222的第二极耳部2222b层叠设置并整体沿第二方向Y凸出于第二收拢区2222c。其中,沿第二方向Y,第一收拢区2212c和第二收拢区2222c分别凸出于隔离件223的两端,第一收拢区2212c和第二收拢区2222c的厚度均为2mm-4mm。
本申请实施例还提供一种叠片式电极组件22的制造方法,请参照图20,图20为本申请一些实施例提供的叠片式电极组件22的制造方法的流程示意图。该制造方法包括:
S100:将极性相反的第一极片221和第二极片222沿第一方向X层叠,第一极片221包括沿第二方向Y排布的第一涂覆区2211和第一空白区2212,第二方向Y垂直于第一方向X;
S200:将多个第一极片221的第一空白区2212收拢并裁切。
其中,第一极片221为负极极片,第二极片222为正极极片,当然,在一些实施例中,第一极片221也可以为正极极片,对应的,第二极片222为负极极片。
可选地,在步骤S200:将多个第一极片221的第一空白区2212收拢并裁切之后,第一空白区2212形成第一连接部2212a和第一极耳部2212b,第一连接部2212a连接第一涂覆区2211和第一极耳部2212b,沿第三方向Z,第一连接部2212a的尺寸大于第一极耳部2212b的尺寸,第三方向Z垂直于第一方向X和第二方向Y。其中,多个第一极片221的第一连接部2212a收拢于叠片式电极组件22在第二方向Y上的一端,并形成第一收拢区2212c,多个第一极片221的第一极耳部2212b层叠设置并整体沿第二方向Y凸出于第一收拢区2212c。
需要说明的是,第二极片222也可以采用与第一极片221相同的制造方法。
在上述制造方法中,在第一极片221和第二极片222相互层叠后,通过对多个第一极片221的第一空白区2212收拢后再对多个第一极片221的第一空白区2212进行统一裁切,以形成用于输出或输入叠片式电极组件22的电能的极耳,从而能够取消第一极片221和第二极片222堆叠前对单个第一极片221进行裁切的工艺,采用这种制造方法一方面能够有效减少多个第一极片221出现错位搭接的现象,以提升叠片式电极组件22的使用性能和安全性能,另一方面能够极大地优化叠片式电极组件22的生产节拍,有利于提升叠片式电极组件22的生产效率。
在一些实施例中,请参照图21,图21为图20所示的叠片式电极组件22的制造方法的步骤S200的流程示意图。步骤S200:将多个第一极片221的第一空白区2212收拢并裁切,包括:
S210:将多个第一极片221的第一空白区2212收拢;
S220:焊接多个第一极片221的第一空白区2212,以形成裁切部;
S230:裁切裁切部。
在制造方法中,通过将收拢后的多个第一空白区2212先进行焊接成裁切部,再对裁切部进行统一裁切,这种制造方法一方面便于对裁切部进行裁切,有利于降低裁切难度,另一方面能够有效减少收拢后的多个第一空白区2212在裁切的过程中出现滑移或错位的现象,从而有利于提高多个第一空白区2212的裁切质量,以提高叠片式电极组件22的生产质量。
可选地,用于裁切裁切部的设备可以为激光切割装置或刀模切割装置。
示例性的,激光切割装置包括激光切割枪和模具,模具用于放置叠片式电极组件22,激光切割枪用于跟随模具的轨迹对叠片式电极组件22进行裁切。激光切割装置的具体结构可参见相关技术,在此不再赘述。
示例性的,刀模切割装置包括冲压刀和冲压机,冲压刀连接于冲压机上,冲压机用于带动冲压刀对叠片式电极组件22进行冲切。刀模切割装置的具体结构可参见相关技术,在此不再赘述。
需要说明的是,通过上述各实施例提供的制造方法制造的叠片式电极组件22的相关结构,可参见前述各 实施例提供的叠片式电极组件22,在此不再赘述。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种叠片式电极组件,包括极性相反的第一极片和第二极片,所述第一极片和所述第二极片沿第一方向层叠设置;
    所述第一极片包括沿第二方向排布的第一涂覆区和第一空白区,所述第一空白区包括第一连接部和第一极耳部,所述第一连接部连接所述第一涂覆区和所述第一极耳部,沿第三方向,所述第一连接部的尺寸大于所述第一极耳部的尺寸,所述第一方向、所述第二方向和所述第三方向两两垂直;
    其中,多个所述第一极片的所述第一连接部收拢于所述叠片式电极组件在所述第二方向上的一端,并形成第一收拢区,多个所述第一极片的所述第一极耳部层叠设置并沿所述第二方向凸出于所述第一收拢区。
  2. 根据权利要求1所述的叠片式电极组件,其中,所述叠片式电极组件还包括:
    隔离件,设置于所述第一极片和所述第二极片之间,并用于分隔所述第一极片和所述第二极片,所述隔离件沿所述第一方向覆盖于所述第一涂覆区,所述第一连接部沿所述第二方向凸出于所述隔离件。
  3. 根据权利要求1或2所述的叠片式电极组件,其中,所述第一收拢区在所述第二方向上的厚度为2mm-4mm。
  4. 根据权利要求1-3任一项所述的叠片式电极组件,其中,所述第二极片包括沿所述第二方向排布的第二涂覆区和第二空白区;
    所述第二空白区包括第二连接部和第二极耳部,所述第二连接部连接于所述第二涂覆区和所述第二极耳部,沿所述第三方向,所述第二连接部的尺寸大于所述第二极耳部的尺寸;
    其中,多个所述第二极片的所述第二连接部收拢于所述叠片式电极组件在所述第二方向上背离所述第一收拢区的一端,并形成第二收拢区,多个所述第二极片的所述第二极耳部层叠设置并整体沿所述第二方向凸出于所述第二收拢区。
  5. 根据权利要求1-3任一项所述的叠片式电极组件,其中,所述第二极片包括沿所述第三方向排布的第二涂覆区和第二空白区;
    所述第二空白区包括第二连接部和第二极耳部,所述第二连接部连接于所述第二涂覆区和所述第二极耳部,沿所述第二方向,所述第二连接部的尺寸大于所述第二极耳部的尺寸;
    其中,多个所述第二极片的所述第二连接部收拢于所述叠片式电极组件在所述第三方向上的一端,并形成第二收拢区,多个所述第二极片的所述第二极耳部层叠设置并整体沿所述第三方向凸出于所述第二收拢区。
  6. 一种电池单体,包括:
    外壳;以及
    根据权利要求1-5任一项所述的叠片式电极组件,所述叠片式电极组件容纳于所述外壳内。
  7. 根据权利要求6所述的电池单体,其中,所述电池单体还包括:
    第一绝缘件,覆盖于所述第一收拢区,所述第一绝缘件用于分隔所述第一极耳部和所述外壳。
  8. 根据权利要求7所述的电池单体,其中,沿所述第一方向,多个所述第一极片的所述第一连接部从所述叠片式电极组件的一侧向另一侧收拢,以在所述第一收拢区形成第一斜面,所述第一绝缘件覆盖于所述第一斜面上。
  9. 根据权利要求7所述的电池单体,其中,沿所述第一方向,多个所述第一极片的所述第一连接部从所述叠片式电极组件的两侧向中间收拢,以在所述第一收拢区形成两个第二斜面,所述第一绝缘件覆盖于两个所述第二斜面上。
  10. 根据权利要求9所述的电池单体,其中,所述第一绝缘件包括:
    两个第一绝缘体,分别覆盖于两个所述第二斜面上,两个所述第一绝缘体沿所述第一方向相对布置且相互拼接,两个所述第一绝缘体之间形成供所述第一极耳部穿出的第一间隙。
  11. 一种电池,包括至少一个根据权利要求6-10任一项所述的电池单体。
  12. 一种用电装置,包括根据权利要求11所述的电池,所述电池用于提供电能。
  13. 一种叠片式电极组件的制造方法,包括:
    将极性相反的第一极片和第二极片沿第一方向层叠,所述第一极片包括沿第二方向排布的第一涂覆区和第一空白区,所述第二方向垂直于所述第一方向;
    将多个所述第一极片的所述第一空白区收拢并裁切。
  14. 根据权利要求13所述的叠片式电极组件的制造方法,其中,所述将多个所述第一极片的所述第一空白区收拢并裁切包括:
    将多个所述第一极片的所述第一空白区收拢;
    焊接多个所述第一极片的所述第一空白区,以形成裁切部;
    裁切所述裁切部。
  15. 根据权利要求13或14所述的叠片式电极组件的制造方法,其中,在所述将多个所述第一极片的所述第一空白区收拢并裁切之后,所述第一空白区形成第一连接部和第一极耳部,所述第一连接部连接所述第一涂覆区和所述第一极耳部,沿第三方向,所述第一连接部的尺寸大于所述第一极耳部的尺寸,所述第三方向垂直于所述第一方向和所述第二方向;
    其中,多个所述第一极片的所述第一连接部收拢于所述叠片式电极组件在所述第二方向上的一端,并形成第一收拢区,多个所述第一极片的所述第一极耳部层叠设置并整体沿所述第二方向凸出于所述第一收拢区。
PCT/CN2023/073598 2022-04-15 2023-01-28 叠片式电极组件、电池单体、电池及用电装置 WO2023197724A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23787372.4A EP4507114A1 (en) 2022-04-15 2023-01-28 Laminated electrode assembly, battery cell, battery, and electric apparatus
CN202390000152.4U CN221861892U (zh) 2022-04-15 2023-01-28 叠片式电极组件、电池单体、电池及用电装置
US18/912,004 US20250038375A1 (en) 2022-04-15 2024-10-10 Stacked-type electrode assembly, battery cell, battery, and electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210392427.5 2022-04-15
CN202210392427.5A CN115911776A (zh) 2022-04-15 2022-04-15 叠片式电极组件、电池单体、电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/912,004 Continuation US20250038375A1 (en) 2022-04-15 2024-10-10 Stacked-type electrode assembly, battery cell, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023197724A1 true WO2023197724A1 (zh) 2023-10-19

Family

ID=86487020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073598 WO2023197724A1 (zh) 2022-04-15 2023-01-28 叠片式电极组件、电池单体、电池及用电装置

Country Status (4)

Country Link
US (1) US20250038375A1 (zh)
EP (1) EP4507114A1 (zh)
CN (2) CN115911776A (zh)
WO (1) WO2023197724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN220189852U (zh) * 2023-05-11 2023-12-15 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047264A (zh) * 2006-03-28 2007-10-03 三星Sdi株式会社 二次电池
US20130193927A1 (en) * 2012-01-18 2013-08-01 Li-Tec Battery Gmbh Electrochemical energy storage device, battery having at least two such electrochemical energy storage devices, and method for operating such an electrochemical energy strorage device
CN111403789A (zh) * 2019-01-02 2020-07-10 东莞新能源科技有限公司 电极组件及电池
CN111755657A (zh) * 2019-03-29 2020-10-09 宁德新能源科技有限公司 电极组件
CN214411248U (zh) * 2021-03-23 2021-10-15 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427111B (zh) * 2013-08-27 2016-09-07 昆明理工大学 一种锂离子储能电池及其制造方法
CN104953171A (zh) * 2015-06-30 2015-09-30 深圳市博亿能科技有限公司 一种锂离子电池
CN109841794B (zh) * 2019-03-29 2021-07-20 东莞新能安科技有限公司 电极极片和包含所述电极极片的电化学装置
CN209592175U (zh) * 2019-04-15 2019-11-05 宁德时代新能源科技股份有限公司 二次电池
CN209786103U (zh) * 2019-06-11 2019-12-13 宁德时代新能源科技股份有限公司 二次电池
WO2022001968A1 (zh) * 2020-06-30 2022-01-06 厦门海辰新能源科技有限公司 集流体及其制备工艺、极片及其制备工艺及锂电池
WO2022022324A1 (zh) * 2020-07-28 2022-02-03 厦门海辰新能源科技有限公司 双极性集流体、极片及二次电池
CN212659570U (zh) * 2020-07-28 2021-03-05 深圳市海鸿新能源技术有限公司 一种双极性集流体、极片及电芯
CN214254666U (zh) * 2020-12-31 2021-09-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN215911557U (zh) * 2021-08-31 2022-02-25 蜂巢能源科技有限公司 电芯极片、电芯极组和电芯
CN215896628U (zh) * 2021-09-29 2022-02-22 宁德时代新能源科技股份有限公司 一种电池单体、电池及用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047264A (zh) * 2006-03-28 2007-10-03 三星Sdi株式会社 二次电池
US20130193927A1 (en) * 2012-01-18 2013-08-01 Li-Tec Battery Gmbh Electrochemical energy storage device, battery having at least two such electrochemical energy storage devices, and method for operating such an electrochemical energy strorage device
CN111403789A (zh) * 2019-01-02 2020-07-10 东莞新能源科技有限公司 电极组件及电池
CN111755657A (zh) * 2019-03-29 2020-10-09 宁德新能源科技有限公司 电极组件
CN214411248U (zh) * 2021-03-23 2021-10-15 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电设备

Also Published As

Publication number Publication date
CN221861892U (zh) 2024-10-18
US20250038375A1 (en) 2025-01-30
CN115911776A (zh) 2023-04-04
EP4507114A1 (en) 2025-02-12

Similar Documents

Publication Publication Date Title
US20220344698A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
WO2024027034A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2024027005A1 (zh) 转接构件、电池单体、电池以及用电装置
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
CN216250906U (zh) 电池单体、电池和用电设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023082150A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023216829A1 (zh) 电池单体、电池及用电装置
US20250038375A1 (en) Stacked-type electrode assembly, battery cell, battery, and electrical device
WO2023142894A1 (zh) 电池单体、电池及用电装置
WO2023000184A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
US20240313303A1 (en) Battery cell, battery, and electrical device
WO2024031254A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023082151A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN220672722U (zh) 电池单体、电池和用电装置
CN218414809U (zh) 电池单体、电池及用电设备
WO2024148468A1 (zh) 电池单体、电池及用电装置
CN218215488U (zh) 端盖组件、电池单体、电池及用电设备
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2024065205A1 (zh) 电池单体、电池及用电装置
US20250070394A1 (en) Electrode assembly, battery cell, battery, and electrical device
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2024145827A1 (zh) 电池单体、电池及用电装置
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202390000152.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023787372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023787372

Country of ref document: EP

Effective date: 20241108