WO2023181232A1 - Model analysis device, model analysis method, and recording medium - Google Patents

Model analysis device, model analysis method, and recording medium Download PDF

Info

Publication number
WO2023181232A1
WO2023181232A1 PCT/JP2022/013815 JP2022013815W WO2023181232A1 WO 2023181232 A1 WO2023181232 A1 WO 2023181232A1 JP 2022013815 W JP2022013815 W JP 2022013815W WO 2023181232 A1 WO2023181232 A1 WO 2023181232A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
predicted value
prediction error
error
graph
Prior art date
Application number
PCT/JP2022/013815
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 佐久間
智哉 坂井
竜太 松野
義男 亀田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/013815 priority Critical patent/WO2023181232A1/en
Publication of WO2023181232A1 publication Critical patent/WO2023181232A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This disclosure relates to analysis of machine learning models.
  • Patent Document 1 describes a method of predicting real estate prices using a prediction model.
  • Patent Document 1 describes a method in which the method of removing predictions by a model (predicted value - actual value) is reversed, that is, data samples with different positive and negative prediction errors are displayed in pairs.
  • the evaluation of the model changes depending on how the error is defined in the first place.
  • One objective of the present disclosure is to provide a model analysis device that can define errors in a prediction model and appropriately evaluate the model based on the defined errors.
  • the model analysis device includes: Predicted value obtaining means for obtaining a predicted value of the model for input data; Output means for outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error; Criterion acquisition means for acquiring the determination criteria; Extracting means for extracting a predicted value that corresponds to a prediction error based on the judgment criterion and showing it on the graph; Equipped with
  • the model analysis method includes: Get the model's predicted value for the input data, outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error; obtain the judgment criteria; Based on the determination criteria, predicted values corresponding to prediction errors are extracted and shown on the graph.
  • the recording medium includes: Get the model's predicted value for the input data, outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error; obtain the judgment criteria; Based on the determination criteria, a predicted value corresponding to a prediction error is extracted, and a program is recorded that causes a computer to execute the processing shown on the graph.
  • FIG. 1 is a block diagram showing the overall configuration of a model generation system according to a first embodiment.
  • FIG. 2 is a block diagram showing the hardware configuration of a model generation device.
  • 1 is a block diagram showing a functional configuration of a model generation device according to a first embodiment;
  • FIG. A first display example of evaluation information is shown.
  • a second display example of evaluation information is shown.
  • a third display example of evaluation information is shown.
  • Another setting example of the threshold value is shown.
  • 7 is a flowchart of model analysis processing performed by the model generation device.
  • FIG. 1 is a block diagram showing a schematic configuration of a model generation system using a server and a terminal device.
  • FIG. 2 is a block diagram showing the functional configuration of a model analysis device according to a second embodiment. It is a flowchart of processing by a model analysis device of a 2nd embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of a model generation system according to a first embodiment.
  • the model generation system 1 includes a model generation device 100, a display device 2, and an input device 3.
  • the model generation device 100 is an application of the model analysis device of the present disclosure, and is configured by, for example, a computer such as a personal computer (PC).
  • the display device 2 is, for example, a liquid crystal display device, and displays the evaluation information generated by the model generation device 100.
  • the input device 3 is, for example, a mouse, a keyboard, etc., and is used by the user to give instructions and input necessary when modifying a model or viewing evaluation information.
  • the model generation device 100 generates a machine learning model (hereinafter simply referred to as a "model") using training data prepared in advance.
  • the model generation device 100 also evaluates the generated model. Specifically, the model generation device 100 performs prediction using a model using evaluation data and the like, detects a prediction error in the model based on the prediction result, and presents it to the user as evaluation information.
  • the user can confirm prediction errors in the model and operate the input device 3 to input correction information for correcting the model.
  • the user can input the criterion for determining a prediction error and can further change it as necessary. Therefore, the user can appropriately evaluate the model by setting a criterion for determining a prediction error from a viewpoint that the user considers appropriate, and viewing evaluation information based on the criterion.
  • model is information representing the relationship between explanatory variables and objective variables.
  • a model is, for example, a component for estimating a target result by calculating a target variable based on explanatory variables.
  • a model is generated by executing a learning algorithm using as input learning data for which values of objective variables have already been obtained and arbitrary parameters.
  • the model may be represented, for example, by a function c that maps an input x to a ground answer y.
  • the model may be one that estimates a numerical value to be estimated, or may be one that estimates a label to be estimated.
  • the model may output variables that describe the probability distribution of the target variable.
  • a model is sometimes described as a "learning model,” “analytical model,” “AI (Artificial Intelligence) model,” or "prediction formula.”
  • FIG. 2 is a block diagram showing the hardware configuration of the model generation device 100.
  • the model generation device 100 includes an interface (I/F) 111, a processor 112, a memory 113, a recording medium 114, and a database (DB) 115.
  • I/F interface
  • processor 112 processor 112
  • memory 113 memory
  • recording medium 114 recording medium
  • DB database
  • the I/F 111 inputs and outputs data to and from external devices. Specifically, training data, evaluation data, and instructions and inputs input by the user using the input device 3 are input to the model generation device 100 through the I/F 111. Furthermore, evaluation information of the model generated by the model generation device 100 is output to the display device 2 through the I/F 111.
  • the processor 112 is a computer such as a CPU (Central Processing Unit), and controls the entire model generation device 100 by executing a program prepared in advance.
  • the processor 112 may be a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array).
  • the processor 112 executes model analysis processing, which will be described later.
  • the memory 113 is composed of ROM (Read Only Memory), RAM (Random Access Memory), and the like. Memory 113 is also used as a working memory while processor 112 executes various processes.
  • the recording medium 114 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or a semiconductor memory, and is configured to be detachable from the model generation device 100.
  • the recording medium 114 records various programs executed by the processor 112. When the model generation device 100 executes various processes, a program recorded on the recording medium 114 is loaded into the memory 113 and executed by the processor 112.
  • the DB 115 stores information regarding the model generated by the model generation device 100 (hereinafter referred to as "existing model”) and the model after modification by retraining (hereinafter referred to as "modified model”). Further, the DB 115 stores training data input through the I/F 111, evaluation data, correction information input by the user, history of prediction error criteria input by the user, and the like, as necessary.
  • FIG. 3 is a block diagram showing the functional configuration of the model generation device 100 of the first embodiment.
  • the model generation device 100 functionally includes a training data DB 121, a model training section 122, a model DB 123, an evaluation data DB 124, a prediction error analysis section 125, and an evaluation information output section 126.
  • the training data DB 121 stores training data used for model generation.
  • Training data D1 is input to model training section 122.
  • the training data D1 is composed of a plurality of combinations of input data and correct labels (teacher labels) for the input data.
  • the model training unit 122 trains a model using the training data D1 and generates a model.
  • the model training unit 122 outputs model data M corresponding to the generated model to the model DB 123 and the prediction error analysis unit 125.
  • the model data M includes a plurality of parameter information constituting the model.
  • the parameter information includes, for example, information on explanatory variables (or feature amounts) used as inputs of the model, information on weights for each explanatory variable, information on weights for each sample constituting input data, and the like.
  • the model training unit 122 retrains the existing model to generate a modified model.
  • the model training unit 122 corrects the parameters constituting the model based on the correction information D3 input by the user using the input device 3, and uses training data for retraining as necessary to improve the model. Perform retraining.
  • the model training unit 122 stores the model data M of the corrected model obtained through retraining in the model DB 123 and outputs it to the prediction error analysis unit 125.
  • the evaluation data DB 124 stores evaluation data used to evaluate the generated model.
  • the evaluation data includes various types of data that can be used to evaluate the model.
  • the evaluation data is basically composed of a plurality of combinations of input data and correct labels (teacher labels) for the input data. Examples of evaluation data include the following. (1) “Data not used for model generation” called validation data or test data In this case, the evaluation data is basically a set of input data and correct answer labels. (2) “Newly collected data after model generation” such as operational data Note that if labeling is not performed immediately, the evaluation data may be input-only data.
  • the prediction error analysis unit 125 analyzes prediction errors of the existing model using the evaluation data. Specifically, the prediction error analysis unit 125 inputs the input data of the evaluation data into the existing model, performs prediction, and obtains the prediction result. Then, the prediction error analysis unit 125 extracts prediction errors caused by the existing model from the prediction results of the model based on the evaluation data used and the prediction results.
  • the definition of a prediction error that is, the criterion for determining a prediction error
  • the prediction error analysis unit 125 analyzes the prediction result by the model based on the criteria set by the user.
  • Information D4 on the determination criteria set by the user is sent from the input device 3 to the prediction error analysis unit 125.
  • the prediction error analysis unit 125 extracts prediction errors included in the prediction result according to the acquired criteria.
  • the prediction error analysis unit 125 outputs the prediction result by the model and the extracted prediction error to the evaluation information output unit 126.
  • the prediction error analysis unit 125 also outputs the used evaluation data to the evaluation information output unit 126. Note that the method for setting the criterion for prediction errors will be explained in detail later.
  • the prediction error analysis unit 125 is an example of a predicted value acquisition means, a reference acquisition means, and an extraction means.
  • the evaluation information output unit 126 generates evaluation information D2 for evaluating the existing model based on the information input from the prediction error analysis unit 125. Specifically, the evaluation information D2 includes information indicating the relationship between the actual measurement value and the prediction result (prediction value) by the existing model, and the detected prediction error. Then, the evaluation information output unit 126 outputs the generated evaluation information D2 to the display device 2.
  • the evaluation information output unit 126 is an example of an output means.
  • the display device 2 displays the evaluation information D2 output by the evaluation information output unit 126.
  • the user can evaluate the performance of the existing model by referring to the relationship between the measured value and the predicted value by the existing model, and information indicating prediction errors included in the predicted value by the model.
  • Examples of information indicating a prediction error include information indicating a sample of a predicted value corresponding to a prediction error (hereinafter referred to as a "prediction error sample").
  • the user inputs modification information D3 into the input device 3 as necessary to modify the model so that prediction errors do not occur.
  • the modification information D3 is information related to modification, such as information on explanatory variables used as inputs of the model, information on weights for each explanatory variable, and information on weights for each sample constituting the input data.
  • the model training unit 122 corrects the model by retraining the model using the input correction information D3.
  • FIG. 4 shows a first display example of evaluation information.
  • the prediction model is a model that predicts sales of a certain product.
  • FIG. 4 is a display example after the user has already set the prediction error criterion.
  • the first display example 40 includes graphs 41a to 41c and an input area .
  • the graph 41a shows predicted values by the model, and the graph 41b shows actual measured values.
  • the horizontal axes of graphs 41a and 41b indicate the date of a certain month, and the vertical axes indicate sales.
  • a mark 41x indicating a prediction error sample is displayed on the predicted value graph 41a.
  • the graph 41c is a graph showing an error index for evaluating the error between the predicted value by the model and the actual measured value.
  • the graph 41c is a bar graph showing the absolute error between the predicted value by the model and the actual measured value.
  • the horizontal axis of the graph 41c shows the date, and the vertical axis shows the absolute error.
  • a threshold value 41d is shown on the graph 41c. The threshold is used to extract mispredicted samples based on the absolute error specified as the error index.
  • the input area 42 is an area for the user to set criteria for determining prediction errors. That is, by inputting necessary information into the input area 42, the user sets criteria for determining prediction errors that he/she wishes to extract.
  • an error index and a threshold are set as the determination criteria.
  • the above-mentioned prediction error analysis unit 125 will extract, as a prediction error sample, a sample in which the error between the predicted value and the actual value based on the error index set by the user is larger than the threshold value set by the user.
  • the error index for example, an error such as an absolute error or a squared error is set.
  • the user operates the input area 43 to set the error index that he/she wishes to use.
  • the "threshold” is defined by a threshold reference value and a threshold adjustment parameter.
  • the threshold value adjustment parameter is a magnification that indicates how many times the threshold value is the reference value.
  • the reference value of the threshold value is defined by the type of data used and the average error according to the error specified as the error index.
  • training data, validation data, training data for a predetermined period, validation data for a predetermined period, etc. can be used.
  • the user operates the input area 44 to set the reference value of the threshold that he/she wishes to use. For example, when the user specifies absolute error as the error index and uses validation data, the user selects "validation data MAE" as shown in FIG. 4. "MAE” indicates mean absolute error (MAE). Note that when a squared error is used as an error index, a mean squared error (MSE) is usually used as the type of error.
  • MSE mean squared error
  • the user also operates the input area 45 to set an arbitrary magnification as a threshold adjustment parameter.
  • the threshold value is the product of the reference value of the threshold set in the input area 44 and the magnification set in the input area 45.
  • An OK button 49 is displayed in the input area 42.
  • the OK button 49 is a button used by the user to indicate that the determination criteria setting in the input area 42 has been completed. Further, in the input area 42, the number of extracted samples with prediction errors is displayed as an extraction result 48.
  • the display example 40 in FIG. 4 is a display example after the user has already set the prediction error criterion.
  • the predicted value graph 41a and the actual value graph 41b are displayed, but the graph 41c and the mark 41x indicating a prediction error are not displayed.
  • the information D4 of the set judgment criterion is transmitted from the input device 3 to the prediction error. It is transmitted to the error analysis section 125.
  • the prediction error analysis section 125 extracts a sample corresponding to the judgment criterion from the predicted value of the model as a prediction error sample, and outputs it to the evaluation information output section 126.
  • the evaluation information output unit 126 transmits information regarding the received prediction error sample to the display device 2, displays a mark 41x indicating the prediction error sample on the graph 41a, and displays the extraction result 48 of the prediction error sample in the input area 42. to be displayed. In this way, prediction error samples are extracted according to the criteria set by the user and displayed on the display device 2. As a result, a display as illustrated in FIG. 4 is performed.
  • the display device 2 may display a predetermined value as the determination criterion.
  • the display device 2 may display the criteria set by the user in the previous operation.
  • the display device 2 may display recommended criteria for each user using a machine learning model learned from the input history of criteria.
  • FIG. 5 shows a second display example of evaluation information.
  • the second display example 40a differs from the first display example 40 in that the user can set or modify the prediction error criterion by specifying a sample on the graph 41a.
  • the user looks at the predicted value graph shown in the graph 41a and specifies a sample that is considered to be a prediction error. Specifically, in the example of FIG. 5, the user determines that the sample values of "8th" and "11th" correspond to prediction errors on the predicted value graph 41a, and the user makes a prediction error as shown in the mark 46. Click on these two samples to specify them. The user then presses the OK button 49 in the input area 42. As a result, information specifying the two samples indicated by the marks 46 is transmitted to the prediction error analysis unit 125. The prediction error analysis unit 125 corrects the judgment criteria so that the specified two samples are extracted as prediction errors, and outputs information on the prediction errors extracted based on the corrected judgment criteria to the evaluation information output unit 126. do. The evaluation information output unit 126 transmits evaluation information including the corrected prediction error information to the display device 2 and causes it to be displayed.
  • the magnification value in the input area 45 is changed to "1", and the corrected threshold 41d and the uncorrected threshold 41e are displayed. That is, in this example, the scaling factor is changed from “2" to "1” and the threshold value is decreased so that the two samples specified by the user are determined to be prediction errors, and the threshold value graph is changed accordingly. has been changed.
  • the determination criteria are modified by specifying samples on the predicted value graph 41a, but the determination criteria may be input using this method from the beginning.
  • the user inputs the sample into the input areas 43 and 44, and then selects the sample to be determined as a prediction error on the predicted value graph 41a without inputting the input into the input area 45. All you have to do is specify it above and press the OK button 49.
  • the prediction error analysis unit 125 sets or sets a criterion so that the specified sample is determined to be a prediction error. Fix it. Therefore, even a user who lacks knowledge and experience and has difficulty setting the input area 42, especially setting the threshold, can appropriately set and modify the criteria.
  • FIG. 6 shows a third display example of evaluation information.
  • the third display example 40b differs from the first display example 40 in that an option column 47 is provided in the input area 42.
  • the option field 47 is an item for the user to specify display rules for prediction error samples.
  • display rule R1 ⁇ Display all prediction error samples''
  • display rule R2 ⁇ Display only consecutive prediction error samples''
  • display rule R3 ⁇ Display only the last day of consecutive prediction error samples'' are prepared. ing.
  • the prediction error analysis unit 125 extracts and displays all prediction error samples that correspond to the determination criteria.
  • a graph 41a in FIG. 6 shows an example of this case.
  • the prediction error analysis unit 125 extracts and displays only consecutive prediction error samples from among the plurality of prediction error samples that correspond to the determination criteria. Therefore, in this case, prediction error samples that are not consecutive in the horizontal axis (date) direction of the graph 41a are not displayed. For example, in the graph 41a of display example 40b, consecutive prediction error samples on the 18th and 19th are displayed, but if there are no consecutive prediction error samples before and after, such as on the 9th or 16th, the prediction Missed samples will not be displayed.
  • the prediction error analysis unit 125 extracts only the last consecutive prediction error samples from among the plurality of prediction error samples that meet the criteria. Therefore, for example, if a prediction error sample occurs for two consecutive days, the prediction error sample is displayed only for the second day.
  • the display rules for prediction error samples are not limited to the above three, but can be set arbitrarily.
  • the user can select a rule for displaying a prediction error sample on the display device 2 from the viewpoint of the purpose of model evaluation and the visibility of display contents.
  • FIG. 7 shows another example of the input area included in the display example.
  • the input area 42x shown in FIG. 7 includes input areas 51 and 52, a histogram 53, and a threshold bar 54.
  • Input area 51 is used by the user to specify a data set
  • input area 52 is used by the user to specify an error measure.
  • Histogram 53 shows the error calculated for each sample included in the data set based on user specifications.
  • the threshold bar 54 is a bar that the user moves to arbitrarily set a threshold value.
  • the user first operates input area 51 to specify a data set, and then operates input area 52 to specify an error index.
  • error indicators that can be specified by the user include the following.
  • y indicates the actual value
  • y_pred indicates the predicted value.
  • Error y-y_pred (Example 2) Absolute error
  • the prediction error analysis unit 125 calculates the error index specified by the user for each sample in the data set specified by the user, and displays the obtained error of each sample as a histogram 53.
  • the user can move the threshold value bar 54 while looking at the displayed histogram 53 and determine the threshold value intuitively.
  • the prediction error analysis unit 125 may automatically set the threshold value so that a predetermined percentage (for example, 20%) of samples in the data set become prediction error samples. good.
  • FIG. 8 is a flowchart of model analysis processing by the model generation device 100.
  • the model analysis process is a process of extracting prediction errors of the existing model generated by the model training unit 122 and displaying them on the display device 2. This processing is realized by the processor 112 shown in FIG. 2 executing a program prepared in advance and operating as the element shown in FIG. 3.
  • the model generation device 100 inputs evaluation data into an existing model and obtains a predicted value by the existing model (step S10).
  • the model generation device 100 generates a graph showing the actual measured values included in the evaluation data and the predicted values by the existing model (step S11). The generated graph is displayed on the display device 2.
  • the user looks at the graph of actual measured values and predicted values displayed, for example, as shown in FIG. 4, and sets a criterion for determining a prediction error sample in the input area 42.
  • the model generation device 100 acquires the set criterion for prediction error samples (step S12).
  • the model generation device 100 extracts a sample of the predicted value that corresponds to the acquired criterion as a prediction error sample and outputs it (step S13).
  • the extracted prediction error samples are indicated by marks 41x on the graph of predicted values displayed on the display device 2, as shown in FIG.
  • the model generation device 100 determines whether the user has input an instruction to modify the criteria (step S14). If an instruction to modify the determination criteria is input (step S14: Yes), the process returns to step S12, and the model generation device 100 acquires the revised determination criteria, extracts prediction error samples according to the criteria, and Output (step S13). In this way, the user can evaluate the model while repeatedly modifying the criteria as necessary.
  • step S14 determines whether an instruction to modify the criterion has been input (step S14). If the termination instruction is not input (step S15: No), the process returns to step S14. On the other hand, if an end instruction is input (step S15: Yes), the model analysis process ends.
  • the model generation device 100 obtains an input specifying a sample on the graph of the predicted value in step S12. Then, in step S13, the model generation device 100 corrects the criterion for a prediction error sample so that the sample is determined to be a prediction error, and then extracts the prediction error sample. Further, as in the third display example shown in FIG. 6, when the user specifies a display rule for prediction error samples in the option column 47, the model generation device 100 displays prediction error samples according to the specified display rule in step S13. A sample is selected and displayed on the display device 2.
  • the model generation device 100 is configured as an independent device such as a PC, but instead, the model generation device may be configured with a server and a terminal device.
  • FIG. 9 is a block diagram showing a schematic configuration of a model generation system 1x using a server and a terminal device.
  • a server 100x includes the configuration of the model generation device 100 shown in FIG.
  • the display device 2x and input device 3x of the terminal device 7 used by the user are used as the display device 2 and input device 3 shown in FIG.
  • FIG. 10 is a block diagram showing the functional configuration of the model analysis device 70 of the second embodiment.
  • the model analysis device 70 includes a predicted value acquisition means 71, an output means 72, a reference acquisition means 73, and an extraction means 74.
  • FIG. 11 is a flowchart of processing by the model analysis device 70 of the second embodiment.
  • the predicted value acquisition means 71 acquires the predicted value of the model for input data (step S71).
  • the output means 72 outputs evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error (step S72).
  • the criterion acquisition means 73 acquires the determination criterion (step S73).
  • the extraction means 74 extracts predicted values corresponding to prediction errors based on the determination criteria, and shows them on the graph (step S74).
  • model analysis device 70 of the second embodiment it is possible to set a criterion for the error of a predictive model and to appropriately evaluate the model using the error based on the set criterion.
  • Predicted value obtaining means for obtaining a predicted value of the model for input data; Output means for outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error; Criterion acquisition means for acquiring the determination criteria; Extracting means for extracting a predicted value that corresponds to a prediction error based on the judgment criterion and showing it on the graph;
  • a model analysis device comprising:
  • appendix 5 The model analysis device according to appendix 3 or 4, wherein the evaluation information includes a graph showing an error between the predicted value and the measured value based on a specified error index, and the threshold value.
  • the extraction means changes the determination criteria so that when a specific predicted value on the graph is designated by the user, the predicted value is determined to be a prediction error, and the extraction unit changes the determination criterion so that the predicted value is determined to be a prediction error based on the changed determination criterion.
  • the model analysis device according to any one of Supplementary Notes 1 to 5, which extracts a predicted value corresponding to .
  • the input area includes information on a plurality of rules for selecting a predicted value to be displayed from predicted values corresponding to a prediction error,
  • the model analysis device according to appendix 2, wherein the evaluation information includes a mark indicating a predicted value selected according to a rule selected by the user.
  • (Appendix 8) Get the model's predicted value for the input data, outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error; obtain the judgment criteria; A model analysis method for extracting predicted values corresponding to prediction errors based on the determination criteria and displaying the predicted values on the graph.
  • (Appendix 9) Get the model's predicted value for the input data, outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error; obtain the judgment criteria;
  • Model generation device 112 Processor 121 Training data DB 122 Model training department 123 Model DB 124 Evaluation data DB 125 Prediction error analysis section 126 Evaluation information output section

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

In this model analysis device, a predicted value acquisition means acquires a predicted value of a model with respect to input data. An output means outputs assessment information including: a graph that indicates predicted values and actual measured values; and a display area for displaying a determination criterion for prediction mistakes. A criterion acquisition means acquires the determination criterion. An extraction means extracts a predicted value corresponding to a prediction mistake and indicates the predicted value on the graph, on the basis of the determination criterion.

Description

モデル分析装置、モデル分析方法、及び、記録媒体Model analysis device, model analysis method, and recording medium
 本開示は、機械学習モデルの分析に関する。 This disclosure relates to analysis of machine learning models.
 近年、様々な分野において、機械学習により得られた予測モデルが利用されている。特許文献1は、予測モデルを用いて不動産価格の予測を行う手法を記載している。 In recent years, predictive models obtained through machine learning have been used in various fields. Patent Document 1 describes a method of predicting real estate prices using a prediction model.
国際公開WO2020/004049International publication WO2020/004049
 特許文献1では、モデルによる予測の外し方(予測値-実際の値)が逆、すなわち予測誤差の正負が異なるデータサンプルをペアで表示する手法を記載している。しかし、そもそも誤差をどのように定義するかによって、モデルの評価は変わってくる。 Patent Document 1 describes a method in which the method of removing predictions by a model (predicted value - actual value) is reversed, that is, data samples with different positive and negative prediction errors are displayed in pairs. However, the evaluation of the model changes depending on how the error is defined in the first place.
 本開示の1つの目的は、予測モデルの誤差を定義し、定義した誤差に基づいて適切にモデルを評価することが可能なモデル分析装置を提供することにある。 One objective of the present disclosure is to provide a model analysis device that can define errors in a prediction model and appropriately evaluate the model based on the defined errors.
 本開示の一つの観点では、モデル分析装置は、
 入力データに対するモデルの予測値を取得する予測値取得手段と、
 前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力する出力手段と、
 前記判定基準を取得する基準取得手段と、
 前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す抽出手段と、
 を備える。
In one aspect of the present disclosure, the model analysis device includes:
Predicted value obtaining means for obtaining a predicted value of the model for input data;
Output means for outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
Criterion acquisition means for acquiring the determination criteria;
Extracting means for extracting a predicted value that corresponds to a prediction error based on the judgment criterion and showing it on the graph;
Equipped with
 本開示の他の観点では、モデル分析方法は、
 入力データに対するモデルの予測値を取得し、
 前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力し、
 前記判定基準を取得し、
 前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す。
In other aspects of the disclosure, the model analysis method includes:
Get the model's predicted value for the input data,
outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
obtain the judgment criteria;
Based on the determination criteria, predicted values corresponding to prediction errors are extracted and shown on the graph.
 本開示のさらに他の観点では、記録媒体は、
 入力データに対するモデルの予測値を取得し、
 前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力し、
 前記判定基準を取得し、
 前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す処理をコンピュータに実行させるプログラムを記録する。
In yet another aspect of the present disclosure, the recording medium includes:
Get the model's predicted value for the input data,
outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
obtain the judgment criteria;
Based on the determination criteria, a predicted value corresponding to a prediction error is extracted, and a program is recorded that causes a computer to execute the processing shown on the graph.
 本開示によれば、予測モデルの誤差の判定基準を設定し、設定した判定基準に基づく誤差を用いて適切にモデルを評価することが可能となる。 According to the present disclosure, it is possible to set a criterion for error in a prediction model and appropriately evaluate the model using the error based on the set criterion.
第1実施形態に係るモデル生成システムの全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a model generation system according to a first embodiment. モデル生成装置のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing the hardware configuration of a model generation device. 第1実施形態のモデル生成装置の機能構成を示すブロック図である。1 is a block diagram showing a functional configuration of a model generation device according to a first embodiment; FIG. 評価情報の第1の表示例を示す。A first display example of evaluation information is shown. 評価情報の第2の表示例を示す。A second display example of evaluation information is shown. 評価情報の第3の表示例を示す。A third display example of evaluation information is shown. 閾値の他の設定例を示す。Another setting example of the threshold value is shown. モデル生成装置によるモデル分析処理のフローチャートである。7 is a flowchart of model analysis processing performed by the model generation device. サーバと端末装置を用いたモデル生成システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a model generation system using a server and a terminal device. 第2実施形態のモデル分析装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a model analysis device according to a second embodiment. 第2実施形態のモデル分析装置による処理のフローチャートである。It is a flowchart of processing by a model analysis device of a 2nd embodiment.
 以下、図面を参照して、本開示の好適な実施形態について説明する。
 <第1実施形態>
 [全体構成]
 図1は、第1実施形態に係るモデル生成システムの全体構成を示すブロック図である。モデル生成システム1は、モデル生成装置100と、表示装置2と、入力装置3とを備える。モデル生成装置100は、本開示のモデル分析装置を適用したものであり、例えばパーソナルコンピュータ(PC)などのコンピュータにより構成される。表示装置2は、例えば液晶表示装置などであり、モデル生成装置100が生成した評価情報を表示する。入力装置3は、例えばマウス、キーボードなどであり、ユーザがモデルの修正時や評価情報の閲覧時に必要な指示、入力を行うために使用される。
Hereinafter, preferred embodiments of the present disclosure will be described with reference to the drawings.
<First embodiment>
[overall structure]
FIG. 1 is a block diagram showing the overall configuration of a model generation system according to a first embodiment. The model generation system 1 includes a model generation device 100, a display device 2, and an input device 3. The model generation device 100 is an application of the model analysis device of the present disclosure, and is configured by, for example, a computer such as a personal computer (PC). The display device 2 is, for example, a liquid crystal display device, and displays the evaluation information generated by the model generation device 100. The input device 3 is, for example, a mouse, a keyboard, etc., and is used by the user to give instructions and input necessary when modifying a model or viewing evaluation information.
 まず、モデル生成システム1の動作を概略的に説明する。モデル生成装置100は、予め用意された訓練データを用いて、機械学習モデル(以下、単に「モデル」と呼ぶ。)を生成する。また、モデル生成装置100は、生成したモデルの評価を行う。具体的に、モデル生成装置100は、評価用データなどを用いてモデルによる予測を行い、予測結果に基づいてモデルの予測ミスを検出し、評価情報としてユーザに提示する。ユーザは、モデルの予測ミスを確認し、入力装置3を操作してモデルの修正のための修正情報を入力することができる。特に、本実施形態では、ユーザは、予測ミスの判定基準を入力し、さらに必要に応じて適宜変更することができる。よって、ユーザは、自身が適切と考える観点で予測ミスの判定基準を設定し、その基準に基づいた評価情報を見ることにより、適切にモデルの評価を行うことができる。 First, the operation of the model generation system 1 will be schematically explained. The model generation device 100 generates a machine learning model (hereinafter simply referred to as a "model") using training data prepared in advance. The model generation device 100 also evaluates the generated model. Specifically, the model generation device 100 performs prediction using a model using evaluation data and the like, detects a prediction error in the model based on the prediction result, and presents it to the user as evaluation information. The user can confirm prediction errors in the model and operate the input device 3 to input correction information for correcting the model. In particular, in this embodiment, the user can input the criterion for determining a prediction error and can further change it as necessary. Therefore, the user can appropriately evaluate the model by setting a criterion for determining a prediction error from a viewpoint that the user considers appropriate, and viewing evaluation information based on the criterion.
 ここで、「モデル」とは、説明変数と目的変数の関係を表す情報である。モデルは、例えば、説明変数に基づいて目的とする変数を算出することにより推定対象の結果を推定するためのコンポーネントである。モデルは、既に目的変数の値が得られている学習用データと任意のパラメータとを入力として、学習アルゴリズムを実行することにより生成される。モデルは例えば、入力xを正解yに写像する関数cにより表されてもよい。モデルは、推定対象の数値を推定するものであってもよいし、推定対象のラベルを推定するものであってもよい。モデルは、目的変数の確率分布を記述する変数を出力してもよい。モデルは、「学習モデル」、「分析モデル」、「AI(Artificial Intelligence)モデル」または「予測式」などと記載されることもある。 Here, the "model" is information representing the relationship between explanatory variables and objective variables. A model is, for example, a component for estimating a target result by calculating a target variable based on explanatory variables. A model is generated by executing a learning algorithm using as input learning data for which values of objective variables have already been obtained and arbitrary parameters. The model may be represented, for example, by a function c that maps an input x to a ground answer y. The model may be one that estimates a numerical value to be estimated, or may be one that estimates a label to be estimated. The model may output variables that describe the probability distribution of the target variable. A model is sometimes described as a "learning model," "analytical model," "AI (Artificial Intelligence) model," or "prediction formula."
 [ハードウェア構成]
 図2は、モデル生成装置100のハードウェア構成を示すブロック図である。図示のように、モデル生成装置100は、インタフェース(I/F)111と、プロセッサ112と、メモリ113と、記録媒体114と、データベース(DB)115と、を備える。
[Hardware configuration]
FIG. 2 is a block diagram showing the hardware configuration of the model generation device 100. As illustrated, the model generation device 100 includes an interface (I/F) 111, a processor 112, a memory 113, a recording medium 114, and a database (DB) 115.
 I/F111は、外部装置との間でデータの入出力を行う。具体的に、モデルの生成に使用する訓練データ、評価用データ、及び、ユーザが入力装置3を用いて入力した指示や入力は、I/F111を通じてモデル生成装置100に入力される。また、モデル生成装置100が生成したモデルの評価情報は、I/F111を通じて表示装置2へ出力される。 The I/F 111 inputs and outputs data to and from external devices. Specifically, training data, evaluation data, and instructions and inputs input by the user using the input device 3 are input to the model generation device 100 through the I/F 111. Furthermore, evaluation information of the model generated by the model generation device 100 is output to the display device 2 through the I/F 111.
 プロセッサ112は、CPU(Central Processing Unit)などのコンピュータであり、予め用意されたプログラムを実行することによりモデル生成装置100の全体を制御する。なお、プロセッサ112は、GPU(Graphics Processing Unit)またはFPGA(Field-Programmable Gate Array)であってもよい。プロセッサ112は、後述するモデル分析処理を実行する。 The processor 112 is a computer such as a CPU (Central Processing Unit), and controls the entire model generation device 100 by executing a program prepared in advance. Note that the processor 112 may be a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array). The processor 112 executes model analysis processing, which will be described later.
 メモリ113は、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。メモリ113は、プロセッサ112による各種の処理の実行中に作業メモリとしても使用される。 The memory 113 is composed of ROM (Read Only Memory), RAM (Random Access Memory), and the like. Memory 113 is also used as a working memory while processor 112 executes various processes.
 記録媒体114は、ディスク状記録媒体、半導体メモリなどの不揮発性で非一時的な記録媒体であり、モデル生成装置100に対して着脱可能に構成される。記録媒体114は、プロセッサ112が実行する各種のプログラムを記録している。モデル生成装置100が各種の処理を実行する際には、記録媒体114に記録されているプログラムがメモリ113にロードされ、プロセッサ112により実行される。 The recording medium 114 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or a semiconductor memory, and is configured to be detachable from the model generation device 100. The recording medium 114 records various programs executed by the processor 112. When the model generation device 100 executes various processes, a program recorded on the recording medium 114 is loaded into the memory 113 and executed by the processor 112.
 DB115は、モデル生成装置100が生成したモデル(以下、「既存モデル」と呼ぶ。)、及び、再訓練による修正後のモデル(以下、「修正後モデル」と呼ぶ。)に関する情報を記憶する。また、DB115は、必要に応じて、I/F111を通じて入力された訓練データ、評価用データ、ユーザが入力した修正情報、ユーザが入力した予測ミスの判定基準の履歴などを記憶する。 The DB 115 stores information regarding the model generated by the model generation device 100 (hereinafter referred to as "existing model") and the model after modification by retraining (hereinafter referred to as "modified model"). Further, the DB 115 stores training data input through the I/F 111, evaluation data, correction information input by the user, history of prediction error criteria input by the user, and the like, as necessary.
 (機能構成)
 図3は、第1実施形態のモデル生成装置100の機能構成を示すブロック図である。モデル生成装置100は、機能的には、訓練データDB121と、モデル訓練部122と、モデルDB123と、評価用データDB124と、予測ミス分析部125と、評価情報出力部126とを備える。
(Functional configuration)
FIG. 3 is a block diagram showing the functional configuration of the model generation device 100 of the first embodiment. The model generation device 100 functionally includes a training data DB 121, a model training section 122, a model DB 123, an evaluation data DB 124, a prediction error analysis section 125, and an evaluation information output section 126.
 訓練データDB121は、モデルの生成に用いられる訓練データを記憶する。訓練データD1は、モデル訓練部122に入力される。なお、訓練データD1は、入力データと、その入力データに対する正解ラベル(教師ラベル)との複数の組み合わせにより構成される。 The training data DB 121 stores training data used for model generation. Training data D1 is input to model training section 122. Note that the training data D1 is composed of a plurality of combinations of input data and correct labels (teacher labels) for the input data.
 モデル訓練部122は、訓練データD1を用いてモデルの訓練を行い、モデルを生成する。モデル訓練部122は、生成したモデルに対応するモデルデータMをモデルDB123及び予測ミス分析部125へ出力する。なお、モデルデータMは、モデルを構成する複数のパラメータ情報を含む。パラメータ情報は、例えば、モデルの入力として用いられる説明変数(または、特徴量)の情報、各説明変数に対する重みの情報、入力データを構成する各サンプルに対する重みの情報などを含む。 The model training unit 122 trains a model using the training data D1 and generates a model. The model training unit 122 outputs model data M corresponding to the generated model to the model DB 123 and the prediction error analysis unit 125. Note that the model data M includes a plurality of parameter information constituting the model. The parameter information includes, for example, information on explanatory variables (or feature amounts) used as inputs of the model, information on weights for each explanatory variable, information on weights for each sample constituting input data, and the like.
 また、モデル訓練部122は、既存モデルを再訓練して修正後モデルを生成する。この場合、モデル訓練部122は、ユーザが入力装置3を用いて入力した修正情報D3に基づいて、モデルを構成するパラメータを修正し、必要に応じて再訓練用の訓練データを用いてモデルの再訓練を行う。モデル訓練部122は、再訓練により得られた修正後モデルのモデルデータMをモデルDB123へ記憶するとともに、予測ミス分析部125へ出力する。 Additionally, the model training unit 122 retrains the existing model to generate a modified model. In this case, the model training unit 122 corrects the parameters constituting the model based on the correction information D3 input by the user using the input device 3, and uses training data for retraining as necessary to improve the model. Perform retraining. The model training unit 122 stores the model data M of the corrected model obtained through retraining in the model DB 123 and outputs it to the prediction error analysis unit 125.
 評価用データDB124は、生成されたモデルの評価に使用する評価用データを記憶する。評価用データは、モデルの評価に使用できる各種のデータを含む。評価用データは、基本的には入力データと、その入力データに対する正解ラベル(教師ラベル)との複数の組み合わせにより構成される。評価用データの例としては、以下のようなものが挙げられる。
(1)バリデーションデータやテストデータと呼ばれる「モデルの生成に使用しなかったデータ」
 この場合、評価用データは、基本に入力データと正解ラベルのセットとなる。
(2)運用データなどの「モデルの生成後に新たに収集されたデータ」
 なお、ラベリングが即時で行われない場合、評価用データは入力のみのデータとなる可能性もある。
(3)「何らかの方法で生成された、モデルにとって未知のデータ」
 例えば、入力データ内の特徴量が、(曜日、祝日、天気)だった場合、カレンダー情報や天気予報を用いて疑似的に未来のデータを作ることができる。
(4)「訓練データと同一のデータ」
 モデルの生成に使用した訓練データを、評価用データとして使用することができる。この場合、訓練データと同一のデータを評価用データとして評価用データDB124に記憶しておけばよい。
The evaluation data DB 124 stores evaluation data used to evaluate the generated model. The evaluation data includes various types of data that can be used to evaluate the model. The evaluation data is basically composed of a plurality of combinations of input data and correct labels (teacher labels) for the input data. Examples of evaluation data include the following.
(1) “Data not used for model generation” called validation data or test data
In this case, the evaluation data is basically a set of input data and correct answer labels.
(2) “Newly collected data after model generation” such as operational data
Note that if labeling is not performed immediately, the evaluation data may be input-only data.
(3) “Data that is generated by some method and is unknown to the model”
For example, if the feature amount in the input data is (day of the week, holiday, weather), it is possible to create pseudo future data using calendar information and weather forecasts.
(4) “Same data as training data”
The training data used to generate the model can be used as evaluation data. In this case, the same data as the training data may be stored in the evaluation data DB 124 as evaluation data.
 予測ミス分析部125は、評価用データを用いて既存モデルの予測ミスを分析する。具体的に、予測ミス分析部125は、評価用データの入力データを既存モデルに入力して予測を行い、予測結果を取得する。そして、予測ミス分析部125は、使用した評価用データと予測結果とに基づいて、モデルの予測結果から、既存モデルが起こした予測ミスを抽出する。 The prediction error analysis unit 125 analyzes prediction errors of the existing model using the evaluation data. Specifically, the prediction error analysis unit 125 inputs the input data of the evaluation data into the existing model, performs prediction, and obtains the prediction result. Then, the prediction error analysis unit 125 extracts prediction errors caused by the existing model from the prediction results of the model based on the evaluation data used and the prediction results.
 ここで、予測ミスの定義、即ち、予測ミスの判定基準は、ユーザにより設定される。予測ミス分析部125は、ユーザが設定した判定基準に基づいて、モデルによる予測結果を分析する。ユーザが設定した判定基準の情報D4は、入力装置3から予測ミス分析部125へ送られる。予測ミス分析部125は、取得した判定基準に従って、予測結果に含まれる予測ミスを抽出する。そして、予測ミス分析部125は、モデルによる予測結果と、抽出した予測ミスを評価情報出力部126へ出力する。なお、必要に応じて、予測ミス分析部125は、使用した評価用データなども評価情報出力部126へ出力する。なお、予測ミスの判定基準の設定方法については、後に詳しく説明する。予測ミス分析部125は、予測値取得手段、基準取得手段及び抽出手段の一例である。 Here, the definition of a prediction error, that is, the criterion for determining a prediction error, is set by the user. The prediction error analysis unit 125 analyzes the prediction result by the model based on the criteria set by the user. Information D4 on the determination criteria set by the user is sent from the input device 3 to the prediction error analysis unit 125. The prediction error analysis unit 125 extracts prediction errors included in the prediction result according to the acquired criteria. Then, the prediction error analysis unit 125 outputs the prediction result by the model and the extracted prediction error to the evaluation information output unit 126. Note that, if necessary, the prediction error analysis unit 125 also outputs the used evaluation data to the evaluation information output unit 126. Note that the method for setting the criterion for prediction errors will be explained in detail later. The prediction error analysis unit 125 is an example of a predicted value acquisition means, a reference acquisition means, and an extraction means.
 評価情報出力部126は、予測ミス分析部125から入力された情報に基づいて、既存モデルを評価するための評価情報D2を生成する。具体的に、評価情報D2は、実測値と既存モデルによる予測結果(予測値)との関係、及び、検出された予測ミスを示す情報を含む。そして、評価情報出力部126は、生成した評価情報D2を表示装置2へ出力する。評価情報出力部126は、出力手段の一例である。 The evaluation information output unit 126 generates evaluation information D2 for evaluating the existing model based on the information input from the prediction error analysis unit 125. Specifically, the evaluation information D2 includes information indicating the relationship between the actual measurement value and the prediction result (prediction value) by the existing model, and the detected prediction error. Then, the evaluation information output unit 126 outputs the generated evaluation information D2 to the display device 2. The evaluation information output unit 126 is an example of an output means.
 表示装置2は、評価情報出力部126が出力した評価情報D2を表示装置2に表示する。これにより、ユーザは、実測値と既存モデルによる予測値との関係、及び、モデルによる予測値に含まれる予測ミスを示す情報を参照し、既存モデルの性能を評価することができる。予測ミスを示す情報としては、例えば、予測ミスに該当する予測値のサンプル(以下、「予測ミスサンプル」と呼ぶ。)を示す情報が挙げられる。ユーザは、必要に応じて、予測ミスが生じないようにモデルを修正するための修正情報D3を入力装置3に入力する。修正情報D3は、モデルの入力として用いられる説明変数の情報、各説明変数に対する重みの情報、入力データを構成する各サンプルに対する重みの情報などの修正に関する情報である。モデル訓練部122は、入力された修正情報D3を用いてモデルの再訓練を行うことにより、モデルの修正を行う。 The display device 2 displays the evaluation information D2 output by the evaluation information output unit 126. Thereby, the user can evaluate the performance of the existing model by referring to the relationship between the measured value and the predicted value by the existing model, and information indicating prediction errors included in the predicted value by the model. Examples of information indicating a prediction error include information indicating a sample of a predicted value corresponding to a prediction error (hereinafter referred to as a "prediction error sample"). The user inputs modification information D3 into the input device 3 as necessary to modify the model so that prediction errors do not occur. The modification information D3 is information related to modification, such as information on explanatory variables used as inputs of the model, information on weights for each explanatory variable, and information on weights for each sample constituting the input data. The model training unit 122 corrects the model by retraining the model using the input correction information D3.
 [評価情報の表示例]
 次に、表示装置2に表示される評価情報の表示例を説明する。
 (第1の表示例)
 図4は、評価情報の第1の表示例を示す。この例では、予測モデルは、ある商品の売り上げを予測するモデルとする。なお、図4は、ユーザが既に予測ミスの判定基準を設定した後の表示例である。第1の表示例40は、グラフ41a~41cと、入力エリア42とを含む。グラフ41aはモデルによる予測値を示し、グラフ41bは実測値を示す。グラフ41a及び41bの横軸は、ある月の日付を示し、縦軸は売り上げを示す。予測値のグラフ41a上には、予測ミスサンプルを示すマーク41xが表示される。
[Display example of evaluation information]
Next, a display example of evaluation information displayed on the display device 2 will be explained.
(First display example)
FIG. 4 shows a first display example of evaluation information. In this example, the prediction model is a model that predicts sales of a certain product. Note that FIG. 4 is a display example after the user has already set the prediction error criterion. The first display example 40 includes graphs 41a to 41c and an input area . The graph 41a shows predicted values by the model, and the graph 41b shows actual measured values. The horizontal axes of graphs 41a and 41b indicate the date of a certain month, and the vertical axes indicate sales. A mark 41x indicating a prediction error sample is displayed on the predicted value graph 41a.
 グラフ41cは、モデルによる予測値と実測値との誤差を評価するための誤差指標を示すグラフである。図4の例では、グラフ41cは、モデルによる予測値と実測値との絶対誤差を示す棒グラフである。グラフ41cの横軸は日付を示し、縦軸は絶対誤差を示す。グラフ41c上には、閾値41dが示されている。閾値は、誤差指標として指定された絶対誤差に基づき、予測ミスサンプルを抽出するために用いられる。 The graph 41c is a graph showing an error index for evaluating the error between the predicted value by the model and the actual measured value. In the example of FIG. 4, the graph 41c is a bar graph showing the absolute error between the predicted value by the model and the actual measured value. The horizontal axis of the graph 41c shows the date, and the vertical axis shows the absolute error. A threshold value 41d is shown on the graph 41c. The threshold is used to extract mispredicted samples based on the absolute error specified as the error index.
 入力エリア42は、予測ミスの判定基準をユーザが設定するための領域である。即ち、ユーザは、入力エリア42へ必要な事項を入力することにより、自らが抽出したい予測ミスの判定基準を設定する。図4の例では、判定基準として、誤差指標と、閾値とが設定される。この場合、前述の予測ミス分析部125は、ユーザが設定した誤差指標による予測値と実測値の誤差が、ユーザが設定した閾値より大きいサンプルを、予測ミスサンプルとして抽出することになる。 The input area 42 is an area for the user to set criteria for determining prediction errors. That is, by inputting necessary information into the input area 42, the user sets criteria for determining prediction errors that he/she wishes to extract. In the example of FIG. 4, an error index and a threshold are set as the determination criteria. In this case, the above-mentioned prediction error analysis unit 125 will extract, as a prediction error sample, a sample in which the error between the predicted value and the actual value based on the error index set by the user is larger than the threshold value set by the user.
 「誤差指標」としては、例えば絶対誤差や二乗誤差などの誤差が設定される。ユーザは、入力エリア43を操作して、自分が使用したい誤差指標を設定する。「閾値」は、閾値の基準値と、閾値調整パラメータとにより規定される。なお、本例では、閾値調整パラメータは、閾値が基準値の何倍であるかを示す倍率である。閾値の基準値は、使用するデータの種類と、誤差指標として指定された誤差に応じた平均誤差と、により規定される。使用するデータとしては、例えば、訓練データ、バリデーションデータ、所定期間の訓練データ、所定期間のバリデーションデータなどを用いることができる。ユーザは、入力エリア44を操作して、自分が使用したい閾値の基準値を設定する。例えば、ユーザは、誤差指標として絶対誤差を指定し、バリデーションデータを使用する場合、図4に示すように「バリデーションデータMAE」を選択する。「MAE」は、平均絶対誤差(MAE:Mean Absolute Error)を示す。なお、誤差指標として二乗誤差を使用する場合には、通常、誤差の種類として平均二乗誤差(MSE:Mean Squared Error)が使用される。 As the "error index", for example, an error such as an absolute error or a squared error is set. The user operates the input area 43 to set the error index that he/she wishes to use. The "threshold" is defined by a threshold reference value and a threshold adjustment parameter. Note that in this example, the threshold value adjustment parameter is a magnification that indicates how many times the threshold value is the reference value. The reference value of the threshold value is defined by the type of data used and the average error according to the error specified as the error index. As the data to be used, for example, training data, validation data, training data for a predetermined period, validation data for a predetermined period, etc. can be used. The user operates the input area 44 to set the reference value of the threshold that he/she wishes to use. For example, when the user specifies absolute error as the error index and uses validation data, the user selects "validation data MAE" as shown in FIG. 4. "MAE" indicates mean absolute error (MAE). Note that when a squared error is used as an error index, a mean squared error (MSE) is usually used as the type of error.
 また、ユーザは、入力エリア45を操作して、閾値調整パラメータとして任意の倍率を設定する。閾値の値は、入力エリア44に設定された閾値の基準値と、入力エリア45に設定された倍率との積となる。図4の例では、ユーザは入力エリア44にバリデーションデータMAEを設定し、入力エリア45に倍率「2」を設定しているため、閾値は、
  閾値=2×MAE_va
として計算される。なお、「MAE_va」はバリデーションデータの平均絶対誤差(MAE)の計算値である。
The user also operates the input area 45 to set an arbitrary magnification as a threshold adjustment parameter. The threshold value is the product of the reference value of the threshold set in the input area 44 and the magnification set in the input area 45. In the example of FIG. 4, the user has set validation data MAE in the input area 44 and set the magnification "2" in the input area 45, so the threshold value is
Threshold=2×MAE_va
It is calculated as Note that "MAE_va" is a calculated value of the mean absolute error (MAE) of validation data.
 入力エリア42には、OKボタン49が表示される。OKボタン49は、ユーザが、入力エリア42において判定基準の設定を完了した旨を指示するためのボタンである。さらに、入力エリア42には、抽出結果48として、抽出された予測ミスサンプルのサンプル数が表示される。 An OK button 49 is displayed in the input area 42. The OK button 49 is a button used by the user to indicate that the determination criteria setting in the input area 42 has been completed. Further, in the input area 42, the number of extracted samples with prediction errors is displayed as an extraction result 48.
 なお、前述のように、図4の表示例40は、ユーザが既に予測ミスの判定基準を設定した後の表示例である。初期状態、即ち、ユーザが予測ミスの判定基準を設定する前の状態では、予測値のグラフ41aと実績値のグラフ41bは表示されているが、グラフ41cや予測ミスを示すマーク41xは表示されておらず、入力エリア42内の各入力エリア43~45も未入力となっている。 Note that, as described above, the display example 40 in FIG. 4 is a display example after the user has already set the prediction error criterion. In the initial state, that is, before the user sets the prediction error judgment criteria, the predicted value graph 41a and the actual value graph 41b are displayed, but the graph 41c and the mark 41x indicating a prediction error are not displayed. There is no input in each of the input areas 43 to 45 within the input area 42.
 そして、ユーザが予測ミスの判定基準を設定し、OKボタン49を押すと、設定された判定基準の情報D4、具体的には、入力エリア43~45に入力された情報が入力装置3から予測ミス分析部125へ送信される。予測ミス分析部125は、受信した判定基準の情報D4に基づいて、モデルの予測値から、判定基準に該当するサンプルを予測ミスサンプルとして抽出し、評価情報出力部126に出力する。評価情報出力部126は、受信した予測ミスサンプルに関する情報を表示装置2に送信し、予測ミスサンプルを示すマーク41xをグラフ41a上に表示させるとともに、予測ミスサンプルの抽出結果48を入力エリア42内に表示する。こうして、ユーザが設定した判定基準に従って予測ミスサンプルが抽出され、表示装置2に表示される。その結果、図4に例示するような表示が行われる。 Then, when the user sets a judgment criterion for a prediction error and presses the OK button 49, the information D4 of the set judgment criterion, specifically, the information input in the input areas 43 to 45, is transmitted from the input device 3 to the prediction error. It is transmitted to the error analysis section 125. Based on the received judgment criterion information D4, the prediction error analysis section 125 extracts a sample corresponding to the judgment criterion from the predicted value of the model as a prediction error sample, and outputs it to the evaluation information output section 126. The evaluation information output unit 126 transmits information regarding the received prediction error sample to the display device 2, displays a mark 41x indicating the prediction error sample on the graph 41a, and displays the extraction result 48 of the prediction error sample in the input area 42. to be displayed. In this way, prediction error samples are extracted according to the criteria set by the user and displayed on the display device 2. As a result, a display as illustrated in FIG. 4 is performed.
 なお、ここではユーザが判定基準を設定する場合を説明したが、第1の表示例はそれに限定されない。例えば、表示装置2は、判定基準として、事前に定められている値を表示してもよい。あるいは、表示装置2は、前回の操作でユーザが設定した判定基準を表示してもよい。または、表示装置2はユーザ毎に、判定基準の入力履歴から学習された機械学習モデルを用いて推薦される判定基準を表示するようにしてもよい。 Note that although the case where the user sets the determination criteria has been described here, the first display example is not limited thereto. For example, the display device 2 may display a predetermined value as the determination criterion. Alternatively, the display device 2 may display the criteria set by the user in the previous operation. Alternatively, the display device 2 may display recommended criteria for each user using a machine learning model learned from the input history of criteria.
 (第2の表示例)
 図5は、評価情報の第2の表示例を示す。第2の表示例40aは、ユーザがグラフ41aのグラフ上のサンプルを指定することにより、予測ミスの判定基準を設定又は修正することができる点で、第1の表示例40と異なる。
(Second display example)
FIG. 5 shows a second display example of evaluation information. The second display example 40a differs from the first display example 40 in that the user can set or modify the prediction error criterion by specifying a sample on the graph 41a.
 ユーザは、グラフ41aに示す予測値のグラフを見て、予測ミスと思われるサンプルを指定する。具体的に、図5の例では、ユーザは、グラフ41aの予測値のグラフ上で、「8日」と「11日」のサンプルの値が予測ミスに該当すると判断し、マーク46に示すように、これら2つのサンプルをクリックするなどして指定する。そして、ユーザは、入力エリア42内のOKボタン49を押す。これにより、マーク46が示す2つのサンプルを指定する情報が予測ミス分析部125へ送信される。予測ミス分析部125は、指定された2つのサンプルが予測ミスとして抽出されるように判定基準を修正し、修正後の判定基準に基づいて抽出した予測ミスの情報を評価情報出力部126へ出力する。評価情報出力部126は、修正後の予測ミスの情報を含む評価情報を表示装置2に送信し、表示させる。 The user looks at the predicted value graph shown in the graph 41a and specifies a sample that is considered to be a prediction error. Specifically, in the example of FIG. 5, the user determines that the sample values of "8th" and "11th" correspond to prediction errors on the predicted value graph 41a, and the user makes a prediction error as shown in the mark 46. Click on these two samples to specify them. The user then presses the OK button 49 in the input area 42. As a result, information specifying the two samples indicated by the marks 46 is transmitted to the prediction error analysis unit 125. The prediction error analysis unit 125 corrects the judgment criteria so that the specified two samples are extracted as prediction errors, and outputs information on the prediction errors extracted based on the corrected judgment criteria to the evaluation information output unit 126. do. The evaluation information output unit 126 transmits evaluation information including the corrected prediction error information to the display device 2 and causes it to be displayed.
 これにより、図5に示す修正後の表示例40aでは、入力エリア45内の倍率の値が「1」に変更され、修正後の閾値41dと、修正前の閾値41eとが表示されている。即ち、この例では、ユーザが指定した2つのサンプルを予測ミスと判定するように、倍率を「2」から「1」に変更して閾値を減少させる修正が行われ、それに応じて閾値のグラフが変更されている。 As a result, in the corrected display example 40a shown in FIG. 5, the magnification value in the input area 45 is changed to "1", and the corrected threshold 41d and the uncorrected threshold 41e are displayed. That is, in this example, the scaling factor is changed from "2" to "1" and the threshold value is decreased so that the two samples specified by the user are determined to be prediction errors, and the threshold value graph is changed accordingly. has been changed.
 なお、上記の例では、予測値のグラフ41a上でサンプルを指定することにより判定基準を修正しているが、最初からこの方法で判定基準を入力することとしてもよい。この場合、ユーザは、グラフ41a及び41bのみが表示された初期状態において、入力エリア43及び44に入力した後、入力エリア45に入力せずに、予測ミスと判定したいサンプルを予測値のグラフ41a上で指定し、OKボタン49を押せばよい。 Note that in the above example, the determination criteria are modified by specifying samples on the predicted value graph 41a, but the determination criteria may be input using this method from the beginning. In this case, in the initial state where only the graphs 41a and 41b are displayed, the user inputs the sample into the input areas 43 and 44, and then selects the sample to be determined as a prediction error on the predicted value graph 41a without inputting the input into the input area 45. All you have to do is specify it above and press the OK button 49.
 このように、第2の表示例によれば、ユーザが予測値のグラフ上のサンプルを指定すると、予測ミス分析部125は指定されたサンプルが予測ミスと判定されるように判定基準を設定又は修正する。よって、知識や経験が不足しており、入力エリア42への設定、特に閾値の設定が難しいユーザであっても、適切に判定基準を設定、修正することができる。 In this way, according to the second display example, when the user specifies a sample on the graph of predicted values, the prediction error analysis unit 125 sets or sets a criterion so that the specified sample is determined to be a prediction error. Fix it. Therefore, even a user who lacks knowledge and experience and has difficulty setting the input area 42, especially setting the threshold, can appropriately set and modify the criteria.
 (第3の表示例)
 図6は、評価情報の第3の表示例を示す。第3の表示例40bは、入力エリア42にオプション欄47を設けている点で、第1の表示例40と異なる。オプション欄47は、予測ミスサンプルの表示ルールをユーザが指定するための項目である。図6の例では、表示ルールR1「全ての予測ミスサンプルを表示」、表示ルールR2「連続する予測ミスサンプルのみを表示」、表示ルールR3「連続する場合の最終日のみを表示」が用意されている。
(Third display example)
FIG. 6 shows a third display example of evaluation information. The third display example 40b differs from the first display example 40 in that an option column 47 is provided in the input area 42. The option field 47 is an item for the user to specify display rules for prediction error samples. In the example of FIG. 6, display rule R1 ``Display all prediction error samples'', display rule R2 ``Display only consecutive prediction error samples'', and display rule R3 ``Display only the last day of consecutive prediction error samples'' are prepared. ing.
 具体的に、ユーザが表示ルールR1を選択した場合、予測ミス分析部125は、判定基準に該当する全ての予測ミスサンプルを抽出して表示する。図6のグラフ41aはこの場合の例を示している。 Specifically, when the user selects display rule R1, the prediction error analysis unit 125 extracts and displays all prediction error samples that correspond to the determination criteria. A graph 41a in FIG. 6 shows an example of this case.
 ユーザが表示ルールR2を選択した場合、予測ミス分析部125は、判定基準に該当する複数の予測ミスサンプルのうち、連続する予測ミスサンプルのみを抽出して表示する。よって、この場合、グラフ41aの横軸(日付)方向において連続していない予測ミスサンプルは表示されない。例えば、表示例40bのグラフ41aにおいて、18日と19日の連続している予測ミスサンプルは表示されるが、9日や16日のように前後に連続する予測ミスサンプルがない場合、その予測ミスサンプルは表示されないことになる。 When the user selects display rule R2, the prediction error analysis unit 125 extracts and displays only consecutive prediction error samples from among the plurality of prediction error samples that correspond to the determination criteria. Therefore, in this case, prediction error samples that are not consecutive in the horizontal axis (date) direction of the graph 41a are not displayed. For example, in the graph 41a of display example 40b, consecutive prediction error samples on the 18th and 19th are displayed, but if there are no consecutive prediction error samples before and after, such as on the 9th or 16th, the prediction Missed samples will not be displayed.
 また、ユーザが表示ルールR3を選択した場合、予測ミス分析部125は、判定基準に該当する複数の予測ミスサンプルのうち、連続する予測ミスサンプルの最終日のもののみを抽出する。よって、例えば、予測ミスサンプルが2日連続した場合、2日目のみについて予測ミスサンプルが表示される。なお、予測ミスサンプルの表示ルールは、上記の3つに限らず、任意に設定することができる。 Furthermore, when the user selects display rule R3, the prediction error analysis unit 125 extracts only the last consecutive prediction error samples from among the plurality of prediction error samples that meet the criteria. Therefore, for example, if a prediction error sample occurs for two consecutive days, the prediction error sample is displayed only for the second day. Note that the display rules for prediction error samples are not limited to the above three, but can be set arbitrarily.
 第3の表示例によれば、モデルの評価の目的や表示内容の見易さなどの観点で、表示装置2に予測ミスサンプルを表示させるルールをユーザが選択することが可能となる。 According to the third display example, the user can select a rule for displaying a prediction error sample on the display device 2 from the viewpoint of the purpose of model evaluation and the visibility of display contents.
 (閾値の他の設定例)
 上記の第1~第3の表示例では、「閾値=倍率*基準値」として閾値を設定しているが、閾値の設定方法はこれには限られず、他の様々な方法を用いることができる。図7は、表示例に含まれる入力エリアの他の例を示す。図7に示す入力エリア42xは、入力エリア51、52と、ヒストグラム53と、閾値バー54と、を有する。入力エリア51はユーザがデータセットを指定するために使用され、入力エリア52はユーザが誤差指標を指定するために使用される。ヒストグラム53は、ユーザの指定に基づいて、データセットに含まれる各サンプルについて計算された誤差を示す。閾値バー54は、ユーザが閾値の値を任意に設定するために移動させるバーである。
(Other setting examples of threshold)
In the first to third display examples above, the threshold value is set as "threshold value = magnification * reference value", but the method of setting the threshold value is not limited to this, and various other methods can be used. . FIG. 7 shows another example of the input area included in the display example. The input area 42x shown in FIG. 7 includes input areas 51 and 52, a histogram 53, and a threshold bar 54. Input area 51 is used by the user to specify a data set, and input area 52 is used by the user to specify an error measure. Histogram 53 shows the error calculated for each sample included in the data set based on user specifications. The threshold bar 54 is a bar that the user moves to arbitrarily set a threshold value.
 図7の例では、まず、ユーザは、入力エリア51を操作してデータセットを指定し、次に、入力エリア52を操作して誤差指標を指定する。ここで、ユーザが指定できる誤差指標としては、例えば以下のものが挙げられる。なお、「y」は実績値を示し、「y_pred」は予測値を示す。
(例1) 誤差 y-y_pred
(例2) 絶対誤差 |y-y_pred|
(例3) 二乗誤差 (y-y_pred)
(例4) 誤差率 (y-y_pred)/y
(例5) 絶対誤差率 |y-y_pred|/y
In the example of FIG. 7, the user first operates input area 51 to specify a data set, and then operates input area 52 to specify an error index. Here, examples of error indicators that can be specified by the user include the following. Note that "y" indicates the actual value, and "y_pred" indicates the predicted value.
(Example 1) Error y-y_pred
(Example 2) Absolute error |y-y_pred|
(Example 3) Squared error (y-y_pred) 2
(Example 4) Error rate (y-y_pred)/y
(Example 5) Absolute error rate |y−y_pred|/y
 予測ミス分析部125は、ユーザが指定したデータセット中の各サンプルについて、ユーザが指定した誤差指標を計算し、得られた各サンプルの誤差をヒストグラム53として表示する。ユーザは、表示されたヒストグラム53を見ながら閾値バー54を移動させ、ユーザの感覚で閾値を決定することができる。なお、ユーザが閾値を設定する代わりに、予測ミス分析部125は、データセット中の所定割合(例えば20%)のサンプルが予測ミスサンプルとなるように、閾値を自動で設定するようにしてもよい。 The prediction error analysis unit 125 calculates the error index specified by the user for each sample in the data set specified by the user, and displays the obtained error of each sample as a histogram 53. The user can move the threshold value bar 54 while looking at the displayed histogram 53 and determine the threshold value intuitively. Note that instead of the user setting the threshold value, the prediction error analysis unit 125 may automatically set the threshold value so that a predetermined percentage (for example, 20%) of samples in the data set become prediction error samples. good.
 [モデル分析処理]
 次に、モデル生成装置100によるモデル分析処理について説明する。図8は、モデル生成装置100によるモデル分析処理のフローチャートである。モデル分析処理は、モデル訓練部122により生成された既存モデルの予測ミスを抽出し、表示装置2に表示する処理である。この処理は、図2に示すプロセッサ112が予め用意されたプログラムを実行し、図3に示す要素として動作することにより実現される。
[Model analysis processing]
Next, model analysis processing by the model generation device 100 will be explained. FIG. 8 is a flowchart of model analysis processing by the model generation device 100. The model analysis process is a process of extracting prediction errors of the existing model generated by the model training unit 122 and displaying them on the display device 2. This processing is realized by the processor 112 shown in FIG. 2 executing a program prepared in advance and operating as the element shown in FIG. 3.
 まず、モデル生成装置100は、評価用データを既存モデルに入力し、既存モデルによる予測値を取得する(ステップS10)。次に、モデル生成装置100は、評価用データに含まれる実測値と、既存モデルによる予測値とを示すグラフを生成する(ステップS11)。生成されたグラフは、表示装置2に表示される。 First, the model generation device 100 inputs evaluation data into an existing model and obtains a predicted value by the existing model (step S10). Next, the model generation device 100 generates a graph showing the actual measured values included in the evaluation data and the predicted values by the existing model (step S11). The generated graph is displayed on the display device 2.
 ユーザは、例えば図4のように表示された実測値と予測値のグラフを見て、入力エリア42に対して予測ミスサンプルの判断基準を設定する。モデル生成装置100は、設定された予測ミスサンプルの判定基準を取得する(ステップS12)。次に、モデル生成装置100は、取得した判定基準に該当する予測値のサンプルを予測ミスサンプルとして抽出し、出力する(ステップS13)。抽出された予測ミスサンプルは、図4に示すように、表示装置2に表示された予測値のグラフ上でマーク41xにより示される。 The user looks at the graph of actual measured values and predicted values displayed, for example, as shown in FIG. 4, and sets a criterion for determining a prediction error sample in the input area 42. The model generation device 100 acquires the set criterion for prediction error samples (step S12). Next, the model generation device 100 extracts a sample of the predicted value that corresponds to the acquired criterion as a prediction error sample and outputs it (step S13). The extracted prediction error samples are indicated by marks 41x on the graph of predicted values displayed on the display device 2, as shown in FIG.
 次に、モデル生成装置100は、ユーザにより判定基準の修正指示が入力されたか否かを判定する(ステップS14)。判定基準の修正指示が入力された場合(ステップS14:Yes)、処理はステップS12へ戻り、モデル生成装置100は、修正後の判定基準を取得し、その判定基準に従って予測ミスサンプルを抽出し、出力する(ステップS13)。こうして、ユーザは、必要に応じて判定基準の修正を繰り返しつつ、モデルを評価することができる。 Next, the model generation device 100 determines whether the user has input an instruction to modify the criteria (step S14). If an instruction to modify the determination criteria is input (step S14: Yes), the process returns to step S12, and the model generation device 100 acquires the revised determination criteria, extracts prediction error samples according to the criteria, and Output (step S13). In this way, the user can evaluate the model while repeatedly modifying the criteria as necessary.
 一方、判定基準の修正指示が入力されなかった場合(ステップS14:No)、モデル生成装置100は、ユーザにより終了指示が入力されたか否かを判定する(ステップS15)。終了指示が入力されなかった場合(ステップS15:No)、処理はステップS14へ戻る。一方、終了指示が入力された場合(ステップS15:Yes)、モデル分析処理は終了する。 On the other hand, if an instruction to modify the criterion has not been input (step S14: No), the model generation device 100 determines whether a termination instruction has been input by the user (step S15). If the termination instruction is not input (step S15: No), the process returns to step S14. On the other hand, if an end instruction is input (step S15: Yes), the model analysis process ends.
 なお、ユーザは、図5に示す第2の表示例のように、予測値のグラフ上のサンプルを指定することにより、判定基準の設定又は修正を行ってもよい。この場合、モデル生成装置100は、ステップS12において、予測値のグラフ上のサンプルを指定する入力を取得する。そして、モデル生成装置100は、ステップS13において、そのサンプルが予測ミスと判定されるように予測ミスサンプルの判定基準を修正した上で、予測ミスサンプルを抽出する。また、図6に示す第3の表示例のように、ユーザがオプション欄47で予測ミスサンプルの表示ルールを指定した場合、モデル生成装置100は、ステップS13において、指定された表示ルールに従って予測ミスサンプルを選択し、表示装置2に表示させる。 Note that the user may set or modify the determination criteria by specifying a sample on the graph of the predicted value, as in the second display example shown in FIG. In this case, the model generation device 100 obtains an input specifying a sample on the graph of the predicted value in step S12. Then, in step S13, the model generation device 100 corrects the criterion for a prediction error sample so that the sample is determined to be a prediction error, and then extracts the prediction error sample. Further, as in the third display example shown in FIG. 6, when the user specifies a display rule for prediction error samples in the option column 47, the model generation device 100 displays prediction error samples according to the specified display rule in step S13. A sample is selected and displayed on the display device 2.
 [変形例]
 上記の実施形態では、モデル生成装置100をPCなどの独立した装置として構成しているが、その代わりに、モデル生成装置をサーバと端末装置により構成してもよい。図9は、サーバと端末装置を用いたモデル生成システム1xの概略構成を示すブロック図である。図9において、サーバ100xは、図3に示すモデル生成装置100の構成を備える。また、ユーザが使用する端末装置7の表示装置2x及び入力装置3xを、図3に示す表示装置2及び入力装置3として使用する。
[Modified example]
In the above embodiment, the model generation device 100 is configured as an independent device such as a PC, but instead, the model generation device may be configured with a server and a terminal device. FIG. 9 is a block diagram showing a schematic configuration of a model generation system 1x using a server and a terminal device. In FIG. 9, a server 100x includes the configuration of the model generation device 100 shown in FIG. Further, the display device 2x and input device 3x of the terminal device 7 used by the user are used as the display device 2 and input device 3 shown in FIG.
 <第2実施形態>
 図10は、第2実施形態のモデル分析装置70の機能構成を示すブロック図である。モデル分析装置70は、予測値取得手段71と、出力手段72と、基準取得手段73と、抽出手段74と、を備える。
<Second embodiment>
FIG. 10 is a block diagram showing the functional configuration of the model analysis device 70 of the second embodiment. The model analysis device 70 includes a predicted value acquisition means 71, an output means 72, a reference acquisition means 73, and an extraction means 74.
 図11は、第2実施形態のモデル分析装置70による処理のフローチャートである。予測値取得手段71は、入力データに対するモデルの予測値を取得する(ステップS71)。出力手段72は、予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力する(ステップS72)。基準取得手段73は、判定基準を取得する(ステップS73)。抽出手段74は、判定基準に基づいて、予測ミスに該当する予測値を抽出し、グラフ上に示す(ステップS74)。 FIG. 11 is a flowchart of processing by the model analysis device 70 of the second embodiment. The predicted value acquisition means 71 acquires the predicted value of the model for input data (step S71). The output means 72 outputs evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error (step S72). The criterion acquisition means 73 acquires the determination criterion (step S73). The extraction means 74 extracts predicted values corresponding to prediction errors based on the determination criteria, and shows them on the graph (step S74).
 第2実施形態のモデル分析装置70によれば、予測モデルの誤差の判定基準を設定し、設定した判定基準に基づく誤差を用いて適切にモデルを評価することが可能となる。 According to the model analysis device 70 of the second embodiment, it is possible to set a criterion for the error of a predictive model and to appropriately evaluate the model using the error based on the set criterion.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Part or all of the above embodiments may be described as in the following additional notes, but are not limited to the following.
 (付記1)
 入力データに対するモデルの予測値を取得する予測値取得手段と、
 前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力する出力手段と、
 前記判定基準を取得する基準取得手段と、
 前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す抽出手段と、
 を備えるモデル分析装置。
(Additional note 1)
Predicted value obtaining means for obtaining a predicted value of the model for input data;
Output means for outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
Criterion acquisition means for acquiring the determination criteria;
Extracting means for extracting a predicted value that corresponds to a prediction error based on the judgment criterion and showing it on the graph;
A model analysis device comprising:
 (付記2)
 前記評価情報は、前記予測値のグラフ上に表示され、前記予測ミスに該当する予測値を示すマークを含む付記1に記載のモデル分析装置。
(Additional note 2)
The model analysis device according to appendix 1, wherein the evaluation information is displayed on the graph of the predicted values and includes a mark indicating a predicted value corresponding to the prediction error.
 (付記3)
 前記判定基準は、前記予測値と前記実測値の誤差の種類を指定する誤差指標、及び、前記予測値を予測ミスと判定するための閾値を規定する情報を含む付記1又は2に記載のモデル分析装置。
(Additional note 3)
The model according to appendix 1 or 2, wherein the determination criterion includes an error index that specifies the type of error between the predicted value and the actual measured value, and information that defines a threshold for determining the predicted value as a prediction error. Analysis equipment.
 (付記4)
 前記閾値を規定する情報は、前記閾値の基準値を示す情報と、前記閾値を調整するパラメータとを含む付記3に記載のモデル分析装置。
(Additional note 4)
The model analysis device according to appendix 3, wherein the information defining the threshold includes information indicating a reference value of the threshold and a parameter for adjusting the threshold.
 (付記5)
 前記評価情報は、指定された誤差指標による前記予測値と前記実測値の誤差と、前記閾値とを示すグラフを含む付記3又は4に記載のモデル分析装置。
(Appendix 5)
5. The model analysis device according to appendix 3 or 4, wherein the evaluation information includes a graph showing an error between the predicted value and the measured value based on a specified error index, and the threshold value.
 (付記6)
 前記抽出手段は、ユーザにより前記グラフ上の特定の予測値が指定された場合に、当該予測値を予測ミスと判定するように前記判定基準を変更し、変更後の判定基準に基づいて予測ミスに該当する予測値を抽出する付記1乃至5のいずれか一項に記載のモデル分析装置。
(Appendix 6)
The extraction means changes the determination criteria so that when a specific predicted value on the graph is designated by the user, the predicted value is determined to be a prediction error, and the extraction unit changes the determination criterion so that the predicted value is determined to be a prediction error based on the changed determination criterion. The model analysis device according to any one of Supplementary Notes 1 to 5, which extracts a predicted value corresponding to .
 (付記7)
 前記入力エリアは、予測ミスに該当する予測値から、表示の対象とする予測値を選択するための複数のルールの情報を含み、
 前記評価情報は、ユーザにより選択されたルールに従って選択された予測値を示すマークを含む付記2に記載のモデル分析装置。
(Appendix 7)
The input area includes information on a plurality of rules for selecting a predicted value to be displayed from predicted values corresponding to a prediction error,
The model analysis device according to appendix 2, wherein the evaluation information includes a mark indicating a predicted value selected according to a rule selected by the user.
 (付記8)
 入力データに対するモデルの予測値を取得し、
 前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力し、
 前記判定基準を取得し、
 前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示すモデル分析方法。
(Appendix 8)
Get the model's predicted value for the input data,
outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
obtain the judgment criteria;
A model analysis method for extracting predicted values corresponding to prediction errors based on the determination criteria and displaying the predicted values on the graph.
 (付記9)
 入力データに対するモデルの予測値を取得し、
 前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力し、
 前記判定基準を取得し、
 前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す処理をコンピュータに実行させるプログラムを記録した記録媒体。
(Appendix 9)
Get the model's predicted value for the input data,
outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
obtain the judgment criteria;
A recording medium having recorded thereon a program for extracting predicted values corresponding to prediction errors based on the determination criteria and causing a computer to execute processing shown on the graph.
 以上、実施形態及び実施例を参照して本開示を説明したが、本開示は上記実施形態及び実施例に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present disclosure has been described above with reference to the embodiments and examples, the present disclosure is not limited to the above embodiments and examples. Various changes can be made to the structure and details of the present disclosure that can be understood by those skilled in the art within the scope of the present disclosure.
 1、1x モデル生成システム
 2、2x 表示装置
 3、3x 入力装置
 7 端末装置
 100 モデル生成装置
 112 プロセッサ
 121 訓練データDB
 122 モデル訓練部
 123 モデルDB
 124 評価用データDB
 125 予測ミス分析部
 126 評価情報出力部
1, 1x Model generation system 2, 2x Display device 3, 3x Input device 7 Terminal device 100 Model generation device 112 Processor 121 Training data DB
122 Model training department 123 Model DB
124 Evaluation data DB
125 Prediction error analysis section 126 Evaluation information output section

Claims (9)

  1.  入力データに対するモデルの予測値を取得する予測値取得手段と、
     前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力する出力手段と、
     前記判定基準を取得する基準取得手段と、
     前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す抽出手段と、
     を備えるモデル分析装置。
    Predicted value obtaining means for obtaining a predicted value of the model for input data;
    Output means for outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
    Criterion acquisition means for acquiring the determination criteria;
    Extracting means for extracting a predicted value that corresponds to a prediction error based on the judgment criterion and showing it on the graph;
    A model analysis device comprising:
  2.  前記評価情報は、前記予測値のグラフ上に表示され、前記予測ミスに該当する予測値を示すマークを含む請求項1に記載のモデル分析装置。 The model analysis device according to claim 1, wherein the evaluation information is displayed on the graph of the predicted values and includes a mark indicating the predicted value corresponding to the prediction error.
  3.  前記判定基準は、前記予測値と前記実測値の誤差の種類を指定する誤差指標、及び、前記予測値を予測ミスと判定するための閾値を規定する情報を含む請求項1又は2に記載のモデル分析装置。 3. The determination criteria include an error index that specifies the type of error between the predicted value and the measured value, and information that defines a threshold for determining the predicted value as a prediction error. Model analysis equipment.
  4.  前記閾値を規定する情報は、前記閾値の基準値を示す情報と、前記閾値を調整するパラメータとを含む請求項3に記載のモデル分析装置。 The model analysis device according to claim 3, wherein the information defining the threshold includes information indicating a reference value of the threshold and a parameter for adjusting the threshold.
  5.  前記評価情報は、指定された誤差指標による前記予測値と前記実測値の誤差と、前記閾値とを示すグラフを含む請求項3又は4に記載のモデル分析装置。 5. The model analysis device according to claim 3, wherein the evaluation information includes a graph showing an error between the predicted value and the measured value based on a specified error index, and the threshold value.
  6.  前記抽出手段は、ユーザにより前記グラフ上の特定の予測値が指定された場合に、当該予測値を予測ミスと判定するように前記判定基準を変更し、変更後の判定基準に基づいて予測ミスに該当する予測値を抽出する請求項1乃至5のいずれか一項に記載のモデル分析装置。 The extraction means changes the determination criteria so that when a specific predicted value on the graph is designated by the user, the predicted value is determined to be a prediction error, and the extraction unit changes the determination criterion so that the predicted value is determined to be a prediction error based on the changed determination criterion. 6. The model analysis device according to claim 1, wherein the model analysis device extracts a predicted value corresponding to .
  7.  前記表示エリアは、予測ミスに該当する予測値から、表示の対象とする予測値を選択するための複数のルールの情報を含み、
     前記評価情報は、ユーザにより選択されたルールに従って選択された予測値を示すマークを含む請求項2に記載のモデル分析装置。
    The display area includes information on a plurality of rules for selecting a predicted value to be displayed from predicted values corresponding to a prediction error,
    The model analysis device according to claim 2, wherein the evaluation information includes a mark indicating a predicted value selected according to a rule selected by the user.
  8.  入力データに対するモデルの予測値を取得し、
     前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力し、
     前記判定基準を取得し、
     前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示すモデル分析方法。
    Get the model's predicted value for the input data,
    outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
    obtain the judgment criteria;
    A model analysis method for extracting predicted values corresponding to prediction errors based on the determination criteria and displaying the predicted values on the graph.
  9.  入力データに対するモデルの予測値を取得し、
     前記予測値と実測値とを示すグラフ、及び、予測ミスの判定基準を表示するための表示エリアを含む評価情報を出力し、
     前記判定基準を取得し、
     前記判定基準に基づいて、予測ミスに該当する予測値を抽出し、前記グラフ上に示す処理をコンピュータに実行させるプログラムを記録した記録媒体。
    Get the model's predicted value for the input data,
    outputting evaluation information including a graph showing the predicted value and the actual measured value, and a display area for displaying a criterion for determining a prediction error;
    obtain the judgment criteria;
    A recording medium having recorded thereon a program for extracting predicted values corresponding to prediction errors based on the determination criteria and causing a computer to execute processing shown on the graph.
PCT/JP2022/013815 2022-03-24 2022-03-24 Model analysis device, model analysis method, and recording medium WO2023181232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013815 WO2023181232A1 (en) 2022-03-24 2022-03-24 Model analysis device, model analysis method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013815 WO2023181232A1 (en) 2022-03-24 2022-03-24 Model analysis device, model analysis method, and recording medium

Publications (1)

Publication Number Publication Date
WO2023181232A1 true WO2023181232A1 (en) 2023-09-28

Family

ID=88100612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013815 WO2023181232A1 (en) 2022-03-24 2022-03-24 Model analysis device, model analysis method, and recording medium

Country Status (1)

Country Link
WO (1) WO2023181232A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016632A (en) * 2015-06-30 2017-01-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Demand forecasting method, demand forecasting device, and computer readable recording medium recording demand forecasting program
JP2019018755A (en) * 2017-07-19 2019-02-07 株式会社東芝 Abnormality detection device, abnormality detection method, and computer program
CN113705822A (en) * 2020-05-20 2021-11-26 阿里巴巴集团控股有限公司 Automatic modeling method, system, computing device and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016632A (en) * 2015-06-30 2017-01-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Demand forecasting method, demand forecasting device, and computer readable recording medium recording demand forecasting program
JP2019018755A (en) * 2017-07-19 2019-02-07 株式会社東芝 Abnormality detection device, abnormality detection method, and computer program
CN113705822A (en) * 2020-05-20 2021-11-26 阿里巴巴集团控股有限公司 Automatic modeling method, system, computing device and storage medium

Similar Documents

Publication Publication Date Title
US20180260726A1 (en) Analysis apparatus, analysis method, and non-transitory computer readable medium
KR101171539B1 (en) Model optimization system using variable scoring
CN112074915A (en) Visualization of biomedical predictions
US20170046784A1 (en) Method for providing investment decision options
CN102257448B (en) Method and device for filtering signal using switching models
JP7292076B2 (en) Deterioration estimation device, learning device, deterioration estimation method, learning method, deterioration estimation program, and learning program
CN116304250B (en) Intelligent rule engine management method and system based on visual operation
CA3216548A1 (en) Industry specific machine learning applications
JP7318646B2 (en) Information processing device, information processing method, and program
Van Beveren et al. Forecasting fish recruitment in age‐structured population models
Kaibuchi et al. GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series
WO2023181232A1 (en) Model analysis device, model analysis method, and recording medium
CN113688297A (en) Option information display and analysis method, apparatus, device and storage medium
WO2023175921A1 (en) Model analysis device, model analysis method, and recording medium
CN112236786B (en) Future prediction simulation device, method, and recording device
WO2016151616A1 (en) Estimator visualization system
JPH09233700A (en) Method of evaluating reliability on estimation of day maximum demand power
WO2023181245A1 (en) Model analysis device, model analysis method, and recording medium
JP2001142868A (en) Device and method for evaluating output value of neural network and storage medium
WO2020250810A1 (en) Information processing device, information processing method, and program
JP7339063B2 (en) Machine learning program and machine learning device for learning about work processes
WO2023181320A1 (en) Model processing device, model processing method, and recording medium
WO2021106111A1 (en) Learning device, inference device, learning method, inference method, and program
KR20220066652A (en) Dynamic price decision method and dynamic price decision system based on deep learning
WO2023181230A1 (en) Model analysis device, model analysis method, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933373

Country of ref document: EP

Kind code of ref document: A1