WO2023179200A1 - 逆变器及逆变系统 - Google Patents

逆变器及逆变系统 Download PDF

Info

Publication number
WO2023179200A1
WO2023179200A1 PCT/CN2023/073931 CN2023073931W WO2023179200A1 WO 2023179200 A1 WO2023179200 A1 WO 2023179200A1 CN 2023073931 W CN2023073931 W CN 2023073931W WO 2023179200 A1 WO2023179200 A1 WO 2023179200A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
module
bus
switch
along
Prior art date
Application number
PCT/CN2023/073931
Other languages
English (en)
French (fr)
Inventor
吴飞
王晓虎
朱其姚
丁杰
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to AU2023239895A priority Critical patent/AU2023239895A1/en
Priority to KR1020247018567A priority patent/KR20240091335A/ko
Priority to EP23773452.0A priority patent/EP4418521A1/en
Priority to JP2024529258A priority patent/JP2024539433A/ja
Publication of WO2023179200A1 publication Critical patent/WO2023179200A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14325Housings specially adapted for power drive units or power converters for cabinets or racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components

Definitions

  • the utility model relates to the field of inverter devices, in particular to an inverter and an inverter system.
  • the inverters of photovoltaic systems are mainly centralized inverters and string inverters.
  • string inverters have obvious advantages in MPPT optimization, but their decentralized layout has the disadvantages of inconvenient installation and maintenance and long cable paths and high losses.
  • the main purpose of the utility model is to propose an inverter and an inverter system, aiming to reduce the amount of cables used in the inverter and improve the safety and maintainability of the inverter operation.
  • an inverter which includes:
  • the inverter module has a first direction and a second direction that are perpendicular to each other.
  • the inverter module is provided with a DC input end and an AC output end.
  • the DC input end and the AC output end are along the The first direction is distributed on both sides of the inverter module;
  • a power distribution unit includes a DC module and an AC module, the DC module and the AC module are arranged at the same end of the inverter module along the second direction;
  • the DC input end faces the power distribution unit
  • the AC output end faces the power distribution unit
  • the DC module is electrically connected to the DC input end
  • the AC module is electrically connected to the AC output end. connect.
  • the DC input end faces the power distribution unit
  • the AC output end faces the power distribution unit
  • the DC module includes a DC switch and a DC bus
  • the AC module includes an AC switch and an AC bus
  • the DC switch is electrically connected to the DC input terminal through the DC bus, and the AC output terminal is electrically connected to the AC bus through the AC switch.
  • the DC module further includes a DC merging cabinet
  • the AC module further includes an AC merging cabinet
  • the DC combining cabinet and the AC combining cabinet are arranged side by side along the first direction, the DC combining cabinet is located on the side where the AC output end is located, and the AC combining cabinet is located on the side where the DC input end is located;
  • the DC switch and the AC switch are each independently arranged in the DC bus cabinet, and the DC bus bar and the AC bus bar are each independently arranged in the AC bus cabinet.
  • the DC bus and the AC bus are arranged along the second direction, and the AC bus is located on a side of the DC bus away from the inverter module.
  • the inverter module also has a third direction perpendicular to the first direction and the second direction, and the DC switch and the AC switch are arranged along the third direction.
  • the present invention proposes an inverter system.
  • the inverter system includes a base body and at least two inverters as described above.
  • the at least two inverters are arranged in a third direction and arranged on the inverter.
  • the third direction is perpendicular to the first direction and the second direction.
  • the inverters are provided in two rows, the two rows of inverters are arranged symmetrically and at intervals, the DC input terminals of the two rows of inverters face each other, and the AC input terminals of the two rows of inverters face each other. Contrary to each other.
  • the inverter module is slidingly connected to the base body, so that the inverter module is detachable relative to the base body.
  • a slide rail is provided on the base body, a slide block is provided on the inverter module, and the inverter module slides with the slide rail through the slide block.
  • a limiter is provided at the end of the slide rail, and the slider can abut against the limiter to position the inverter module on the base body.
  • the inverter module forms a first end and a second end along the second direction, and the first end is closer to the power distribution unit than the second end;
  • a first cooling air duct is provided in the base body, and the flow direction of the first cooling air duct is: flowing into the base body along the first direction corresponding to the first end, and flowing into the base body along the second direction corresponding to the first end. The second end flows out of the matrix.
  • a second heat dissipation air duct is provided in the base body, the flow direction of the second heat dissipation air duct is parallel to the first direction and/or the third direction, and the second heat dissipation air duct corresponds to the Describe the power distribution unit.
  • the flow direction of the second cooling air duct is: flowing through the base along the first direction or the third direction; or,
  • the flow direction of the second cooling air duct is to form a circular flow along the first direction and the third direction; a heat exchanger is provided on the base body, and the cooling end of the heat exchanger is located on the second In the cooling air duct, the heating end of the heat exchanger is located outside the base.
  • the overall structure of the inverter can be made compact; at the same time, by setting the DC input end and AC module of the inverter module
  • the output ends are all facing the power distribution unit, which can make the DC wiring and AC wiring between the inverter module, DC module and AC module achieve a vertical connection effect, thereby reducing the amount of cables caused by the cable bending radius, making the inverter
  • the overall cable consumption of the inverter is small; and the reduced cable bending radius can further reduce the distance between the inverter module and the power distribution unit, reduce the installation center of gravity of the inverter module, and thus improve the safety of staff operations. and maintainability.
  • Figure 1 is a schematic structural diagram of an embodiment of the inverter system of the present invention.
  • Figure 2 is a schematic structural diagram of another embodiment of the inverter system of the present invention.
  • FIG 3 is a schematic structural diagram of the inverter of the inverter system in Figure 1;
  • Figure 4 is a schematic structural diagram of the inverter of the inverter system in Figure 1 from another perspective;
  • Figure 5 is a schematic structural diagram of the sliding inverter and base body of the inverter system in Figure 1;
  • Figure 6 is a schematic structural diagram of the inverter and the base sliding in the inverter system of Figure 1 from another perspective;
  • Figure 7 is a schematic structural diagram of the first cooling air duct of the inverter system in Figure 1;
  • Figure 8 is a schematic structural diagram of the second cooling air duct of the inverter system in Figure 1.
  • the embodiments of the present invention involve directional indications (such as up, down, left, right, front, back%), then the directional indications are only used to explain the position of a certain posture (as shown in the accompanying drawings). (shown) relative positional relationship, movement, etc. between the components. If the specific posture changes, the directional indication will also change accordingly.
  • the utility model provides an inverter 10.
  • the inverter 10 includes an inverter module 11 and a power distribution unit.
  • the inverter module 11 has a first direction and a second direction that are perpendicular to each other. 11 is provided with a DC input terminal 111 and an AC output terminal 112. The DC input terminal 111 and the AC output terminal 112 are distributed on both sides of the inverter module 11 along the first direction; the power distribution unit includes a DC module 12 and an AC module 13.
  • the DC module 12 and AC module 13 are arranged at the same end of the inverter module 11 along the second direction; wherein, the DC input terminal 111 faces the power distribution unit, the AC output terminal 112 faces the power distribution unit, and the DC module 12 is electrically connected to the DC input terminal 111.
  • the AC module 13 is electrically connected to the AC output terminal 112 .
  • the X direction is the first direction
  • the Z direction is the second direction
  • the Y direction is the third direction.
  • the following description of directions and coordinates may refer to Figure 1.
  • the first direction is the front-to-back direction
  • the second direction is the up-down direction
  • the third direction is the left-right direction for illustration.
  • the inverter 10 composed of an inverter module 11 and a power distribution unit has a two-layer structure.
  • the inverter module 11 is placed on the upper floor, and the power distribution units, namely, the DC module 12 and the AC module 13 are placed on the lower floor.
  • the input end of the DC module 12 is connected to external DC equipment, such as a combiner box, energy storage equipment, etc.
  • the output end of the DC module 12 is connected to the DC input end 111 of the inverter module 11
  • the input end of the AC module 13 is connected to the inverter module 11
  • the AC output terminal 112 of the AC module 13 is connected to an external load or transformer.
  • the inverter module 11 is a module that converts the input direct current into alternating current.
  • the overall structure of the inverter 10 can be made compact; at the same time, by setting the DC input of the inverter module 11
  • the terminal 111 and the AC output terminal 112 are both facing the power distribution unit, that is, the DC output terminal and the AC output terminal 112 are arranged in the up and down direction (the second direction).
  • the inverter 10 can make the DC connection and AC connection between the inverter module 11, the DC module 12 and the AC module 13
  • the cables achieve the effect of vertical connection, thereby reducing the amount of cables caused by the cable bending radius, so that the overall cable consumption of the inverter 10 is less; and the reduced cable bending radius can further reduce the size of the inverter module 11
  • the distance between the inverter module 11 and the power distribution unit reduces the installation center of gravity of the inverter module 11, thereby improving the safety and maintainability of the staff's operation.
  • the DC module 12 includes a DC switch 122 and a DC bus 123 .
  • the AC module 13 includes an AC switch 132 and an AC bus 133 .
  • the DC switch 122 communicates with the DC input through the DC bus 123 .
  • the AC output terminal 112 is electrically connected to the AC bus 133 through the AC switch 132 .
  • the input end of the DC module 12 is the DC switch 122, and the output end of the DC module 12 is the DC bus 123.
  • the DC switch 122 is connected to the DC bus 123.
  • the DC module 12 also includes a DC connection cable 124.
  • the busbar 12 is connected to the DC input terminal 111 of the inverter module 11 by a DC connection cable 124;
  • the input terminal of the AC module 13 is the AC switch 132, and the output terminal of the AC module 13 is the AC busbar 133.
  • the AC switch 132 is connected to the AC busbar 133.
  • the AC module 13 also includes an AC connection cable 134, and the AC switch 132 is connected to the AC output end 112 of the inverter module 11 by the AC connection cable 134.
  • external DC equipment is connected to DC switch 122 through a DC input cable.
  • the DC switch 122 may be a circuit breaker/load switch, and the AC switch 132 may be a fuse combination switch. After the current is input from the external DC equipment, it passes through the DC circuit breaker/load switch in the DC module 12 and is connected in series with the DC bus 123 (copper bar) before entering the DC input end 111 of the inverter module 11, and then from the inverter module 11. The AC output terminal 112 is output to the fuse combination switch of the AC module 13, and finally enters the AC combining cabinet 131 for converging through the AC bus bar 133 (copper bar).
  • the amount of cables caused by the bending radius of the DC connecting cable 124 and the AC connecting cable 134 can be reduced, so that the inverter module 11
  • the overall cable consumption is small; and the bending radius of the DC connecting cable 124 and the AC connecting cable 134 is reduced, which can further reduce the distance between the inverter module 11 and the power distribution unit and reduce the installation center of gravity of the inverter module 11 , thereby improving the safety and maintainability of staff operations.
  • the DC module 12 further includes a DC combiner cabinet 121
  • the AC module 13 further includes an AC combiner cabinet 131; the DC combiner cabinet 121 and the AC combiner cabinet 131
  • the first direction is arranged side by side.
  • the DC merging cabinet 121 is located on the side where the AC output terminal 112 is located, and the AC merging cabinet 131 is located on the side where the DC input terminal 111 is located.
  • the DC switch 122 and the AC switch 132 are each independently provided on the DC merging cabinet 121 Inside, the DC bus 123 and the AC bus 133 are independently installed in the AC bus cabinet 131 .
  • the DC combiner cabinet 121 and the AC combiner cabinet 131 are combined in the front and rear directions, and the AC module 13 is located above both the DC combiner cabinet 121 and the AC combiner cabinet 131 .
  • the DC combiner cabinet 121 is provided with an openable and closable movable door on the side away from the AC combiner cabinet 131 to cover or expose the DC combiner cabinet 121 .
  • the DC bus 123 and the AC bus 133 are arranged along the second direction, and the AC bus 133 is located on the side of the DC bus 123 away from the inverter module 11 .
  • the DC bus 123 is arranged at the rear of the DC bus cabinet 121 and in the upper space in the AC bus cabinet 131 , that is, the DC bus 123 and the AC bus 133 are installed together in the AC bus cabinet 131 , and the DC bus 123 is installed in the AC bus cabinet 131 .
  • Bank 123 is located above AC bus 133 .
  • a partition can be installed between them.
  • the DC switch 122 is positioned slightly higher than the AC switch 132 .
  • the AC switch 132 fuse combination switch
  • has a top-in and bottom-out connection method so the AC bus cabinet 131 is arranged behind the DC bus cabinet 121.
  • the fuse combination switch After the fuse combination switch comes out, it directly enters the AC bus cabinet 131 and is connected to the AC busbar 133. , making the path the shortest while avoiding the intersection of the AC path and the DC path.
  • the DC input terminal 111 of the inverter module 11 is designed on the rear side
  • the AC output terminal 112 of the inverter module 11 is designed on the front side. In this way, the design can match the device layout below, so that the output terminal of the DC module 12 and The wiring path between the input terminal of the AC module 13 and the inverter module 11 is the shortest.
  • the inverter module 11 also has a third direction perpendicular to the first direction and the second direction, and the DC switch 122 and the AC switch 132 are arranged along the third direction.
  • two DC switches 122 may be provided, and the two DC switches 122 are arranged in the middle.
  • Two AC switches 132 may be provided, and the two AC switches 132 are arranged on the left and right sides of the two DC switches 122 . With this arrangement, the AC switch 132 and the DC switch 122 can be staggered to avoid cross-wiring.
  • the utility model also proposes an inverter system 100.
  • the inverter system 100 includes a base 50 and There are at least two inverters 10.
  • the specific structure of the inverters 10 refers to the above-mentioned embodiments. Since the inverter system 100 adopts all the technical solutions of all the above-mentioned embodiments, it at least has the advantages brought by the technical solutions of the above-mentioned embodiments. All the beneficial effects will not be repeated here.
  • at least two inverters 10 are arranged on the base 50 along a third direction, and the third direction is perpendicular to the first direction and the second direction.
  • the base 50 includes a platform 51 located at the bottom and a support frame 52 connected to the platform 51 .
  • the platform 51 is used to carry multiple inverters 10
  • the support frame 52 forms multiple structural spaces for installing each inverter 10 on the platform 51 .
  • the outside of the support frame 52 can be enclosed by a hoarding, so that a relatively closed space is formed inside the base 50 to protect the inverter 10 to meet the needs of the inverter 10 for different IP levels (protection levels, including dustproof and waterproof). etc.) requirements.
  • the inverter 10 is provided with two rows.
  • the two rows of inverters 10 are symmetrically arranged and spaced apart.
  • the DC input terminals 111 of the two rows of inverters 10 face each other.
  • the AC input terminals are opposite to each other.
  • the plurality of inverters 10 in each row are arranged sequentially in the left and right direction, and the two rows of inverters 10 are arranged front to back, and there is a gap between the two rows of inverters 10 to reserve wiring space.
  • the AC output terminals 112 of each row of inverters 10 are located outside the base 50
  • the DC input terminals 111 of each row of inverters 10 are located inside the base 50 .
  • Such an arrangement allows the inverter 10 to match the device layout of the power distribution unit below, so that the DC switch 122 and the AC switch 132 are arranged outside the base body 50, which facilitates workers to directly operate the switching devices outside the base body 50. This improves the safety and maintainability of the staff's operations.
  • the wiring path between the output end of the DC module 12 and the input end of the AC module 13 and the inverter module 11 can be minimized, thereby reducing the amount of cables.
  • the base body 50 in this embodiment can adopt the external dimensions of a standard 20-foot container to meet transportation requirements.
  • this embodiment uses two rows of inverters 10 to be placed symmetrically, as shown in Figure 1 .
  • a single row of inverters 10 may also be placed on the base 50, as shown in Figure 2.
  • the inverter module 11 is slidingly connected to the base 50 so that the inverter module 11 is detachable relative to the base 50 .
  • the base 50 includes a platform 51 and a support frame 52 connected to the platform 51 , and the inverter module 11 is detachably installed on the support frame 52 .
  • the inverter module 11 and the support frame The disassembly and assembly method of 52 is sliding connection. In this way, it is convenient for workers to quickly disassemble and assemble the inverter module 11 on the base body 50 , and it is also convenient for quick replacement and maintenance of the inverter module 11 on the base body 50 .
  • the base 50 is provided with a slide rail 53
  • the inverter module 11 is provided with a slider 14 .
  • the inverter module 11 slides with the slide rail 53 through the slider 14 .
  • the inverter module 11 and the support frame 52 are slidingly connected.
  • the upper and lower surfaces of the support frame 52 and the inverter module 11 can be provided with sliding pairs to ensure that each inverter 10 and the base body of the inverter system 100 are properly connected during transportation. Stability between 50.
  • at least one sliding pair can also be used on the top or bottom of the inverter module 11 or on both sides.
  • a limiter 54 is provided at the end of the slide rail 53 , and the slider 14 can abut against the limiter 54 to position the inverter module 11 on the base 50 .
  • the limiting member 54 may be a limiting block structure in which the end of the slide rail 53 protrudes perpendicularly to the extension direction of the slide rail 53 .
  • the slider 14 on the inverter 10 will contact the limiter 54 at the end of the slide rail 53 to stop the inverter 10 to ensure that it is in normal position. There will be no problem of the inverter module 11 slipping under working conditions and during transportation.
  • both ends of the slide rail 53 can be provided with limiters 54.
  • the limiter 54 at one end of the slide rail 53 is a fixed structure
  • the limiter 54 at the other end of the slide rail 53 is a movable structure. The movable limit is opened when the inverter 10 is disassembled and assembled, and fixed when the inverter 10 is used normally.
  • the inverter module 11 forms a first end and a second end along the second direction, and the first end is closer to the power distribution unit than the second end; a first heat sink is provided in the base 50
  • the flow direction of the air duct 55 and the first cooling air duct 55 is: flowing into the base body 50 along the first direction corresponding to the first end, and flowing out of the base body 50 along the second direction corresponding to the second end.
  • the base 50 includes a platform 51 and a support frame 52 connected to the platform 51 .
  • the outer side of the support frame 52 can be enclosed by a hoarding, so that a relatively closed space is formed inside the base 50 to protect the inverter 10 .
  • the inverter 10 needs to dissipate heat.
  • the heat dissipation structure includes a first heat dissipation air duct 55 that individually dissipates heat to the inverter module 11 .
  • the first cooling air duct 55 can be separated by a baffle in the internal space of the base 50 , and a first air inlet and a first air outlet of the first cooling air duct 55 are provided on the surface of the base 50 , where the first air inlet is located
  • the base 50 corresponds to the side of the first end of the inverter module 11, and the first air outlet is located on the top surface of the base 50 corresponding to the second end of the inverter module 11; at the same time, a first fan can be installed in the first cooling air duct 55 to limit The air flow direction in the first cooling air duct 55 is determined. In this way, the first cooling air duct 55 forms a bottom air inlet and top air outlet mode, which can effectively dissipate heat to the inverter module 11 and avoid the thermal influence of the air outlets between adjacent inverters 10 .
  • a second cooling air duct 56 is provided in the base 50 .
  • the flow direction of the second cooling air duct 56 is parallel to the first direction and/or the third direction.
  • the second cooling air duct 56 corresponds to Power distribution unit.
  • the heat dissipation structure of the base 50 also includes a second heat dissipation air channel 56 for separately dissipating heat to the power distribution unit.
  • the second cooling air duct 56 accelerates the air flow around the power distribution unit, thereby effectively dissipating heat of the power distribution unit.
  • the second cooling air duct 56 is arranged horizontally, while the first air duct is in a bottom-in-top-out manner. That is to say, the system structural layout of this solution uses a vertical arrangement of two air duct spaces in the form of heat dissipation, which can maximize Avoid the coupling influence of the two cooling air ducts.
  • the flow direction of the second heat dissipation air channel 56 is: flowing through the base body 50 along the first direction or the third direction.
  • the second heat dissipation air duct 56 adopts a straight ventilation form, and some air openings enter and exit in a horizontal direction. That is, the second air inlet and the second air outlet of the second heat dissipation air duct 56 are respectively located at opposite ends of the base body 50 .
  • a second fan in the second cooling air duct 56 so that outside air enters the second cooling air duct 56 and then flows out, effective heat dissipation of the power distribution unit can be achieved.
  • such an arrangement can prevent the hot air from the power distribution unit from affecting the heat dissipation effect of the inverter module 11 .
  • the flow direction of the second cooling air channel 56 is to form a circular flow along the first direction and the third direction; a heat exchanger 57 is provided on the base 50, and the cooling end of the heat exchanger 57 is Located in the second cooling air duct 56 , the heating end of the heat exchanger 57 is located outside the base 50 .
  • the second cooling air duct 56 takes the form of a heat exchanger 57 .
  • the second heat dissipation air channel 56 forms a closed-loop air channel in the internal space of the base body 50 .
  • a heat exchanger 57 is provided on the base body 50 corresponding to the second heat dissipation air channel 56 .
  • the heat exchanger 57 can be installed at both ends of the base 50 along the third direction; in another specific embodiment, the inverter system 100 includes two rows of spaced apart heat exchangers. In the case of inverters 10 , the heat exchanger 57 can also be installed at an inner position of the aisle between two rows of inverters 10 .
  • the second cooling air duct 56 adopts the form of direct ventilation or the form of heat exchanger 57 depends on the IP level requirements of the inverter system 100 . Understandably, the heat exchanger 57 form can be Meet the higher requirements for IP level of the inverter system 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

一种逆变器及逆变系统,其中,逆变器包括逆变模块、配电单元,逆变模块具有相互垂直的第一方向和第二方向,逆变模块设置有直流输入端和交流输出端,直流输入端和交流输出端沿第一方向分布于逆变模块的两侧;配电单元包括直流模块和交流模块,直流模块和交流模块设置于逆变模块沿第二方向的同一端;其中,直流输入端朝向配电单元,交流输出端朝向配电单元,直流模块与直流输入端电连接,交流模块与交流输出端电连接。本实用新型技术方案能够减少逆变器的线缆用量,提高对逆变器操作的安全性和可维护性。

Description

逆变器及逆变系统
本申请要求于2022年03月25日提交中国专利局、申请号为202220682108.3、发明名称为“逆变器及逆变系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及逆变装置领域,特别涉及一种逆变器及逆变系统。
背景技术
目前,光伏系统的逆变器以集中式逆变器和组串式逆变器为主。对大型地面电站而言,组串式逆变器在MPPT寻优方面有明显优势,但其分散式布置方式相对而言存在安装、维护不方便及线缆路径长损耗大的缺陷。
发明内容
本实用新型的主要目的是提出一种逆变器及逆变系统,旨在减少逆变器的线缆用量,提高对逆变器操作的安全性和可维护性。
为实现上述目的,本实用新型提出一种逆变器,所述逆变器包括:
逆变模块,所述逆变模块具有相互垂直的第一方向和第二方向,所述逆变模块设置有直流输入端和交流输出端,所述直流输入端和所述交流输出端沿所述第一方向分布于所述逆变模块的两侧;
配电单元,所述配电单元包括直流模块和交流模块,所述直流模块和所述交流模块设置于所述逆变模块沿所述第二方向的同一端;
其中,所述直流输入端朝向所述配电单元,所述交流输出端朝向所述配电单元,所述直流模块与所述直流输入端电连接,所述交流模块与所述交流输出端电连接。
可选地,所述直流输入端朝向所述配电单元,所述交流输出端朝向所述配电单元。
可选地,所述直流模块包括直流开关和直流汇流排,所述交流模块包括交流开关和交流汇流排;
所述直流开关通过所述直流汇流排与所述直流输入端电连接,所述交流输出端通过所述交流开关与所述交流汇流排电连接。
可选地,所述直流模块还包括直流汇流柜,所述交流模块还包括交流汇流柜;
所述直流汇流柜和交流汇流柜沿所述第一方向并排设置,所述直流汇流柜位于所述交流输出端所在的一侧,所述交流汇流柜位于所述直流输入端所在的一侧;
所述直流开关和所述交流开关各自独立地设置于所述直流汇流柜内,所述直流汇流排和所述交流汇流排各自独立地设置于所述交流汇流柜内。
可选地,所述直流汇流排和所述交流汇流排沿所述第二方向排布,所述交流汇流排位于所述直流汇流排背离所述逆变模块的一侧。
可选地,所述逆变模块还具有与所述第一方向和所述第二方向垂直的第三方向,所述直流开关和所述交流开关沿所述第三方向排布。
为实现上述目的,本实用新型提出一种逆变系统,所述逆变系统包括基体和至少两个如上所述的逆变器,所述至少两个逆变器沿第三方向排列设置于所述基体上,所述第三方向垂直于所述第一方向和所述第二方向。
可选地,所述逆变器设置有两排,所述两排逆变器对称且间隔设置,所述两排逆变器的直流输入端相向,所述两排逆变器的交流输入端相背。
可选地,所述逆变模块与所述基体滑动连接,以使所述逆变模块相对所述基体可拆卸。
可选地,所述基体上设置有滑轨,所述逆变模块上设置有滑块,所述逆变模块通过所述滑块与所述滑轨滑动配合。
可选地,所述滑轨的端部设置有限位件,所述滑块可与所述限位件抵接,以使所述逆变模块器定位于所述基体上。
可选地,所述逆变模块沿所述第二方向形成第一端和第二端,所述第一端相较所述第二端靠近于所述配电单元;
所述基体内设置有第一散热风道,所述第一散热风道的流向为:沿所述第一方向对应所述第一端流入所述基体,并沿所述第二方向对应所述第二端流出所述基体。
可选地,所述基体内设置有第二散热风道,所述第二散热风道的流向平行于所述第一方向和/或所述第三方向,所述第二散热风道对应所述配电单元。
可选地,所述第二散热风道的流向为:沿所述第一方向或所述第三方向贯穿所述基体流动;或者,
所述第二散热风道的流向为:沿所述第一方向和所述第三方向形成循环流动;所述基体上设置有换热器,所述换热器的制冷端位于所述第二散热风道内,所述换热器的制热端位于所述基体外。
本实用新型技术方案中,通过将配电单元即直流模块和交流模块共同放置于逆变模块的同一端,能够使逆变器整体结构紧凑;同时,通过设置逆变模块的直流输入端和交流输出端均朝向配电单元,能够使逆变模块与直流模块和交流模块之间的直流接线和交流接线达到垂直连接的效果,进而减小因线缆弯曲半径产生的线缆用量,使得逆变器的整体线缆用量少;而线缆弯曲半径减小,可进一步减小逆变模块与配电单元之间的距离,降低逆变模块的安装重心,从而能够提高工作人员操作的安全性与可维性。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本实用新型逆变系统一实施例的结构示意图;
图2为本实用新型逆变系统另一实施例的结构示意图;
图3为图1逆变系统的逆变器的结构示意图;
图4为图1逆变系统的逆变器另一视角的结构示意图;
图5为图1逆变系统的逆变器与基体滑动的结构示意图;
图6为图1逆变系统的逆变器与基体滑动另一视角的结构示意图;
图7为图1逆变系统的第一散热风道的结构示意图;
图8为图1逆变系统的第二散热风道的结构示意图。
附图标号说明:
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明,若本实用新型实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本实用新型实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各 个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
本实用新型提出一种逆变器10。
在本实用新型实施例中,如图1和4所示,该逆变器10包括逆变模块11、配电单元,逆变模块11具有相互垂直的第一方向和第二方向,逆变模块11设置有直流输入端111和交流输出端112,直流输入端111和交流输出端112沿第一方向分布于逆变模块11的两侧;配电单元包括直流模块12和交流模块13,直流模块12和交流模块13设置于逆变模块11沿第二方向的同一端;其中,直流输入端111朝向配电单元,交流输出端112朝向配电单元,直流模块12与直流输入端111电连接,交流模块13与交流输出端112电连接。
需要说明的是,图1中X方向为第一方向,Z方向为第二方向,Y方向为第三方向,下面关于方向和坐标的描述可参照图1所示。为便于描述,下面以第一方向为前后方向,第二方向为上下方向,第三方向为左右方向进行示例说明。
具体地,由逆变模块11和配电单元组成的逆变器10为二层结构,逆变模块11放置于上层,配电单元即直流模块12和交流模块13放置于下层。其中,直流模块12的输入端连接外部直流设备,如汇流箱、储能设备等,直流模块12的输出端连接逆变模块11的直流输入端111;交流模块13的输入端连接逆变模块11的交流输出端112,交流模块13的输出端连接外部负载或变压器。而逆变模块11是将输入的直流电转换成交流电的模块。通过上述设置,可实现将外部直流设备的直流电转换成交流电输出至外部负载的功能。
本技术方案中,通过将配电单元即直流模块12和交流模块13共同放置于逆变模块11的同一端,能够使逆变器10整体结构紧凑;同时,通过设置逆变模块11的直流输入端111和交流输出端112均朝向配电单元,即将直流输出端和交流输出端112沿上下方向(第二方向)设置,相较于将直流输出端和交流输出端112沿水平方向(第一方向)设置,本逆变器10能够使逆变模块11与直流模块12和交流模块13之间的直流接线和交流接 线达到垂直连接的效果,进而减小因线缆弯曲半径产生的线缆用量,使得逆变器10的整体线缆用量少;而线缆弯曲半径减小,可进一步减小逆变模块11与配电单元之间的距离,降低逆变模块11的安装重心,从而能够提高工作人员操作的安全性与可维性。
在一实施例中,请参阅图3至4,直流模块12包括直流开关122和直流汇流排123,交流模块13包括交流开关132和交流汇流排133;直流开关122通过直流汇流排123与直流输入端111电连接,交流输出端112通过交流开关132与交流汇流排133电连接。
具体地,直流模块12的输入端即直流开关122,直流模块12的输出端即直流汇流排123,直流开关122与直流汇流排123连接,另外,直流模块12还包括直流连接线缆124,直流汇流排12由直流连接线缆124连接于逆变模块11的直流输入端111;交流模块13的输入端即交流开关132,交流模块13的输出端即交流汇流排133,交流开关132与交流汇流排133连接,另外,交流模块13还包括交流连接线缆134,交流开关132由交流连接线缆134连接于逆变模块11的交流输出端112。此外,外部直流设备通过直流输入电缆连接至直流开关122。
其中,直流开关122可为断路器/负荷开关,交流开关132可为熔丝组合开关。电流从外部直流设备输入后经直流模块12中的直流断路器/负荷开关后用直流汇流排123(铜排)进行串联后进入逆变模块11的直流输入端111,然后从逆变模块11的交流输出端112输出到交流模块13的熔丝组合开关,最后进入交流汇流柜131通过交流汇流排133(铜排)进行汇流。
其中,通过逆变模块11与直流模块12及交流模块13之间的垂直连接,能够减小直流连接线缆124和交流连接线缆134因弯曲半径产生的线缆用量,使得逆变模块11的整体线缆用量少;而直流连接线缆124和交流连接线缆134的弯曲半径减小,可进一步减小逆变模块11与配电单元之间的距离,降低逆变模块11的安装重心,从而能够提高工作人员操作的安全性与可维性。
在一实施例中,请参阅图3至4,直流模块12还包括直流汇流柜121,交流模块13还包括交流汇流柜131;直流汇流柜121和交流汇流柜131沿 第一方向并排设置,直流汇流柜121位于交流输出端112所在的一侧,交流汇流柜131位于直流输入端111所在的一侧;直流开关122和交流开关132各自独立地设置于直流汇流柜121内,直流汇流排123和交流汇流排133各自独立地设置于交流汇流柜131内。
具体地,直流汇流柜121和交流汇流柜131沿前后方向并柜,交流模块13位于直流汇流柜121和交流汇流柜131二者的上方。其中,直流汇流柜121在背离交流汇流柜131的一侧设置有可开闭的活动门,以将直流汇流柜121封盖或显露。通过将直流开关122和交流开关132共同安装在直流汇流柜121内,能够方便工作人员在逆变器10的直流汇流柜121所在的一侧直接操作开关器件,可提高工作人员操作的安全性与可维性。
在一实施例中,请参阅图4,直流汇流排123和交流汇流排133沿第二方向排布,交流汇流排133位于直流汇流排123背离逆变模块11的一侧。
具体地,直流汇流排123布置在直流汇流柜121的后部、交流汇流柜131内的上方空间,也即,直流汇流排123和交流汇流排133共同安装在交流汇流柜131内,而直流汇流排123位于交流汇流排133的上方。为防止二者互相干扰,可在二者之间设置隔板隔离。对应地,直流开关122的位置稍高于交流开关132。交流开关132(熔丝组合开关)为上进下出的连接方式,因此将交流汇流柜131布置在直流汇流柜121后侧,熔丝组合开关出线后直接进入交流汇流柜131与交流汇流排133连接,使得路径最短,同时避免交流路径与直流路径交叉。另外,逆变模块11的直流输入端111设计在后侧侧面,逆变模块11的交流输出端112设计前侧侧面,这样设计可以与下方的器件布局相匹配,使直流模块12的输出端及交流模块13的输入端与逆变模块11的接线路径最短。
在一实施例中,请参阅图3,逆变模块11还具有与第一方向和第二方向垂直的第三方向,直流开关122和交流开关132沿第三方向排布。
具体地,直流开关122可设置有两个,两个直流开关122居中布置,交流开关132可设置有两个,两个交流开关132布置在两个直流开关122的左右两边。如此设置,可将交流开关132和直流开关122错开,避免交叉接线。
本实用新型还提出一种逆变系统100,该逆变系统100包括基体50和 至少两个逆变器10,该逆变器10的具体结构参照上述实施例,由于本逆变系统100采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,至少两个逆变器10沿第三方向排列设置于基体50上,第三方向垂直于第一方向和第二方向。
具体地,基体50包括位于底部的平台51以及连接于平台51上的支撑架52。平台51用于承载多个逆变器10,支撑架52在平台51上形成有多个用于安装各个逆变器10的结构空间。此外,支撑架52的外侧可由围板围合,使基体50内部形成相对封闭的空间,对逆变器10进行防护,以满足逆变器10对不同IP等级(防护等级,包含防尘、防水等方面)的要求。
在一实施例中,请参阅图1,逆变器10设置有两排,两排逆变器10对称且间隔设置,两排逆变器10的直流输入端111相向,两排逆变器10的交流输入端相背。
具体地,每排的多个逆变器10沿左右方向依次排布,而两排逆变器10前后排布,且两排逆变器10之间留有间距,以便预留走线空间。其中,两排逆变器10中,每排的逆变器10的交流输出端112均位于基体50外侧,相应地,每排的逆变器10的直流输入端111均位于基体50的内侧。如此设置,可使逆变器10与下方配电单元的器件布局相匹配,以将直流开关122和交流开关132布置于基体50的外侧,可便于工作人员在基体50的外侧直接操作开关器件,从而提高工作人员操作的安全性与可维性,同时,可使直流模块12的输出端及交流模块13的输入端与逆变模块11的接线路径最短,减少电缆用量。
本实施例中的基体50可采用标准20尺集装箱的外形尺寸,以满足运输要求。为了在基体50的空间尺寸内实现容量的最大化,本实施例采用两排逆变器10对称放置,如图1所示。在实际运用中,亦可采用基体50上放置单排逆变器10的形式,如图2所示。
在一实施例中,请参阅图5至6,逆变模块11与基体50滑动连接,以使逆变模块11相对基体50可拆卸。
具体地,基体50包括平台51以及连接于平台51上的支撑架52,逆变模块11可拆卸地安装于该支撑架52上。其中,逆变模块11与支撑架 52的拆装方式为滑动连接。如此,可便于工作人员对基体50上的逆变模块11进行快速拆装,也便于对基体50上的逆变模块11进行快速更换、维护。
在一实施例中,请参阅图5至6,基体50上设置有滑轨53,逆变模块11上设置有滑块14,逆变模块11通过滑块14与滑轨53滑动配合。
具体地,逆变模块11与支撑架52采用滑动连接,支撑架52和逆变模块11配合的上下面可均设置滑动副,以保证逆变系统100在运输过程中各个逆变器10与基体50之间的稳定性。当然,实际运用中也可在逆变模块11上面或下面或两侧面使用至少一个滑动副。
在一实施例中,请参阅图5至6,滑轨53的端部设置有限位件54,滑块14可与限位件54抵接,以使逆变模块11定位于基体50上。
具体地,限位件54可为滑轨53端部垂直于滑轨53延伸方向凸起的限位块结构。当将逆变器10沿支撑架52滑入到位后,逆变器10上的滑块14会与滑轨53末端的限位件54抵接,使逆变器10止位,以保证在正常工作状态下和运输过程中不会出现逆变模块11滑脱的问题。其中,滑轨53的两端可均设置限位件54,可以理解地,滑轨53其中一端的限位件54为固定结构,滑轨53另外一端的限位件54为可活动结构,可活动的限位在拆装逆变器10时打开、在正常使用逆变器10时固定。
在一实施例中,请参阅图7,逆变模块11沿第二方向形成第一端和第二端,第一端相较第二端靠近于配电单元;基体50内设置有第一散热风道55,第一散热风道55的流向为:沿第一方向对应第一端流入基体50,并沿第二方向对应第二端流出基体50。
具体地,基体50包括平台51以及连接于平台51上的支撑架52,支撑架52的外侧可由围板围合,使基体50内部形成相对封闭的空间,对逆变器10进行防护。此时,需要对逆变器10进行散热。本实施例中,散热结构包括单独对逆变模块11进行散热的第一散热风道55。第一散热风道55可在基体50内部空间通过设置挡板分隔构造,并且,在基体50表面开设第一散热风道55的第一进风口和第一出风口,其中,第一进风口位于基体50对应逆变模块11第一端的侧面,第一出风口位于基体50对应逆变模块11第二端的顶面;同时,可在第一散热风道55内安装第一风机,以限 定第一散热风道55内的空气流向。如此,使第一散热风道55形成下进风上出风模式,能够对逆变模块11进行有效散热,而且可避免相邻逆变器10间出风口热影响。
在一实施例中,请参阅图8,基体50内设置有第二散热风道56,第二散热风道56的流向平行于第一方向和/或第三方向,第二散热风道56对应配电单元。
本实施例中,基体50的散热结构还包括单独对配电单元进行散热的第二散热风道56。通过第二散热风道56加快配电单元周围的空气流动,能够对配电单元进行有效散热。其中,第二散热风道56水平布置,而第一风道为下进上出的方式,也即,本方案的系统结构布局在散热形式上使用两风道空间垂直布置的方式,可最大程度避免两散热风道的耦合影响。
在一实施例中,第二散热风道56的流向为:沿第一方向或第三方向贯穿基体50流动。
作为一种实施方式,第二散热风道56采用直通风形式,部分风口呈水平方向进出,即第二散热风道56的第二进风口和第二出风口分别位于基体50的相对两端。通过在第二散热风道56内安装第二风机,使外界空气进入第二散热风道56后流出,可实现对配电单元的有效散热。同时,这样的布置可以避免配电单元的热风影响逆变模块11的散热效果。
在一实施例中,请参阅图8,第二散热风道56的流向为:沿第一方向和第三方向形成循环流动;基体50上设置有换热器57,换热器57的制冷端位于第二散热风道56内,换热器57的制热端位于基体50外。
作为一种实施方式,第二散热风道56采用换热器57形式。第二散热风道56在基体50内部空间呈闭环风道,同时,基体50上对应第二散热风道56设置有换热器57。如此,通过内循环形式带走配电单元的热量并在换热器57处进行换热,将热量传递至外界。在一具体实施例中,如图8所示,换热器57可以安装在基体50沿第三方向的两端的位置;在另一具体实施例中,在逆变系统100包括两排间隔设置的逆变器10的情况下,换热器57也可以安装在两排逆变器10之间过道的内侧位置。
其中,第二散热风道56是采用直通风形式,还是采用换热器57形式,取决于逆变系统100的IP等级的要求。可以理解地,换热器57形式能够 满足逆变系统100对IP等级的更高要求。
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的发明构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (13)

  1. 一种逆变器,其特征在于,所述逆变器包括:
    逆变模块,所述逆变模块具有相互垂直的第一方向和第二方向,所述逆变模块设置有直流输入端和交流输出端,所述直流输入端和所述交流输出端沿所述第一方向分布于所述逆变模块的两侧;
    配电单元,所述配电单元包括直流模块和交流模块,所述直流模块和所述交流模块设置于所述逆变模块沿所述第二方向的同一端;
    其中,所述直流输入端朝向所述配电单元,所述交流输出端朝向所述配电单元,所述直流模块与所述直流输入端电连接,所述交流模块与所述交流输出端电连接。
  2. 如权利要求1所述的逆变器,其特征在于,所述直流模块包括直流开关和直流汇流排,所述交流模块包括交流开关和交流汇流排;
    所述直流开关通过所述直流汇流排与所述直流输入端电连接,所述交流输出端通过所述交流开关与所述交流汇流排电连接。
  3. 如权利要求2所述的逆变器,其特征在于,所述直流模块还包括直流汇流柜,所述交流模块还包括交流汇流柜;
    所述直流汇流柜和所述交流汇流柜沿所述第一方向并排设置,所述直流汇流柜位于所述交流输出端所在的一侧,所述交流汇流柜位于所述直流输入端所在的一侧;
    所述直流开关和所述交流开关各自独立地设置于所述直流汇流柜内,所述直流汇流排和所述交流汇流排各自独立地设置于所述交流汇流柜内。
  4. 如权利要求3所述的逆变器,其特征在于,所述直流汇流排和所述交流汇流排沿所述第二方向排布,所述交流汇流排位于所述直流汇流排背离所述逆变模块的一侧。
  5. 如权利要求4所述的逆变器,其特征在于,所述逆变模块还具有与所述第一方向和所述第二方向垂直的第三方向,所述直流开关和所述交流开关沿所述第三方向排布。
  6. 一种逆变系统,其特征在于,所述逆变系统包括基体和至少两个如权利要求1至5中任一项所述的逆变器,所述至少两个逆变器沿第三方向排列设置于所述基体上,所述第三方向垂直于所述第一方向和所述第二方 向。
  7. 如权利要求6所述的逆变系统,其特征在于,所述逆变器设置有两排,所述两排逆变器对称且间隔设置,所述两排逆变器的直流输入端相向,所述两排逆变器的交流输入端相背。
  8. 如权利要求6所述的逆变系统,其特征在于,所述逆变模块与所述基体滑动连接,以使所述逆变模块相对所述基体可拆卸。
  9. 如权利要求8所述的逆变系统,其特征在于,所述基体上设置有滑轨,所述逆变模块上设置有滑块,所述逆变模块通过所述滑块与所述滑轨滑动配合。
  10. 如权利要求9所述的逆变系统,其特征在于,所述滑轨的端部设置有限位件,所述滑块可与所述限位件抵接,以使所述逆变模块器定位于所述基体上。
  11. 如权利要求6所述的逆变系统,其特征在于,所述逆变模块沿所述第二方向形成第一端和第二端,所述第一端相较所述第二端靠近于所述配电单元;
    所述基体内设置有第一散热风道,所述第一散热风道的流向为:沿所述第一方向对应所述第一端流入所述基体,并沿所述第二方向对应所述第二端流出所述基体。
  12. 如权利要求6所述的逆变系统,其特征在于,所述基体内设置有第二散热风道,所述第二散热风道的流向平行于所述第一方向和/或所述第三方向,所述第二散热风道对应所述配电单元。
  13. 如权利要求12所述的逆变系统,其特征在于,所述第二散热风道的流向为:沿所述第一方向或所述第三方向贯穿所述基体流动;或者,
    所述第二散热风道的流向为:沿所述第一方向和所述第三方向形成循环流动;所述基体上设置有换热器,所述换热器的制冷端位于所述第二散热风道内,所述换热器的制热端位于所述基体外。
PCT/CN2023/073931 2022-03-25 2023-01-31 逆变器及逆变系统 WO2023179200A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2023239895A AU2023239895A1 (en) 2022-03-25 2023-01-31 Inverter and inverter system
KR1020247018567A KR20240091335A (ko) 2022-03-25 2023-01-31 인버터 및 인버터 시스템
EP23773452.0A EP4418521A1 (en) 2022-03-25 2023-01-31 Inverter and inverter system
JP2024529258A JP2024539433A (ja) 2022-03-25 2023-01-31 インバータ及びインバータシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220682108.3U CN217428000U (zh) 2022-03-25 2022-03-25 逆变器及逆变系统
CN202220682108.3 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023179200A1 true WO2023179200A1 (zh) 2023-09-28

Family

ID=83181593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073931 WO2023179200A1 (zh) 2022-03-25 2023-01-31 逆变器及逆变系统

Country Status (6)

Country Link
EP (1) EP4418521A1 (zh)
JP (1) JP2024539433A (zh)
KR (1) KR20240091335A (zh)
CN (1) CN217428000U (zh)
AU (1) AU2023239895A1 (zh)
WO (1) WO2023179200A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217428000U (zh) * 2022-03-25 2022-09-13 阳光电源股份有限公司 逆变器及逆变系统
CN219513802U (zh) * 2023-01-16 2023-08-11 阳光电源股份有限公司 一种变电系统的集成架构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130076151A1 (en) * 2011-09-27 2013-03-28 Young Sang BAE Photovoltaic generation system using parallel inverter connected grid
CN104967035A (zh) * 2015-06-11 2015-10-07 沈阳飞驰电气设备有限公司 光伏发电专用逆配变一体化智能集成式预装变电站
CN213960017U (zh) * 2020-08-29 2021-08-13 华为技术有限公司 光伏系统
CN113890003A (zh) * 2021-09-08 2022-01-04 华为数字能源技术有限公司 发电系统
WO2022170578A1 (zh) * 2021-02-10 2022-08-18 华为数字能源技术有限公司 逆变装置及逆变系统
CN217428000U (zh) * 2022-03-25 2022-09-13 阳光电源股份有限公司 逆变器及逆变系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130076151A1 (en) * 2011-09-27 2013-03-28 Young Sang BAE Photovoltaic generation system using parallel inverter connected grid
CN104967035A (zh) * 2015-06-11 2015-10-07 沈阳飞驰电气设备有限公司 光伏发电专用逆配变一体化智能集成式预装变电站
CN213960017U (zh) * 2020-08-29 2021-08-13 华为技术有限公司 光伏系统
WO2022170578A1 (zh) * 2021-02-10 2022-08-18 华为数字能源技术有限公司 逆变装置及逆变系统
CN113890003A (zh) * 2021-09-08 2022-01-04 华为数字能源技术有限公司 发电系统
CN217428000U (zh) * 2022-03-25 2022-09-13 阳光电源股份有限公司 逆变器及逆变系统

Also Published As

Publication number Publication date
JP2024539433A (ja) 2024-10-28
EP4418521A1 (en) 2024-08-21
AU2023239895A1 (en) 2024-05-30
CN217428000U (zh) 2022-09-13
KR20240091335A (ko) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2023179200A1 (zh) 逆变器及逆变系统
CN110875689B (zh) 一种轨道交通双向变流器柜
US10720880B2 (en) Photovoltaic inverter
CN107276426B (zh) 一种积木式电能路由器功率单元结构
CN210608893U (zh) 功率模组、变流器功率模块及风能发电系统
CN203416177U (zh) 一种光伏逆变器
CN208368494U (zh) 模块化多电平换流器半桥功率单元
CN204334295U (zh) 一种模块式ups机柜布局结构
JP3221909U (ja) 直流パワーサプライ
WO2024087882A1 (zh) 增补电柜和储能电站
CN215185880U (zh) 数据中心
CN210350565U (zh) 一种便于安装布线的低压柜
CN110112890B (zh) 一种列车过分相变流器
CN208955438U (zh) 一种具有散热防尘功能的出线柜
CN205946476U (zh) 立体式机房
CN220306962U (zh) 储能合体汇流柜及电池储能系统
CN219937737U (zh) 一种电气柜体单元、电气柜体组合及电气柜体工作组
CN218449875U (zh) 直流供电装置与直流供电系统
CN217769138U (zh) 一种用于储能系统的配电柜
CN214379951U (zh) 一种具有防脱落机柜的母线连接器
CN211183774U (zh) 一种集约简便型四象限高压变频器
CN112350548B (zh) 一种变流器机组及其变流器单元
CN205029553U (zh) 滤波器及风力发电机组
CN221767607U (zh) 储能设备及储能阀塔
CN213027350U (zh) 一种便于散热的母线槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2023239895

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2024529258

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023773452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023773452

Country of ref document: EP

Effective date: 20240515

WWE Wipo information: entry into national phase

Ref document number: 202447040033

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18714073

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023239895

Country of ref document: AU

Date of ref document: 20230131

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247018567

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247018567

Country of ref document: KR