WO2023163279A1 - Distance measurement method and device using ultrasonic waves - Google Patents

Distance measurement method and device using ultrasonic waves Download PDF

Info

Publication number
WO2023163279A1
WO2023163279A1 PCT/KR2022/004886 KR2022004886W WO2023163279A1 WO 2023163279 A1 WO2023163279 A1 WO 2023163279A1 KR 2022004886 W KR2022004886 W KR 2022004886W WO 2023163279 A1 WO2023163279 A1 WO 2023163279A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
frequency
ultrasonic
ultrasonic waves
voltage
Prior art date
Application number
PCT/KR2022/004886
Other languages
French (fr)
Korean (ko)
Inventor
한지희
Original Assignee
한지희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한지희 filed Critical 한지희
Publication of WO2023163279A1 publication Critical patent/WO2023163279A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers

Definitions

  • the present invention relates to a distance measuring method and device using ultrasonic waves, and more particularly, to a distance measuring method and device using ultrasonic waves capable of overcoming a decrease in distance resolution while maintaining a long-distance sensing capability even when a low frequency is used. .
  • Ultrasound is a sound wave of a frequency higher than the audible sound that can be heard by the human ear in the range of 20 Hz to 20 kHz among sound waves, and refers to a sound wave of a frequency that cannot be directly heard by the human ear. It is possible, has a small effect on light reflection, is easy to process, and has the advantage of not having to design a complicated filter, so it is often used for distance measurement or for detecting the presence or absence of an object in front.
  • the distance measurement using ultrasonic waves is to measure the distance by calculating the transmission speed of sound waves from the time interval between the ultrasonic transmission time and the ultrasonic reception time after transmitting the ultrasonic wave and receiving the signal returned after hitting the reflective object.
  • the resolution of the distance that increases as the frequency increases is linearly improved with a relationship of 1/2 of the ultrasound wavelength ( ⁇ ), whereas the signal attenuation due to the increase of frequency is logarithmic. Because of the increase in scale, it is commercially desirable to improve the distance resolution while using a low frequency for the realization of a long-distance ultrasonic distance measurement system.
  • Patent Document 0001 Korean Patent Publication No. 2007-0066136 (2007. 06. 27.) (Distance measuring method and device using ultrasonic waves)
  • Patent Document 0002 Korean Patent Publication No. 2019-0123686 (2019. 11. 01.) (zero-cross detection circuit and sensor device)
  • an object of the present invention is to provide a distance measurement method using ultrasonic waves capable of overcoming a decrease in distance resolution while maintaining a long-distance sensing ability even when a low frequency is used.
  • Another object of the present invention is to provide a distance measuring device using ultrasonic waves that performs the distance measuring method using ultrasonic waves.
  • a distance measuring method using ultrasonic waves for measuring a distance between an ultrasonic sensor and a reflective object using ultrasonic waves transmitted from an ultrasonic sensor having an ultrasonic transmitter and an ultrasonic receiver has Setting each of the PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor; Obtaining a standard approximate distance based on a time of flight (ToF) obtained by using ultrasonic waves of the reference frequency transmitted and reflected by a reflective object; calculating an initial frequency and adjacent frequencies from the reference approximation distance; Calculating a plurality of distances based on ToF of each of the ultrasonic waves measured by sequentially transmitting the ultrasonic wave of the initial frequency and the ultrasonic wave of each of the adjacent frequencies: and calculating a precise distance based on the ToFs do.
  • ToF time of flight
  • the value of the sound speed used in the step of acquiring the reference approximate distance based on the time of flight (ToF) may be used after real-time compensation of temperature or real-time compensation of humidity.
  • the step of calculating the initial frequency and the adjacent frequencies from the reference approximate distance, setting a frequency closest to the reference frequency within the outgoing frequency range among the frequencies constituting the condition of the standing wave as the initial frequency step; and calculating and obtaining at least one adjacent frequency having a different phase based on the initial frequency.
  • the offset phase calculation value for each adjacent frequency is (Here, fside is the number of adjacent frequencies).
  • each of the adjacent frequencies may have phases of ⁇ 10% and ⁇ 20% based on the initial frequency.
  • each of the adjacent frequencies may have a phase of ⁇ 5.56%, ⁇ 11.11%, ⁇ 16.67%, and ⁇ 22.22% based on the initial frequency.
  • the distance measurement method using ultrasonic waves may include checking whether the calculation of the distances corresponds to an error condition; feeding back to the step of acquiring the standard approximate distance if it is checked that the error condition is the case; and if it is checked that the error condition is not the case, calculating a precision distance based on the ToFs.
  • the error condition may be ToF out of measurement range.
  • the error condition may include a case in which the difference between ToF0 and ToF4 is out of the expected time difference due to the difference between f0 and f4.
  • calculating the precise distance based on the ToFs may include determining a signal arriving first as the precise distance.
  • calculating the precision distance based on the ToFs may include determining a value with the smallest ToF as the precision distance.
  • calculating the precision distance based on the ToFs may include determining an average of the ToFs as the precision distance.
  • a distance measuring device using ultrasonic waves for measuring a distance between an ultrasonic sensor and a reflective object by using ultrasonic waves transmitted from an ultrasonic sensor having an ultrasonic transmitter and an ultrasonic receiver.
  • a setting module for setting each of the PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor; an acquisition module for acquiring a reference approximate distance based on a Time Of Flight (ToF) obtained by using ultrasonic waves of the reference frequency transmitted and reflected by a reflective object; a calculation module for calculating an initial frequency and adjacent frequencies from the reference approximation distance; a first distance calculation module for calculating a plurality of distances based on ToF of each of the ultrasonic waves measured by sequentially transmitting the calculated initial frequency ultrasonic waves and ultrasonic waves of adjacent frequencies; and a second distance calculation module that calculates a precise distance based on the ToFs.
  • ToF Time Of Flight
  • the calculation module sets, as an initial frequency, a frequency closest to the reference frequency within the outgoing frequency range among frequencies constituting a condition of a standing wave as an initial frequency, and at least one neighboring frequency having a different phase based on the initial frequency. frequencies can be obtained.
  • the offset phase calculation value for each adjacent frequency is (Here, fside is the number of adjacent frequencies).
  • each of the adjacent frequencies may have phases of ⁇ 10% and ⁇ 20% based on the initial frequency.
  • each of the adjacent frequencies may have a phase of ⁇ 5.56%, ⁇ 11.11%, ⁇ 16.67%, and ⁇ 22.22% based on the initial frequency.
  • the acquisition module may include a zero-cross detector for determining an echo time by detecting a voltage higher than a reference voltage by a specific offset voltage and a voltage lower by a specific offset voltage based on the reference voltage. .
  • the zero-cross detector may include: a first resistor having one end connected to a power supply voltage and the other end to which a reference voltage is applied; a second resistor having one end connected to the reference voltage and the other end to which a ground voltage is applied; A positive terminal to which an ultrasonic reception signal is applied, a negative terminal connected to the first resistor to which a first voltage as high as a specific offset voltage based on the reference voltage is applied, and a size between the ultrasonic reception signal and the first voltage a first voltage comparator having an output terminal outputting a first output voltage according to comparison; And a positive terminal connected to the second resistor to which a second voltage lower than a specific offset voltage based on the reference voltage is applied, a negative terminal to which the ultrasonic reception signal is applied, and the ultrasonic reception signal and the second voltage It may include a second voltage comparator having an output terminal for outputting a second output voltage according to the comparison of the size of the liver.
  • the distance measuring device using ultrasonic waves further includes an error check module that checks whether the calculation of distances by the first distance calculation module corresponds to an error condition, and the second distance calculation The module may calculate a precision distance based on the ToFs if the error condition is checked by the error check module.
  • two zero-cross detectors having a 180° symmetrical structure for the upper and lower voltages of the reference voltage are applied in a ToF detection method for the received signal, and between the ultrasonic transmitter and the reflective target
  • the wave energy incident on the reflective object and the reflected wave energy are overlapped with each other to control constructive interference or resonance to occur, thereby improving reception sensitivity.
  • the present invention provides the phase between the received signal generated in the process of transmitting and receiving different frequencies of f0 to f4 for the same distance. By using two zero-cross detectors that react due to the difference, the resolution can be improved to ⁇ 1/20 of the period.
  • FIG. 1 is a block diagram illustrating a distance measuring device using ultrasonic waves according to an embodiment of the present invention.
  • FIG. 2 is a graph for explaining a standing wave condition and a sound pressure level according to a distance.
  • 3 is a graph for explaining the distance measurement principle of the pulse-echo method.
  • FIG. 4A is a circuit diagram for explaining a general zero-cross detector
  • FIG. 4B is a graph for explaining a waveform by a conventional zero-cross detector that compares only a voltage above or below a reference voltage.
  • FIG. 5A is a circuit diagram for explaining a zero-cross detector according to the present invention
  • FIG. 5B is a graph for explaining a waveform by an improved zero-cross detector that simultaneously compares upper and lower levels of a reference voltage.
  • 6 is a graph for explaining frequency characteristics of an ultrasonic sensor of 40 kHz.
  • FIG. 7 is a diagram showing the code of the Python program for obtaining the fundamental frequency according to the distance.
  • FIG. 8 is a diagram showing a result of 25% phase angle difference frequency calculation at a distance of 0.5 m by the code of the Python program of FIG. 7 .
  • 9 is a graph for explaining a received waveform for each frequency and a detection result by a zero-cross detector.
  • 10A is a flowchart illustrating a method for measuring a distance using ultrasonic waves according to an embodiment of the present invention.
  • FIG. 10B is a flowchart for explaining step S400 of FIG. 10A.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • FIG. 1 is a block diagram illustrating a distance measuring device using ultrasonic waves according to an embodiment of the present invention.
  • a distance measuring device using ultrasonic waves in the case of using four adjacent frequencies is shown.
  • a distance measuring device 100 using ultrasonic waves includes an ultrasonic transmitter 110 that transmits ultrasonic waves to a reflective object and an ultrasonic receiver that receives ultrasonic waves reflected by the reflective object. 120, and a sensor driving unit 130 that calculates a distance to a reflection target through operation control of each of the ultrasonic transmitter 110 and the ultrasonic receiver 120.
  • the ultrasonic transmitter 110 transmits an ultrasonic signal to a reflective object under the control of the sensor driver 130 .
  • the ultrasonic receiving unit 120 receives ultrasonic waves reflected by a reflective object and provides the received ultrasonic waves to the sensor driving unit 130 .
  • the ultrasonic transmitter 110 and the ultrasonic receiver 120 define ultrasonic sensors.
  • the sensor driver 130 includes a setting module 310, an acquisition module 320, a calculation module 330, a first distance calculation module 340, an error check module 350, and a second distance calculation module 360. And, the operation of the ultrasonic transmission unit 110 is controlled so that the frequency of the ultrasonic waves transmitted to the reflective object is changed, and the distance to the reflective object is calculated based on the ultrasonic waves received through the ultrasonic receiver 120.
  • the sensor driver 130 includes a setting module 310, an acquisition module 320, a calculation module 330, a first distance calculation module 340, an error check module 350, and a second distance calculation module.
  • the setting module 310 sets each of the PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor.
  • the acquisition module 320 calculates the Time Of Flight (ToF) of the ultrasonic wave using the ultrasonic reception signal received after the ultrasonic transmission signal transmitted in response to the reference frequency is reflected by the reflective object, and the calculated ToF A reference approximation distance (d ref ) is obtained based on .
  • the reference approximation distance (d ref ) may be calculated using Equation (1) below.
  • the calculation module 330 calculates the initial frequency f0 and adjacent frequencies f1, f2, f3, and f4 from the reference approximate distance d ref . Specifically, the calculation module 330 sets a frequency closest to the reference frequency within the transmission frequency range among frequencies of the ultrasonic reception signal constituting a condition of a standing wave as the initial frequency f0, and Adjacent frequencies f1, f2, f3, and f4 having phases of ⁇ 10% and ⁇ 20%, respectively, based on the frequency f0 are acquired.
  • the standing wave means that the wave is confined in a limited space and vibrates in place.
  • a standing wave is a concept in contrast to a progressive wave, which is a wave traveling in an arbitrary direction in space, and means a wave in which nodes of vibration are fixed. It is also called a stationary wave or a standing wave.
  • the first distance calculation module 340 sequentially transmits ultrasonic waves of the calculated initial frequency f0 and ultrasonic waves of adjacent frequencies f1, f2, f3, and f4 to measure the measured time of flight (Time Of Flight, ToF) calculates a plurality of distances.
  • the error check module 350 checks whether the calculation of the distances by the first distance calculation module 340 is an error condition. That is, the error check module 350 determines an error condition when ToF is out of the measurement range or when the difference between ToF0 and ToF4 is out of the expected time difference due to the difference between f0 and f4.
  • ToF0 is calculated according to ultrasonic transmission and reception of the initial frequency f0
  • ToF1 is calculated according to ultrasonic transmission and reception of the first adjacent frequency f1
  • ToF2 is calculated according to ultrasonic transmission of the second adjacent frequency f2.
  • ToF3 is calculated according to ultrasonic transmission and reception of the third adjacent frequency f3
  • ToF4 is calculated according to ultrasonic transmission and reception of the fourth adjacent frequency f4.
  • the second distance calculation module 360 calculates a precision distance from the ToFs when it is checked that the error condition is not an error condition by the error check module 350.
  • precise distance can be calculated using ToF corresponding to the first arriving signal.
  • the ToF can be calculated as a precision distance using the smallest value.
  • it can be calculated as a precision distance using the average of ToFs.
  • p 0 is the reference sound pressure (20 uPa)
  • p rms is the RMS value of the sound pressure.
  • FIG. 2 is a graph for explaining a standing wave condition and a sound pressure level according to a distance.
  • the sound pressure level gradually decreases as the distance from the sound wave source increases.
  • standing waves appear in the form of apex. That is, the standing wave is actually implemented as (1/2), 1, 1+(1/2), etc. of the wavelength ( ⁇ ) along the X-axis.
  • the higher the frequency the larger the ultrasonic signal propagated in the air decreases in a log-scale as the distance increases. Therefore, in order to detect the distance to an object from a long distance in a non-contact manner, a relatively low ultrasonic frequency must be used. However, due to the low frequency, the distance resolution is degraded and thus the accuracy of the distance cannot be secured. Thus, a contradictory relationship exists between frequency and resolution.
  • the resolution of the distance that increases as the frequency increases is linearly improved with a relationship of 1/2 of the ultrasound wavelength ( ⁇ ), whereas the signal attenuation due to the increase of frequency is logarithmic. -Since it increases with the scale, it is important to improve the distance resolution while using a low frequency for the realization of a long-distance ultrasonic distance measurement system.
  • distance measurement using ultrasonic waves should be able to overcome a decrease in distance resolution while maintaining long-distance sensing capability even when a relatively low frequency is used.
  • a distance resolution similar to that of an ultrasonic signal of 200 kHz to 400 kHz is implemented using 40 kHz ultrasonic waves, while maintaining the characteristic of 40 kHz measurement distance or zero-cross by a hardware method to improve the distance measurement capability. improve the detector.
  • Zero-crossing refers to a state in which voltage is not applied to a specific terminal, that is, a state of zero.
  • a circuit that finds such a point and transmits a signal is called a zero-crossing detector, zero-crossing detector, or zero-crossing.
  • a general zero-cross detector uses one voltage comparator that detects a voltage higher or lower than a specific offset voltage based on a reference voltage, but the zero-cross detector according to the present invention uses a voltage comparator that is higher or lower than a specific offset voltage based on a reference voltage. It uses two voltage comparators, each detecting the voltage.
  • the specific offset voltage is 0V in the case of an ideal zero-cross detector, but in practice, a specific voltage is set according to the noise environment of the transmission/reception system. In this embodiment, the offset voltage was set to 15 mV to 30 mV.
  • the detection distance is improved and the resolution of the detection distance is improved by using a resonant frequency selection (A) of the overlapping phenomenon using a standing wave and a similar frequency set having a different phase from the resonant frequency.
  • A resonant frequency selection
  • Constructive interference caused by the superposition of the phase relationship between the outgoing signal incident on the reflective object in a standing wave and the reflected signal reflected on the reflective object determines and uses the ultrasonic main frequency (wave length) It is a principle that a large signal is incident and it is possible to measure a longer distance than the conventional method.
  • the above method serves to increase the size of the first echo signal (the starting point of one cycle).
  • the resolution improvement of the detection distance is similar to the frequency of the above detection distance improvement, but when several frequencies with a slight difference in phase incident on the reflective object are calculated and transmitted, the reflected signal also has a phase difference little by little. Even though they have such a phase difference, ToF is the same even if the frequency is different (i.e. same distance, same speed of sound), so ToFs with different incident phases are read by a voltage comparator (i.e. zero cross detector). Since multiple phases are incident on the detector, if the shortest ToF time is obtained among the ToFs measured for each frequency, time resolution much more precise than the resolution by the wavelength of the frequency can be obtained.
  • distance measurement using ultrasonic waves uses a ToF measurement method using a pulse-echo.
  • 3 is a graph for explaining the distance measurement principle of the pulse-echo method.
  • the pulse-echo distance measurement is a measurement method in which a distance to a reflective object is calculated by measuring a signal (Echo) returned after the ultrasonic wave is transmitted and reflected by the reflective object.
  • the ultrasonic receiver of the ultrasonic sensor for receiving ultrasonic waves includes a zero-cross detector for determining an echo time signal.
  • FIG. 4A is a circuit diagram for explaining a general zero-cross detector
  • FIG. 4B is a graph for explaining a waveform by a conventional zero-cross detector that compares only a voltage above or below a reference voltage.
  • a general zero-cross detector includes a first resistor R11, a second resistor R12, and a first voltage comparator OP11, and a constant upper amplitude of a received waveform to measure ToF. detect
  • the first resistor R11 has one end connected to the power supply voltage VCC and the other end to which the reference voltage VCOM is applied.
  • the second resistor R12 has one end connected to the reference voltage VCOM and the other end to which the ground voltage is applied.
  • the first voltage comparator OP11 includes a positive terminal to which the ultrasonic reception signal VIN is applied, a negative terminal connected to the first resistor R11 and applied with a first voltage VP higher than the reference voltage VCOM, and an output terminal outputting a first output voltage VOUTP according to a magnitude comparison between the ultrasonic reception signal VIN and the first voltage VP.
  • the first voltage comparator OP11 outputs a high-level first output voltage VOUTP at an amplitude higher than the first voltage VP in the waveform of the ultrasonic reception signal VIN and is lower than or equal to the first voltage VP.
  • a low level first output voltage VOUTP is output in amplitude.
  • a typical zero-cross detector measures ToF by detecting a certain upper amplitude or a certain lower amplitude of a received waveform.
  • a measurement error of ⁇ /2 exists.
  • FIG. 5A is a circuit diagram for explaining a zero-cross detector according to the present invention
  • FIG. 5B is a graph for explaining a waveform by an improved zero-cross detector that simultaneously compares upper and lower levels of a reference voltage.
  • the zero cross detector according to the present invention includes a first resistor R21, a second resistor R22, a first voltage comparator OP21 and a second voltage comparator OP22, To measure ToF, each of the constant upper amplitude and constant lower amplitude of the received waveform is detected.
  • the zero-cross detector illustrated in FIG. 5A may be included in the acquisition module 320 illustrated in FIG. 1 .
  • the first resistor R21 has one end connected to the power supply voltage VCC and the other end to which the reference voltage VCOM is applied.
  • the second resistor R22 has one end connected to the reference voltage VCOM and the other end to which the ground voltage is applied.
  • the first voltage comparator OP21 includes a positive terminal to which the ultrasonic reception signal VIN is applied, a negative terminal connected to a first resistor to which a first voltage VP higher than the reference voltage VCOM is applied, and the ultrasonic wave It has an output terminal for outputting a first output voltage VOUTP according to a magnitude comparison between the received signal VIN and the first voltage VP.
  • the first resistor R21 to which the negative terminal of the first voltage comparator OP21 is connected may be a variable resistor.
  • the second voltage comparator OP22 is connected to the second resistor R22 and has a positive polarity terminal to which a second voltage VN lower than the reference voltage VCOM is applied, and a unit to which the ultrasonic reception signal VIN is applied. It has a polarity terminal and an output terminal for outputting a second output voltage VOUTN according to a magnitude comparison between the ultrasonic reception signal VIN and the second voltage VN.
  • the second resistor R22 to which the positive terminal of the second voltage comparator OP22 is connected may be a variable resistor.
  • the first resistor R21 and the first voltage comparator OP21 may define the positive detection part of the zero-cross detector, and the second resistor R22 and the second voltage comparator OP22 define the negative detection part of the zero-cross detector. can do.
  • the positive detector detects a phase transition of the received waveform from negative to positive
  • the negative detector detects a phase transition of the received waveform from positive to negative.
  • the zero-cross detector according to the present invention measures ToF by detecting each of the constant upper amplitude and the constant lower amplitude of the received waveform. According to the zero-cross detector according to the present invention, a measurement error of ⁇ /4 exists. Therefore, there is an advantage in that the measurement error by the zero-cross detector according to the present invention can be reduced to 1/2 compared to the measurement error by the general zero-cross detector.
  • the zero-cross detector for determining the echo time signal in the ultrasonic receiver of the ultrasonic sensor uses only one comparison voltage above or below the reference voltage and uses only one comparison voltage as a result to determine the echo time.
  • the minimum distance resolution according to the frequency determined by the length of the ultrasonic wave can be improved by about twice.
  • VCOM reference voltage
  • ToF time of flight
  • the value was determined between about 15 mV and 30 mV.
  • a system that outputs “1” if a signal higher than the set comparison voltage is detected, otherwise “0” is the operating principle of a zero-cross detector in a general pulse-echo system.
  • such a zero-cross detector generates a measurement time error such as delta-h1 when a signal having a phase difference of up to 180° from the waveform to be compared is received.
  • the maximum value of this ToF error is 1/2 of the period (wavelength, ⁇ ) of the ultrasonic frequency. This also means the limit of the resolution of the distance according to the ultrasonic frequency, which is meant in this specification.
  • VCOM reference voltage
  • the detection period of the existing ToF can be reduced from delta-p1 to delta-p2 or delta-n2 by performing zero-cross detection based on the first output signal of the two comparators on the time axis from the received ultrasonic signal. .
  • the resolution of the sensing distance was obtained from 1/2 of the existing value of the period (wavelength, ⁇ ) to at least 1/4 or less. This means that it is possible to implement a level of distance resolution that can be expected with a frequency higher than or equal to.
  • ultrasonic waves have the property of propagating through a medium and do not have mass, but have energy.
  • Ultrasonic pulses are transmitted like longitudinal waves in the medium in which the direction of motion of the particles in the medium and the direction of motion of the ultrasonic waves are the same.
  • a longitudinal wave is a wave in which the movement (displacement) of a medium appears in the same direction as the direction of movement of the wave in which energy is transmitted.
  • the medium is compressed or relaxed along the axis of motion of the wave, and it is expressed as a mill and a cow, respectively, and a wave is formed between mills and mills or between cows and cows.
  • a transverse wave means a wave in which the movement (displacement) of a medium appears in a direction perpendicular to the transmission direction of the wave through which energy is transmitted.
  • Equation 3 the wave equation for time is expressed as Equation 3 below in the form of a sine wave of the same shape.
  • A is the amplitude, is the angular velocity, is the phase
  • Equation 3 when a wave with a sine wave propagates and hits a reflective object while propagating, it causes destructive interference according to the principle of superposition between the incident wave and the reflected wave according to the boundary condition (phase angle) when it hits the boundary surface.
  • the boundary condition phase angle
  • a form of constructive interference appears, and the case of vibration with the maximum constructive interference is called a standing wave condition.
  • the ultrasonic sensor used at this time has a characteristic in that a sound pressure sensitivity of a level that can be used as an ultrasonic sensor is formed in a section of about ⁇ 5 kHz to the left and right of the center frequency.
  • 6 is a graph for explaining frequency characteristics of an ultrasonic sensor of 40 kHz.
  • a 40 kHz ultrasonic sensor has a sound pressure level of 120 dB in a frequency band of 40 kHz.
  • the sound pressure level is 80 dB in the frequency band of 30 kHz, and the sound pressure level is 98 dB in the frequency band of 35 kHz.
  • the sound pressure level is 104 dB in the frequency band of 45 kHz, and the sound pressure level is 90 dB in the frequency band of 50 kHz.
  • ultrasound waves propagate at the speed of sound.
  • the speed of sound traveling through air at 15 degrees Celsius is approximately 340 m/s.
  • the speed of sound has nothing to do with the frequency of ultrasonic waves or atmospheric pressure, but only depends on the temperature of the air.
  • the speed of sound changes with temperature because the density of air changes with temperature. Therefore, the lower the density or the higher the temperature, the easier the medium is to move, so the speed of sound increases.
  • air contains water vapor the speed of sound changes, but the effect is smaller than that of temperature, so it is neglected.
  • the speed of sound in any medium other than air also depends on temperature.
  • the speed of sound in a liquid is greater than the speed of sound in a gas
  • the speed of sound in a solid is greater than the speed of sound in a liquid.
  • the formula for the propagation speed of sound is as shown in Equation (5) below.
  • compensation for temperature and compensation for humidity are selectively applied to calculate and apply the sound velocity of the environment to be measured in real time.
  • two zero-cross detectors having a 180° symmetrical structure for the upper and lower voltages of the reference voltage are applied in the ToF detection method for the ultrasonic reception signal, and (ii) the distance between the ultrasonic transmitter and the reflective object In (L), by selectively using a transmission frequency that satisfies the standing wave condition, the wave energy incident on the reflective object and the reflected wave energy are overlapped with each other and controlled to generate constructive interference or resonance, thereby increasing reception sensitivity. can improve.
  • is the wavelength of the ultrasonic wave
  • L is the distance between the reflective object and the ultrasonic sensor
  • n is an integer
  • the distance (L) is calculated based on the ToF value obtained by first measuring at a frequency of 40 kHz, it is the distance including the error within the resolution of 40 kHz, and various frequencies that satisfy the standing wave condition calculated with the distance (L) value.
  • f0 selected as the closest frequency to 40 kHz also becomes a frequency that includes an error.
  • the standing wave frequency (f0) obtained by defining the distance (L) value as the reference distance (L_ref) and calculating the reference distance (L_ref) as a reference value as a method for minimizing such an error stochastically
  • the difference in phase when the ultrasonic signal transmitted from the transmitter reaches the position of the reference distance (L_ref) is ⁇ 10% ( ⁇ 36°) and ⁇ 20% ( ⁇ 72°) for the period, respectively, and f0 and The closest frequencies f1 to f4 are determined respectively.
  • phase difference between the adjacent frequencies f1 to f4 is set in units of 10%, but the above-described phase difference may be set larger than 10%.
  • Equation 4 the condition of the standing wave corresponds to the case where the phase of the ultrasonic waves reaching the reflective object is 0° or 180°.
  • the frequency at which the 40 kHz ultrasonic sensor can sufficiently transmit and receive sound pressure is defined within ⁇ 5 kHz from the center frequency of 40 kHz with a python program, and the measurement range of the measurement system was limited to 0.5 m to 2.0 m, and the frequency band was calculated.
  • FIG. 7 is a diagram showing the code of a Python program for obtaining a fundamental frequency according to a distance.
  • FIG. 8 is a diagram showing a result of 25% phase angle difference frequency calculation at a distance of 0.5 m by the code of the Python program of FIG. 7 .
  • a set of pulse-echo frequencies was obtained using the program language Python.
  • the present invention proposes a distance measurement device using ultrasonic waves that is designed to measure respiration-related signals in a non-contact manner using ultrasonic waves and analyzes ultrasonic transmission and an ultrasonic receiving part of an ultrasonic sensor.
  • the center frequency satisfying the standing wave condition is predicted in the measurement space, and several frequency sets around the center frequency are generated.
  • the resolution of the distance to be measured is improved by using the phase difference of several sets of frequencies with the same ToF while increasing the strength of the received signal and ensuring the best sound pressure by the ultrasonic sensor.
  • 9 is a graph for explaining a received waveform for each frequency and a detection result by a zero-cross detector.
  • an initial frequency f0 and first to fourth adjacent frequencies f1 , f2 , f3 , and f4 sequentially transmitted are reflected by a reflective object and received. That is, the third adjacent frequency f3 precedes, and the first adjacent frequency f1, the initial frequency f0, the second adjacent frequency f2, and the fourth adjacent frequency f4 are sequentially received.
  • the positive detection unit of the zero-cross detector outputs a high-level detection signal at a time when the phase of each of the initial frequency f0 and the first to fourth adjacent frequencies f1, f2, f3, and f4 transitions from negative to positive, , outputs a low-level detection signal at the time of transition from positive to negative.
  • the positive detection unit of the zero-cross detector outputs a high-level detection signal at a time when the phase of the third adjacent frequency f3 transitions from negative to positive, and the phase of the first adjacent frequency f1 changes from negative to positive.
  • a high-level detection signal is output at the time of positive transition, and a high-level detection signal is output at the time of transition of the phase of the initial frequency f0 from negative to positive.
  • the positive detection unit of the zero-cross detector outputs a high-level detection signal at a time when the phase of the second adjacent frequency f2 transitions from negative to positive, and the phase of the fourth adjacent frequency f4 changes from negative to positive. At the transition time, a high-level detection signal is output.
  • the negative detection unit of the zero-cross detector generates a low-level detection signal at a time when the phase of each of the initial frequency f0 and the first to fourth adjacent frequencies f1, f2, f3, and f4 transitions from negative to positive. output, and outputs a high-level detection signal at the time of transition from positive to negative.
  • the negative detection unit of the zero-cross detector outputs a low-level detection signal at a time when the phase of the third adjacent frequency f3 transitions from negative to positive, and the phase of the first adjacent frequency f1 changes from negative to positive.
  • a high-level detection signal is output at the time of positive transition
  • a low-level detection signal is output at the time of transition of the phase of the initial frequency f0 from negative to positive.
  • the negative detection unit of the zero-cross detector outputs a low-level detection signal at a time when the phase of the second adjacent frequency f2 transitions from negative to positive, and the phase of the fourth adjacent frequency f4 changes from negative to positive. At the transition time, a low-level detection signal is output.
  • First to fourth adjacent frequencies f1, f2, f3, and f4 are set by selecting a frequency most adjacent to the initial frequency f0 among frequencies having a difference of ⁇ 10% and ⁇ 20% of the wavelength of .
  • the positive detection unit and the negative detection unit of the zero-cross detector respectively receive Calculate precision distance based on ToFs.
  • the above precision distance may be calculated based on the smallest ToF among 10 ToFs.
  • the precise distance may be calculated based on an average value or a median value of 10 ToFs.
  • the median value is the average of the remaining values after removing the largest and smallest values.
  • the 5 ToFs received from the positive detection unit of the zero-cross detector and the 5 ToFs received from the negative detection unit of the zero-cross detector 5 valid ToFs are determined, and among the determined ToFs, the smallest value or average value, Based on the median value, the above precision distance can be calculated.
  • 10A is a flowchart illustrating a method for measuring a distance using ultrasonic waves according to an embodiment of the present invention.
  • a PWM clock of an ultrasonic sensor a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and an transmission frequency range of the ultrasonic sensor are respectively set (step S100).
  • the reference frequency means a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor.
  • step S200 based on the PWM clock, reference frequency, and transmission frequency range set in step S100, an ultrasonic signal is transmitted to the reflective object and the ultrasonic signal reflected by the reflective object is received (step S200).
  • a standard approximate distance is obtained based on a time of flight (ToF) obtained using the ultrasonic waves of the reference frequency transmitted and reflected by the reflective object (step S300).
  • ToF time of flight
  • an initial frequency f0 and adjacent frequencies f1, f2, f3, and f4 are calculated from the reference approximate distance (step S400).
  • FIG. 10B is a flowchart for explaining step S400 of FIG. 10A.
  • a frequency closest to the reference frequency within the transmission frequency range among the frequencies forming the standing wave condition is set as the initial frequency f0 (step S410).
  • adjacent frequencies f1, f2, f3, and f4 having phases of ⁇ 10% and ⁇ 20% based on the initial frequency f0 are acquired (step S420).
  • the first adjacent frequency f1 has a phase component of +10% compared to the phase component of the initial frequency f0
  • the second adjacent frequency f2 has a phase component of -10% compared to the phase component of the initial frequency f0.
  • the third adjacent frequency f3 has a phase component of +20% compared to the phase component of the initial frequency f0
  • the fourth adjacent frequency f4 has a phase component of -20% compared to the phase component of the initial frequency f0. has a topological component.
  • phase of the initial frequency f0 is 360°
  • the ultrasonic waves of the initial frequency f0 calculated in step S400 and the ultrasonic waves of the adjacent frequencies f1, f2, f3, and f4 are sequentially transmitted and the time-of-flight (ToF) of each of the ultrasonic waves measured ), a plurality of distances are calculated based on (step S500).
  • the initial distance is calculated based on the initial time-of-flight (ToF0) measured by transmitting ultrasonic waves of the initial frequency (f0).
  • a first distance is calculated based on a first time-of-flight (ToF1) measured by transmitting an ultrasonic wave having a first adjacent frequency (f1).
  • a second distance is calculated based on a second time-of-flight (ToF2) measured by transmitting ultrasonic waves of a second adjacent frequency (f2).
  • a third distance is calculated based on a third time-of-flight (ToF3) measured by transmitting ultrasonic waves of a third adjacent frequency (f3).
  • a fourth distance is calculated based on a fourth time-of-flight (ToF4) measured by transmitting ultrasonic waves of a fourth adjacent frequency (f4).
  • step S600 it is checked whether the calculation of the distances calculated in step S500 corresponds to an error condition. For example, when ToF is out of the measurement range or when the difference between ToF0 and ToF4 is out of the expected time difference due to the difference between f0 and f4, it is determined that it corresponds to an error condition.
  • ToF0 is calculated according to ultrasonic transmission and reception of the initial frequency f0
  • ToF1 is calculated according to ultrasonic transmission and reception of the first adjacent frequency f1
  • ToF2 is calculated according to ultrasonic transmission of the second adjacent frequency f2.
  • ToF3 is calculated according to ultrasonic transmission and reception of the third adjacent frequency f3
  • ToF4 is calculated according to ultrasonic transmission and reception of the fourth adjacent frequency f4.
  • a precise distance is calculated based on the ToFs (step S700). For example, precise distance can be calculated using ToF corresponding to the first arriving signal. Alternatively, the ToF can be calculated as a precision distance using the smallest value. Alternatively, it can be calculated as a precision distance using the average of ToFs.
  • the distance measurement using ultrasonic waves uses a low frequency and sequentially transmits several frequencies whose frequencies are slightly changed to slightly change the phase when arriving at a standing wave condition and a reflective object, Receive to obtain high distance resolution. Accordingly, it is possible to dramatically improve distance resolution when detecting a distance using ultrasonic waves.
  • the present invention provides the phase between the received signal generated in the process of transmitting and receiving different frequencies of f0 to f4 for the same distance.
  • the resolution can be improved to ⁇ 1/20 of the period.
  • the distance resolution of the distance measurement according to the frequency of the present invention is It is expressed by the following Equation (7).
  • Equation (8) The offset value of the frequency phase difference by the number of adjacent frequencies (fside) is implemented as Equation (8) below.
  • Offset phase calculation values for each adjacent frequency when the number of adjacent frequencies (fside) is 4 and the number of voltage comparators is 2, and offset phase for each adjacent frequency when the number of adjacent frequencies (fside) is 8 and the number of voltage comparators is 2 The calculated values are summarized in Table 1 below.
  • the distance resolution is improved by comparing both the upper limit and the lower limit of the zero-cross point of the received signal in terms of hardware.
  • the reception sensitivity due to constructive interference or resonance is improved by using a frequency set of f0 to f4 close to the standing wave condition for the roughly determined distance to the reflective object, and each frequency for the same distance
  • the method and apparatus for measuring distance using ultrasound according to the present invention can detect respiration at a remote location, so that non-contact biosignals can be smoothly acquired for improving medical services and providing convenience in treatment.
  • the distance measuring method and apparatus using ultrasonic waves according to the present invention can be applied to an ultrasonic flowmeter such as a water level sensor, a distance measuring device for measuring precise distance, a non-destructive inspection device, a ToF camera, etc., and thus has industrial applicability.
  • calculation module 340 first distance calculation module

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Disclosed are a distance measurement method and device using ultrasonic waves, whereby degradation in distance resolution can be overcome. The distance measurement device using ultrasonic waves comprises a setting module, an acquisition module, a calculation module, a first distance computation module, an error check module, and a second distance computation module. The setting module sets each of a PWM clock of an ultrasonic wave sensor, a reference frequency at which the transmission and reception sensitivity, among the frequency characteristics of the ultrasonic wave sensor, are best, and the transmission frequency range of the ultrasonic wave sensor. The acquisition module acquires a reference approximate distance on the basis of a time of flight (ToF) acquired using transmitted ultrasonic waves of the reference frequency reflected by a reflecting object. The calculation module calculates an initial frequency and adjacent frequencies calculated from the reference approximate distance. The first distance computation module sequentially transmits ultrasonic waves of the calculated initial frequency and ultrasonic waves of each of the calculated adjacent frequencies and computes a plurality of distances on the basis of the measured ToFs of each of the ultrasonic waves. The second distance computation module computes precise distances on the basis of the ToFs.

Description

초음파를 이용한 거리 측정 방법 및 장치Distance measuring method and device using ultrasonic waves
본 발명은 초음파를 이용한 거리 측정 방법 및 장치에 관한 것으로, 보다 상세하게는 낮은 주파수를 사용하더라도 원거리 감지 능력을 유지하면서 거리 분해능의 저하를 극복할 수 있는 초음파를 이용한 거리 측정 방법 및 장치에 관한 것이다. The present invention relates to a distance measuring method and device using ultrasonic waves, and more particularly, to a distance measuring method and device using ultrasonic waves capable of overcoming a decrease in distance resolution while maintaining a long-distance sensing capability even when a low frequency is used. .
초음파는 음파 중에서 20Hz~20kHz 범위의 사람의 귀로 들을 수 있는 가청음보다 높으며, 사람의 귀로 직접 들을 수 없는 주파수의 음파를 말하는 것으로서, 빛보다는 굴절률이 크기 때문에 전방에 작은 장애물이 있어도 소리라는 특성상 전파가 가능하며, 빛의 반사에 대한 영향이 적어 처리가 간편하며, 복잡한 필터를 설계하지 않아도 된다는 이점이 있어, 흔히 거리 측정이나 전방의 물체 유무 감지에 많이 이용되고 있다. Ultrasound is a sound wave of a frequency higher than the audible sound that can be heard by the human ear in the range of 20 Hz to 20 kHz among sound waves, and refers to a sound wave of a frequency that cannot be directly heard by the human ear. It is possible, has a small effect on light reflection, is easy to process, and has the advantage of not having to design a complicated filter, so it is often used for distance measurement or for detecting the presence or absence of an object in front.
특히 초음파를 이용한 거리 측정은 초음파를 발신한 후, 반사 대상물을 맞고 되돌아오는 신호를 수신하여, 초음파 발신 시각과 초음파 수신 시각 간의 시간 간격으로부터 음파의 전달 속도를 감안한 연산을 통해 거리를 측정하는 것이다. In particular, the distance measurement using ultrasonic waves is to measure the distance by calculating the transmission speed of sound waves from the time interval between the ultrasonic transmission time and the ultrasonic reception time after transmitting the ultrasonic wave and receiving the signal returned after hitting the reflective object.
초음파가 발사되어 물체에 반사되어오면 감쇠가 일어나는데, 가까운 거리에 있는 물체에 반사된 것보다 먼 거리의 물체에서 반사된 초음파신호의 감쇠가 많이 일어나서 수신된 신호의 크기는 더 작아진다. When ultrasonic waves are emitted and reflected from objects, attenuation occurs. The ultrasonic signal reflected from a distant object is attenuated more than that reflected from a nearby object, so the size of the received signal becomes smaller.
초음파와 같은 음파는 공기 중에서 주파수가 높을수록 검출하고자 하는 반사 대상물에 대한 미세한 거리와 공간에 대한 분해능이 증가하지만, 대기 중의 감쇠(attenuation)가 커지기 때문에 멀리 떨어진 반사 대상물과의 거리를 감지하는데 어려움이 있는 특성이 있다. The higher the frequency of sound waves in the air, the higher the resolution for the minute distance and space to the reflective object to be detected. There is a characteristic that
반면에, 낮은 주파수는 거리와 공간에 대한 분해능은 감소하지만 대기 중의 감쇠가 작기 때문에 측정 장치와 반사 대상물 간의 거리를 감지하기가 용이하다. On the other hand, at low frequencies, the resolution for distance and space is reduced, but it is easy to detect the distance between the measuring device and the reflective object because the attenuation in the atmosphere is small.
이러한 특징을 시스템 구현의 관점에서 보면 주파수가 높을수록 대기중에 전파되는 초음파 신호의 크기는 거리가 멀어짐에 따라 로그 스케일(log-scale)로 감소하기 때문에 비접촉식으로 원거리에서 물체와의 거리를 감지하기 위해서는 비교적 낮은 초음파 주파수를 사용해야 하지만, 낮은 주파수로 인하여 저하된 거리 분해능으로 인하여 거리의 정확도를 확보할 수 없다. From the point of view of system implementation, the higher the frequency, the larger the ultrasonic signal propagated in the air decreases in log-scale as the distance increases. A relatively low ultrasonic frequency must be used, but distance accuracy cannot be secured due to reduced distance resolution due to the low frequency.
초음파의 물리적 특성을 고려해 볼 때 주파수의 증가로 인해 증대되는 거리에 관한 분해능은 초음파 파장(λ)의 1/2의 관계로 선형적으로 개선되는 반면에, 주파수의 증가로 인한 신호의 감쇠는 로그 스케일로 증가하기 때문에 원거리 초음파 거리 측정 시스템의 구현을 위해서 낮은 주파수를 사용하면서 거리 분해능을 향상시키는 방법이 상업적으로 바람직하다. Considering the physical characteristics of ultrasound, the resolution of the distance that increases as the frequency increases is linearly improved with a relationship of 1/2 of the ultrasound wavelength (λ), whereas the signal attenuation due to the increase of frequency is logarithmic. Because of the increase in scale, it is commercially desirable to improve the distance resolution while using a low frequency for the realization of a long-distance ultrasonic distance measurement system.
비교적 낮은 주파수를 사용하더라도 원거리 감지 능력을 유지하면서 거리 분해능의 저하를 다른 방법으로 극복할 수 있어야 한다. Even if a relatively low frequency is used, it must be possible to overcome the degradation of distance resolution by other methods while maintaining long-distance sensing capability.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 한국공개특허 제2007-0066136호(2007. 06. 27.)(초음파를 이용한 거리 측정 방법 및 장치)(Patent Document 0001) Korean Patent Publication No. 2007-0066136 (2007. 06. 27.) (Distance measuring method and device using ultrasonic waves)
(특허문헌 0002) 한국공개특허 제2019-0123686호(2019. 11. 01.)(제로크로스 검출 회로 및 센서 장치)(Patent Document 0002) Korean Patent Publication No. 2019-0123686 (2019. 11. 01.) (zero-cross detection circuit and sensor device)
이에 본 발명의 기술적 과제는 이러한 점에 착안한 것으로, 본 발명의 목적은 낮은 주파수를 사용하더라도 원거리 감지 능력을 유지하면서 거리 분해능의 저하를 극복할 수 있는 초음파를 이용한 거리 측정 방법을 제공하는 것이다. Accordingly, the technical problem of the present invention is to focus on this point, and an object of the present invention is to provide a distance measurement method using ultrasonic waves capable of overcoming a decrease in distance resolution while maintaining a long-distance sensing ability even when a low frequency is used.
본 발명의 다른 목적은 상기한 초음파를 이용한 거리 측정 방법을 수행하는 초음파를 이용한 거리 측정 장치를 제공하는 것이다. Another object of the present invention is to provide a distance measuring device using ultrasonic waves that performs the distance measuring method using ultrasonic waves.
상기한 본 발명의 목적을 실현하기 위하여 일실시예에 따르면, 초음파 발신부와 초음파 수신부를 갖는 초음파 센서에서 발신되는 초음파를 이용하여 상기 초음파 센서와 반사 대상물 간의 거리를 측정하는 초음파 이용한 거리 측정 방법은, 상기 초음파 센서의 PWM 클럭, 상기 초음파 센서의 주파수 특성 중 발신 및 수신 감도가 가장 좋은 주파수 값인 기준 주파수, 및 상기 초음파 센서의 발신 주파수 범위 각각을 설정하는 단계; 상기 기준 주파수의 초음파가 발신되어 반사 대상물에 의해 반사된 초음파를 이용하여 획득된 비행시간(Time Of Flight, ToF)을 근거로 기준 근사 거리를 획득하는 단계; 상기 기준 근사 거리로부터 초기 주파수 및 인접 주파수들을 산출하는 단계; 상기 초기 주파수의 초음파 및 상기 인접 주파수들 각각의 초음파를 순차적으로 발신하여 측정한 초음파들 각각의 ToF를 근거로 복수의 거리들을 계산하는 단계: 및 상기 ToF들을 근거로 정밀 거리를 계산하는 단계를 포함한다. According to an embodiment to realize the above object of the present invention, a distance measuring method using ultrasonic waves for measuring a distance between an ultrasonic sensor and a reflective object using ultrasonic waves transmitted from an ultrasonic sensor having an ultrasonic transmitter and an ultrasonic receiver has Setting each of the PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor; Obtaining a standard approximate distance based on a time of flight (ToF) obtained by using ultrasonic waves of the reference frequency transmitted and reflected by a reflective object; calculating an initial frequency and adjacent frequencies from the reference approximation distance; Calculating a plurality of distances based on ToF of each of the ultrasonic waves measured by sequentially transmitting the ultrasonic wave of the initial frequency and the ultrasonic wave of each of the adjacent frequencies: and calculating a precise distance based on the ToFs do.
일실시예에서, 상기 비행시간(Time Of Flight, ToF)을 근거로 상기 기준 근사 거리를 획득하는 단계에서 사용되는 음속의 값은 온도의 실시간 보상 또는 습도의 실시간 보상되어 사용될 수 있다. In one embodiment, the value of the sound speed used in the step of acquiring the reference approximate distance based on the time of flight (ToF) may be used after real-time compensation of temperature or real-time compensation of humidity.
일실시예에서, 상기 기준 근사 거리로부터 상기 초기 주파수 및 상기 인접 주파수들을 산출하는 단계는, 정상파의 조건을 이루는 주파수들 중 상기 발신 주파수 범위 내에서 상기 기준 주파수와 가장 근접한 주파수를 초기 주파수로 설정하는 단계; 및 상기 초기 주파수를 기준으로 위상이 다른 하나 이상의 인접 주파수를 계산하여 획득하는 단계를 포함할 수 있다. In one embodiment, the step of calculating the initial frequency and the adjacent frequencies from the reference approximate distance, setting a frequency closest to the reference frequency within the outgoing frequency range among the frequencies constituting the condition of the standing wave as the initial frequency step; and calculating and obtaining at least one adjacent frequency having a different phase based on the initial frequency.
일실시예에서, 상기 인접 주파수별 오프셋 위상 계산값은
Figure PCTKR2022004886-appb-I000001
(여기서, fside는 인접 주파수의 개수)에 의해 계산될 수 있다.
In one embodiment, the offset phase calculation value for each adjacent frequency is
Figure PCTKR2022004886-appb-I000001
(Here, fside is the number of adjacent frequencies).
일실시예에서, 상기 인접 주파수가 4개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±10% 및 ±20%의 위상을 가질 수 있다. In one embodiment, when four adjacent frequencies are used, each of the adjacent frequencies may have phases of ±10% and ±20% based on the initial frequency.
일실시예에서, 상기 인접 주파수가 8개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±5.56%, ±11.11%, ±16.67% 및 ±22.22%의 위상을 가질 수 있다. In one embodiment, when eight adjacent frequencies are used, each of the adjacent frequencies may have a phase of ±5.56%, ±11.11%, ±16.67%, and ±22.22% based on the initial frequency.
일실시예에서, 상기한 초음파 이용한 거리 측정 방법은, 상기 거리들의 계산이 에러 조건에 해당되는지의 여부를 체크하는 단계; 상기 에러 조건인 것으로 체크되면, 상기 기준 근사 거리를 획득하는 단계로 피드백하는 단계; 및 상기 에러 조건이 아닌 것으로 체크되면, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계를 더 포함할 수 있다. In one embodiment, the distance measurement method using ultrasonic waves may include checking whether the calculation of the distances corresponds to an error condition; feeding back to the step of acquiring the standard approximate distance if it is checked that the error condition is the case; and if it is checked that the error condition is not the case, calculating a precision distance based on the ToFs.
일실시예에서, 상기 에러 조건은, 측정 범위를 벗어난 ToF일 수 있다. In one embodiment, the error condition may be ToF out of measurement range.
일실시예에서, 상기 에러 조건은, ToF0~ToF4의 차이가 f0~f4의 차이로 기대되는 시간의 차이를 벗어난 경우를 포함할 수 있다. In one embodiment, the error condition may include a case in which the difference between ToF0 and ToF4 is out of the expected time difference due to the difference between f0 and f4.
일실시예에서, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계는, 제일 먼저 도착한 신호를 정밀 거리로 판단하는 단계를 포함할 수 있다. In one embodiment, calculating the precise distance based on the ToFs may include determining a signal arriving first as the precise distance.
일실시예에서, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계는, ToF가 가장 작은 값을 정밀 거리로 판단하는 단계를 포함할 수 있다. In an embodiment, calculating the precision distance based on the ToFs may include determining a value with the smallest ToF as the precision distance.
일실시예에서, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계는, ToF들의 평균을 정밀 거리로 판단하는 단계를 포함할 수 있다. In an embodiment, calculating the precision distance based on the ToFs may include determining an average of the ToFs as the precision distance.
상기한 본 발명의 다른 목적을 실현하기 위하여 일실시예에 따르면 초음파 발신부와 초음파 수신부를 갖는 초음파 센서에서 발신되는 초음파를 이용하여 상기 초음파 센서와 반사 대상물 간의 거리를 측정하는 초음파를 이용한 거리 측정 장치는, 상기 초음파 센서의 PWM 클럭, 상기 초음파 센서의 주파수 특성 중 발신 및 수신 감도가 가장 좋은 주파수 값인 기준 주파수, 및 상기 초음파 센서의 발신 주파수 범위 각각을 설정하는 설정 모듈; 상기 기준 주파수의 초음파가 발신되어 반사 대상물에 의해 반사된 초음파를 이용하여 획득된 비행시간(Time Of Flight, ToF)을 근거로 기준 근사 거리를 획득하는 획득 모듈; 상기 기준 근사 거리로부터 초기 주파수 및 인접 주파수들을 산출하는 산출 모듈; 산출된 초기 주파수의 초음파 및 인접 주파수들 각각의 초음파를 순차적으로 발신하여 측정한 초음파들 각각의 ToF를 근거로 복수의 거리들을 계산하는 제1 거리 계산 모듈; 및 상기 ToF들을 근거로 정밀 거리를 계산하는 제2 거리 계산 모듈을 포함한다. In order to realize the other object of the present invention described above, according to an embodiment, a distance measuring device using ultrasonic waves for measuring a distance between an ultrasonic sensor and a reflective object by using ultrasonic waves transmitted from an ultrasonic sensor having an ultrasonic transmitter and an ultrasonic receiver. A setting module for setting each of the PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor; an acquisition module for acquiring a reference approximate distance based on a Time Of Flight (ToF) obtained by using ultrasonic waves of the reference frequency transmitted and reflected by a reflective object; a calculation module for calculating an initial frequency and adjacent frequencies from the reference approximation distance; a first distance calculation module for calculating a plurality of distances based on ToF of each of the ultrasonic waves measured by sequentially transmitting the calculated initial frequency ultrasonic waves and ultrasonic waves of adjacent frequencies; and a second distance calculation module that calculates a precise distance based on the ToFs.
일실시예에서, 상기 산출 모듈은, 정상파의 조건을 이루는 주파수들 중 상기 발신 주파수 범위 내에서 상기 기준 주파수와 가장 근접한 주파수를 초기 주파수로 설정하고, 상기 초기 주파수를 기준으로 위상이 다른 하나 이상의 인접 주파수들을 획득할 수 있다. In one embodiment, the calculation module sets, as an initial frequency, a frequency closest to the reference frequency within the outgoing frequency range among frequencies constituting a condition of a standing wave as an initial frequency, and at least one neighboring frequency having a different phase based on the initial frequency. frequencies can be obtained.
일실시예에서, 상기 인접 주파수별 오프셋 위상 계산값은
Figure PCTKR2022004886-appb-I000002
(여기서, fside는 인접 주파수의 개수)에 의해 계산될 수 있다.
In one embodiment, the offset phase calculation value for each adjacent frequency is
Figure PCTKR2022004886-appb-I000002
(Here, fside is the number of adjacent frequencies).
일실시예에서, 상기 인접 주파수가 4개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±10% 및 ±20%의 위상을 가질 수 있다. In one embodiment, when four adjacent frequencies are used, each of the adjacent frequencies may have phases of ±10% and ±20% based on the initial frequency.
일실시예에서, 상기 인접 주파수가 8개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±5.56%, ±11.11%, ±16.67% 및 ±22.22%의 위상을 가질 수 있다. In one embodiment, when eight adjacent frequencies are used, each of the adjacent frequencies may have a phase of ±5.56%, ±11.11%, ±16.67%, and ±22.22% based on the initial frequency.
일실시예에서, 상기 획득 모듈은, 기준 전압을 기준으로 특정 오프셋 전압만큼 높은 전압과 기준 전압을 기준으로 특정 오프셋 전압만큼 낮은 전압 각각을 검출하여 에코 시간을 판별하는 제로크로스 검출기를 포함할 수 있다. In one embodiment, the acquisition module may include a zero-cross detector for determining an echo time by detecting a voltage higher than a reference voltage by a specific offset voltage and a voltage lower by a specific offset voltage based on the reference voltage. .
일실시예에서, 상기 제로크로스 검출기는, 전원전압에 연결된 일단과 기준 전압이 인가되는 타단을 갖는 제1 저항; 상기 기준 전압에 연결된 일단과 접지 전압이 인가되는 타단을 갖는 제2 저항; 초음파 수신 신호가 인가되는 정극성 단자, 상기 제1 저항에 연결되어 상기 기준 전압을 기준으로 특정 오프셋 전압만큼 높은 제1 전압이 인가되는 부극성 단자, 및 상기 초음파 수신 신호와 상기 제1 전압 간의 크기 비교에 따른 제1 출력 전압을 출력하는 출력단자를 갖는 제1 전압비교기; 및 상기 제2 저항에 연결되어 상기 기준 전압을 기준으로 특정 오프셋 전압만큼 낮은 제2 전압이 인가되는 정극성 단자, 상기 초음파 수신 신호가 인가되는 부극성 단자, 및 상기 초음파 수신 신호와 상기 제2 전압 간의 크기 비교에 따른 제2 출력 전압을 출력하는 출력단자를 갖는 제2 전압비교기를 포함할 수 있다. In one embodiment, the zero-cross detector may include: a first resistor having one end connected to a power supply voltage and the other end to which a reference voltage is applied; a second resistor having one end connected to the reference voltage and the other end to which a ground voltage is applied; A positive terminal to which an ultrasonic reception signal is applied, a negative terminal connected to the first resistor to which a first voltage as high as a specific offset voltage based on the reference voltage is applied, and a size between the ultrasonic reception signal and the first voltage a first voltage comparator having an output terminal outputting a first output voltage according to comparison; And a positive terminal connected to the second resistor to which a second voltage lower than a specific offset voltage based on the reference voltage is applied, a negative terminal to which the ultrasonic reception signal is applied, and the ultrasonic reception signal and the second voltage It may include a second voltage comparator having an output terminal for outputting a second output voltage according to the comparison of the size of the liver.
일실시예에서, 상기한 초음파를 이용한 거리 측정 장치는, 상기 제1 거리 계산 모듈에 의한 거리들의 계산이 에러 조건에 해당되는 지의 여부를 체크하는 에러 체크 모듈을 더 포함하고, 상기 제2 거리 계산 모듈은 상기 에러 체크 모듈에 의해 에러 조건이 아닌 것으로 체크되면, 상기 ToF들을 근거로 정밀 거리를 계산할 수 있다. In one embodiment, the distance measuring device using ultrasonic waves further includes an error check module that checks whether the calculation of distances by the first distance calculation module corresponds to an error condition, and the second distance calculation The module may calculate a precision distance based on the ToFs if the error condition is checked by the error check module.
이러한 초음파를 이용한 거리 측정 방법 및 장치에 의하면, 수신 신호에 대해서 ToF 검출 방식으로 기준 전압의 상부와 하부 전압에 대한 180° 대칭 구조를 갖는 2개의 제로크로스 검출기를 적용하고, 초음파 발신기와 반사 대상물 사이에 거리(L)에서 정상파 조건을 만족하는 발신 주파수를 선택적으로 사용함으로써, 반사 대상물에 입사하는 파동 에너지와 반사되는 파동 에너지가 서로 중첩이 되면서 보강 간섭 또는 공명 현상을 발생하도록 제어하여 수신 감도를 향상시킬 수 있다. 또한 일반적으로 알려진 초음파의 주파수에 의한 거리 분해능(초음파 주파수의 주기의 ±1/2)과 달리 본 발명은 같은 거리에 대해서 f0~f4의 서로 다른 주파수의 발신과 수신 과정에서 발생하는 수신 신호 간의 위상 차이로 인하여 반응하는 두 개의 제로크로스 검출기를 사용함으로써 주기의 ±1/20 정도로 분해능을 개선 할 수 있다. According to the distance measurement method and device using such ultrasonic waves, two zero-cross detectors having a 180° symmetrical structure for the upper and lower voltages of the reference voltage are applied in a ToF detection method for the received signal, and between the ultrasonic transmitter and the reflective target By selectively using the outgoing frequency that satisfies the standing wave condition at the distance L, the wave energy incident on the reflective object and the reflected wave energy are overlapped with each other to control constructive interference or resonance to occur, thereby improving reception sensitivity. can make it In addition, unlike the generally known distance resolution (±1/2 of the period of the ultrasonic frequency) by the frequency of the ultrasonic wave, the present invention provides the phase between the received signal generated in the process of transmitting and receiving different frequencies of f0 to f4 for the same distance. By using two zero-cross detectors that react due to the difference, the resolution can be improved to ±1/20 of the period.
도 1은 본 발명의 일실시예에 따른 초음파를 이용한 거리 측정 장치를 설명하기 위한 블록도이다. 1 is a block diagram illustrating a distance measuring device using ultrasonic waves according to an embodiment of the present invention.
도 2는 거리에 따른 정상파 조건과 음압 레벨을 설명하기 위한 그래프이다. 2 is a graph for explaining a standing wave condition and a sound pressure level according to a distance.
도 3은 펄스-에코 방식의 거리 측정원리를 설명하기 위한 그래프이다. 3 is a graph for explaining the distance measurement principle of the pulse-echo method.
도 4a는 일반적인 제로크로스 검출기를 설명하기 위한 회로도이고, 도 4b는 기준 전압의 상부 또는 하부의 전압만 비교하는 종래의 제로크로스 검출기에 의한 파형을 설명하기 위한 그래프이다. 4A is a circuit diagram for explaining a general zero-cross detector, and FIG. 4B is a graph for explaining a waveform by a conventional zero-cross detector that compares only a voltage above or below a reference voltage.
도 5a는 본 발명에 따른 제로크로스 검출기를 설명하기 위한 회로도이고, 도 5b는 기준 전압의 상부와 하부를 동시에 비교하는 개선된 제로크로스 검출기에 의한 파형을 설명하기 위한 그래프이다. 5A is a circuit diagram for explaining a zero-cross detector according to the present invention, and FIG. 5B is a graph for explaining a waveform by an improved zero-cross detector that simultaneously compares upper and lower levels of a reference voltage.
도 6은 40kHz의 초음파 센서의 주파수 특성을 설명하기 위한 그래프이다. 6 is a graph for explaining frequency characteristics of an ultrasonic sensor of 40 kHz.
도 7은 거리에 따른 기본주파수를 구하는 파이선 프로그램의 코드를 나타낸 도면이다. 7 is a diagram showing the code of the Python program for obtaining the fundamental frequency according to the distance.
도 8은 도 7의 파이선 프로그램의 코드에 의한 0.5m 거리에서의 25% 위상각 차이 주파수 연산 결과를 나타낸 도면이다. FIG. 8 is a diagram showing a result of 25% phase angle difference frequency calculation at a distance of 0.5 m by the code of the Python program of FIG. 7 .
도 9는 주파수별 수신 파형과 제로크로스 검출기에 의한 검출 결과를 설명하기 위한 그래프이다. 9 is a graph for explaining a received waveform for each frequency and a detection result by a zero-cross detector.
도 10a는 본 발명의 일실시예에 따른 초음파를 이용한 거리 측정 방법을 설명하기 위한 흐름도이다. 10A is a flowchart illustrating a method for measuring a distance using ultrasonic waves according to an embodiment of the present invention.
도 10b는 도 10a의 단계 S400을 설명하기 위한 흐름도이다. FIG. 10B is a flowchart for explaining step S400 of FIG. 10A.
이하, 첨부한 도면들을 참조하여, 본 발명을 보다 상세하게 설명하고자 한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, with reference to the accompanying drawings, the present invention will be described in more detail. Since the present invention may have various changes and various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In this application, terms such as "comprise" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. In addition, unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
도 1은 본 발명의 일실시예에 따른 초음파를 이용한 거리 측정 장치를 설명하기 위한 블록도이다. 특히, 인접 주파수를 4개 사용할 경우에 대한 초음파를 이용한 거리 측정 장치가 도시된다. 1 is a block diagram illustrating a distance measuring device using ultrasonic waves according to an embodiment of the present invention. In particular, a distance measuring device using ultrasonic waves in the case of using four adjacent frequencies is shown.
도 1을 참조하면, 본 발명의 일실시예에 따른 초음파를 이용한 거리 측정 장치(100)는 반사 대상물에 초음파를 발신하는 초음파 발신부(110), 반사 대상물에 의해 반사되는 초음파를 수신하는 초음파 수신부(120), 및 초음파 발신부(110) 및 초음파 수신부(120) 각각의 동작 제어를 통해 반사 대상물과의 거리를 연산하는 센서 구동부(130)를 포함한다. Referring to FIG. 1, a distance measuring device 100 using ultrasonic waves according to an embodiment of the present invention includes an ultrasonic transmitter 110 that transmits ultrasonic waves to a reflective object and an ultrasonic receiver that receives ultrasonic waves reflected by the reflective object. 120, and a sensor driving unit 130 that calculates a distance to a reflection target through operation control of each of the ultrasonic transmitter 110 and the ultrasonic receiver 120.
초음파 발신부(110)는 센서 구동부(130)의 제어에 따라 초음파 신호를 반사 대상물에 발신한다. The ultrasonic transmitter 110 transmits an ultrasonic signal to a reflective object under the control of the sensor driver 130 .
초음파 수신부(120)는 반사 대상물에 의해 반사되는 초음파를 수신하여 센서 구동부(130)에 제공한다. 본 실시예에서, 초음파 발신부(110) 및 초음파 수신부(120)는 초음파 센서를 정의한다. The ultrasonic receiving unit 120 receives ultrasonic waves reflected by a reflective object and provides the received ultrasonic waves to the sensor driving unit 130 . In this embodiment, the ultrasonic transmitter 110 and the ultrasonic receiver 120 define ultrasonic sensors.
센서 구동부(130)는 설정 모듈(310), 획득 모듈(320), 산출 모듈(330), 제1 거리 계산 모듈(340), 에러 체크 모듈(350) 및 제2 거리 계산 모듈(360)을 포함하고, 반사 대상물에 발신되는 초음파의 주파수가 변화되도록 초음파 발신부(110)의 동작을 제어하고, 초음파 수신부(120)를 통해 수신되는 초음파를 근거로 반사 대상물과의 거리를 연산한다. 본 실시예에서, 센서 구동부(130)는 설정 모듈(310), 획득 모듈(320), 산출 모듈(330), 제1 거리 계산 모듈(340), 에러 체크 모듈(350) 및 제2 거리 계산 모듈(360)로 구성된 것을 설명하였으나, 이는 설명의 편의를 위해 논리적으로 구분하였을 뿐 하드웨어적으로 구분한 것은 아니다.The sensor driver 130 includes a setting module 310, an acquisition module 320, a calculation module 330, a first distance calculation module 340, an error check module 350, and a second distance calculation module 360. And, the operation of the ultrasonic transmission unit 110 is controlled so that the frequency of the ultrasonic waves transmitted to the reflective object is changed, and the distance to the reflective object is calculated based on the ultrasonic waves received through the ultrasonic receiver 120. In this embodiment, the sensor driver 130 includes a setting module 310, an acquisition module 320, a calculation module 330, a first distance calculation module 340, an error check module 350, and a second distance calculation module. Although it has been described that it is composed of 360, it is logically divided for convenience of description, but not hardware-wise.
설정 모듈(310)은 초음파 센서의 PWM 클럭, 초음파 센서의 주파수 특성 중 발신 및 수신 감도가 가장 좋은 주파수 값인 기준 주파수, 및 초음파 센서의 발신 주파수 범위 각각을 설정한다. The setting module 310 sets each of the PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor.
획득 모듈(320)은 상기 기준 주파수에 대응하여 발신되는 초음파 발신 신호가 반사 대상물에 의해 반사되어 수신되는 초음파 수신 신호를 이용하여 초음파의 비행시간(Time Of Flight, ToF)을 산출하고, 산출된 ToF를 근거로 기준 근사 거리(dref)를 획득한다. 여기서, 기준 근사 거리(dref)는 아래의 수식(1)을 이용하여 연산될 수 있다. The acquisition module 320 calculates the Time Of Flight (ToF) of the ultrasonic wave using the ultrasonic reception signal received after the ultrasonic transmission signal transmitted in response to the reference frequency is reflected by the reflective object, and the calculated ToF A reference approximation distance (d ref ) is obtained based on . Here, the reference approximation distance (d ref ) may be calculated using Equation (1) below.
[수식 1][Formula 1]
Figure PCTKR2022004886-appb-I000003
Figure PCTKR2022004886-appb-I000003
여기서,
Figure PCTKR2022004886-appb-I000004
는 대기중의 초음파의 속도(m/s), ToF는 초음파 왕복 측정시간이다.
here,
Figure PCTKR2022004886-appb-I000004
is the velocity of ultrasonic waves in the air (m/s), and ToF is the ultrasonic round-trip measurement time.
산출 모듈(330)은 기준 근사 거리(dref)로부터 초기 주파수(f0) 및 인접 주파수들(f1, f2, f3, f4)을 산출한다. 구체적으로, 산출 모듈(330)은 정상파(standing wave)의 조건을 이루는 초음파 수신 신호의 주파수들 중 상기 발신 주파수 범위 내에서 상기 기준 주파수와 가장 근접한 주파수를 초기 주파수(f0)로 설정하고, 상기 초기 주파수(f0)를 기준으로 위상이 각각 ±10% 및 ±20%인 인접 주파수들(f1, f2, f3, f4)을 획득한다. 여기서, 정상파는 파동이 한정된 공간 안에 갇혀서 제자리에서 진동하는 형태를 나타내는 것을 의미한다. 정상파는 공간 내에서 임의의 방향으로 진행하는 파동인 진행파(progressive wave)와 대비되는 개념으로 진동의 마디점(node)이 고정된 파동을 의미한다. 진동과 진동수가 같은 파동이 서로 방대 방향으로 이동할 때 파동의 합성에 의해 발생하기도 하며 정지파 또는 정재파라고도 한다. The calculation module 330 calculates the initial frequency f0 and adjacent frequencies f1, f2, f3, and f4 from the reference approximate distance d ref . Specifically, the calculation module 330 sets a frequency closest to the reference frequency within the transmission frequency range among frequencies of the ultrasonic reception signal constituting a condition of a standing wave as the initial frequency f0, and Adjacent frequencies f1, f2, f3, and f4 having phases of ±10% and ±20%, respectively, based on the frequency f0 are acquired. Here, the standing wave means that the wave is confined in a limited space and vibrates in place. A standing wave is a concept in contrast to a progressive wave, which is a wave traveling in an arbitrary direction in space, and means a wave in which nodes of vibration are fixed. It is also called a stationary wave or a standing wave.
제1 거리 계산 모듈(340)은 산출된 초기 주파수(f0)의 초음파 및 인접 주파수들(f1, f2, f3, f4) 각각의 초음파를 순차적으로 발신하여 측정된 초음파의 비행시간(Time Of Flight, ToF)으로부터 복수의 거리들을 계산한다. The first distance calculation module 340 sequentially transmits ultrasonic waves of the calculated initial frequency f0 and ultrasonic waves of adjacent frequencies f1, f2, f3, and f4 to measure the measured time of flight (Time Of Flight, ToF) calculates a plurality of distances.
에러 체크 모듈(350)은 제1 거리 계산 모듈(340)에 의한 거리들의 계산이 에러 조건인지를 체크한다. 즉, 에러 체크 모듈(350)은 ToF가 측정범위를 벗어 났거나 ToF0~ToF4의 차이가 f0~f4의 차이로 기대되는 시간의 차이를 벗어났을 때 에러 조건으로 판별한다. 여기서, ToF0은 초기 주파수(f0)의 초음파 발신 및 수신에 따라 산출되고, ToF1은 제1 인접 주파수(f1)의 초음파 발신 및 수신에 따라 산출되고, ToF2은 제2 인접 주파수(f2)의 초음파 발신 및 수신에 따라 산출되고, ToF3은 제3 인접 주파수(f3)의 초음파 발신 및 수신에 따라 산출되고, ToF4은 제4 인접 주파수(f4)의 초음파 발신 및 수신에 따라 산출된다. The error check module 350 checks whether the calculation of the distances by the first distance calculation module 340 is an error condition. That is, the error check module 350 determines an error condition when ToF is out of the measurement range or when the difference between ToF0 and ToF4 is out of the expected time difference due to the difference between f0 and f4. Here, ToF0 is calculated according to ultrasonic transmission and reception of the initial frequency f0, ToF1 is calculated according to ultrasonic transmission and reception of the first adjacent frequency f1, and ToF2 is calculated according to ultrasonic transmission of the second adjacent frequency f2. and reception, ToF3 is calculated according to ultrasonic transmission and reception of the third adjacent frequency f3, and ToF4 is calculated according to ultrasonic transmission and reception of the fourth adjacent frequency f4.
제2 거리 계산 모듈(360)은 에러 체크 모듈(350)에 의해 에러 조건이 아닌 것으로 체크되면, 상기 ToF들로부터 정밀 거리를 계산한다. 예를 들어, 제일 먼저 도착한 신호에 대응하는 ToF를 이용하여 정밀 거리를 계산할 수 있다. 또는 ToF가 가장 작은 값을 이용하여 정밀 거리로 계산할 수 있다. 또는 ToF들의 평균을 이용하여 정밀 거리로 계산할 수 있다. The second distance calculation module 360 calculates a precision distance from the ToFs when it is checked that the error condition is not an error condition by the error check module 350. For example, precise distance can be calculated using ToF corresponding to the first arriving signal. Alternatively, the ToF can be calculated as a precision distance using the smallest value. Alternatively, it can be calculated as a precision distance using the average of ToFs.
초음파와 같은 음파는 공기 중에서 주파수가 높을수록 검출하고자 하는 대상물에 대한 미세한 거리와 공간에 대한 분해능이 증가하지만, 대기 중의 감쇠(attenuation)가 커지기 때문에 멀리 떨어진 대상물과의 거리를 감지하는데 어려움이 있는 특성이 있다. 반면에 낮은 주파수는 거리와 공간에 대한 분해능은 감소하지만 대기중의 감쇠가 작기 때문에 측정장치와 대상물 간의 긴 거리를 감지하기가 용이하다. 거리에 따른 음압 레벨은 수식 2와 같다. The higher the frequency of sound waves in the air, the higher the resolution of the minute distance and space to the target object to be detected. there is On the other hand, low frequencies reduce the resolution of distance and space, but because the attenuation in the air is small, it is easy to detect long distances between the measuring device and the target. The sound pressure level according to the distance is shown in Equation 2.
[수식 2][Formula 2]
Figure PCTKR2022004886-appb-I000005
Figure PCTKR2022004886-appb-I000005
여기서, p0는 기준 음압(20uPa)이고, prms는 음압의 RMS값이다. Here, p 0 is the reference sound pressure (20 uPa), and p rms is the RMS value of the sound pressure.
도 2는 거리에 따른 정상파 조건과 음압 레벨을 설명하기 위한 그래프이다. 2 is a graph for explaining a standing wave condition and a sound pressure level according to a distance.
도 2를 참조하면, 음파원으로부터 거리가 증가함에 따라 음압 레벨은 점차 감소한다. 점차 감소하는 음압 레벨에서 정상파는 첨쇄부 형상으로 나타난다. 즉, 정상파는 실제로 X축을 따라 파장(λ)의 (1/2), 1, 1+(1/2) 등과 같이 구현된다. Referring to FIG. 2 , the sound pressure level gradually decreases as the distance from the sound wave source increases. At gradually decreasing sound pressure levels, standing waves appear in the form of apex. That is, the standing wave is actually implemented as (1/2), 1, 1+(1/2), etc. of the wavelength (λ) along the X-axis.
이러한 특징을 시스템 구현의 관점에서 보면, 주파수가 높을수록 대기 중에 전파되는 초음파 신호의 크기는 거리가 멀어짐에 따라 로그-스케일(log-scale)로 감소한다. 따라서 비접촉식으로 원거리에서 물체와의 거리를 감지하기 위해서는 비교적 낮은 초음파 주파수를 사용해야 한다. 하지만, 낮은 주파수로 인하여 거리 분해능은 저하되어 거리의 정확도를 확보할 수 없다. 따라서, 주파수와 분해능 간에는 모순 관계가 존재한다. Looking at these characteristics from the system implementation point of view, the higher the frequency, the larger the ultrasonic signal propagated in the air decreases in a log-scale as the distance increases. Therefore, in order to detect the distance to an object from a long distance in a non-contact manner, a relatively low ultrasonic frequency must be used. However, due to the low frequency, the distance resolution is degraded and thus the accuracy of the distance cannot be secured. Thus, a contradictory relationship exists between frequency and resolution.
초음파의 물리적 특성을 고려해 볼 때 주파수의 증가로 인해 증대되는 거리에 관한 분해능은 초음파 파장(λ)의 1/2의 관계로 선형적으로 개선되는 반면에, 주파수의 증가로 인한 신호의 감쇠는 로그-스케일로 증가하기 때문에 원거리 초음파 거리 측정 시스템의 구현을 위해서 낮은 주파수를 사용하면서 거리 분해능을 향상시키는 것이 중요하다. Considering the physical characteristics of ultrasound, the resolution of the distance that increases as the frequency increases is linearly improved with a relationship of 1/2 of the ultrasound wavelength (λ), whereas the signal attenuation due to the increase of frequency is logarithmic. -Since it increases with the scale, it is important to improve the distance resolution while using a low frequency for the realization of a long-distance ultrasonic distance measurement system.
따라서, 초음파를 이용한 거리 측정은 비교적 낮은 주파수를 사용하더라도 원거리 감지 능력을 유지하면서 거리 분해능의 저하를 극복할 수 있어야 한다. Therefore, distance measurement using ultrasonic waves should be able to overcome a decrease in distance resolution while maintaining long-distance sensing capability even when a relatively low frequency is used.
이에 본 발명에서는 실시예로 40kHz의 초음파를 사용하여 200kHz~400kHz의 초음파 신호와 유사한 거리 분해능을 구현하면서도 측정 거리는 40kHz의 특성을 유지하거나 또는 그 보다 거리 측정 능력을 향상시키기 위해 하드웨어적인 방법으로 제로크로스 검출기를 개선한다. 제로크로싱은 특정 단자에 전압이 인가되지 않은 상태, 즉 0인 상태를 말한다. 이러한 지점을 찾아서 신호를 전송하는 회로를 제로크로스 검출기 또는 제로크로싱 디텍터, 제로크로싱이라고 한다. 0이 되는 지점을 카운팅함으로써 주파수를 세는 것이 가능하고 또한 이를 바탕으로 AC교류를 제어하는 것이 가능하다. Accordingly, in the present invention, as an embodiment, a distance resolution similar to that of an ultrasonic signal of 200 kHz to 400 kHz is implemented using 40 kHz ultrasonic waves, while maintaining the characteristic of 40 kHz measurement distance or zero-cross by a hardware method to improve the distance measurement capability. improve the detector. Zero-crossing refers to a state in which voltage is not applied to a specific terminal, that is, a state of zero. A circuit that finds such a point and transmits a signal is called a zero-crossing detector, zero-crossing detector, or zero-crossing. By counting the point where it becomes zero, it is possible to count the frequency and also to control AC alternating current based on this.
일반적인 제로크로스 검출기는 기준 전압을 기준으로 특정 오프셋 전압만큼 높거나 낮은 전압을 검출하는 1개의 전압비교기를 사용하지만, 본 발명에 따른 제로크로스 검출기는 기준 전압을 기준으로 특정 오프셋 전압만큼 높은 전압과 낮은 전압 각각을 검출하는 2개의 전압비교기를 사용한다. 여기서, 특정 오프셋 전압은 이상적인 제로크로스 검출기의 경우 0V이나 실제로는 송수신 시스템의 노이즈 환경에 의해 특정한 전압을 설정하게 된다. 본 실시예에서, 오프셋 전압은 15mV~30mV로 설정하였다. A general zero-cross detector uses one voltage comparator that detects a voltage higher or lower than a specific offset voltage based on a reference voltage, but the zero-cross detector according to the present invention uses a voltage comparator that is higher or lower than a specific offset voltage based on a reference voltage. It uses two voltage comparators, each detecting the voltage. Here, the specific offset voltage is 0V in the case of an ideal zero-cross detector, but in practice, a specific voltage is set according to the noise environment of the transmission/reception system. In this embodiment, the offset voltage was set to 15 mV to 30 mV.
이어서, 보다 더 미세 분해능을 개선하기 위해서 초음파의 발신과 수신에 대한 소프트웨어적인 방법으로 추가 개선을 진행한다. 즉, 정상파를 이용한 중첩 현상의 공명 주파수 선정(A) 및 공명 주파수와 위상이 다른 유사 주파수 세트를 사용하여 감지 거리를 개선하고, 감지 거리의 분해능을 개선한다. Subsequently, in order to further improve the fine resolution, further improvement is performed in a software method for transmitting and receiving ultrasonic waves. That is, the detection distance is improved and the resolution of the detection distance is improved by using a resonant frequency selection (A) of the overlapping phenomenon using a standing wave and a similar frequency set having a different phase from the resonant frequency.
감지 거리의 개선 원리는 아래와 같다. The principle of improving the sensing distance is as follows.
정상파를 이루며 반사 대상물에 입사하는 발신 신호와 반사 대상물에 반사되는 반사 신호의 위상 관계가 서로 중첩 현상에 의한 보강 간섭으로 일종의 공명 현상과 유사하게 초음파 주 주파수(파장의 길이)를 결정하여 사용함으로 수신 신호가 크게 입사되어 종래의 방식 보다 더 먼 거리에 대한 측정이 가능하게 되는 원리이다. Constructive interference caused by the superposition of the phase relationship between the outgoing signal incident on the reflective object in a standing wave and the reflected signal reflected on the reflective object, similar to a resonance phenomenon, determines and uses the ultrasonic main frequency (wave length) It is a principle that a large signal is incident and it is possible to measure a longer distance than the conventional method.
상기한 방식은 첫 번째 에코 신호(한 주기 시작점)의 크기를 크게 해 주는 역할을 한다. The above method serves to increase the size of the first echo signal (the starting point of one cycle).
실제 응용 회로에서는 이 신호를 ToF 감지 신호로 사용하기는 어려울 수 있으나(즉, SNR이 낮아서 노이즈와 혼합되어 감지되는 것이 일반적인 특징 때문에), 이상적인 제로크로스 검출기를 초음파 센서의 초음파 수신부에 설계된다면, 상당한 감도 개선에 기여할 수 있다. Although it may be difficult to use this signal as a ToF detection signal in actual application circuits (i.e., because of its low SNR and common feature of being mixed with noise and detected), if an ideal zero-cross detector is designed in the ultrasonic receiver of an ultrasonic sensor, It can contribute to sensitivity improvement.
감지 거리의 분해능 개선은, 상기한 감지 거리의 개선에 주파수와 비슷하면서 반사 대상물에 입사되는 위상이 조금씩 차이가 나는 여러 주파수들을 계산하여 각각 전송하게 되면 반사되어 돌아오는 신호도 조금씩 위상차가 나게 된다. 그러한 위상차는 갖고 있지만, 주파수가 다르더라도 ToF는 동일하므로(즉, 동일 거리, 동일 음속), 입사되는 위상들이 서로 다른 ToF들이 전압 비교기(즉, 제로크로스 검출기)에 의해서 판독이 되는데, 이러한 제로크로스 검출기에 여러 위상이 각각 입사하기 때문에 각각의 주파수 별로 측정한 ToF들 중에서 가장 ToF가 짧은 시간을 구하면 주파수의 파장에 의한 분해능보다도 훨씬 정교한 시간 분해능을 얻을 수 있게 된다. The resolution improvement of the detection distance is similar to the frequency of the above detection distance improvement, but when several frequencies with a slight difference in phase incident on the reflective object are calculated and transmitted, the reflected signal also has a phase difference little by little. Even though they have such a phase difference, ToF is the same even if the frequency is different (i.e. same distance, same speed of sound), so ToFs with different incident phases are read by a voltage comparator (i.e. zero cross detector). Since multiple phases are incident on the detector, if the shortest ToF time is obtained among the ToFs measured for each frequency, time resolution much more precise than the resolution by the wavelength of the frequency can be obtained.
일반적으로 초음파를 이용한 거리 측정은 펄스-에코(Pulse-Echo)를 이용한 ToF 측정 방식을 사용한다. In general, distance measurement using ultrasonic waves uses a ToF measurement method using a pulse-echo.
도 3은 펄스-에코 방식의 거리 측정원리를 설명하기 위한 그래프이다. 3 is a graph for explaining the distance measurement principle of the pulse-echo method.
도 3을 참조하면, 펄스-에코 방식의 거리 측정은 초음파를 발신한 후 발신된 초음파가 반사 대상물에 반사되어 돌아오는 신호(Echo)를 측정하여 반사 대상물까지의 거리를 연산하는 측정 방식이다. Referring to FIG. 3 , the pulse-echo distance measurement is a measurement method in which a distance to a reflective object is calculated by measuring a signal (Echo) returned after the ultrasonic wave is transmitted and reflected by the reflective object.
정밀 거리 측정을 위해서는 초음파 파장(λ)의 1/2의 거리에 해당하는 분해능을 갖고 있기 때문에 높은 주파수를 사용하는 것이 거리 분해능 향상에 유리하다. 하지만, 주파수가 높을수록 대기 중의 감쇠가 커서 측정이 가능한 거리에는 제약을 갖는 특징이 있다. For precise distance measurement, since it has a resolution corresponding to a distance of 1/2 of the ultrasonic wavelength (λ), it is advantageous to use a high frequency to improve the distance resolution. However, the higher the frequency, the greater the attenuation in the air, which limits the measurable distance.
초음파를 수신하는 초음파 센서의 초음파 수신부는 에코 시간 신호를 판별하기 위한 제로크로스 검출기를 포함한다. The ultrasonic receiver of the ultrasonic sensor for receiving ultrasonic waves includes a zero-cross detector for determining an echo time signal.
도 4a는 일반적인 제로크로스 검출기를 설명하기 위한 회로도이고, 도 4b는 기준 전압의 상부 또는 하부의 전압만 비교하는 종래의 제로크로스 검출기에 의한 파형을 설명하기 위한 그래프이다. 4A is a circuit diagram for explaining a general zero-cross detector, and FIG. 4B is a graph for explaining a waveform by a conventional zero-cross detector that compares only a voltage above or below a reference voltage.
도 4a 및 도 4b를 참조하면, 일반적인 제로크로스 검출기는 제1 저항(R11), 제2 저항(R12) 및 제1 전압비교기(OP11)를 포함하고, ToF를 측정하기 위해 수신 파형의 일정 상부 진폭을 검출한다. Referring to FIGS. 4A and 4B, a general zero-cross detector includes a first resistor R11, a second resistor R12, and a first voltage comparator OP11, and a constant upper amplitude of a received waveform to measure ToF. detect
제1 저항(R11)은 전원전압(VCC)에 연결된 일단과 기준 전압(VCOM)이 인가되는 타단을 갖는다. 제2 저항(R12)은 기준 전압(VCOM)에 연결된 일단과 접지 전압이 인가되는 타단을 갖는다. 제1 전압비교기(OP11)는 초음파 수신 신호(VIN)가 인가되는 정극성 단자, 제1 저항(R11)에 연결되어 기준 전압(VCOM) 보다 높은 제1 전압(VP)이 인가되는 부극성 단자, 및 상기 초음파 수신 신호(VIN)와 상기 제1 전압(VP) 간의 크기 비교에 따른 제1 출력 전압(VOUTP)을 출력하는 출력단자를 갖는다. The first resistor R11 has one end connected to the power supply voltage VCC and the other end to which the reference voltage VCOM is applied. The second resistor R12 has one end connected to the reference voltage VCOM and the other end to which the ground voltage is applied. The first voltage comparator OP11 includes a positive terminal to which the ultrasonic reception signal VIN is applied, a negative terminal connected to the first resistor R11 and applied with a first voltage VP higher than the reference voltage VCOM, and an output terminal outputting a first output voltage VOUTP according to a magnitude comparison between the ultrasonic reception signal VIN and the first voltage VP.
제1 전압비교기(OP11)는 초음파 수신 신호(VIN)의 파형에서 제1 전압(VP)보다 높은 진폭에서 하이레벨의 제1 출력 전압(VOUTP)을 출력하고 제1 전압(VP)보다 낮거나 같은 진폭에서 로우레벨의 제1 출력 전압(VOUTP)을 출력한다. The first voltage comparator OP11 outputs a high-level first output voltage VOUTP at an amplitude higher than the first voltage VP in the waveform of the ultrasonic reception signal VIN and is lower than or equal to the first voltage VP. A low level first output voltage VOUTP is output in amplitude.
일반적인 제로크로스 검출기는 수신 파형의 일정 상부 진폭 또는 일정 하부 진폭을 검출하여 ToF를 측정한다. 하지만, 일반적인 제로크로스 검출기에 의하면, λ/2의 측정 오차가 존재한다. A typical zero-cross detector measures ToF by detecting a certain upper amplitude or a certain lower amplitude of a received waveform. However, according to a general zero-cross detector, a measurement error of λ/2 exists.
도 5a는 본 발명에 따른 제로크로스 검출기를 설명하기 위한 회로도이고, 도 5b는 기준 전압의 상부와 하부를 동시에 비교하는 개선된 제로크로스 검출기에 의한 파형을 설명하기 위한 그래프이다. 5A is a circuit diagram for explaining a zero-cross detector according to the present invention, and FIG. 5B is a graph for explaining a waveform by an improved zero-cross detector that simultaneously compares upper and lower levels of a reference voltage.
도 5a 및 도 5b를 참조하면, 본 발명에 따른 제로크로스 검출기는 제1 저항(R21), 제2 저항(R22), 제1 전압비교기(OP21) 및 제2 전압비교기(OP22)를 포함하고, ToF를 측정하기 위해 수신 파형의 일정 상부 진폭 및 일정 하부 진폭 각각을 검출한다. 도 5a에 도시된 제로크로스 검출기는 도 1에 도시된 획득 모듈(320)에 포함될 수 있다. 5A and 5B, the zero cross detector according to the present invention includes a first resistor R21, a second resistor R22, a first voltage comparator OP21 and a second voltage comparator OP22, To measure ToF, each of the constant upper amplitude and constant lower amplitude of the received waveform is detected. The zero-cross detector illustrated in FIG. 5A may be included in the acquisition module 320 illustrated in FIG. 1 .
제1 저항(R21)은 전원전압(VCC)에 연결된 일단과 기준 전압(VCOM)이 인가되는 타단을 갖는다. 제2 저항(R22)은 기준 전압(VCOM)에 연결된 일단과 접지 전압이 인가되는 타단을 갖는다. The first resistor R21 has one end connected to the power supply voltage VCC and the other end to which the reference voltage VCOM is applied. The second resistor R22 has one end connected to the reference voltage VCOM and the other end to which the ground voltage is applied.
제1 전압비교기(OP21)는 초음파 수신 신호(VIN)가 인가되는 정극성 단자, 제1 저항에 연결되어 기준 전압(VCOM) 보다 높은 제1 전압(VP)이 인가되는 부극성 단자, 및 상기 초음파 수신 신호(VIN)와 상기 제1 전압(VP) 간의 크기 비교에 따른 제1 출력 전압(VOUTP)을 출력하는 출력단자를 갖는다. 본 실시예에서, 제1 전압비교기(OP21)의 부극성 단자가 연결되는 제1 저항(R21)은 가변 저항일 수 있다. The first voltage comparator OP21 includes a positive terminal to which the ultrasonic reception signal VIN is applied, a negative terminal connected to a first resistor to which a first voltage VP higher than the reference voltage VCOM is applied, and the ultrasonic wave It has an output terminal for outputting a first output voltage VOUTP according to a magnitude comparison between the received signal VIN and the first voltage VP. In this embodiment, the first resistor R21 to which the negative terminal of the first voltage comparator OP21 is connected may be a variable resistor.
제2 전압비교기(OP22)는 상기 제2 저항(R22)에 연결되어 상기 기준 전압(VCOM)보다 낮은 제2 전압(VN)이 인가되는 정극성 단자, 상기 초음파 수신 신호(VIN)가 인가되는 부극성 단자, 및 상기 초음파 수신 신호(VIN)와 상기 제2 전압(VN) 간의 크기 비교에 따른 제2 출력 전압(VOUTN)을 출력하는 출력단자를 갖는다. 본 실시예에서, 제2 전압비교기(OP22)의 정극성 단자가 연결되는 제2 저항(R22)은 가변 저항일 수 있다. The second voltage comparator OP22 is connected to the second resistor R22 and has a positive polarity terminal to which a second voltage VN lower than the reference voltage VCOM is applied, and a unit to which the ultrasonic reception signal VIN is applied. It has a polarity terminal and an output terminal for outputting a second output voltage VOUTN according to a magnitude comparison between the ultrasonic reception signal VIN and the second voltage VN. In this embodiment, the second resistor R22 to which the positive terminal of the second voltage comparator OP22 is connected may be a variable resistor.
제1 저항(R21)과 제1 전압비교기(OP21)는 제로크로스 검출기의 포지티브 검출부를 정의할 수 있고, 제2 저항(R22)과 제2 전압비교기(OP22)는 제로크로스 검출기의 네거티브 검출부를 정의할 수 있다. 상기한 포지티브 검출부는 수신 파형의 위상이 네거티브에서 포지티브로 천이되는 것을 검출하고, 상기한 네거티브 검출부는 수신 파형의 위상이 포지티브에서 네거티브로 천이되는 것을 검출한다. The first resistor R21 and the first voltage comparator OP21 may define the positive detection part of the zero-cross detector, and the second resistor R22 and the second voltage comparator OP22 define the negative detection part of the zero-cross detector. can do. The positive detector detects a phase transition of the received waveform from negative to positive, and the negative detector detects a phase transition of the received waveform from positive to negative.
본 발명에 따른 제로크로스 검출기는 수신 파형의 일정 상부 진폭 및 일정 하부 진폭 각각을 검출하여 ToF를 측정한다. 본 발명에 따른 제로크로스 검출기에 의하면, λ/4의 측정 오차가 존재한다. 따라서, 본 발명에 따른 제로크로스 검출기에 의한 측정 오차는 일반적인 제로크로스 검출기에 의한 측정 오차에 비해 1/2로 오차를 줄일 수 있다는 잇점이 있다. The zero-cross detector according to the present invention measures ToF by detecting each of the constant upper amplitude and the constant lower amplitude of the received waveform. According to the zero-cross detector according to the present invention, a measurement error of λ/4 exists. Therefore, there is an advantage in that the measurement error by the zero-cross detector according to the present invention can be reduced to 1/2 compared to the measurement error by the general zero-cross detector.
이상에서 설명된 바와 같이, 초음파 센서의 초음파 수신부에서 에코 시간 신호를 판별하기 위한 제로크로스 검출기는 기준 전압의 상부 또는 하부에서 하나의 비교 전압만 사용하여 그 결과로 에코 시간을 판별하던 기존의 방식을 개선하여 기준 전압의 상부 전압과 하부 전압에서 모두 비교하여 에코 시간을 판별할 수 있도록 설계함으로써 초음파 파장의 길이로 인해 정해지는 주파수에 따른 최소 거리 분해능을 약 2배 정도 개선시키는 결과를 얻을 수 있다. As described above, the zero-cross detector for determining the echo time signal in the ultrasonic receiver of the ultrasonic sensor uses only one comparison voltage above or below the reference voltage and uses only one comparison voltage as a result to determine the echo time. By improving the design so that the echo time can be determined by comparing both the upper and lower voltages of the reference voltage, the minimum distance resolution according to the frequency determined by the length of the ultrasonic wave can be improved by about twice.
초음파 센서의 초음파 발신부에서 출발한 초음파가 반사 대상물에 반사되어 다시 초음파 센서의 초음파 수신부로 도착하는 초음파의 비행시간(Time Of Flight, ToF)에 대해서 수신 시스템에서는 기준 전압(VCOM)보다 약간 높은 전압으로 결정한다. 즉, 일반적으로 시스템의 특성과 응용 환경에 따라 시스템에서 발생하는 수신 노이즈 수준보다는 약간 높은 값으로 결정한다. A voltage slightly higher than the reference voltage (VCOM) in the receiving system for the time of flight (ToF) of the ultrasonic wave that starts from the ultrasonic transmitter of the ultrasonic sensor and is reflected by the reflective object and arrives at the ultrasonic receiver of the ultrasonic sensor again. to decide That is, it is generally determined as a value slightly higher than the level of reception noise generated in the system according to the characteristics of the system and the application environment.
본 명세서에서는 약 15mV~30mV 사이에서 값을 결정하였다. 설정된 비교 전압을 기준으로 하여 그 전압보다 높은 신호가 감지되면 "1" 그렇지 않으면 "0"을 출력하는 시스템이 일반적인 펄스-에코(Pulse-Echo) 시스템의 제로크로스 검출기의 동작 원리이다. In this specification, the value was determined between about 15 mV and 30 mV. A system that outputs “1” if a signal higher than the set comparison voltage is detected, otherwise “0” is the operating principle of a zero-cross detector in a general pulse-echo system.
그러나 이러한 제로크로스 검출기는 입력되는 수신 신호가 비교하고자 하는 파형과 최대 180°의 위상이 차이가 있는 신호가 수신될 경우는 delta-h1과 같은 측정 시간의 오류가 발생한다. 이러한 ToF 오류의 최대값은 초음파 주파수의 주기(파장, λ)의 1/2이 된다. 이는 본 명세서에서 의미하는 초음파 주파수에 따른 거리의 분해능의 한계를 의미하기도 한다. However, such a zero-cross detector generates a measurement time error such as delta-h1 when a signal having a phase difference of up to 180° from the waveform to be compared is received. The maximum value of this ToF error is 1/2 of the period (wavelength, λ) of the ultrasonic frequency. This also means the limit of the resolution of the distance according to the ultrasonic frequency, which is meant in this specification.
이상에서 설명된 바와 같이, 본 발명에 따르면 분해능의 한계를 극복하기 위해서 기준 전압(VCOM)으로부터 상부와 하부에 각각 전압 비교기를 동시에 두고 상부 감지기와 하부 감지기가 동시에 제로크로스 검출을 위해서 동작을 하도록 설계하였다. As described above, according to the present invention, in order to overcome the resolution limit, voltage comparators are placed at the top and bottom of the reference voltage (VCOM) at the same time, and the upper and lower sensors are designed to operate for zero-cross detection at the same time did
수신되는 초음파 신호로부터 시간 축에서 두 개의 비교기 중 먼저 출력이 나오는 신호를 기준으로 하여 제로크로스 검출을 진행함으로써 기존의 ToF의 검출 주기를 delta-p1에서 delta-p2 또는 delta-n2로 감소시킬 수 있다. The detection period of the existing ToF can be reduced from delta-p1 to delta-p2 or delta-n2 by performing zero-cross detection based on the first output signal of the two comparators on the time axis from the received ultrasonic signal. .
회로 개선의 결과로 감지거리의 분해능을 기존의 값이 주기(파장, λ)의 1/2에서 최소 1/4 이하가 되는 결과를 얻을 수 있었으며, 이는 제로크로스 검출기의 개선만으로 40kHz의 주파수로 80kHz 또는 그 이상의 주파수로 기대할 수 있는 수준의 거리 분해능을 구현할 수 있음을 의미한다.As a result of the circuit improvement, the resolution of the sensing distance was obtained from 1/2 of the existing value of the period (wavelength, λ) to at least 1/4 or less. This means that it is possible to implement a level of distance resolution that can be expected with a frequency higher than or equal to.
한편, 초음파는 매질을 통해 전파되는 성질을 가지며 질량을 가지고 있지는 않으나 에너지를 가지고 있다. 초음파의 펄스(pulse)는 매질 내에서 매질 내 입자의 운동 방향과 초음파 파동의 운동 방향이 같은 종파처럼 전달된다. On the other hand, ultrasonic waves have the property of propagating through a medium and do not have mass, but have energy. Ultrasonic pulses are transmitted like longitudinal waves in the medium in which the direction of motion of the particles in the medium and the direction of motion of the ultrasonic waves are the same.
종파(longitudinal wave)는 파동의 한 종류로서 에너지가 전달되는 파동의 이동방향과 같은 방향으로 매질의 운동(변위)이 나타나는 파동이다. 매질은 파동의 이동 축을 따라서 압축(compression)되거나 이완(rarefaction)되는데 각각 밀과 소로 표현하며 밀과 밀 사이, 혹은 소와 소 사이가 한 파장을 이룬다. 대표적으로 음파와 지진파 중의 p파가 있다. A longitudinal wave is a wave in which the movement (displacement) of a medium appears in the same direction as the direction of movement of the wave in which energy is transmitted. The medium is compressed or relaxed along the axis of motion of the wave, and it is expressed as a mill and a cow, respectively, and a wave is formed between mills and mills or between cows and cows. Representatively, there are p-waves among sound waves and seismic waves.
횡파(transverse wave)는 에너지가 전달되는 파동의 전달방향에 수직방향으로 매질의 움직임(변위)이 나타나는 파를 의미하며 대표적으로 빛과 전자기파와 교류회로 그리고 지진파 중의 s파가 있다. A transverse wave means a wave in which the movement (displacement) of a medium appears in a direction perpendicular to the transmission direction of the wave through which energy is transmitted.
종파와 횡파는 모두 단진동의 특성을 가지며, 시간에 대한 파동의 방정식은 동일한 형태의 사인파(sine wave)의 형태로 아래의 수식 3과 같이 표현된다. Longitudinal and transverse waves both have characteristics of simple vibration, and the wave equation for time is expressed as Equation 3 below in the form of a sine wave of the same shape.
[수식 3][Formula 3]
Figure PCTKR2022004886-appb-I000006
Figure PCTKR2022004886-appb-I000006
여기서, A는 진폭,
Figure PCTKR2022004886-appb-I000007
는 각속도,
Figure PCTKR2022004886-appb-I000008
는 위상이다.
where A is the amplitude,
Figure PCTKR2022004886-appb-I000007
is the angular velocity,
Figure PCTKR2022004886-appb-I000008
is the phase
수식 3에서 사인파를 갖는 특징의 파동은 전파되어 진행 되던 중에 반사 대상물에 부딛치게 되면 경계면에 부딪칠 때의 경계 조건(위상각)에 의해서 입사파와 반사파 간에 중첩(supper position)의 원리에 따라서 소멸 간섭 또는 보강 간섭의 형태가 나타나게 되며, 최대의 보강 간섭으로 진동하게 될 경우를 정상파(standing wave)조건이라고 한다. In Equation 3, when a wave with a sine wave propagates and hits a reflective object while propagating, it causes destructive interference according to the principle of superposition between the incident wave and the reflected wave according to the boundary condition (phase angle) when it hits the boundary surface. Alternatively, a form of constructive interference appears, and the case of vibration with the maximum constructive interference is called a standing wave condition.
전송된 초음파 신호가 반사 대상물에 의해서 반사되어 초음파 센서의 초음파 수신부에 도달하고, 도달된 사인파의 신호가 이상적으로 위상이 0°인 지점, 즉 제로크로스 지점에 도달한 시점의 전체 시간(ToF, 왕복시간)을 측정하면, 알려진 음속을 이용하여 거리의 정보를 추출하게 된다. 이때 사용한 초음파 센서는 중심주파수인 40kHz 외에도 중심주파수 좌우로 약 ±5kHz 구간은 초음파 센서로 사용할 수 있는 수준의 음압(Sound Pressure) 감도가 형성되는 특징이 있다. The total time at which the transmitted ultrasonic signal reaches the ultrasonic receiver of the ultrasonic sensor after being reflected by the reflective object, and the reached sine wave signal ideally reaches the point where the phase is 0°, that is, the zero-cross point (ToF, round-trip) time), the distance information is extracted using the known speed of sound. In addition to the center frequency of 40 kHz, the ultrasonic sensor used at this time has a characteristic in that a sound pressure sensitivity of a level that can be used as an ultrasonic sensor is formed in a section of about ±5 kHz to the left and right of the center frequency.
도 6은 40kHz의 초음파 센서의 주파수 특성을 설명하기 위한 그래프이다. 6 is a graph for explaining frequency characteristics of an ultrasonic sensor of 40 kHz.
도 6을 참조하면, 40kHz의 초음파 센서는 40kHz의 주파수 대역에서는 120dB의 음압 레벨을 갖는다. 또한 30kHz의 주파수 대역에서는 80dB의 음압 레벨이고, 35kHz의 주파수 대역에서는 98dB의 음압 레벨이다. 또한 45kHz의 주파수 대역에서는 104dB의 음압 레벨이고, 50kHz의 주파수 대역에서는 90dB의 음압 레벨이다. Referring to FIG. 6, a 40 kHz ultrasonic sensor has a sound pressure level of 120 dB in a frequency band of 40 kHz. In addition, the sound pressure level is 80 dB in the frequency band of 30 kHz, and the sound pressure level is 98 dB in the frequency band of 35 kHz. In addition, the sound pressure level is 104 dB in the frequency band of 45 kHz, and the sound pressure level is 90 dB in the frequency band of 50 kHz.
[수식 4][Formula 4]
Figure PCTKR2022004886-appb-I000009
Figure PCTKR2022004886-appb-I000009
여기서,
Figure PCTKR2022004886-appb-I000010
는 대기중의 초음파의 속도(m/s), d는 반사 대상물과의 거리(m), ToF는 초음파 왕복 측정시간이다.
here,
Figure PCTKR2022004886-appb-I000010
is the speed of ultrasonic waves in the air (m/s), d is the distance from the reflective object (m), and ToF is the ultrasonic round-trip measurement time.
통상적으로 초음파는 음속으로 전파된다. 섭씨 15도의 공기 속을 전파하는 음속은 대략 340m/s이다. 음속은 초음파의 진동수나 기압에는 관계가 없고 공기의 온도에만 의존성을 갖는다. 음속이 공기의 온도에 의해 변하는 것은 공기의 밀도가 온도에 의해 변하기 때문이다. 따라서 밀도가 작을수록, 또는 온도가 높을수록 매질은 이동하기 쉬워져서 음속은 빨라진다. 공기 속에 수증기 등이 포함된 경우 음속도 변하지만, 그 영향은 기온의 영향보다도 적기 때문에 무시하기도 한다. Usually, ultrasound waves propagate at the speed of sound. The speed of sound traveling through air at 15 degrees Celsius is approximately 340 m/s. The speed of sound has nothing to do with the frequency of ultrasonic waves or atmospheric pressure, but only depends on the temperature of the air. The speed of sound changes with temperature because the density of air changes with temperature. Therefore, the lower the density or the higher the temperature, the easier the medium is to move, so the speed of sound increases. When air contains water vapor, the speed of sound changes, but the effect is smaller than that of temperature, so it is neglected.
공기 이외의 매질(액체나 고체도 포함) 속의 음속도 온도에 따라 다르다. 보통 기체 속의 음속보다 액체 속의 음속이 크며, 액체 속의 음속보다 고체 속의 음속이 크다. 대기 중에 습도가 0%일 때 소리의 전파 속도 공식은 아래의 수식(5)와 같다. The speed of sound in any medium other than air (including liquids and solids) also depends on temperature. In general, the speed of sound in a liquid is greater than the speed of sound in a gas, and the speed of sound in a solid is greater than the speed of sound in a liquid. When the humidity in the air is 0%, the formula for the propagation speed of sound is as shown in Equation (5) below.
[수식 5][Formula 5]
Figure PCTKR2022004886-appb-I000011
Figure PCTKR2022004886-appb-I000011
여기서,
Figure PCTKR2022004886-appb-I000012
는 소리의 속도(m/s )이고, T는 섭씨 온도(℃)이다.
here,
Figure PCTKR2022004886-appb-I000012
is the speed of sound (m/s) and T is the temperature in degrees Celsius (°C).
응용에 따라 정밀한 측정을 위해서 온도에 대한 보상, 습도에 따른 보상 등을 선택적으로 적용하여 측정하고자 하는 환경의 음속을 실시간으로 계산하여 적용한다. Depending on the application, for precise measurement, compensation for temperature and compensation for humidity are selectively applied to calculate and apply the sound velocity of the environment to be measured in real time.
본 발명에서 (i) 초음파 수신 신호에 대해서 ToF 검출 방식으로 기준 전압의 상부와 하부 전압에 대한 180° 대칭 구조를 갖는 2개의 제로크로스 검출기를 적용하고, (ii) 초음파 발신기와 반사 대상물 사이에 거리(L)에서 정상파(standing wave) 조건을 만족하는 발신 주파수를 선택적으로 사용함으로써, 반사 대상물에 입사하는 파동 에너지와 반사되는 파동 에너지가 서로 중첩이 되면서 보강 간섭 또는 공명 현상을 발생하도록 제어하여 수신 감도를 향상시킬 수 있다.In the present invention, (i) two zero-cross detectors having a 180° symmetrical structure for the upper and lower voltages of the reference voltage are applied in the ToF detection method for the ultrasonic reception signal, and (ii) the distance between the ultrasonic transmitter and the reflective object In (L), by selectively using a transmission frequency that satisfies the standing wave condition, the wave energy incident on the reflective object and the reflected wave energy are overlapped with each other and controlled to generate constructive interference or resonance, thereby increasing reception sensitivity. can improve.
[수식 6][Equation 6]
Figure PCTKR2022004886-appb-I000013
Figure PCTKR2022004886-appb-I000013
여기서, λ는 초음파의 파장, L은 반사 대상물과 초음파 센서와의 거리, n은 정수이다. Here, λ is the wavelength of the ultrasonic wave, L is the distance between the reflective object and the ultrasonic sensor, and n is an integer.
이때 거리(L)는 40kHz의 주파수로 먼저 측정하여 얻은 ToF 값을 기준으로 계산을 하기 때문에 40kHz가 갖는 분해능 이내의 오차를 포함한 거리이며, 거리(L)값으로 연산한 정상파 조건을 만족하는 여러 주파수들 중에서 40kHz와 가장 근접한 주파수로 선택한 f0 역시 오차를 포함하는 주파수가 된다. At this time, since the distance (L) is calculated based on the ToF value obtained by first measuring at a frequency of 40 kHz, it is the distance including the error within the resolution of 40 kHz, and various frequencies that satisfy the standing wave condition calculated with the distance (L) value. Among them, f0 selected as the closest frequency to 40 kHz also becomes a frequency that includes an error.
거리 측정의 분해능을 개선하기 위하여 이러한 오차를 확률적으로 최소화하기 위한 방법으로 거리(L)값을 기준거리(L_ref)로 정의하고 기준거리(L_ref)를 기준 값으로 계산하여 구해진 정상파 주파수(f0)와 비교해서 발신기로부터 전송된 초음파 신호가 기준거리(L_ref)의 위치에 도달할 때의 위상의 차이가 주기에 대해서 각각 ±10%(±36°), ±20%(±72°)이면서 f0와 가장 근접한 주파수 f1~f4를 각각 결정한다. In order to improve the resolution of distance measurement, the standing wave frequency (f0) obtained by defining the distance (L) value as the reference distance (L_ref) and calculating the reference distance (L_ref) as a reference value as a method for minimizing such an error stochastically Compared to , the difference in phase when the ultrasonic signal transmitted from the transmitter reaches the position of the reference distance (L_ref) is ±10% (±36°) and ±20% (±72°) for the period, respectively, and f0 and The closest frequencies f1 to f4 are determined respectively.
반사 대상물에 도달하는 초음파의 위상각이 예상되는 정상파 주파수 기준으로 ±20%인 주파수 범위에서 5개의 주파수를 각각 순차적으로 발신하고 수신하여 구해진 ToF 중에는 확률적으로 이상적인 정상파 조건을 갖는 주파수의 범위를 포함하고 있으며, 이중에 가장 작은 ToF 값을 가장 정밀 거리의 정보로 추출하여 사용하도록 하였다. Among the ToF obtained by sequentially transmitting and receiving 5 frequencies in a frequency range in which the phase angle of the ultrasonic wave reaching the reflective object is ±20% of the expected standing wave frequency, a range of frequencies with ideal standing wave conditions are stochastically included. Among them, the smallest ToF value was extracted and used as the most accurate distance information.
또한 수신시에 위상각이 초음파 센서의 초음파 수신부를 기준으로 5개의 서로 다른 위상각이 제로크로스 지점을 통과하기 때문에 위상각으로 인한 ToF 측정의 분해능을 확보하여 추가로 거리 분해능을 개선할 수 있는 장점도 활용할 수 있게 된다. In addition, at the time of reception, five different phase angles pass through the zero-cross point based on the ultrasonic receiver of the ultrasonic sensor, so the resolution of ToF measurement due to the phase angle is secured to further improve the distance resolution. can also be used.
본 실시예에서는 인접 주파수들(f1~f4)의 위상 차이를 10% 단위로 설정하였으나, 상기한 위상 차이를 10%보다 크게 설정할 수도 있다. In this embodiment, the phase difference between the adjacent frequencies f1 to f4 is set in units of 10%, but the above-described phase difference may be set larger than 10%.
수식 4에 의하면 정상파의 조건은 초음파가 반사 대상물에 도달할 때의 위상이 0°이거나 180°인 경우가 해당이 된다. According to Equation 4, the condition of the standing wave corresponds to the case where the phase of the ultrasonic waves reaching the reflective object is 0° or 180°.
이러한 조건을 수식으로 해석하기 위해 파이썬(python) 프로그램으로 40kHz의 초음파 센서가 음압(sound pressure)을 충분히 전달하고 충분히 수신할 수 있는 주파수를 40kHz의 중심주파수에서 ±5kHz이내로 규정하고 측정 시스템의 측정 범위를 0.5m~2.0m로 제한하여 그 주파수 대역을 연산하였다. In order to interpret these conditions as a formula, the frequency at which the 40 kHz ultrasonic sensor can sufficiently transmit and receive sound pressure is defined within ±5 kHz from the center frequency of 40 kHz with a python program, and the measurement range of the measurement system was limited to 0.5 m to 2.0 m, and the frequency band was calculated.
도 7은 거리에 따른 기본주파수를 구하는 파이선(Python) 프로그램의 코드를 나타낸 도면이다. 도 8은 도 7의 파이선 프로그램의 코드에 의한 0.5m 거리에서의 25% 위상각 차이 주파수 연산 결과를 나타낸 도면이다. 7 is a diagram showing the code of a Python program for obtaining a fundamental frequency according to a distance. FIG. 8 is a diagram showing a result of 25% phase angle difference frequency calculation at a distance of 0.5 m by the code of the Python program of FIG. 7 .
도 7 및 도 8을 참조하면, 초음파 센서의 중심 주파수(fc)를 이용하여 개략적인 거리(L_ref)를 측정한 후 개략적인 측정 거리에 대해서 중심 주파수와 가장 유사한 정상파 조건을 갖는 초기 주파수(f0)와 상기 초기 주파수(f0)와 인접하면서 초음파 센서의 초음파 수신부에 도달하는 위상이 각각 다른 인접 주파수들(f1, f2, f3, f4)의 값을 구하는 파이선 프로그램 결과를 나타낸다. 본 실시예에서, 프로그램 언어인 Python을 활용하여 펄스-에코(Pulse-Echo) 주파수 세트를 구하였다. 7 and 8, after measuring a rough distance (L_ref) using the center frequency (fc) of the ultrasonic sensor, an initial frequency (f0) having a standing wave condition most similar to the center frequency for the approximate measured distance and the results of the python program for obtaining values of neighboring frequencies f1, f2, f3, and f4, which are adjacent to the initial frequency f0 and have different phases reaching the ultrasonic receiver of the ultrasonic sensor. In this embodiment, a set of pulse-echo frequencies was obtained using the program language Python.
이상에서 설명된 바와 같이, 본 발명은 초음파를 활용하여 호흡 관련 신호를 비접촉식으로 측정하고, 초음파 발신과 초음파 센서의 초음파 수신부를 분석하여 최적화 설계된 초음파를 이용한 거리 측정 장치를 제안한다. 특히, 거리를 탐지하기 위해 사용하는 초음파의 주파수와 개략적으로 측정한 거리와의 관계를 활용하여 측정 공간 내에 정상파 조건을 만족하는 중심주파수를 예측하고, 상기 중심주파수 부근의 여러 주파수 세트를 생성하여, 수신 신호의 강도를 높이고 초음파 센서가 최고의 음압을 보장하면서 동일한 ToF를 갖는 여러 주파수 세트의 위상차를 이용하여 측정하고자 하는 거리의 분해능을 개선한다. As described above, the present invention proposes a distance measurement device using ultrasonic waves that is designed to measure respiration-related signals in a non-contact manner using ultrasonic waves and analyzes ultrasonic transmission and an ultrasonic receiving part of an ultrasonic sensor. In particular, by utilizing the relationship between the frequency of the ultrasonic wave used to detect the distance and the roughly measured distance, the center frequency satisfying the standing wave condition is predicted in the measurement space, and several frequency sets around the center frequency are generated, The resolution of the distance to be measured is improved by using the phase difference of several sets of frequencies with the same ToF while increasing the strength of the received signal and ensuring the best sound pressure by the ultrasonic sensor.
도 9는 주파수별 수신 파형과 제로크로스 검출기에 의한 검출 결과를 설명하기 위한 그래프이다. 9 is a graph for explaining a received waveform for each frequency and a detection result by a zero-cross detector.
도 9를 참조하면, 순차적으로 발신되는 초기 주파수(f0)와 제1 내지 제4 인접 주파수들(f1, f2, f3, f4)은 반사 대상물에 의해 반사되어 수신된다. 즉, 제3 인접 주파수(f3)가 앞서고 제1 인접 주파수(f1), 초기 주파수(f0), 제2 인접 주파수(f2), 제4 인접 주파수(f4)가 순차적으로 수신된다. Referring to FIG. 9 , an initial frequency f0 and first to fourth adjacent frequencies f1 , f2 , f3 , and f4 sequentially transmitted are reflected by a reflective object and received. That is, the third adjacent frequency f3 precedes, and the first adjacent frequency f1, the initial frequency f0, the second adjacent frequency f2, and the fourth adjacent frequency f4 are sequentially received.
제로크로스 검출기의 포지티브 검출부는 초기 주파수(f0)와 제1 내지 제4 인접 주파수들(f1, f2, f3, f4) 각각의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력하고, 포지티브에서 네거티브로 천이되는 시각에 로우 레벨의 검출 신호를 출력한다. The positive detection unit of the zero-cross detector outputs a high-level detection signal at a time when the phase of each of the initial frequency f0 and the first to fourth adjacent frequencies f1, f2, f3, and f4 transitions from negative to positive, , outputs a low-level detection signal at the time of transition from positive to negative.
구체적으로, 제로크로스 검출기의 포지티브 검출부는, 제3 인접 주파수(f3)의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력하고, 제1 인접 주파수(f1)의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력하고, 초기 주파수(f0)의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력한다. 또한 제로크로스 검출기의 포지티브 검출부는, 제2 인접 주파수(f2)의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력하고, 제4 인접 주파수(f4)의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력한다. Specifically, the positive detection unit of the zero-cross detector outputs a high-level detection signal at a time when the phase of the third adjacent frequency f3 transitions from negative to positive, and the phase of the first adjacent frequency f1 changes from negative to positive. A high-level detection signal is output at the time of positive transition, and a high-level detection signal is output at the time of transition of the phase of the initial frequency f0 from negative to positive. In addition, the positive detection unit of the zero-cross detector outputs a high-level detection signal at a time when the phase of the second adjacent frequency f2 transitions from negative to positive, and the phase of the fourth adjacent frequency f4 changes from negative to positive. At the transition time, a high-level detection signal is output.
한편, 제로크로스 검출기의 네거티브 검출부는 초기 주파수(f0)와 제1 내지 제4 인접 주파수들(f1, f2, f3, f4) 각각의 위상이 네거티브에서 포지티브로 천이되는 시각에 로우 레벨의 검출 신호를 출력하고, 포지티브에서 네거티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력한다. On the other hand, the negative detection unit of the zero-cross detector generates a low-level detection signal at a time when the phase of each of the initial frequency f0 and the first to fourth adjacent frequencies f1, f2, f3, and f4 transitions from negative to positive. output, and outputs a high-level detection signal at the time of transition from positive to negative.
구체적으로, 제로크로스 검출기의 네거티브 검출부는, 제3 인접 주파수(f3)의 위상이 네거티브에서 포지티브로 천이되는 시각에 로우 레벨의 검출 신호를 출력하고, 제1 인접 주파수(f1)의 위상이 네거티브에서 포지티브로 천이되는 시각에 하이 레벨의 검출 신호를 출력하고, 초기 주파수(f0)의 위상이 네거티브에서 포지티브로 천이되는 시각에 로우 레벨의 검출 신호를 출력한다. 또한 제로크로스 검출기의 네거티브 검출부는, 제2 인접 주파수(f2)의 위상이 네거티브에서 포지티브로 천이되는 시각에 로우 레벨의 검출 신호를 출력하고, 제4 인접 주파수(f4)의 위상이 네거티브에서 포지티브로 천이되는 시각에 로우 레벨의 검출 신호를 출력한다. Specifically, the negative detection unit of the zero-cross detector outputs a low-level detection signal at a time when the phase of the third adjacent frequency f3 transitions from negative to positive, and the phase of the first adjacent frequency f1 changes from negative to positive. A high-level detection signal is output at the time of positive transition, and a low-level detection signal is output at the time of transition of the phase of the initial frequency f0 from negative to positive. In addition, the negative detection unit of the zero-cross detector outputs a low-level detection signal at a time when the phase of the second adjacent frequency f2 transitions from negative to positive, and the phase of the fourth adjacent frequency f4 changes from negative to positive. At the transition time, a low-level detection signal is output.
거리(L)를 기준으로 추정 거리에 의해 계산된 정상파 조건을 만족하면서 수신 센서의 중심주파수인 40kHz에 가장 인접한 주파수로 선택된 초기 주파수(f0)와, 목표물에 도착할 때를 기준으로 초기 주파수(f0)의 파장 길이의 ±10% 및 ±20%의 차이를 갖는 주파수들 중에서 초기 주파수(f0)와 가장 인접한 주파수를 선택하여 제1 내지 제4 인접 주파수(f1, f2, f3, f4)를 설정한다. Based on the distance (L), the initial frequency (f0) selected as the frequency closest to 40 kHz, the center frequency of the receiving sensor, while satisfying the standing wave condition calculated by the estimated distance, and the initial frequency (f0) based on arrival at the target First to fourth adjacent frequencies f1, f2, f3, and f4 are set by selecting a frequency most adjacent to the initial frequency f0 among frequencies having a difference of ±10% and ±20% of the wavelength of .
이어, 초기 주파수(f0)와 제1 내지 제4 인접 주파수들(f1, f2, f3, f4) 각각을 순차적으로 발신하고 수신하는 동작을 반복하여 제로크로스 검출기의 포지티브 검출부와 네거티브 검출부로부터 각각 수신된 ToF들을 근거로 정밀 거리를 계산한다. Then, by repeating the operation of sequentially transmitting and receiving the initial frequency f0 and the first to fourth adjacent frequencies f1, f2, f3, and f4, respectively, the positive detection unit and the negative detection unit of the zero-cross detector respectively receive Calculate precision distance based on ToFs.
구체적으로, 초기 주파수(f0)와 제1 내지 제4 인접 주파수들(f1, f2, f3, f4) 각각의 발신 및 수신에 따라 2개의 ToF가 측정되므로 총 10개의 ToF들이 계측된다. Specifically, since two ToFs are measured according to transmission and reception of each of the initial frequency f0 and the first to fourth adjacent frequencies f1, f2, f3, and f4, a total of ten ToFs are measured.
일례로서, 10개의 ToF들 중 가장 작은 ToF를 근거로 상기한 정밀 거리가 계산될 수 있다. As an example, the above precision distance may be calculated based on the smallest ToF among 10 ToFs.
다른 예로서, 10개의 ToF들의 평균값 또는 중앙값(Median)을 근거로 상기한 정밀 거리는 계산될 수 있다. 여기서, 중앙값은 가장 큰 값과 가장 작은 값을 제거하고 나머지 값들의 평균값이다. As another example, the precise distance may be calculated based on an average value or a median value of 10 ToFs. Here, the median value is the average of the remaining values after removing the largest and smallest values.
또 다른 예로서, 제로크로스 검출기의 포지티브 검출부로부터 수신된 5개의 ToF들과 제로크로스 검출기의 네거티브 검출부로부터 수신된 5개의 ToF들 중에서 유효한 5개의 ToF들을 결정하고 결정된 ToF들 중에서 가장 작은 값 또는 평균값, 중앙값을 근거로 상기한 정밀 거리가 계산될 수 있다. As another example, among the 5 ToFs received from the positive detection unit of the zero-cross detector and the 5 ToFs received from the negative detection unit of the zero-cross detector, 5 valid ToFs are determined, and among the determined ToFs, the smallest value or average value, Based on the median value, the above precision distance can be calculated.
도 10a는 본 발명의 일실시예에 따른 초음파를 이용한 거리 측정 방법을 설명하기 위한 흐름도이다. 10A is a flowchart illustrating a method for measuring a distance using ultrasonic waves according to an embodiment of the present invention.
도 10a를 참조하면, 초음파 센서의 PWM 클럭, 상기 초음파 센서의 주파수 특성 중 발신 및 수신 감도가 가장 좋은 주파수 값인 기준 주파수, 및 상기 초음파 센서의 발신 주파수 범위 각각을 설정한다(단계 S100). 여기서, 기준 주파수는 초음파 센서가 갖고 있는 주파수 특성 중에서 발신 및 수신 감도가 가장 좋은 주파수 값을 의미한다. Referring to FIG. 10A, a PWM clock of an ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and an transmission frequency range of the ultrasonic sensor are respectively set (step S100). Here, the reference frequency means a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor.
이어, 단계 S100에서 설정된 PWM 클럭, 기준 주파수 및 발신주파수 범위에 기초하여 초음파 신호를 반사 대상물에 발신하고, 반사 대상물에 의해 반사되는 초음파 신호를 수신한다(단계 S200). Next, based on the PWM clock, reference frequency, and transmission frequency range set in step S100, an ultrasonic signal is transmitted to the reflective object and the ultrasonic signal reflected by the reflective object is received (step S200).
이어, 상기 기준 주파수의 초음파가 발신되어 반사 대상물에 의해 반사된 초음파를 이용하여 획득된 비행시간(Time Of Flight, ToF)을 근거로 기준 근사 거리를 획득한다(단계 S300). 구체적으로, 수신된 초음파 신호, 즉 사인파의 신호가 이상적으로 위상이 0도인 지점, 즉 제로크로스 지점에 도달한 시점의 전체 시간(ToF, 왕복시간)을 측정하면, 알려진 음속을 이용하여 거리의 정보를 추출하게 된다. Subsequently, a standard approximate distance is obtained based on a time of flight (ToF) obtained using the ultrasonic waves of the reference frequency transmitted and reflected by the reflective object (step S300). Specifically, when measuring the total time (ToF, round-trip time) at the point at which the received ultrasonic signal, that is, the signal of the sine wave, reaches the point where the phase is ideally 0 degrees, that is, the zero-cross point, the distance information is obtained using the known speed of sound. will extract
이어, 상기 기준 근사 거리로부터 초기 주파수(f0) 및 인접 주파수들(f1, f2, f3, f4)을 산출한다(단계 S400). Subsequently, an initial frequency f0 and adjacent frequencies f1, f2, f3, and f4 are calculated from the reference approximate distance (step S400).
도 10b는 도 10a의 단계 S400을 설명하기 위한 흐름도이다. FIG. 10B is a flowchart for explaining step S400 of FIG. 10A.
도 10b를 참조하면, 정상파의 조건을 이루는 주파수들 중 발신 주파수 범위 내에서 기준 주파수와 가장 근접한 주파수를 초기 주파수(f0)로 설정한다(단계 S410). Referring to FIG. 10B , a frequency closest to the reference frequency within the transmission frequency range among the frequencies forming the standing wave condition is set as the initial frequency f0 (step S410).
이어, 초기 주파수(f0)를 기준으로 위상이 ±10%, ±20%인 인접 주파수들(f1, f2, f3, f4)을 획득한다(단계 S420). 여기서, 제1 인접 주파수(f1)는 초기 주파수(f0)의 위상 성분에 비해 +10%의 위상 성분을 갖고, 제2 인접 주파수(f2)는 초기 주파수(f0)의 위상 성분에 비해 -10%의 위상 성분을 갖는다. 또한 제3 인접 주파수(f3)는 초기 주파수(f0)의 위상 성분에 비해 +20%의 위상 성분을 갖고, 제4 인접 주파수(f4)는 초기 주파수(f0)의 위상 성분에 비해 -20%의 위상 성분을 갖는다. 예를 들어, 초기 주파수(f0)의 위상이 360°라면, 제1 인접 주파수(f1)의 위상은 대략 396°(=360°+36°)이고, 제2 인접 주파수(f2)의 위상은 대략 324°(=360°-36°)이고, 제3 인접 주파수(f3)의 위상은 대략 432°(=360°+72°)이고, 제2 인접 주파수(f2)의 위상은 대략 288°(=360°-72°)이다. Subsequently, adjacent frequencies f1, f2, f3, and f4 having phases of ±10% and ±20% based on the initial frequency f0 are acquired (step S420). Here, the first adjacent frequency f1 has a phase component of +10% compared to the phase component of the initial frequency f0, and the second adjacent frequency f2 has a phase component of -10% compared to the phase component of the initial frequency f0. has a phase component of In addition, the third adjacent frequency f3 has a phase component of +20% compared to the phase component of the initial frequency f0, and the fourth adjacent frequency f4 has a phase component of -20% compared to the phase component of the initial frequency f0. has a topological component. For example, if the phase of the initial frequency f0 is 360°, the phase of the first adjacent frequency f1 is approximately 396° (=360°+36°), and the phase of the second adjacent frequency f2 is approximately 324° (=360°-36°), the phase of the third adjacent frequency f3 is approximately 432° (=360°+72°), and the phase of the second adjacent frequency f2 is approximately 288° (= 360°-72°).
도 10a를 다시 참조하면, 단계 S400에서 산출된 초기 주파수(f0)의 초음파 및 인접 주파수들(f1, f2, f3, f4) 각각의 초음파를 순차적으로 발신하여 측정한 초음파들 각각의 비행시간(ToF)을 근거로 복수의 거리들을 계산한다(단계 S500). 구체적으로, 초기 주파수(f0)의 초음파를 발신하여 측정된 초기 비행시간(ToF0)을 근거로 초기 거리를 계산한다. 이어, 제1 인접 주파수(f1)의 초음파를 발신하여 측정된 제1 비행시간(ToF1)을 근거로 제1 거리를 계산한다. 이어, 제2 인접 주파수(f2)의 초음파를 발신하여 측정된 제2 비행시간(ToF2)을 근거로 제2 거리를 계산한다. 이어, 제3 인접 주파수(f3)의 초음파를 발신하여 측정된 제3 비행시간(ToF3)을 근거로 제3 거리를 계산한다. 이어, 제4 인접 주파수(f4)의 초음파를 발신하여 측정된 제4 비행시간(ToF4)을 근거로 제4 거리를 계산한다.Referring to FIG. 10A again, the ultrasonic waves of the initial frequency f0 calculated in step S400 and the ultrasonic waves of the adjacent frequencies f1, f2, f3, and f4 are sequentially transmitted and the time-of-flight (ToF) of each of the ultrasonic waves measured ), a plurality of distances are calculated based on (step S500). Specifically, the initial distance is calculated based on the initial time-of-flight (ToF0) measured by transmitting ultrasonic waves of the initial frequency (f0). Subsequently, a first distance is calculated based on a first time-of-flight (ToF1) measured by transmitting an ultrasonic wave having a first adjacent frequency (f1). Subsequently, a second distance is calculated based on a second time-of-flight (ToF2) measured by transmitting ultrasonic waves of a second adjacent frequency (f2). Next, a third distance is calculated based on a third time-of-flight (ToF3) measured by transmitting ultrasonic waves of a third adjacent frequency (f3). Subsequently, a fourth distance is calculated based on a fourth time-of-flight (ToF4) measured by transmitting ultrasonic waves of a fourth adjacent frequency (f4).
이어, 단계 S500에서 계산된 거리들의 계산이 에러 조건에 해당되는지의 여부를 체크하여(단계 S600), 에러 조건인 것으로 체크되면, 단계 300으로 피드백한다. 예를 들어, 측정범위를 벗어난 ToF이거나 ToF0~ToF4의 차이가 f0~f4의 차이로 기대되는 시간의 차이를 벗어났을 때, 에러 조건에 해당하는 것으로 판별된다. 여기서, ToF0은 초기 주파수(f0)의 초음파 발신 및 수신에 따라 산출되고, ToF1은 제1 인접 주파수(f1)의 초음파 발신 및 수신에 따라 산출되고, ToF2은 제2 인접 주파수(f2)의 초음파 발신 및 수신에 따라 산출되고, ToF3은 제3 인접 주파수(f3)의 초음파 발신 및 수신에 따라 산출되고, ToF4은 제4 인접 주파수(f4)의 초음파 발신 및 수신에 따라 산출된다. Next, it is checked whether the calculation of the distances calculated in step S500 corresponds to an error condition (step S600). For example, when ToF is out of the measurement range or when the difference between ToF0 and ToF4 is out of the expected time difference due to the difference between f0 and f4, it is determined that it corresponds to an error condition. Here, ToF0 is calculated according to ultrasonic transmission and reception of the initial frequency f0, ToF1 is calculated according to ultrasonic transmission and reception of the first adjacent frequency f1, and ToF2 is calculated according to ultrasonic transmission of the second adjacent frequency f2. and reception, ToF3 is calculated according to ultrasonic transmission and reception of the third adjacent frequency f3, and ToF4 is calculated according to ultrasonic transmission and reception of the fourth adjacent frequency f4.
단계 S500에서 에러 조건이 아닌 것으로 체크되면, 상기 ToF들을 근거로 정밀 거리를 계산한다(단계 S700). 예를 들어, 제일 먼저 도착한 신호에 대응하는 ToF를 이용하여 정밀 거리를 계산할 수 있다. 또는 ToF가 가장 작은 값을 이용하여 정밀 거리로 계산할 수 있다. 또는 ToF들의 평균을 이용하여 정밀 거리로 계산할 수 있다. If it is checked that it is not an error condition in step S500, a precise distance is calculated based on the ToFs (step S700). For example, precise distance can be calculated using ToF corresponding to the first arriving signal. Alternatively, the ToF can be calculated as a precision distance using the smallest value. Alternatively, it can be calculated as a precision distance using the average of ToFs.
통상적으로 초음파로 거리를 탐지할 때, 주파수가 낮으면 공기 중의 감쇠가 적어서 멀리 감지가 되지만, 주파수의 파장이 길어서 거리의 분해능이 떨어진다. 반면에, 주파수가 높으면 파장이 짧아서 거리의 분해능은 증가하지만, 대기 중(또는 매질을 통과하는 중)에서 감쇠가 커서 먼 거리를 탐지하는데 어려움이 있다. In general, when detecting a distance with ultrasound, if the frequency is low, the attenuation in the air is small, so it is detected far away, but the resolution of the distance is low because the wavelength of the frequency is long. On the other hand, if the frequency is high, the wavelength is short, so the resolution of the distance increases, but the attenuation in the air (or passing through a medium) is large, making it difficult to detect a long distance.
이러한 문제점을 해결하기 위해, 본 발명에 따른 초음파를 이용한 거리 측정은 낮은 주파수를 사용하고, 정상파 조건과 반사 대상물에 도착할 때 위상을 조금씩 달리하도록 주파수를 미세하게 변경한 여러 개의 주파수들을 순차적으로 전송하고 수신하여 높은 거리 분해능을 얻는다. 이에 따라, 초음파를 이용하여 거리를 탐지할 때의 거리 분해능을 획기적으로 개선할 수 있다. In order to solve this problem, the distance measurement using ultrasonic waves according to the present invention uses a low frequency and sequentially transmits several frequencies whose frequencies are slightly changed to slightly change the phase when arriving at a standing wave condition and a reflective object, Receive to obtain high distance resolution. Accordingly, it is possible to dramatically improve distance resolution when detecting a distance using ultrasonic waves.
또한 일반적으로 알려진 초음파의 주파수에 의한 거리 분해능(초음파 주파수의 주기의 ±1/2)과 달리 본 발명은 같은 거리에 대해서 f0~f4의 서로 다른 주파수의 발신과 수신 과정에서 발생하는 수신 신호 간의 위상 차이로 인하여 반응하는 두 개의 제로크로스 검출기를 사용함으로써 주기의 ±1/20 정도로 분해능을 개선할 수 있다. In addition, unlike the generally known distance resolution (±1/2 of the period of the ultrasonic frequency) by the frequency of the ultrasonic wave, the present invention provides the phase between the received signal generated in the process of transmitting and receiving different frequencies of f0 to f4 for the same distance. By using two zero-cross detectors that react due to the difference, the resolution can be improved to ±1/20 of the period.
초기 주파수(f0)가 1개이고(fini=1), 인접 주파수가 4개이고(fside=4), 전압비교기가 2개(Ncom=2)인 경우, 본 발명의 주파수에 따른 거리 측정의 거리 분해능은 다음의 수식 (7)으로 표현된다. When the initial frequency (f0) is 1 (fini = 1), the adjacent frequencies are 4 (fside = 4), and the voltage comparator is 2 (Ncom = 2), the distance resolution of the distance measurement according to the frequency of the present invention is It is expressed by the following Equation (7).
[수식 7][Formula 7]
Figure PCTKR2022004886-appb-I000014
Figure PCTKR2022004886-appb-I000014
이에 반해 종래의 주파수에 따른 거리 측정의 거리 분해능은, On the other hand, the distance resolution of distance measurement according to the conventional frequency is
Figure PCTKR2022004886-appb-I000015
Figure PCTKR2022004886-appb-I000015
와 같이 표현된다. is expressed as
결국, 인접 주파수가 4개이고(fside=4), 전압비교기가 2개(Ncom=2)인 경우 본 발명의 주파수에 따른 거리 측정의 거리 분해능은 As a result, when there are 4 adjacent frequencies (fside = 4) and 2 voltage comparators (Ncom = 2), the distance resolution of the distance measurement according to the frequency of the present invention is
Figure PCTKR2022004886-appb-I000016
Figure PCTKR2022004886-appb-I000016
와 같이 산출되어 종래의 기술 대비 동일한 주파수로 10배의 거리 분해능을 향상시킬 수 있다. Calculated as described above, it is possible to improve the distance resolution by 10 times at the same frequency compared to the prior art.
만일, 거리 분해능을 더욱 개선하기 위해서 fside=8인 경우, 즉 인접 주파수를 8개 사용하는 경우, 각각 f1~f8의 간격을 기존의 fside=4일 때의 ±10% 및 ±20%에서 그 값을 더 작게 하여 ±5.55%, ±11.11%, ±16.67% 및 ±22.22%로 배정한다. 이 경우 주파수에 따른 거리 측정의 거리 분해능은 If, in order to further improve the distance resolution, if fside = 8, that is, if 8 adjacent frequencies are used, the intervals of f1 to f8 are the values at ±10% and ±20% of the existing fside = 4. are assigned smaller ±5.55%, ±11.11%, ±16.67% and ±22.22%. In this case, the distance resolution of the distance measurement over frequency is
Figure PCTKR2022004886-appb-I000017
Figure PCTKR2022004886-appb-I000017
와 같이 산출되어 종래의 기술 대비 동일한 주파수로 18배의 거리 분해능을 향상시킬 수 있다. Calculated as described above, it is possible to improve the distance resolution by 18 times at the same frequency compared to the prior art.
인접 주파수(fside)의 개수에 의한 주파수 위상 차이의 오프셋 값은 아래의 수식 (8)으로 구현된다.The offset value of the frequency phase difference by the number of adjacent frequencies (fside) is implemented as Equation (8) below.
[수식 8][Formula 8]
Figure PCTKR2022004886-appb-I000018
Figure PCTKR2022004886-appb-I000018
인접 주파수(fside)의 개수가 4개이고 전압비교기의 개수가 2개일 때 인접 주파수별 오프셋 위상 계산값들과 인접 주파수(fside)의 개수가 8개이고 전압비교기의 개수가 2개일 때 인접 주파수별 오프셋 위상 계산값들을 정리하면 아래 표 1과 같다. Offset phase calculation values for each adjacent frequency when the number of adjacent frequencies (fside) is 4 and the number of voltage comparators is 2, and offset phase for each adjacent frequency when the number of adjacent frequencies (fside) is 8 and the number of voltage comparators is 2 The calculated values are summarized in Table 1 below.
[표 1] [Table 1]
Figure PCTKR2022004886-appb-I000019
Figure PCTKR2022004886-appb-I000019
이상에서 설명된 바와 같이, 본 발명에 따르면, 기존에 알려진 초음파 방식의 거리 측정 방법을 개선하기 위하여 하드웨어 측면에서 수신 신호의 제로크로스 지점의 상한과 하한을 모두 비교하도록 하여 거리 분해능을 개선하였다. As described above, according to the present invention, in order to improve the previously known ultrasonic distance measurement method, the distance resolution is improved by comparing both the upper limit and the lower limit of the zero-cross point of the received signal in terms of hardware.
또한 ToF 감지 방법적인 측면에서는 개략적으로 판별한 반사 대상물까지의 거리에 대한 정상파 조건에 근접한 f0~f4의 주파수 세트를 이용하여 보강 간섭 또는 공진에 의한 수신 감도를 향상시키고 동일 거리에 대해서 각각의 주파수에 의해서 위상이 분산된 수신 신호를 제로크로스 감지회로에서 측정하는 방법을 통해 거리 분해능을 개선하는 펄스-에코 방식을 제시하였다. In addition, in terms of the ToF detection method, the reception sensitivity due to constructive interference or resonance is improved by using a frequency set of f0 to f4 close to the standing wave condition for the roughly determined distance to the reflective object, and each frequency for the same distance We proposed a pulse-echo method that improves the distance resolution by measuring the received signal whose phase is dispersed by the zero-cross detection circuit.
이상에서는 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to examples, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. You will understand.
본 발명에 의한 초음파를 이용한 거리 측정 방법 및 장치는 원격지에서 호흡을 감지할 수 있어 의료 서비스 향상과 진료의 편의를 위한 비접촉식 생체신호를 원활하게 획득할 수 있다. 또한 본 발명에 의한 초음파를 이용한 거리 측정 방법 및 장치는 수위 센서와 같은 초음파 유량계나 정밀 거리를 측정하는 거리 측정기, 비파괴 검사기, ToF 카메라 등에 적용할 수 있어 산업상 이용가능성이 있다. The method and apparatus for measuring distance using ultrasound according to the present invention can detect respiration at a remote location, so that non-contact biosignals can be smoothly acquired for improving medical services and providing convenience in treatment. In addition, the distance measuring method and apparatus using ultrasonic waves according to the present invention can be applied to an ultrasonic flowmeter such as a water level sensor, a distance measuring device for measuring precise distance, a non-destructive inspection device, a ToF camera, etc., and thus has industrial applicability.
<부호의 설명><Description of codes>
100 : 거리 측정 장치 110 : 초음파 발신부100: distance measuring device 110: ultrasonic transmitter
120 : 초음파 수신부 130 : 센서 구동부120: ultrasonic receiving unit 130: sensor driving unit
310 : 설정 모듈 320 : 획득 모듈310: setting module 320: acquisition module
330 : 산출 모듈 340 : 제1 거리 계산 모듈330: calculation module 340: first distance calculation module
350 : 에러 체크 모듈 360 : 제2 거리 계산 모듈350: error check module 360: second distance calculation module

Claims (20)

  1. 초음파 발신부와 초음파 수신부를 갖는 초음파 센서에서 발신되는 초음파를 이용하여 상기 초음파 센서와 반사 대상물 간의 거리를 측정하는 초음파 이용한 거리 측정 방법에서, In a distance measurement method using ultrasonic waves for measuring a distance between an ultrasonic sensor and a reflective object using ultrasonic waves transmitted from an ultrasonic sensor having an ultrasonic transmitter and an ultrasonic receiver,
    상기 초음파 센서의 PWM 클럭, 상기 초음파 센서의 주파수 특성 중 발신 및 수신 감도가 가장 좋은 주파수 값인 기준 주파수, 및 상기 초음파 센서의 발신 주파수 범위 각각을 설정하는 단계; Setting each of a PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the best transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor;
    상기 기준 주파수의 초음파가 발신되어 반사 대상물에 의해 반사된 초음파를 이용하여 획득된 비행시간(Time Of Flight, ToF)을 근거로 기준 근사 거리를 획득하는 단계; Obtaining a standard approximate distance based on a time of flight (ToF) obtained by using ultrasonic waves of the reference frequency transmitted and reflected by a reflective object;
    상기 기준 근사 거리로부터 초기 주파수 및 인접 주파수들을 산출하는 단계; calculating an initial frequency and adjacent frequencies from the reference approximation distance;
    상기 초기 주파수의 초음파 및 상기 인접 주파수들 각각의 초음파를 순차적으로 발신하여 측정한 초음파들 각각의 ToF를 근거로 복수의 거리들을 계산하는 단계: 및 Calculating a plurality of distances based on ToF of each of the ultrasonic waves measured by sequentially transmitting the ultrasonic wave of the initial frequency and the ultrasonic wave of each of the adjacent frequencies: and
    상기 ToF들을 근거로 정밀 거리를 계산하는 단계를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. A distance measurement method using ultrasonic waves, comprising calculating a precise distance based on the ToFs.
  2. 제1항에 있어서, 상기 비행시간(Time Of Flight, ToF)을 근거로 상기 기준 근사 거리를 획득하는 단계에서 사용되는 음속의 값은 온도의 실시간 보상 또는 습도의 실시간 보상되어 사용되는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 1, wherein the value of the sound speed used in the step of acquiring the standard approximate distance based on the time of flight (ToF) is used after real-time compensation of temperature or real-time compensation of humidity. Distance measurement method using ultrasound.
  3. 제1항에 있어서, 상기 기준 근사 거리로부터 상기 초기 주파수 및 상기 인접 주파수들을 산출하는 단계는, The method of claim 1, wherein calculating the initial frequency and the adjacent frequencies from the reference approximate distance comprises:
    정상파의 조건을 이루는 주파수들 중 상기 발신 주파수 범위 내에서 상기 기준 주파수와 가장 근접한 주파수를 초기 주파수로 설정하는 단계; 및 setting a frequency closest to the reference frequency within the transmission frequency range among frequencies constituting a condition of a standing wave as an initial frequency; and
    상기 초기 주파수를 기준으로 위상이 다른 하나 이상의 인접 주파수를 계산하여 획득하는 단계를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. and calculating and obtaining at least one adjacent frequency having a different phase based on the initial frequency.
  4. 제3항에 있어서, 상기 인접 주파수별 오프셋 위상 계산값은
    Figure PCTKR2022004886-appb-I000020
    (여기서, fside는 인접 주파수의 개수)에 의해 계산되는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법.
    The method of claim 3, wherein the offset phase calculation value for each adjacent frequency is
    Figure PCTKR2022004886-appb-I000020
    (Here, fside is the number of adjacent frequencies) Distance measuring method using ultrasound, characterized in that calculated by.
  5. 제3항에 있어서, 상기 인접 주파수가 4개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±10% 및 ±20%의 위상을 갖는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 3, wherein when four adjacent frequencies are used, each of the adjacent frequencies has a phase of ±10% and ±20% based on the initial frequency.
  6. 제3항에 있어서, 상기 인접 주파수가 8개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±5.56%, ±11.11%, ±16.67% 및 ±22.22%의 위상을 갖는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 3, wherein when eight adjacent frequencies are used, each of the adjacent frequencies has a phase of ±5.56%, ±11.11%, ±16.67%, and ±22.22% based on the initial frequency. A method for measuring distance using ultrasonic waves.
  7. 제1항에 있어서, According to claim 1,
    상기 거리들의 계산이 에러 조건에 해당되는지의 여부를 체크하는 단계; checking whether the calculation of the distances corresponds to an error condition;
    상기 에러 조건인 것으로 체크되면, 상기 기준 근사 거리를 획득하는 단계로 피드백하는 단계; 및 feeding back to the step of acquiring the standard approximate distance if it is checked that the error condition is the case; and
    상기 에러 조건이 아닌 것으로 체크되면, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계를 더 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. If it is checked that the error condition is not the case, calculating a precise distance based on the ToFs.
  8. 제7항에 있어서, 상기 에러 조건은, 측정 범위를 벗어난 ToF인 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 7, wherein the error condition is ToF out of a measurement range.
  9. 제7항에 있어서, 상기 에러 조건은, ToF0~ToF4의 차이가 f0~f4의 차이로 기대되는 시간의 차이를 벗어난 경우를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법.The method of claim 7, wherein the error condition includes a case in which the difference between ToF0 and ToF4 is out of a time difference expected from a difference between f0 and f4.
  10. 제1항에 있어서, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계는, 제일 먼저 도착한 신호를 정밀 거리로 판단하는 단계를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 1, wherein calculating the precise distance based on the ToFs comprises determining a signal arriving first as the precise distance.
  11. 제1항에 있어서, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계는, ToF가 가장 작은 값을 정밀 거리로 판단하는 단계를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 1, wherein calculating the precision distance based on the ToFs comprises determining a value with the smallest ToF as the precision distance.
  12. 제1항에 있어서, 상기 ToF들을 근거로 정밀 거리를 계산하는 단계는, ToF들의 평균을 정밀 거리로 판단하는 단계를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 방법. The method of claim 1, wherein calculating the precision distance based on the ToFs comprises determining an average of the ToFs as the precision distance.
  13. 초음파 발신부와 초음파 수신부를 갖는 초음파 센서에서 발신되는 초음파를 이용하여 상기 초음파 센서와 반사 대상물 간의 거리를 측정하는 초음파 이용한 거리 측정 장치에서, In a distance measuring device using ultrasonic waves for measuring a distance between an ultrasonic sensor and a reflective object using ultrasonic waves transmitted from an ultrasonic sensor having an ultrasonic transmitter and an ultrasonic receiver,
    상기 초음파 센서의 PWM 클럭, 상기 초음파 센서의 주파수 특성 중 발신 및 수신 감도가 가장 좋은 주파수 값인 기준 주파수, 및 상기 초음파 센서의 발신 주파수 범위 각각을 설정하는 설정 모듈; a setting module configured to set each of a PWM clock of the ultrasonic sensor, a reference frequency that is a frequency value having the highest transmission and reception sensitivity among frequency characteristics of the ultrasonic sensor, and a transmission frequency range of the ultrasonic sensor;
    상기 기준 주파수의 초음파가 발신되어 반사 대상물에 의해 반사된 초음파를 이용하여 획득된 비행시간(Time Of Flight, ToF)을 근거로 기준 근사 거리를 획득하는 획득 모듈; an acquisition module for acquiring a reference approximate distance based on a Time Of Flight (ToF) obtained by using ultrasonic waves of the reference frequency transmitted and reflected by a reflective object;
    상기 기준 근사 거리로부터 초기 주파수 및 인접 주파수들을 산출하는 산출 모듈; a calculation module for calculating an initial frequency and adjacent frequencies from the reference approximation distance;
    산출된 초기 주파수의 초음파 및 인접 주파수들 각각의 초음파를 순차적으로 발신하여 측정한 초음파들 각각의 ToF를 근거로 복수의 거리들을 계산하는 제1 거리 계산 모듈; 및 a first distance calculation module for calculating a plurality of distances based on ToF of each of the ultrasonic waves measured by sequentially transmitting the calculated initial frequency ultrasonic waves and ultrasonic waves of adjacent frequencies; and
    상기 ToF들을 근거로 정밀 거리를 계산하는 제2 거리 계산 모듈을 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. A distance measuring device using ultrasound characterized in that it comprises a second distance calculation module that calculates a precise distance based on the ToFs.
  14. 제13항에 있어서, 상기 산출 모듈은, The method of claim 13, wherein the calculation module,
    정상파의 조건을 이루는 주파수들 중 상기 발신 주파수 범위 내에서 상기 기준 주파수와 가장 근접한 주파수를 초기 주파수로 설정하고, Among the frequencies constituting the condition of the standing wave, a frequency closest to the reference frequency within the transmission frequency range is set as an initial frequency;
    상기 초기 주파수를 기준으로 위상이 다른 하나 이상의 인접 주파수들을 획득하는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. A distance measuring device using ultrasonic waves, characterized in that for obtaining one or more adjacent frequencies having different phases based on the initial frequency.
  15. 제14항에 있어서, 상기 인접 주파수별 오프셋 위상 계산값은 15. The method of claim 14, wherein the offset phase calculation value for each adjacent frequency is
    Figure PCTKR2022004886-appb-I000021
    (여기서, fside는 인접 주파수의 개수)에 의해 계산되는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치.
    Figure PCTKR2022004886-appb-I000021
    (Here, fside is the number of adjacent frequencies) Distance measuring device using ultrasound, characterized in that calculated by.
  16. 제14항에 있어서, 상기 인접 주파수가 4개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±10% 및 ±20%의 위상을 갖는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. 15. The distance measuring device using ultrasonic waves according to claim 14, wherein when four adjacent frequencies are used, each of the adjacent frequencies has a phase of ±10% and ±20% based on the initial frequency.
  17. 제14항에 있어서, 상기 인접 주파수가 8개 사용되는 경우, 상기 인접 주파수들 각각은 상기 초기 주파수를 기준으로 ±5.56%, ±11.11%, ±16.67% 및 ±22.22%의 위상을 갖는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. The method of claim 14, wherein when eight adjacent frequencies are used, each of the adjacent frequencies has a phase of ±5.56%, ±11.11%, ±16.67%, and ±22.22% based on the initial frequency. A distance measuring device using ultrasonic waves.
  18. 제14항에 있어서, 상기 획득 모듈은, The method of claim 14, wherein the acquisition module,
    기준 전압을 기준으로 특정 오프셋 전압만큼 높은 전압과 기준 전압을 기준으로 특정 오프셋 전압만큼 낮은 전압 각각을 검출하여 에코 시간을 판별하는 제로크로스 검출기를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. A distance measuring device using ultrasonic waves, characterized in that it comprises a zero-cross detector for determining the echo time by detecting a voltage as high as a specific offset voltage based on the reference voltage and a voltage as low as a specific offset voltage based on the reference voltage.
  19. 제18항에 있어서, 상기 제로크로스 검출기는, The method of claim 18, wherein the zero cross detector,
    전원전압에 연결된 일단과 기준 전압이 인가되는 타단을 갖는 제1 저항; a first resistor having one end connected to the power supply voltage and the other end to which a reference voltage is applied;
    상기 기준 전압에 연결된 일단과 접지 전압이 인가되는 타단을 갖는 제2 저항; a second resistor having one end connected to the reference voltage and the other end to which a ground voltage is applied;
    초음파 수신 신호가 인가되는 정극성 단자, 상기 제1 저항에 연결되어 상기 기준 전압을 기준으로 특정 오프셋 전압만큼 높은 제1 전압이 인가되는 부극성 단자, 및 상기 초음파 수신 신호와 상기 제1 전압 간의 크기 비교에 따른 제1 출력 전압을 출력하는 출력단자를 갖는 제1 전압비교기; 및 A positive terminal to which an ultrasonic reception signal is applied, a negative terminal connected to the first resistor to which a first voltage as high as a specific offset voltage based on the reference voltage is applied, and a size between the ultrasonic reception signal and the first voltage a first voltage comparator having an output terminal outputting a first output voltage according to comparison; and
    상기 제2 저항에 연결되어 상기 기준 전압을 기준으로 특정 오프셋 전압만큼 낮은 제2 전압이 인가되는 정극성 단자, 상기 초음파 수신 신호가 인가되는 부극성 단자, 및 상기 초음파 수신 신호와 상기 제2 전압 간의 크기 비교에 따른 제2 출력 전압을 출력하는 출력단자를 갖는 제2 전압비교기를 포함하는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. Between a positive terminal connected to the second resistor and applied with a second voltage lower than a specific offset voltage based on the reference voltage, a negative terminal to which the ultrasonic reception signal is applied, and the ultrasonic reception signal and the second voltage A distance measuring device using ultrasonic waves, characterized in that it comprises a second voltage comparator having an output terminal for outputting a second output voltage according to size comparison.
  20. 제13항에 있어서, 상기 제1 거리 계산 모듈에 의한 거리들의 계산이 에러 조건에 해당되는 지의 여부를 체크하는 에러 체크 모듈을 더 포함하고, 14. The method of claim 13, further comprising an error check module that checks whether the calculation of the distances by the first distance calculation module corresponds to an error condition,
    상기 제2 거리 계산 모듈은 상기 에러 체크 모듈에 의해 에러 조건이 아닌 것으로 체크되면, 상기 ToF들을 근거로 정밀 거리를 계산하는 것을 특징으로 하는 초음파를 이용한 거리 측정 장치. The distance measuring device using ultrasonic waves, characterized in that the second distance calculation module calculates a precise distance based on the ToFs when it is checked that the error condition is not an error condition by the error check module.
PCT/KR2022/004886 2022-02-25 2022-04-05 Distance measurement method and device using ultrasonic waves WO2023163279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220025492A KR102427611B1 (en) 2022-02-25 2022-02-25 Method for measuring a distance using ultrasonic waves and device therefor
KR10-2022-0025492 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023163279A1 true WO2023163279A1 (en) 2023-08-31

Family

ID=82844245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004886 WO2023163279A1 (en) 2022-02-25 2022-04-05 Distance measurement method and device using ultrasonic waves

Country Status (2)

Country Link
KR (1) KR102427611B1 (en)
WO (1) WO2023163279A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264973A (en) * 1985-09-18 1987-03-24 Shinko Electric Co Ltd Ultrasonic range finder
KR20000057568A (en) * 1996-12-13 2000-09-25 솔리드 사이언티픽 리서치 앤드 디벨러프먼트 리미티드 Method and device for ultrasonic ranging
KR20110012584A (en) * 2009-07-31 2011-02-09 삼성전자주식회사 Apparatus and method for estimating position by ultrasonic signal
KR101454827B1 (en) * 2013-03-28 2014-10-28 부산대학교 산학협력단 High resolution distance measuring method by phase shifted value of ultrasonic signal
US20170363459A1 (en) * 2016-06-21 2017-12-21 Coavis System and method for measuring liquid level of vehicle fuel tank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094078A (en) * 2004-03-22 2005-09-27 안희태 High resolution distance method by multiple frequency ultrasonic signal
KR20070066136A (en) 2005-12-21 2007-06-27 재단법인 포항산업과학연구원 Method and apparatus for measuring of minimum distance using a ultrasonic
KR101282489B1 (en) * 2011-11-16 2013-07-04 한국해양과학기술원 dual frequency underwater acoustic camera and it's operating method for precise underwater survey
KR20160015749A (en) * 2014-07-31 2016-02-15 현대자동차주식회사 Time division type ultrasonic sensor and operating method thereof
JP7103836B2 (en) 2018-04-24 2022-07-20 エイブリック株式会社 Zero cross detection circuit and sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264973A (en) * 1985-09-18 1987-03-24 Shinko Electric Co Ltd Ultrasonic range finder
KR20000057568A (en) * 1996-12-13 2000-09-25 솔리드 사이언티픽 리서치 앤드 디벨러프먼트 리미티드 Method and device for ultrasonic ranging
KR20110012584A (en) * 2009-07-31 2011-02-09 삼성전자주식회사 Apparatus and method for estimating position by ultrasonic signal
KR101454827B1 (en) * 2013-03-28 2014-10-28 부산대학교 산학협력단 High resolution distance measuring method by phase shifted value of ultrasonic signal
US20170363459A1 (en) * 2016-06-21 2017-12-21 Coavis System and method for measuring liquid level of vehicle fuel tank

Also Published As

Publication number Publication date
KR102427611B1 (en) 2022-08-01

Similar Documents

Publication Publication Date Title
WO2011062389A2 (en) Touch panel, touch panel drive method and display device comprising a touch panel
WO2010071285A1 (en) Input device including resistive touch panel and method for calculating touch point thereof
WO2018230852A1 (en) Method for identifying moving object in three-dimensional space and robot for implementing same
WO2015030343A1 (en) Optical element rotation type mueller-matrix ellipsometer and method for measuring mueller-matrix of sample using the same
WO2015182956A1 (en) Method and device for generating data representing structure of room
WO2020251288A1 (en) Touch device and touch detection method therefor
WO2013147464A1 (en) Multi-touch screen device
WO2017217673A1 (en) Apparatus and method for measuring dust
WO2016085073A1 (en) Ultrasound sensor and object detecting method thereof
WO2018182308A1 (en) Ultrasonic diagnostic device and operating method thereof
WO2020171561A1 (en) Electronic apparatus and controlling method thereof
WO2023163279A1 (en) Distance measurement method and device using ultrasonic waves
WO2016111583A1 (en) Microphone
US5504577A (en) Method and apparatus for measuring meteorological visibility and scattering of light, said apparatus utilizing common optics for transmission and reception
WO2020075955A1 (en) Apparatus for detecting relative positioning information between rolls, and method for measuring roll alignment state by using same
WO2024106899A1 (en) Device and method for detecting difference in signals generated from multiple channels in single frequency receiver
WO2021150096A1 (en) System and method for determining location of user
WO2021261814A1 (en) Ultrasonic flowrate measurement device, controller therefor, and ultrasonic flowrate measurement method
WO2010143909A2 (en) Amplitude-modulated radar and method for measuring distance by same
WO2020071693A1 (en) Electronic device, server, and signature authentication method using same
WO2020013453A1 (en) Touch device and touch detection method thereof
WO2014119838A1 (en) Motion recognition method
WO2017200287A1 (en) Condenser-type membrane sensor measurement device and method, which use mechanical resonance property of membrane
WO2013002448A1 (en) Distance measurement apparatus for measuring a distance and coordinates using a laser
WO2017195967A1 (en) Correction apparatus and correction method for muzzle velocity measuring doppler radar equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929031

Country of ref document: EP

Kind code of ref document: A1