WO2023162412A1 - 回転機械の車室支持構造及び回転機械 - Google Patents

回転機械の車室支持構造及び回転機械 Download PDF

Info

Publication number
WO2023162412A1
WO2023162412A1 PCT/JP2022/045777 JP2022045777W WO2023162412A1 WO 2023162412 A1 WO2023162412 A1 WO 2023162412A1 JP 2022045777 W JP2022045777 W JP 2022045777W WO 2023162412 A1 WO2023162412 A1 WO 2023162412A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
rotor
support
support structure
built
Prior art date
Application number
PCT/JP2022/045777
Other languages
English (en)
French (fr)
Inventor
誠 近藤
雄久 ▲濱▼田
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020247005234A priority Critical patent/KR20240026306A/ko
Priority to JP2024502850A priority patent/JPWO2023162412A1/ja
Priority to CN202280053504.2A priority patent/CN117795178A/zh
Priority to DE112022003086.0T priority patent/DE112022003086T5/de
Publication of WO2023162412A1 publication Critical patent/WO2023162412A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • F01D25/265Vertically split casings; Clamping arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • TECHNICAL FIELD The present disclosure relates to a rotating machine casing support structure and a rotating machine. This application claims priority based on Japanese Patent Application No. 2022-025876 filed with the Japan Patent Office on February 22, 2022, the content of which is incorporated herein.
  • Rotating machines such as steam turbines and gas turbines are provided with a protruding portion called a claw foot in a casing that houses rotating members (rotor and moving blades) and stationary members (blade rings and stationary blades). ) is known to support the passenger compartment.
  • a support member called a vehicle interior support is erected on the ground, and the vehicle interior is supported by placing a projecting portion on the support interface surface of the vehicle interior support (for example, Patent Document 1 reference).
  • At least one embodiment of the present disclosure aims to suppress the difference in vertical displacement between a built-in component and a rotor in a rotary machine.
  • a casing support structure for a rotary machine includes: cabin and a built-in object disposed in the inner space of the casing on the side of the rotor and supported by the casing; a protruding portion provided to protrude from a side portion of the vehicle compartment to a laterally outer side of the vehicle compartment; a support portion that supports the projecting portion on the lateral outside of the vehicle compartment; Prepare.
  • a rotary machine according to at least one embodiment of the present disclosure, A casing support structure for a rotary machine having the configuration of (1) above; the rotor; Prepare.
  • FIG. 1 is a schematic diagram for explaining a steam turbine as an example of a rotating machine
  • FIG. FIG. 2 is a diagram schematically showing the appearance of a steam turbine according to some embodiments as viewed from the side
  • 1 is a schematic cross-sectional view of a high-pressure turbine viewed from above, as an example of a steam turbine according to some embodiments
  • FIG. 4 is a schematic cross-sectional view of a high and intermediate pressure turbine viewed from above as another example of a steam turbine according to some embodiments.
  • FIG. 3B is a sectional view taken along line IV-IV in FIG. 3A
  • FIG. 3B is a cross-sectional view taken along line VV in FIG. 3A. It is a figure which shows an example of the support structure of the casing of the conventional rotary machine.
  • expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. Shapes including parts etc. shall also be represented.
  • the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a schematic diagram for explaining a steam turbine as an example of a rotating machine.
  • a steam turbine 100 as an example of a rotating machine supports a rotor 3 extending along the direction of an axis AX, a casing 2 covering the rotor 3 from the outer peripheral side, and a shaft end 11 of the rotor 3 so as to be rotatable about the axis AX.
  • a journal bearing 4A and a thrust bearing 4B are provided.
  • the rotor 3 has a rotating shaft 1 extending along the axis AX and a plurality of rotor blades 30 provided on the outer peripheral surface of the rotating shaft 1 .
  • a plurality of rotor blades 30 are arranged at regular intervals in the circumferential direction of the rotating shaft 1 .
  • a plurality of rows of rotor blades 30 are arranged at regular intervals in the direction of the axis AX as well.
  • the rotor blade 30 has a rotor blade body 31 and a rotor blade shroud 34 .
  • the rotor blade main body 31 protrudes radially outward from the outer peripheral surface of the rotor 3 .
  • the rotor blade main body 31 has an airfoil-shaped cross section when viewed from the radial direction.
  • a blade shroud 34 is provided at the tip portion (the radially outer end portion) of the blade main body 31 .
  • the casing 2 has a substantially cylindrical shape that covers the rotor 3 from the outer peripheral side.
  • a steam supply pipe 12 for taking in steam S is provided on one side of the casing 2 in the direction of the axis AX.
  • a steam discharge pipe 13 for discharging steam S is provided on the other side of the vehicle compartment 2 in the direction of the axis AX. The steam flows inside the casing 2 from one side in the direction of the axis AX to the other side.
  • flow direction the direction in which steam flows is simply referred to as "flow direction.” Further, the side where the steam supply pipe 12 is positioned as seen from the steam discharge pipe 13 is called the upstream side in the flow direction, and the side where the steam discharge pipe 13 is positioned as seen from the steam supply pipe 12 is called the downstream side in the flow direction.
  • the stator vane 20 has a stator vane body 21 and a stator vane shroud 22 .
  • the stationary blade main body 21 is a blade-like member attached to blade rings (blade ring 212, high-pressure turbine blade ring 222, and intermediate-pressure turbine blade ring 232) to be described later.
  • a stator vane shroud 22 is provided at the tip (the radially inner end) of the stator vane main body 21 . Similar to the moving blades 30, a plurality of stationary blades 20 are arranged on the inner peripheral surface along the circumferential direction and the axis AX direction.
  • the rotor blades 30 are arranged so as to enter the region between the adjacent stator blades 20 . That is, the stationary blades 20 and the moving blades 30 extend in a direction (radial direction with respect to the axis AX) that intersects the steam flow direction.
  • the direction in which the rotor 3 extends that is, the direction of the axis AX
  • the axial direction is also simply referred to as the axial direction.
  • the radial direction with respect to the axis AX is simply referred to as the radial direction
  • the circumferential direction with respect to the axis AX is simply referred to as the circumferential direction.
  • FIG. 2 is a diagram schematically showing the appearance of the steam turbine 100 according to some embodiments as viewed from the side. 2, the illustration of the rotor 3 and the journal bearing 4A is omitted.
  • the casing 2 is divided vertically into two parts, the upper half being the casing upper half 2U, and the lower half being the casing lower half.
  • the half part is 2L.
  • the upper half portion 2U of the passenger compartment and the lower half portion 2L of the passenger compartment are plane-symmetrical with respect to the horizontal dividing plane Sd extending in the horizontal plane (excluding the piping portion).
  • the upper half compartment 2U has a semi-cylindrical upper half compartment body 21U and an upper half flange part 23U projecting outward from the edge of the upper half compartment body 21U.
  • the lower half casing 2L has a semi-cylindrical lower casing main body 21L and a lower flange portion 23L projecting outward from the edge of the lower casing main body 21L. are doing.
  • the vehicle interior upper half portion 2U and the vehicle interior lower half portion 2L are arranged in a state in which the lower surface of the upper half flange portion 23U and the upper surface of the lower half flange portion 23L are in contact with each other within the horizontal dividing plane Sd. It is fastened and fixed with bolts and nuts.
  • the casing 2 is provided with a projecting portion 24 that protrudes laterally outward (radially outward) of the casing 2 from a side portion of the casing 2 .
  • a projecting portion 24 that protrudes laterally outward (radially outward) of the casing 2 from a side portion of the casing 2 .
  • two projecting portions 24 are provided that are spaced apart in the extending direction of the axis AX on one lateral outer side and the other lateral outer side of the upper half portion 2U of the passenger compartment. ing.
  • the casing 2 is supported by the turbine pedestal 29 by each of the four protrusions 24 being supported by the turbine pedestal 29 via the outer support portion 27 .
  • the steam S is supplied through the steam supply pipe 12 on the upstream side to the interior of the compartment 2 configured as described above.
  • the steam S alternately passes through the passages formed by the stator blades 20 and the rotor blades 30 .
  • the stationary blades 20 rectify the flow of the steam S, and the moving blades 30 give rotational force to the rotor 3 when the rectified steam S pushes the moving blades 30 .
  • Rotational force of the rotor 3 is extracted from the shaft end 11 and used to drive an external device (generator, etc.).
  • the steam S is discharged through the steam discharge pipe 13 on the downstream side toward a subsequent device (such as a condenser).
  • the journal bearing 4A supports a radial load on the axis AX.
  • One journal bearing 4A is provided at each end of the rotor 3 .
  • the thrust bearing 4B supports a load in the direction of the axis AX.
  • the thrust bearing 4B is provided only at the upstream end of the rotor 3 .
  • FIG. 3A is a schematic cross-sectional view of a high-pressure turbine 100HP as an example of a steam turbine 100 according to some embodiments, and corresponds to the cross-sectional view taken along line III-III in FIG. is.
  • FIG. 3B is a schematic cross-sectional view of the high and intermediate pressure turbine 100HIP as another example of the steam turbine 100 according to some embodiments, and is taken along the line III-III in FIG.
  • FIG. 11 is a corresponding figure.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3A.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3A. 3A to 5 , illustration of the rotor 3 and the rotor blades 30 attached to the rotor 3 is omitted.
  • the steam turbine 100 when the high-pressure turbine 100HP shown in FIG. 3A and the high-intermediate pressure turbine 100HIP shown in FIG. , simply referred to as steam turbine 100 .
  • the steam turbine 100 includes internals 200 that are positioned within an interior space 203 of the casing 2 to the side of the rotor 3 and supported by the casing 2 .
  • the casing 2 is an external casing 201 .
  • the high-pressure turbine 100HP shown in FIG. 3A includes an internal compartment 211, a blade ring 212, and a dummy ring 213 as the internal components 200 arranged in the internal space 203 of the compartment 2 (external compartment 201). I have.
  • the high pressure turbine 100 HP shown in FIG. 3A includes an inlet inner gland 214 and an outlet inner gland 215 .
  • the inlet-side inner gland 214 and the outlet-side inner gland 215 are provided at the openings at the upstream end and the downstream end of the casing 2 (external casing 201). installed.
  • the built-in object arranged in the internal space 203 of is simply referred to as the built-in object 200 .
  • the internals 200 do not include the inlet side inner gland 214 and the outlet side inner gland 215 .
  • the inner casing 211 includes an inner casing upper half portion 211U and an inner casing lower half portion 211L as illustrated in FIG.
  • the inner compartment upper half part 211U and the inner compartment lower half part 211L are coupled by a fastening member (not shown) such as a bolt.
  • An inner compartment upper half portion 211U shown in FIG. 4 has an inner compartment protrusion 211P that horizontally protrudes outward in a radial direction about the axis AX.
  • the inner casing 211 holds a blade ring 212 and a dummy ring 213 on the radially inner side.
  • the blade ring 212 includes a blade ring upper half 212U and a blade ring lower half 212L as shown in FIG.
  • the blade ring upper half portion 212U and the blade ring lower half portion 212L are coupled by a fastening member (not shown) such as a bolt.
  • a blade ring upper half portion 212U shown in FIG. 4 has a blade ring protrusion 212P that horizontally protrudes radially outward about the axis AX.
  • an inner support portion for supporting the built-in object 200 protruding radially inward in the vicinity of the horizontal dividing plane Sd is provided in the lower half portion 2L of the outer casing 201. 25 are formed.
  • two inner sides spaced apart in the extending direction of the axis AX are provided on one lateral inner side (radial direction inner side) and on the other side lateral inner side of the lower half portion 2L of the passenger compartment 2L.
  • a support 25 is provided.
  • the inner support portion 25 supports the inner casing protrusion 211P or the blade ring protrusion 212P from below by abutting the upper surface 25a of the inner support portion 25 against the lower surface of the inner casing protrusion 211P or the blade ring protrusion 212P. .
  • the high and intermediate pressure turbine 100HIP shown in FIG. 3B includes a high-pressure turbine internal compartment 221, a high-pressure turbine blade ring 222, a second 1 dummy ring 223 and an intermediate-pressure turbine blade ring 232 .
  • the high and intermediate pressure turbine 100HIP shown in FIG. 3B includes a second dummy ring 228 , a high pressure side inner gland 224 and an intermediate pressure side inner gland 235 .
  • the second dummy ring 228, the high-pressure side inner gland 224, and the intermediate-pressure side inner gland 235 are located at the upstream end of the casing 2 (external casing 201) and It is attached to the opening at the downstream end.
  • the built-in object arranged in the internal space 203 of the exterior compartment 201 is simply referred to as the built-in object 200 .
  • the built-in component 200 does not include the second dummy ring 228 , the high pressure side inner gland 224 and the medium pressure side inner gland 235 .
  • the high-intermediate-pressure turbine 100HIP shown in FIG. 3B includes a high-pressure side outer gland 226 attached to one end of the casing 2 in which the high-pressure turbine section is provided, and a casing 2 in which the intermediate-pressure turbine section is provided. and a medium pressure side outer gland 237 attached to the other end.
  • the high-pressure turbine inner casing 221 includes an inner casing upper half portion 221U and an inner casing lower half portion 221L, similar to the inner casing 211 of the high pressure turbine 100HP illustrated in FIG. including.
  • the inner compartment upper half part 221U and the inner compartment lower half part 221L are coupled by a fastening member (not shown) such as a bolt.
  • the inner compartment upper half portion 221U has an inner compartment protrusion 221P that horizontally protrudes radially outward about the axis AX.
  • the inner casing upper half 221U is spaced apart in the extending direction of the axis AX on one side (radial direction outside) and on the other side of the inner casing upper half 221U.
  • Two inner casing protrusions 221P are provided.
  • the high pressure turbine inner casing 221 holds the high pressure turbine blade ring 222 and the first dummy ring 223 radially inward.
  • the high pressure turbine blade ring 222 includes a blade ring upper half 222U and a blade ring lower half 222L, similar to the blade ring 212 of the high pressure turbine 100HP shown in FIG.
  • the blade ring upper half portion 222U and the blade ring lower half portion 222L are coupled by a fastening member (not shown) such as a bolt.
  • the blade ring upper half portion 222U has a blade ring protrusion 222P that horizontally protrudes radially outward about the axis AX.
  • the intermediate pressure turbine blade ring 232 includes a blade ring upper half 232U and a blade ring lower half 232L, similar to the blade ring 212 of the high pressure turbine 100HP shown in FIG.
  • the blade ring upper half portion 232U and the blade ring lower half portion 232L are coupled by a fastening member (not shown) such as a bolt.
  • the blade ring upper half portion 232U has a blade ring protrusion 232P that horizontally protrudes radially outward about the axis AX.
  • an inner support for supporting the built-in object 200 protruding radially inward in the vicinity of the horizontal dividing plane Sd in the lower half 2L of the outer casing 201 is provided.
  • a portion 25 is formed.
  • four inner sides spaced apart in the extending direction of the axis AX are provided on one side of the lower half 2L of the passenger compartment (radial direction inner side) and on the other side of the lower half 2L.
  • a support 25 is provided.
  • the upper surface 25a of the inner support portion 25 is formed by any one of the inner casing protrusion 221P, the blade ring protrusion 222P of the high pressure turbine blade ring 222, and the blade ring protrusion 232P of the intermediate pressure turbine blade ring 232. It abuts on the lower surface to support any one of the inner casing protrusion 221P, the blade ring protrusion 222P of the high pressure turbine blade ring 222, and the blade ring protrusion 232P of the intermediate pressure turbine blade ring 232 from below.
  • the casing support structure 10 of the steam turbine 100 includes the casing 2 (outer casing 201) and the casing 2 on the side of the rotor 3.
  • (External vehicle interior 201) is arranged in an internal space 203 and is supported by the vehicle interior 2 (external vehicle interior 201).
  • FIG. 6 is a diagram showing an example of a support structure for a casing of a conventional rotary machine.
  • a steam turbine 100X as an example of a conventional rotating machine shown in FIG. It has
  • projecting portions 24X protrude in the direction of the axis AX from both ends in the direction of the axis AX from the vehicle interior lower half 2XL.
  • the projecting portion 24X is provided on one side of the compartment 2X (diameter direction outside) and on the other side of the compartment 2X.
  • the casing 2X is supported by the turbine pedestal 29 by supporting each of the four protrusions 24X on the turbine pedestal 29 via the support 27X.
  • a protruding portion 24X extending to a position away from the casing 2X in the direction of the axis AX is supported by a support 27X at a position apart from the casing 2X in the direction of the axis AX. . Therefore, when the casing 2X deforms so as to warp in the vertical direction due to thermal deformation, the casing 2X moves up and down with respect to the turbine frame 29 and the like that support the casing 2X.
  • the difference in vertical displacement between the built-in object 200 and the rotor 3 is such that the supporting position of the protruding portion 24 by the supporting portion (the outer supporting portion 27) is shifted in the direction of the axis AX. increases with distance from According to the casing support structure 10 according to some embodiments, the projecting portion 24 and the supporting portion (the outer supporting portion 27) are closer to the casing 2 in the direction of the axis AX than in the conventional supporting structure of the rotary machine. As a result, the difference in vertical displacement between the built-in object 200 and the rotor 3 can be made smaller than in the case of the conventional casing support structure of the rotary machine.
  • a steam turbine 100 includes a casing support structure 10 according to some embodiments and a rotor 3 .
  • the difference in vertical displacement between the built-in component 200 and the rotor 3 can be reduced compared to a rotary machine having a casing support structure for a conventional rotary machine. Therefore, in the steam turbine 100 according to some embodiments, shaft vibration due to seal fin contact is less likely to occur, and performance can be improved by reducing the clearance between the rotating member and the stationary member.
  • the protruding portion 24 and the outer support portion 27 may be provided at positions overlapping the built-in object 200 in the direction of the axis AX. As a result, the difference in vertical displacement between the built-in object 200 and the rotor 3 can be made smaller than in the case of the conventional casing support structure of the rotary machine.
  • the built-in object 200 may be supported by the vehicle compartment 2 at at least two support positions at different positions in the direction of the axis AX.
  • the at least two support positions may include a first support position P1 located on the farthest side in the direction of the axis AX and a second support position P2 located on the farthest other side.
  • the projecting portion 24 and the outer supporting portion 27 are preferably located between the first supporting position P1 and the second supporting position P2 in the direction of the axis AX.
  • the first support position P1 is, for example, the position in the direction of the axis AX of the inner support portion 25 that supports the inner casing protrusion 211P
  • the second support position P2 is, for example, the blade ring. This is the position in the direction of the axis AX of the inner support portion 25 that supports the protrusion 212P.
  • the first support position P1 is, for example, the position in the direction of the axis AX of the inner support portion 25 that supports the blade ring protrusion 222P of the high pressure turbine blade ring 222, and is the second support position.
  • P2 is the position in the direction of the axis AX of the inner support portion 25 that supports the blade ring protrusion 232P of the intermediate pressure turbine blade ring 232, for example.
  • the vehicle interior 2 deforms so as to warp in the vertical direction, it generally deforms so as to protrude most vertically in the vicinity of the center in the direction of the axis AX. Therefore, when the support position of the projecting portion 24 by the outer support portion 27 approaches the center of the vehicle interior 2 in the direction of the axis AX, the center of the vehicle interior 2 and the support surface 27a where the outer support portion 27 supports the projecting portion 24 from below. The vertical displacement difference of becomes small. In addition, when the supporting position where the casing 2 supports the built-in object 200 and the supporting position of the projecting portion 24 by the outer supporting portion 27 approach in the direction of the axis AX, the casing 2 is deformed so as to warp in the vertical direction.
  • the difference in vertical displacement between the built-in object 200 at the support position where the casing 2 supports the built-in object 200 and the support surface 27a where the outer support portion 27 supports the projecting portion from below is reduced.
  • the vertical displacement difference between the built-in object 200 and the rotor 3 can be made smaller.
  • the protrusion 24 may include a first protrusion 241 and a second protrusion 242 separated from the first protrusion 241 in the direction of the axis AX. At least one of the first projecting portion 241 and the second projecting portion 242 preferably overlaps the support position where the internal object 200 is supported by the vehicle interior 2 in the direction of the axis AX.
  • a protruding portion 24 that overlaps, for example, the inner support portion 25 that supports the blade ring protruding portion 212P in the direction of the axis AX.
  • the first projecting portion 241 or the second projecting portion 242 overlaps the inner support portion 25 in the direction of the axis AX, the other overlaps with the inner support portion 25. They do not have to overlap in the axis AX direction.
  • the first projection 241 supports, for example, the inner support portion 25 that supports the blade ring projection 222P of the high pressure turbine blade ring 222 and the inner casing projection 221P.
  • the projecting portion 24 overlaps with the inner supporting portion 25 in the direction of the axis AX.
  • the second protrusion 242 is, for example, the protrusion 24 located near the inner support 25 that supports the blade ring protrusion 232P of the intermediate pressure turbine blade ring 232.
  • the first protrusion 241 supports, for example, the inner support portion 25 that supports the blade ring protrusion 222P of the high pressure turbine blade ring 222, or the inner casing protrusion 221P. It may be overlapped with only one of the inner support portions 25 in the axis line AX direction.
  • the vertical displacement difference between the built-in object 200 and the rotor 3 can be made smaller.
  • the second projecting portion 242 does not overlap the inner supporting portion 25 that supports the blade ring projection 232P of the intermediate pressure turbine blade ring 232 in the direction of the axis AX. May be duplicated. That is, in the vehicle compartment support structure 10 according to some embodiments, the built-in object 200 may be supported by the external vehicle compartment 201 at at least two support positions at different positions in the direction of the axis AX. The first projecting portion 241 and the second projecting portion 242 preferably overlap the at least two supporting positions in the axis AX direction. Thereby, the difference in vertical displacement between the built-in object 200 and the rotor 3 can be made smaller.
  • the external vehicle compartment 201 may be divided into the vehicle compartment lower half 2L and the vehicle compartment upper half 2U on the horizontal dividing plane Sd.
  • the projecting portion 24 is preferably provided in the upper half portion 2U of the passenger compartment.
  • the built-in object is supported in the vehicle compartment at a height position close to the horizontal dividing plane of the vehicle compartment. Therefore, if the support surface 27a on which the outer support portion 27 supports the projecting portion 24 from below is separated from the height position of the horizontal dividing surface Sd of the vehicle interior 2 (external vehicle interior 201), the vehicle interior 2 (external vehicle interior) 201) to the support surface 27a, the influence of thermal expansion in the height direction tends to increase, and the difference in vertical displacement between the support surface 27a and the horizontal division surface Sd tends to increase. Therefore, in order to suppress the influence of such thermal elongation, it is desirable that the height positions of the support surface 27a and the horizontal dividing surface Sd are close to each other.
  • the vertical height position of the support surface 27a may be substantially the same as the height position of the horizontal dividing surface Sd.
  • the fact that the vertical height position of the support surface 27a is substantially the same as the height position of the horizontal division surface Sd means that the vertical height position of the support surface 27a is equal to the height position of the horizontal division surface Sd.
  • the built-in object 200 and the rotor 3 are affected by tolerance or thermal expansion in the height direction of members interposed between the casing 2 (outer casing 201) and the support surface 27a.
  • the outer support portion 27 is provided with a temperature control device such as a heater to control the vertical height position of the support surface 27a of the outer support portion 27.
  • a temperature control device such as a heater to control the vertical height position of the support surface 27a of the outer support portion 27.
  • the vertical displacement difference between the built-in object 200 and the rotor 3 may be adjusted appropriately.
  • the vehicle interior support structure 10 includes a heater 51 for heating the outer support portion 27 and a heater control device 53 for controlling the heater 51. It's good to be Also, the vehicle interior support structure 10 according to some embodiments may include a temperature sensor 55 for measuring the temperature of the outer support portion 27 .
  • the heater control device 53 is a control device that can control power supplied to the heater 51 based on the temperature of the outer support portion 27 measured by the temperature sensor 55 .
  • the temperature of the outer support portion 27 is appropriately controlled by the heater 51 to adjust the thermal elongation of the outer support portion 27 so that the support surface 27a of the outer support portion 27 is heated. You can adjust the height position. Since the height position of the built-in object 200 can be controlled by controlling the temperature of the outer support portion 27 with the heater 51, the difference in vertical displacement between the built-in object 200 and the rotor 3 can be further reduced.
  • the casing 2 may be an exterior casing 201, and the internals 200 may be interior casings (inner casing 211, high pressure turbine inner casing 221). may contain
  • the steam turbine 100 including the outer casing 201 and the inner casing (the inner casing 211, the high-pressure turbine inner casing 221) the built-in component 200 and the rotor 3 are reduced compared to the casing support structure of the conventional rotary machine. It is possible to reduce the vertical displacement difference with
  • the casing 2 also thermally expands in the axial direction. Therefore, it is preferable to set the restriction position for restricting the movement of the vehicle interior 2 in the axial direction at one end of the vehicle interior 2 in the axial direction.
  • the restriction position for restricting the axial movement of the casing 2 is the thrust bearing 4B (see FIG. ) should be set at the end where the .
  • thrust bearings 4B are provided at both ends of the casing 2 in the axial direction for restricting the movement of the rotor 3 in the axial direction.
  • a centering beam 61 may be provided at one end.
  • the centering beam 61 has one axial end connected to the vehicle interior 2 and the other axial end connected to, for example, the thrust bearing 4B.
  • the thrust bearing 4B may be axially movable with respect to the turbine mount 29 or may be axially immovable with respect to the turbine mount 29 .
  • the outer support portion 27 is configured so as not to restrict the axial movement of the projecting portion 24 .
  • the present disclosure is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.
  • the casing 2 is surrounded on the outside by a heat insulating member (not shown). Therefore, in the vehicle compartment support structure 10 according to some embodiments, the vehicle compartment 2 and the outer support part 27 may be surrounded by a heat insulating member (not shown). may be placed.
  • Steam turbine 100 may be an intermediate pressure turbine. Also, the steam turbine 100 according to some embodiments may be a low pressure turbine or a medium to low pressure turbine. Furthermore, the rotary machine according to some embodiments is not limited to the steam turbine 100, and may be a rotary machine such as a gas turbine that operates under high temperatures.
  • a casing support structure for a rotating machine includes a casing 2 (outer casing 201) and an internal space of the casing 2 (outer casing 201) on the side of the rotor 3.
  • Internal object 200 arranged in 203 and supported by vehicle interior 2 (external vehicle interior 201), and laterally outside of vehicle interior 2 (external vehicle interior 201) from the side of vehicle interior 2 (external vehicle interior 201) It includes a protruding portion 24 that protrudes (outward in the radial direction), and a support portion (outer support portion 27) that supports the protruding portion 24 laterally outside of the compartment 2 (external compartment 201).
  • the projecting portion and the supporting portion are closer to the casing in the direction in which the rotor extends than in the conventional supporting structure of the rotary machine.
  • the difference in vertical displacement between the built-in components and the rotor can be reduced as compared with the case supporting structure of the conventional rotary machine. Therefore, shaft vibration due to contact with the seal fins is less likely to occur, and performance can be improved by reducing the clearance between rotating members (rotors and moving blades) and stationary members (blade rings and stationary blades).
  • the protruding portion 24 and the supporting portion overlap in the extending direction of the internal component 200 and the rotor 3 (the direction of the axis AX). position.
  • the difference in vertical displacement between the built-in object 200 and the rotor 3 can be reduced compared to the conventional casing support structure of a rotary machine.
  • the built-in component 200 is mounted on the vehicle at at least two support positions at different positions in the extending direction of the rotor 3 (axis AX direction). It may be supported by the chamber 2 (outer compartment 201).
  • the at least two support positions include a first support position P1 located on the farthest side in the extending direction of the rotor 3 (outer compartment 201) and a second support position P2 located on the farthest other side. good too.
  • the protruding portion 24 and the supporting portion (outer supporting portion 27) are preferably located between the first supporting position P1 and the second supporting position P2 in the extending direction of the rotor 3 (axis AX direction).
  • the protrusion 24 is the first protrusion 241, and the first protrusion 241 extends in the direction in which the rotor 3 extends. and a second projecting portion 242 spaced apart in the direction of the axis AX. At least one of the first protruding portion 241 and the second protruding portion 242 overlaps the support position where the casing 2 (outer casing 201) supports the built-in object 200 in the extending direction of the rotor 3 (the direction of the axis AX). do it.
  • the difference in vertical displacement between the built-in object 200 and the rotor 3 can be made smaller.
  • the built-in object 200 is supported at at least two different support positions in the extending direction of the rotor 3 (the direction of the axis AX). It may be supported by the vehicle compartment 201).
  • the first projecting portion 241 and the second projecting portion 242 preferably overlap the at least two supporting positions in the extending direction (axis AX direction).
  • the vertical displacement difference between the built-in object 200 and the rotor 3 can be made smaller.
  • the vehicle interior 2 (outer vehicle interior 201) is divided into the lower half of the vehicle interior 2L and the vehicle interior on the horizontal dividing plane Sd. It is preferable that it can be divided into the upper half portion 2U.
  • the projecting portion 24 is preferably provided in the upper half portion 2U of the passenger compartment.
  • the support surface 27a can be easily brought closer to the height position of the horizontal division surface Sd, so that the difference in vertical displacement between the support surface 27a and the horizontal division surface Sd can be easily suppressed.
  • the support portion in the configuration of (6) above, may have a support surface 27a that supports the projecting portion 24 from below.
  • the height position of the support surface 27a in the vertical direction is preferably substantially the same as the height position of the horizontal division surface Sd.
  • a heater 51 for heating the support portion (the outer support portion 27) and a heater control for controlling the heater 51 and a device 53 are provided in any one of the above configurations (1) to (7).
  • the height position of the built-in object 200 can be controlled by controlling the temperature of the support portion (outer support portion 27) by the heater 51, so that the difference in vertical displacement between the built-in object 200 and the rotor 3 can be further reduced. can.
  • the vehicle compartment 2 may be an external vehicle compartment 201, and the built-in object 200 may be an internal vehicle compartment (internal It may include a casing 211, a high pressure turbine internal casing 221).
  • the casing of the conventional rotating machine in the rotating machine (steam turbine 100) including the outer casing 201 and the inner casing (the inner casing 211, the high-pressure turbine inner casing 221), the casing of the conventional rotating machine
  • the vertical displacement difference between the built-in object 200 and the rotor 3 can be reduced compared to the support structure.
  • a rotary machine includes a rotary machine casing support structure 10 configured in any one of (1) to (9) above, and a rotor 3 .
  • the difference in vertical displacement between the built-in object 200 and the rotor 3 can be reduced compared to a rotary machine having a casing support structure of a conventional rotary machine. Therefore, shaft vibration due to contact with the seal fins is less likely to occur, and performance can be improved by reducing the clearance between the rotating member and the stationary member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一実施形態に係る回転機械の車室支持構造は、車室と、ロータの側方において車室の内部空間内に配置され、車室によって支持される内蔵物と、車室の側部から車室の側方外側に突出して設けられた突出部と、車室の側方外側において突出部を支持する支持部と、を備える。

Description

回転機械の車室支持構造及び回転機械
 本開示は、回転機械の車室支持構造及び回転機械に関する。
 本願は、2022年2月22日に日本国特許庁に出願された特願2022-025876号に基づき優先権を主張し、その内容をここに援用する。
 蒸気タービンやガスタービン等の回転機械には、回転部材(ロータや動翼)および静止部材(ブレードリングや静翼)を収納する車室に猫足と呼ばれる突出部が設けられ、この突出部(猫足)を介して車室を支持したものが知られている。具体的には、車室サポートと呼ばれるサポート部材を地盤上に立設し、この車室サポートのサポート取合面に突出部を載置することで車室を支持している(例えば特許文献1参照)。
特許第4410651号公報
 蒸気タービンやガスタービンといった高温下で運転される回転機械では、タービンの作動時に種々の熱変形が起こる。例えば、蒸気タービンの運転中、熱変形により車室が鉛直方向に反るように変形すると、翼環等のように車室の内部で車室によって支持される内蔵物も上下動してしまい、ロータとの鉛直変位差が生じてシールフィンが接触したり、逆にクリアランスが過大になってしまうことにより、軸振動や性能低下を招くおそれがある。そのため、内蔵物とロータとの鉛直変位差を抑制することが望まれている。
 本開示の少なくとも一実施形態は、上述の事情に鑑みて、回転機械における内蔵物とロータとの鉛直変位差を抑制することを目的とする。
(1)本開示の少なくとも一実施形態に係る回転機械の車室支持構造は、
 車室と、
 ロータの側方において前記車室の内部空間内に配置され、前記車室によって支持される内蔵物と、
 前記車室の側部から前記車室の側方外側に突出して設けられた突出部と、
 前記車室の側方外側において前記突出部を支持する支持部と、
を備える。
(2)本開示の少なくとも一実施形態に係る回転機械は、
 上記(1)の構成の回転機械の車室支持構造と、
 前記ロータと、
を備える。
 本開示の少なくとも一実施形態によれば、回転機械における内蔵物とロータとの鉛直変位差を抑制できる。
回転機械の一例としての蒸気タービンについて説明するための模式的な図である。 幾つかの実施形態に係る蒸気タービンを側方から見た外観を模式的に示した図である。 幾つかの実施形態に係る蒸気タービンの一例として、高圧タービンを上方から見た模式的な断面を表す図である。 幾つかの実施形態に係る蒸気タービンの他の一例として、高中圧タービンを上方から見た模式的な断面を表す図である。 図3AのIV-IV矢視断面図である。 図3AのV-V矢視断面図である。 従来の回転機械の車室の支持構造の一例を示す図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
(蒸気タービン100について)
 図1は、回転機械の一例としての蒸気タービンについて説明するための模式的な図である。回転機械の一例としての蒸気タービン100は、軸線AX方向に沿って延びるロータ3と、ロータ3を外周側から覆う車室2と、ロータ3の軸端11を軸線AX回りに回転可能に支持するジャーナル軸受4A、及びスラスト軸受4Bと、を備えている。
 ロータ3は、軸線AXに沿って延びる回転軸1と、回転軸1の外周面に設けられた複数の動翼30を有している。動翼30は、回転軸1の周方向に一定の間隔をもって複数配列されている。軸線AX方向においても、一定の間隔を持って複数の動翼30の列が配列されている。動翼30は、動翼本体31と、動翼シュラウド34と、を有している。動翼本体31は、ロータ3の外周面から径方向外側に向かって突出している。動翼本体31は、径方向から見て翼型の断面を有する。動翼本体31の先端部(径方向外側の端部)には、動翼シュラウド34が設けられている。
 車室2は、ロータ3を外周側から覆う略筒状をなしている。車室2の軸線AX方向一方側には、蒸気Sを取り込む蒸気供給管12が設けられている。車室2の軸線AX方向他方側には、蒸気Sを排出する蒸気排出管13が設けられている。蒸気は、車室2の内部で、軸線AX方向一方側から他方側に向かって流れる。以降の説明では、蒸気の流れる方向を単に「流れ方向」と呼ぶ。さらに、蒸気排出管13から見て蒸気供給管12が位置する側を流れ方向の上流側と呼び、蒸気供給管12から見て蒸気排出管13が位置する側を流れ方向の下流側と呼ぶ。
 車室2の内周面には、複数の静翼20の列が設けられている。静翼20は、静翼本体21と、静翼シュラウド22と、を有している。静翼本体21は、後述する翼環(翼環212、高圧タービン翼環222、及び中圧タービン翼環232)に取り付けられた羽根状の部材である。さらに、静翼本体21の先端部(径方向内側の端部)には、静翼シュラウド22が設けられている。動翼30と同様に、静翼20は内周面上で周方向及び軸線AX方向に沿って複数配列される。動翼30は、隣り合う複数の静翼20の間の領域に入り込むようにして配置される。つまり、静翼20、及び動翼30は、蒸気の流れ方向に交差する方向(軸線AXに対する径方向)に延びている。
 以下の説明では、ロータ3の延在方向、すなわち軸線AX方向と単に軸方向とも称する。また、以下の説明では、軸線AXに対する径方向を単に径方向とも称し、軸線AXに対する周方向を単に周方向とも称する。
 図2は、幾つかの実施形態に係る蒸気タービン100を側方から見た外観を模式的に示した図である。なお、図2では、ロータ3、及びジャーナル軸受4Aの記載を省略している。図2に示すように、幾つかの実施形態に係る蒸気タービン100では、車室2は、上下に2分割されており、上半分は車室上半部2Uとされ、下半分は車室下半部2Lとされている。車室上半部2Uと車室下半部2Lは、水平面内に広がる水平分割面Sdを基準として面対称をなしている(ただし、配管部分は除く)。車室上半部2Uは、半円筒状の上半車室本体21Uと、この上半車室本体21Uの端縁から外側に向かって張り出している上半フランジ部23Uと、を有している。同様に、車室下半部2Lは、半円筒状の下半車室本体21Lと、この下半車室本体21Lの端縁から外側に向かって張り出している下半フランジ部23Lと、を有している。これら車室上半部2Uと車室下半部2Lは、上半フランジ部23Uの下面と下半フランジ部23Lの上面とを水平分割面Sd内で互いに当接させた状態で、不図示のボルト・ナット等によって締結固定されている。
 幾つかの実施形態に係る蒸気タービン100では、車室2には、車室2の側部から車室2の側方外側(径方向外側)に突出して設けられた突出部24が形成されている。例えば図2に示す例では、車室上半部2Uの一方側の側方外側、及び他方側の側方外側のそれぞれにおいて、軸線AXの延在方向に離間した2つの突出部24が設けられている。
 幾つかの実施形態に係る蒸気タービン100では、4つの突出部24のそれぞれが外側支持部27を介してタービン架台29に支持されることで、車室2は、タービン架台29に支持される。
 蒸気Sは、上流側の蒸気供給管12を介して、上述のように構成された車室2の内部に供給される。車室2の内部を通過する中途で、蒸気Sは静翼20と動翼30それぞれで構成された流路を交互に通過する。静翼20は蒸気Sの流れを整流し、動翼30は整流された蒸気Sが動翼30を押すことによってロータ3に回転力を与える。ロータ3の回転力は、軸端11から取り出されて外部の機器(発電機等)の駆動に用いられる。ロータ3の回転に伴って、蒸気Sは下流側の蒸気排出管13を通じて後続の装置(復水器等)に向かって排出される。
 ジャーナル軸受4Aは、軸線AXに対する径方向への荷重を支持する。ジャーナル軸受4Aは、ロータ3の両端に1つずつ設けられている。スラスト軸受4Bは、軸線AX方向への荷重を支持する。スラスト軸受4Bは、ロータ3の上流側の端部にのみ設けられている。
 図3Aは、幾つかの実施形態に係る蒸気タービン100の一例として、高圧タービン100HPを上方から見た模式的な断面を表す図であり、図2におけるIII-III断面矢視図に相当する図である。
 図3Bは、幾つかの実施形態に係る蒸気タービン100の他の一例として、高中圧タービン100HIPを上方から見た模式的な断面を表す図であり、図2におけるIII-III断面矢視図に相当する図である。
 図4は、図3AのIV-IV矢視断面図である。
 図5は、図3AのV-V矢視断面図である。
 なお、図3Aから図5では、ロータ3及びロータ3に取り付けられた動翼30の記載を省略している。
 以下の説明では、図3Aに示した高圧タービン100HPと図3Bに示した高中圧タービン100HIPとを特に区別しない場合や、高圧タービン100HPと図3Bに示した高中圧タービン100HIPとを総称する場合は、単に蒸気タービン100と称する。
 図3Aから図5に示すように、幾つかの実施形態に係る蒸気タービン100は、ロータ3の側方において車室2の内部空間内203に配置され、車室2によって支持される内蔵物200を備える。
 なお、図3Aから図5に示した幾つかの実施形態に係る蒸気タービン100では、車室2は、外部車室201である。
(高圧タービン100HP)
 図3Aに示した高圧タービン100HPは、車室2(外部車室201)の内部空間内203に配置される内蔵物200として、内部車室211と、翼環212と、ダミーリング213と、を備えている。
 図3Aに示した高圧タービン100HPは、入口側インナーグランド214、及び出口側インナーグランド215を備えている。図3Aに示した高圧タービン100HPでは、入口側インナーグランド214、及び出口側インナーグランド215は、車室2(外部車室201)の上流側の端部、及び下流側の端部の開口部に取り付けられている。
 なお、一般的には、図3Aに示した高圧タービン100HPが備える入口側インナーグランド214、及び出口側インナーグランド215も車室2の内蔵物に含まれるが、本明細書では、外部車室201の内部空間内203に配置される内蔵物のことを単に内蔵物200と称する。本明細書では、この内蔵物200には、入口側インナーグランド214、及び出口側インナーグランド215は含まれないものとする。
 また、図3Aに示した高圧タービン100HPは、車室2の上流側の端部に取り付けられた入口側アウターグランド216と、車室2の下流側の端部に取り付けられた出口側アウターグランド217とを備えている。
 図3Aに示した高圧タービン100HPでは、内部車室211は、図4に示すように内部車室上半部211Uと内部車室下半部211Lとを含む。内部車室上半部211Uと内部車室下半部211Lとは、ボルト等の不図示の締結部材によって結合されている。
 図4に示す内部車室上半部211Uは、軸線AXを中心とする径方向外側に向かって水平に突出する内部車室突部211Pを有する。
 図3Aに示した高圧タービン100HPでは、内部車室211は、径方向内側で翼環212とダミーリング213とを保持している。
 図3Aに示した高圧タービン100HPでは、翼環212は、図4に示すように翼環上半部212Uと翼環下半部212Lとを含む。翼環上半部212Uと翼環下半部212Lとは、ボルト等の不図示の締結部材によって結合されている。
 図4に示す翼環上半部212Uは、軸線AXを中心とする径方向外側に向かって水平に突出する翼環突部212Pを有する。
 図3Aに示した高圧タービン100HPでは、外部車室201の車室下半部2Lには、水平分割面Sdの近傍で径方向内側に向かって突出し、内蔵物200を支持するための内側支持部25が形成されている。
 例えば図3Aに示す例では、車室下半部2Lの一方側の側方内側(径方向内側)、及び他方側の側方内側のそれぞれにおいて、軸線AXの延在方向に離間した2つの内側支持部25が設けられている。
 内側支持部25は、内側支持部25の上面25aが内部車室突部211P又は翼環突部212Pの下面に当接して、内部車室突部211P又は翼環突部212Pを下方から支持する。
(高中圧タービン100HIP)
 図3Bに示した高中圧タービン100HIPは、車室2(外部車室201)の内部空間内203に配置される内蔵物200として、高圧タービン内部車室221と、高圧タービン翼環222と、第1ダミーリング223と、中圧タービン翼環232と、を備えている。
 図3Bに示した高中圧タービン100HIPは、第2ダミーリング228と、高圧側インナーグランド224と、中圧側インナーグランド235と、を備えている。図3Bに示した高中圧タービン100HIPでは、第2ダミーリング228と、高圧側インナーグランド224と、中圧側インナーグランド235とは、車室2(外部車室201)の上流側の端部、及び下流側の端部の開口部に取り付けられている。
 なお、一般的には、図3Bに示した高中圧タービン100HIPが備える第2ダミーリング228、高圧側インナーグランド224、及び中圧側インナーグランド235も車室2の内蔵物に含まれるが、上述したように本明細書では、外部車室201の内部空間内203に配置される内蔵物のことを単に内蔵物200と称する。本明細書では、この内蔵物200には、第2ダミーリング228と、高圧側インナーグランド224と、中圧側インナーグランド235とは含まれないものとする。
 また、図3Bに示した高中圧タービン100HIPは、高圧タービン部が設けられる車室2の一方側の端部に取り付けられた高圧側アウターグランド226と、中圧タービン部が設けられる車室2の他方側の端部に取り付けられた中圧側アウターグランド237とを備えている。
 図3Bに示した高中圧タービン100HIPでは、高圧タービン内部車室221は、図4に示す高圧タービン100HPの内部車室211と同様に内部車室上半部221Uと内部車室下半部221Lとを含む。内部車室上半部221Uと内部車室下半部221Lとは、ボルト等の不図示の締結部材によって結合されている。
 内部車室上半部221Uは、軸線AXを中心とする径方向外側に向かって水平に突出する内部車室突部221Pを有する。
 図3Bに示した高中圧タービン100HIPでは、内部車室上半部221Uの一方側の側方外側(径方向外側)、及び他方側の側方外側のそれぞれにおいて、軸線AXの延在方向に離間した2つの内部車室突部221Pが設けられている。
 図3Bに示した高中圧タービン100HIPでは、高圧タービン内部車室221は、径方向内側で高圧タービン翼環222と第1ダミーリング223とを保持している。
 図3Bに示した高中圧タービン100HIPでは、高圧タービン翼環222は、図4に示す高圧タービン100HPの翼環212と同様に翼環上半部222Uと翼環下半部222Lとを含む。翼環上半部222Uと翼環下半部222Lとは、ボルト等の不図示の締結部材によって結合されている。
 翼環上半部222Uは、軸線AXを中心とする径方向外側に向かって水平に突出する翼環突部222Pを有する。
 図3Bに示した高中圧タービン100HIPでは、中圧タービン翼環232は、図4に示す高圧タービン100HPの翼環212と同様に翼環上半部232Uと翼環下半部232Lとを含む。翼環上半部232Uと翼環下半部232Lとは、ボルト等の不図示の締結部材によって結合されている。
 翼環上半部232Uは、軸線AXを中心とする径方向外側に向かって水平に突出する翼環突部232Pを有する。
 図3Bに示した高中圧タービン100HIPでは、外部車室201の車室下半部2Lには、水平分割面Sdの近傍で径方向内側に向かって突出し、内蔵物200を支持するための内側支持部25が形成されている。
 例えば図3Bに示す例では、車室下半部2Lの一方側の側方内側(径方向内側)、及び他方側の側方内側のそれぞれにおいて、軸線AXの延在方向に離間した4つの内側支持部25が設けられている。
 内側支持部25は、内側支持部25の上面25aが内部車室突部221P、高圧タービン翼環222の翼環突部222P、又は中圧タービン翼環232の翼環突部232Pの何れかの下面に当接して、内部車室突部221P、高圧タービン翼環222の翼環突部222P、又は中圧タービン翼環232の翼環突部232Pの何れかを下方から支持する。
 蒸気タービンやガスタービンといった高温下で運転される回転機械では、タービンの作動時に種々の熱変形が起こる。例えば、蒸気タービン100の運転中、熱変形により車室2が鉛直方向に反るように変形すると、翼環等のように車室2の内部で車室によって支持される内蔵物も上下動してしまい、ロータ3との鉛直変位差が生じて動翼シュラウド34に設けられた不図示のシールフィンが接触したり、逆にクリアランスが過大になってしまうことにより、軸振動や性能低下を招くおそれがある。そのため、内蔵物とロータ3との鉛直変位差を抑制することが望まれている。
 そこで、幾つかの実施形態に係る回転機械の車室支持構造では、以下で説明するようにして内蔵物とロータ3との鉛直変位差を抑制するようにしている。
 すなわち、図2から図5に示すように、幾つかの実施形態に係る蒸気タービン100の車室支持構造10は、車室2(外部車室201)と、ロータ3の側方において車室2(外部車室201)の内部空間203内に配置され、車室2(外部車室201)によって支持される内蔵物200と、車室2(外部車室201)の側部から車室2(外部車室201)の側方外側(径方向外側)に突出して設けられた突出部24と、車室2(外部車室201)の側方外側において突出部24を支持する支持部(外側支持部27)と、を備える。
 図6は、従来の回転機械の車室の支持構造の一例を示す図である。図6に示した従来の回転機械の一例としての蒸気タービン100Xは、上下に2分割された上半分の車室上半部2XUと、下半分の車室下半部2XLとを含む車室2Xを備えている。
 図6に示した例では、車室下半部2XLからは軸線AX方向の両端において、それぞれ突出部24Xが軸線AX方向に張り出している。突出部24Xは、車室2Xの一方側の側方外側(径方向外側)、及び他方側の側方外側のそれぞれに設けられている。
 図6に示した例では、4つの突出部24Xのそれぞれが支柱27Xを介してタービン架台29に支持されることで、車室2Xは、タービン架台29に支持される。
 従来の回転機械の車室の支持構造では、軸線AX方向に車室2Xから離れた位置まで延在する突出部24Xが支柱27Xによって軸線AX方向に車室2Xから離れた位置で支持されている。そのため、熱変形により車室2Xが鉛直方向に反るように変形すると、車室2Xを支持するタービン架台29等に対して車室2Xが上下動することになる。これにより、翼環等のように車室2Xの内部空間内に配置され、車室2Xによって支持される内蔵物も車室2Xを支持するタービン架台29等に対して上下動してしまう。そのため、車室2Xを支持するタービン架台29等に対して別途支持されているロータとの鉛直変位差が生じてシールフィンが接触したり、逆にクリアランスが過大になってしまうことにより、軸振動や性能低下を招くおそれがある。
 車室2が鉛直方向に反るように変形すると、内蔵物200とロータ3との鉛直変位差は、支持部(外側支持部27)による突出部24の支持位置が軸線AX方向に車室2から離れるほど大きくなる。
 幾つかの実施形態に係る車室支持構造10によれば、従来の回転機械の支持構造と比べて、突出部24及び支持部(外側支持部27)は軸線AX方向で車室2に近づく。これにより、従来の回転機械の車室支持構造と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。よって、シールフィン接触による軸振動を起こし難くなるとともに、回転部材(ロータ3や動翼30)と静止部材(翼環212、高圧タービン翼環222、中圧タービン翼環232や静翼20)とのクリアランス低減による性能向上が可能となる。
 例えば車室2の熱伸びによる変形が、設計段階では上方に突出するように反ると想定されていたものの、実際には下方に突出するように反ってしまうなど、設計段階の想定とは異なる傾向となることも考えられる。
 このような場合であっても、幾つかの実施形態に係る車室支持構造10によれば、内蔵物200とロータ3との鉛直変位差小さくすることができるので、車室2の熱伸びによる変形が設計段階の想定とは異なる傾向となったとしても、シールフィン接触による軸振動を起こし難くなるとともに、回転部材と静止部材とのクリアランス低減による性能向上が可能となる。
 幾つかの実施形態に係る蒸気タービン100は、幾つかの実施形態に係る車室支持構造10と、ロータ3とを備えている。
 これにより、従来の回転機械の車室支持構造を備える回転機械と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。よって、幾つかの実施形態に係る蒸気タービン100では、シールフィン接触による軸振動を起こし難くなるとともに、回転部材と静止部材とのクリアランス低減による性能向上が可能となる。
 幾つかの実施形態に係る車室支持構造10では、突出部24及び外側支持部27は、内蔵物200と軸線AX方向で重複する位置に設けられるとよい。
 これにより、従来の回転機械の車室支持構造と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。
 幾つかの実施形態に係る車室支持構造10では、内蔵物200は、軸線AX方向の位置が異なる少なくとも2カ所の支持位置で車室2によって支持されていてもよい。少なくとも2カ所の支持位置は、軸線AX方向の最も一方側に位置する第1支持位置P1、及び、最も他方側に位置する第2支持位置P2を含んでいてもよい。突出部24及び外側支持部27は、軸線AX方向で第1支持位置P1と第2支持位置P2との間に位置するとよい。
 例えば図3Aに示した高圧タービン100HPでは、第1支持位置P1は、例えば内部車室突部211Pを支持する内側支持部25の軸線AX方向位置であり、第2支持位置P2は、例えば翼環突部212Pを支持する内側支持部25の軸線AX方向位置である。
 例えば図3Bに示した高中圧タービン100HIPでは、第1支持位置P1は、例えば高圧タービン翼環222の翼環突部222Pを支持する内側支持部25の軸線AX方向位置であり、第2支持位置P2は、例えば中圧タービン翼環232の翼環突部232Pを支持する内側支持部25の軸線AX方向位置である。
 車室2が鉛直方向に反るように変形する場合、一般的には、軸線AX方向の中央近傍において、鉛直方向に最も突出するように変形する。そのため、外側支持部27による突出部24の支持位置が軸線AX方向で車室2の中央に近づくと、車室2の中央と外側支持部27が突出部24を下方から支持する支持面27aとの鉛直変位差が小さくなる。
 また、車室2が内蔵物200を支持する支持位置と、外側支持部27による突出部24の支持位置とが軸線AX方向で近づくと、車室2が鉛直方向に反るように変形しても、車室2が内蔵物200を支持する支持位置における内蔵物200と、外側支持部27が突出部を下方から支持する支持面27aとの鉛直変位差が小さくなる。
 幾つかの実施形態に係る車室支持構造10によれば、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
 幾つかの実施形態に係る車室支持構造10では、突出部24は、第1突出部241と、第1突出部241とは軸線AX方向に離間した第2突出部242とを含むとよい。第1突出部241又は第2突出部242の少なくとも何れか一方は、車室2が内蔵物200を支持する支持位置と軸線AX方向で重複するとよい。
 例えば図3Aに示した高圧タービン100HPでは、第1突出部241は、例えば内部車室突部211Pを支持する内側支持部25と軸線AX方向で重複する突出部24であり、第2突出部242は、例えば翼環突部212Pを支持する内側支持部25と軸線AX方向で重複する突出部24である。なお、図3Aに示した高圧タービン100HPでは、第1突出部241又は第2突出部242の何れか一方が内側支持部25と軸線AX方向で重複していれば、他方が内側支持部25と軸線AX方向で重複していなくてもよい。
 例えば図3Bに示した高中圧タービン100HIPでは、第1突出部241は、例えば高圧タービン翼環222の翼環突部222Pを支持する内側支持部25、及び、内部車室突部221Pを支持する内側支持部25と軸線AX方向で重複する突出部24である。
 図3Bに示した高中圧タービン100HIPでは、第2突出部242は、例えば中圧タービン翼環232の翼環突部232Pを支持する内側支持部25の近傍に位置する突出部24である。
 なお、図3Bに示した高中圧タービン100HIPでは、第1突出部241は、例えば高圧タービン翼環222の翼環突部222Pを支持する内側支持部25、又は、内部車室突部221Pを支持する内側支持部25の何れか一方とだけ軸線AX方向で重複していてもよい。
 幾つかの実施形態に係る車室支持構造10によれば、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
 なお、図3Bに示した高中圧タービン100HIPでは、第2突出部242は、中圧タービン翼環232の翼環突部232Pを支持する内側支持部25と軸線AX方向で重複していないが、重複していてもよい。
 すなわち、幾つかの実施形態に係る車室支持構造10では、内蔵物200は、軸線AX方向の位置が異なる少なくとも2カ所の支持位置で外部車室201によって支持されていてもよい。第1突出部241及び第2突出部242は、上記少なくとも2カ所の支持位置と軸線AX方向で重複するとよい。
 これにより、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
 幾つかの実施形態に係る車室支持構造10では、外部車室201は、水平分割面Sdにおいて車室下半部2Lと車室上半部2Uとに分割可能であるとよい。突出部24は、車室上半部2Uに設けられているとよい。
 一般的に、内蔵物は、車室の水平分割面に近い高さ位置で車室に支持される。そのため、外側支持部27が突出部24を下方から支持する支持面27aが車室2(外部車室201)の水平分割面Sdの高さ位置と離れていると、車室2(外部車室201)から支持面27aまでの間に介在する部材の高さ方向の熱伸びの影響を受け易くなって、支持面27aと水平分割面Sdとの鉛直変位差が大きくなる傾向となる。
 したがって、このような熱伸びの影響を抑制するためには、支持面27aと水平分割面Sdとの高さ位置が近いことが望ましい。
 また、外側支持部27が突出部24を下方から支持する支持面27aは、突出部24の下側の面と当接する。そのため、突出部24が車室上半部2Uに設けられていれば、支持面27aを水平分割面Sdの高さ位置に近づけ易くなる。
 幾つかの実施形態に係る車室支持構造10によれば、突出部24が車室上半部2Uに設けられているので、支持面27aを水平分割面Sdの高さ位置に近づけ易くなり、支持面27aと水平分割面Sdとの鉛直変位差を抑制し易くなる。
 幾つかの実施形態に係る車室支持構造10では、支持面27aの鉛直方向の高さ位置は、水平分割面Sdの高さ位置と実質的に同じであるとよい。
 なお、支持面27aの鉛直方向の高さ位置が水平分割面Sdの高さ位置と実質的に同じであるということには、支持面27aの鉛直方向の高さ位置が水平分割面Sdの高さ位置である場合のほか、公差、若しくは、車室2(外部車室201)から支持面27aまでの間に介在する部材の高さ方向の熱伸びの影響に起因する内蔵物200とロータ3との鉛直変位差を無視できる程度に支持面27aの鉛直方向の高さ位置が水平分割面Sdの高さ位置とずれている場合も含むものとする。
 これにより、支持面27aと水平分割面Sdとの鉛直変位差をさらに抑制し易くなる。
 幾つかの実施形態に係る車室支持構造10において、外側支持部27にヒータ等の温度制御装置を設けて、外側支持部27の支持面27aの鉛直方向の高さ位置を制御することで、内蔵物200とロータ3との鉛直変位差を適宜調整できるようにしてもよい。
 例えば図2に示すように、幾つかの実施形態に係る車室支持構造10は、外側支持部27を加温するためのヒータ51と、ヒータ51を制御するヒータ制御装置53と、を備えているとよい。また、幾つかの実施形態に係る車室支持構造10は、外側支持部27の温度を測定するための温度センサ55を備えているとよい。
 ヒータ制御装置53は、温度センサ55で測定した外側支持部27の温度に基づいて、ヒータ51へ供給する電力を制御可能に構成された制御装置である。
 幾つかの実施形態に係る車室支持構造10では、ヒータ51によって外側支持部27の温度を適宜制御することで、外側支持部27の熱伸びを調節して外側支持部27の支持面27aの高さ位置を調節できる。これにより、ヒータ51によって外側支持部27の温度を制御することで内蔵物200の高さ位置を制御できるので、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
 幾つかの実施形態に係る車室支持構造10では、車室2は、外部車室201であってもよく、内蔵物200は、内部車室(内部車室211、高圧タービン内部車室221)を含んでいてもよい。
 これにより、外部車室201と内部車室(内部車室211、高圧タービン内部車室221)とを含む蒸気タービン100において、従来の回転機械の車室支持構造と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。
 幾つかの実施形態に係る蒸気タービン100では、車室2は、軸方向にも熱伸びする。そのため、車室2の軸方向への移動を規制する規制位置を車室2の軸方向の一方側の端部に設定するとよい。例えば、車室2の軸方向への移動を規制する規制位置は、車室2の軸方向の両端部のうち、ロータ3の軸方向への移動を規制するためのスラスト軸受4B(図1参照)が設けられた方の端部に設定するとよい。
 具体的には、例えば図2に示すように、車室2の軸方向の両端部のうち、ロータ3の軸方向への移動を規制するためのスラスト軸受4B(図1参照)が設けられた方の端部にセンタリングビーム61を設けるとよい。センタリングビーム61は、軸方向の一方側の端部が車室2に接続され、他方側の端部が例えばスラスト軸受4Bに接続される。なお、スラスト軸受4Bは、タービン架台29に対して軸方向に移動可能であってもよく、タービン架台29に対して軸方向に不動であってもよい。
 このため、車室2は、軸方向に熱伸びすると、スラスト軸受4Bに対して車室2とロータ3とが同じ方向に移動することとなるので、回転部材(ロータや動翼)と静止部材(ブレードリングや静翼)とが軸方向で接触する可能性を低減できる。
 なお、幾つかの実施形態に係る車室支持構造10では、外側支持部27は、突出部24の軸方向への移動を規制しないように構成されている。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、上述した幾つかの実施形態に係る蒸気タービン100では、車室2は不図示の保温部材によって外側が囲まれている。そこで、幾つかの実施形態に係る車室支持構造10では、車室2とともに外側支持部27を不図示の保温部材で囲ってもよく、車室2を囲む保温部材の外側に外側支持部27を配置してもよい。
 幾つかの実施形態に係る蒸気タービン100は、中圧タービンであってもよい。また、幾つかの実施形態に係る蒸気タービン100は、低圧タービンや中低圧タービンであってもよい。
 さらに幾つかの実施形態に係る回転機械は、蒸気タービン100に限定されず、ガスタービン等、高温下で運転される回転機械であってもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る回転機械の車室支持構造は、車室2(外部車室201)と、ロータ3の側方において車室2(外部車室201)の内部空間203内に配置され、車室2(外部車室201)によって支持される内蔵物200と、車室2(外部車室201)の側部から車室2(外部車室201)の側方外側(径方向外側)に突出して設けられた突出部24と、車室2(外部車室201)の側方外側において突出部24を支持する支持部(外側支持部27)と、を備える。
 上記(1)の構成によれば、従来の回転機械の支持構造と比べて、突出部及び支持部はロータの延在方向で車室に近づく。これにより、従来の回転機械の車室支持構造と比べて内蔵物とロータとの鉛直変位差を小さくすることができる。よって、シールフィン接触による軸振動を起こし難くなるとともに、回転部材(ロータや動翼)と静止部材(ブレードリングや静翼)とのクリアランス低減による性能向上が可能となる。
(2)幾つかの実施形態では、上記(1)の構成において、突出部24及び支持部(外側支持部27)は、内蔵物200とロータ3の延在方向(軸線AX方向)で重複する位置に設けられるとよい。
 上記(2)の構成によれば、従来の回転機械の車室支持構造と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、内蔵物200は、ロータ3の延在方向(軸線AX方向)の位置が異なる少なくとも2カ所の支持位置で車室2(外部車室201)によって支持されていてもよい。少なくとも2カ所の支持位置は、ロータ3の延在方向(外部車室201)の最も一方側に位置する第1支持位置P1、及び、最も他方側に位置する第2支持位置P2を含んでいてもよい。突出部24及び支持部(外側支持部27)は、ロータ3の延在方向(軸線AX方向)で第1支持位置P1と第2支持位置P2との間に位置するとよい。
 上記(3)の構成によれば、内蔵物とロータとの鉛直変位差をより小さくすることができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、突出部24は、第1突出部241と、第1突出部241とはロータ3の延在方向(軸線AX方向)に離間した第2突出部242とを含むとよい。第1突出部241又は第2突出部242の少なくとも何れか一方は、車室2(外部車室201)が内蔵物200を支持する支持位置とロータ3の延在方向(軸線AX方向)で重複するとよい。
 上記(4)の構成によれば、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
(5)幾つかの実施形態では、上記(4)の構成において、内蔵物200は、ロータ3の延在方向(軸線AX方向)の位置が異なる少なくとも2カ所の支持位置で車室2(外部車室201)によって支持されていてもよい。第1突出部241及び第2突出部242は、上記少なくとも2カ所の支持位置と上記延在方向(軸線AX方向)で重複するとよい。
 上記(5)の構成によれば、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、車室2(外部車室201)は、水平分割面Sdにおいて車室下半部2Lと車室上半部2Uとに分割可能であるとよい。突出部24は、車室上半部2Uに設けられているとよい。
 上記(6)の構成によれば、支持面27aを水平分割面Sdの高さ位置に近づけ易くなるので、支持面27aと水平分割面Sdとの鉛直変位差を抑制し易くなる。
(7)幾つかの実施形態では、上記(6)の構成において、支持部(外側支持部27)は、突出部24を下方から支持する支持面27aを有するとよい。支持面27aの鉛直方向の高さ位置は、水平分割面Sdの高さ位置と実質的に同じであるとよい。
 上記(7)の構成によれば、支持面27aと水平分割面Sdとの鉛直変位差をさらに抑制し易くなる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、支持部(外側支持部27)を加温するためのヒータ51と、ヒータ51を制御するヒータ制御装置53と、を備えていてもよい。
 上記(8)の構成によれば、ヒータ51によって支持部(外側支持部27)の温度を制御することで支持部(外側支持部27)において突出部24を下方から支持する支持面27aの高さ位置を調節できる。これにより、ヒータ51によって支持部(外側支持部27)の温度を制御することで内蔵物200の高さ位置を制御できるので、内蔵物200とロータ3との鉛直変位差をより小さくすることができる。
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、車室2は、外部車室201であってもよく、内蔵物200は、内部車室(内部車室211、高圧タービン内部車室221)を含んでいてもよい。
 上記(9)の構成によれば、外部車室201と内部車室(内部車室211、高圧タービン内部車室221)とを含む回転機械(蒸気タービン100)において、従来の回転機械の車室支持構造と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。
(10)本開示の少なくとも一実施形態に係る回転機械は、上記(1)乃至(9)の何れかの構成の回転機械の車室支持構造10と、ロータ3と、を備える。
 上記(10)の構成によれば、従来の回転機械の車室支持構造を備える回転機械と比べて内蔵物200とロータ3との鉛直変位差を小さくすることができる。よって、シールフィン接触による軸振動を起こし難くなるとともに、回転部材と静止部材とのクリアランス低減による性能向上が可能となる。
1 回転軸
2 車室
2U 車室上半部
2L 車室下半部
3 ロータ
10 車室支持構造
24 突出部
25 内側支持部
27 外側支持部(支持部)
27a 支持面
29 タービン架台
100 蒸気タービン
100HP 高圧タービン
100HIP 高中圧タービン
200 内蔵物
201 外部車室
203 内部空間
211 内部車室
212 翼環
213 ダミーリング
221 高圧タービン内部車室
222 高圧タービン翼環
223 第1ダミーリング
232 中圧タービン翼環
241 第1突出部
242 第2突出部

Claims (10)

  1.  車室と、
     ロータの側方において前記車室の内部空間内に配置され、前記車室によって支持される内蔵物と、
     前記車室の側部から前記車室の側方外側に突出して設けられた突出部と、
     前記車室の側方外側において前記突出部を支持する支持部と、
    を備える、
    回転機械の車室支持構造。
  2.  前記突出部及び前記支持部は、前記内蔵物と前記ロータの延在方向で重複する位置に設けられる
    請求項1に記載の回転機械の車室支持構造。
  3.  前記内蔵物は、前記ロータの延在方向の位置が異なる少なくとも2カ所の支持位置で前記車室によって支持され、
     前記少なくとも2カ所の支持位置は、前記ロータの延在方向の最も一方側に位置する第1支持位置、及び、最も他方側に位置する第2支持位置を含み、
     前記突出部及び前記支持部は、前記ロータの延在方向で前記第1支持位置と前記第2支持位置との間に位置する、
    請求項2に記載の回転機械の車室支持構造。
  4.  前記突出部は、第1突出部と、前記第1突出部とは前記ロータの延在方向に離間した第2突出部とを含み、
     前記第1突出部又は前記第2突出部の少なくとも何れか一方は、前記車室が前記内蔵物を支持する支持位置と前記ロータの延在方向で重複する、
    請求項1又は2に記載の回転機械の車室支持構造。
  5.  前記内蔵物は、前記ロータの延在方向の位置が異なる少なくとも2カ所の支持位置で前記車室によって支持され、
     前記第1突出部及び前記第2突出部は、前記少なくとも2カ所の支持位置と前記延在方向で重複する、
    請求項4に記載の回転機械の車室支持構造。
  6.  前記車室は、水平分割面において車室下半部と車室上半部とに分割可能であり、
     前記突出部は、前記車室上半部に設けられている、
    請求項1又は2に記載の回転機械の車室支持構造。
  7.  前記支持部は、前記突出部を下方から支持する支持面を有し、
     前記支持面の鉛直方向の高さ位置は、前記水平分割面の前記高さ位置と実質的に同じである、
    請求項6に記載の回転機械の車室支持構造。
  8.  前記支持部を加温するためのヒータと、
     前記ヒータを制御するヒータ制御装置と、
    を備える、
    請求項1又は2に記載の回転機械の車室支持構造。
  9.  前記車室は、外部車室であり、
     前記内蔵物は、内部車室を含む、
    請求項1又は2に記載の回転機械の車室支持構造。
  10.  請求項1又は2に記載の回転機械の車室支持構造と、
     前記ロータと、
    を備える回転機械。
PCT/JP2022/045777 2022-02-22 2022-12-13 回転機械の車室支持構造及び回転機械 WO2023162412A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247005234A KR20240026306A (ko) 2022-02-22 2022-12-13 회전 기계의 차실 지지 구조 및 회전 기계
JP2024502850A JPWO2023162412A1 (ja) 2022-02-22 2022-12-13
CN202280053504.2A CN117795178A (zh) 2022-02-22 2022-12-13 旋转机械的机室支承结构及旋转机械
DE112022003086.0T DE112022003086T5 (de) 2022-02-22 2022-12-13 Drehmaschinen-gehäuseträgerstruktur und drehmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022025876 2022-02-22
JP2022-025876 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162412A1 true WO2023162412A1 (ja) 2023-08-31

Family

ID=87765487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045777 WO2023162412A1 (ja) 2022-02-22 2022-12-13 回転機械の車室支持構造及び回転機械

Country Status (5)

Country Link
JP (1) JPWO2023162412A1 (ja)
KR (1) KR20240026306A (ja)
CN (1) CN117795178A (ja)
DE (1) DE112022003086T5 (ja)
WO (1) WO2023162412A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773431A (en) * 1970-12-08 1973-11-20 Bbc Brown Boveri & Cie Multiple shell turbine casing for high pressures and high temperatures
JPS53133010U (ja) * 1977-03-30 1978-10-21
JP2012112254A (ja) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd 低圧蒸気タービンの車室構造
US20120282089A1 (en) * 2011-05-05 2012-11-08 General Electric Company Support arrangement for a steam turbine lp inner casing
JP2014040795A (ja) * 2012-08-22 2014-03-06 Mitsubishi Heavy Ind Ltd 回転機械及びそのクリアランス調整方法
JP2017141727A (ja) * 2016-02-10 2017-08-17 三菱日立パワーシステムズ株式会社 車室の製造方法、及び回転機械の製造方法
JP2018141374A (ja) * 2017-02-27 2018-09-13 三菱日立パワーシステムズ株式会社 蒸気タービン
JP2021042713A (ja) * 2019-09-11 2021-03-18 三菱パワー株式会社 蒸気タービン

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410651B2 (ja) 2004-10-06 2010-02-03 三菱重工業株式会社 タービン及びタービン製造方法
JP7455322B2 (ja) 2020-07-30 2024-03-26 鈴健興業株式会社 流体放出機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773431A (en) * 1970-12-08 1973-11-20 Bbc Brown Boveri & Cie Multiple shell turbine casing for high pressures and high temperatures
JPS53133010U (ja) * 1977-03-30 1978-10-21
JP2012112254A (ja) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd 低圧蒸気タービンの車室構造
US20120282089A1 (en) * 2011-05-05 2012-11-08 General Electric Company Support arrangement for a steam turbine lp inner casing
JP2014040795A (ja) * 2012-08-22 2014-03-06 Mitsubishi Heavy Ind Ltd 回転機械及びそのクリアランス調整方法
JP2017141727A (ja) * 2016-02-10 2017-08-17 三菱日立パワーシステムズ株式会社 車室の製造方法、及び回転機械の製造方法
JP2018141374A (ja) * 2017-02-27 2018-09-13 三菱日立パワーシステムズ株式会社 蒸気タービン
JP2021042713A (ja) * 2019-09-11 2021-03-18 三菱パワー株式会社 蒸気タービン

Also Published As

Publication number Publication date
CN117795178A (zh) 2024-03-29
JPWO2023162412A1 (ja) 2023-08-31
DE112022003086T5 (de) 2024-03-28
KR20240026306A (ko) 2024-02-27

Similar Documents

Publication Publication Date Title
KR101182625B1 (ko) 가스 터빈
US9022727B2 (en) Rotor for a turbo machine
JP4884410B2 (ja) 二軸ガスタービン
JP5550400B2 (ja) タービンにおけるパッシブパージ流量制御のためのシステム、方法及び装置
US10012101B2 (en) Seal system for a gas turbine
JP6399894B2 (ja) 排気装置及びガスタービン
US6896482B2 (en) Expanding sealing strips for steam turbines
JP6152266B2 (ja) 先端シュラウドを一列に並べる装置
RU2558731C2 (ru) Конструкция монтажа направляющих лопаток сопла входного канала радиальной газовой турбины двигателя
EP2636851B1 (en) Turbine assembly and method for supporting turbine components
US8662823B2 (en) Flow path for steam turbine outer casing and flow barrier apparatus
JP6776092B2 (ja) 蒸気タービン及び温度制御方法
EP2596215B1 (en) A seal assembly for controlling fluid flow
RU2615867C2 (ru) Картер турбины, содержащий средства крепления секций кольца
US9074490B2 (en) Gas turbine
KR101973313B1 (ko) 시일 장치 및 회전 기계
EP2378088A2 (en) Turbine with a double casing
WO2023162412A1 (ja) 回転機械の車室支持構造及び回転機械
JP2011132958A (ja) タービンエンジン用のダイアフラムシェル構造体
US9816386B2 (en) Casing arrangement for a gas turbine
US11098603B2 (en) Inner ring for a turbomachine, vane ring with an inner ring, turbomachine and method of making an inner ring
US11118479B2 (en) Stress mitigating arrangement for working fluid dam in turbine system
KR102214844B1 (ko) 개폐 밸브 및 증기 터빈
KR20010042505A (ko) 내측 하우징 및 외측 하우징을 구비한 터보 머신
JP5980369B2 (ja) ターボ回転機械及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053504.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2024502850

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022003086

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20247005234

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005234

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18686499

Country of ref document: US