WO2023153784A1 - 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법 - Google Patents

디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법 Download PDF

Info

Publication number
WO2023153784A1
WO2023153784A1 PCT/KR2023/001792 KR2023001792W WO2023153784A1 WO 2023153784 A1 WO2023153784 A1 WO 2023153784A1 KR 2023001792 W KR2023001792 W KR 2023001792W WO 2023153784 A1 WO2023153784 A1 WO 2023153784A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
sers
enhanced raman
nanoprobe
raman scattering
Prior art date
Application number
PCT/KR2023/001792
Other languages
English (en)
French (fr)
Inventor
김종호
최찬희
황인준
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230009238A external-priority patent/KR20230120093A/ko
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2023153784A1 publication Critical patent/WO2023153784A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to a nanoprobe for digital surface-enhanced Raman scattering and a digital-based diagnostic method using the same. It relates to a nanoprobe for digital surface-enhanced Raman scattering and a digital-based diagnostic method using the same.
  • SERS Surface-enhanced Raman scattering
  • the SERS detection method accurately and quantitatively detects low-concentration target biomarkers due to the spatial non-uniformity of the signal intensity between the hot spots of the SERS substrate or SERS nanoprobe and the temporal fluctuation of the SERS signal intensity over time. There are limitations that are difficult to do.
  • the problem to be solved by the present invention is to provide a probe that overcomes the limitations of SERS detection technology and a SERS-based diagnostic technology utilizing the same.
  • the present invention is a nanoprobe for surface-enhanced Raman scattering, nanoparticles; a Raman label bound to the surface of the nanoparticle; and a first detection material coupled to the surface of the nanoparticle and specifically binding to a target material to be detected.
  • a metal material generating a plasmonic effect is formed on the surface of the nanoparticle, and the Raman marker is formed in a gap between the metal materials.
  • the Raman marker is simultaneously added during the synthesis of the metal material and formed on the surface of the nanoparticle.
  • the present invention is the surface-enhanced Raman scattering nanoprobe described above; A magnetic bead to which a second detection material is coupled, wherein the second detection material and the first detection material are complementaryly bonded to the target material at the same time, providing a sandwich structure for digital surface-enhanced Raman scattering.
  • the second detection substance specifically binds to the target substance.
  • the present invention is also a digital-based diagnostic method using the above-described sandwich structure for digital surface-enhanced Raman scattering, comprising the steps of applying the above-described sandwich structure for digital surface-enhanced Raman scattering to a plurality of wells; and detecting surface-enhanced Raman signals (SERS) from the plurality of wells.
  • SERS surface-enhanced Raman signals
  • the digital-based diagnostic method detects a surface-enhanced Raman signal (SERS) from each of the plurality of wells, and the sandwich structure for digital surface-enhanced Raman scattering for each of the plurality of wells
  • SERS surface-enhanced Raman signal
  • the step of counting as 1 counts as 1 when a signal having a predetermined strength or higher compared to the noise signal is detected.
  • the present invention also provides a digital-based diagnostic method further comprising calculating the concentration of the target material by summing surface-enhanced Raman signals (SERS) from the plurality of wells.
  • SERS surface-enhanced Raman signals
  • a digital SERS nanoprobe-based antigen test method that can overcome the limitations of the existing SERS detection method was developed, and the SERS signal generated when detecting a target biomarker was digitally processed (0 & 1 without and with targets) Trace amounts of biomarkers were accurately and quantitatively detected.
  • the digital SERS nanoprobe antigen test method is not affected by deviations in SERS signal intensity according to location and time, enabling accurate and quantitative detection of biomarkers. , high-sensitivity detection of biomarkers can be realized through single particle measurement.
  • FIG. 1 is a schematic diagram illustrating a digital SERS nanoprobe manufacturing and a diagnostic method using the same according to an embodiment of the present invention.
  • FIG. 2a is a schematic diagram for the synthesis of a digital SERS nanoprobe according to an embodiment of the present invention
  • FIG. 2b is a TEM image of a SERS nanoprobe composite according to an embodiment of the present invention.
  • FIG. 3 is a plasmonic absorption spectrum according to the digital SERS nanoprobe complex according to an embodiment of the present invention
  • FIG. 4 shows different SERS signals for each type of detection material.
  • FIG. 5 is an optical image of a digital SERS measurement substrate with an empty digital SERS measurement substrate (a) and a SERS nanoprobe sandwich composite according to the present invention
  • FIG. 6 is an optical image of an empty well and a SERS nanoprobe sandwich composite according to the present invention SERS spectrum obtained from wells with
  • a is an optical image of a microwell of a digital SERS measurement substrate including a SERS nanoprobe sandwich according to an embodiment of the present invention
  • b is a SERS spectrum obtained from a microwell with or without a SERS nanoprobe sandwich. It is a diagram explaining the case of obtaining the results of and 1, and
  • c is an optical image of the microwell digitized with the SERS signal intensity obtained from each well.
  • FIG. 8 is a schematic diagram for digital measurement of antigenic biomarkers using a digital SERS nanoprobe detection method on a microwell substrate.
  • 10 is a representative SERS spectrum obtained from a microwell containing a SERS nanoprobe sandwich for CA19-9 detection.
  • 11 is a concentration-dependent digital SERS signal as a function of CA19-9 concentration measured on a digital SERS measuring substrate.
  • this component when a component is described as "existing inside or connected to and installed" of another component, this component may be directly connected to or installed in contact with the other component.
  • the present invention provides a digital SERS nanoprobe-based antigen test method that can overcome the limitations of existing SERS detection methods.
  • the diagnostic method using a nanoprobe according to an embodiment of the present invention digitally processes the SERS signal generated when a target biomarker is detected (0 & 1 without and with targets) to accurately quantitatively detect a very small amount of the biomarker. there is.
  • the digital SERS nanoprobe antigen test method according to the present invention is not affected by deviations in SERS signal intensity according to location and time, and thus accurately detects biomarkers. Quantitative detection is possible, and high-sensitivity detection of biomarkers is possible through single particle measurement.
  • a biomarker is captured using magnetic particles to which a capture antibody (second detection substance) is immobilized, and a detection antibody (first detection substance) is introduced thereto.
  • the SERS nanoprobe is treated to make a SERS nanoprobe-magnetic particle sandwich composite.
  • the SERS nanoprobe-magnetic particle sandwich solution is applied to the SERS measuring substrate composed of high-density wells.
  • one SERS nanoprobe-magnetic particle sandwich composite is placed in each well of the SERS measuring substrate, and then the SERS signal is measured in each well. do.
  • a signal having a higher Raman signal intensity than a predetermined level is counted as “1”, and a signal that does not come out or is less than a predetermined level is counted as “1”.
  • a predetermined level e.g. 5 times or more
  • the concentration of the target biomarker is accurately and quantitatively detected.
  • various diseases can be accurately and quickly diagnosed.
  • FIG. 1 is a schematic diagram illustrating a digital SERS nanoprobe manufacturing and a diagnostic method using the same according to an embodiment of the present invention.
  • the nanostructure according to an embodiment of the present invention is composed of magnetic beads-SERS detection nanoparticles, and the magnetic beads and nanoparticles are biomarker antigens and antibodies complementary thereto. has a sandwich structure.
  • FIG. 2A is a schematic diagram for synthesizing digital SERS nanoprobe particles according to an embodiment of the present invention
  • FIG. 2B is a TEM image of a SERS nanoprobe composite according to an embodiment of the present invention.
  • the nanoprobe according to an embodiment of the present invention is based on silica nanoparticles, a detection antibody is bound to the surface thereof, and a metal material and a Raman marker that generate a plasmonic effect ( Raman Label) has a structure formed.
  • the SERS nanoprobe according to an embodiment of the present invention is prepared by adding a Raman marker during synthesis based on silica. That is, Ag is reduced on silica and gaps are formed between Ag materials. At this time, the added Raman marker is located between the gaps.
  • the SERS nanoprobe according to the present invention can be synthesized using various Raman markers, and it is possible to synthesize SERS nanoprobes having superior signal stability and structural stability after surface modification than SERS nanoprobes synthesized by post-processing the existing Raman markers.
  • CAb capture antibody
  • MB magnetic beads
  • CA19-9 which is known as a pancreatic cancer biomarker, was used as an antigen, which can be seen on the x-axis of FIG. 10 below.
  • the resulting mixture was then incubated for 2 h at room temperature with gentle shaking (1 m, pH 7.4) and washed several times.
  • the CAb-MB was washed several times with 0.1% PBS-T (0.1m, pH 7.4) and PBS (0.1m, pH 7.4) to remove unbound SERS nanoprobes, after which the entire solution of CAb-MB was washed.
  • PBS-T 0.1%, pH 7.4
  • PBS 0.1m, pH 7.4
  • SERS mapping was performed for each well in 5 ⁇ m steps within a 50 ⁇ m ⁇ 50 ⁇ m area, the SERS signals were converted to “On(1)” and “Off(0)”, and the converted SERS signals were summed.
  • FIG. 3 is a plasmonic absorption spectrum according to the digital SERS nanoprobe complex according to an embodiment of the present invention
  • FIG. 4 shows SERS signals by Raman markers (compound of FIG. 4).
  • the absorbance in the near infrared region increases (900 nm ⁇ ), which is the same regardless of the Raman marker used in the synthesis.
  • the compound on the right side of FIG. 4 is the Raman marker used in the synthesis
  • the Raman spectrum on the left is the SERS spectrum of the SERS nanoprobe synthesized using the corresponding Raman marker.
  • FIG. 5 is an optical image of a digital SERS measurement substrate with an empty digital SERS measurement substrate (a) and a SERS nanoprobe sandwich composite according to the present invention
  • FIG. 6 is an optical image of an empty well and a SERS nanoprobe sandwich composite according to the present invention SERS spectrum obtained from wells with
  • FIG. 7 is a) an optical image of a microwell of a digital SERS measurement substrate including a SERS nanoprobe sandwich according to an embodiment of the present invention, and b) a SERS spectrum obtained from a microwell with or without a SERS nanoprobe sandwich at 0 A diagram explaining the case of obtaining the results of and 1, c) an optical image of a microwell digitized with SERS signal intensity obtained from each well.
  • 0 and 1 are distinguished by the cut-off criterion (signal / noise is 5 or more) in the signal detected from the well, and from this, as shown in FIG. 8, the result counted as 0 and 1 can be obtained from the entire substrate.
  • FIG. 8 is a schematic diagram for digital measurement of antigenic biomarkers using a digital SERS nanoprobe detection method on a microwell substrate.
  • the present invention sums the number of signals converted to "1", which are signals that have strength greater than a predetermined standard against noise, and the signal of "0", which is not, and from this, digitally determines whether or not there is a target as well as the sum value It has the advantage of being able to measure the concentration as well.
  • Figure 9 is a digitized SERS mapping image of microwells with and without SERS nanoprobe sandwich complexes for CA19-9 detection at concentrations from 0 to 250 U/mL (with a, without b)
  • 10 is a representative SERS spectrum obtained from a microwell containing a SERS nanoprobe sandwich for CA19-9 detection.
  • 11 is a concentration dependent digital SERS signal as a function of CA19-9 concentration measured on a digital SERS measuring substrate.
  • FIG. 10 is an actual SERS spectrum where the “1” signal appears, and it can be seen from FIG. 9 that the signal of the SERS nanoprobe appears well.
  • 11 is a graph showing the change in signal according to the concentration of CA19-9 using the average and standard deviation of the signal by performing the experiment three times for each concentration range.
  • the present invention digitally processes the SERS signal generated when the target biomarker is detected (0 & 1 without and with targets) to accurately quantitatively detect a very small amount of the biomarker, and measures the strength of the entire SERS signal Unlike conventional detection methods that detect biomarkers by using digital SERS nanoprobe antigen testing, the digital SERS nanoprobe antigen test method is unaffected by variations in SERS signal intensity according to location and time, enabling accurate quantitative detection of biomarkers and biomarker detection through single particle measurement. High-sensitivity detection of markers can be implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

표면 강화 라만 산란용 나노프로브로, 나노입자; 및 상기 나노입자 표면에 결합된 라만 표지자(Raman Label); 및 상기 나노입자 표면에 결합되며, 검출하고자 하는 타겟 물질에 특이적으로 결합하는 검출물질을 포함하는 표면 강화 라만 산란용 나노프로브가 제공된다.

Description

디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법
본 발명은 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법에 관한 것으로, 보다 상세하게는 타겟 바이오마커 검출 시 발생되는 SERS 신호를 디지털 방식으로 처리하여 극미량의 바이오마커를 정확하게 정량검출할 수 있는 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법에 관한 것이다.
표면 강화 라만 산란(Surface-enhanced Raman scattering, 이하 SERS) 기반의 검출 기술은 감도가 매우 우수하고 다중검출이 가능하여 기존의 형광/흡광 검출법을 대체할 수 있는 새로운 질병 진단법으로서 많은 주목을 받고 있다.
하지만, SERS 검출법은 SERS 기판 또는 SERS 나노프로브의 hot spot 간 신호 강도의 불균일성 (Spatial non-uniformity)과 시간에 따른 SERS 신호 세기의 변동 (Temporal fluctuation)으로 인해 낮은 농도의 타겟 바이오마커를 정확하게 정량검출하는 것이 어려운 한계점이 있다.
특히 체액 내 극미량의 바이오마커를 정확하게 정량검출하고, 이를 통해 질병을 정밀하게 진단하기 위해서는 이와 같은 SERS 검출기술의 근본적인 한계점을 해결하는 것이 필수적이지만, 이를 효과적으로 해결할 수 있는 기술은 아직 개시되지 못한 상황이다.
따라서, 본 발명이 해결하고자 하는 과제는, SERS 검출기술의 한계를 극복하는 프로브 및 이를 활용하는 SERS 기반 진단기술을 제공하는 것이다.
상술한 과제를 해결하기 위하여, 본 발명은 표면 강화 라만 산란용 나노프로브로, 나노입자; 상기 나노입자 표면에 결합된 라만 표지자(Raman Label); 및 상기 나노입자 표면에 결합되며, 검출하고자 하는 타겟 물질에 특이적으로 결합하는 제 1 검출물질을 포함하는, 디지털 표면 강화 라만 산란용 나노프로브를 제공한다.
본 발명의 일 실시예에서, 상기 나노입자 표면에는 플라즈모닉 효과를 발생시키는 금속물질이 형성되며, 상기 라만표지자는 상기 금속물질 사이의 갭(gap)에 형성된다.
본 발명의 일 실시예에서, 상기 라만표지자는 상기 금속물질 합성과정에서 동시에 첨가되어 상기 나노입자 표면상에 형성된다.
본 발명은 상술한 표면 강화 라만 산란용 나노프로브; 제 2 검출물질이 결합된 자성비드;를 포함하며, 상기 제 2 검출물질과 상기 제 1 검출물질은 상기 타겟물질과 동시에 상보적으로 결합된, 디지털 표면 강화 라만 산란용 샌드위치 구조체를 제공한다.
본 발명의 일 실시예에서, 상기 제 2 검출질은 상기 타겟물질에 특이적으로 결합한다.
본 발명은 또한 상술한 디지털 표면 강화 라만 산란용 샌드위치 구조체를 이용한 디지털 기반 진단방법으로, 상술한 디지털 표면 강화 라만 산란용 샌드위치 구조체를 복수 개의 웰에 도포하는 단계; 및 상기 복수 개의 웰로부터의 표면증강 라만신호(SERS)를 검출하는 단계를 포함하는 디지털 기반 진단방법을 제공한다.
본 발명의 일 실시예에서, 상기 디지털 기반 진단방법은, 상기 복수 개의 웰 각각으로부터의 표면증강 라만신호(SERS)를 검출하며, 상기 복수 개의 웰 각각에 대하여 상기 디지털 표면 강화 라만 산란용 샌드위치 구조체가 있는 경우 1, 없는 경우 0으로 카운트하여 표면증강 라만신호(SERS)를 검출한다.
본 발명의 일 실시예에서, 상기 1로 카운트하는 단계는 상기 노이즈 신호 대비 기설정된 강도 이상의 신호가 검출되는 경우 1로 카운트한다.
본 발명은 또한 상기 복수 개의 웰로부터의 표면증강 라만신호(SERS)를 합산하여 상기 타겟물질의 농도를 계산하는 단계를 더 포함하는 디지털 기반 진단방법을 제공한다.
본 발명에 따르면, 기존 SERS 검출법의 한계점을 극복할 수 있는 디지털 SERS 나노프로브 기반 항원검사법을 개발하였으며, 타겟 바이오마커 검출 시 발생되는 SERS 신호를 디지털 방식으로 처리하여 (0 & 1 without and with targets) 극미량의 바이오마커를 정확하게 정량검출하였다. 전체 SERS 신호의 세기를 측정하여 바이오마커를 검출하는 기존 검출방법과 달리, 디지털 SERS 나노프로브 항원검사법은 위치 및 시간에 따른 SERS 신호 강도의 편차에 영향을 받지 않아 바이오마커의 정확한 정량 검출이 가능하고, single particle 측정을 통해 바이오마커의 고감도 검출을 구현할 수 있다.
도 1은 본 발명의 일 실시예에 따른 디지털 SERS 나노프로브 제조 및 이를 이용한 진단방법을 설명하는 모식도이다.
도 2a는 본 발명의 일 실시예에 따른 디지털 SERS 나노프로브의 합성을 위한 개략도이고, 도 2b는 본 발명의 일 실시예에 따른 SERS 나노프로브 복합체의 TEM 이미지이다.
도 3은 본 발명의 일 실시예에 따른 디지털 SERS 나노프로브 복합체에 따른 플라즈모닉 흡수 스펙트럼이고, 도 4는 검출물질 종류별 상이한 SERS 신호를 나타낸다.
도 5는 비어 있는 디지털 SERS 측정 기판(a)과 본 발명에 따른 SERS 나노프로브 샌드위치 복합체가 있는 디지털 SERS 측정 기판의 광학 이미지이고, 도 6은 비어 있는 웰과 본 발명에 따른 SERS 나노프로브 샌드위치 복합체가 있는 웰에서 얻은 SERS 스펙트럼이다.
도 7에서 a는 본 발명의 일 실시예에 따른 SERS 나노프로브 샌드위치가 포함된 디지털 SERS 측정 기판의 마이크로웰 광학 이미지이고, b는 SERS 나노프로브 샌드위치가 있거나 없는 경우 마이크로웰에서 얻은 SERS 스펙트럼에에서 0과 1의 결과를 얻는 경우를 설명하는 도면이고, c는 각 웰에서 얻은 SERS 신호 강도로 디지털화된 마이크로웰의 광학 이미지이다.
도 8은 마이크로웰 기판에서 디지털 SERS 나노프로브 검출 방법을 사용하여 항원 바이오마커의 디지털 측정을 위한 모식도이다.
도 9는 0 ~ 250 U/mL 농도에서 CA19-9 검출을 위한 SERS 나노프로브 샌드위치 복합체가 있거나 없는 마이크로웰의 디지털화된 SERS 매핑 이미지이다(있는 경우 a, 없는 경우 b).
도 10은 CA19-9 검출을 위한 SERS 나노프로브 샌드위치가 포함된 마이크로웰에서 얻은 대표적인 SERS 스펙트럼이다.
도 11은 디지털 SERS 측정 기판에서 측정된 CA19-9 농도의 함수로서 농도 의존적인 디지털 SERS 신호이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 바람직한 실시예에 대하여 상세히 설명하면 다음과 같다.
본 발명을 상세하게 설명하기 전에, 본 명세서에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 무조건 한정하여 해석되어서는 아니 되며, 본 발명의 발명자가 자신의 발명을 가장 최선의 방법으로 설명하기 위해서 각종 용어의 개념을 적절하게 정의하여 사용할 수 있다.
더 나아가 이들 용어나 단어는 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 함을 알아야 한다.
즉, 본 명세서에서 사용된 용어는 본 발명의 바람직한 실시예를 설명하기 위해서 사용되는 것일 뿐이고, 본 발명의 내용을 구체적으로 한정하려는 의도로 사용된 것이 아니다.
이들 용어는 본 발명의 여러 가지 가능성을 고려하여 정의된 용어임을 알아야 한다.
또한, 본 명세서에 있어서, 단수의 표현은 문맥상 명확하게 다른 의미로 지시하지 않는 이상, 복수의 표현을 포함할 수 있다.
또한, 유사하게 복수로 표현되어 있다고 하더라도 단수의 의미를 포함할 수 있음을 알아야 한다.
본 명세서의 전체에 걸쳐서 어떤 구성 요소가 다른 구성 요소를 "포함"한다고 기재하는 경우에는, 특별히 반대되는 의미의 기재가 없는 한 임의의 다른 구성 요소를 제외하는 것이 아니라 임의의 다른 구성 요소를 더 포함할 수도 있다는 것을 의미할 수 있다.
더 나아가서, 어떤 구성 요소가 다른 구성 요소의 "내부에 존재하거나, 연결되어 설치된다"고 기재한 경우에는, 이 구성 요소가 다른 구성 요소와 직접적으로 연결되어 있거나 접촉하여 설치되어 있을 수 있다.
상술한 과제를 해결하기 위하여, 본 발명은 기존 SERS 검출법의 한계점을 극복할 수 있는 디지털 SERS 나노프로브 기반 항원검사법을 제공한다.
본 발명의 일 실시예에 따른 나노프로브를 이용한 진단방법은, 타겟 바이오마커 검출 시 발생되는 SERS 신호를 디지털 방식으로 처리하여 (0 & 1 without and with targets) 극미량의 바이오마커를 정확하게 정량검출할 수 있다. 또한 전체 SERS 신호의 세기를 측정하여 바이오마커를 검출하는 기존 검출방법과 달리, 본 발명에 따른 디지털 SERS 나노프로브 항원검사법은 위치 및 시간에 따른 SERS 신호 강도의 편차에 영향을 받지 않아 바이오마커의 정확한 정량 검출이 가능하고, single particle 측정을 통해 바이오마커의 고감도 검출이 가능하다.
본 발명의 일 실시예에 따른 방법을 보다 상세히 설명하면, 먼저 바이오마커를 포획 항체(제 2 검출물질)가 고정된 자성 입자를 이용해 포획하고, 여기에 검출용 항체(제 1 검출물질)가 도입된 SERS 나노프로브를 처리하여 SERS 나노프로브-자성입자 샌드위치 복합체를 만든다.
이후 SERS 나노프로브-자성입자 샌드위치 용액을 고집적 well로 구성된 SERS 측정기판에 도포하며, 이때 SERS 측정기판의 각 웰에는 하나의 SERS 나노프로브-자성입자 샌드위치 복합체가 들어가며, 이후 각 웰에서 SERS 신호를 측정한다.
본 발명의 일 실시예에서는 구조체가 존재하더라도 라만 신호의 강도가 노이즈보다 기설정된 수준 이상으로 높은 신호(예를 들어 5배 이상)를 “1"로 카운트하고, 나오지 않거나 기설정된 수준 미만인 경우는 "0”으로 카운트 처리하여 타겟 바이오마커의 농도를 정확하게 정량검출한다. 이와 같은 “디지털 SERS 나노프로브 항원검사법”을 이용해 다양한 질병을 정확하고 신속하게 진단할 수 있다.
도 1은 본 발명의 일 실시예에 따른 디지털 SERS 나노프로브 제조 및 이를 이용한 진단방법을 설명하는 모식도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 나노구조체는, 자성 비드-SERS 검출용 나노입자로 이루어지며, 상기 자성비드와 나노입자는 바이오마커인 항원과, 이에 상보적으로 결합되는 항체로 연결된, 샌드위치 구조를 갖는다.
도 2A는 본 발명의 일 실시예에 따른 디지털 SERS 나노프로브 입자 합성을 위한 개략도이고, 도 2B는 본 발명의 일 실시예에 따른 SERS 나노프로브 복합체의 TEM 이미지이다.
도 2A 및 2B를 참조하면, 본 발명의 일 실시시예에 따른 나노프로브는, 실리카 나노입자를 기반으로, 그 표면에 검출용 항체가 결합되며, 플라즈모닉 효과를 발생시키는 금속물질과 라만 표지자(Raman Label)가 형성된 구조를 갖는다.
본 발명의 일 실시예에 따른 SERS 나노프로브는 실리카를 기반으로 라만표지자를 합성 중에 첨가하여 제조된다. 즉, 실리카 위에서 Ag가 환원되며 Ag 물질간 갭이 형성되는데, 이때 첨가된 라만표지자가 갭사이에 위치하게 된다.
본 발명에 따른 SERS 나노프로브는 다양한 라만 표지자를 사용하여 합성 가능하며, 기존의 라만 표지자를 후처리 하여 합성하는 방식의 SERS 나노프로브 보다 표면 개질 후 신호안정성 및 구조적 안정성이 뛰어난 SERS 나노프로브를 합성할 수 있다.
이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 하지만, 본 발명의 범위는 하기 실시예에 의하여 제한되지 않는다.
실시예
표적 바이오마커 검출을 위한 SERS 나노프로브 기반 면역 아쎄이 제작
먼저, 포획 항체(CAb)-자성비드(MB)mL당 8 × 106의 25μL)를 425μL의 1% BSA/PBS(0.1m, pH 7.4) 용액에 분산시켰다. 50 μL의 표적 바이오마커인 항원을 0.01에서 10000 pg mL 범위의 최종 농도로 CAb-MB 용액에 첨가하였다.
본 발명의 일 실시예에서 항원은 췌장암의 바이오마커로 알려져있는 CA19-9을 사용하였으며, 이는 하기 도 10의 x 축에서 확인할 수 있다.
이후 생성된 혼합물을 실온에서 부드럽게 흔들면서 2시간 동안 인큐베이션1 m, pH 7.4)로 여러 번 세척하였다.
이후 검출용 항체(DAb)가 결합된 SERS 나노입자[4-FBT] 또는 SERS 나노입자[4-BBT](25 μL, 0.2 mg mL-1)로 실온에서 2시간 동안 인큐베이션 하였다(최종 용액 부피 = 0.5 mL). 마지막으로 CAb-MB를 0.1% PBS-T(0.1m, pH 7.4) 및 PBS(0.1m, pH 7.4)로 여러 번 세척하여 결합되지 않은 SERS 나노프로브를 제거하고,이후 CAb-MB의 전체 용액을 CAb-MB로부터 SERS 신호를 수집하기 위해 마이크로웰 기판에 떨어트렸다.
디지털 SERS 나노프로브를 통한 바이오마커 검출
표적 바이오마커를 검출하기 위한 SERS 나노프로브로부터의 SERS 신호 측정을 위해 10 μL의 SERS 나노프로브 기반 샌드위치 복합체를 마이크로웰 기판에 떨어뜨렸다. 마이크로웰 기판을 SERS 나노프로브 샌드위치 복합체로 처리하여 SERS 나노프로브 기반 샌드위치 복합체를 마이크로웰에 균일하게 분산시켰다. SERS 매핑은 50 μm x 50 μm 영역 내에서 5 μm 단계로 각 웰에 대해 수행되었으며, SERS 신호는 "On(1)"과 "Off(0)"로 변환되고, 변환된 SERS 신호는 합산되었다.
실험예
도 3은 본 발명의 일 실시예에 따른 디지털 SERS 나노프로브 복합체에 따른 플라즈모닉 흡수 스펙트럼이고, 도 4는 라만표지자별(도 4의 화합물) SERS 신호를 나타낸다.
도 3 및 4를 참조하면, 본 발명에 따른 SERS 나노프로브의 갭이 잘 형성되면 근 적외선 부근의 흡광도가 증가하며(900 nm~), 이는 합성에 사용된 라만 표지자와는 상관없이 동일하다는 것을 알 수 있다. 또한 도 4 우측의 화합물은 합성에 사용된 라만 표지자이며, 좌측의 라만 스펙트럼은 해당 라만 표지자를 사용하여 합성한 SERS 나노프로브의 SERS 스펙트럼이다.
도 5는 비어 있는 디지털 SERS 측정 기판(a)과 본 발명에 따른 SERS 나노프로브 샌드위치 복합체가 있는 디지털 SERS 측정 기판의 광학 이미지이고, 도 6은 비어 있는 웰과 본 발명에 따른 SERS 나노프로브 샌드위치 복합체가 있는 웰에서 얻은 SERS 스펙트럼이다.
도 5 및 6을 참조하면, 발명에 따른 SERS 나노프로브 샌드위치 복합체가 있는 웰에서 그 시그널의 유무와 그 위치가 명확하게 확인할 수 있는 것을 알 수 있다.
도 7은 a) 본 발명의 일 실시예에 따른 SERS 나노프로브 샌드위치가 포함된 디지털 SERS 측정 기판의 마이크로웰 광학 이미지이고, b) SERS 나노프로브 샌드위치가 있거나 없는 경우 마이크로웰에서 얻은 SERS 스펙트럼에에서 0과 1의 결과를 얻는 경우를 설명하는 도면, c) 각 웰에서 얻은 SERS 신호 강도로 디지털화된 마이크로웰의 광학 이미지이다.
도 7을 참조하면, 웰에서 검출된 신호에서 컷-오프 기준(시그널 / 노이즈가 5 이상)으로 0과 1을 구분하는 것을 알 수 있으며, 이로부터 하기 도 8과 같이 0과 1로 카운트되는 결과를 전체 기판에서 얻을 수 있다.
도 8은 마이크로웰 기판에서 디지털 SERS 나노프로브 검출 방법을 사용하여 항원 바이오마커의 디지털 측정을 위한 모식도이다.
도 8을 참조하면, 신호의 유무(신호가 나오면 1, 나오지 않으면 0)으로 구분되는 디지털 방식을 사용하여 타겟의 유무뿐만 아니라 미세한 양의 검출이 SERS 기술로 가능하다.
즉, 본 발명은 노이즈 대비 기설정된 기준 이상의 강도를 보이는 신호인 "1"로 변환된 신호의 갯수와 그렇지 않은 "0"의 신호를 합산하며, 이로부터 디지털 방식으로 타겟의 유무 뿐만 아니라 그 합산값에 따라 농도 또한 측정이 가능하다는 장점이 있다.
도 9는 0 ~ 250 U/mL 농도에서 CA19-9 검출을 위한 SERS 나노프로브 샌드위치 복합체가 있거나 없는 마이크로웰의 디지털화된 SERS 매핑 이미지이다(있는 경우 a, 없는 경우 b)
도 10은 CA19-9 검출을 위한 SERS 나노프로브 샌드위치가 포함된 마이크로 웰에서 얻은 대표적인 SERS 스펙트럼이다.
도 11은 디지털 SERS 측정 기판에서 측정된 CA19-9 농도의 함수로서 농도 의존적인 디지털 SERS 신호이다
도 9는 CA19-9의 농도에 따라 아쎄이를 진행하여 웰에 처리 후 맵핑을 통해 SERS 신호를 측정하였으며, 측정된 신호를 일정 기준에 따라 변환한 이미지로, 검정이 “0”, 흰색이 “1”로 변환된 곳을 명확히 나타낸다.
도 10은 “1” 신호가 나타난 곳의 실제 SERS 스펙트럼이며, 도 9로부터 SERS 나노프로브의 신호가 잘 나타남을 확인할 수 있다.
도 11은 각 농도구간에 대하여 3번 씩 실험을 진행하여 신호의 평균 및 표준 편차를 이용하여 CA19-9의 농도에 따른 신호의 변화를 나타낸 그래프이다.
도 11을 참조하면, 농도에 따라 선형으로 증가하는 것을 확인할 수 있으며, 상관 계수 또한 0.99로 선형성도 매우 높게 나타난 것을 알 수 있다.
이상 살핀 바와 같이 본 발명은 타겟 바이오마커 검출 시 발생되는 SERS 신호를 디지털 방식으로 처리하여 (0 & 1 without and with targets) 극미량의 바이오마커를 정확하게 정량검출할 수 있으며, 전체 SERS 신호의 세기를 측정하여 바이오마커를 검출하는 기존 검출방법과 달리, 디지털 SERS 나노프로브 항원검사법은 위치 및 시간에 따른 SERS 신호 강도의 편차에 영향을 받지 않아 바이오마커의 정확한 정량 검출이 가능하고, single particle 측정을 통해 바이오마커의 고감도 검출을 구현할 수 있다.

Claims (11)

  1. 표면 강화 라만 산란용 나노프로브로,
    나노입자; 및
    상기 나노입자 표면에 결합된 라만 표지자(Raman Label); 및
    상기 나노입자 표면에 결합되며, 검출하고자 하는 타겟 물질에 특이적으로 결합하는 제 1 검출물질을 포함하는, 디지털 표면 강화 라만 산란용 나노프로브.
  2. 제 1항에 있어서,
    상기 나노입자 표면에는 플라즈모닉 효과를 발생시키는 금속물질이 형성된 것을 특징으로 하는, 디지털 표면 강화 라만 산란용 나노프로브.
  3. 제 2항에 있어서,
    상기 라만표지자는 상기 금속물질 사이의 갭(gap)에 형성된 것을 특징으로 하는, 디지털 표면 강화 라만 산란용 나노프로브.
  4. 제 3항에 있어서,
    상기 라만표지자는 상기 금속물질 합성과정에서 동시에 첨가되어 상기 나노입자 표면상에 형성된 것을 특징으로 하는, 디지털 표면 강화 라만 산란용 나노프로브.
  5. 제 1항 내지 제 4항에 따른 표면 강화 라만 산란용 나노프로브;
    제 2 검출물질이 결합된 자성비드;를 포함하며,
    상기 제 2 검출물질과 상기 제 1 검출물질은 상기 타겟물질과 동시에 상보적으로 결합된, 디지털 표면 강화 라만 산란용 샌드위치 구조체.
  6. 제 5항에 있어서,
    상기 제 2 검출물질은 상기 타겟물질에 특이적으로 결합하는 것을 특징으로 하는, 디지털 표면 강화 라만 산란용 샌드위치 구조체.
  7. 제 5항에 따른 디지털 표면 강화 라만 산란용 샌드위치 구조체를 이용한 디지털 기반 진단방법으로,
    제 5항에 따른 디지털 표면 강화 라만 산란용 샌드위치 구조체를 복수 개의 웰에 도포하는 단계; 및
    상기 복수 개의 웰로부터의 표면증강 라만신호(SERS)를 검출하는 단계를 포함하는 디지털 기반 진단방법.
  8. 제 7항에 있어서,
    상기 디지털 기반 진단방법은, 상기 복수 개의 웰 각각으로부터의 표면증강 라만신호(SERS)를 검출하는 것을 특징으로 하는 디지털 기반 진단방법.
  9. 제 8항에 있어서, 상기 디지털 기반 진단방법은,
    상기 복수 개의 웰 각각에 대하여 상기 디지털 표면 강화 라만 산란용 샌드위치 구조체가 있는 경우 1, 없는 경우 0으로 카운트하여 표면증강 라만신호(SERS)를 검출하는 것을 특징으로 하는 디지털 기반 진단방법.
  10. 제 9항에 있어서,
    상기 1로 카운트하는 단계는 상기 노이즈 신호 대비 기설정된 강도 이상의 신호가 검출되는 경우 1로 카운트하는 것을 특징으로 하는 디지털 기반 진단방법.
  11. 제 10항에 있어서, 상기 디지털 기반 진단방법은,
    상기 복수 개의 웰로부터의 표면증강 라만신호(SERS)를 합산하여 상기 타겟물질의 농도를 계산하는 단계를 더 포함하는 것을 특징으로 하는 디지털 기반 진단방법.
PCT/KR2023/001792 2022-02-08 2023-02-08 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법 WO2023153784A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0016399 2022-02-08
KR20220016399 2022-02-08
KR10-2023-0009238 2023-01-25
KR1020230009238A KR20230120093A (ko) 2022-02-08 2023-01-25 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법

Publications (1)

Publication Number Publication Date
WO2023153784A1 true WO2023153784A1 (ko) 2023-08-17

Family

ID=87564692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001792 WO2023153784A1 (ko) 2022-02-08 2023-02-08 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법

Country Status (1)

Country Link
WO (1) WO2023153784A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100107648A (ko) * 2009-03-26 2010-10-06 한양대학교 산학협력단 표면증강 라만 산란 복합 프로브 및 이를 이용하여 표적 물질을 검출하는 방법
KR20150073919A (ko) * 2012-08-24 2015-07-01 한양대학교 에리카산학협력단 표면―증강 라만 산란에 기초한 고속 및 고감도 미량 분석용 유무기 나노섬유 복합체 기판 및 이를 이용한 분석방법
KR20200107847A (ko) * 2019-03-06 2020-09-16 한양대학교 에리카산학협력단 은 나노갭 쉘을 이용한 알츠하이머병 진단방법
US20200291463A1 (en) * 2013-03-22 2020-09-17 Duke University Nano-plasmonic molecular probes and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100107648A (ko) * 2009-03-26 2010-10-06 한양대학교 산학협력단 표면증강 라만 산란 복합 프로브 및 이를 이용하여 표적 물질을 검출하는 방법
KR20150073919A (ko) * 2012-08-24 2015-07-01 한양대학교 에리카산학협력단 표면―증강 라만 산란에 기초한 고속 및 고감도 미량 분석용 유무기 나노섬유 복합체 기판 및 이를 이용한 분석방법
US20200291463A1 (en) * 2013-03-22 2020-09-17 Duke University Nano-plasmonic molecular probes and methods of use
KR20200107847A (ko) * 2019-03-06 2020-09-16 한양대학교 에리카산학협력단 은 나노갭 쉘을 이용한 알츠하이머병 진단방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOONKWON LEE, KANGSUN LEE, KI HYUNG KIM, KWANG W. OH, JAEBUM CHOO: "SERS-based immunoassay using a gold array-embedded gradient microfluidic chip", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 12, no. 19, 1 January 2012 (2012-01-01), UK , pages 3720, XP055587337, ISSN: 1473-0197, DOI: 10.1039/c2lc40353f *

Similar Documents

Publication Publication Date Title
Akama et al. Droplet-free digital enzyme-linked immunosorbent assay based on a tyramide signal amplification system
Rivnak et al. A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood
Rissin et al. Multiplexed single molecule immunoassays
WO2017111194A1 (ko) 바이오 센서용 광학 표지자, 이를 포함하는 광학 바이오센서 및 상기 바이오 센서용 광학 표지자의 제조방법
KR101486149B1 (ko) 경쟁 면역반응을 이용한 표면-증강 라만 산란 기반의 질병 진단용 마커 검출 방법
WO2014137152A1 (ko) 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법
Song et al. Machine learning-based cytokine microarray digital immunoassay analysis
US20160123969A1 (en) Methods, materials, and kits for covalently associating molecular species with a surface of an object
WO2017052285A1 (ko) 표면-증강 라만 산란 기반의 고감도 측면유동 면역분석용 스트립 및 이를 이용한 검출방법
JP6301915B2 (ja) 遺伝毒性化合物を同定するためのタンパク質発現分析
JP4274944B2 (ja) ダイナミックレンジが拡張された粒子利用リガンドアッセイ
WO2014014309A1 (ko) 표적 물질의 검출 또는 정량 방법, 및 키트
US7892781B2 (en) Detecting a target using a composite probe comprising a directing agent, a metal nanoparticle and an enzyme
WO2015119386A1 (ko) 효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법
Akama et al. Multiplexed homogeneous digital immunoassay based on single-particle motion analysis
JP2005510706A5 (ko)
CN112505322A (zh) 阿尔茨海默病标志物p-Tau217检测试剂盒及其制造方法
WO2023153784A1 (ko) 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법
Chen et al. Upconversion nanoparticle‐assisted single‐molecule assay for detecting circulating antigens of aggressive prostate cancer
WO2021201350A1 (ko) 시분해 형광분석을 이용한 외상성 뇌손상 진단용 측방 유동 분석장치 및 이를 이용한 외상성 뇌손상 진단방법
WO2013147388A1 (ko) Cmos 이미지 센서의 픽셀 분석을 이용한 고감도 바이오센서
WO2020171346A1 (ko) 자가항체-항원 결합체를 이용한 폐암 진단용 면역학적 조성물, 이를 사용한 폐암 진단 방법 및 이를 포함하는 폐암 진단용 키트
US20050221363A1 (en) Universal shotgun assay
WO2019103324A1 (ko) 측방유동 면역 분석 기반의 항ccp 항체 및 류마티스인자를 이용한 류마티스 관절염 진단 방법
KR20230120093A (ko) 디지털 표면 강화 라만 산란용 나노프로브 및 이를 이용한 디지털 기반 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23753132

Country of ref document: EP

Kind code of ref document: A1