WO2023151120A1 - 分流器、液力端以及柱塞泵 - Google Patents
分流器、液力端以及柱塞泵 Download PDFInfo
- Publication number
- WO2023151120A1 WO2023151120A1 PCT/CN2022/077242 CN2022077242W WO2023151120A1 WO 2023151120 A1 WO2023151120 A1 WO 2023151120A1 CN 2022077242 W CN2022077242 W CN 2022077242W WO 2023151120 A1 WO2023151120 A1 WO 2023151120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- valve
- spring
- channel
- flow divider
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 86
- 239000007788 liquid Substances 0.000 claims abstract description 92
- 238000004891 communication Methods 0.000 claims abstract description 3
- 238000007789 sealing Methods 0.000 claims description 78
- 210000004907 gland Anatomy 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000011148 porous material Substances 0.000 claims description 10
- 238000005260 corrosion Methods 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 3
- 238000005299 abrasion Methods 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011083 cement mortar Substances 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
- F04B53/162—Adaptations of cylinders
Definitions
- At least one embodiment of the present disclosure relates to a flow divider, a fluid end, and a plunger pump.
- fracturing technology is a method of forming fractures in oil and gas layers by using high-pressure sand-containing liquids. Fracturing technology can improve the flow environment of oil and gas underground, thereby increasing production, and is widely used in conventional oil and gas extraction.
- the plunger pump is a device that uses the plunger to reciprocate in the valve box (cylinder) to pressurize the liquid. It has the characteristics of compact structure, high pressure and high efficiency.
- Embodiments of the present disclosure provide a flow divider, a liquid end, and a plunger pump.
- An embodiment of the present disclosure provides a diverter, including: a body, the body is cylindrical, and the body includes a first end, a second end, and a side surface connecting the first end and the second end; A groove is recessed along the direction from the first end of the body to the second end of the body, the opening of the groove is located at the first end; the first channel communicates with the groove, and the first channel communicates with the groove. a channel extending from the side to the sidewall of the groove; and a second channel radially of the body between the groove and the side and extending from the first end of the body to the second end of the body.
- the bottom wall of the groove is located at the second end.
- the thickness of the bottom wall is smaller than the depth of the groove.
- the groove extends along the axial direction of the body
- the first channel extends along the radial direction of the body
- the second channel extends along the axial direction of the body.
- the aperture of the groove is larger than the aperture of the first channel and larger than each second channel in the plurality of second channels. aperture.
- a plurality of the second channels are evenly distributed in the circumferential direction of the body.
- the pore size of the first channel is larger than the pore size of each of the plurality of second channels.
- the groove includes a first groove portion close to the first end and a second groove portion close to the second end, and the aperture of the first groove portion is from the The second end increases gradually toward the first end.
- the first channel has two openings respectively located on the side and the side wall of the groove
- the second channel has two openings respectively located at the first end of the body and two openings at the second end.
- At least one embodiment of the present disclosure further provides a fluid end, comprising: a valve box, the valve box including an inner cavity; and any of the above-mentioned flow dividers, the flow divider being located in the inner cavity.
- the valve box further includes a liquid inlet channel, and the liquid inlet channel communicates with the first channel.
- the fluid end further includes: a first valve assembly located in the inner chamber; and a second valve assembly located in the inner chamber; the flow divider, the first A valve assembly and the second valve assembly are sequentially arranged along the axial direction of the inner chamber.
- the first valve assembly includes a first valve body, a first valve seal and a first spring
- the second valve assembly includes a second valve body, a second valve seal and a second spring
- a valve seat positioned between the first valve body and the second valve body and having a through hole
- a gland the second valve assembly positioned between the valve seat and the gland
- the inner cavity includes a pressurized area, a common rail area and a high pressure area, the pressurized area, the common rail area and the high pressure area are arranged in sequence, and the common rail area is located at the divider, the between the first valve body, the valve seat, and the second valve body, the high-pressure area is located between the valve seat and the gland, and the pressurized area is located far from the flow divider one side of the high pressure zone.
- the first valve body includes a first bracket part and a first guide part, the first bracket part has a first sealing groove to accommodate the first valve seal, and There is a first spring groove to place the first spring, the second valve body includes a second bracket part and a second guide part, and the second bracket part has a second sealing groove to accommodate the second valve seal , having a second spring groove to place the second spring, and a third spring groove to place the first spring, the first spring groove and the third spring groove face each other, the second spring
- the groove and the third spring groove are respectively arranged on both sides of the second bracket part, the first spring is located between the first bracket part and the second bracket part, and the second spring is located on the Between the second bracket portion of the second valve body and the gland, the first valve seal is located at the groove of the diverter, the first valve body is configured to open such that The fluid flows from the liquid inlet channel through the first channel and the groove of the splitter to enter the common rail area and flows through the second channel into the pressurized
- the wire diameter of the second spring is larger than the wire diameter of the first spring.
- the helical diameter of the second spring is larger than the helical diameter of the first spring.
- the wire diameter of the second spring is larger than the wire diameter of the first spring
- the coil diameter of the second spring is larger than the coil diameter of the first spring
- the diameter of the through hole of the valve seat is smaller than the outer diameter of the first bracket part of the first valve body.
- the liquid end further includes a first metal seal, a second metal seal, a third metal seal, a first sealing ring, and a second sealing ring;
- the first metal seal is set On the first sealing limit structure of the diverter, it is configured to form a tight sealing structure between the diverter and the valve box, and the second metal seal is arranged on the second seal of the valve seat.
- the limit structure On the limit structure, it is configured to form a fastening and sealing structure between the flow divider and the valve seat, and the third metal seal is arranged on the third sealing limit structure of the gland, and is configured to make the valve seat A tight sealing structure is formed between the valve seat and the gland; the first sealing ring is arranged on the fourth sealing limit structure of the valve seat, and is configured to make the connection between the valve seat and the valve box Form a fastening and sealing structure between them, the second sealing ring is arranged on the fifth sealing limit structure of the gland or the valve box, and is configured to form a fastening between the gland and the valve box Sealed structure.
- At least one embodiment of the present disclosure also provides a plunger pump, including any fluid end described above.
- Fig. 1A is a cross-sectional view of a plunger pump.
- FIG. 1B is a schematic diagram of the liquid end of the plunger pump shown in FIG. 1A .
- FIG. 1C is a schematic diagram of a valve box in the liquid end shown in FIG. 1B .
- Fig. 2A is a perspective view of a flow divider provided by an embodiment of the present disclosure.
- Fig. 2B is a three-dimensional cross-sectional view of a flow divider provided by an embodiment of the present disclosure (the cross-section is a vertical plane passing through the axis of the body).
- Fig. 2C is a right side view of a shunt provided by an embodiment of the present disclosure.
- FIG. 2D is a schematic cross-sectional view of the shunt shown in FIG. 2C along line A1 - A2 .
- Fig. 3 is a schematic structural diagram of a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 4 is a schematic cross-sectional view of a liquid end provided by at least one embodiment of the present disclosure.
- Fig. 5 is a schematic partial cross-sectional view of a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 6 is a schematic cross-sectional view of a first valve assembly in a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 7 is a schematic cross-sectional view of a second valve assembly in a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 8 is a schematic cross-sectional view of a first valve body in a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 9 is a schematic cross-sectional view of a flow divider in a liquid end provided by at least one embodiment of the present disclosure.
- Fig. 10 is a schematic cross-sectional view of a valve seat in a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 11 is a schematic cross-sectional view of a gland in a liquid end provided by at least one embodiment of the present disclosure.
- Fig. 12 is a schematic diagram of a liquid suction working condition of a liquid end provided by at least one embodiment of the present disclosure.
- Fig. 13 is a schematic diagram of a fluid discharge working condition of a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 14 is a schematic block diagram of a plunger pump provided by at least one embodiment of the present disclosure.
- a plunger pump includes a power end and a liquid end.
- the power end is responsible for transferring the energy of the prime mover to the liquid end.
- the power end mainly includes a box, crankshaft, connecting rod, crosshead and tie rod; The mechanical energy from the power end is converted into the pressure energy of the liquid.
- the hydraulic end is an important part installed at the front end of the plunger pump.
- the low-pressure liquid is converted into high-pressure liquid, and the high-pressure liquid is accumulated in the manifold and driven downhole.
- a plunger pump with a liquid end can be applied to oil and gas field fracturing/cementing equipment, but is not limited thereto.
- FIG. 1A is a cross-sectional view of a plunger pump.
- FIG. 1B is a schematic diagram of the liquid end of the plunger pump shown in FIG. 1A .
- FIG. 1C is a schematic diagram of a valve box in the liquid end shown in FIG. 1B .
- the plunger pump 003 includes a power end 002 and a fluid end 001 .
- the fluid end 001 mainly includes a valve box 01 , a plunger 02 , a valve assembly 03 , a valve assembly 04 , a sealing assembly, a gland 05 and a gland 06 .
- FIG. 1A also shows a clamp 07 , a tie rod 08 , a crosshead 09 , a connecting rod 010 , a case 011 , and a crankshaft 012 .
- the liquid end 001 also includes a valve seat 021, a spring 022, a suction gland 023, a suction pressure cap 024, a spring 025, a drain hole 026, a packing bag for sealing 027, and a packing pressure cap 028 .
- FIG. 1C shows the cross-intersecting structure of the valve box 01 .
- the working principle of the plunger pump is as follows: driven by the prime mover, the crankshaft 012 of the power end 002 rotates, driving the connecting rod 010 and the crosshead 09 to reciprocate horizontally, and the crosshead 09 drives the plunger 02 in the valve box 01 through the pull rod 08 Perform horizontal reciprocating motion.
- the plunger 02 makes a return movement, the internal volume of the valve box 01 gradually increases to form a partial vacuum.
- the valve assembly 03 is opened, the valve assembly 04 is closed, the medium enters the inner cavity of the valve box 01, and the plunger 02 returns to the limit position. , the cavity of the valve box 01 is filled with medium, and the liquid suction action is completed.
- the failure at the intersecting line is also one of the main failure modes of the fracturing pump.
- the valve box at the fluid end is a cross-intersecting structure.
- the inner chamber of the valve box 02 is divided into a low-pressure zone 01a, an alternating zone 01b and a high-pressure zone 01c according to the pressure.
- the intersecting line is just in the alternating area 01b.
- the mechanical analysis shows that the stress concentration at the intersecting line is obvious. Coupled with the effect of alternating load, fatigue cracks are prone to occur at the intersecting line, resulting in cracking and leaking of the valve box 01. Replacement on site The valve box is frequent, and the replacement cost is high, time-consuming and labor-intensive.
- intersecting lines are characterized by thinner material along the edges and poor corrosion and erosion resistance.
- the fracturing fluid carries sand and is corrosive, so the intersecting line corrosion of the cavity is particularly obvious.
- the diameter of the plunger cavity is larger than that of the liquid outlet, the flow velocity at the intersecting line will increase sharply due to the narrowing of the pipe diameter when the sand-carrying liquid is discharged, thereby further aggravating the wear on the material at the intersecting line.
- An embodiment of the present disclosure provides a diverter, which includes a body, a groove, a first channel, and a second channel; the body is cylindrical, and the body includes a first end, a second end, and a connection between the first end and the second end.
- the side wall; the second channel is located between the groove and the side in the radial direction of the body, and extends from the first end of the body to the second end of the body.
- the flow divider provided by the embodiment of the present disclosure can be placed in the valve box of the plunger pump to facilitate the use of axial liquid distribution, and structurally cancel the intersecting line generated by the intersection of the liquid distribution area and the pressurized area in the plunger pump , to avoid the impact, corrosion and wear of the liquid on the intersecting line of the valve box cavity, thereby improving the service life of the valve box.
- a valve box may also be referred to as a cylinder.
- Fig. 2A is a perspective view of a flow divider provided by an embodiment of the present disclosure.
- Fig. 2B is a three-dimensional cross-sectional view of a flow divider provided by an embodiment of the present disclosure (the cross-section is a vertical plane passing through the axis of the body).
- an embodiment of the present disclosure provides a flow divider 1 , which includes a body 10 , a groove 11 , a first channel 12 and a second channel 13 .
- the body 10 is cylindrical, and the body 10 includes a first end 110 , a second end 100 , and a side surface 14 connecting the first end 110 and the second end 100 .
- the body 10 is cylindrical, and of course, other suitable shapes can also be adopted as required.
- the embodiments of the present disclosure take the body 10 as an example for illustration.
- the groove 11 in the flow divider 1 is concave along the direction from the first end 110 of the body 10 to the second end 100 of the body 10 , and the opening 101 of the groove 11 is located at the first end 110 , thus, the groove 11 does not penetrate the flow divider 1 in the axial direction of the flow divider 1 .
- the first channel 12 communicates with the groove 11 , and the first channel 12 extends from the side 14 of the flow divider 1 to the side wall 15 of the groove 11 .
- the second channel 13 is located between the groove 11 and the side surface 14 in the radial direction of the body 10 of the flow divider 1 , and extends from the first end 110 of the body 10 to the second end 100 of the body 10 . As shown in FIG. 2B , the second channel 13 penetrates the flow divider 1 in the axial direction of the flow divider 1 and is a through hole. As shown in FIG. 2A and FIG. 2B , the second channel 13 is located between the side wall 15 of the groove 11 and the side surface 14 of the flow divider 1 in the radial direction of the body 10 of the flow divider 1 .
- the bottom wall 16 of the groove 11 of the flow divider 1 is located at the second end 100, and the thickness T1 of the bottom wall 16 is smaller than the depth D1 of the groove 11, so that the groove has a larger accommodation space to Satisfies the circulation of large liquid flow.
- the depth D1 of the groove 11 is greater than or equal to four times the thickness T1 of the bottom wall 16 .
- the depth D1 of the groove 11 is less than or equal to ten times the thickness T1 of the bottom wall 16 .
- the depth D1 of the groove 11 is greater than or equal to four times the thickness T1 of the bottom wall 16 and less than or equal to ten times the thickness T1 of the bottom wall 16. times.
- the dimensional relationship between the depth D1 of the groove 11 and the thickness T1 of the bottom wall 16 is not limited to the above description, and can be set as required.
- the depth D1 of the groove 11 refers to the dimension of the groove 11 in the axial direction of the flow divider 1
- the thickness D1 of the bottom wall 16 refers to the dimension of the bottom wall 16 in the axial direction of the flow divider 1. size.
- the axial direction of the flow divider 1 may refer to a direction from the second end 100 to the first end 110 , but is not limited thereto.
- the groove 11 of the flow divider 1 extends in the axial direction of the body 10
- the first channel 12 extends in the radial direction of the body 10
- the second channel 13 extends in the axial direction of the body 10 .
- the fluid can flow from the first radial passage 12 to the groove 11, and then flow out from the first end 110 of the flow divider 1 in the axial direction through the opening of the groove 11, and flow out from the flow divider 1 through the second passage 13.
- the first end 110 communicates to the second end 100 .
- FIG. 2C is a right side view of a shunt provided by an embodiment of the present disclosure.
- FIG. 2D is a schematic cross-sectional view of the shunt shown in FIG. 2C along line A1 - A2 .
- the flow divider 1 can be provided with a plurality of second passages 13, and the plurality of second passages 13 can be evenly distributed in the circumferential direction of the body 10, for example, the flow divider 1 in Figure 2C is provided with four evenly distributed The second passage 13, so as to meet the circulation of larger flow.
- the number and positions of the second channels 13 can be set according to actual application requirements, which is not limited in the embodiments of the present disclosure.
- the first channel 12 has an opening 17 and an opening 18, the opening 17 is located on the side 14 of the flow divider 1, and the opening 18 is located on the side wall 15 of the groove 11, that is, the first channel 12 has openings located on the body 10 respectively.
- the two openings (opening 17 and opening 18 ) of the side 14 and the side wall 15 of the groove 11 whereby the first channel 12 can realize fluid communication between the opening 17 and the opening 18 .
- the second channel 13 also has two openings, respectively the opening 19 and the opening 20, the opening 19 is located at the first end 110 of the body 10, and the opening 20 is located at the second end 100 of the body 10, that is, the second The channel 13 has two openings (opening 19 and opening 20 ) respectively located at the first end 110 and the second end 100 of the body 10 , so that fluid can communicate between the opening 19 and the opening 20 of the second channel 13 .
- the aperture of the groove 11 of the flow divider 1 may be larger than the aperture of the first channel 12 and larger than the aperture of each second channel 13 in the plurality of second channels 13 .
- the groove 11 has a large pore size, which is beneficial for the fluid to enter and exit the flow divider 1, and can provide a certain buffer space during the inflow of the fluid to play the role of structural protection.
- the hole diameter of the groove 11 is relatively large, it can also avoid the clogging phenomenon during the flow of the fluid.
- the pore diameter of the first channel 12 is larger than the pore diameter of each second channel 13 in the plurality of second channels 13 .
- the pore diameter of each of the plurality of second channels 13 is the same, but not limited thereto.
- the first channel 12 has a large pore diameter, which is beneficial for fluid to enter the flow divider 1 and avoid blockage.
- the hole diameters of the multiple second channels 13 are all the same, which is beneficial to the flow balance when the fluid is discharged from the second channels 13, and is also beneficial to the processing of the device.
- the aperture of the groove 11 can refer to the maximum dimension of the groove 11 in a plane perpendicular to its extension direction (depth direction), and the aperture of the first channel 12 can refer to the first channel 12 in a plane perpendicular to its extending direction, the aperture of the second channel 13 may refer to the second channel 13's maximum dimension in a plane perpendicular to its extending direction.
- the aperture of the groove 11 , the aperture of the first channel 12 , and the aperture of the second channel 13 all refer to diameters.
- FIG. 2A shows the aperture Aa of the groove 11 , the aperture Ab of the first channel 12 , and the aperture Ac of the second channel 13 .
- the groove 11 of the flow divider 1 includes a first groove portion 21 and a second groove portion 22 , the first groove portion 21 is close to the first end 110 , and the second groove portion 22 is close to the second end 100 . As shown in FIG. 2D , the first groove portion 21 is closer to the first end 110 than the second groove portion 22 .
- FIG. 2D takes the groove 11 including two grooves as an example for illustration.
- the aperture diameter of the first groove portion 21 gradually increases from the second end 100 to the first end 110 , so as to facilitate the cooperation of the diverter 1 with other components.
- the first groove 21 in the diverter 1 can be configured to cooperate with other components, for example, to cooperate with a movable valve body and its seal, so as to achieve a good sealing effect.
- the central axis of the groove 11 coincides with the central axis of the cylindrical body 10 in the axial direction.
- the first channel 12 and the second channel 13 can communicate with the space (common rail area 42 ) at the first end 110 through the groove 11 , so as to realize good fluid circulation in the flow divider 1 .
- the number of the first passage 12 is greater than the number of the second passage 13, and the aperture of the first passage 12 is greater than the aperture of each second passage 13, so as to facilitate the flow through the first passage 12 The balance of the flow rate of the fluid and the fluid flowing through the plurality of second channels 13 .
- the shunt 1 can be made of alloy steel, but not limited thereto.
- the flow divider 1 provided by the embodiments of the present disclosure can be manufactured by using common processing methods according to its structure.
- the working method of the flow divider 1 may include: the fluid flows from the opening 17 of the first channel 12 along the radial direction of the body 10 of the flow divider 1 enter the groove 11, turn in the groove 11 and exit the groove 11 from the opening 101 along the axial direction of the body 10; End 110 communicates to second end 100 .
- the fluid can also flow along the direction from the opening 20 to the opening 19 of the second channel 13 .
- a fluid is a flowable substance.
- the fluid includes fracturing fluid, and the fracturing fluid includes sand-carrying fluid.
- the sand-carrying liquid includes water, sand and additives.
- sand includes quartz sand.
- the fluid may also include cement mortar, but is not limited thereto. Usually, cement mortar is used for cementing.
- Embodiments of the present disclosure do not limit the type and viscosity of the fluid.
- the flow diverter provided by the embodiments of the present disclosure can be applied to fracturing technology and well cementing technology, but is not limited thereto, and can also be applied to other fields that require liquid diversion.
- FIG. 3 is a schematic structural diagram of a liquid end provided by at least one embodiment of the present disclosure.
- Fig. 4 is a schematic cross-sectional view of a liquid end provided by at least one embodiment of the present disclosure.
- the fluid end 2 includes a valve box 30
- the valve box 30 includes an inner cavity 31 and a flow divider 1
- the flow divider 1 is located in the inner cavity 31 .
- the inner cavity 31 is distributed symmetrically along the axial direction of the valve box 30, and the axis of the inner cavity 31 coincides with the axis of the valve box 30, so that the valve box 30 is a symmetrical structure as a whole, which is beneficial to the device. processing and manipulation.
- Figure 4 shows the axis A0.
- the axis A0 can be regarded as the axis of the inner chamber 31 , the axis of the valve box 30 , and the axis of the flow divider 1 .
- the axis of a part means the line on which the axis of symmetry of the part lies.
- the axis direction may be the extension direction of the axis.
- the liquid end 2 further includes a plunger 35
- the inner chamber 31 includes a first inner chamber 31 a and a second inner chamber 31 b.
- both the first inner cavity 31a and the second inner cavity 31b are cylindrical, and the aperture of the first inner cavity 31a is smaller than the aperture of the second inner cavity 31b.
- the plunger 35 is arranged in the first inner cavity 31a, and is in clearance fit with the first inner cavity 31a, and can move axially in the first inner cavity 31a under the action of an external force, thereby changing the pressure in the inner cavity 31 and controlling the flow of the fluid. Circulation status.
- the valve box 30 further includes a liquid inlet channel 32 , and the liquid inlet channel 32 communicates with the first channel 12 .
- the flow divider 1 is disposed in the second inner cavity 32 b, and the liquid inlet channel 32 extends radially from the valve box 30 and communicates with the first channel 12 in the flow divider 1 .
- the inner diameter of the liquid inlet channel 32 is the same as that of the first channel 12, and the liquid inlet channel 32 is aligned with the opening 17 of the first channel 12, so that the fluid enters the first channel 12 smoothly from the liquid inlet channel 32, and no blockage occurs .
- the fluid end 2 further includes a first valve assembly 3 and a second valve assembly 4, and both the first valve assembly 3 and the second valve assembly 4 are located in the second inner cavity 31b.
- the flow divider 1, the first valve assembly 3 and the second valve assembly 4 are arranged in sequence along the axial direction of the inner chamber 31 (second inner chamber 31b).
- the first valve assembly 3 and the second valve assembly 4 respectively include components with circular ring features, and the centerlines of each circular ring component are respectively arranged on the axis of the second inner cavity 31b, so that the overall structure of the device has symmetry, Good for processing.
- the axis A0 can also be the axis of the valve seat 33 , the first valve assembly 3 , the second valve assembly 4 , the gland 34 or the plunger 35 .
- the axial direction of the first inner chamber 31a coincides with the axial direction of the second inner chamber 31b, and the axis A0 can be regarded as the axis of the first inner chamber 31a, and can also be regarded as the axis of the second inner chamber 31b. axis.
- Fig. 5 is a schematic cross-sectional view of a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 6 is a schematic cross-sectional view of a first valve assembly in a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 7 is a schematic cross-sectional view of a second valve assembly in a fluid end provided by at least one embodiment of the present disclosure.
- Fig. 8 is a schematic cross-sectional view of a first valve body in a fluid end provided by at least one embodiment of the present disclosure.
- the first valve assembly 3 includes a first valve body 3 a, a first valve seal 3 b and a first spring 3 c.
- the first valve body 3a includes a first bracket part 3a1 and a first guide part 3a11, the first bracket part 3a1 has a first sealing groove 3a3 to accommodate the first valve seal 3b, and has a first spring groove 3a2 to place the first spring 3c.
- the first guide portion 3a11 in the first valve body 3a can also be called a claw, and it is in clearance fit with the groove 11 in the diverter 1, so that the first valve body 3a can be positioned at the first position. Under the action of the spring 3c, it moves in the groove 11 along its axis direction, thereby changing the position of the first valve body 3a so that the first valve body 3a is in a closed or open state.
- the first valve body 3a has a plurality of first guide parts 3a11, and there is an interval between adjacent first guide parts 3a11, and the fluid can pass between the first guide parts 3a11 The gap between the axial flow.
- a plurality of first guide portions 3a11 are evenly distributed in the circumferential direction.
- the first guide part 3a11 acts as a guide, and its arrangement facilitates the movement of the first valve body 3a in the groove 11 along a fixed reciprocating direction, thereby controlling the normal and stable flow of fluid in each component.
- the second valve body 4a has a plurality of second guide parts 4a11, and there are spaces between adjacent second guide parts 4a11, and fluid can pass through the spaces between the second guide parts 4a11 in the axial direction.
- a plurality of second guide portions 4a11 are evenly distributed in the circumferential direction.
- the first seal groove 3a3 in the first bracket part 3a1 can accommodate the first valve seal 3b.
- the aperture of the first groove part 21 gradually increases from the second end 100 to the direction of the first end 110, the first sealing groove in the first bracket part 3a1 3a and the first valve sealing member 3b have the same contact surface characteristics as the first groove portion 21 after cooperating with the first valve sealing member 3b, so that a good cooperation effect with the first groove portion 21 can be achieved.
- FIG. 8 shows a surface 3 b 1 of the first valve seal 3 b for contacting the first groove portion 21 .
- the first spring 3 c is placed in the first spring groove 3 a 2 and configured to apply elastic force to the first valve body 3 a.
- the first valve body 3 a can move along the extension direction of the axis A0 , for example, the first guide portion 3 a 11 of the first valve body 3 a can slide in the groove 11 in the diverter 1 .
- the first valve body 3a is limited in contact with the diverter 1 through the first valve seal 3b provided on the first bracket part 3a1. Bit, and then play a sealing role.
- the second valve assembly 4 includes a second valve body 4 a, a second valve seal 4 b and a second spring 4 c.
- the second valve body 4a includes a second bracket part 4a1 and a second guide part 4a11, the second bracket part 4a1 has a second sealing groove 4a3 to accommodate the second valve seal 4b, and has a second spring groove 4a2 to place the second spring 4c.
- the liquid end 2 further includes a valve seat 33 and a gland 34, the valve seat 33 is located between the first valve body 3a and the second valve body 4a, and has a through hole 3301 through which fluid can flow (See FIG. 10 ); the second valve assembly 4 is located between the valve seat 33 and the gland 34 .
- the valve seat 33 is located between the first valve body 3a and the second valve body 4a, and the valve seat 33 is on the side close to the second valve body 4a. 4a contacts the mating ramp 33a.
- the second valve seal 4b when the second valve seal 4b is arranged behind the second sealing groove 4a3, when the second valve body 4a is in contact with the valve seat 33, the second valve seal 4b can achieve a good fit with the valve seat 33 on the slope 33a , so as to play a sealing role, thereby preventing the flow of fluid from the first side 33c of the valve seat 33 to the second side 33d.
- the second spring 4c in the second valve body 4a is placed in the second spring groove 4a2, and is configured to apply elastic force to the second valve body 4a.
- the gland 34 has a through hole 034 through which fluid can flow to discharge the liquid end.
- the through hole 034 can also be called a liquid outlet channel.
- the centerline of the through hole 034 coincides with the axis A0.
- the through hole 034 includes a first hole portion 34a and a second hole portion 34b, and the first hole portion 34a communicates with the second hole portion 34b.
- both the first hole portion 34a and the second hole portion 34b are cylindrical, and the inner diameter of the first hole portion 34a is larger than the inner diameter of the second hole portion 34b.
- the second valve assembly 4 is located between the valve seat 33 and the gland 34 , and the second guide portion 4a11 in the second valve assembly 4 can also be called a claw, and is compatible with the gland 34 .
- the first hole portion 34a has a clearance fit.
- the first hole portion 34a serves as a guide for the second valve body 4a.
- the structure of the second guide portion 4a11 may refer to the structure of the first guide portion 3a11 shown in FIG. 3 .
- the second valve body 4a can move along the extension direction of the axis A0, thereby changing the position of the second valve body 4a so that it is in a closed or open state.
- the second bracket part 4a1 also has a third spring groove 4a4, the first spring groove 3a2 and the third spring groove 4a4 face each other, the second spring groove 4a2 and the third spring groove 4a4 are respectively arranged in Both sides of the second bracket part 4a1.
- the first spring 3c is located between the first bracket part 3a1 and the second bracket part 4a1
- the second spring 4c is located between the second bracket part 4a1 of the second valve body 4a and the gland 34
- the first The valve seal 3b is located at the groove 11 of the diverter 1 so that the first valve body 3a can be opened or closed.
- the first spring 3c is located between the first spring slot 3a2 of the first bracket part 3a1 and the third spring slot 4a4 of the second bracket part 4a1 , which is beneficial to simplify the structure of the fluid end.
- the valve seat 33 has a through hole 3301 so that the first spring 3 c passes through the through hole 3301 .
- the first spring 3c can directly apply force to the first valve body 3a and the second valve body 4a at the same time.
- the second spring 4c can directly apply force to the second valve body 4a.
- the inner cavity 31 includes a pressurized area 41 , a common rail area 42 and a high pressure area 43 , and the pressurized area 41 , the common rail area 42 and the high pressure area 43 are arranged in sequence.
- the pressure zone 41 , the common rail zone 42 and the high pressure zone 43 are sequentially arranged along the extension direction of the axis A0.
- the pressurized area 41 is located on the side of the flow divider 1 away from the high pressure area 43;
- the common rail area 42 is located between the flow divider 1, the first valve body 3a, the valve seat 33, and the second valve body 4a ;
- the high pressure zone 43 is located between the valve seat 33 and the gland 34 .
- the first valve body 3a is configured to be opened so that the fluid flows from the liquid inlet channel 32 through the first channel 12 and the groove 11 of the flow divider 1 to enter the common rail area 42, and flows through the second channel 13 into the pressurized zone 41. That is, when the first valve body 3a moves to the right, the first guide part 3a11 will slide in the groove 11 in the direction away from the diverter 1, and the first valve body 3a is in an open state, so that the fluid enters the liquid inlet channel 32 , into the common rail area 42, such as the state shown in FIG. As shown in FIG. 5 , the fluid can enter the common rail area 42 and flow from the opening 20 to the opening 19 of the second channel 13 , thereby entering the pressurized area 41 .
- the second valve seal 4 b is located at the through hole 3301 of the valve seat 33 , and the second valve body 4 a is configured to open so that fluid flows from the pressurized area 41 through the flow divider 1 The second channel 13 and the common rail area 42, and enter the high pressure area 43 from the common rail area 42.
- the elastic coefficient of the second spring 4c is greater than that of the first spring 3c, so that in the liquid inlet condition, the first valve body 3a is in an open state and the second spring 4c is in an open state.
- the valve body 4a is in a closed state, so that the second spring 4c will not be compressed when the first spring 3c is compressed under the pressure of the low-pressure liquid inlet area.
- the second valve body 4a when the second valve body 4a is opened, the second guide portion 4a11 slides in the first hole portion 34a in the direction away from the diverter 1, the second spring 4c is further compressed, and the second valve body 4a and the second valve are sealed.
- the part 4b is separated from the inclined surface 33a on the valve seat 33; when the fluid flows from the pressurized area 41 through the second channel 13 of the flow divider 1 and flows to the common rail area 42 along the direction from the opening 19 to the opening 20, the fluid can further flow to the high pressure zone 43.
- the diameter of the through hole 3301 of the valve seat 33 is smaller than the outer diameter of the first bracket portion 3a1 of the first valve body 3a.
- the first guide part 3a11 slides in the groove 11 along the direction away from the diverter 1, so that after the first valve body 3a is opened, since the outer diameter of the first bracket part 3a1 is larger than the diameter of the through hole 3301 of the valve seat 33, thus
- the valve seat 33 can serve as a stopper for the first bracket part 3a1, and prevent the first valve body 3a from coming out of the through hole.
- 3301 spans from the first side 33c of the valve seat 33 to the second side 33d.
- the elastic constant of the second spring 4c is greater than the elastic constant of the first spring 3c, so that the fluid flows from the liquid inlet passage 32 through the first passage 12 and the groove 11 of the diverter 1 to enter In the common rail area 42, the first spring 3c is compressed, but the second spring 4c is not compressed, so that the second valve body 4a and the second valve seal 4b are in contact with the inclined surface 33a on the valve seat 33 during the liquid circulation process.
- the contact state can be maintained, that is, the second valve body 4 a is in the closed state, that is, the fluid flowing into the common rail area 42 from the liquid inlet channel 32 will not directly flow into the high pressure area 43 . Therefore, the elastic coefficient of the second spring 4c is greater than that of the first spring 3c, so that the fluid enters the high-pressure area after being pressurized in the pressurized area.
- the elastic constant of the second spring 4c is greater than that of the first spring 3c, which can be expressed as that the wire diameter of the second spring 4c is larger than the wire diameter of the first spring 3c. or the helical diameter of the second spring 4c is greater than the helical diameter of the first spring 3c; and the wire diameter of the second spring 4c is greater than the wire diameter of the first spring 3c, and the helical diameter of the second spring 4c is greater than that of the first spring 3c
- the diameter of the helix is not limited by the embodiments of the present disclosure.
- the liquid end shown in Fig. 4 and Fig. 5 is illustrated by taking the wire diameter of the second spring 4c larger than the wire diameter of the first spring 3c, and the helical diameter of the second spring 4c being larger than the helical diameter of the first spring 3c.
- the fluid end 2 further includes a first metal seal 36 , a second metal seal 37 , a third metal seal 38 , a first sealing ring 39 and a second sealing ring 40 .
- the first metal seal 36 is disposed on the first sealing limit structure 3601 of the diverter 1 , and is configured to form a tight sealing structure between the diverter 1 and the valve box 30 .
- the second metal seal 37 is arranged on the second sealing limit structure 3701 of the valve seat 33 , and is configured such that a tight sealing structure is formed between the flow divider 1 and the valve seat 33 .
- the third metal seal 38 is disposed on the third sealing limit structure 3801 of the gland 34 , and is configured so that a tight sealing structure is formed between the valve seat 33 and the gland 34 .
- the first sealing ring 39 is arranged on the fourth sealing limit structure 3901 of the valve seat 33 , and is configured to form a tight sealing structure between the valve seat 33 and the valve box 30 .
- the second sealing ring 40 is disposed on the fifth sealing limit structure 4001 of the gland 34 , and is configured such that a tight sealing structure is formed between the gland 34 and the valve box 30 .
- FIG. 3 shows the first metal seal 36 , the second metal seal 37 , the first seal ring 39 , the third metal seal 38 , and the second seal ring 40 .
- the first sealing ring 39 is arranged on the fourth sealing limit structure 3901 of the valve seat 33
- the second sealing ring 40 is arranged on the gland 34 or the valve box 30.
- the gland 34 can be screwed and fixed with the valve box 30 , so that other components inside the valve box 30 are subjected to extrusion force at the same time.
- the first sealing limiting structure 3601, the second sealing limiting structure 3701, and the third sealing limiting structure 3801 can be end face bosses, but are not limited to this.
- the fourth sealing limiting structure 3901 and the fifth sealing limiting structure 4001 may be grooves, but are not limited thereto.
- the fourth sealing and limiting structure 3901 is a groove arranged on the outer wall of the valve seat 33, as shown in Figure 3 and Figure 11, the fifth sealing and limiting structure 4001 is located at the bottom end of the thread of the gland The groove at or the groove at the end of the valve box 30 outside the gland.
- the first metal seal 36 when the gland 30 is screwed tightly, the first metal seal 36 , the second metal seal 37 , and the third metal seal 38 are deformed under the tightening pressure. Therefore, in the axial direction of the valve box 30, the first metal seal 36 can form a tight contact between the flow divider 1 and the valve box 30, thereby forming a tight sealing structure; the second metal seal 37 can make the flow divider 1 and the valve A tight contact is formed between the seats 33 to form a tight sealing structure; and the third metal seal 38 can make a tight contact between the valve seat 33 and the gland 34 to form a tight sealing structure.
- the first sealing ring 39 forms a tight sealing structure between the valve seat 33 and the valve box 30, which can prevent the liquid in the liquid inlet passage 32 (at the low-pressure liquid supply port) from leaking outward.
- the second sealing ring 40 forms a tight sealing structure between the gland 34 and the valve box 30, which can prevent the threaded structure on the gland 34 from being corroded by external rainwater and the like.
- the setting of each sealing component enhances the sealing performance between the internal structural parts of the valve box 30 , and at the same time enables the components inside the valve box 30 to be stably arranged without misalignment in the axial and radial directions of the valve box 30 .
- the material of the first metal seal 36, the second metal seal 37, and the third metal seal 38 is metal, for example, copper or a material whose hardness is lower than that of the adjacent parts can be selected.
- the adjacent parts of the first metal seal 36 are the valve box 30 and the diverter 1; the adjacent parts of the second metal seal 37 are the diverter 1 and the valve seat 33; the adjacent parts of the third metal seal 38 are the valve seat 33 and gland 34.
- the material of the first sealing ring 39 and the second sealing ring 40 may include rubber material, etc., which is not limited in embodiments of the present disclosure.
- the gland 34 has the following functions: 1) Facilitate the flow of high-pressure fluid from the high-pressure area 43 through the through hole 034 in the 34 to be discharged The liquid end 2; 2) is screwed and fixed with the valve box 30, so as to realize the installation and positioning of the components in the liquid end 2; 3) acts as the spring seat of the second spring 4c, which can withstand the second spring 4c to make its elastic force play a role; 4) serve as the guide seat of the second valve body 4a, so that the second guide part 4a11 of the second valve body 4a slides in the first hole part 34a.
- the gland 34 integrates multiple functions so that the structure of the fluid end 2 is compact, and the fluid end 2 can repair or replace various components inside the valve box 30 only by disassembling the gland 34 from a single end.
- the disassembly and assembly efficiency of the liquid end 2 provided by the embodiment of the present disclosure is high, and the maintenance operation can be greatly simplified.
- the equipment of the fluid end 2 needs to be modified, only the piston section included in the first inner chamber 31a needs to be adjusted, which improves the modularity of the design.
- valve box 30 may be a single-cylinder or multi-cylinder structure.
- the internal moving parts included in the valve box 30 in the liquid end 2 include a plunger 35 , a first valve assembly 3 and a second valve assembly 4 , and each part moves reciprocatingly.
- the fluid end provided by the embodiments of the present disclosure can be used with equipment such as a plunger pump and a linear motor.
- the liquid end is symmetrically distributed on both sides of the motor.
- a structure such as a clamp can also be provided, and then it can be connected with a plunger pump or a DC motor through the clamp, thereby controlling the fluid end 2 to enter the fluid. and discharge operations.
- the plunger 35 is non-interference fit with the first inner chamber 31a of the valve box 30, and the sealing assembly of the plunger 35 is separated from the fluid such as fracturing fluid, thereby facilitating the improvement of the seal of the plunger 35 lifespan.
- Liquid suction working condition as shown in Figure 5 and Figure 12, the plunger 35 moves toward the side away from the flow divider 1 (moves to the left) in the first inner cavity 31a, and the internal volume of the first inner cavity 31a gradually increases, A partial vacuum is formed, and the pressure in the pressurized area 41 and the common rail area 42 decreases at this time.
- the first valve body 3a moves away from the diverter 1 (moves to the right) along the axial direction of the groove 11, the first valve body 3a opens, and the first spring 3c is compressed , the first channel 12 communicates with the common rail area 42, the fluid can enter the groove 11 from the first channel 12, then enter the common rail area 42 through the opened first valve body 3a, and flow from the second channel 13 of the common rail area 42 Enter the pressurized zone 41.
- the second valve body 4 a is in a closed state, so that the fluid cannot enter the high pressure area 43 .
- the first bracket part 3a1 of the first valve body 3a contacts and cooperates with the first end surface 330 of the valve seat 33, which can prevent the first spring 3c from being damaged due to excessive compression.
- Liquid discharge working condition as shown in FIG. 13 , the plunger 35 moves toward the side close to the shunt 1 in the first inner chamber 31a (moves to the right), and the internal volume of the first inner chamber 31a decreases gradually.
- the pressure in nip 41 and common rail 42 increases.
- the first valve body 3a moves along the axial direction of the groove 11 toward the flow divider 1 (moves to the left), and the first valve body 3a closes .
- the second valve body 4a As the pressure in the common rail area 42 continues to increase, when the pressure of the liquid on the second valve body 4a is greater than the elastic force of the second spring 4c, the second spring 4c is compressed, so that the second guide portion 4a11 in the second valve body 4a Sliding in the first hole portion 34a in a direction away from the diverter 1, the second valve body 4a is opened.
- the high pressure area 43 communicates with the common rail area 42, and then the liquid in the first inner chamber 31a enters from the pressurized area 41 through the second channel 13 into the common rail area 42, and then enters through the through hole 3301 of the valve seat 33. to the high-pressure area 43, and finally through the second valve body 4a to be discharged from the gland 34.
- the first bracket part 4a1 of the second valve body 4a contacts and cooperates with the first end surface 340 of the gland 34, which can prevent the second spring 4c from being damaged due to excessive compression.
- the liquid end provided by the embodiments of the present disclosure adopts a straight-through structure, and there is no intersecting line inside the valve box, so that the stress concentration at the intersecting line can be solved.
- the resulting cracking of the valve box prolongs the service life of the valve box.
- the common rail area 42 can be used as a liquid inlet channel and a liquid discharge channel at the same time, thereby shortening the overall size of the structure, and the entire liquid end cavity can be processed by one clamping, which reduces the processing difficulty.
- the components in the liquid end can be taken out from one side for maintenance and replacement by disassembling the gland 34, which greatly reduces the maintenance cost and operation difficulty of the equipment.
- At least one embodiment of the present disclosure also provides a plunger pump 50 , as shown in FIG. 14 , including any fluid end 2 described above.
- the plunger pump 50 also includes a power end 300 .
- the structure of the power end 300 may refer to the power end 002 shown in FIG. 1 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lift Valve (AREA)
- Details Of Reciprocating Pumps (AREA)
Abstract
一种分流器(1)、液力端(2)以及柱塞泵(50)。该分流器包括本体(10),该本体为柱形,本体包括第一端(110)、第二端(100)、以及连接第一端和第二端的侧面(14);凹槽(11),沿从本体的第一端向本体的第二端的方向凹入,凹槽的开口(101)位于第一端;第一通道(12),与凹槽连通,第一通道从侧面延伸至凹槽的侧壁(15);第二通道(13),在本体的径向上位于凹槽和侧面之间,并从本体的第一端延伸至本体的第二端。该分流器从结构上取消了压裂泵中由配液区与加压区交叉产生的相贯线,可以减小液体对腔体的相贯线的冲击、腐蚀及磨损,进而提高缸体的使用寿命。
Description
相关申请的交叉引用
本专利申请要求于2022年2月9日递交的中国专利申请第202210122812.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
本公开至少一实施例涉及一种分流器、液力端以及柱塞泵。
在石油和天然气开采领域,压裂技术是通过利用高压的含砂液体,使油气层形成裂缝的一种方法。压裂技术可以改善油气在地下的流动环境,从而增加产量,被广泛应用于常规的油气开采。柱塞泵是一种利用柱塞在阀箱(缸体)中作往复运动来实现对液体增压的装置,具有结构紧凑、压力高、效率高的特点。
发明内容
本公开的实施例提供一种分流器、液力端以及柱塞泵。
本公开的实施例提供一种分流器,包括:本体,所述本体为柱形,所述本体包括第一端、第二端、以及连接所述第一端和所述第二端的侧面;凹槽,沿从所述本体的第一端向所述本体的第二端的方向凹入,所述凹槽的开口位于所述第一端;第一通道,与所述凹槽连通,所述第一通道从所述侧面延伸至所述凹槽的侧壁;以及第二通道,在所述本体的径向上位于所述凹槽和所述侧面之间,并从所述本体的第一端延伸至所述本体的第二端。
例如,在本公开的一些实施例中,所述凹槽的底壁位于所述第二端。
例如,在本公开的一些实施例中,所述底壁的厚度小于所述凹槽的深度。
例如,在本公开的一些实施例中,所述凹槽沿所述本体的轴向延伸,所述第一通道沿所述本体的径向延伸,所述第二通道沿所述本体的轴向延伸。
例如,在本公开的一些实施例中,所述第二通道设置为多个,所述凹槽 的孔径大于所述第一通道的孔径,并大于多个第二通道中的每个第二通道的孔径。
例如,在本公开的一些实施例中,多个所述第二通道在所述本体的周向上均匀分布。
例如,在本公开的一些实施例中,所述第一通道的孔径大于多个所述第二通道中的每个第二通道的孔径。
例如,在本公开的一些实施例中,所述凹槽包括靠近所述第一端的第一槽部和靠近所述第二端的第二槽部,所述第一槽部的孔径从所述第二端向所述第一端的方向上逐渐增大。
例如,在本公开的一些实施例中,所述第一通道具有分别位于所述侧面和所述凹槽的侧壁的两个开口,所述第二通道具有分别位于所述本体的第一端和第二端的两个开口。
本公开至少一实施例还提供一种液力端,包括:阀箱,所述阀箱包括内腔;以及上述任一分流器,所述分流器位于所述内腔中。
例如,在本公开的一些实施例中,所述阀箱还包括进液通道,所述进液通道与所述第一通道连通。
例如,在本公开的一些实施例中,液力端还包括:第一阀组件,位于所述内腔中;以及第二阀组件,位于所述内腔中;所述分流器、所述第一阀组件、所述第二阀组件沿所述内腔的轴线方向依次设置。
例如,在本公开的一些实施例中,所述第一阀组件包括第一阀体、第一阀密封件和第一弹簧;所述第二阀组件包括第二阀体、第二阀密封件和第二弹簧;阀座,位于所述第一阀体和所述第二阀体之间,并具有通孔;以及压盖,所述第二阀组件位于所述阀座和所述压盖之间;所述内腔包括加压区、共轨区和高压区,所述加压区、所述共轨区和所述高压区依次设置,所述共轨区位于所述分流器、所述第一阀体、所述阀座、和所述第二阀体之间,所述高压区位于所述阀座和所述压盖之间,所述加压区位于所述分流器的远离所述高压区的一侧。
例如,在本公开的一些实施例中,所述第一阀体包括第一支架部和第一导向部,所述第一支架部具有第一密封槽以容纳所述第一阀密封件,并具有第一弹簧槽以放置所述第一弹簧,所述第二阀体包括第二支架部和第二导向 部,所述第二支架部具有第二密封槽以容纳所述第二阀密封件,具有第二弹簧槽以放置所述第二弹簧,并具有第三弹簧槽以放置所述第一弹簧,所述第一弹簧槽和所述第三弹簧槽彼此面对,所述第二弹簧槽和所述第三弹簧槽分设在所述第二支架部的两侧,所述第一弹簧位于所述第一支架部和所述第二支架部之间,所述第二弹簧位于所述第二阀体的所述第二支架部和所述压盖之间,所述第一阀密封件位于所述分流器的所述凹槽处,所述第一阀体被配置为打开以使得流体从所述进液通道流经所述分流器的所述第一通道和所述凹槽以进入所述共轨区并流经所述第二通道进入所述加压区,所述第二阀密封件位于所述阀座的通孔处,所述第二阀体被配置为打开以使得流体从所述加压区流经所述分流器的所述第二通道以进入所述共轨区,并从所述共轨区进入所述高压区,所述第二弹簧的弹性系数大于所述第一弹簧的弹性系数。
例如,在本公开的一些实施例中,所述第二弹簧的线径大于所述第一弹簧的线径。
例如,在本公开的一些实施例中,所述第二弹簧的螺旋直径大于所述第一弹簧的螺旋直径。
例如,在本公开的一些实施例中,所述第二弹簧的线径大于所述第一弹簧的线径,并且所述第二弹簧的螺旋直径大于所述第一弹簧的螺旋直径。
例如,在本公开的一些实施例中,所述阀座的所述通孔的直径小于所述第一阀体的所述第一支架部的外径。
例如,在本公开的一些实施例中,所述液力端还包括第一金属密封、第二金属密封、第三金属密封、第一密封圈以及第二密封圈;所述第一金属密封设置于所述分流器的第一密封限位结构上,配置为使所述分流器与所述阀箱之间形成紧固密封结构,所述第二金属密封设置于所述阀座的第二密封限位结构上,配置为使所述分流器与所述阀座之间形成紧固密封结构,所述第三金属密封设置于所述压盖的第三密封限位结构上,配置为使所述阀座与所述压盖之间形成紧固密封结构;所述第一密封圈设置于所述阀座的第四密封限位结构上,配置为使所述阀座与所述阀箱之间形成紧固密封结构,所述第二密封圈设置于所述压盖或所述阀箱的第五密封限位结构上,配置为使所述压盖与所述阀箱之间形成紧固密封结构。
本公开的至少一实施例还提供一种柱塞泵,包括上述任一液力端。
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种柱塞泵的剖视图。
图1B为图1A所示的柱塞泵中的液力端的示意图。
图1C为图1B所示的液力端中的阀箱的示意图。
图2A为本公开的一实施例提供的一种分流器的立体图。
图2B为本公开的一实施例提供的一种分流器的立体截面图(截面为通过本体的轴线的竖直面)。
图2C为本公开的一实施例提供的一种分流器的右视图。
图2D为图2C中所示的分流器沿线A1-A2的截面示意图。
图3是本公开至少一实施例提供的一种液力端的结构示意图。
图4是本公开至少一实施例提供的一种液力端的剖面示意图。
图5是本公开至少一实施例提供的一种液力端的局部剖面示意图。
图6是本公开至少一实施例提供的一种液力端中的第一阀组件的剖面示意图。
图7是本公开至少一实施例提供的一种液力端中的第二阀组件的剖面示意图。
图8是本公开至少一实施例提供的一种液力端中的第一阀体的剖面示意图。
图9是本公开至少一实施例提供的一种液力端中的分流器的剖面示意图。
图10是本公开至少一实施例提供的一种液力端中的阀座的剖面示意图。
图11是本公开至少一实施例提供的一种液力端中的压盖的剖面示意图。
图12是本公开至少一实施例提供的一种液力端的吸液工况示意图。
图13是本公开至少一实施例提供的一种液力端的排液工况示意图。
图14是本公开至少一实施例提供的一种柱塞泵的示意性框图。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
例如,柱塞泵包括动力端和液力端,动力端负责将原动机的能量传递给液力端,动力端主要包括箱体、曲轴、连杆、十字头和拉杆;液力端则负责将来自动力端的机械能转化为液体的压力能。
例如,液力端是安装在柱塞泵前端的重要部件,通过柱塞的往复运动和阀体的控制将低压液体转化为高压液体,高压液体在管汇内集聚打入井下。例如,具有液力端的柱塞泵可应用于油气田压裂/固井设备,但不限于此。
图1A为一种柱塞泵的剖视图。图1B为图1A所示的柱塞泵中的液力端的示意图。图1C为图1B所示的液力端中的阀箱的示意图。如图1A所示,柱塞泵003包括动力端002和液力端001。如图1A和图1B所示,液力端001主要包括阀箱01、柱塞02、阀组件03、阀组件04、密封组件、压盖05和压帽06。图1A还示出了卡箍07、拉杆08、十字头09、连杆010、箱体011、以及曲轴012。如图1B所示,液力端001还包括阀座021、弹簧022、吸入压盖023、吸入压冒024、弹簧025、排液孔026、密封用盘根包027、以及盘根压冒028。图1C示出了阀箱01的十字相贯的结构。
通常,柱塞泵的工作原理如下:在原动机驱动下动力端002的曲轴012旋转,带动连杆010、十字头09水平往复运动,十字头09再通过拉杆08带 动柱塞02在阀箱01内进行水平往复运动。当柱塞02作回程运动时,阀箱01内部容积逐渐增大,形成局部真空,此时阀组件03打开,阀组件04关闭,介质进入阀箱01的内腔,柱塞02回程至极限位置时,阀箱01的内腔充满介质,吸液动作完成。当柱塞02作进程运动时,阀箱01内部容积逐渐减小,介质受挤压,压力增加,此时阀组件04打开,阀组件03关闭,在压力作用下介质进入排液孔025,柱塞02进程至极限位置时,阀箱01内部的介质容纳空间最小,排液动作结束。由于柱塞02不断地往复运动,吸液、排液过程交替进行,高压介质源源不断地输出。
在实际使用过程中,相贯线处失效也是压裂泵主要失效形式之一。如图1A至图1C所示,液力端的阀箱为十字相贯结构,如图1C所示,阀箱02的内腔按照压力分为低压区01a、交变区01b和高压区01c,然而相贯线正好处于交变区01b内,力学分析显示相贯线处应力集中明显,再加上交变载荷的作用,因此相贯线处容易产生疲劳裂纹,导致阀箱01开裂漏水,现场更换阀箱频繁,且更换成本较高,耗时费力。
此外,相贯线的特点为沿边缘处材料较薄,并且其耐腐蚀、耐冲刷性能差。同时,基于油田用压裂泵工作时的压力高、排量大,由于压裂液携砂且具有腐蚀性,对腔体的相贯线腐蚀尤为明显。例如,当柱塞腔体直径比出液口直径大时,携砂液体排出时由于管径缩小,在相贯线处流速将急剧增大,从而进一步加剧对相贯线处材质的磨损。
本公开的实施例提供一种分流器,该分流器包括本体、凹槽、第一通道以及第二通道;本体为柱形,本体包括第一端、第二端、以及连接第一端和第二端的侧面;凹槽沿从本体的第一端向本体的第二端的方向凹入,凹槽的开口位于第一端;第一通道与凹槽连通,第一通道从侧面延伸至凹槽的侧壁;第二通道在本体的径向上位于凹槽和侧面之间,并从本体的第一端延伸至本体的第二端。
本公开实施例提供的分流器,可放置在柱塞泵的阀箱内,以利于采用轴向配液,从结构上取消柱塞泵中由配液区与加压区交叉产生的相贯线,避免液体对阀箱腔体的相贯线的冲击、腐蚀及磨损,进而提高阀箱的使用寿命。例如,阀箱也可称作缸体。
下面通过几个具体的实施例对本公开实施例提供的分流器、液力端以及 柱塞泵进行说明。
图2A为本公开的一实施例提供的一种分流器的立体图。图2B为本公开的一实施例提供的一种分流器的立体截面图(截面为通过本体的轴线的竖直面)。
如图2A所示,本公开的实施例提供一种分流器1,该分流器1包括本体10、凹槽11、第一通道12以及第二通道13。如图2A所示,本体10为柱形,本体10包括第一端110、第二端100、以及连接第一端110和第二端100的侧面14。例如,本体10为圆柱形,当然,也可根据需要采用其他适合的形状。本公开的实施例以本体10为圆柱形为例进行说明。
如图2A和图2B所示,分流器1中的凹槽11沿从本体10的第一端110向本体10的第二端100的方向凹入,凹槽11的开口101位于第一端110,由此,凹槽11在分流器1的轴向上不贯通分流器1。如图2B和图2D所示,第一通道12与凹槽11连通,第一通道12从分流器1的侧面14延伸至凹槽11的侧壁15。第二通道13在分流器1的本体10的径向上,位于凹槽11和侧面14之间,并从本体10的第一端110延伸至本体10的第二端100。如图2B所示,第二通道13在分流器1的轴向上贯通分流器1,为贯通孔。如图2A和图2B所示,第二通道13在分流器1的本体10的径向上,位于凹槽11的侧壁15和分流器1的侧面14之间。
如图2B所示,分流器1的凹槽11的底壁16位于第二端100,并且底壁16的厚度T1小于凹槽11的深度D1,从而使得凹槽具有较大的容纳空间,以满足较大的液体流量的流通。
如图2B所示,为了获得较大尺寸的凹槽11,凹槽11的深度D1大于或等于底壁16的厚度T1的四倍。
如图2B所示,为了使得凹槽11具有较大的强度,凹槽11的深度D1小于或等于底壁16的厚度T1的十倍。
在一些实施例中,为了兼顾凹槽11的尺寸和分流器1的强度凹槽11的深度D1大于或等于底壁16的厚度T1的四倍,并且小于或等于底壁16的厚度T1的十倍。
当然,凹槽11的深度D1和底壁16的厚度T1的尺寸关系不限于以上描述,可根据需要设置。
例如,如图2B所示,凹槽11的深度D1是指凹槽11在分流器1的轴向上的尺寸,底壁16的厚度D1是指底壁16在分流器1的轴向上的尺寸。例如,分流器1的轴向可指从第二端100指向第一端110的方向,但不限于此。
如图2A和图2B所示,分流器1的凹槽11沿本体10的轴向延伸,第一通道12沿本体10的径向延伸,第二通道13沿本体10的轴向延伸。由此可以满足流体由径向的第一通道12流通至凹槽11,进而通过凹槽11的开口从分流器1的第一端110沿轴向流出,并通过第二通道13从分流器1的第一端110流通至第二端100。
图2C为本公开的一实施例提供的一种分流器的右视图。图2D为图2C中所示的分流器沿线A1-A2的截面示意图。
如图2C所示,分流器1可以设置多个第二通道13,并且多个第二通道13可以在本体10的周向上均匀分布,例如图2C中的分流器1中设置有4个均匀分布的第二通道13,从而可以满足较大流量的流通。例如,第二通道13的数量和位置可以根据实际应用需求设置,本公开的实施例对此不作限制。
如图2D所示,第一通道12具有开口17和开口18,开口17位于分流器1的侧面14,开口18位于凹槽11的侧壁15,即,第一通道12具有分别位于本体10的侧面14和凹槽11的侧壁15的两个开口(开口17和开口18),由此,第一通道12可实现流体在开口17和开口18之间流通。如图2D所示,第二通道13也具有两个开口,分别为开口19和开口20,开口19位于本体10的第一端110,开口20位于本体10的第二端100,即,第二通道13具有分别位于本体10的第一端110和第二端100的两个开口(开口19和开口20),从而可以实现流体在第二通道13的开口19和开口20之间流通。
例如,如图2A至图2D所示,分流器1的凹槽11的孔径可以大于第一通道12的孔径,并大于多个第二通道13中的每个第二通道13的孔径。凹槽11的孔径大,可有利于流体进入和排出分流器1,并且可在流体流入的过程中提供一定的缓冲空间,起到结构保护的作用。同时,当凹槽11的孔径较大时,还可以避免流体在流通过程中发生堵塞现象。
如图2C和图2D所示,第一通道12的孔径大于多个第二通道13中的每个第二通道13的孔径。例如,多个第二通道13中的每个第二通道的孔径均 相同,但不限于此。第一通道12的孔径大,可以有利于流体进入分流器1,避免堵塞。多个第二通道13的孔径均相同,可有利于流体从第二通道13排出时的流量平衡,并有利于器件的加工。
例如,如图2A和图2B所示,凹槽11的孔径可指凹槽11的在垂直于其延伸方向(深度方向)的平面内的最大尺寸,第一通道12的孔径可指第一通道12的在垂直于其延伸方向的平面内的最大尺寸,第二通道13的孔径可指第二通道13的在垂直于其延伸方向的平面内的最大尺寸。在凹槽11、第一通道12和第二通道13均为柱形的情况下,凹槽11的孔径、第一通道12的孔径、第二通道13的孔径均可指直径。图2A示出了凹槽11的孔径Aa、第一通道12的孔径Ab、以及第二通道13的孔径Ac。
如图2D所示,分流器1的凹槽11包括第一槽部21和第二槽部22,第一槽部21靠近第一端110,第二槽部22靠近第二端100。如图2D所示,第一槽部21比第二槽部22更靠近第一端110。图2D以凹槽11包括两个槽部为例进行说明。
如图2D所示,第一槽部21的孔径从第二端100向第一端110的方向上逐渐增大,以利于分流器1与其他部件配合。例如,分流器1中的第一槽部21可被配置为实现与其他部件的配合,例如可实现与活动阀体及其密封件的配合,从而起到良好的密封作用。
例如,在本公开的实施例中,如图2D所示,凹槽11的中心轴与圆柱形本体10沿轴向的中心轴重合。第一通道12与第二通道13可通过凹槽11和位于第一端110的空间(共轨区42)连通,从而实现流体在分流器1中良好的流通。
如图2A至图2C所示,第一通道12的个数大于第二通道13的个数,第一通道12的孔径大于每个第二通道13的孔径,以利于流经第一通道12的流体与流经多个第二通道13的流体的流量的平衡。
例如,分流器1可采用合金钢材料制作,但不限于此。本公开的实施例提供的分流器1可根据其结构采用常用的加工方法制作。
例如,在本公开的实施例提供的分流器1中,如图2D所示,分流器1的工作方式可以包括:流体沿分流器1的本体10的径向,从第一通道12的开口17进入凹槽11,在凹槽11内转向沿本体10的轴向从开口101排出凹 槽11;进而再由多个第二通道13的开口19流通至开口20,以从分流器1的第一端110流通至第二端100。例如,如图2D所示,流体也可以沿第二通道13的开口20至开口19的方向流通。
例如,流体为可流动的物质。例如,流体包括压裂液,压裂液包括携砂液。携砂液包括水、砂和添加剂。例如,砂包括石英砂。例如,流体还可包括水泥砂浆,但不限于此。通常,固井时采用水泥砂浆。本公开的实施例对流体的类型和粘稠程度不做限定。本公开的实施例提供的分流器可应用于压裂工艺和固井工艺中,但不限于此,还可以应用在其他需要进行液体分流的领域中。
本公开的至少一实施例还提供一种液力端,图3是本公开至少一实施例提供的一种液力端的结构示意图。图4是本公开至少一实施例提供的一种液力端的剖面示意图。
如图4所示,液力端2包括阀箱30,阀箱30包括内腔31和分流器1,分流器1位于内腔31中。例如,如图4所示,内腔31沿阀箱30的轴向对称分布,并且内腔31的轴线与阀箱30的轴线重合,从而使得阀箱30整体上为对称结构,有利于器件的加工和操作。图4示出了轴线A0。轴线A0可看作内腔31的轴线,可看作阀箱30的轴线,也可看作分流器1的轴线。一个部件的轴线是指该部件的对称轴所在的直线。轴线方向可为轴线的延伸方向。
例如,如图4所示,液力端2还包括柱塞35,内腔31包括第一内腔31a与第二内腔31b。例如,第一内腔31a与第二内腔31b均为圆柱形,并且第一内腔31a的孔径小于第二内腔31b的孔径。柱塞35设置于第一内腔31a中,与第一内腔31a间隙配合,在外力作用下可以在第一内腔31a中沿轴向移动,进而改变内腔31内的压力,控制流体的流通状态。
例如,如图4所示,阀箱30还包括进液通道32,并且进液通道32与第一通道12连通。如图4所示,分流器1设置于第二内腔32b中,进液通道32从阀箱30的径向延伸,并且与分流器1中的第一通道12连通。例如,进液通道32与第一通道12的内径相同,并且进液通道32与第一通道12的开口17对齐设置,以利于流体从进液通道32顺利进入第一通道12,并且不发生堵塞。
如图4所示,液力端2还包括第一阀组件3和第二阀组件4,并且第一 阀组件3和第二阀组件4均位于第二内腔31b中。在第二内腔31b中,分流器1、第一阀组件3以及第二阀组件4沿内腔31(第二内腔31b)的轴线方向依次设置。例如,第一阀组件3和第二阀组件4分别包括圆环特征的组件,并且各圆环组件的中心线分别设置在第二内腔31b的轴线上,从而使得器件整体结构具有对称性,利于加工。
例如,轴线A0还可以为阀座33、第一阀组件3、第二阀组件4、压盖34或柱塞35的轴线。
例如,如图4所示,第一内腔31a的轴线方向和第二内腔31b的轴线方向重合,轴线A0可看作第一内腔31a的轴线,也可看作第二内腔31b的轴线。
图5是本公开至少一实施例提供的一种液力端的剖面示意图。图6是本公开至少一实施例提供的一种液力端中的第一阀组件的剖面示意图。图7是本公开至少一实施例提供的一种液力端中的第二阀组件的剖面示意图。图8是本公开至少一实施例提供的一种液力端中的第一阀体的剖面示意图。
如图5、图6和图8所示,第一阀组件3包括第一阀体3a、第一阀密封件3b和第一弹簧3c。如图8所示,第一阀体3a包括第一支架部3a1和第一导向部3a11,第一支架部3a1具有第一密封槽3a3以容纳第一阀密封件3b,并具有第一弹簧槽3a2以放置第一弹簧3c。如图3所示,第一阀体3a中的第一导向部3a11也可称作卡爪,且与分流器1中的凹槽11间隙配合,配置为可使第一阀体3a在第一弹簧3c的作用下,在凹槽11内沿其轴线方向移动,进而改变第一阀体3a的位置以使得第一阀体3a处于关闭或开启状态。
例如,如图3、图4至图6所示,第一阀体3a具有多个第一导向部3a11,相邻第一导向部3a11之间具有间隔,流体可穿过第一导向部3a11之间的间隔在轴向上进行流通。例如,如图3所示,多个第一导向部3a11在周向上均匀分布。例如,第一阀体3a沿凹槽11的轴向朝远离分流器1的方向移动时,可由图5中的关闭状态切换至图6中的开启状态。第一导向部3a11起导向作用,其设置有利于第一阀体3a沿固定的往返方向在凹槽11内移动,从而控制流体在各组件内正常而稳定地流通。
例如,第二阀体4a具有多个第二导向部4a11,相邻第二导向部4a11之间具有间隔,流体可穿过第二导向部4a11之间的间隔在轴向上进行流通。例 如,多个第二导向部4a11在周向上均匀分布。
例如,如图8所示,第一支架部3a1中的第一密封槽3a3可容纳第一阀密封件3b。如图2D、图5、图6和图8所示,第一槽部21的孔径从第二端100向第一端110的方向上逐渐增大,第一支架部3a1中的第一密封槽3a与第一阀密封件3b配合设置后,具有与第一槽部21相同的接触面特征,从而可实现与第一槽部21良好的配合效果。图8示出了第一阀密封件3b的用于与第一槽部21接触的表面3b1。如图3和图8所示,第一弹簧3c放置在第一弹簧槽3a2内,配置为可向第一阀体3a施加弹性作用力。例如,第一阀体3a可在沿轴线A0的延伸方向移动,例如,第一阀体3a的第一导向部3a11可在分流器1中的凹槽11内滑动。例如,在第一弹簧3c的作用下,当第一阀体3a处于关闭状态时,第一阀体3a通过设置在第一支架部3a1上的第一阀密封件3b与分流器1进行接触限位,进而起到密封作用。
如图5和图7所示,第二阀组件4包括第二阀体4a、第二阀密封件4b和第二弹簧4c。如图7所示,第二阀体4a包括第二支架部4a1和第二导向部4a11,第二支架部4a1具有第二密封槽4a3以容纳第二阀密封件4b,并具有第二弹簧槽4a2以放置第二弹簧4c。
如图5和图7所示,液力端2还包括阀座33和压盖34,阀座33位于第一阀体3a和第二阀体4a之间,并且具有可流通流体的通孔3301(参见图10);第二阀组件4位于阀座33和压盖34之间。
如图5、图7以及图10所示,阀座33位于第一阀体3a和第二阀体4a之间,阀座33在靠近第二阀体4a的一侧,具有与第二阀体4a接触配合的斜面33a。例如,当第二阀密封件4b设置于第二密封槽4a3后,当第二阀体4a与阀座33接触时,第二阀密封件4b可实现与阀座33在斜面33a上的良好配合,以起到密封作用,从而阻止流体从阀座33的第一侧33c流通至第二侧33d。
如图4和图7所示,第二阀体4a中的第二弹簧4c放置于第二弹簧槽4a2中,配置为可向第二阀体4a施加弹性作用力。压盖34具有通孔034,流体可从流经通孔034以排出液力端,通孔034也可称作出液通道。如图4所示,通孔034的中心线与轴线A0重合。通孔034包括第一孔部34a和第二孔部34b,并且第一孔部34a与第二孔部34b连通。例如,第一孔部34a与第二孔 部34b均为圆柱形,第一孔部34a的内径大于第二孔部34b的内径。
例如,如图7所示,第二阀组件4位于阀座33和压盖34之间,第二阀组件4中的第二导向部4a11也可称作卡爪,且与压盖34中的第一孔部34a间隙配合。第一孔部34a对第二阀体4a起导向作用。第二导向部4a11的结构可参照图3所示的第一导向部3a11的结构。如图7所示,第二阀体4a可沿轴线A0的延伸方向移动,进而改变第二阀体4a的位置以使其处于关闭或开启状态。
如图5和图7所示,第二支架部4a1还具有第三弹簧槽4a4,第一弹簧槽3a2和第三弹簧槽4a4彼此面对,第二弹簧槽4a2和第三弹簧槽4a4分设在第二支架部4a1的两侧。
如图5所示,第一弹簧3c位于第一支架部3a1和第二支架部4a1之间,第二弹簧4c位于第二阀体4a的第二支架部4a1和压盖34之间,第一阀密封件3b位于分流器1的凹槽11处以使得第一阀体3a可被打开或关闭。如图5所示,第一弹簧3c位于第一支架部3a1的第一弹簧槽3a2和第二支架部4a1的第三弹簧槽4a4之间,利于简化液力端的结构。
如图10所示,阀座33具有通孔3301,以使得第一弹簧3c从通孔3301中穿过。第一弹簧3c可同时对第一阀体3a和第二阀体4a直接施加作用力。第二弹簧4c可对第二阀体4a直接施加作用力。
如图5所示,内腔31包括加压区41、共轨区42和高压区43,并且加压区41、共轨区42和高压区43依次设置。如图5所示,加压区41、共轨区42和高压区43沿轴线A0的延伸方向依次设置。如图5所示,加压区41位于分流器1的远离高压区43的一侧;共轨区42位于分流器1、第一阀体3a、阀座33、和第二阀体4a之间;高压区43位于阀座33和压盖34之间。
如图5所示,第一阀体3a被配置为打开以使得流体从进液通道32流经分流器1的第一通道12和凹槽11以进入共轨区42,并流经第二通道13进入加压区41。即当第一阀体3a向右移动时,第一导向部3a11将沿远离分流器1的方向在凹槽11内滑动,第一阀体3a处于开启状态,进而使得流体进入进液通道32后,进入共轨区42,例如图6中所示的状态,流体流经共轨区42,再流经第二通道13进入加压区41。如图5所示,流体可以进入到共轨区42,从第二通道13的开口20至开口19的方向流通,从而进入加压区 41中。
如图5、图7和图10所示,第二阀密封件4b位于阀座33的通孔3301处,第二阀体4a被配置为打开以使得流体从加压区41流经分流器1的第二通道13以及共轨区42,并从共轨区42进入高压区43。
例如,如图4、图5和图10所示,第二弹簧4c的弹性系数大于第一弹簧3c的弹性系数,以使得在进液工况下,第一阀体3a处于打开状态而第二阀体4a处于关闭状态,使得在低压进液区压力作用下第一弹簧3c被压缩时第二弹簧4c不会被压缩。
例如,当第二阀体4a打开时,第二导向部4a11沿远离分流器1的方向在第一孔部34a内滑动,第二弹簧4c被进一步压缩,第二阀体4a及第二阀密封件4b与阀座33上的斜面33a分离;当流体从加压区41流经分流器1的第二通道13以及沿开口19至开口20的方向流通至共轨区42后,流体可以进一步流通至高压区43内。
如图6和图10所示,在本公开的一些实施例中,阀座33的通孔3301的直径小于第一阀体3a的第一支架部3a1的外径。第一导向部3a11沿远离分流器1的方向在凹槽11内滑动,进而使得第一阀体3a打开后,由于第一支架部3a1的外径大于阀座33的通孔3301的直径,从而第一导向部3a11在凹槽11内沿远离分流器1的方向滑动至极限位置时,阀座33可作为第一支架部3a1的限位部件,并且使得第一阀体3a不会从通孔3301由阀座33的第一侧33c跨越至第二侧33d。
例如,如图5和图10所示,第二弹簧4c的弹性系数大于第一弹簧3c的弹性系数,使得流体从进液通道32流经分流器1的第一通道12和凹槽11以进入共轨区42时,第一弹簧3c被压缩,而第二弹簧4c不会被压缩,从而使得该液体流通过程中第二阀体4a及第二阀密封件4b与阀座33上的斜面33a能够保持接触状态,即,第二阀体4a处于关闭状态,也即使得从进液通道32流入共轨区42的流体不会直接流入到高压区43内。因此,第二弹簧4c的弹性系数大于第一弹簧3c的弹性系数,使得流体经加压区加压后进入高压区。
例如,如图4所示,在本公开的一些实施例中,第二弹簧4c的弹性系数大于第一弹簧3c的弹性系数,可以表现为第二弹簧4c的线径大于第一弹簧 3c的线径;或第二弹簧4c的螺旋直径大于第一弹簧3c的螺旋直径;以及第二弹簧4c的线径大于第一弹簧3c的线径,并且第二弹簧4c的螺旋直径大于第一弹簧3c的螺旋直径,本公开的实施例对此不作限制。图4和图5所示的液力端以第二弹簧4c的线径大于第一弹簧3c的线径,并且第二弹簧4c的螺旋直径大于第一弹簧3c的螺旋直径为例进行说明。
如图3所示,液力端2还包括第一金属密封36、第二金属密封37、第三金属密封38、第一密封圈39以及第二密封圈40。
如图3和图9所示,第一金属密封36设置于分流器1的第一密封限位结构3601上,配置为使得分流器1与阀箱30之间形成紧固密封结构。
如图3和图10所示,第二金属密封37设置于阀座33的第二密封限位结构3701上,配置为使得分流器1与阀座33之间形成紧固密封结构。
如图3、图4和图11所示,第三金属密封38设置于压盖34的第三密封限位结构3801上,配置为使得阀座33与压盖34之间形成紧固密封结构。
如图3和图10所示,第一密封圈39设置于阀座33的第四密封限位结构3901上,配置为使得阀座33与阀箱30之间形成紧固密封结构。
如图3、图4和图11所示,第二密封圈40设置于压盖34的第五密封限位结构4001上,配置为使得压盖34与阀箱30之间形成紧固密封结构。
如图3所示,在液力端2的阀箱30内,分流器1、第一阀组件3、阀座33、第二阀组件4、以及压盖34依次沿阀箱30的轴线A0设置。图3还示出了第一金属密封36、第二金属密封37、第一密封圈39、第三金属密封38、以及第二密封圈40。如图3、图4、图10和图11所示,第一密封圈39设置于阀座33的第四密封限位结构3901上,第二密封圈40设置于压盖34或阀箱30的第五密封限位结构4001上。例如,压盖34可与阀箱30进行螺纹旋紧固定,从而使得阀箱30内部的其他部件同时受到挤压力。
例如,如图3、图4、图9至图11所示,第一密封限位结构3601、第二密封限位结构3701、以及第三密封限位结构3801可为端面凸台,但不限于此。
例如,如图3、图4、图10至图11所示,第四密封限位结构3901、第五密封限位结构4001可为凹槽,但不限于此。如图10所示,第四密封限位结构3901为设置在阀座33的外壁上的凹槽,如图3和图11所示,第五密封 限位结构4001为位于压盖的螺纹底端处的凹槽或位于压盖外的阀箱30的端部的凹槽。
例如,如图4所示,当压盖30螺纹旋紧时,第一金属密封36、第二金属密封37、第三金属密封38在旋紧压力作用下发生变形。因此在阀箱30的轴向上,第一金属密封36可使得分流器1与阀箱30之间形成致密的接触,从而形成紧固密封结构;第二金属密封37可使得分流器1与阀座33之间形成致密的接触,从而形成紧固密封结构;以及第三金属密封38可使得阀座33与压盖34之间形成致密的接触,从而形成紧固密封结构。另外,在阀箱30的径向上,第一密封圈39使得阀座33与阀箱30之间形成紧固密封结构,可避免进液通道32内(低压供液口处)的液体向外泄漏。第二密封圈40使得压盖34与阀箱30之间形成紧固密封结构,可避免压盖34上的螺纹结构被外界雨水等侵蚀。各密封部件的设置在增强阀箱30内部结构件之间的密封性的同时,使得阀箱30内部的部件能够稳定设置,在阀箱30的轴向与径向上不发生错位等现象。
例如,如图4所示,第一金属密封36、第二金属密封37、第三金属密封38的材质为金属,例如,可选择铜或硬度低于相邻部件的材料,本公开的实施例对此不作限制。例如,第一金属密封36的相邻部件为阀箱30和分流器1;第二金属密封37的相邻部件为分流器1和阀座33;第三金属密封38的相邻部件为阀座33和压盖34。
例如,如图4所示,第一密封圈39和第二密封圈40的材质可以包括橡胶材质等,本公开的实施例对此不作限制。
由此,在本公开的实施例中,如图4、图7和图11所示,压盖34具有以下作用:1)有利于高压流体从高压区43流经34中的通孔034以排出液力端2;2)通过与阀箱30螺纹旋紧固定,从而实现对液力端2中的各部件的安装和定位;3)充当第二弹簧4c的弹簧座,可以顶住第二弹簧4c以使其弹力发挥作用;4)充当第二阀体4a的导向座,使第二阀体4a的第二导向部4a11在第一孔部34a内滑动。
该压盖34集多功能于一体,使得液力端2结构紧凑,并且可以使得液力端2仅通过从单端拆卸压盖34的方式,对阀箱30内部的各个部件进行维修或替换,相比于将各个器件由两个方向安装的液力端,例如图1B中所示的 液力端结构,本公开实施例提供的液力端2拆装效率高,并且可大幅简化维修操作。同时,当液力端2的设备需要改型换代时,仅需对第一内腔31a所包括的活塞段进行调整,提高了设计的模块化。
在本公开的实施例提供的液力端2中,阀箱30可以为单缸或多缸结构。
例如,如图3所示,液力端2中的阀箱30包括的内部运动部件包括柱塞35、第一阀组件3和第二阀组件4,且各部件均为往复运动。
本公开的实施例提供的液力端,可搭载柱塞泵、直线电机等设备使用,搭载直线电机使用时,液力端在电机两侧对称分布。例如,如图3所示,在柱塞35远离分流器1的一端,还可以设置卡箍等结构,进而可通过卡箍与柱塞泵或直流电机相连,从而控制液力端2进行流体进入和排出的操作。
例如,如图4所示,柱塞35与阀箱30的第一内腔31a非过盈配合,柱塞35的密封组件与流体例如压裂液分开,从而有利于提高柱塞35的密封件的寿命。
本公开的实施例提供的液力端的工作原理如下。
吸液工况:如图5和图12所示,柱塞35在第一内腔31a朝远离分流器1的一侧移动(向左移动),第一内腔31a的内部容积逐渐增大,形成局部真空,此时加压区41和共轨区42压力降低。在第一通道12内的压力作用下,第一阀体3a沿凹槽11的轴向朝远离分流器1的方向移动(向右移动),第一阀体3a打开,第一弹簧3c被压缩,第一通道12与共轨区42连通,流体可从第一通道12进入凹槽11,再通过打开的第一阀体3a进入到共轨区42,并从共轨区42的第二通道13进入加压区41。
在进液的过程中,第二阀体4a处于关闭状态,进而使得流体无法进入到高压区43。同时,当第一阀体3a移动到最大行程时,第一阀体3a的第一支架部3a1与阀座33的第一端面330接触配合,可以避免第一弹簧3c被过度压缩而损坏。
排液工况:如图13所示,柱塞35在第一内腔31a朝接近分流器1的一侧移动(向右移动),第一内腔31a的内部容积逐渐减小,此时加压区41和共轨区42压力增大。当共轨区42的压力大于第一通道12的区域的压力时,第一阀体3a沿凹槽11的轴向朝接近分流器1的方向移动(向左移动),第一阀体3a关闭。
随着共轨区42的压力继续增加,第二阀体4a所受液体的压力大于第二弹簧4c的弹力时,第二弹簧4c被压缩,使第二阀体4a中的第二导向部4a11沿远离分流器1的方向在第一孔部34a内滑动,第二阀体4a被打开。此时,高压区43与共轨区42连通,进而第一内腔31a中的液体从加压区41穿过第二通道13进入到共轨区42,进而穿过阀座33的通孔3301进入到高压区43,最后穿过第二阀体4a从压盖34中排出。第二阀体4a移动到最大行程时,第二阀体4a的第一支架部4a1与压盖34的第一端面340接触配合,可以避免第二弹簧4c被过度压缩而损坏。
当柱塞35在第一内腔31a朝接近分流器1的一侧移动到最大行程,并且即将向相反方向移动时,加压区41、共轨区42的压力降低,第二阀体4a在第二弹簧4c和高压区43内的液体压力的双重作用下朝接近分流器1的方向移动(向左移动),第二阀体4a关闭,共轨区42与高压区43隔断。
与十字相贯结构的液力端中的阀箱相比,本公开的实施例提供的液力端采用直通式结构,阀箱内部不具有相贯线,从而可解决因相贯线处应力集中导致的阀箱开裂问题,延长阀箱使用寿命。此外,共轨区42可同时作为进液通道和排液通道,从而缩短了结构的整体尺寸,通过一次装夹即可加工整个液力端腔体,降低了加工难度。同时,液力端中的部件均可通过拆卸压盖34,而从一侧取出进行维修更换,大大减低了设备的维修成本和操作难度。
本公开的至少一实施例还提供一种柱塞泵50,如图14所示,包括上述任一液力端2。柱塞泵50还包括动力端300。动力端300的结构可参照图1所示的动力端002。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (20)
- 一种分流器,包括:本体,所述本体为柱形,所述本体包括第一端、第二端、以及连接所述第一端和所述第二端的侧面;凹槽,沿从所述本体的第一端向所述本体的第二端的方向凹入,所述凹槽的开口位于所述第一端;第一通道,与所述凹槽连通,所述第一通道从所述侧面延伸至所述凹槽的侧壁;以及第二通道,在所述本体的径向上位于所述凹槽和所述侧面之间,并从所述本体的第一端延伸至所述本体的第二端。
- 根据权利要求1所述的分流器,其中,所述凹槽的底壁位于所述第二端。
- 根据权利要求2所述的分流器,其中,所述底壁的厚度小于所述凹槽的深度。
- 根据权利要求1-3任一项所述的分流器,其中,所述凹槽沿所述本体的轴向延伸,所述第一通道沿所述本体的径向延伸,所述第二通道沿所述本体的轴向延伸。
- 根据权利要求1-4任一项所述的分流器,其中,所述第二通道设置为多个,所述凹槽的孔径大于所述第一通道的孔径,并大于多个第二通道中的每个第二通道的孔径。
- 根据权利要求5所述的分流器,其中,多个所述第二通道在所述本体的周向上均匀分布。
- 根据权利要求5或6所述的分流器,其中,所述第一通道的孔径大于多个所述第二通道中的每个第二通道的孔径。
- 根据权利要求1-7任一项所述的分流器,其中,所述凹槽包括靠近所述第一端的第一槽部和靠近所述第二端的第二槽部,所述第一槽部的孔径从所述第二端向所述第一端的方向上逐渐增大。
- 根据权利要求1-8任一项所述的分流器,其中,所述第一通道具有分别位于所述侧面和所述凹槽的侧壁的两个开口,所述第二通道具有分别位于所述本体的第一端和第二端的两个开口。
- 一种液力端,包括:阀箱,所述阀箱包括内腔;根据权利要求1-9任一项所述的分流器,所述分流器位于所述内腔中。
- 根据权利要求10所述的液力端,其中,所述阀箱还包括进液通道,所述进液通道与所述第一通道连通。
- 根据权利要求10或11所述的液力端,还包括:第一阀组件,位于所述内腔中;以及第二阀组件,位于所述内腔中,其中,所述分流器、所述第一阀组件、所述第二阀组件沿所述内腔的轴线方向依次设置。
- 根据权利要求12所述的液力端,其中,所述第一阀组件包括第一阀体、第一阀密封件和第一弹簧;所述第二阀组件包括第二阀体、第二阀密封件和第二弹簧;阀座,位于所述第一阀体和所述第二阀体之间,并具有通孔;以及压盖,所述第二阀组件位于所述阀座和所述压盖之间,其中,所述内腔包括加压区、共轨区和高压区,所述加压区、所述共轨区和所述高压区依次设置,所述共轨区位于所述分流器、所述第一阀体、所述阀座、和所述第二阀体之间,所述高压区位于所述阀座和所述压盖之间,所述加压区位于所述分流器的远离所述高压区的一侧。
- 根据权利要求13所述的液力端,其中,所述第一阀体包括第一支架部和第一导向部,所述第一支架部具有第一密封槽以容纳所述第一阀密封件,并具有第一弹簧槽以放置所述第一弹簧,所述第二阀体包括第二支架部和第二导向部,所述第二支架部具有第二密封槽以容纳所述第二阀密封件,具有第二弹簧槽以放置所述第二弹簧,并具有第三弹簧槽以放置所述第一弹簧,所述第一弹簧槽和所述第三弹簧槽彼此面对,所述第二弹簧槽和所述第三弹簧槽分设在所述第二支架部的两侧,所述第一弹簧位于所述第一支架部和所述第二支架部之间,所述第二弹簧位于所述第二阀体的所述第二支架部和所述压盖之间,所述第一阀密封件位于所述分流器的所述凹槽处,所述第一阀体被配置为打开以使得流体从所述进液通道流经所述分流器的所述第一通道和所述凹 槽以进入所述共轨区并流经所述第二通道进入所述加压区,所述第二阀密封件位于所述阀座的通孔处,所述第二阀体被配置为打开以使得流体从所述加压区流经所述分流器的所述第二通道以进入所述共轨区,并从所述共轨区进入所述高压区,所述第二弹簧的弹性系数大于所述第一弹簧的弹性系数。
- 根据权利要求14所述的液力端,其中,所述第二弹簧的线径大于所述第一弹簧的线径。
- 根据权利要求14或15所述的液力端,其中,所述第二弹簧的螺旋直径大于所述第一弹簧的螺旋直径。
- 根据权利要求14-16任一项所述的液力端,其中,所述第二弹簧的线径大于所述第一弹簧的线径,并且所述第二弹簧的螺旋直径大于所述第一弹簧的螺旋直径。
- 根据权利要求13-17任一项所述的液力端,其中,所述阀座的所述通孔的直径小于所述第一阀体的所述第一支架部的外径。
- 根据权利要求13-18任一所述的液力端,其中,所述液力端还包括第一金属密封、第二金属密封、第三金属密封、第一密封圈以及第二密封圈,其中,所述第一金属密封设置于所述分流器的第一密封限位结构上,配置为使所述分流器与所述阀箱之间形成紧固密封结构,所述第二金属密封设置于所述阀座的第二密封限位结构上,配置为使所述分流器与所述阀座之间形成紧固密封结构,所述第三金属密封设置于所述压盖的第三密封限位结构上,配置为使所述阀座与所述压盖之间形成紧固密封结构;所述第一密封圈设置于所述阀座的第四密封限位结构上,配置为使所述阀座与所述阀箱之间形成紧固密封结构,所述第二密封圈设置于所述压盖或所述阀箱的第五密封限位结构上,配置为使所述压盖与所述阀箱之间形成紧固密封结构。
- 一种柱塞泵,包括根据权利要求10-19任一项所述的液力端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210122812.8 | 2022-02-09 | ||
CN202210122812.8A CN114483566B (zh) | 2022-02-09 | 2022-02-09 | 分流器、液力端以及柱塞泵 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023151120A1 true WO2023151120A1 (zh) | 2023-08-17 |
Family
ID=81479358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/077242 WO2023151120A1 (zh) | 2022-02-09 | 2022-02-22 | 分流器、液力端以及柱塞泵 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114483566B (zh) |
WO (1) | WO2023151120A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2954418A1 (fr) * | 2009-12-18 | 2011-06-24 | Bosch Gmbh Robert | Dispositif d'entree de liquide dans une pompe a piston et pompe ainsi equipee |
CN203961924U (zh) * | 2014-07-07 | 2014-11-26 | 中国石油天然气股份有限公司 | 一种稠油水平井分抽混出采油工艺管柱 |
CN105952633A (zh) * | 2016-07-07 | 2016-09-21 | 天津市海盛泵业制造有限公司 | 一种高压往复柱塞泵液力端用直通式组合阀 |
CN206017112U (zh) * | 2016-08-26 | 2017-03-15 | 中国石油天然气股份有限公司 | 一种深井抽油泵 |
CN111219323A (zh) * | 2019-11-21 | 2020-06-02 | 定边县天晨石油工程机械修配有限公司 | 一种柱塞式往复泵的组合一体阀 |
CN112814891A (zh) * | 2021-02-04 | 2021-05-18 | 烟台杰瑞石油装备技术有限公司 | 分流器、液力端以及柱塞泵 |
CN113513459A (zh) * | 2021-04-19 | 2021-10-19 | 中国石油天然气股份有限公司 | 柱塞泵液力端启闭装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7174726B2 (en) * | 2003-08-07 | 2007-02-13 | Parker-Hannifin Corporation | Adjustable nozzle distributor |
JP2008298343A (ja) * | 2007-05-30 | 2008-12-11 | Daikin Ind Ltd | 冷媒分流器一体化構造の膨張弁及びこれを用いた冷凍装置 |
JP2011033281A (ja) * | 2009-08-03 | 2011-02-17 | Daikin Industries Ltd | 冷媒分流器及びこれを備える冷媒回路 |
-
2022
- 2022-02-09 CN CN202210122812.8A patent/CN114483566B/zh active Active
- 2022-02-22 WO PCT/CN2022/077242 patent/WO2023151120A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2954418A1 (fr) * | 2009-12-18 | 2011-06-24 | Bosch Gmbh Robert | Dispositif d'entree de liquide dans une pompe a piston et pompe ainsi equipee |
CN203961924U (zh) * | 2014-07-07 | 2014-11-26 | 中国石油天然气股份有限公司 | 一种稠油水平井分抽混出采油工艺管柱 |
CN105952633A (zh) * | 2016-07-07 | 2016-09-21 | 天津市海盛泵业制造有限公司 | 一种高压往复柱塞泵液力端用直通式组合阀 |
CN206017112U (zh) * | 2016-08-26 | 2017-03-15 | 中国石油天然气股份有限公司 | 一种深井抽油泵 |
CN111219323A (zh) * | 2019-11-21 | 2020-06-02 | 定边县天晨石油工程机械修配有限公司 | 一种柱塞式往复泵的组合一体阀 |
CN112814891A (zh) * | 2021-02-04 | 2021-05-18 | 烟台杰瑞石油装备技术有限公司 | 分流器、液力端以及柱塞泵 |
CN113513459A (zh) * | 2021-04-19 | 2021-10-19 | 中国石油天然气股份有限公司 | 柱塞泵液力端启闭装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114483566B (zh) | 2023-03-24 |
CN114483566A (zh) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11867171B2 (en) | Fluid splitter in a fluid end or plunger pump | |
US12044234B2 (en) | Cover, fluid end and plunger pump | |
WO2022205583A1 (zh) | 柱塞、液力端和柱塞泵 | |
US3679332A (en) | Reciprocating piston pump | |
US11009016B2 (en) | Double acting positive displacement fluid pump | |
US11401930B2 (en) | Method of manufacturing a fluid end block with integrated web portion | |
WO2022166096A1 (zh) | 分流器、液力端以及柱塞泵 | |
US9284953B2 (en) | Multiple port discharge manifold fluid end | |
US10995587B2 (en) | Reversing valve for hydraulic piston pump | |
US3373695A (en) | Reciprocating piston pump | |
WO2023070837A1 (zh) | 压盖、液力端和柱塞泵 | |
WO2023070836A1 (zh) | 液力端和柱塞泵 | |
CN216008868U (zh) | 液力端和柱塞泵 | |
WO2023070852A1 (zh) | 液力端和柱塞泵 | |
CN109458325B (zh) | 一种应用于双作用往复泵的组合阀 | |
CN103573615A (zh) | 高压柱塞泵的液力端 | |
CN104912782B (zh) | 组合式泵筒小直径抽油泵 | |
WO2023151120A1 (zh) | 分流器、液力端以及柱塞泵 | |
CN203081734U (zh) | 防气锁液力反馈抽油泵 | |
RU2578758C1 (ru) | Поршневой насос-компрессор | |
CN107269249A (zh) | 偏置出油阀小直径抽油泵 | |
CN203548184U (zh) | 高压柱塞泵的液力端 | |
CN110219790A (zh) | 一种油缸式双向油水转换高压水发生装置 | |
CN102767512B (zh) | 一种双导向带非金属密封锥形阀及其液缸体结构 | |
CN213574028U (zh) | 一种采油装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22925482 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |