WO2023148900A1 - ネットワーク情報可視化装置、ネットワーク情報可視化方法、ネットワーク情報可視化プログラム及びネットワーク情報可視化システム - Google Patents
ネットワーク情報可視化装置、ネットワーク情報可視化方法、ネットワーク情報可視化プログラム及びネットワーク情報可視化システム Download PDFInfo
- Publication number
- WO2023148900A1 WO2023148900A1 PCT/JP2022/004313 JP2022004313W WO2023148900A1 WO 2023148900 A1 WO2023148900 A1 WO 2023148900A1 JP 2022004313 W JP2022004313 W JP 2022004313W WO 2023148900 A1 WO2023148900 A1 WO 2023148900A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- network
- visualization
- vpn
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/04—Processing captured monitoring data, e.g. for logfile generation
- H04L43/045—Processing captured monitoring data, e.g. for logfile generation for graphical visualisation of monitoring data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/22—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks comprising specially adapted graphical user interfaces [GUI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/062—Generation of reports related to network traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/065—Generation of reports related to network devices
Definitions
- the present invention relates to a network information visualization device, a network information visualization method, a network information visualization program, and a network information visualization system.
- Network monitoring uses various traffic acquisition technologies such as SNMP (Simple Network Management Protocol) and IPFIX (Internet Protocol Flow Information Export).
- SNMP Simple Network Management Protocol
- IPFIX Internet Protocol Flow Information Export
- IF Interface
- MPLS label statistical information and Inner5-tuple statistical information can be obtained.
- a header sample including the outer header of the header of the encapsulated packet and the inner header of the packet within the capsule is acquired, the format is converted by excluding the outer header, and the correspondence information between the inner header and the outer header is stored.
- a format converter has been proposed. By using this format conversion device for header samples obtained using IPFIX, it is possible to obtain fine-grained flow information in a network using VPN.
- the fine-grained flow includes information such as the MPLS label of the destination PE (Provider Edge) router, the ID (Identifier) of the output interface, and the ID of the input interface.
- a network using VPN is hereinafter referred to as a VPN network.
- the fine-grained flow obtained within the VPN network includes statistical information about VPN communication, but also includes various types of information such as topology information, network device setting information and operation information, and network device location information. can't Therefore, it is difficult to visualize various information that may be useful in the operation of the VPN network, even if the fine-grained flow information obtained within the VPN network is used alone.
- Information considered useful for the operation of a VPN network includes, for example, traffic time series information for each VPN, path information, geographical usage trend information, and ground exchange information.
- the present invention has been made in view of the above, and aims to improve the reliability of networks by visualizing useful information in network monitoring.
- the information acquisition unit acquires network information regarding the predetermined VPN network including at least flow information having statistical information regarding communication in the predetermined VPN network.
- the associating unit associates the flow information with other network information included in the network information to generate associated flow information.
- the visualization unit generates visualization information that associates the flow information with the other network information based on the linked flow information.
- useful information in network monitoring can be visualized to improve network reliability.
- FIG. 1 is a block diagram of a network information visualization device.
- FIG. 2 is a diagram showing the flow of visualization information generation according to the embodiment.
- FIG. 3 is a diagram showing an information acquisition method and visualized traffic granularity.
- FIG. 4 is a diagram for explaining data linking.
- FIG. 5 is a flowchart of network information visualization processing by the network information visualization device according to the embodiment.
- FIG. 6 is a diagram for explaining traffic visualization processing.
- FIG. 7 is a diagram for explaining path visualization processing.
- FIG. 8 is a diagram for explaining geographic visualization processing.
- FIG. 9 is a diagram for explaining the ground exchange visualization process.
- FIG. 10 is a flowchart of a specific example of network information visualization processing by the network information visualization device according to the embodiment.
- FIG. 11 is a diagram showing an example of a computer that executes a network information visualization program.
- FIG. 1 An embodiment of a network information visualization device, a network information visualization method, a network information visualization program, and a network information visualization system disclosed in the present application will be described in detail below with reference to the drawings.
- the network information visualization device, the network information visualization method, the network information visualization program, and the network information visualization system disclosed in the present application are not limited to the following embodiments.
- FIG. 1 is a block diagram of a network information visualization device.
- the network information visualization device 1 is an information processing device such as a server.
- the network information visualization device 1 is a device that associates fine-grained flow information obtained from a network that implements a VPN with various types of information, and visualizes it so that the user can easily grasp the state of the network. As shown in FIG. 1, network information visualization device 1 is connected to VPN network 2 .
- flow refers to the flow of signals transmitted through a line.
- a fine-grained flow is a group of information in which communication-related statistical information such as MPLS label statistical information and Inner5-tuple statistical information is stored at high density. High density corresponds to fine granularity of information.
- a fine-grained flow may include information of fine-grained flows in the time direction. This fine-grained flow corresponds to an example of "flow information".
- FIG. 2 is a diagram showing the flow of visualization information generation according to the embodiment.
- the VPN network 2 as shown in FIG. 2, has a physical network 21, an underlay network 22 and VPNs 23 to 25 which are overlay networks.
- the physical network 21 is a physical network composed of network devices such as routers and switches and network lines connecting them. In the physical network 21, no logical settings have been made to the network switches or the like.
- the underlay network 22 is a physical network in which multiple logical paths are formed to connect bases and devices on the physical network 21 .
- the underlay network 22 is formed by performing various logical settings such as restrictions on connection destinations such as signal reception sources and transmission destinations and connection methods for network devices such as routers in the physical network 21 .
- the overlay network is a virtual logical network built on the underlay network 22.
- the VPN 23 is an L3 (Layer 3) VPN.
- the VPN 23 is distinguished and used, for example, by VRF (Virtual Routing and Forwarding) by a router.
- the VPN 24 is an L2VPN implemented by EVPN (Ethernet VPN).
- the VPN 24 is distinguished and used by EVI (EVN Instance).
- VPN 25 is an L2VPN realized by L2TPv2.
- VPN 25 is formed between PPP (Point to Point Protocol) terminal IFs.
- MPLS/SR-MPLS VPN using MPLS or SR (Source Routing)-MPLS includes L2VPN realized by L3VPN such as VPN23 and EVPN such as VPN24.
- L2TP VPN using L2TPv2 (Version 2) includes L2VPN such as VPN25.
- FIG. 3 is a diagram showing the information acquisition method and the traffic granularity that can be visualized. Packets of each format shown in FIG. 3 are transmitted and received for each of the VPNs 23 and 24 using MPLS or SR-MPLS and the VPN 25 using L2TPv2.
- IF statistical information can be obtained for both VPNs 23 and 24, which are MPLS/SR-MPLS VPNs, and VPN 25, which is an L2TPv2 VPN.
- MPLS label statistical information and Inner5-tuple statistical information can be obtained in VPN 23, which is an L3 (Layer 3) VPN of MPLS/SR-MPLS VPNs.
- MPLS label statistical information is obtained in VPN 24, which is an L2VPN implemented by EVPN of MPLS/SR-MPLS VPN.
- Outer-5-tuple statistical information can be obtained from the VPN 25, which is an L2VPN using L2TPv2 (Version 2).
- Outer header statistical information and Inner header statistical information can be obtained from header samples obtained using IPFIX. . Further, the combination of header samples obtained using IPFIX and format conversion results in fine-grained flows.
- the network information visualization device 1 has an information acquisition unit 11, a linking unit 12, a data storage unit 13, and a visualization unit 14, as shown in FIG.
- the information acquisition unit 11 acquires network information about the VPN network 2.
- the information acquisition unit 11 has a fine-grain flow acquisition unit 111 , a topology acquisition unit 112 , an MP-BGP (Multiprotocol-Border Gateway Protocol) information acquisition unit 113 , a device information acquisition unit 114 and a geographical information acquisition unit 115 .
- MP-BGP Multiprotocol-Border Gateway Protocol
- the fine-grained flow acquisition unit 111 acquires header samples from the VPN network 2 using IPFIX for each of the VPNs 23-25. Furthermore, the fine-grained flow acquisition unit 111 performs format conversion on the acquired header samples while excluding the outer header. Further, the fine-grained flow acquisition unit 111 stores correspondence information between inner headers and outer headers. Then, the fine-grained flow acquisition unit 111 acquires the fine-grained flow 211 shown in FIG. 2 including MPLS label statistical information, Inner5-tuple statistical information, etc. for each of the VPNs 23 to 25 .
- the fine-grained flow 211 includes, for example, the destination PE MPLS label, VPN MPLS label, Inner Ether, Inner IP, Outer IP, Tunnel ID, Session ID, sampling rate and statistics.
- the destination PE MPLS label is the MPLS label of the destination PE router.
- the VPN MPLS label is the MPLS label of each of VPNs 23-25.
- Inner Ether is information about the internal network.
- Inner IP is IP information used in the internal network.
- the Outer IP is IP information used in the external network.
- the Tunnel ID is the identification information of the virtual tunnel used in each of the VPNs 23-25.
- the Session ID is the identification information of the session established in each of the VPNs 23-25.
- the statistical values include traffic statistical information such as inner header and outer header statistical information, MPLS label statistical information, and Inner5-tuple statistical information.
- the fine-grained flow 211 includes statistical information about communication in a predetermined VPN network, identification information about a plurality of network devices arranged in the predetermined VPN network, and VPN communication setting information about signal transmission/reception in the VPN existing in the VPN network. , and VPN communication setting information regarding signal transmission/reception in a VPN existing in a predetermined VPN network.
- the fine-grained flow acquisition unit 111 outputs fine-grained flows 211 for each of the VPNs 23 to 25 to the linking unit 12.
- the topology acquisition unit 112 acquires information on the topology 212 shown in FIG. 2 of the underlay network 22 from the VPN network 2 .
- the topology 212 includes topology information including connection relationships among network devices, output destination IF IDs, input destination IDs, router IDs, and the like in each router. That is, the topology 212 includes identification information about network devices and topology information representing connection relationships of the network devices.
- the topology acquisition unit 112 outputs the acquired information of the topology 212 to the linking unit 12 .
- the MP-BGP information acquisition unit 113 acquires the MP-BGP information 213 shown in FIG.
- the MP-BGP information 213 includes the destination PE MPLS label, VPN MPLS label, Inner Ether and Inner IP. Also, the MP-BGP information 213 includes the PPP termination IF, Tunnel ID and Session ID. That is, the MP-BGP information 213 can be said to be VPN information including VPN communication setting information regarding signal transmission/reception in the VPNs 23-25 existing in the VPN network 2 and VPN identification information for identifying the VPNs 23-25.
- the MP-BGP information acquisition unit 113 then outputs the acquired MP-BGP information 213 to the linking unit 12 .
- the device information acquisition unit 114 acquires from the VPN network 2 the device information 214 shown in FIG.
- the device information 214 includes VPN information including setting information such as configuration of each of the VPNs 23 to 25, RD values, and PPP termination IF information. That is, the device information 214 includes VPN identification information, device setting information of the network device, and operating state information.
- the device information acquisition unit 114 then outputs the acquired device information 214 to the linking unit 12 .
- the geographic information acquisition unit 115 acquires from the VPN network 2 the geographic information 215 shown in FIG.
- the geographic information 215 includes latitude and longitude information representing the latitude and longitude of each network device and topology information. That is, the geographic information 215 includes topology information and location information of the network devices.
- the geographic information acquisition unit 115 then outputs the acquired geographic information 215 to the linking unit 12 .
- the information acquisition unit 11 acquires network information regarding a predetermined VPN network including at least flow information having statistical information regarding communication in the predetermined VPN network.
- the information acquisition unit 11 also acquires flow information including identification information about a plurality of network devices arranged in the VPN network, and topology including identification information about the network devices and topology information representing the connection relationship of the network devices.
- the information acquisition unit 11 also acquires geographic information including topology information and location information of network devices.
- the information acquisition unit 11 also obtains flow information including VPN communication setting information related to transmission and reception of signals in a VPN existing in a predetermined VPN network, VPN communication setting information and VPN information including VPN identification information for identifying the VPN,
- device information including VPN identification information, device setting information, and operating state information of the network device is obtained.
- the linking unit 12 receives the fine-grained flow 211 input from the fine-grained flow acquisition unit 111 .
- the linking unit 12 also receives input of information on the topology 212 from the topology acquisition unit 112 . Further, the linking unit 12 receives input of the MP-BGP information 213 from the MP-BGP information acquisition unit 113 .
- the linking unit 12 also receives input of the device information 214 from the device information acquisition unit 114 .
- the linking unit 12 also receives input of the geographic information 215 from the geographic information acquisition unit 115 .
- FIG. 4 is a diagram for explaining data linking.
- the linking unit 12 executes the following processing for VPNs 23 and 24, which are MPLS/SR-MPLS VPNs.
- the linking unit 12 associates the fine-grained flow 211 with the topology 212 by, for example, the output IF ID, the input IF ID, and the router ID.
- the linking unit 12 associates the fine-grained flow 211 with the MP-BGP information 213 by, for example, the destination PE MPS label, VPN MPLS label, Inner Ether and Inner IP.
- the linking unit 12 links the RD value that associates the MP-BGP information 213 and the device information 214 with the destination PE MPLS label and the VPN MPLS label.
- the associating unit 12 associates the fine-grained flow 211 with the device setting information and operating state information of each network device included in the device information 214 via the MP-BGP information 213 .
- the linking unit 12 also links the topology information that associates the topology 212 and the geographic information 215 with the output IF ID, the input IF ID, and the router ID. As a result, the linking unit 12 links the fine-grained flow 211 and the latitude/longitude information of each network device included in the geographic information 215 via the topology 212 .
- the linking unit 12 executes the following processing for the VPN 25, which is an L2TP VPN.
- the linking unit 12 associates the fine-grained flow 211 with the topology 212 by, for example, the output IF ID, the input IF ID, and the router ID. Then, the linking unit 12 links the topology information that associates the topology 212 and the geographic information 215 with the output IF ID, the input IF ID, and the router ID. As a result, the linking unit 12 links the fine-grained flow 211 and the latitude/longitude information of each network device included in the geographic information 215 via the topology 212 .
- the linking unit 12 links the Outer IP, Tunnel ID, and Session ID included in the fine-grained flow 211 with the PPP termination IF information included in the device information 214, for example.
- the associating unit 12 associates the fine-grained flow 211 with the device setting information and operating state information of each network device included in the device information 214 via the MP-BGP information 213 .
- the linking unit 12 generates the linked fine-grained flow 300 by linking the fine-grained flow 211 with the topology 212, the MP-BGP information 213, the device information 214, and the geographic information 215.
- the linked fine-grained flow 300 corresponds to an example of the "linked flow”.
- the linking unit 12 stores the generated linked fine-grained flow 300 in the data storage unit 13 .
- the linking unit 12 links flow information with other network information included in the network information to generate linked flow information. Further, the linking unit 12 links identification information and topology information regarding network devices. Further, the linking unit 12 links the topology information and the position information. Further, the linking unit 12 links the VPN communication setting information and the VPN identification information.
- the data storage unit 13 acquires the linked fine-grained flow 300 from the linking unit 12 . Then, the data storage unit 13 collectively holds the acquired linked fine-grained flows 300 as the data lake 130 shown in FIGS.
- the visualization unit 14 uses the associated fine-grained flow 300 stored in the data storage unit 13 to generate visualization information that associates the fine-grained flow with other network information and provides it to the user.
- the visualization unit 14 generates visualization information for visualizing the time series of traffic for each VPN, communication paths, geographical usage trends, and inter-ground exchanges. Then, the visualization unit 14 generates a visualization screen or the like for displaying the generated visualization information and provides it to the user.
- the visualization unit 14 may visualize other information useful for the operation of the VPN network 2 in addition to the information listed above.
- the visualization unit 14 generates visualization information that associates flow information with other network information based on linked flow information. Also, based on the statistical information, the visualization unit 14 generates traffic visualization information that visualizes a traffic time series regarding a predetermined VPN or a predetermined communication interface at a predetermined time. Also, the visualization unit 14 generates path visualization information that visualizes a path through which predetermined communication passes at a predetermined time based on identification information, topology information, and statistical information regarding network devices. The visualization unit 14 also generates geographic visualization information that visualizes the geographical distribution of predetermined communications at a predetermined time based on identification information, location information, and statistical information regarding network devices. Based on the statistical information and the device information, the visualization unit 14 also generates earth-to-ground exchange visualization information that visualizes earth-to-ground exchange between predetermined network devices at a predetermined time.
- the information acquisition unit 11 acquires fine-grained flows 211 , topology 212 , MP-BGP information 213 , device information 214 and geographic information 215 from the VPN network 2 .
- the linking unit 12 links the topology 212 , the MP-BGP information 213 , the device information 214 and the geographic information 215 to the fine-grained flow 211 to generate a linked fine-grained flow 300 .
- the linking unit 12 stores the linked fine-grained flow 300 in the data storage unit 13 to form the data lake 130 .
- the visualization unit 14 uses the linked fine-grained flow 300 to create traffic visualization information 221 that visualizes the traffic time series for each VPN, path visualization information 222 that visualizes communication paths, and geographic visualization information that visualizes geographical usage trends. 223 and ground exchange visualization information 224 that visualizes the ground exchange are generated and provided to the user.
- FIG. 5 is a flowchart of network information visualization processing by the network information visualization device according to the embodiment. Next, a flow of network information visualization processing by the network information visualization device 1 according to the embodiment will be described with reference to FIG.
- the fine-grained flow acquisition unit 111 acquires header samples from the VPN network 2 using IPFIX. Then, the fine-grained flow acquisition unit 111 acquires the fine-grained flow 211 related to the VPNs 23 to 25 by converting the format of the header samples (step S1). After that, the fine-grained flow acquisition unit 111 outputs the acquired fine-grained flow 211 to the linking unit 12 .
- the topology acquisition unit 112 acquires the topology 212 of the physical network 21 and the underlay network 22 from the VPN network 2 (step S2). After that, the topology acquisition unit 112 outputs information on the topology 212 to the linking unit 12 .
- the MP-BGP information acquisition unit 113 acquires the MP-BGP information 213 from the VPN network 2 (step S3). Thereafter, MP-BGP information acquisition section 113 outputs MP-BGP information 213 to linking section 12 .
- the device information acquisition unit 114 acquires device information 214 including device setting information and operating state information of network devices from the VPN network 2 (step S4). After that, the device information acquisition unit 114 outputs the device information 214 to the linking unit 12 .
- the geographic information acquisition unit 115 acquires the geographic information 215 including the latitude and longitude information of the network device from the VPN network 2 (step S5). After that, the geographic information acquisition unit 115 outputs the geographic information 215 to the linking unit 12 .
- the linking unit 12 adds topology 212, MP-BGP information 213, device information 214, and geographic information 215 to the fine-grained flow 211 for each of MPLS/SR-MPLS VPN VPNs 23 and 24 and L2TP VPN VPN 25. (step S6).
- the linking unit 12 stores the linked fine-grained flow 300 generated by linking in the data storage unit 13 to generate the data lake 130 (step S7).
- the visualization unit 14 uses the linked fine-grained flow 300 to generate traffic visualization information 221, path visualization information 222, geographical visualization information 223, and ground exchange visualization information 224.
- the visualization unit 14 then provides the traffic visualization information 221, the path visualization information 222, the geographical visualization information 223, and the ground exchange visualization information 224 to the user (step S8).
- the visualization unit 14 can generate and provide traffic visualization information 221, path visualization information 222, geographical visualization information 223, and ground exchange visualization information 224 by the following method.
- the visualization unit 14 can include a traffic visualization unit 141, a path visualization unit 142, a geographical visualization unit 143, and a ground exchange visualization unit 144, as illustrated in FIG.
- FIG. 6 is a diagram for explaining the traffic visualization process.
- the operation of the traffic visualization unit 141 will be described with reference to FIG.
- the traffic visualization unit 141 filters the linked fine-grained flows 300 included in the data lake 130 with respect to a predetermined time and a predetermined field value, and acquires the filtered linked fine-grained flows 300 .
- the field value is, for example, a value indicating one of VPNs 23 to 25 or a value indicating a specific interface.
- the traffic visualization unit 141 can use specified values from the operator as the predetermined time and the predetermined field value. Then, the traffic visualization unit 141 collects statistical values included in the linked fine-grained flow 300 after filtering and draws a time-series graph.
- the traffic visualization unit 141 generates a traffic visualization screen 301 shown in FIG. 6, displays it on a monitor, etc., and provides traffic visualization information 221 to the user.
- the traffic visualization screen 301 includes, for example, a graph 311 representing the traffic time series of the VPN 23 and a graph 312 representing the traffic time series of the interface. Graphs 311 and 312 both represent the time on the horizontal axis and the band on the vertical axis.
- the graph 311 allows the user to grasp changes in the traffic of the VPN 23 over time.
- the graph 312 allows the user to grasp changes in the traffic of the interface #A over time and changes in the traffic of the VPNs 23 to 25 at that time. In this way, the traffic visualization unit 141 can visualize the traffic time series at a certain time of communication specified by the filter condition.
- FIG. 7 is a diagram for explaining the path visualization process.
- the operation of the path visualization unit 142 will be described with reference to FIG.
- the path visualization unit 142 filters the linked fine-grained flows 300 included in the data lake 130 with respect to a predetermined time and a predetermined field value, and acquires the filtered linked fine-grained flows 300 .
- a field value is, for example, a value that indicates a particular communication.
- the path visualization unit 142 can use specified values from the operator as the predetermined time and the predetermined field value. Then, the path visualization unit 142 collects the router IDs, output IF IDs, and input IF IDs included in the linked fine-grained flow 300 after filtering, maps them to topology information, and draws them.
- the path visualization unit 142 generates a path visualization screen 302 shown in FIG. 7 and displays it on a monitor or the like, and provides path visualization information 222 to the user.
- the path visualization screen 302 represents routers and links connecting the respective routers, and also represents passing paths on the links. From the path visualization screen 302, the user can grasp how the network devices are connected and which routes the transit paths pass through. In this way, the path visualization unit 142 can visualize the traffic time series at a certain time of communication specified by the filter condition.
- FIG. 8 is a diagram for explaining geographic visualization processing.
- the operation of the geographic visualization unit 143 will be described with reference to FIG.
- the geographic visualization unit 143 filters the linked fine-grained flows 300 included in the data lake 130 with respect to a predetermined time and a predetermined field value, and acquires the filtered linked fine-grained flows 300 .
- a field value is, for example, a value that indicates a particular communication.
- the geographic visualization unit 143 can use specified values from the operator as the predetermined time and the predetermined field value. Then, the geographic visualization unit 143 collects the latitude and longitude information included in the linked fine-grained flow 300 after filtering, and draws a map showing the distribution of communications.
- the geographic visualization unit 143 generates a geographic visualization screen 303 shown in FIG. 8 and displays it on a monitor or the like, and provides geographic visualization information 223 to the user.
- the geographic visualization screen 303 can show the traffic volume in each area by showing the distribution of communications on a map. The user can grasp how much communication is occurring in which area from the geographic visualization screen 303 . In this way, the geographic visualization unit 143 can visualize, as a distribution, the amount of communication at certain times of the communication specified by the filter condition.
- FIG. 9 is a diagram for explaining the ground exchange visualization process.
- the operation of the ground alternating current visualization unit 144 will be described with reference to FIG.
- the ground exchange visualization unit 144 filters the linked fine-grained flows 300 included in the data lake 130 with respect to a predetermined time and a predetermined field value, and acquires the filtered linked fine-grained flows 300.
- a field value is, for example, a value that indicates a specific network device.
- the earth-to-ground exchange visualization unit 144 can use specified values from the operator as the predetermined time and the predetermined field value.
- the earth-to-ground exchange visualization unit 144 collects the destination PE MPLS label included in the linked fine-grained flow 300 after filtering, and the IP and MAC addresses of the signal source and destination, and collects the earth-to-ground exchange information. Generate and draw.
- the earth exchange visualization unit 144 generates the earth exchange visualization screen 304 shown in FIG. 9, displays it on a monitor or the like, and provides the earth exchange visualization information 224 to the user.
- the ground communication visualization screen 304 includes, for example, a graph 341 representing ground communication between specific PE routers and a graph 342 representing ground communication between specific CE routers. Graphs 341 and 342 allow the user to grasp whether or not ground communication exists between specific routers and the amount of traffic due to the ground communication. In this way, the earth-to-ground exchange visualization unit 144 can visualize the presence or absence of earth-to-ground exchange and the amount of traffic at a certain time between routers specified by the filter conditions.
- FIG. 10 is a flowchart of a specific example of network information visualization processing by the network information visualization device according to the embodiment. Next, a flow of a specific example of network information visualization processing by the network information visualization device 1 according to the embodiment will be described with reference to FIG.
- the fine-grained flow acquisition unit 111 acquires header samples from the VPN network 2 using IPFIX. Then, the fine-grained flow acquisition unit 111 acquires the fine-grained flow 211 related to the VPNs 23 to 25 by converting the format of the header samples (step S11). After that, the fine-grained flow acquisition unit 111 outputs the acquired fine-grained flow 211 to the linking unit 12 .
- the topology acquisition unit 112 acquires the topology 212 of the physical network 21 and the underlay network 22 from the VPN network 2 (step S12). After that, the topology acquisition unit 112 outputs information on the topology 212 to the linking unit 12 .
- the MP-BGP information acquisition unit 113 acquires the MP-BGP information 213 from the VPN network 2 (step S13). Thereafter, MP-BGP information acquisition section 113 outputs MP-BGP information 213 to linking section 12 .
- the device information acquisition unit 114 acquires the device information 214 including the device setting information and the operating state information of the network device from the VPN network 2 (step S14). After that, the device information acquisition unit 114 outputs the device information 214 to the linking unit 12 .
- the geographic information acquisition unit 115 acquires the geographic information 215 including the latitude and longitude information of the network device from the VPN network 2 (step S15). After that, the geographic information acquisition unit 115 outputs the geographic information 215 to the linking unit 12 .
- the linking unit 12 adds topology 212, MP-BGP information 213, device information 214, and geographic information 215 to the fine-grained flow 211 for each of MPLS/SR-MPLS VPN VPNs 23 and 24 and L2TP VPN VPN 25. (step S16).
- the linking unit 12 stores the linked fine-grained flow 300 generated by linking in the data storage unit 13 to generate the data lake 130 (step S17).
- the traffic visualization unit 141 filters the tied fine-grained flow 300 at a predetermined time and in a predetermined field. Then, the traffic visualization unit 141 collects and draws statistical information included in the linked fine-grained flow 300 after filtering, and provides traffic visualization information 221 to the user (step S18).
- the path visualization unit 142 filters the linked fine-grained flow 300 at a predetermined time and in a predetermined field. Then, the path visualization unit 142 collects the router IDs, input IF IDs, and output IF IDs included in the linked fine-grained flow 300 after filtering, maps them to the topology information, and renders the path visualization information 222 to the user. (step S19).
- the geographic visualization unit 143 filters the associated fine-grained flow 300 using a predetermined time and a predetermined field. Then, the geographic visualization unit 143 collects the latitude and longitude information included in the linked fine-grained flow 300 after filtering and draws a map showing the distribution of communication to provide the geographic visualization information 223 to the user (step S20 ).
- the ground exchange visualization unit 144 filters the linked fine-grained flow 300 at a predetermined time and in a predetermined field. Then, the earth exchange visualization unit 144 collects the destination PE MPLS label, packet destination and source IP addresses and MAC addresses included in the linked fine-grained flow 300 after filtering, and generates and draws earth exchange information. By doing so, the ground exchange visualization information 224 is provided to the user (step S21).
- the network information visualization device 1 associates the fine-grained flow 211 acquired from the VPN network 2 with the topology 212, the MP-BGP information 213, the device information 214, and the geographical information 215. Create a fine-grained flow 300 . After that, the network information visualization device 1 generates traffic visualization information 221, path visualization information 222, geographical visualization information 223, and ground exchange visualization information 224 using the linked fine-grained flow 300, and provides them to the user.
- the traffic visualization information 221 By visualizing the traffic time series with the traffic visualization information 221, for example, it is possible to detect the presence or absence of a DDoS attack. Furthermore, by visualizing the traffic time series using the traffic visualization information 221, for example, OTT communication abnormality can be confirmed, and for example, it can be shown that there is no cause on the VPN network 2 side.
- the path visualization information 222 for example, it is possible to compare the paths before and after the user complaint, and quickly narrow down the routers to be checked for abnormalities. Furthermore, the path visualization information 222 makes it possible, for example, to count the number of VPN communications that have passed through the faulty device when a router or link fails, so that the affected VPN can be quickly grasped.
- ground exchange visualization information 224 makes it easy to confirm where to add a new link when performing provisioning, for example.
- the network information visualization device 1 can visualize various information useful for the operation of the VPN network 2 and provide it to the user.
- the user can improve the reliability of the network.
- each component of each device illustrated is functionally conceptual, and does not necessarily need to be physically configured as illustrated.
- the specific form of distribution and integration of each device is not limited to the illustrated one, and all or part of them can be functionally or physically distributed or Can be integrated and configured.
- all or any part of each processing function performed by each device is realized by a CPU (Central Processing Unit) and a program analyzed and executed by the CPU, or hardware by wired logic can be realized as
- the network information visualization device 1 can be implemented by installing a network information visualization program for executing the above information processing as package software or online software in a desired computer.
- the information processing device can function as the network information visualization device 1 by causing the information processing device to execute the network information visualization program.
- the information processing apparatus referred to here includes a desktop or notebook personal computer.
- information processing devices include mobile communication terminals such as smartphones, mobile phones and PHS (Personal Handy-phone Systems), and slate terminals such as PDA (Personal Digital Assistant).
- the network information visualization device 1 can also be implemented as an information providing server device that uses a terminal device used by a user as a client and provides the client with services related to the above-described network information visualization processing.
- the information providing server device is implemented as a server device that provides a service of inputting time and field values and outputting a network information visualization image corresponding to the time and field values.
- the information providing server device may be implemented as a web server, or may be implemented as a cloud that provides services related to the above-described network information visualization processing by outsourcing.
- FIG. 11 is a diagram showing an example of a computer that executes a network information visualization program.
- the computer 1000 has a memory 1010 and a CPU 1020, for example.
- Computer 1000 also has hard disk drive interface 1030 , disk drive interface 1040 , serial port interface 1050 , video adapter 1060 and network interface 1070 . These units are connected by a bus 1080 .
- the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM (Random Access Memory) 1012 .
- the ROM 1011 stores a boot program such as BIOS (BASIC Input Output System).
- BIOS BASIC Input Output System
- Hard disk drive interface 1030 is connected to hard disk drive 1090 .
- a disk drive interface 1040 is connected to the disk drive 1100 .
- a removable storage medium such as a magnetic disk or optical disk is inserted into the disk drive 1100 .
- Serial port interface 1050 is connected to mouse 1110 and keyboard 1120, for example.
- Video adapter 1060 is connected to display 1130, for example.
- the hard disk drive 1090 stores, for example, an OS 1091, application programs 1092, program modules 1093, and program data 1094. That is, a classification program defining each process of the network information visualization device 1 having functions equivalent to those of the network information visualization device 1 is implemented as a program module 1093 in which computer-executable code is described. Program modules 1093 are stored, for example, on hard disk drive 1090 .
- the hard disk drive 1090 stores a program module 1093 for executing processing similar to the functional configuration of the network information visualization device 1 .
- the hard disk drive 1090 may be replaced by an SSD (Solid State Drive).
- the setting data used in the processing of the above-described embodiment is stored as program data 1094 in the memory 1010 or the hard disk drive 1090, for example. Then, the CPU 1020 reads the program modules 1093 and program data 1094 stored in the memory 1010 and the hard disk drive 1090 to the RAM 1012 as necessary, and executes the processes of the above-described embodiments.
- the program modules 1093 and program data 1094 are not limited to being stored in the hard disk drive 1090, but may be stored in a removable storage medium, for example, and read by the CPU 1020 via the disk drive 1100 or the like. Alternatively, the program modules 1093 and program data 1094 may be stored in another computer connected via a network (LAN (Local Area Network), WAN (Wide Area Network), etc.). Program modules 1093 and program data 1094 may then be read by CPU 1020 through network interface 1070 from other computers.
- LAN Local Area Network
- WAN Wide Area Network
- network information visualization device 2 VPN network 11 information acquisition unit 12 linking unit 13 data storage unit 14 visualization unit 111 fine-grained flow acquisition unit 112 topology acquisition unit 113 MP-BGP information acquisition unit 114 device information acquisition unit 115 geographic information acquisition unit 141 traffic visualization unit 142 path visualization unit 143 geography visualization unit 144 ground exchange visualization unit
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Algebra (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
に関する。
図1を用いて、ネットワーク情報可視化装置の構成について説明する。図1は、ネットワーク情報可視化装置のブロック図である。ネットワーク情報可視化装置1は、サーバなどの情報処理装置である。ネットワーク情報可視化装置1は、VPNを実現するネットワークから得られる細粒度フローの情報を種々の情報と紐づけて、利用者がネットワークの状態を容易に把握できるように可視化する装置である。図1に示すように、ネットワーク情報可視化装置1は、VPN網2に接続される。
図2は、実施形態に係る可視化情報生成の流れを示す図である。VPN網2は、図2に示すように、物理ネットワーク21,アンダーレイネットワーク22及びオーバーレイネットワークであるVPN23~25を有する。
図1に戻って、ネットワーク情報可視化装置1について説明する。ネットワーク情報可視化装置1は、図1に示すように、情報取得部11、紐付け部12、データ格納部13及び可視化部14を有する。
図5は、実施形態に係るネットワーク情報可視化装置によるネットワーク情報可視化処理のフローチャートである。次に、図5を参照して、実施形態に係るネットワーク情報可視化装置1によるネットワーク情報可視化処理の流れを説明する。
例えば、可視化部14は、以下のような方法でトラヒック可視化情報221、パス可視化情報222、地理可視化情報223及び対地交流可視化情報224を生成して提供することが可能である。可視化部14は、図1に例示したように、トラヒック可視化部141、パス可視化部142、地理可視化部143及び対地交流可視化部144を備えることができる。
図10は、実施形態に係るネットワーク情報可視化装置によるネットワーク情報可視化処理の具体例のフローチャートである。次に、図10を参照して、実施形態に係るネットワーク情報可視化装置1によるネットワーク情報可視化処理の具体例の流れを説明する。
以上に説明したように、ネットワーク情報可視化装置1は、VPN網2から取得した、細粒度フロー211に、トポロジ212、MP-BGP情報213、装置情報214及び地理情報215を紐づけて、紐付済細粒度フロー300を生成する。その後、ネットワーク情報可視化装置1は、紐付済細粒度フロー300を用いて、トラヒック可視化情報221、パス可視化情報222、地理可視化情報223及び対地交流可視化情報224を生成して利用者に提供する。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。すなわち、各装置の分散及び統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散又は統合して構成することができる。さらに、各装置にて行われる各処理機能は、その全部又は任意の一部が、CPU(Central Processing Unit)及び当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
一実施形態として、ネットワーク情報可視化装置1は、パッケージソフトウェアやオンラインソフトウェアとして上記の情報処理を実行するネットワーク情報可視化プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記のネットワーク情報可視化プログラムを情報処理装置に実行させることにより、情報処理装置をネットワーク情報可視化装置1として機能させることができる。ここで言う情報処理装置には、デスクトップ型又はノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handy-phone System)等の移動体通信端末、さらには、PDA(Personal Digital Assistant)等のスレート端末等がその範疇に含まれる。
2 VPN網
11 情報取得部
12 紐付け部
13 データ格納部
14 可視化部
111 細粒度フロー取得部
112 トポロジ取得部
113 MP-BGP情報取得部
114 装置情報取得部
115 地理情報取得部
141 トラヒック可視化部
142 パス可視化部
143 地理可視化部
144 対地交流可視化部
Claims (8)
- 所定のVirtual Private Network(VPN)網における通信に関する統計情報を有するフロー情報を少なくとも含む前記所定のVPN網に関するネットワーク情報を取得する情報取得部と、
前記フロー情報と前記ネットワーク情報に含まれる他のネットワーク情報とを紐付けして紐付済フロー情報を生成する紐付け部と、
前記紐付済フロー情報を基に、前記フロー情報と前記他のネットワーク情報とを関連付けた可視化情報を生成する可視化部と
を備えたことを特徴とするネットワーク情報可視化装置。 - 前記可視化部は、前記統計情報を基に、所定の時刻における所定のVPN又は所定の通信インタフェースに関するトラヒック時系列を可視化した前記可視化情報であるトラヒック可視化情報を生成することを特徴とする請求項1に記載のネットワーク情報可視化装置。
- 前記情報取得部は、前記所定のVPN網に配置された複数のネットワーク機器に関する識別情報を含む前記フロー情報、並びに、前記ネットワーク機器に関する前記識別情報と前記ネットワーク機器の接続関係を表すトポロジ情報とを含むトポロジを取得し、
前記紐付け部は、前記ネットワーク機器に関する前記識別情報と前記トポロジ情報とを紐づけて、
前記可視化部は、前記ネットワーク機器に関する前記識別情報、前記トポロジ情報及び前記統計情報を基に、所定の時刻における所定の通信が経由したパスを可視化した前記可視化情報であるパス可視化情報を生成することを特徴とする請求項1又は2に記載のネットワーク情報可視化装置。 - 前記情報取得部は、前記トポロジ情報と前記ネットワーク機器の位置情報とを含む地理情報を取得し、
前記紐付け部は、前記トポロジ情報と前記位置情報とを紐づけて、
前記可視化部は、前記ネットワーク機器に関する前記識別情報、前記位置情報及び前記統計情報を基に、所定の時刻における所定の通信の地理的な分布を可視化した前記可視化情報である地理可視化情報を生成することを特徴とする請求項3に記載のネットワーク情報可視化装置。 - 前記情報取得部は、前記所定のVPN網に存在するVPNにおける信号の送受信に関するVPN通信設定情報を含む前記フロー情報、前記VPN通信設定情報と前記VPNを識別するためのVPN識別情報とを含むVPN情報、並びに、前記VPN識別情報と、前記ネットワーク機器の装置設定の情報及び動作状態の情報とを含む装置情報を取得し、
前記紐付け部は、前記VPN通信設定情報と前記VPN識別情報とを紐づけて、
前記可視化部は、前記統計情報及び前記装置情報を基に、所定の時刻における所定のネットワーク機器間の対地交流を可視化した前記可視化情報である対地交流可視化情報を生成することを特徴とする請求項3に記載のネットワーク情報可視化装置。 - 所定のVPN網における通信に関する統計情報を有するフロー情報を少なくとも含む前記所定のVPN網に関するネットワーク情報を取得する情報取得工程と、
前記フロー情報と前記ネットワーク情報に含まれる他のネットワーク情報とを紐付けして紐付済フロー情報を生成する紐付け工程と、
前記紐付済フロー情報を基に、前記フロー情報と前記他のネットワーク情報とを関連付けた可視化情報を生成する可視化工程と
を備えたことを特徴とするネットワーク情報可視化方法。 - 所定のVPN網における通信に関する統計情報を有するフロー情報を少なくとも含む前記所定のVPN網に関するネットワーク情報を取得する情報取得ステップと、
前記フロー情報と前記ネットワーク情報に含まれる他のネットワーク情報とを紐付けして紐付済フロー情報を生成する紐付けステップと、
前記紐付済フロー情報を基に、前記フロー情報と前記他のネットワーク情報とを関連付けた可視化情報を生成する可視化ステップと
をコンピュータに実行させることを特徴とするネットワーク情報可視化プログラム。 - 所定のVPN網及び前記所定のVPN網におけるネットワーク情報を可視化するネットワーク情報可視化装置を有するネットワーク情報可視化システムであって、
前記ネットワーク情報可視化装置は、
前記所定のVPN網における通信に関する統計情報を有するフロー情報を少なくとも含む前記所定のVPN網に関するネットワーク情報を取得する情報取得部と、
前記フロー情報と前記ネットワーク情報に含まれる他のネットワーク情報とを紐付けして紐付済フロー情報を生成する紐付け部と、
前記紐付済フロー情報を基に、前記フロー情報と前記他のネットワーク情報とを関連付けた可視化情報を生成する可視化部とを備えた
ことを特徴とするネットワーク情報可視化システム。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/832,729 US20250150367A1 (en) | 2022-02-03 | 2022-02-03 | Network information visualization device, network information visualization method, network information visualization program, and network information visualization system |
| JP2023578287A JPWO2023148900A1 (ja) | 2022-02-03 | 2022-02-03 | |
| PCT/JP2022/004313 WO2023148900A1 (ja) | 2022-02-03 | 2022-02-03 | ネットワーク情報可視化装置、ネットワーク情報可視化方法、ネットワーク情報可視化プログラム及びネットワーク情報可視化システム |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2022/004313 WO2023148900A1 (ja) | 2022-02-03 | 2022-02-03 | ネットワーク情報可視化装置、ネットワーク情報可視化方法、ネットワーク情報可視化プログラム及びネットワーク情報可視化システム |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2023148900A1 true WO2023148900A1 (ja) | 2023-08-10 |
Family
ID=87553391
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2022/004313 Ceased WO2023148900A1 (ja) | 2022-02-03 | 2022-02-03 | ネットワーク情報可視化装置、ネットワーク情報可視化方法、ネットワーク情報可視化プログラム及びネットワーク情報可視化システム |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20250150367A1 (ja) |
| JP (1) | JPWO2023148900A1 (ja) |
| WO (1) | WO2023148900A1 (ja) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009118827A1 (ja) * | 2008-03-25 | 2009-10-01 | 富士通株式会社 | フロー情報収集装置 |
| JP2017098907A (ja) * | 2015-11-27 | 2017-06-01 | 日本電信電話株式会社 | トラフィック解析システムおよびトラフィック解析方法 |
| US20170310638A1 (en) * | 2013-12-19 | 2017-10-26 | Architecture Technology Corporation | Context-aware network and situation management for crypto-partitioned networks |
-
2022
- 2022-02-03 US US18/832,729 patent/US20250150367A1/en active Pending
- 2022-02-03 WO PCT/JP2022/004313 patent/WO2023148900A1/ja not_active Ceased
- 2022-02-03 JP JP2023578287A patent/JPWO2023148900A1/ja active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009118827A1 (ja) * | 2008-03-25 | 2009-10-01 | 富士通株式会社 | フロー情報収集装置 |
| US20170310638A1 (en) * | 2013-12-19 | 2017-10-26 | Architecture Technology Corporation | Context-aware network and situation management for crypto-partitioned networks |
| JP2017098907A (ja) * | 2015-11-27 | 2017-06-01 | 日本電信電話株式会社 | トラフィック解析システムおよびトラフィック解析方法 |
Non-Patent Citations (1)
| Title |
|---|
| TAKAHASHI, KEN ET AL.: "A study on acquiring cross traffic between VPN sites", PROCEEDINGS OF THE 2011 IEICE COMMUNICATIONS SOCIETY CONFERENCE; SEPTEMBER 13-16, 2011, IEICE, JP, 30 August 2011 (2011-08-30) - 16 September 2011 (2011-09-16), JP, pages 21, XP009547843 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20250150367A1 (en) | 2025-05-08 |
| JPWO2023148900A1 (ja) | 2023-08-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107431657B (zh) | 跨网络域的用于流分析的数据分组标记的方法和装置 | |
| US10887209B2 (en) | In-Situ OAM for multicast path, telemetry data collection and receive-only service function proof of transit | |
| JP5410998B2 (ja) | スイッチ及びルータのためのソフトウェア制御プレーン | |
| CN101180839B (zh) | 用于产生和维护服务级别诊断测试点库的方法和系统 | |
| US9489279B2 (en) | Visualization of performance data over a network path | |
| US9148358B2 (en) | Method, apparatus and system for filtering captured network traffic | |
| US8526325B2 (en) | Detecting and identifying connectivity in a network | |
| CN113079091A (zh) | 一种主动随流检测的方法、网络设备以及通信系统 | |
| US10341200B2 (en) | Network management layer—configuration management | |
| US20150029871A1 (en) | Service level agreement validation via service traffic sample-and-replay | |
| US9143408B2 (en) | Interprovider virtual private network path identification | |
| US7969908B2 (en) | Connectivity outage detection based on a multicast management MPLS-VPN group | |
| CN103746914B (zh) | 建立私网标签与原始vrf对应关系的方法、装置及系统 | |
| CN100401678C (zh) | 虚拟专用网网络管理方法 | |
| Markovitch et al. | SHEAR: A highly available and flexible network architecture marrying distributed and logically centralized control planes | |
| Rao | SDN and its use-cases-NV and NFV | |
| WO2023148900A1 (ja) | ネットワーク情報可視化装置、ネットワーク情報可視化方法、ネットワーク情報可視化プログラム及びネットワーク情報可視化システム | |
| WO2019001101A1 (zh) | 路由路径分析方法及设备 | |
| US9521066B2 (en) | vStack enhancements for path calculations | |
| CN108092845A (zh) | 镜像流量的区分和定位 | |
| CN112787933A (zh) | 用于从观察域卸载ipfix查找和转换操作的装置、系统和方法 | |
| US20230231792A1 (en) | System and method for micro tap instructions in packets in a telecommunications network to diagnose network issues | |
| Sgier | Visualizing bgp rib changes into forwarding plane by leveraging bmp and ipfix | |
| CN102594644B (zh) | 一种选择网络设备的方法,装置和系统 | |
| Farrel et al. | RFC 9543 A Framework for Network Slices in Networks Built from IETF Technologies |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22924810 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2023578287 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 18832729 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 22924810 Country of ref document: EP Kind code of ref document: A1 |
|
| WWP | Wipo information: published in national office |
Ref document number: 18832729 Country of ref document: US |