WO2023143332A1 - 一种光学显示模组 - Google Patents

一种光学显示模组 Download PDF

Info

Publication number
WO2023143332A1
WO2023143332A1 PCT/CN2023/073016 CN2023073016W WO2023143332A1 WO 2023143332 A1 WO2023143332 A1 WO 2023143332A1 CN 2023073016 W CN2023073016 W CN 2023073016W WO 2023143332 A1 WO2023143332 A1 WO 2023143332A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
light guide
guide module
optical isolator
Prior art date
Application number
PCT/CN2023/073016
Other languages
English (en)
French (fr)
Inventor
兰富洋
周兴
关健
邵陈荻
Original Assignee
珠海莫界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海莫界科技有限公司 filed Critical 珠海莫界科技有限公司
Publication of WO2023143332A1 publication Critical patent/WO2023143332A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means

Definitions

  • the invention relates to the field of display devices, in particular to an optical display module.
  • Existing optical display modules include an optical machine and a light guide module.
  • the optical machine includes a display screen and a lens group for outputting signal light to be displayed with a specially modulated wavefront;
  • the light guide module includes an optical input terminal and an optical output end, the optical input end is used to receive the signal light output by the optical machine, and the optical output end is used to output the signal light for display.
  • the signal light emitted by the optical machine enters the light guide module through the optical input end.
  • the signal light propagates according to a specific path, and finally outputs to the human eye through the optical output end. on the retina to form the image to be displayed on the retina.
  • the signal light emitted by the optical machine irradiates the light guide module
  • diffracted or reflected stray light inevitably occurs on the interface of the light input end of the light guide module, and the stray light will be reversely incident into the inside of the optical machine, and After multiple transmissions between the lens group and the display screen, it is emitted again and enters the light input end of the light guide module.
  • the stray light will be output from the light output end of the light guide module to the retina of the human eye and become the center of the image to be displayed. Background noise affects image quality.
  • the technical problem to be solved by the present invention is to provide an optical display module for the deficiencies of the prior art, so as to solve the problem that the stray light of the optical display module in the prior art enters the light guide module and enters the light guide module through the light guide module.
  • the retina of the human eye thus affects the image quality.
  • the first aspect of the embodiment of the present application provides an optical display module, the optical display module includes an optical machine, an optical isolator and at least one layer of light guide module, wherein the optical machine includes Display screen and lens group; the display screen, lens group and light guide module are arranged in sequence, and the optical isolator is arranged between the light guide module and the display screen.
  • the light guide module has an optical input end and an optical output end, the optical machine is arranged opposite to the optical input end, and the optical input end and the light output end are located at the end of the light guide module. same side or different side.
  • the optical isolator is arranged between the optical machine and the light guide module, and is respectively provided with a gap between the optical machine and the light guide module, and the optical isolator is respectively connected to the optical machine And the gap between the light guide modules is 0-5mm.
  • the optical isolator is attached to the surface of the light input end.
  • the optical isolator is attached to the light-emitting side surface of the optical machine.
  • the optical isolator is arranged between the display screen and the lens group.
  • the optical isolator includes a quarter-wave plate and a polarizing part, the quarter-wave plate is attached to the polarizing part, and the polarizing part is located at the incident light source to be isolated. side, the quarter-wave plate is located on the exit side of the light to be isolated.
  • the polarizer is a polarizer, a polarization splitting film, or a polarization splitting prism.
  • the light guide module is a diffractive light guide or a geometric light guide.
  • the second aspect of the embodiment of the present application further provides a near-eye display device, including the optical display module described in any one of the above items.
  • the present invention arranges an optical isolator between the light guide module and the display screen, so that the stray light generated by diffraction or reflection on the light guide module cannot enter the light guide module due to the obstruction of the optical isolator, avoiding the miscellaneous
  • the astigmatism is transmitted to the retina of the human eye through the light guide module and becomes the background noise of the image to be displayed, thereby improving the image quality.
  • Fig. 1 is a schematic structural diagram of an optical display module provided by the present invention
  • Fig. 2 is a schematic structural diagram of an optical display module provided by the present invention, wherein the light guide module is a diffractive optical waveguide and an optical isolator is arranged between the light guide module and the optical machine;
  • Fig. 3 is a schematic structural diagram of an optical display module provided by the present invention, wherein the light guide module is a geometric optical waveguide and an optical isolator is arranged between the light guide module and the optical machine;
  • Figure 4 is a schematic structural diagram of an optical display module provided by the present invention, wherein the light guide module is a geometric light waveguide And the optical isolator is arranged between the light guide module and the optical machine;
  • Fig. 5 is a principle diagram of isolating stray light by an optical isolator composed of a quarter-wave plate and a polarizer in an optical display module provided by the present invention
  • Fig. 6 is a principle diagram of isolating stray light by an optical isolator composed of a quarter-wave plate and a polarization splitting film in an optical display module provided by the present invention
  • Fig. 7 is a principle diagram of isolating stray light by an optical isolator composed of a quarter-wave plate and a polarization beam splitter prism in an optical display module provided by the present invention
  • Fig. 8 is a schematic diagram of the optical isolator for isolating stray light when only one end of the optical display module is a reflective surface provided by the present invention
  • FIG. 9 is a schematic diagram of the optical isolator for isolating stray light when both ends of the optical display module are reflective surfaces provided by the present invention.
  • FIG. 10 is a schematic structural view of an optical display module provided by the present invention with a multi-layer light guide module
  • Fig. 11 is a structural schematic diagram of an optical display module in which the light guide module is a diffractive optical waveguide and the optical isolator is arranged between the display screen and the lens group according to the present invention
  • Fig. 12 is a structural schematic diagram of an optical display module provided by the present invention in which the light guide module is a geometric optical waveguide and the optical isolator is arranged between the display screen and the lens group;
  • FIG. 13 is another structural schematic diagram of an optical display module provided by the present invention in which the light guide module is a geometric light guide and the optical isolator is arranged between the display screen and the lens group.
  • the present invention provides an optical display module.
  • the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
  • a component when referred to as being “fixed on” or “disposed on” another component, it may be directly on the other component or indirectly on the other component.
  • an element When an element is referred to as being “connected to” another element, it can be directly connected to the other element or indirectly connected to the other element.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the first aspect of this embodiment provides an optical display module.
  • the optical display module includes an optical machine 11, an optical isolator 12 and at least one layer of light guide module 13.
  • the optical machine 11 is used to output the wavefront Specially modulated signal light to be displayed, wherein the optical machine 11 includes a display screen 14 and a lens group 15, and the display screen 14, lens group 15 and light guide module 13 are arranged in sequence, as shown in FIG. 1, and in FIG. 1
  • the solid line with arrows is the signal light; the dotted line with arrows is the stray light generated by the signal light due to diffraction or reflection by the input interface of the light guiding module 13 .
  • the signal light emitted by the optical machine 11 is irradiated onto the light guide module 13, and output to the retina of the human eye through the light guide module 13 to form an image to be displayed on the retina.
  • stray light diffracted or reflected inevitably occurs on the interface of the light guide module 13.
  • an optical isolator 12 is arranged between the light guide module 13 and the display screen 14, so that The stray light generated by diffraction or reflection on the input interface of the light guide module 13 cannot enter the light guide module 13 due to the obstruction of the optical isolator 12, which prevents the stray light from being transmitted to the retina of the human eye through the light guide module 13 and becomes an image to be displayed Background noise, thus improving the image quality.
  • the light guide module 13 can be arranged in multiples, wherein the multiple light guide modules 13 are placed in parallel, as shown in FIG. 10 , the multilayer light guide module is composed of multiple The single-layer light guide modules 13 are stacked and spliced together.
  • the input ends of each layer of light guide modules 13 are usually of the same shape and size and at the same position, and the output ends of each layer of light guide modules 13 are usually also of the same shape, size and position; wherein,
  • the signal light emitted by the optical machine 11 is respectively The light is irradiated onto the light guide module 13 of each layer, and output to the retina of the human eye through the light guide module 13 of each layer, so as to form an image to be displayed on the retina.
  • the light guide module 13 has a light input end 16 and a light output end 17, and the light input end 16 is arranged on the surface area of the light guide module 13 close to the light engine 11, so The optical machine 11 is arranged opposite to the optical input end 16, and the optical output end 17 is arranged in an area close to the human eye.
  • the optical input end 16 and the optical output end 17 are two spatial regions.
  • the optical input end 16 It is located on the same side or a different side of the light guide module 13 as the light output end 17 .
  • the light guide module 13 may be a diffractive optical waveguide.
  • the surface of the output end 17 is provided with a diffractive microstructure (not shown in the figure), wherein, the diffractive microstructures on the surface of the light input end 16 and the light output end 17 can be on the same surface of the light guide module 13, or can be located on the same surface of the light guide module 13 respectively.
  • the diffractive microstructures of the light input end 16 and the light output end 17 are located on the same surface of the light guide module 13, the diffractive microstructures of the light input end 16 and the light output end 17
  • the module 13 may or may not be adjacent. As shown in FIG. 2 , the diffractive microstructures of the light input end 16 and the light output end 17 in this figure are not adjacent to each other on the light guide module 13 .
  • the diffractive microstructure of the light input end 16 in this embodiment uses the diffraction of light to couple part of the signal light emitted by the optical machine 11 into the light guide module 13, and these light beams are fully emitted in the light guide module 13 and transmitted to nearby
  • the light output end 17 of the human eye the diffraction microstructure of the light output end 17 also uses the diffraction of light to couple the light beam transmitted in the light guide module 13 out of the light guide module 13, so that the light coupled out of the light guide module 13 is incident To the human eye, an image to be displayed is formed on the retina.
  • the light guide module 13 can also be a geometric light guide.
  • the light input end 16 It has a reflective surface 18, and the light output end 17 has a multi-layer half-mirror/film 19, and the multi-layer half-mirror/film 19 are spaced apart and arranged in parallel.
  • the optical input end 16 reflects the signal light input by the optical machine 11 through the reflective surface 18, so that the input signal light propagates toward the optical output end 17, and the optical output end 17 passes through multiple A layer of half-mirror/film 19 reflects the transmitted signal light onto the retina of the human eye, thereby expanding the exit pupil of the output light and allowing the human eye to see the image to be displayed.
  • the light guide module 13 is a diffractive optical waveguide or a geometric optical waveguide
  • Part of the signal light emitted by the optical machine 11 will generate diffracted or reflected stray light on the surface of the light input end 16 of the light guide module 13 , so the optical isolator 12 is set to block the stray light from entering the light guide module.
  • the optical isolator 12 includes a quarter-wave plate 20 and a polarizing part, the quarter-wave plate 20 is attached to the polarizing part, and the quarter-wave plate 20 is located on the outgoing side of the light to be isolated, and the polarizer is located on the incident side of the light to be isolated, wherein the light to be isolated is the stray light generated by the light guide module 13.
  • the polarizer is located on the On the incident side of the stray light generated by the light guide module 13, the quarter-wave plate 20 is located on the exit side of the stray light generated by the light guide module 13, that is to say, the polarizer is located near a side of the light guide module 13 side, the quarter-wave plate 20 is located on the side away from the light guide module 13; the polarizer can be a polarizer 21 or a polarization splitting film 22 or a polarization splitting prism 23, that is to say, the light
  • the isolator 12 includes a quarter-wave plate 20 and a polarizer 21; or the optical isolator 12 includes a quarter-wave plate 20 and a polarization splitting film 22; or the optical isolator 12 includes a quarter-wave Plate 20 and polarizing beamsplitter prism 23, as shown in Figure 5-7, Figure 5 is a schematic diagram of the optical isolator 12 that is composed of a quarter wave plate 20 and a polarizing plate 21 to isolate stra
  • the r11, r21 and r31 are incident light rays of stray light
  • r12, r22 and r32 are light rays reflected by the reflective surface of stray light
  • the light has a specific polarization direction, so when it is reflected by the reflective surface 99 and is incident on the other side of the optical isolator 12 again, the polarization direction of r12 or r22 or r32 is rotated by 90 degrees by the effect of the quarter-wave plate 20, At this time, after the reflected light r12 or r22 or r32 is acted on by the quarter-wave plate 20, its polarization state is perpendicular to the polarization direction of the
  • the reflected light r12 or r22 is blocked by the polarizer 21 or the polarization splitting film 22 respectively and cannot be transmitted back to the incident direction; while the reflected light r32 is It is reflected by the polarization beam splitter 23 to other directions, so that it cannot propagate back to the incident direction, and finally achieves the effect of the optical isolator blocking stray light.
  • the optical isolator 12 may be disposed between the optical machine 11 and the light guide module 13 , and be provided with a gap between the optical machine 11 and the light guide module 13 respectively.
  • the surface of the display screen 14 of the optical machine 11 is equivalent to a reflective surface, and the polarizing part of the optical isolator 12 is arranged on the side close to the light guide module 13 (correspondingly, the quarter-wave plate 20 is the side away from the light guide module), no matter whether the light guide module 13 is a diffractive optical waveguide or a geometric optical waveguide, the isolation effect of the optical isolator 12 can be realized through the above settings .
  • the stray light generated by the light guide module 13 will first enter the polarizing part.
  • the specific principle is shown in FIG. After passing through the optical isolator 12, the light has a specific polarization direction, and when the light r42 reflected by the reflective surface 99 on the right is incident on the other side of the optical isolator 12 again, the polarization direction of the light r42 is affected by a quarter The function of a wave plate 20 is rotated by 90 degrees.
  • the polarization state of the light r42 is perpendicular to the polarization direction of the polarizer 21 in the optical isolator 12, and when the polarization state of the light is perpendicular to the polarization direction of the polarizer 21 in the optical isolator 12 When they are perpendicular to each other, the light r42 cannot pass through the optical isolator 12, so that the isolation effect of the optical isolator 12 on stray light is realized.
  • a1 is the signal light emitted by the optical machine
  • a2 is the light reflected by a1 back to the optical machine by the grating
  • a4 is the light coupled out after a1 is transmitted by the waveguide
  • b1 is the light projected again after a2 is reflected by the display screen, and the signal light a1 emitted by the optical machine 11 enters the optical isolator for the first time
  • the signal light a1 is coupled into the waveguide through the grating to form light a3, the light a3 propagates in the light guide module 13, and finally the light a4 is coupled out to the retina of the human eye through the optical output terminal , when the light a1 reflected by the grating back to the optical machine 11 is reflected on the display screen 14 of the optical machine 11, and the light b1 reflected by the display screen
  • a11 is the signal light emitted by the optical machine
  • a12 is the light reflected by a11 back to the optical machine by the waveguide
  • a13 is the light transmitted by the signal light in the waveguide
  • a14-a17 is the light output to the human eye after the signal light is transmitted by the waveguide
  • b11 is the stray light projected again after a12 is reflected by the display screen, and the light emitted by the optical machine 11
  • the signal light a11 enters the optical isolator 12 for the first time and passes through the optical isolator 12
  • the light a13 enters the light input end 16 of the light guide module 13, and passes through the multi-layer half mirror/half mirror at the light output end 17
  • Film 19 outputs light rays a14, a15, a16 and a17 to the retina of the human eye, light a12 is reflected on the display screen 14
  • the polarizing part can be arranged on the side close to the light guide module 13, or the polarizing part can be placed It is arranged on the side away from the light guide module 13. It can be understood that the stray light generated by the light guide module 13 after the above setting may first enter the polarizing part, or may first enter the quarter-wave plate 20, which The specific principle is shown in Figure 9.
  • the quarter-wave plate is located on the side close to the light guide module 13, as shown in FIG. a22 is the stray light reflected by a21 back to the optical machine by the waveguide; a23 is the light transmitted by the signal light in the waveguide; a24-a27 is the light output to the human eye after the signal light is transmitted by the waveguide; the optical machine 11
  • the outgoing signal a21 enters the optical isolator 12 for the first time and passes through the optical isolator 12
  • the light has a specific polarization direction
  • the light a23 enters the optical input end 16 of the light guide module 13, and passes through the optical output end 17
  • Multi-layer half-mirror/film 19 output light a24, a25, a26 and a27 to the retina of the human eye, when the light a22 reflected by the surface of the input end enters the other side of the optical isolator 12 again, its
  • the gap between the optical isolator 12 and the optical machine 11 and the light guide module 13 is 0-5mm, and within this range, the optical isolator 12 can Play a better isolation effect.
  • the optical isolator 12 can also be attached to the surface of the optical input end 16, the principle realized by the optical isolator 12 is the same The principle between the light machine 11 and the light guide module 13 is the same.
  • the optical isolator 12 can also be attached to the light-emitting side surface of the optical machine 11.
  • the principle realized by the optical isolator 12 is the same as that of the optical isolator 12 installed on The principle between the optical machine 11 and the light guide module 13 is the same.
  • the optical isolator 12 is disposed between the display screen 14 and the lens group 15 .
  • the surface of the display screen 14 of the optical machine 11 is equivalent to a reflective surface, when the polarizer of the optical isolator 12 is arranged on the side close to the lens group 15 (correspondingly, the quarter wave plate 20 is close to One side of the display screen 14), it can be understood that the polarizer is closer to the light guide module 13 than the quarter wave plate 20, no matter whether the light guide module 13 is a diffractive optical waveguide or a geometric optical waveguide, through the above All settings can realize the isolation function of the optical isolator 12.
  • the stray light generated by the light guide module 13 will enter the polarizing part before entering the quarter-wave plate 20 .
  • a5 is the signal light emitted by the optical machine
  • a6 is the light reflected by a5 back to the display screen by the grating
  • a8 is the light coupled out after a5 is transmitted by the waveguide
  • b2 is the light projected again after a6 is reflected by the display screen, and the signal light a5 emitted by the optical machine enters the optical isolator 12 for the first time
  • the signal light a5 is coupled into the waveguide through the grating to form a light a7
  • the light a7 propagates in the light guide module 13
  • the light a8 is coupled out through the optical output terminal to the retina of the human eye.
  • the light a33 enters the optical input end 16 of the light guide module 13 , and output the light rays a34, a35, a36 and a37 to the retina of the human eye through the multi-layer half mirror/film 19 of the light output end 17, and the light a32 is reflected to the display screen of the optical machine 11 through the surface of the light input end 16 14, when the light b31 reflected by the display screen 14 of the optical machine 11 is reflected to the other side of the optical isolator 12, its polarization direction is rotated by 90 degrees by the effect of the quarter wave plate 20.
  • the light b31 The polarization state is perpendicular to the polarization direction of the polarizer 21 or the polarization splitting film 22 or the polarization splitting prism 23 in the optical isolator 12 , and cannot pass through the optical isolator 12 .
  • the light input end 16 of the geometric light guide has a smooth surface
  • the light guide module 13 is a geometric light guide
  • the light input end 16 of the geometric light guide The surface is also equivalent to a reflective surface.
  • the polarizer is arranged on the side close to the display screen, and the quarter wave plate is then positioned close to the lens. Group 15 side.
  • a41 is the signal light emitted by the optical machine; a42 is the stray light reflected by a41 back to the optical machine by the waveguide; a43 is the light transmitted by the signal light in the waveguide; a44-a47 are the output of the signal light after being transmitted by the waveguide The light to the human eye; the signal a41 emitted by the optical machine 11 enters the optical isolator 12 for the first time.
  • the light After passing through the optical isolator 12, the light has a specific polarization direction, and the light a43 enters the light of the light guide module 13 Input terminal 16, and output light a44, a45, a46 and a47 to the retina of the human eye through the multi-layer half mirror/film 19 of the light output terminal 17, and the light a42 reflected by the surface of the input terminal enters the optical isolation again 12, its polarization direction is rotated 90 degrees by the effect of quarter-wave plate 20, and now the polarization state is perpendicular to the polarization direction of polarizer 21 in optical isolator 12 or polarization beam splitting film 22 or polarization beam splitter prism 23 , and when the polarization state of the light a42 is perpendicular to the polarization direction of the polarizer 21 in the optical isolator 12, the light a42 cannot pass through the optical isolator 12, thereby realizing the isolation effect of the optical isolator 12 on stray light.
  • the second aspect of the embodiment of the present application further provides a near-eye display device, including the optical display module described in any one of the above items.
  • this embodiment provides an optical display module, the optical display module includes an optical machine 11, an optical isolator 12, and at least one layer of light guide module 13, and the optical machine 11 is used to output wave
  • the optical machine 11 includes a display screen 14 and a lens group, the display screen 14, the lens group 15 and the light guide module 13 are arranged in sequence.
  • the light guide module 13 and the light guide module 13 An optical isolator 12 is arranged between the display screens 14, so that The stray light generated by diffraction or reflection on the light guide module 13 cannot enter the light guide module 13 due to the obstruction of the optical isolator 12, preventing the stray light from being transmitted to the retina of the human eye through the light guide module 13 and becoming the background noise of the image to be displayed , thus improving the image quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学显示模组包括光机(11)、光隔离器(12)以及至少一层导光模块(13),其中,光机(11)包括显示屏(14)和透镜组(15);显示屏(14)、透镜组(15)以及导光模块(13)依次设置,光隔离器(12)设置于导光模块(13)与显示屏(14)之间。通过在导光模块(13)与显示屏(14)之间设置光隔离器(12),使在导光模块(13)上发生衍射或反射产生的杂散光因光隔离器(12)阻隔而无法进入至导光模块(13),避免了杂散光通过导光模块(13)传输至人眼视网膜而成为待显示图像的背景噪声,从而提高了成像质量。

Description

一种光学显示模组 技术领域
本发明涉及显示装置领域,特别涉及一种光学显示模组。
背景技术
现有的光学显示模组(例如AR眼镜)包括光机和导光模块,光机包含显示屏和透镜组,用于输出波面经特殊调制的待显示信号光;导光模块包含光输入端以及光输出端,光输入端用于接收光机输出的信号光,光输出端用于将信号光输出进行显示。光机射出的信号光通过光输入端进入至导光模块中,在导光模块的光输入端与光输出端之间,信号光按照特定的路径传播,最终通过光输出端输出至人眼的视网膜上,以在视网膜上形成待显示的图像。然而,在光机射出的信号光照射到导光模块时,不可避免地在导光模块的光输入端的界面上发生衍射或反射的杂散光,该杂散光会反向入射到光机内部,并在透镜组与显示屏之间多次传播后再次射出并进入至导光模块的光输入端,最终杂散光会从导光模块的光输出端输出至人眼的视网膜上,成为待显示图像的背景噪声,影响成像质量。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种光学显示模组,以解决现有技术中的光学显示模组的杂散光进入至导光模块从而通过导光模块进入至人眼的视网膜从而影响成像质量的问题。
为了解决上述技术问题,本申请实施例第一方面提供了一种光学显示模组,所述光学显示模组包括光机、光隔离器以及至少一层导光模块,其中,所述光机包括显示屏和透镜组;所述显示屏、透镜组以及导光模块依次设置,所述光隔离器设置于所述导光模块与显示屏之间。
在一种实施方式中,所述导光模块具有光输入端以及光输出端,所述光机与光输入端相向设置,所述光输入端与所述光输出端位于所述导光模块的同一侧或不同侧。
在一种实施方式中,所述光隔离器设置于所述光机与导光模块之间,且分别与所述光机以及导光模块间隙设置,所述光隔离器分别与所述光机以及所述导光模块之间的间隙为0-5mm。
在一种实施方式中,所述光隔离器贴合设置于所述光输入端的表面。
在一种实施方式中,所述光隔离器贴合设置于所述光机的出光侧表面。
在一种实施方式中,所述光隔离器设置于所述显示屏与透镜组之间。
在一种实施方式中,所述光隔离器包括四分之一波片与偏振部,所述四分之一波片与所述偏振部贴合设置,所述偏振部位于待隔离光线的入射侧,所述四分之一波片位于待隔离光线的出射侧。
在一种实施方式中,所述偏振部为偏振片或偏振分光薄膜或偏振分光棱镜。
在一种实施方式中,所述导光模块为衍射光波导或几何光波导。
本申请实施例第二方面还提供了一种近眼显示装置,包括如上任一项所述的光学显示模组。
有益效果:本发明通过在导光模块与显示屏之间设置光隔离器,使在导光模块上发生衍射或反射产生的杂光因光隔离器阻隔而无法进入至导光模块,避免了杂散光通过导光模块传输至人眼视网膜而成为待显示图像的背景噪声,从而提高了成像质量。
附图说明
图1为本发明提供一种光学显示模组的结构示意图;
图2为本发明提供一种光学显示模组的结构示意图,其中导光模块为衍射光波导且光隔离器设置于导光模块与光机之间;
图3为本发明提供一种光学显示模组的结构示意图,其中导光模块为几何光波导且光隔离器设置于导光模块与光机之间;
图4为本发明提供一种光学显示模组的结构示意图,其中导光模块为几何光波导 且光隔离器设置于导光模块与光机之间;
图5为本发明提供一种光学显示模组中四分之一波片与偏振片组成的光隔离器隔离杂散光的原理图;
图6为本发明提供一种光学显示模组中四分之一波片与偏振分光薄膜组成的光隔离器隔离杂散光的原理图;
图7为本发明提供一种光学显示模组中四分之一波片与偏振分光棱镜组成的光隔离器隔离杂散光的原理图;
图8为本发明提供一种光学显示模组中仅有一端为反射面时的光隔离器隔离杂散光的原理图;
图9为本发明提供一种光学显示模组中两端均为反射面时的光隔离器隔离杂散光的原理图;
图10为本发明提供一种光学显示模组中具有多层导光模块的结构示意图;
图11为本发明提供一种光学显示模组中导光模块为衍射光波导且光隔离器设置于显示屏与透镜组之间的结构示意图;
图12为本发明提供一种光学显示模组中导光模块为几何光波导且光隔离器设置于显示屏与透镜组之间的一种结构示意图;
图13为本发明提供一种光学显示模组中导光模块为几何光波导且光隔离器设置于显示屏与透镜组之间的另一种结构示意图。
具体实施方式
本发明提供一种光学显示模组,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接连接到另一个部件或者间接连接至该另一个部件上。
还需说明的是,本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此,附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
本实施例第一方面提供了一种光学显示模组,所述光学显示模组包括光机11、光隔离器12以及至少一层导光模块13,所述光机11用于输出波面经特殊调制的待显示信号光,其中,所述光机11包括显示屏14以及透镜组15,所述显示屏14、透镜组15以及导光模块13依次设置,如图1所示,图1中带有箭头的实线为信号光;带有箭头的虚线为信号光因受导光模块13的输入界面衍射或反射产生的杂散光。所述光机11出射的信号光照射至导光模块13上,并通过导光模块13输出至人眼的视网膜上,以在视网膜上形成待显示的图像,由于将光机11出射的信号光照射到导光模块13时,不可避免地在导光模块13的界面上发生衍射或反射的杂散光,本实施例通过在导光模块13与显示屏14之间设置光隔离器12,使在导光模块13的输入界面上发生衍射或反射产生的杂散光因光隔离器12阻隔而无法进入至导光模块13,避免了杂散光通过导光模块13传输至人眼视网膜而成为待显示图像的背景噪声,从而提高了成像质量。
在本实施例的一种实施方式中,所述导光模块13可以设置为多个,其中多个导光模块13之间平行放置,如图10所示,多层导光模块是由多片单层导光模块13堆叠拼接而成,每层导光模块13的输入端通常形状大小相同且处于相同位置,每层导光模块13的输出端通常也具有相同的形状大小和位置;其中,所述光机11出射的信号光分别 照射至每层导光模块13上,并通过每层导光模块13输出至人眼的视网膜上,以在视网膜上形成待显示的图像。
在本实施例的一种实施方式中,所述导光模块13具有光输入端16以及光输出端17,所述光输入端16设置于导光模块13表面靠近光机11处的区域,所述光机11与光输入端16相向设置,所述光输出端17设置于靠近人眼观看的区域,所述光输入端16与光输出端17为两个空间区域,所述光输入端16与所述光输出端17位于所述导光模块13的同一侧或不同侧。
在本实施例的一种实施方式中,如图2所示,所述导光模块13可以为衍射光波导,当所述导光模块13为衍射光波导时,所述光输入端16与光输出端17的表面设有衍射微结构(图中未示出),其中,所述光输入端16和光输出端17表面的衍射微结构可以在导光模块13的同一表面,也可以分别位于导光模块13的两个表面,当光输入端16与光输出端17的衍射微结构位于导光模块13的同一表面时,所述光输入端16与光输出端17的衍射微结构在导光模块13上可以是邻接的,也可以不邻接,如图2所示,该图中的光输入端16与光输出端17的衍射微结构在导光模块13上为不邻接。本实施例中的光输入端16的衍射微结构利用光的衍射,将光机11射出的部分信号光耦合入导光模块13内,这些光束在导光模块13内发生全发射并传输至靠近人眼的光输出端17,所述光输出端17的衍射微结构同样利用光的衍射将导光模块13内传输的光束耦合出导光模块13,从而使得耦合出导光模块13的光入射至人眼,在视网膜上形成待显示的图像。
在本实施例的另一种实施方式中,如图3所示,所述导光模块13还可以为几何光波导,当所述导光模块13为几何光波导时,所述光输入端16具有反射面18,所述光输出端17具有多层半透半反镜/膜19,所述多层半透半反镜/膜19之间依次间隔且平行设置。在本实施例中,所述光输入端16通过反射面18对光机11输入的信号光进行反射,使得输入的信号光朝着所述光输出端17传播,所述光输出端17通过多层半透半反镜/膜19将传播来的信号光反射入人眼的视网膜上,从而实现输出光的出瞳扩展,使人眼看到待显示的图像。
在本实施例的一种实施方式中,无论导光模块13为衍射光波导还是为几何光波导, 光机11出射的部分信号光均会在导光模块13的光输入端16的表面产生衍射或反射的杂散光,因此设置光隔离器12阻隔杂散光进入至导光模块中。在本实施例中,所述光隔离器12包括四分之一波片20与偏振部,所述四分之一波片20与所述偏振部贴合设置,所述四分之一波片20位于待隔离光线的出射侧,所述偏振部位于待隔离光线的入射侧,其中,所述待隔离光线为所述导光模块13产生的杂散光,可以理解的是,所述偏振部位于导光模块13产生的杂散光的入射侧,所述四分之一波片20位于导光模块13产生的杂散光的出射侧,也就是说,所述偏振部位于靠近导光模块13的一侧,所述四分之一波片20位于远离所述导光模块13的一侧;所述偏振部可以为偏振片21或偏振分光薄膜22或偏振分光棱镜23,也就是说,所述光隔离器12包括四分之一波片20与偏振片21;或者所述光隔离器12包括四分之一波片20与偏振分光薄膜22;或者所述光隔离器12包括四分之一波片20与偏振分光棱镜23,如图5-7所示,图5为四分之一波片20与偏振片21组成的光隔离器12隔离杂散光的原理图,图6为四分之一波片20与偏振分光薄膜22组成的光隔离器12隔离杂散光的原理图,图7为四分之一波片20与偏振分光棱镜23组成的光隔离器12隔离杂散光的原理图,其中,所述r11、r21与r31为杂散光入射光线,r12、r22与r32为杂散光被反射面反射后的光线,当r11或r21或r31首次入射光隔离器12的光线透过光隔离器后,光线具有特定的偏振方向,从而经反射面99反射后再次入射到光隔离器12的另一面时,r12或r22或r32的偏振方向受到四分之一波片20的作用旋转了90度,此时反射后的光线r12或r22或r32经四分之一波片20作用后,其偏振状态与光隔离器中的偏振片21或偏振分光薄膜22或偏振分光棱镜23的偏振方向相垂直,因此无法通过光隔离器12,有图5-7可知,被反射后的光线r12或r22是分别被偏振片21或偏振分光薄膜22阻隔而无法传播回入射方向;而被反射后的光线r32是被偏振分光棱镜23反射至其他方向,从而无法传播回入射方向,最终实现光隔离器阻隔杂散光的效果。
在本实施例的一种实施方式中,所述光隔离器12可以设置于所述光机11与导光模块13之间,且分别与所述光机11以及导光模块13间隙设置。所述光机11的显示屏14的表面相当于一反射面,并将所述光隔离器12的偏振部设置于靠近导光模块13的一侧 时(相应地,四分之一波片20为远离导光模块的一侧),无论导光模块13为衍射光波导或是几何光波导,通过上述设置都能实现光隔离器12的隔离作用。可以理解的是,上述设置后所述导光模块13产生的杂散光会先进入至偏振部,其具体原理如图8所示,当首次光线r41从偏振片21那端射进时,光线r41透过光隔离器12后,光线具有特定的偏振方向,经右侧的反射面99反射后的光线r42再次入射到光隔离器12的另一面时,所述光线r42的偏振方向受四分之一波片20的作用旋转90度,此时光线r42的偏振状态与光隔离器12中的偏振片21偏振方向相垂直,而当光线的偏振状态与光隔离器12中的偏振片21偏振方向相垂直时,该光线r42则无法通过光隔离器12,从而实现光隔离器12对杂散光的隔离效果。
在实际应用中,当所述导光模块13为衍射光波导时,如图2所示,a1为光机出射的信号光;a2为a1被光栅反射回光机的光线;a3为a1被光栅耦入波导内的光线;a4为a1被波导传输后耦出的光线;b1为a2被显示屏反射后再次投出的光线,所述光机11出射的信号光a1首次入射所述光隔离器12的光线透过光隔离器12后,信号光a1通过光栅耦入波导内形成光线a3,光线a3在导光模块13内传播,最后通过光输出端耦出光线a4耦出至人眼的视网膜,当a1被光栅反射回光机11的光线a2反射至光机11的显示屏14上,所述光机11的显示屏14反射的光线b1反射到光隔离器12的另一面时,所述光线b1的偏振方向受四分之一波片20的作用旋转了90度,此时光线b1的偏振状态与光隔离器12中的偏振片21或偏振分光薄膜22或偏振分光棱镜23偏振方向相垂直,因此无法通过光隔离器12;当所述导光模块13为几何光波导时,如图3所示,a11为光机出射的信号光;a12为a11被波导反射回光机的光线;a13为信号光在波导内传输的光线;a14-a17为信号光被波导传输后输出到人眼的光线;b11为a12被显示屏反射后再次投出的杂散光,所述光机11出射的信号光a11首次入射所述光隔离器12的光线透过光隔离器12后,光线a13进入至导光模块13的光输入端16,并通过光输出端17的多层半透半反镜/膜19输出光线a14、a15、a16以及a17至人眼的视网膜,光线a12经光输入端16的表面反射至光机11的显示屏14上,所述光机11的显示屏14反射的光线b11反射到光隔离器12的另一面时,其偏振方向受四分之一波片20的作用旋转了90 度,此时光线b11的偏振状态与光隔离器12中的偏振片21或偏振分光薄膜22或偏振分光棱镜23偏振方向相垂直,无法通过光隔离器12。
另外,在本实施例的一种方式中,由于几何光波导的光输入端16具有光滑表面,因此,所述导光模块13为几何光波导时,光机11的显示屏14的表面相当于一反射面,而几何光波导的光输入端16的表面也相当于一反射面,那么对于几何光波导而言,可以将偏振部设置于靠近导光模块13的一侧,也可以将偏振部设置于远离导光模块13的一侧,可以理解的是,上述设置后所述导光模块13产生的杂散光可能先进入至偏振部,也可能先进入至四分之一波片20,其具体原理如图9所示,当光线r51从四分之一波片20那端射进时,光线r51透过光隔离器12后,在左侧的反射面99产生的光线r52从偏振片21侧进入至光隔离器12,光线r52透过光隔离器12后,光线具有特定的偏振方向,再经右侧的反射面99反射后的光线r53再次入射到光隔离器12时,所述光线r53的偏振方向受四分之一波片20的作用旋转90度,此时所述光线r53的偏振状态与光隔离器12中的偏振片21偏振方向相垂直,而当光线的偏振状态与光隔离器12中的偏振片21偏振方向相垂直时,该光线则无法通过光隔离器12,从而实现光隔离器12对杂散光的隔离效果。
在实际应用中,当将光隔离器12的偏振部远离导光模块13时,所述四分之一波片位于靠近导光模块13的一侧,如图4所示,a21为光机出射的信号光;a22为a21被波导反射回光机的杂散光;a23为信号光在波导内传输的光线;a24-a27为信号光被波导传输后输出到人眼的光线;所述光机11出射的信号a21首次入射所述光隔离器12的光线透过光隔离器12后,光线具有特定的偏振方向,光线a23进入至导光模块13的光输入端16,并通过光输出端17的多层半透半反镜/膜19输出光线a24、a25、a26以及a27至人眼的视网膜,经输入端表面反射后的光线a22再次入射到光隔离器12的另一面时,其偏振方向受四分之一波片20的作用旋转了90度,此时偏振状态与光隔离器12中的偏振片21或偏振分光薄膜22或偏振分光棱镜23偏振方向相垂直,而当光线a22的偏振状态与光隔离器12中的偏振片21偏振方向相垂直时,该光线a22则无法通过光隔离器12,从而实现光隔离器12对杂散光的隔离效果。
在本实施例的一种实施方式中,所述光隔离器12分别与所述光机11以及导光模块13之间的间隙为0-5mm,在该范围内,所述光隔离器12能起到较好的隔离效果。
在本实施例的另一种实施方式中,所述光隔离器12还可以贴合设置于所述光输入端16的表面,所述光隔离器12实现的原理与光隔离器12设置于所述光机11与导光模块13之间的原理是一样的。
在本实施例的再一种实施方式中,所述光隔离器12还可以贴合设置于所述光机11的出光侧表面,所述光隔离器12实现的原理与光隔离器12设置于所述光机11与导光模块13之间的原理是一样的。
在本实施例的又一种实施方式中,所述光隔离器12设置于所述显示屏14与透镜组15之间。所述光机11的显示屏14的表面相当于一反射面,将所述光隔离器12的偏振部设置于靠近透镜组15的一侧时(相应地,四分之一波片20为靠近显示屏14的一侧),可以理解的是,所述偏振部相对于四分之一波片20更靠近导光模块13,无论导光模块13为衍射光波导或是几何光波导,通过上述设置都能实现光隔离器12的隔离作用。可以理解的是,上述设置后所述导光模块13产生的杂散光会比进入四分之一波片20更先进入至偏振部。在实际应用中,当所述导光模块13为衍射光波导时,如图11所示,a5为光机出射的信号光;a6为a5被光栅反射回显示屏的光线;a7为a5被光栅耦入波导内的光线;a8为a5被波导传输后耦出的光线;b2为a6被显示屏反射后再次投出的光线,所述光机出射的信号光a5首次入射所述光隔离器12的光线透过光隔离器12后,信号光a5通过光栅耦入波导内形成光线a7,光线a7在导光模块13内传播,最后通过光输出端耦出光线a8耦出至人眼的视网膜,当a5被光栅反射回光机的光线a6反射至光机11的显示屏14上,所述光机11的显示屏14反射的光线b2反射到光隔离器12的另一面时,所述光线b2的偏振方向受四分之一波片20的作用旋转了90度,此时光线b2的偏振状态与光隔离器12中的偏振片21或偏振分光薄膜22或偏振分光棱镜23偏振方向相垂直,因此无法通过光隔离器12;当所述导光模块13为几何光波导时,如图12所示,a31为光机出射的信号光;a32为a31被波导反射回光机的光线;a33为信号光在波导内传输的光线;a34-a37为信号光被波导传输后输出到人眼的光线;b31为a32被显示屏反 射后再次投出的杂散光,所述光机11出射的信号光a31首次入射所述光隔离器12的光线透过光隔离器12后,光线a33进入至导光模块13的光输入端16,并通过光输出端17的多层半透半反镜/膜19输出光线a34、a35、a36以及a37至人眼的视网膜,光线a32经光输入端16的表面反射至光机11的显示屏14上,所述光机11的显示屏14反射的光线b31反射到光隔离器12的另一面时,其偏振方向受四分之一波片20的作用旋转了90度,此时光线b31的偏振状态与光隔离器12中的偏振片21或偏振分光薄膜22或偏振分光棱镜23偏振方向相垂直,无法通过光隔离器12。
另外,在本实施例的一种方式中,由于几何光波导的光输入端16具有光滑表面,因此,所述导光模块13为几何光波导时,所述几何光波导的光输入端16的表面也相当于一反射面,当将所述几何光波导的光输入端16的表面作为反射面时,将偏振部设置于靠近显示屏的一侧,那么四分之一波片则位于靠近透镜组15的一侧。如图13所示,a41为光机出射的信号光;a42为a41被波导反射回光机的杂散光;a43为信号光在波导内传输的光线;a44-a47为信号光被波导传输后输出到人眼的光线;所述光机11出射的信号a41首次入射所述光隔离器12的光线透过光隔离器12后,光线具有特定的偏振方向,光线a43进入至导光模块13的光输入端16,并通过光输出端17的多层半透半反镜/膜19输出光线a44、a45、a46以及a47至人眼的视网膜,经输入端表面反射后的光线a42再次入射到光隔离器12时,其偏振方向受四分之一波片20的作用旋转了90度,此时偏振状态与光隔离器12中的偏振片21或偏振分光薄膜22或偏振分光棱镜23偏振方向相垂直,而当光线a42的偏振状态与光隔离器12中的偏振片21偏振方向相垂直时,该光线a42则无法通过光隔离器12,从而实现光隔离器12对杂散光的隔离效果。
本申请实施例第二方面还提供了一种近眼显示装置,包括如上任一项所述的光学显示模组。
综上所述,本实施例提供了一种光学显示模组,所述光学显示模组包括光机11、光隔离器12以及至少一层导光模块13,所述光机11用于输出波面经特殊调制的待显示信号光,所述光机11包括显示屏14以及透镜组,所述显示屏14、透镜组15以及导光模块13依次设置,本实施例通过在导光模块13与显示屏14之间设置光隔离器12,使在 导光模块13上发生衍射或反射产生的杂光因光隔离器12阻隔而无法进入至导光模块13,避免了杂散光通过导光模块13传输至人眼视网膜而成为待显示图像的背景噪声,从而提高了成像质量。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光学显示模组,其特征在于,所述光学显示模组包括光机、光隔离器以及至少一层导光模块,其中,所述光机包括显示屏和透镜组;所述显示屏、透镜组以及导光模块依次设置,所述光隔离器设置于所述导光模块与显示屏之间。
  2. 根据权利要求1所述的光学显示模组,其特征在于,所述导光模块具有光输入端以及光输出端,所述光机与光输入端相向设置,所述光输入端与所述光输出端位于所述导光模块的同一侧或不同侧。
  3. 根据权利要求2所述的光学显示模组,其特征在于,所述光隔离器设置于所述光机与导光模块之间,且分别与所述光机以及导光模块间隙设置,所述光隔离器分别与所述光机以及所述导光模块之间的间隙为0-5mm。
  4. 根据权利要求3所述的光学显示模组,其特征在于,所述光隔离器贴合设置于所述光输入端的表面。
  5. 根据权利要求3所述的光学显示模组,其特征在于,所述光隔离器贴合设置于所述光机的出光侧表面。
  6. 根据权利要求2所述的光学显示模组,其特征在于,所述光隔离器设置于所述显示屏与透镜组之间。
  7. 根据权利要求1所述的光学显示模组,其特征在于,所述光隔离器包括四分之一波片与偏振部,所述四分之一波片与所述偏振部贴合设置,所述偏振部位于待隔离光线的入射侧,所述四分之一波片位于待隔离光线的出射侧。
  8. 根据权利要求7所述的光学显示模组,其特征在于,所述偏振部为偏振片或偏振分光薄膜或偏振分光棱镜。
  9. 根据权利要求1所述的光学显示模组,其特征在于,所述导光模块为衍射光波导或几何光波导。
  10. 一种近眼显示装置,其特征在于,包括权利要求1~9任一项所述的光学显示模组。
PCT/CN2023/073016 2022-01-27 2023-01-18 一种光学显示模组 WO2023143332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103710.1A CN114355501A (zh) 2022-01-27 2022-01-27 一种光学显示模组
CN202210103710.1 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023143332A1 true WO2023143332A1 (zh) 2023-08-03

Family

ID=81093660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073016 WO2023143332A1 (zh) 2022-01-27 2023-01-18 一种光学显示模组

Country Status (2)

Country Link
CN (1) CN114355501A (zh)
WO (1) WO2023143332A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355501A (zh) * 2022-01-27 2022-04-15 珠海莫界科技有限公司 一种光学显示模组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377036A (en) * 1992-12-10 1994-12-27 Xerox Corporation Suppression of stray light reflections in a raster output scanner (ROS) using an overfilled polygon design
US20180039065A1 (en) * 2015-02-16 2018-02-08 Telepathy Japan Inc. Linearly disposed eyepiece video display
US20180113309A1 (en) * 2016-10-26 2018-04-26 Microsoft Technology Licensing, Llc Field of view tiling in waveguide-based near-eye displays
CN109239926A (zh) * 2018-10-29 2019-01-18 京东方科技集团股份有限公司 显示装置及其显示方法、显示设备
CN111448505A (zh) * 2018-10-12 2020-07-24 谷歌有限责任公司 具有偏振波导的近眼系统
WO2021119021A2 (en) * 2019-12-13 2021-06-17 Google Llc Near-eye optical system implementing a waveguide with an output viewer element having a refractive beam-splitting convex lens
CN113900182A (zh) * 2021-10-14 2022-01-07 Oppo广东移动通信有限公司 光学装置及头戴式显示设备
CN114355501A (zh) * 2022-01-27 2022-04-15 珠海莫界科技有限公司 一种光学显示模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274728A (ja) * 1996-04-03 1997-10-21 Matsushita Electric Ind Co Ltd 光ピックアップ装置
WO2020205101A1 (en) * 2019-03-29 2020-10-08 Apple Inc. Electronic device displays with holographic angular filters
CN213780422U (zh) * 2020-11-04 2021-07-23 歌尔股份有限公司 用于抑制杂散光的衍射光波导镜片及头戴显示设备
CN112505925A (zh) * 2020-12-08 2021-03-16 谷东科技有限公司 一种紧凑型增强现实近眼装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377036A (en) * 1992-12-10 1994-12-27 Xerox Corporation Suppression of stray light reflections in a raster output scanner (ROS) using an overfilled polygon design
US20180039065A1 (en) * 2015-02-16 2018-02-08 Telepathy Japan Inc. Linearly disposed eyepiece video display
US20180113309A1 (en) * 2016-10-26 2018-04-26 Microsoft Technology Licensing, Llc Field of view tiling in waveguide-based near-eye displays
CN111448505A (zh) * 2018-10-12 2020-07-24 谷歌有限责任公司 具有偏振波导的近眼系统
CN109239926A (zh) * 2018-10-29 2019-01-18 京东方科技集团股份有限公司 显示装置及其显示方法、显示设备
WO2021119021A2 (en) * 2019-12-13 2021-06-17 Google Llc Near-eye optical system implementing a waveguide with an output viewer element having a refractive beam-splitting convex lens
CN113900182A (zh) * 2021-10-14 2022-01-07 Oppo广东移动通信有限公司 光学装置及头戴式显示设备
CN114355501A (zh) * 2022-01-27 2022-04-15 珠海莫界科技有限公司 一种光学显示模组

Also Published As

Publication number Publication date
CN114355501A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
JP3226588U (ja) コンパクトなコリメーティング画像プロジェクターを備える光学システム
US10996475B2 (en) Arrayed waveguide, display device and spectacles device
US7518662B2 (en) Contrast enhancement for liquid crystal based projection systems
US9740017B2 (en) Optical polarisation device for a stereoscopic image projector
KR20210031705A (ko) 편광 내부 반사기를 사용하는 광 가이드 광학 요소
KR20200040304A (ko) 증강 현실 디스플레이
US11740536B2 (en) Compact polarization-based multi-pass optical architectures
JP2009545773A (ja) 形態複屈折型偏光ビームスプリッタを用いたLCoSプロジェクションシステム用の補償スキーム
FI129873B (en) Diffractive display, light guide element and projector, and method of displaying image
WO2023143332A1 (zh) 一种光学显示模组
TW202131053A (zh) 採用散光光學器件和像差補償的顯示器
JP5386101B2 (ja) 液晶ディスプレイ・プロジェクション・システムおよび液晶ディスプレイ・プロジェクション・システムにおけるコントラスト比を改善する方法
JP2001166252A (ja) 画像表示装置
JP3524569B2 (ja) 視覚表示装置
CN116360106A (zh) 一种自由曲面波导系统及近眼显示装置
WO2023001153A1 (zh) 波导结构和头戴显示设备
TWI439732B (zh) 立體顯示裝置
US20220113549A1 (en) Compact collimated image projector
CN111650758B (zh) 一种分光模块及波导显示结构
TWI769448B (zh) 投射立體影像之投影裝置
TWI690729B (zh) 近眼顯示裝置
CN220455604U (zh) 一种抬头显示装置
US20230161163A1 (en) Optical device
JP2024505820A (ja) リターダ素子を有する2次元拡張用導光光学素子を含む光学系
CN117647895A (zh) 光学模组以及近眼显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746213

Country of ref document: EP

Kind code of ref document: A1