WO2023143201A1 - 筒节工装、筒节、塔筒及其施工方法 - Google Patents

筒节工装、筒节、塔筒及其施工方法 Download PDF

Info

Publication number
WO2023143201A1
WO2023143201A1 PCT/CN2023/072423 CN2023072423W WO2023143201A1 WO 2023143201 A1 WO2023143201 A1 WO 2023143201A1 CN 2023072423 W CN2023072423 W CN 2023072423W WO 2023143201 A1 WO2023143201 A1 WO 2023143201A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrel
tower
prefabricated
section
concrete
Prior art date
Application number
PCT/CN2023/072423
Other languages
English (en)
French (fr)
Inventor
宋江毅
李梦媛
杨伟
严勇
陈彬毅
Original Assignee
深圳国金电力新能设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳国金电力新能设计院有限公司 filed Critical 深圳国金电力新能设计院有限公司
Publication of WO2023143201A1 publication Critical patent/WO2023143201A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/16Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes
    • B28B7/18Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes the holes passing completely through the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0002Auxiliary parts or elements of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0002Auxiliary parts or elements of the mould
    • B28B7/0014Fastening means for mould parts, e.g. for attaching mould walls on mould tables; Mould clamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the disclosure relates to the technical field of tower tube construction, in particular to a tube joint tooling, a tube joint, a tower tube and a construction method thereof.
  • the rigid towers of existing wind turbines on the market are all prefabricated concrete towers.
  • this construction process requires investment in the construction of a large number of prefabricated component production plants and molds necessary for component production, which is costly and requires a lot of labor.
  • molds for fully precast concrete towers often the appearance of a product cannot be changed at will, because every change means investment in molds.
  • the diameter of the bottom of the fully precast concrete high tower is generally large.
  • the pipe joints at the bottom of the tower are formed by splicing two to three prefabricated segments.
  • the design of splicing joints leads to discontinuous stress at the vertical joints of segments, and only a simple connection structure can increase the resistance, resulting in low reliability of the tower.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiment of the present disclosure proposes a barrel joint tooling with reasonable structural design, convenient assembly of the barrel joint, and good construction effect.
  • Embodiments of the present disclosure also provide a barrel joint.
  • Embodiments of the present disclosure also provide a tower.
  • Embodiments of the present disclosure also propose a tower construction method.
  • the embodiment of the present disclosure provides a barrel joint tooling, including: a bottom mold and a fixing assembly, the fixing assembly is detachably installed on the bottom mold, the fixing assembly includes a plurality of longitudinal connecting parts and a plurality of a plurality of horizontal connecting parts, a plurality of the longitudinal connecting parts are vertically arranged on the bottom mold and arranged at intervals along the circumference of the bottom mold, a plurality of the horizontal connecting parts are connected to each other and form a regular polygonal structure, each Each of the transverse connecting parts is respectively connected with two adjacent vertical connecting parts to form a mounting position, and the mounting position is used for assembling the cylinder section.
  • the barrel joint tooling of the embodiment of the present disclosure since the bottom form and the fixing assembly are detachably connected, and the longitudinal connecting parts and the transverse connecting parts are connected to each other to form an installation position of a regular polygonal structure, multiple prefabricated concrete forms can be combined with the The installation positions are connected to assemble the barrel section, so that the barrel section tooling of the embodiment of the present disclosure can directly transport the barrel section tooling to the machine site or assembly yard for reassembly, which reduces transportation and manufacturing costs, and is implemented through the present disclosure barrel joint tooling
  • the fabricated tube section has the advantages of double-sided laminated shear wall structure, high safety and reliability, reasonable structural design, convenient assembly of the tube section, and good construction effect.
  • the bottom mold includes a plurality of bottom mold units, and the plurality of bottom mold units are arranged at intervals along the circumferential direction of the fixing assembly to form the bottom mold.
  • At least one of the longitudinal connecting members and the transverse connecting members is a truss structure.
  • the distance of the transverse connecting member along its length direction is adjustable.
  • the fixing assembly further includes a plurality of adjustment parts, the plurality of adjustment parts respectively correspond to the plurality of installation positions, one end of the adjustment part is connected to the longitudinal connection part or the horizontal connection The parts are connected, and the other end of the adjusting part is adapted to be connected with the prefabricated concrete formwork of the cylinder section, so as to adjust the inclination angle of the prefabricated concrete formwork.
  • the adjustment component includes a threaded sleeve, a first connecting rod and a second connecting rod, the first connecting rod and the second connecting rod are respectively arranged at both ends of the threaded sleeve and connected to the The threaded sleeve is screwed together, the end of the first connecting rod away from the threaded sleeve is hinged to the longitudinal connecting member, and the end of the second connecting rod away from the threaded sleeve is hinged to the prefabricated concrete formwork.
  • the barrel joint tooling further includes a plurality of concrete piers arranged at intervals along the circumference of the bottom form.
  • the installation position is located on the inner peripheral side of the regular polygonal structure surrounded by the transverse connection parts, and/or, the installation position is located on the side of the regular polygonal structure surrounded by the transverse connection parts peripheral side.
  • the regular polygonal structure is a regular hexagonal structure, a regular heptagonal structure, a regular octagonal structure, a regular nonagonal structure, a regular decagonal structure, a regular eleven-sided structure, and a regular dodecagonal structure. any one of the structures.
  • an embodiment of the present disclosure provides a barrel joint made of the barrel joint tooling described in any embodiment of the first aspect of the present disclosure.
  • the cylinder joint made by the cylinder joint tooling of the above embodiment has the advantages of double-sided laminated shear wall structure, high safety and reliability, reasonable structural design, and convenient construction. Sectional assembly, the construction effect is better.
  • the barrel section includes a plurality of prefabricated concrete formworks, and the plurality of prefabricated concrete formworks are suitable for being connected with a plurality of the installation positions and closed to form a regular polygonal structure, each of the prefabricated concrete formworks It includes two prefabricated wall panels arranged at intervals, there is an accommodation cavity between the two prefabricated wall panels, the accommodation cavities of a plurality of the prefabricated concrete formworks are connected to each other, the accommodating cavities are filled with concrete, and all the accommodating cavities Concrete hardens together.
  • corner forms are provided at the joints of the two adjacent prefabricated wall panels, and the corner forms extend from top to bottom along the joints.
  • the cylinder section includes a first cylinder section and a second cylinder section, and the first cylinder section A positioning plate is provided on one of the second cylinder section and a positioning groove is provided on the other, and the positioning plate fits in the positioning groove.
  • an embodiment of the present disclosure provides a tower, including a plurality of barrel sections, the barrel sections are the barrel sections described in any embodiment of the second aspect of the present disclosure, and the plurality of barrel sections are sequentially arranged from bottom to top Connect to predetermined altitude.
  • the barrel section includes a first barrel section and a second barrel section, one of the first barrel section and the second barrel section is provided with a positioning plate, and the other is provided with a A positioning slot, the positioning plate fits in the positioning slot.
  • a leveling gasket is provided between the positioning plate and the positioning groove.
  • the tower further includes steel bars poured in concrete, a part of the steel bars is arranged in the first barrel section, and another part of the steel bars is arranged in the second barrel section.
  • an epoxy resin bonding layer is provided between adjacent barrel sections.
  • an embodiment of the present disclosure provides a construction method for a tower tube.
  • the construction method for a tower tube includes the following steps:
  • S1 Provide prefabricated concrete forms, each of which includes two prefabricated wall panels arranged at intervals and a corner form connecting the two prefabricated wall panels. There is an accommodation space between the two prefabricated wall panels.
  • the prefabricated concrete formwork is assembled to the installation position of the barrel joint tool to form a regular polygon structure, and the accommodation spaces of a plurality of the prefabricated concrete formworks are connected to each other;
  • the embodiments of the present disclosure provide a tower construction method, using the pipe joint tooling described in any embodiment of the first aspect of the present disclosure, the tower construction method includes the following steps:
  • S1 Provide prefabricated concrete forms, each of which includes two prefabricated wall panels arranged at intervals and a corner form connecting the two prefabricated wall panels. There is an accommodation space between the two prefabricated wall panels.
  • the prefabricated concrete formwork is connected to the installation position of the barrel joint tool to form a regular polygon structure, and the accommodation spaces of a plurality of the prefabricated concrete formworks are connected to each other to form a preinstalled barrel section;
  • S4 Fill sealant between the pre-installed barrel section and the prepared barrel section, and pour concrete into the accommodation space. After the concrete is solidified, the pre-installed barrel section is connected to the lower end barrel section as one;
  • the prefabricated prefabricated wall panels are fully combined with the cast-in-place concrete to form a pipe joint as a whole, which ensures the continuity of the stress of each segment.
  • the tower structure built by the section is safer and more reliable; and the appearance of the section can be flexible and changeable, regardless of the brand and model of the wind power host, it can be flexibly adjusted.
  • prefabricated concrete formwork as the raw material for the construction of the tower tube, it is no longer necessary to construct the tube
  • the cost of prefabricated concrete formwork is low, which greatly speeds up the construction speed of the tower and saves the construction cost at the same time.
  • Fig. 1 is a schematic diagram of the installation of the barrel joint tool and the barrel joint according to the embodiment of the present disclosure.
  • Fig. 2 is an enlarged view of A in Fig. 1 .
  • Fig. 3 is an installation sectional view of the barrel joint tooling and the barrel joint of the embodiment of the present disclosure.
  • Fig. 4 is a top view of the installation of the barrel joint tool and the barrel joint according to the embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of the longitudinal connecting parts of the barrel joint tooling according to the embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of an adjustment component of the barrel joint tool according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of the bottom mold of the barrel joint tool according to the embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of the bottom mold unit of the barrel joint tool according to the embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a cornea of a barrel joint tooling according to an embodiment of the present disclosure.
  • Fig. 10 is a partial schematic diagram of a tower of an embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of the installation of the positioning plate and the positioning groove of the barrel joint tool according to the embodiment of the present disclosure.
  • Tube joint tooling 20. Tube joint;
  • Positioning component 71. Positioning plate; 72. Positioning groove; 73. Leveling gasket.
  • the barrel joint tooling 10 includes: a bottom mold 1 and a fixing assembly 2, the fixing The fixed assembly 2 is detachably installed on the bottom mold 1, and the fixed assembly 2 includes a plurality of longitudinal connecting parts 21 and a plurality of transverse connecting parts 22, and a plurality of longitudinal connecting parts 21 are vertically arranged on the bottom mold 1 and along the bottom mold 1.
  • a plurality of transverse connecting parts 22 are connected to each other and form a regular polygonal structure, and each transverse connecting part 22 is connected to two adjacent longitudinal connecting parts 21 to form a mounting position 23, which is used for Assemble barrel section 20.
  • the barrel joint tooling 10 of the embodiment of the present disclosure since the bottom mold 1 and the fixing assembly 2 are detachably connected, and the longitudinal connecting parts 21 and the transverse connecting parts 22 are connected to each other to form an installation position 23 of a regular polygonal structure, the A plurality of prefabricated concrete forms 4 are connected to the installation position 23 to assemble the barrel section 20, so that the barrel section tooling 10 of the embodiment of the present disclosure can be directly transported to the machine site or assembly yard for reassembly, reducing transportation and manufacturing costs , and the barrel section 20 made by the barrel section tooling 10 of the embodiment of the present disclosure has the advantages of a double-sided laminated shear wall structure, high safety and reliability, and a reasonable structural design, which facilitates the assembly of the barrel section 20, The construction effect is better.
  • the barrel section tooling 10 of the embodiment of the present disclosure makes the prefabricated concrete formwork 4 of the barrel section 20 into a whole through cast-in-place concrete, which ensures the continuity of the force of each precast concrete formwork 4,
  • the structure of the tower is made safer and more reliable.
  • the size of the tower can be adjusted according to the project situation. In the case of a site with narrow roads, its width can be controlled within the range allowed by the road.
  • the parts of the barrel joint tool 10 in the embodiment of the present disclosure are small in size and can be transported to a machine location or an assembly yard for reassembly, which improves the flexibility of the barrel joint tool 10 in use. Therefore, the barrel joint tool 10 of the embodiment of the present disclosure has the advantages of reducing investment cost, reducing road transportation volume, high flexibility, matching with different wind power hosts, safer products, and utilizing the industrial chain and production capacity of the real estate industry.
  • the bottom mold 1 includes a plurality of bottom mold units 11 , and the plurality of bottom mold units 11 are arranged at intervals along the circumferential direction of the fixing assembly 2 to form the bottom mold 1 , so that the convenience when the barrel joint tool 10 is transferred can be further improved.
  • the bottom mold units 11 are isosceles trapezoidal, and a plurality of bottom mold units 11 are arranged along its circumference to be spliced into the bottom mold 1 .
  • Two adjacent bottom mold units 11 can be connected by bolts.
  • the bottom mold 1 is a steel structure.
  • the function of the bottom form 1 is to provide a horizontal platform for the splicing of the barrel section 20 and pouring concrete, and to provide a positioning reference plane for the fixed components 2 and other structures.
  • the base form 1 is the reference plane for assembly, adjustment and pouring of the cylinder section 20, the accuracy of the base form 1 directly affects the accuracy of the cylinder section 20 assembled by the cylinder section 20, requiring relatively high standards for the manufacture and assembly of the base form 1.
  • At least one of the longitudinal connecting member 21 and the transverse connecting member 22 is a truss structure.
  • both the vertical connecting part 21 and the horizontal connecting part 22 are truss structures, for example, the outer frame of the vertical connecting part 21 is a triangular frame, and the triangular frames are connected by steel beams.
  • a walking track can be set on the transverse connecting part 22, so that the operator walks on the fixed assembly 2.
  • the transverse connecting part 22 also includes a railing 221, one end of the railing 221 is connected with the longitudinal connecting part 21, and the other end of the railing 221 is connected with the other end.
  • a longitudinal It is connected to the connection part 21, so that the connection reliability of the fixing assembly 2 can be improved, and protection can be provided for the operator, so that the construction effect of the barrel joint tool 10 is better.
  • the distance of the transverse connecting member 22 along its length is adjustable. It can be understood that the transverse connection part 22 can be extended and shortened to adapt to the production of towers with different specifications, which improves the application range of the tube joint tool 10 .
  • the fixing assembly 2 further includes a plurality of adjustment parts 24, the plurality of adjustment parts 24 correspond to the plurality of installation positions 23 respectively, and one end of the adjustment part 24 is connected to the longitudinal connection part 21 Or the transverse connection part 22 is connected, and the other end of the adjustment part 24 is suitable for being connected with the prefabricated concrete formwork 4 of the cylinder section 20, so as to adjust the inclination angle of the prefabricated concrete formwork 4, thereby improving the precision of the tower tube making, so that the tower tube The construction effect is better.
  • the adjustment member 24 includes a threaded sleeve 241, a first connecting rod 242 and a second connecting rod 243, and the first connecting rod 242 and the second connecting rod 243 are respectively arranged At both ends of the threaded sleeve 241 and threaded with the threaded sleeve 241, the end of the first connecting rod 242 away from the threaded sleeve 241 is hinged with the longitudinal connecting member 21, and the end of the second connecting rod 243 away from the threaded sleeve 241 is provided with the prefabricated concrete template 4 hinged.
  • first connecting rod 242 and the second connecting rod 243 can be rotated to protrude or retract into the threaded sleeve 241 , so as to adjust the length of the adjusting component 24 .
  • the end of the first connecting rod 242 away from the threaded sleeve 241 is hinged with the longitudinal connecting member 21 through a pin
  • the end of the second connecting rod 243 away from the threaded sleeve 241 is hinged with the prefabricated concrete formwork 4 through the universal ball 244, so that the tube can
  • the inclination and taper of each prefabricated concrete formwork 4 in Section 20 have a better effect when adjusted, and the structure design is reasonable, easy to assemble, and easy to use.
  • the barrel joint tool 10 further includes a plurality of concrete piers 3 arranged at intervals along the circumference of the bottom form 1 .
  • a plurality of concrete piers 3 are arranged at intervals along the circumferential direction of the bottom form 1 .
  • the concrete pier 3 can provide a horizontal support surface for the bottom form 1, and transmit the gravity load of all components to the ground through the concrete pier 3, and the levelness of the support surface is realized by adjusting the backing plate.
  • the installation position 23 is arranged on the inner peripheral side of the regular polygonal structure surrounded by the transverse connecting member 22, and/or, the installation position 23 is arranged on the regular polygonal structure surrounded by the transverse connecting member 22 the outer perimeter of the structure.
  • the inner peripheral wall of the barrel joint tool 10 can be used to assemble the barrel joint 20
  • the outer peripheral wall of the barrel joint tool 10 can also be used to assemble the barrel joint 20, so that the barrel joint tool 10 can manufacture different types of barrel joints 20, This makes the scope of application of the barrel joint tool 10 wider.
  • the regular polygonal structure is a regular hexagonal structure, a regular heptagonal structure, a regular octagonal structure, a regular nonagonal structure, a regular decagonal structure, a regular eleven-sided structure, and a regular dodecagonal structure any of the.
  • the structure surrounded by the barrel joint tool 10 is a regular octagon.
  • a barrel joint 20 is made of the barrel joint tooling 10 of the embodiment of the present disclosure.
  • the cylinder section 20 includes a plurality of prefabricated concrete forms 4, and the plurality of prefabricated concrete forms 4 are suitable for being connected with a plurality of installation positions 23 and closed to form a regular polygon structure.
  • Each prefabricated concrete form 4 includes a spacer
  • the two prefabricated wall panels 41 are provided, and there is an accommodation cavity between the two prefabricated wall panels 41.
  • the accommodation cavities of a plurality of prefabricated concrete formworks 4 are connected to each other.
  • the prefabricated prefabricated wall panel 41 is fully combined with the cast-in-place concrete by using the prefabricated concrete formwork 4 products, and the formed tube joint is a whole, which ensures the continuity of the force of each segment
  • the tower structure constructed by using the tube section 20 is safer and more reliable; and the appearance of the tube section 20 can be flexible and changeable, regardless of the brand and model of the wind power host, it can be flexibly adjusted.
  • the prefabricated concrete formwork 4 can be directly purchased from the construction market, so when making the tube section 20, it is not necessary to prepare molds to mold the segments of the tower tube separately, which reduces the investment cost; further, the purchased prefabricated concrete formwork 4 can be directly transported to On-site assembly at the construction site, with low transportation costs.
  • the assembling method of the cylinder section 20 includes: hoisting eight prefabricated concrete formworks 4 onto the tower tooling respectively, adjusting the angle and position of each prefabricated concrete formwork 4 to form a regular octagonal structure, and The accommodation spaces 42 of adjacent prefabricated concrete forms 4 are communicated with each other, and the connection positions of adjacent prefabricated concrete forms 4 are connected and fixed.
  • the concrete formwork 4 is firmly fixed.
  • a corner form 5 is provided at the joint of two adjacent prefabricated wall panels 41 , and the corner form 5 extends from top to bottom along the joint.
  • the corner mold 5 includes a corner mold 5 body and connecting ears 52, the corner mold 5 body extends in the axial direction of the cylinder section 20, the connecting ears 52 are arranged on the left and right sides of the corner mold 5 body, and the connecting ears 52 is used to connect with the cylinder section 20 to fix the body of the corner formwork 5.
  • the cylinder section 20 in the embodiment of the present disclosure can be better realized at the joints of two adjacent prefabricated wall panels 41 by setting the angle formwork 5. Seal to improve the sealing effect.
  • the tower according to another embodiment of the present disclosure includes a plurality of barrel sections 20, which are the barrel sections 20 of the embodiment of the present disclosure, and the plurality of barrel sections 20 are sequentially connected to predetermined high.
  • the tube section 20 can be directly transported to the machine site or assembly yard for reassembly, which reduces transportation and manufacturing costs, and the tower tube of the embodiment of the present disclosure has double-sided laminated shear walls
  • the advantages of the structure are high safety and reliability, and the structure design is reasonable, and the construction effect is good.
  • the barrel section 20 includes a first barrel section and a second barrel section, the first barrel section and the second barrel section are adjacent and arranged along the up-down direction, and a positioning assembly is provided on the tower 7.
  • the positioning assembly 7 includes a positioning plate 71 , a positioning groove 72 and a leveling washer 73 .
  • the positioning plate 71 is provided on one of the first cylinder section and the second cylinder section, and the positioning groove 72 is provided on the other of the first cylinder section and the second cylinder section, and the positioning plate 71 fits in the positioning groove 72 .
  • the leveling gasket 73 is disposed between the positioning plate 71 and the positioning groove 72 .
  • the positioning plate 71 and the positioning groove 72 can be installed and positioned to ensure the installation accuracy of the cylinder section 20, and the cylinder section 20 can be adjusted through the leveling gasket 73 The levelness during installation improves the installation effect of the tower.
  • the tower tube further includes steel bars 6 cast in concrete, a part of the steel bars 6 is set in the first tube section, and another part of the steel bars 6 is set in the second tube section.
  • the steel bar 6 is inserted into the uncured concrete to ensure the continuity of the longitudinally distributed bars in the double skin wall, that is, a part of the steel bar 6 is set in the first tube section, and the other part of the steel bar 6 is set in the second tube In the joint, the structural strength of the tower tube connection can be improved, making the tower tube more reliable.
  • an epoxy resin adhesive layer is provided between adjacent cylinder sections 20, it can be understood that, when two cylinders are assembled, epoxy resin can be provided at the junction thereof to improve The tightness between the adjacent cylinder sections 20 improves the structural strength of the adjacent cylinder sections 20 .
  • the construction method of the tower includes steps S1-S3 by using the pipe joint tool 10 of the embodiment of the present disclosure.
  • each prefabricated concrete formwork 4 includes two prefabricated wall panels 41 arranged at intervals and a corner form 5 connecting the two prefabricated wall panels 41, there is an accommodation space 42 between the two prefabricated wall panels 41, and multiple hoisting in sequence
  • a prefabricated concrete formwork 4 is connected to the installation position 23 of the barrel joint tooling 10 to form a regular polygonal structure, and the accommodating spaces 42 of a plurality of prefabricated concrete formworks 4 are connected to each other.
  • the construction method of a tower includes steps S1-S5 using any one of the pipe joint tooling 10 in the embodiments of the present disclosure.
  • each prefabricated concrete formwork 4 includes two prefabricated wall panels 41 arranged at intervals and a corner form 5 connecting the two prefabricated wall panels 41, there is an accommodation space 42 between the two prefabricated wall panels 41, and multiple hoisting in sequence
  • a prefabricated concrete formwork 4 is connected to the installation position 23 of the barrel joint tooling 10 to form a regular polygonal structure, and the accommodation spaces 42 of a plurality of prefabricated concrete formworks 4 are connected to each other to form a preinstalled barrel joint.
  • S4 Fill sealant between the pre-installed barrel section and the prepared barrel section 20, and pour concrete into the accommodation space 42, and after the concrete solidifies, connect the pre-installed barrel section and the lower end barrel section 20 into one;
  • the formed pipe joints are integrated, which ensures the continuity of the force of each joint segment.
  • the tower structure constructed by the barrel section 20 is safer and more reliable; and the appearance of the barrel section 20 can be flexible and changeable, regardless of the brand and model of the wind power host, it can be flexibly adjusted.
  • the prefabricated concrete formwork 4 is used as the raw material for the construction of the tower tube, it is not necessary to open the mold for building the tube section 20. The manufacturing cost of the prefabricated concrete formwork 4 is low, which greatly speeds up the construction speed of the tower tube. Construction costs are also saved.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean a specific feature, structure, material, or feature described in connection with the embodiment or example. Features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

提供了一种筒节工装、筒节、塔筒及其施工方法,所述筒节工装包括底模和固定组件,所述固定组件可拆卸地安装在所述底模上,所述固定组件包括多个纵向连接部件和多个横向连接部件,多个所述纵向连接部件竖直设置在所述底模上且沿所述底模的周向间隔布置,多个所述横向连接部件相互连接且围成正多边形结构,每个所述横向连接部件分别与相邻的两个所述纵向连接部件相连以形成安装位,所述安装位用于组装筒节。

Description

筒节工装、筒节、塔筒及其施工方法
相关申请的交叉引用
本申请要求在2022年01月29日在中国提交的中国专利申请号202210113118.X的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及塔筒施工技术领域,具体涉及一种筒节工装、筒节、塔筒及其施工方法。
背景技术
市场上现存的风力发电机的刚性塔筒均为全预制混凝土塔筒,为保证生产力,此种施工工艺需要投资建设大量预制构件生产工厂和构件生产所必须的模具,成本巨大且需要大量人工。全预制混凝土塔筒考虑到模具成本,往往一款产品的外型无法随意改变,因为每个改变都意味着模具的投资。全预制混凝土高塔筒的底部直径一般较大,考虑到运输的可行性,塔筒底部的管节均由两至三片预制管片拼接形成。而拼接节点的设计导致管片竖直拼缝处的受力不连续,只有简单的连接结构可以增加抗力,致使塔筒的可靠性较低。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的实施例提出一种结构设计合理、方便筒节的组装、施工效果较好的筒节工装。
本公开的实施例还提出一种筒节。
本公开的实施例还提出一种塔筒。
本公开的实施例还提出一种塔筒的施工方法。
第一方面,本公开的实施例提供了筒节工装,包括:底模和固定组件,所述固定组件可拆卸地安装在所述底模上,所述固定组件包括多个纵向连接部件和多个横向连接部件,多个所述纵向连接部件竖直设置在所述底模上且沿所述底模的周向间隔布置,多个所述横向连接部件相互连接且围成正多边形结构,每个所述横向连接部件分别与相邻的两个所述纵向连接部件相连以形成安装位,所述安装位用于组装筒节。
根据本公开的实施例的筒节工装,由于底模和固定组件可拆卸地连接,且纵向连接部件和横向连接部件相互连接围成正多边形结构的安装位,从而可以将多个预制砼模板与安装位相连,以对筒节进行组装,从而本公开的实施例的筒节工装可以将筒节工装直接运输至机位点或者拼装场再组装,降低了运输和制造成本,并且通过本公开实施例的筒节工装 制成的筒节具有双面叠合剪力墙结构的优点,安全性和可靠性较高,且结构设计合理,方便筒节的组装,施工效果较好。
在一些实施例中,所述底模包括多个底模单元,多个所述底模单元沿所述固定组件的周向间隔布置以拼成所述底模。
在一些实施例中,所述纵向连接部件和所述横向连接部件中的至少一者为桁架结构。
在一些实施例中,所述横向连接部件沿其长度方向的距离可调。
在一些实施例中,所述固定组件还包括多个调节部件,多个所述调节部件分别与多个所述安装位对应,所述调节部件的一端与所述纵向连接部件或所述横向连接部件相连,所述调节部件的另一端适于与所述筒节的预制砼模板相连,以用于调节所述预制砼模板的倾斜角度。
在一些实施例中,所述调节部件包括螺纹套、第一连接杆和第二连接杆,所述第一连接杆和所述第二连接杆分别排布于所述螺纹套的两端且与所述螺纹套螺纹配合,所述第一连接杆背离所述螺纹套的一端与所述纵向连接部件铰接,所述第二连接杆背离所述螺纹套的一端设与所述预制砼模板铰接。
在一些实施例中,所述筒节工装还包括多个混凝土条墩,多个所述混凝土条墩沿所述底模的周向间隔布置。
在一些实施例中,所述安装位设于所述横向连接部件围成的正多边形结构的内周侧,和/或,所述安装位设于所述横向连接部件围成的正多边形结构的外周侧。
在一些实施例中,所述正多边形结构为正六边形结构、正七边形结构、正八边形结构、正九边形结构、正十边形结构、正十一边形结构、正十二边形结构中的任意一种。
第二方面,本公开的实施例提供了筒节,由本公开第一方面任一实施例所述的筒节工装制成。
根据本公开的实施例的筒节,通过上述实施例的筒节工装制成的筒节具有双面叠合剪力墙结构的优点,安全性和可靠性较高,且结构设计合理,方便筒节的组装,施工效果较好。
在一些实施例中,所述筒节包括多个预制砼模板,多个所述预制砼模板适于与多个所述安装位相连且闭合连接形成正多边形结构,每个所述预制砼模板均包括间隔设置的两面预制墙板,两面所述预制墙板之间具有容纳腔,多个所述预制砼模板的容纳腔相互连通,所述容纳腔内填充有混凝土,所有所述容纳腔内的混凝土凝固连为一体。
在一些实施例中,相邻的两面所述预制墙板的接缝处设有角模,所述角模沿着所述接缝自上至下延伸。
根据本公开的又一实施例的塔筒,所述筒节包括第一筒节和第二筒节,所述第一筒节 和所述第二筒节中的一者上设有定位板,另一者上设有定位槽,所述定位板配合在所述定位槽内。
第三方面,本公开的实施例提供了塔筒,包括多个筒节,所述筒节为本公开第二方面任一实施例所述的筒节,多个所述筒节自下至上依次连接至预定高度。
在一些实施例中,所述筒节包括第一筒节和第二筒节,所述第一筒节和所述第二筒节中的一者上设有定位板,另一者上设有定位槽,所述定位板配合在所述定位槽内。
在一些实施例中,所述定位板和所述定位槽之间设有调平垫片。
在一些实施例中,所述塔筒还包括浇筑在混凝土内的钢筋,所述钢筋的一部分设于所述第一筒节内,所述钢筋的另一部分设于所述第二筒节内。
在一些实施例中,相邻的所述筒节之间设有环氧树脂粘结层。
第四方面,本公开的实施例提供了塔筒的施工方法,采用本公开第一方面任一实施例所述的筒节工装,所述塔筒的施工方法包括以下步骤:
S1:提供预制砼模板,每个所述预制砼模板包括间隔设置的两面预制墙板和连接两面所述预制墙板的角模,两面所述预制墙板之间具有容纳空间,依次吊装多个所述预制砼模板至所述筒节工装的安装位,以拼成正多边形结构,并使多个所述预制砼模板的容纳空间相互连通;
S2:向所有所述容纳空间内浇筑混凝土,待混凝土凝固后筒节制备完毕;
S3:重复上述步骤,直至将多个所述筒节拼接成塔筒。
第五方面,本公开的实施例提供了塔筒的施工方法,采用本公开第一方面任一实施例所述的筒节工装,所述塔筒的施工方法包括以下步骤:
S1:提供预制砼模板,每个所述预制砼模板包括间隔设置的两面预制墙板和连接两面所述预制墙板的角模,两面所述预制墙板之间具有容纳空间,依次吊装多个所述预制砼模板至所述筒节工装的安装位,以拼成正多边形结构,并使多个所述预制砼模板的容纳空间相互连通,以形成预装筒节;
S3:将所述预装筒节吊装至预定高度,并与制备完成的筒节相连;
S4:在所述预装筒节与所述制备完成的筒节之间填充密封胶,并向所述容纳空间内浇筑混凝土,待混凝土凝固后,所述预装筒节与下端的筒节连为一体;
S5:重复上述步骤,直至将多个所述筒节拼接成塔筒。
根据本公开的实施例的塔筒的施工方法,将预制的预制墙板与现浇混凝土充分结合,形成的管节为一个整体,保证了每节管片受力上的连续性,采用该筒节所建设的塔筒结构更加安全可靠;且筒节的外型可以灵活多变,不论风电主机的品牌、型号有何种变化,均可以灵活调整。另外,由于采用预制砼模板作为塔筒搭建的原材料,从而不必再为搭建筒 节而开模,预制砼模板制造成本低,极大加快了塔筒的施工速度,同时也节省了施工成本。
附图说明
图1是本公开实施例的筒节工装与筒节的安装示意图。
图2是图1中A的放大图。
图3中本公开实施例的筒节工装与筒节的安装截面图。
图4是本公开实施例的筒节工装与筒节的安装俯视图。
图5是本公开实施例的筒节工装的纵向连接部件的示意图。
图6是本公开实施例的筒节工装的调节部件的示意图。
图7是本公开实施例的筒节工装的底模的示意图。
图8是本公开实施例的筒节工装的底模单元的示意图。
图9是本公开实施例的筒节工装的角膜的示意图。
图10是本公开实施例的塔筒的局部示意图。
图11是本公开实施例的筒节工装的定位板和定位槽的安装示意图。
附图标记:
10、筒节工装;20、筒节;
1、底模;11、底模单元;
2、固定组件;21、纵向连接部件;22、横向连接部件;221、栏杆;23、安装位;24、调节部件;241、螺纹套;242、第一连接杆;243、第二连接杆;244、万向球;
3、混凝土条墩;
4、预制砼模板;41、预制墙板;42、容纳空间;
5、角模;51、角模本体;52、连接耳;
6、钢筋;
7、定位组件;71、定位板;72、定位槽;73、调平垫片。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图1至图11描述根据本公开实施例的筒节工装10、筒节20、塔筒及其施工方法。
如图1至图4所示,根据本公开实施例的筒节工装10包括:底模1和固定组件2,固 定组件2可拆卸地安装在底模1上,固定组件2包括多个纵向连接部件21和多个横向连接部件22,多个纵向连接部件21竖直设置在底模1上且沿底模1的周向间隔布置,多个横向连接部件22相互连接且围成正多边形结构,每个横向连接部件22分别与相邻的两个纵向连接部件21相连以形成安装位23,安装位23用于组装筒节20。
根据本公开的实施例的筒节工装10,由于底模1和固定组件2可拆卸地连接,且纵向连接部件21和横向连接部件22相互连接围成正多边形结构的安装位23,从而可以将多个预制砼模板4与安装位23相连,以对筒节20进行组装,从而本公开的实施例的筒节工装10可以直接运输至机位点或者拼装场再组装,降低了运输和制造成本,并且通过本公开实施例的筒节工装10制成的筒节20具有双面叠合剪力墙结构的优点,安全性和可靠性较高,且结构设计合理,方便筒节20的组装,施工效果较好。
可以理解的是,本公开的实施例的筒节工装10通过现浇混凝土使筒节20的各个预制砼模板4之间成为一个整体,保证了每节预制砼模板4受力上的连续性,使得塔筒的结构更加安全可靠。另外,塔筒的尺寸可根据项目情况进行调整,遇到道路狭窄的场地,其宽度可控制在道路允许的范围内。本公开的实施例的筒节工装10零件尺寸较小,可以运输至机位点或拼装场再组装,提高了筒节工装10使用时的灵活性。因此,本公开的实施例的筒节工装10具有降低投资成本、降低道路运输量、灵活度高、可匹配不同的风电主机、产品更加安全、利用房地产行业的产业链和产能等优点。
在一些实施例中,如图1、图7和图8所示,底模1包括多个底模单元11,多个底模单元11沿固定组件2的周向间隔布置以拼成底模1,从而可以进一步地提高筒节工装10转运时的方便性。例如,底模单元11为8个,底模单元11为等腰梯形,多个底模单元11沿其周向布置以拼接成底模1。相邻的两个底模单元11之间可以通过螺栓连接。例如,底模1为钢结构。底模1的作用是为筒节20的拼接及浇筑混凝土提供水平平台,并为固定组件2等结构提供定位基准面。
另外,由于底模1是筒节20拼装、调整及浇筑的基准面,底模1的精度直接影响筒节20拼装成的筒节20精度,对底模1的制造及装配均要求较高的精度,底模单元11相互连接的工作面要求机加工,对顶面的平面度要求拼装后的每个底模单元11范围内不大于3mm,对接缝错位不大于1mm。
在一些实施例中,如图2至图5所示,纵向连接部件21和横向连接部件22中的至少一者为桁架结构。例如,纵向连接部件21和横向连接部件22均为桁架结构,例如,纵向连接部件21的外框架为三角形框架,三角形框架之间通过钢梁交错连接。横向连接部件22上可以设置行走轨道,以便作业人员在固定组件2上行走,进一步地,横向连接部件22还包括栏杆221,栏杆221的一端与纵向连接部件21相连,栏杆221的另一端与另一个纵 向连接部件21相连,从而既可以提高固定组件2的连接可靠性,又可以为作业人员提供防护,使得筒节工装10的施工效果更好。
在一些实施例中,如图2和图4所示,横向连接部件22沿其长度方向的距离可调。可以理解的是,横向连接部件22可以伸长和缩短,以适应不同规格的塔筒的制作,提高了筒节工装10的适用范围。
在一些实施例中,如图3和图6所示,固定组件2还包括多个调节部件24,多个调节部件24分别与多个安装位23对应,调节部件24的一端与纵向连接部件21或横向连接部件22相连,调节部件24的另一端适于与筒节20的预制砼模板4相连,以用于调节预制砼模板4的倾斜角度,从而可以提高塔筒制作的精度,使得塔筒的施工效果较好。
在一些具体实施例中,如图3和图6所示,调节部件24包括螺纹套241、第一连接杆242和第二连接杆243,第一连接杆242和第二连接杆243分别排布于螺纹套241的两端且与螺纹套241螺纹配合,第一连接杆242背离螺纹套241的一端与纵向连接部件21铰接,第二连接杆243背离螺纹套241的一端设与预制砼模板4铰接。换言之,第一连接杆242和第二连接杆243可以通过旋转以伸出或缩入至螺纹套241,从而调节调节部件24的长度。例如,第一连接杆242背离螺纹套241的一端与纵向连接部件21通过销轴铰接,第二连接杆243背离螺纹套241的一端与预制砼模板4通过万向球244铰接,从而可以使得筒节20中的各个预制砼模板4的倾斜度和锥度调节时的效果较好,且结构设计合理,便于组装,使用方便。
在一些实施例中,如图1所示,筒节工装10还包括多个混凝土条墩3,多个混凝土条墩3沿底模1的周向间隔布置。例如,混凝土条墩3为8个,多个混凝土条墩3沿底模1的周向间隔布置。混凝土条墩3可以为底模1提供水平支撑面,并将所有部件的重力荷载通过混凝土条墩3传递到地面,支撑面的水平度通过调整垫板实现。
在一些实施例中,如图1所示,安装位23设于横向连接部件22围成的正多边形结构的内周侧,和/或,安装位23设于横向连接部件22围成的正多边形结构的外周侧。可以理解的是,筒节工装10的内周壁可以用来组装筒节20,筒节工装10的外周壁也可以用来组装筒节20,从而筒节工装10可以制作不同型号的筒节20,使得筒节工装10的适用范围更广。
在一些实施例中,正多边形结构为正六边形结构、正七边形结构、正八边形结构、正九边形结构、正十边形结构、正十一边形结构、正十二边形结构中的任意一种。在本公开中的一个实施例中,筒节工装10围成的结构为正八边形。
如图1所示,根据本公开的另一实施例的筒节20,由本公开实施例的筒节工装10制 成。在一些具体实施例中,筒节20包括多个预制砼模板4,多个预制砼模板4适于与多个安装位23相连且闭合连接形成正多边形结构,每个预制砼模板4均包括间隔设置的两面预制墙板41,两面预制墙板41之间具有容纳腔,多个预制砼模板4的容纳腔相互连通,容纳腔内填充有混凝土,所有容纳腔内的混凝土凝固连为一体。
根据本公开实施例的筒节20,利用预制砼模板4产品,将预制的预制墙板41与现浇混凝土充分结合,形成的管节为一个整体,保证了每节管片受力上的连续性,采用该筒节20所建设的塔筒结构更加安全可靠;且筒节20的外型可以灵活多变,不论风电主机的品牌、型号有何种变化,均可以灵活调整。
预制砼模板4可以从建筑市场直接购买,因此在制作筒节20时,不必准备模具对塔筒的管片单独开模,降低了投资成本;进一步,所购买的预制砼模板4可直接运输至施工场地现场拼装,运输成本低。
以正八边形结构为例,筒节20拼装方法包括:将八个预制砼模板4分别吊装到塔筒工装上,调整每个预制砼模板4的角度和位置,拼出正八边形结构,并使相邻的预制砼模板4的容纳空间42相互连通,并将相邻的预制砼模板4的连接位置连接固定好,然后向容纳空间42内浇筑混凝土,并使之凝固,从而将八个预制砼模板4牢牢的固定。
本领域技术人员可以根据所要施工的塔筒的尺寸选择筒节20的具体形状和尺寸。
在一些实施例中,如图9所示,相邻的两面预制墙板41的接缝处设有角模5,角模5沿着接缝自上至下延伸。在一些具体实施例中,角模5包括角模5本体和连接耳52,角模5本体沿筒节20的轴向延伸,连接耳52排布于角模5本体的左右两侧,连接耳52用于与筒节20相连,以对角模5本体进行固定,本公开实施例的筒节20通过设置角模5,可以更好的在相邻的两面预制墙板41的接缝处实现密封,提高密封效果。
如图1所示,根据本公开的另一实施例的塔筒,包括多个筒节20,筒节20为本公开实施例的筒节20,多个筒节20自下至上依次连接至预定高度。
根据本公开的实施例的塔筒,可以将筒节20直接运输至机位点或者拼装场再组装,降低了运输和制造成本,并且本公开实施例的塔筒具有双面叠合剪力墙结构的优点,安全性和可靠性较高,且结构设计合理,施工效果较好。
在一些实施例中,如图11所示,筒节20包括第一筒节和第二筒节,第一筒节和第二筒节相邻且沿上下方向布置,塔筒上设有定位组件7,定位组件7包括定位板71、定位槽72和调平垫片73。定位板71设于第一筒节和第二筒节中的一者上,定位槽72设于第一筒节和第二筒节中的另一者上,定位板71配合在定位槽72内。进一步地,调平垫片73设于定位板71和定位槽72之间。在将第一筒节和第二筒节对接时,可以定位板71和定位槽72进行安装定位,以保证筒节20的安装精度,并且可以通过调平垫片73来调整筒节20 安装时的水平度,提高了塔筒的安装效果。
在一些实施例中,如图10所示,塔筒还包括浇筑在混凝土内的钢筋6,钢筋6的一部分设于第一筒节内,钢筋6的另一部分设于第二筒节内。在混凝土初凝前,将钢筋6插入未凝固的混凝土,以保证双皮墙中的纵向分布筋连续,即钢筋6的一部分设于第一筒节内,钢筋6的另一部分设于第二筒节内,从而可以提高塔筒连接的结构强度,使得塔筒的可靠性较高。
在一些实施例中,相邻的筒节20之间设有环氧树脂粘结层,可以理解的是,在对两个筒体进行组装时,可以在其连接处设置环氧树脂,以提高相邻的筒节20之间的密封性,且提高了相邻的筒节20的结构强度。
如图1所示,根据本公开的又一实施例的塔筒的施工方法,采用本公开实施例的筒节工装10,塔筒的施工方法包括步骤S1-S3。
S1:提供预制砼模板4,每个预制砼模板4包括间隔设置的两面预制墙板41和连接两面预制墙板41的角模5,两面预制墙板41之间具有容纳空间42,依次吊装多个预制砼模板4至筒节工装10的安装位23,以拼成正多边形结构,并使多个预制砼模板4的容纳空间42相互连通。
S2:向所有容纳空间42内浇筑混凝土,待混凝土凝固后筒节20制备完毕。
S3:重复上述步骤,直至将多个筒节20拼接成塔筒。
如图1所示,根据本公开的又一实施例的塔筒的施工方法,采用本公开实施例中任一项的筒节工装10,塔筒的施工方法包括步骤S1-S5。
S1:提供预制砼模板4,每个预制砼模板4包括间隔设置的两面预制墙板41和连接两面预制墙板41的角模5,两面预制墙板41之间具有容纳空间42,依次吊装多个预制砼模板4至筒节工装10的安装位23,以拼成正多边形结构,并使多个预制砼模板4的容纳空间42相互连通,以形成预装筒节。
S3:将预装筒节吊装至预定高度,并与制备完成的筒节20相连。
S4:在预装筒节与制备完成的筒节20之间填充密封胶,并向容纳空间42内浇筑混凝土,待混凝土凝固后,预装筒节与下端的筒节20连为一体;
S5:重复上述步骤,直至将多个筒节20拼接成塔筒。
根据本公开的实施例的塔筒的施工方法,通过将预制的预制墙板41与现浇混凝土充分结合,形成的管节为一个整体,保证了每节管片受力上的连续性,采用该筒节20所建设的塔筒结构更加安全可靠;且筒节20的外型可以灵活多变,不论风电主机的品牌、型号有何种变化,均可以灵活调整。另外,由于采用预制砼模板4作为塔筒搭建的原材料,从而不必再为搭建筒节20而开模,预制砼模板4制造成本低,极大加快了塔筒的施工速度,同时 也节省了施工成本。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种筒节工装,其特征在于,包括:底模(1)和固定组件(2),所述固定组件(2)可拆卸地安装在所述底模(1)上,所述固定组件(2)包括多个纵向连接部件(21)和多个横向连接部件(22),多个所述纵向连接部件(21)竖直设置在所述底模(1)上且沿所述底模(1)的周向间隔布置,多个所述横向连接部件(22)相互连接且围成正多边形结构,每个所述横向连接部件(22)分别与相邻的两个所述纵向连接部件(21)相连以形成安装位(23),所述安装位(23)用于组装筒节。
  2. 根据权利要求1所述的筒节工装,其特征在于,所述底模(1)包括多个底模单元(11),多个所述底模单元(11)沿所述固定组件(2)的周向间隔布置以拼成所述底模(1)。
  3. 根据权利要求1或2所述的筒节工装,其特征在于,所述纵向连接部件(21)和所述横向连接部件(22)中的至少一者为桁架结构。
  4. 根据权利要求1至3中任一项所述的筒节工装,其特征在于,所述横向连接部件(22)沿其长度方向的距离可调。
  5. 根据权利要求1至4中任一项所述的筒节工装,其特征在于,所述固定组件(2)还包括多个调节部件(24),多个所述调节部件(24)分别与多个所述安装位(23)对应,所述调节部件(24)的一端与所述纵向连接部件(21)或所述横向连接部件(22)相连,所述调节部件(24)的另一端适于与所述筒节的预制砼模板(4)相连,以用于调节所述预制砼模板(4)的倾斜角度。
  6. 根据权利要求5所述的筒节工装,其特征在于,所述调节部件(24)包括螺纹套(241)、第一连接杆(242)和第二连接杆(243),所述第一连接杆(242)和所述第二连接杆(243)分别排布于所述螺纹套(241)的两端且与所述螺纹套(241)螺纹配合,所述第一连接杆(242)背离所述螺纹套(241)的一端与所述纵向连接部件(21)铰接,所述第二连接杆(243)背离所述螺纹套(241)的一端设与所述预制砼模板(4)铰接。
  7. 根据权利要求1至6中任一项所述的筒节工装,其特征在于,还包括多个混凝土条墩(3),多个所述混凝土条墩(3)沿所述底模(1)的周向间隔布置。
  8. 根据权利要求1至7中任一项所述的筒节工装,其特征在于,所述安装位(23)设于所述横向连接部件(22)围成的正多边形结构的内周侧,和/或,所述安装位(23)设于所述横向连接部件(22)围成的正多边形结构的外周侧。
  9. 根据权利要求1至8中任一项所述的筒节工装,其特征在于,所述正多边形结构为正六边形结构、正七边形结构、正八边形结构、正九边形结构、正十边形结构、正十一边形结构、正十二边形结构中的任意一种。
  10. 一种筒节,其特征在于,由权利要求1至9中任一项所述的筒节工装制成。
  11. 根据权利要求10所述的筒节,其特征在于,所述筒节包括多个预制砼模板(4),多个所述预制砼模板(4)适于与多个所述安装位(23)相连且闭合连接形成正多边形结构,每个所述预制砼模板(4)均包括间隔设置的两面预制墙板(41),两面所述预制墙板(41)之间具有容纳腔,多个所述预制砼模板(4)的容纳腔相互连通,所述容纳腔内填充有混凝土,所有所述容纳腔内的混凝土凝固连为一体。
  12. 根据权利要求11所述的筒节,其特征在于,相邻的两面所述预制墙板(41)的接缝处设有角模(5),所述角模(5)沿着所述接缝自上至下延伸。
  13. 一种塔筒,其特征在于,包括多个筒节,所述筒节为权利要求10-12中任一项所述的筒节,多个所述筒节自下至上依次连接至预定高度。
  14. 根据权利要求13所述的塔筒,其特征在于,所述筒节包括第一筒节和第二筒节,所述第一筒节和所述第二筒节中的一者上设有定位板(71),另一者上设有定位槽(72),所述定位板(71)配合在所述定位槽(72)内。
  15. 根据权利要求14所述的塔筒,其特征在于,所述定位板(71)和所述定位槽(72)之间设有调平垫片(73)。
  16. 根据权利要求14或15所述的塔筒,其特征在于,还包括浇筑在混凝土内的钢筋(6),所述钢筋(6)的一部分设于所述第一筒节内,所述钢筋(6)的另一部分设于所述第二筒节内。
  17. 根据权利要求13至16中任一项所述的塔筒,其特征在于,相邻的所述筒节之间设有环氧树脂粘结层。
  18. 一种塔筒的施工方法,其特征在于,采用如权利要求1-9中任一项所述的筒节工装,所述塔筒的施工方法包括以下步骤:
    S1:提供预制砼模板(4),每个所述预制砼模板(4)包括间隔设置的两面预制墙板(41)和连接两面所述预制墙板(41)的角模(5),两面所述预制墙板(41)之间具有容纳空间(42),依次吊装多个所述预制砼模板(4)至所述筒节工装的安装位(23),以拼成正多边形结构,并使多个所述预制砼模板(4)的容纳空间(42)相互连通;
    S2:向所有所述容纳空间(42)内浇筑混凝土,待混凝土凝固后筒节制备完毕;
    S3:重复上述步骤,直至将多个所述筒节拼接成塔筒。
  19. 一种塔筒的施工方法,其特征在于,采用如权利要求1-9中任一项所述的筒节工装,所述塔筒的施工方法包括以下步骤:
    S1:提供预制砼模板(4),每个所述预制砼模板(4)包括间隔设置的两面预制墙板(41)和连接两面所述预制墙板(41)的角模(5),两面所述预制墙板(41)之间具有容纳空间(42),依次吊装多个所述预制砼模板(4)至所述筒节工装的安装位(23),以拼成正多边形结构,并使多 个所述预制砼模板(4)的容纳空间(42)相互连通,以形成预装筒节;
    S3:将所述预装筒节吊装至预定高度,并与制备完成的筒节相连;
    S4:在所述预装筒节与所述制备完成的筒节之间填充密封胶,并向所述容纳空间(42)内浇筑混凝土,待混凝土凝固后,所述预装筒节与下端的筒节连为一体;
    S5:重复上述步骤,直至将多个所述筒节拼接成塔筒。
PCT/CN2023/072423 2022-01-29 2023-01-16 筒节工装、筒节、塔筒及其施工方法 WO2023143201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210113118.XA CN114393673B (zh) 2022-01-29 2022-01-29 筒节工装、筒节、塔筒及其施工方法
CN202210113118.X 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023143201A1 true WO2023143201A1 (zh) 2023-08-03

Family

ID=81233138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072423 WO2023143201A1 (zh) 2022-01-29 2023-01-16 筒节工装、筒节、塔筒及其施工方法

Country Status (2)

Country Link
CN (1) CN114393673B (zh)
WO (1) WO2023143201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117989070A (zh) * 2024-02-07 2024-05-07 北京文和人居建设科技有限公司 一种钢筋混凝土风电塔筒及其施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393673B (zh) * 2022-01-29 2024-04-02 深圳国金电力新能设计院有限公司 筒节工装、筒节、塔筒及其施工方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108214824A (zh) * 2017-12-29 2018-06-29 北京天杉高科风电科技有限责任公司 塔筒构件制造方法、塔筒构件以及构建塔筒的方法
CN109424507A (zh) * 2017-09-01 2019-03-05 赵晓军 用于塔筒建造的内施工平台
CN109882363A (zh) * 2019-01-28 2019-06-14 北京金风科创风电设备有限公司 组拼工装及其组拼方法
CN110434988A (zh) * 2019-07-10 2019-11-12 上海市机电设计研究院有限公司 具有固定转角的多边形塔筒砼预制构件及其可调式模具
CN210086032U (zh) * 2019-03-21 2020-02-18 华南理工大学 一种超高性能混凝土组合式永久模板
CN111962395A (zh) * 2020-08-12 2020-11-20 中交武汉港湾工程设计研究院有限公司 大倾角主塔一体化筑塔装置
CN112140280A (zh) * 2019-06-28 2020-12-29 比亚迪股份有限公司 墩柱的制造设备、墩柱的制造方法、墩柱和桥梁
CN112780099A (zh) * 2019-11-07 2021-05-11 金科新能源有限公司 用于安装塔筒塔片的模具
CN112936568A (zh) * 2019-11-26 2021-06-11 金科新能源有限公司 预制塔筒的浇筑模具
US20210277682A1 (en) * 2017-04-18 2021-09-09 Soletanche Freyssinet A method of manufacturing pseudo-conjugated precast concrete segments
CN113414870A (zh) * 2021-02-27 2021-09-21 江苏金海风电塔筒科技有限公司 一种预应力混凝土风力发电塔筒的预制生产方法
CN214353229U (zh) * 2020-10-23 2021-10-08 上海电气研砼(徐州)重工科技有限公司 风机塔筒模具
CN114393673A (zh) * 2022-01-29 2022-04-26 深圳国金电力新能设计院有限公司 筒节工装、筒节、塔筒及其施工方法
CN216941170U (zh) * 2022-01-29 2022-07-12 深圳国金电力新能设计院有限公司 筒节工装、筒节和塔筒

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4023465A1 (de) * 1990-07-24 1992-02-06 Andrae Hans Peter Turmbauwerk
NL1019953C2 (nl) * 2002-02-12 2002-12-19 Mecal Applied Mechanics B V Geprefabriceerde toren of mast, alsmede een methode voor het samenvoegen en/of naspannen van segmenten die één constructie moeten vormen, alsmede een werkwijze voor het opbouwen van een toren of mast bestaande uit segmenten.
CN206678143U (zh) * 2017-05-03 2017-11-28 北京天杉高科风电科技有限责任公司 端模结构及混凝土塔架模具
CN214187685U (zh) * 2020-10-23 2021-09-14 上海电气研砼(徐州)重工科技有限公司 用于风机塔筒模具的走台支撑架

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210277682A1 (en) * 2017-04-18 2021-09-09 Soletanche Freyssinet A method of manufacturing pseudo-conjugated precast concrete segments
CN109424507A (zh) * 2017-09-01 2019-03-05 赵晓军 用于塔筒建造的内施工平台
CN108214824A (zh) * 2017-12-29 2018-06-29 北京天杉高科风电科技有限责任公司 塔筒构件制造方法、塔筒构件以及构建塔筒的方法
CN109882363A (zh) * 2019-01-28 2019-06-14 北京金风科创风电设备有限公司 组拼工装及其组拼方法
CN210086032U (zh) * 2019-03-21 2020-02-18 华南理工大学 一种超高性能混凝土组合式永久模板
CN112140280A (zh) * 2019-06-28 2020-12-29 比亚迪股份有限公司 墩柱的制造设备、墩柱的制造方法、墩柱和桥梁
CN110434988A (zh) * 2019-07-10 2019-11-12 上海市机电设计研究院有限公司 具有固定转角的多边形塔筒砼预制构件及其可调式模具
CN112780099A (zh) * 2019-11-07 2021-05-11 金科新能源有限公司 用于安装塔筒塔片的模具
CN112936568A (zh) * 2019-11-26 2021-06-11 金科新能源有限公司 预制塔筒的浇筑模具
CN111962395A (zh) * 2020-08-12 2020-11-20 中交武汉港湾工程设计研究院有限公司 大倾角主塔一体化筑塔装置
CN214353229U (zh) * 2020-10-23 2021-10-08 上海电气研砼(徐州)重工科技有限公司 风机塔筒模具
CN113414870A (zh) * 2021-02-27 2021-09-21 江苏金海风电塔筒科技有限公司 一种预应力混凝土风力发电塔筒的预制生产方法
CN114393673A (zh) * 2022-01-29 2022-04-26 深圳国金电力新能设计院有限公司 筒节工装、筒节、塔筒及其施工方法
CN216941170U (zh) * 2022-01-29 2022-07-12 深圳国金电力新能设计院有限公司 筒节工装、筒节和塔筒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117989070A (zh) * 2024-02-07 2024-05-07 北京文和人居建设科技有限公司 一种钢筋混凝土风电塔筒及其施工方法

Also Published As

Publication number Publication date
CN114393673B (zh) 2024-04-02
CN114393673A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2023143201A1 (zh) 筒节工装、筒节、塔筒及其施工方法
CN105625570B (zh) 一种预制梁柱连接装置及其制作方法
EP3036436B1 (en) Cruciform tower
KR102153184B1 (ko) Pc 더블 벽체 세움 제작용 몰드 및 이를 이용한 벽체가 세워진 pc 더블 벽체를 제작하는 방법
CN112627387A (zh) 预制外墙板不出筋式侧连方法
CN105507157B (zh) 变曲率环形劲芯现浇混凝土梁施工方法
CN216941170U (zh) 筒节工装、筒节和塔筒
CN216131033U (zh) 风电塔和塔筒
CN104149177A (zh) 新型组装式钢筋混凝土电缆沟槽生产模具
JP2010242327A (ja) プレキャストパイルキャップ構造とその接合構造の接合方法
JPH0328119Y2 (zh)
CN117601235A (zh) 基于装配式箱涵的立式预制内模、模具及其施工方法
CN209053004U (zh) 一种空心墩柱模板结构
CN208293903U (zh) 一种反弯点预制柱连接节点
CN204160610U (zh) 新型组装式钢筋混凝土电缆沟槽生产模具
CN216914274U (zh) 筒节和塔筒
CN215254581U (zh) 一种工具式梁柱节点角模
CN206071090U (zh) 一种用于加固方形截面柱的拼装式模板
CN212445704U (zh) 一种用于装配式框架结构的叠合楼板的模板系统
CN115992803A (zh) 风电塔、塔筒及其施工方法
KR20070023274A (ko) 지하주차장의 피씨 복합화 공법 및 그에 사용되는 장스팬피씨 보의 피씨 기둥-보 접합부 구조
CN112376973A (zh) 一种平整度超高要求的水池加腋施工装置及其施工方法
CN219772730U (zh) 双柱墩爬模内侧模板
CN112663788A (zh) 一种装配式快速施工方法
CN214061239U (zh) 一种易成型花瓶墩模板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.11.24)