WO2023142553A1 - 一种开采海洋天然气水合物资源的系统及方法 - Google Patents

一种开采海洋天然气水合物资源的系统及方法 Download PDF

Info

Publication number
WO2023142553A1
WO2023142553A1 PCT/CN2022/127373 CN2022127373W WO2023142553A1 WO 2023142553 A1 WO2023142553 A1 WO 2023142553A1 CN 2022127373 W CN2022127373 W CN 2022127373W WO 2023142553 A1 WO2023142553 A1 WO 2023142553A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
gas hydrate
depressurization
production
huff
Prior art date
Application number
PCT/CN2022/127373
Other languages
English (en)
French (fr)
Inventor
李小森
阮徐可
陈朝阳
李刚
张郁
王屹
颜克凤
周佳媛
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US18/016,683 priority Critical patent/US12084947B2/en
Publication of WO2023142553A1 publication Critical patent/WO2023142553A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Definitions

  • the invention relates to the field of development and utilization of marine natural hydrate resources, in particular to a system for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff.
  • Natural gas hydrate has been regarded as the clean energy with the most potential to replace conventional fossil fuels in the 21st century, with huge resource potential, and more than 90% of hydrate resources are distributed on the oceanic continental margin.
  • test mining experimental hydrate mining
  • the methods used in the test mining are heat injection, depressurization, and carbon dioxide replacement.
  • Japan's two test mining in the South China Sea Trough in 2013 and 2017, and China's two hydrate test mining in the Shenhu area of the South China Sea in 2017 and 2020 all used the depressurization method.
  • the combination of these field tests shows that the depressurization method is the most effective, especially in offshore construction, which is easier to implement.
  • problems have been exposed in the field trial production practice, such as high mining cost, high energy loss, low efficiency, low medium and long-term gas recovery production rate, and reservoir management problems for large-scale gas recovery.
  • the heat injection method can supplement the energy of the reservoir and alleviate the engineering geological risk to a large extent, due to the serious heat loss caused by the heat injection into the reservoir, slow energy transfer and low thermal efficiency, the exploitation of deep sea gas hydrate It is difficult to realize the efficient formation of natural gas hydrates by simply relying on the heat injection method, and its development prospect as the main method is not optimistic.
  • the depressurization method and the improved scheme based on the depressurization method may be the best way to realize the industrial trial production of natural gas hydrate in sea areas, while other methods can It is used as an auxiliary production increase and efficiency improvement measure of the depressurization method or a gas production stabilization measure.
  • the present invention proposes a system and method for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff, which realizes controllable cost, high energy utilization, safety and environmental protection, and meets large-scale sustainable The purpose of gas production.
  • the present invention provides a system for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff, including:
  • a vertical well which includes a casing, the casing is used to penetrate the seawater layer and the overburden of the hydrate reservoir, and penetrate into the gas hydrate reservoir; hole channel;
  • a production string which is arranged in the casing and goes deep into the horizontal well; the bottom of the production string is provided with a gas-water collection inlet;
  • the hot water injection pipe is arranged in the production pipe string, and the annular space formed between the production pipe string and the hot water injection pipe is used for air pumping and depressurization operations; the bottom of the hot water injection pipe A hot water injection port is provided;
  • the air bag is arranged in the horizontal well and connected with the hot water injection port of the hot water injection pipe.
  • the system for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff is characterized in that it also includes:
  • a gas-water storage tank which is connected to the production string, is used to store the natural gas and water extracted from the natural gas hydrate reservoir, and complete the separation and recycling of natural gas and seawater;
  • the gas-water storage box is arranged on the offshore platform, and the natural gas recovered from the gas-water storage box is not only collected, stored and transported, but also partly supplied to the gas-fired power plant to meet the energy utilization needs of the offshore platform;
  • the seawater recovered by the gas-water storage tank is reheated in the waste heat utilization device by using the waste flue gas heat from the gas-fired power plant, and then is pressurized by the water injection pump and then injected back into the air bag through the hot water injection pipe to realize heat throughput. mining.
  • the air-water storage tank is also connected to the seawater compensation device.
  • seawater at sea level is pumped through the water delivery pipe of the seawater compensation device.
  • the water recovered from the air-water storage tank will be collected and processed through the liquid collection pipeline for other needs.
  • a packer is arranged between the casing and the production string, and the packer is located above the perforation channel.
  • a water outlet is provided at the bottom of the production string, and the water outlet is lower than the gas-water collection inlet; the air bag is also connected to the water outlet.
  • a one-way valve is provided in both the air-water collection inlet and the water outlet.
  • a constant pressure valve is provided in the hot water injection port.
  • a water outlet is provided on the air bag.
  • a temperature sensor and a pressure sensor are installed in the horizontal well for real-time monitoring of the temperature and pressure in the natural gas hydrate reservoir and the horizontal well, so as to grasp the latest changes in the natural gas hydrate reservoir and production, and to According to the latest situation, the entire depressurization combined heat huff and puff mining progress is regulated.
  • the present invention provides a method for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff, the method is based on the above-mentioned system, and the method includes:
  • the gas bag is pumped out of seawater to reduce the pressure.
  • the pressure and temperature monitoring data of the reservoir layer determine the "simmering well" time, and the seawater in the air bag is drained to realize the combined exploitation of natural gas hydrate by depressurization and heat huff and puff;
  • Steps S2, S3 and S4 are repeatedly executed to achieve the purpose of exploiting natural gas hydrate resources in sea areas with continuous gas production through continuous decompression exploitation and hot water huff and puff combined cycle.
  • the present invention has the beneficial effects of:
  • the large-scale vertical well + horizontal well gas hydrate production well structure provided by the scheme of the present invention expands the natural gas hydrate production radius and increases the hydrate decomposition production area;
  • the mining well structure arrangement plan provided by the present invention considers the distribution of hydrate ore bodies within a certain range around, and the directional horizontal well drilling considers the location of the sweet spots around the vertical wellbore (main wellbore), so as to maximize the It guarantees the continuity of mining and further ensures the economics of mining;
  • the solution provided by the present invention utilizes the air bag in the horizontal well to achieve the effect of heat huff and puff production, and the expansion and extension function of the air bag can be used to realize plugging and heat transfer in any direction in the well, and according to the expansion and extension effect, the diameter change of the heat transfer area can be enlarged Several times; even in the process of pumping water, pumping gas and reducing pressure in vertical wells, the air bag can still ensure the dynamic sealing of the horizontal well section, realize dynamic controllable "simmering well", greatly expand the heat transfer area, improve heat transfer efficiency, and increase heat energy enter;
  • the solution provided by the present invention uses part of the gas and water mined for secondary utilization on the offshore platform, and the hot water is heated by the waste heat of the waste gas and reinjected. Compared with other heat source methods, the solution of the present invention makes full use of ready-made convenient resources, Great cost savings;
  • the solution provided by the present invention is not to inject hot water directly into the gas hydrate production reservoir, but to inject hot water into the gas bag in the horizontal well through the hot water injection pipe in the production string, and the production string can inject heat
  • the water pipe plays the role of heat preservation, reducing the loss of total heat during the hot water injection process.
  • the hot water in the hot water injection pipe can also transfer heat to the gas-water fluid extracted from the inside and outside of the production string during the injection process, preventing secondary hydrate Generate blockage of the wellbore;
  • the scheme provided by the present invention determines the time of "simmering well” according to the gas output in depressurization and the relevant monitoring data such as the pressure and temperature of the reservoir, and performs drainage operation on the air bag in time to realize the combined exploitation of depressurization and heat huff and puff;
  • the opening of the air bag drain valve is used to adjust the speed and flow rate of drainage into the horizontal well and the gas hydrate reservoir, so as to realize the pressure stability of the gas hydrate reservoir during the pumping and depressurization process, and the discharged water can be Flush the sand and gravel near the wellbore to prevent clogging, increase the permeability around the production well, and promote the effective and continuous decomposition and production of hydrate;
  • the present invention provides a technical method for exploiting marine natural gas hydrate resources by depressurization combined with thermal huffing and puffing.
  • the combination of depressurization mining and hot water huffing and puffing is continuously carried out by using the production well structure of large-scale vertical wells + horizontal wells + airbags. It is a marine natural gas hydrate mining method with wide application and good market prospect to realize the controllable production cost, high energy utilization, safety and environmental protection, and meet the purpose of large-scale continuous gas production in marine natural gas hydrate resources. It can provide reference and guidance for the implementation of measures to increase production of hydrate resources.
  • Fig. 1 is a schematic composition diagram of a system for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff method provided by an embodiment of the present invention
  • connection should be understood in a broad sense, which can be a fixed connection, a detachable connection, or an integral connection; it can be a direct Connected, can also be indirectly connected through an intermediary, it can be said that the internal communication of two elements.
  • this application arranges a large-scale vertical well + horizontal well production well structure in the natural gas hydrate enrichment and storage area, and implements pumping and gas pumping to reduce pressure.
  • big size generally refers to the maximum size range obtained by drilling and completing the wellbore using the most advanced drill bit with the largest size; It depends on the thickness of the well wall and so on.
  • the system for exploiting marine natural gas hydrate resources mainly includes vertical wells, horizontal wells 4, production strings 8, hot water injection pipes 6, and air bags 14. .
  • the vertical well is mainly covered with a casing 9.
  • the casing 9 penetrates the seawater layer 1 and the overburden layer 2 of the hydrate reservoir, and penetrates down to the gas hydrate reservoir 3.
  • the casing 9 is located in the gas hydrate Sections of the reservoir 3 are provided with perforation channels 11 .
  • the horizontal well 4 is connected to the bottom of the casing 9, and the two are in the shape of an inverted letter "T" as a whole. Below the horizontal well 4 is an underlying sediment layer 5.
  • the production string 8 is set in the casing 9 and is coaxial with the casing 9 and goes deep into the horizontal well 4 .
  • the bottom of the production string 8 is provided with a gas-water collection inlet 13 .
  • the hot water injection pipe 6 is set in the production pipe string 8 and is coaxial with the production pipe string 8, and the annular space formed between the production pipe string 8 and the hot water injection pipe 6 is used for pumping water and depressurizing operations. , so that the gas-water products produced by the decomposition in the hydrate reservoir enter the casing 9 and the horizontal well 4 through the perforation channel 11, and finally discharge the seawater layer 1 through the gas-water collection inlet 13 at the bottom of the production string 8 and transport it to the offshore platform .
  • the airbag 14 is arranged in the horizontal well 4 and communicates with the hot water injection port 16 at the bottom of the hot water injection pipe 6.
  • the volume of the airbag 14 will increase accordingly during the injection of hot water and continuously expand in the horizontal well 4.
  • the hot water in the airbag 14 also transfers heat to the outside for the thermal exploitation of hydrates. That is to say, this solution does not directly inject hot water into the natural gas hydrate reservoir 3, but injects hot water into the gas bag 14 in the horizontal well 4 through the hot water injection pipe 6 in the production string 8, and the production pipe
  • the column 8 can keep the hot water injection pipe 6 warm and reduce the loss of heat in the hot water injection process.
  • the hot water in the hot water injection pipe 6 can transfer heat to the production pipe column 8 and draw it outward during the injection process.
  • the gas-water fluid can prevent the blockage caused by the secondary generation of hydrate.
  • the airbag 14 Utilize the expansion and extension function of the airbag 14 during the water injection process to form a closed space in the horizontal well 4, and realize plugging and heat transfer in any direction in the well, thereby realizing a process similar to the "simmering well" in the heat huff and puff mining method , increase the heat transfer efficiency and energy utilization rate, and achieve the effect of heat huff and puff mining, and according to the expansion and extension effect, the change of the diameter of the heat transfer area can be enlarged several times;
  • the dynamic sealing of the flat well section realizes the dynamic controllable "simmering well", greatly expands the heat transfer area, improves the heat transfer efficiency, and increases the heat energy input.
  • the airbag 14 is made of pressure-resistant and heat-conducting materials, which can meet the needs of downhole hydrate thermal huff and puff production.
  • the system also includes a gas-water storage tank 22, which is connected to the production string 8 for storing natural gas and water mined in the layer, and complete the separation and recycling of natural gas and seawater, the natural gas in the gas-water storage tank 22 is exported through the gas pipeline, and a first gas flowmeter 24 is installed in the gas collection pipeline
  • the gas-water storage box 22 is arranged on the offshore platform, and the natural gas recovered by the gas-water storage box 22 is not only collected, stored and transported, but a part is supplied to the gas power unit 18 through the branch on the gas collection pipeline to meet the energy utilization of the offshore platform.
  • the seawater recovered by the gas-water storage tank 22 is transported to the waste heat utilization device 20 through the circulation valve 21, and the heat of the waste flue gas from the gas power device 18 is passed through the
  • the flue gas pipeline 19 enters the waste heat utilization device 20, and after being reheated in the waste heat utilization device 20, it is pressurized by the water injection pump 7 and then injected back into the air bag 14 through the hot water injection pipe 6 to realize heat huff and puff extraction.
  • a second gas flow meter 23 is also installed on the branch on the gas collection pipeline.
  • the air-water storage tank 22 is also connected with the seawater compensation device 26.
  • the sea water is extracted through the water delivery pipe 27 of the seawater compensation device 22.
  • the amount of seawater pumped back from the air bag 14 back into the air-water storage tank 22 is greater than required, the water recovered by the air-water storage tank 22 will be collected and processed through the liquid collection pipeline for other needs.
  • a liquid flow meter 25 is also installed in the liquid collection pipe.
  • a packer 10 is arranged between the casing 9 and the production string 8, and the packer 10 is located in the Above the perforation channel 11, that is to say, the packer 10 is arranged between the casing 9 and the production string 8 at the lower edge of the overburden 2 of the hydrate reservoir, so as to prevent the occurrence of gas in the casing 9 here. Water leaked out.
  • the bottom of the production string 8 is also provided with a water outlet 15, which is lower than the gas-water collection inlet;
  • the air bag 14 is also communicated with the water outlet, specifically, as shown in Figure 1, the water outlet 15 and the hot water injection port 16 are all surrounded by the air bag 14;
  • Directional valve to prevent backflow of air and water.
  • a constant pressure valve 17 is arranged in the hot water injection port 16 to ensure that the outward expansion and extension of the air bag 14 is not affected under the condition of continuous water injection.
  • the water outlet 15 can be opened directly, and the seawater in the airbag 14 together with the The gas-water products from the gas hydrate reservoir are pumped back to the gas-water storage tank 22 on the offshore platform, which is the first way for the seawater in the airbag 14 to be discharged.
  • the air bag 14 is also provided with a drain port 30 for draining water to the horizontal well or the natural gas hydrate reservoir 3 .
  • a temperature sensor 28 and a pressure sensor 29 are installed in the horizontal well 4 to monitor the temperature and pressure of the natural gas hydrate reservoir and the horizontal well.
  • the thermal huff and puff method is determined according to the gas output and the pressure, temperature and other related monitoring data of the gas hydrate reservoir.
  • the thermal huff and puff method is determined according to the gas output and the pressure, temperature and other related monitoring data of the gas hydrate reservoir.
  • the main difference between the above two different airbag 14 seawater discharge methods is that the first discharge method is to directly extract and discharge the seawater in the airbag 14, and the second discharge method is to discharge it into wells and gas hydrate reservoirs for use .
  • the choice of the above-mentioned seawater discharge method in the capsule depends on the gas production situation, the hydrostatic pressure in the gas hydrate reservoir and the permeability around the wellbore wall.
  • the stability of the reservoir pressure and the change of the permeability around the well wall of the production well section it can be adjusted by the opening of the water outlet valve of the water outlet 30 on the air bag 14
  • the speed and flow rate of drainage into the horizontal well 4 and the natural gas hydrate reservoir can realize the pressure stability of the natural gas hydrate reservoir during the pumping and depressurization process. Blockage, increase the permeability around the production well and the gas output of hydrate production, etc.
  • this embodiment also provides a method for exploiting marine natural gas hydrate resources by depressurization combined with heat huff and puff.
  • the above-mentioned system of the method includes the following steps:
  • the gas bag installed in the horizontal well is injected into the gas bag in the horizontal well through the hot water injection pipe arranged in the casing.
  • the airbag will close the inlet and outlet after injecting hot water and let it stand for a period of time; during this period, the water injection expansion and extension function of the airbag will be used to form a closed space in the horizontal well, which is similar to the "steaming" in the mining of the heat huff and puff method.
  • well function to increase the contact and heat transfer efficiency between the hot water in the airbag, the fluid outside the airbag and the well wall of the horizontal well, to achieve the effect of heat huff and puff production of hydrates, and to meet the heat demand for further decompression, endothermic and decomposition production of hydrates ;
  • the seawater is pumped out of the air bag to reduce the pressure, and at the same time, according to the gas output and the gas hydrate reservoir
  • the pressure and temperature monitoring data determine the time of "simmering well", and the seawater in the air bag is drained to realize the combined exploitation of natural gas hydrate by depressurization and heat huff and puff;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

公开了一种开采海洋天然气水合物资源的系统,包括垂直井;垂直井包括套管(9),套管(9)用于贯穿海水层(1)和水合物藏上覆盖层(2),并下穿至天然气水合物储层(3);套管(9)位于天然气水合物储层的区段设置有射孔通道(11);水平井(4)和套管(9)的底端相连;生产管柱(8)设置在套管(9)内并下深至水平井(4)内;生产管柱(8)的底部设置有气水收集进口(13);注热水管(6)设置在生产管柱(8)内,生产管柱(8)和注热水管(6)之间形成的环空区域用以进行抽气抽水降压作业;注热水管(6)的底部设置有热水注入口(16);气囊(14)设置在水平井(4)内,与注热水管(6)的热水注入口(16)相连;还公开了使用该系统的方法;通过大尺寸垂直井和水平井的天然气水合物开采井结构扩大了天然气水合物开采半径,增加了水合物分解开采面积。

Description

一种开采海洋天然气水合物资源的系统及方法 技术领域:
本发明涉及海洋天然水合物资源开发利用领,具体涉及一种降压联合热吞吐法开采海洋天然气水合物资源的系统。
背景技术:
据统计,全球已探明的天然气水合物资源量相当于已知石油、煤炭和天然气等常规化石燃料总和的两倍[SLOAN E D,KOH C A.Clathrate hydrates of natural gases[M].Boca Raton:CRC press,2007.]天然气水合物已被视为是21世纪最有潜力替代常规化石燃料的清洁能源,资源潜力巨大,90%以上的水合物资源分布在海洋大陆边缘。
加拿大、美国、日本和中国都已在水合物赋存区进行了水合物试验性开采(试采)作业,试采采用的方法为注热法、降压法以及二氧化碳置换法等。日本2013年、2017年在南海海槽海域进行的两次试采和2017年、2020年中国在南海神狐海域进行的两次水合物试采采用的开采方式都是降压法。综合这些现场试采表明降压法最有效,尤其在海上施工较容易实现。其他开采方法,在现场试采实践中暴露出诸多问题,如开采成本高、能量损失打、效率低下、中长期采气生产速率低和大规模采气的储层管理问题等。例如注热法开采虽然能够补充储层能量并在很大程度上缓解工程地质风险,但因为其向储层注热的热损严重、能量传递慢和热效率低等因素,在开采深海天然气水合物中单纯依靠注热法很难实现天然气水合物的高效生成,其作为主要方法的开采前景不容乐观。
目前,基于现场试采、数值模拟计算和实验模拟等研究结果,普遍认为降压法及基于降压法的改良方案可能是实现海域天然气水合物产业化试采的最佳途径,而其他方法可作为降 压法的辅助增产提效措施或产气稳定措施使用。
发明内容:
针对背景技术中所提及的开采问题,本发明提出了一种降压联合热吞吐法开采海洋天然气水合物资源的系统及方法,实现成本可控、能量利用高、安全环保且满足大规模持续产气的开采目的。
为实现上述目的,本发明的技术方案是:
第一方面,本发明提供一种降压联合热吞吐法开采海洋天然气水合物资源的系统,包括:
垂直井,其包括套管,所述套管用于贯穿海水层和水合物藏上覆盖层,并下穿至天然气水合物储层;所述套管位于天然气水合物储层的区段设置有射孔通道;
水平井,其和所述套管的底端相连;
生产管柱,其设置在所述套管内并下深至所述水平井内;所述生产管柱的底部设置有气水收集进口;
注热水管,其设置在所述生产管柱内,所述生产管柱和注热水管之间形成的环空区域用以进行抽气抽水降压作业;所述注热水管的底部设置有热水注入口;
气囊,其设置在所述水平井内,与所述注热水管的热水注入口相连。
进一步地,所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,还包括:
气水储集箱,其和所述生产管柱相连,用以存储从天然气水合物储层中所开采到的天然气和水,并完成天然气和海水的分离和回收利用;
所述气水储集箱设置在海上平台上,气水储集箱回收的天然气除了收集储运外,一部分 供应给燃气动力装置以满足海上平台能源利用所需;
所述气水储集箱回收的海水通过利用来自燃气动力装置的废烟气热量在余热利用装置中再加热后由注水泵加压后经过注热水管回注到气囊中,以实现热吞吐开采。
进一步地,所述气水储集箱还与海水补偿装置相连,当气水储集箱中需要回注到气囊的水量不满足所需时,通过海水补偿装置的输水管抽取海平面的海水进行补充;当从气囊抽取回到气水储集箱中的海水量大于所需时,气水储集箱回收的水将通过液体收集管道进行收集处理以供其他需要。
进一步地,在所述套管与生产管柱之间设置有封隔器,所述封隔器位于所述射孔通道之上。
进一步地,在所述生产管柱的底部还设置有出水口,所述出水口低于气水收集进口;所述气囊还和出水口相连。
进一步地,在所述气水收集进口和出水口中均设置单向阀。
进一步地,在所述热水注入口中设置有恒压阀。
进一步地,在所述气囊上设置有排水口。
进一步地,在所述水平井内设置有温度传感器和压力传感器,用以对天然气水合物储层及水平井内的温度压力进行实时监测,以掌握天然气水合物储层和开采的最新变化情况,并以此根据最新情况对整个降压联合热吞吐开采进度进行调控。
第二方面,本发明提供一种降压联合热吞吐法开采海洋天然气水合物资源的方法,所述方法基于上述的系统,所述方法包括:
S1、使用钻头钻进天然气水合物储层,然后布置套管贯穿海水层和水合物藏上覆盖层, 并下穿至天然气水合物储层,在垂直井眼周围按矿藏甜点位置进一步钻进设置定向分布的水平井,完成垂直井和水平井的固井和砾石防砂;
S2、当降压开采的采气量减少时,根据垂直井和水平井降压段的开采出气量、天然气水合物储层压力以及温度情况,适时通过套管内布置的注热水管向设置在水平井中的气囊内注入热水,气囊在注入热水后关闭进出口并将其静置一段时间;期间利用气囊的注水扩张延伸功能,在水平井内形成封闭空间,起到“焖井”作用,以增加气囊内的热水与气囊外的流体及水平井井壁的接触和热量传递效率,达到水合物的热吞吐开采效果,满足水合物进一步降压吸热分解开采的热量需求;
S3、待天然气水合物储层的水合物进一步分解之后,在保证天然气水合物储层和水平井井壁稳定性的基础上对气囊抽出海水降压,同时根据出气量的情况以及天然气水合物储层储层的压力、温度监测数据决定“焖井”时间,对气囊中的海水进行排水作业,实现降压与热吞吐联合开采天然气水合物;
S4、根据出气量判断水平井附近的天然气水合物储层储层流体流通情况,当发现水平井井筒周围堵塞情况时,通过调整气囊排水口阀门的开度来调节向水平井内排水的速度和流量,以此实现抽水降压过程中的天然气水合物储层压力稳定性;
S5、重复执行步骤S2、S3和S4,通过不断的降压开采和热水吞吐联合循环,实现持续产气的海域天然气水合物资源开采目的。
本发明与现有技术相比,其有益效果在于:
1.本发明方案提供的大尺寸垂直井+水平井的天然气水合物开采井结构扩大了天然气水合物开采半径,增加了水合物分解开采面积;
2.本发明提供的开采井结构布置方案考虑了周围一定范围内水合物矿体的分布情况,定向水平井钻进考虑了垂直井眼(主井眼)周围按矿藏甜点位置,从而能最大限度地保证了开采的连续性,也进一步保证了开采的经济性;
3.本发明提供的方案利用水平井内气囊实现热吞吐开采效果,利用气囊的扩张延伸功能可以在井内实现任何方向上的封堵和传热,且根据扩张延伸效果,传热面积直径变化可以扩大好几倍;即使在垂直井抽水抽气降压开采过程中,气囊仍然可以保证水平井段的动态密封,实现动态可控“焖井”,极大地扩大传热面积,提高热传递效率,提高热能输入;
4.本发明提供的方案利用开采出来的部分气水在海上平台二次利用,热水利用废气余热的能力加热再回注,相比采用其他的热源方法,本发明方案充分利用现成便利资源,大大节约了成本;
5.本发明提供的方案不是将热水直接注入水合物开采储层中,而是通过生产管柱内的注热水管将热水注入到水平井内的气囊中,生产管柱能够对注热水管起到保温作用,减少热水注入过程汇总热量的损失,同时注热水管内的热水在注入过程中还能传热给生产管柱内向外抽取的气水流体,防止水合物二次生成造成井筒的堵塞;
6.本发明提供的方案根据降压开采出气量的情况以及储层的压力、温度等相关监测数据决定“焖井”时间,适时对气囊进行排水作业,实现降压与热吞吐联合开采;通过气囊排水口阀门的开度来调节向水平井及天然气水合物储层内排水的速度和流量,以此实现抽水降压过程中的天然气水合物储层储层压力稳定性,同时排出的水可以冲洗井筒附近的沙砾等,防止堵塞,提高开采井周边的渗透率,促进水合物有效连续地分解开采;
7.本发明提供的一种降压联合热吞吐法开采海洋天然气水合物资源的技术方法,通过利 用大尺度垂直井+水平井+气囊的开采井结构不断的进行降压开采和热水吞吐联合循环,实现开采成本可控、能量利用高、安全环保且满足大规模持续产气的海域天然气水合物资源开采目的,是一种具有广泛应用、较好市场前景的海洋天然气水合物开采方法,也可为水合物资源增产措施的实施提供借鉴和指导。
附图说明
图1为本发明实施例提供的降压联合热吞吐法开采海洋天然气水合物资源的系统的组成示意图;
图中:1、海水层;2、水合物藏上覆盖层;3、天然气水合物存储层;4、水平井;5、下伏沉积物层;6、注热水管;7、注水泵;8、生产管柱;9、套管;10、封隔器;11、射孔通道;12、单向阀门;13、气水收集进口;14、气囊;15、出水口;16、热水注入口;17、恒压阀;18、燃气动力装置;19、烟气管道;20、余热利用装置;21、流通阀;22、气水储集箱,;23、第二气体流量计;24、第一气体流量计;25、液体流量计;26、海水补偿装置;27、输水管;28、温度传感器;29、压力传感器;30、排水口。
具体实施方式:
实施例
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”应做广义理解,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以是通过中间媒介间接连接,可以说两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明的具体含义。下面结合附图和实施例对本发明的技术方案做进一步的说明。
针对海洋天然气水合物资源开采,本申请在天然气水合物富集赋存区布置大尺寸垂直井+水平井的开采井结构,实施抽水抽气降压。在本申请中“大尺寸”是泛指采用当下最先进的最大尺寸钻头钻井完井后井眼所得最大尺寸范围;具体大尺寸的大概值需根据采用最大直径的钻头和根据储层条件进行完井的井壁厚度等情况而定。
具体地,参阅图1所示,本实施例提供的降压联合热吞吐法开采海洋天然气水合物资源的系统主要包括垂直井、水平井4、生产管柱8、注热水管6以及气囊14。该垂直井主要包套管9,本系统应用时,套管9是贯穿海水层1和水合物藏上覆盖层2,并下穿至天然气水合物储层3的,套管9位于天然气水合物储层3的区段设置有射孔通道11。
该水平井4则和套管9的底端相连通,二者整体成倒立的字母“T”字形,水平井4的下方则是下伏沉积物层5。
该生产管柱8则设置在套管9内且和套管9同轴并下深至水平井4内,生产管柱8的底部设置有气水收集进口13。
该注热水管6则设置在生产管柱8内且和生产管柱8同轴,生产管柱8和注热水管6之间所形成的环空区域用以进行抽气抽水降压作业,从而使得水合物储层内分解产生的气水产物通过射孔通道11进入套管9和水平井4,最后通过生产管柱8底部的气水收集进口13排出海水层1并输送至海上平台。
该气囊14则设置在水平井4内,与注热水管6底部的热水注入口16相通,气囊14在热水的注入过程中其体积会随之变大,不断在水平井4内扩张延伸,气囊14内的热水也随之向外传递热量供水合物热力开采所需。也就是说,本方案不是将热水直接注入天然气水合物储层3中,而是通过生产管柱8内的注热水管6将热水注入到水平井4内的气囊14中,生产管 柱8能够对注热水管6起到保温作用,减少热水注入过程汇总热量的损失,同时注热水管6内的热水在注入过程中还能传热给生产管柱8内向外抽取的气水流体,防止水合物二次生成造成堵塞。
利用气囊14在注水过程中扩张延伸功能,在水平井4内形成封闭空间,并在井内实现任何方向上的封堵和传热,从而实现类似于热吞吐法开采方法中的“焖井”过程,增加热量传递效率和能量利用率,达到热吞吐开采的效果,且根据扩张延伸效果,传热面积直径变化可以扩大好几倍;即使在抽水抽气降压开采过程中,气囊14仍然可以保证水平井段的动态密封,实现动态可控“焖井”,极大地扩大传热面积,提高热传递效率,提高热能输入。具体地,气囊14为耐压导热材料制成,可满足井下水合物热吞吐开采的需要。
作为本实施例降压联合热吞吐法开采海洋天然气水合物资源的系统的一种优选,该系统还包括气水储集箱22,其和生产管柱8相连,用以存储从天然气水合物储层中所开采到的天然气和水,并完成天然气和海水的分离和回收利用,气水储集箱22内的天然气经气体手机管道输出,并在气体收集管道中安装有第一气体流量计24;该气水储集箱22设置在海上平台上,气水储集箱22回收的天然气除了收集储运外,一部分通过气体收集管道上的支路供应给燃气动力装置18以满足海上平台能源利用所需,同时根据井下天然气水合物热吞吐循环开采情况的实际需要,气水储集箱22回收的海水经流通阀21输送余热利用装置20,通过利用来自燃气动力装置18的废烟气热量经烟气管道19进入余热利用装置20,在余热利用装置20中再加热后由注水泵7加压后经过注热水管6回注到气囊14中,以实现热吞吐开采。在该气体收集管道上的支路上还安装有第二气体流量计23。
此外,该气水储集箱22还与海水补偿装置26相连,当气水储集箱22中需要回注到气囊 14的水量不满足所需时,通过海水补偿装置22的输水管27抽取海平面的海水进行补充;当从气囊14抽取回到气水储集箱22中的海水量大于所需时,气水储集箱22回收的水将通过液体收集管道进行收集处理以供其他需要,在液体收集管道中还安装有液体流量计25。
作为本实施例降压联合热吞吐法开采海洋天然气水合物资源的系统的另一种优选,在该套管9与生产管柱8之间设置有封隔器10,该封隔器10位于该射孔通道11之上,也就是说,封隔器10是布置在套管9与生产管柱8之间在位于水合物藏上覆盖层2的下沿处,防止此处套管9出现气水外泄。
作为本实施例降压联合热吞吐法开采海洋天然气水合物资源的系统的再一种优选,该生产管柱8的底部还设置有出水口15,该出水口15低于气水收集进口;该气囊14还和该出水口连通,具体地,如图1所示,出水口15和热水注入口16都是被气囊14所包围的;该气水收集进口13和出水口15中均设置单向阀,以防止气水回流。在该热水注入口16中设置有恒压阀17,以保证可保证在连续注水情况下气囊14向外扩张延伸不受影响。在整个热吞吐开采后期,当气囊14内的海水不需要另做它用时,可直接开启出水口15,利用生产管柱8内抽气抽水降压造成的压力差,将气囊14中的海水连同天然气水合物储层出来的气水产物一起抽送回海上平台的气水储集箱22中,这是气囊14内海水排出的第一种方式。同时,气囊14上也设置有排水口30,用以向水平井或天然气水合物储层3进行排水作业。
作为本实施例降压联合热吞吐法开采海洋天然气水合物资源的系统的进一步优选,在该水平井4内设有温度传感器28及压力传感器29,对天然气水合物储层及水平井内的温度压力变化进行实时监测,以便掌握天然气水合物储层储层和开采的最新变化情况,并以此根据最新情况对整个降压联合热吞吐开采进度进行调控;在利用生产管柱8和注热水管6之间形 成的环空区域进行抽气抽水降压开采天然气水合物的同时,当降压开采的采气量减少时,根据井下温度和压力变化情况适时将满足需要的一定温度的热水通过上述高压注水泵7注入到井下气囊14中。
待储层水合物进一步分解之后,在保证天然气水合物储层和井壁稳定性的基础的同时,根据出气量的情况以及天然气水合物储层的压力、温度等相关监测数据决定热吞吐法开采过程的“焖井”时间,适时开启出水口15的单向阀12,利用生产管柱8内抽气抽水降压造成的压力差,将气囊14中的海水抽出或打开气囊14上排水口30的出水阀门进行排水作业,实现降压与热吞吐联合开采天然气水合物,这是气囊14内海水排出的第二种方式。
上述两种不同的气囊14海水排出方式,主要区别是在于第一种排出方式是将气囊14中的海水直接抽取排出,第二种排出方式是将其排放至井内及天然气水合物储层中利用。选择采用上述何种囊内海水排出方式,取决于产气情况、天然气水合物储层内静水压力以及井壁周边渗透率情况。当根据开采过程中的出气量、储层压力稳定性以及开采井段井壁周边渗透率变化情况需要采取第二种排出方式时,可以通过气囊14上排水口30的出水阀门的开度来调节向水平井4及天然气水合物储层内排水的速度和流量,以此实现抽水降压过程中的天然气水合物储层压力稳定性,同时排出的水可以冲洗水平井井筒附近的沙砾等,防止堵塞,提高开采井周边的渗透率和水合物开采的出气量等。
相应第,本实施例还提供了一种降压联合热吞吐法开采海洋天然气水合物资源的方法,所述方法上述的系统,包括如下步骤:
S1、使用钻头钻进天然气水合物储层,然后布置套管贯穿海水层和水合物藏上覆盖层,并下穿至天然气水合物储层,在垂直井眼周围按矿藏甜点位置进一步钻进设置定向分布的水 平井,完成垂直井和水平井的固井和砾石防砂;
S2、当降压开采的采气量减少时,根据垂直井和水平井降压段的开采出气量、储层压力以及温度情况,适时通过套管内布置的注热水管向设置在水平井中的气囊内注入热水,气囊在注入热水后关闭进出口并将其静置一段时间;期间利用气囊的注水扩张延伸功能,在水平井内形成封闭空间,起到类似于热吞吐法开采中的“焖井”作用,以增加气囊内的热水与气囊外的流体及水平井井壁的接触和热量传递效率,达到水合物的热吞吐开采效果,满足水合物进一步降压吸热分解开采的热量需求;
S3、待储层水合物进一步分解之后,在保证天然气水合物储层和水平井井壁稳定性的基础上对气囊抽出海水降压,同时根据出气量的情况以及天然气水合物储层储层的压力、温度监测数据决定“焖井”时间,对气囊中的海水进行排水作业,实现降压与热吞吐联合开采天然气水合物;
S4、根据出气量判断水平井附近的天然气水合物储层储层流体流通情况,当发现水平井井筒周围堵塞情况时,通过调整气囊排水口阀门的开度来调节向水平井内排水的速度和流量,以此实现抽水降压过程中的天然气水合物储层压力稳定性,同时排出的水可以冲洗井筒附近的沙砾等,防止堵塞,提高开采井周边的渗透率;
S5、重复执行步骤S2、S3和S4,通过不断的降压开采和热水吞吐联合循环,实现开采成本可控、能量利用高、安全环保且满足大规模持续产气的海域天然气水合物资源开采目的。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,包括:
    垂直井,其包括套管,所述套管用于贯穿海水层和水合物藏上覆盖层,并下穿至天然气水合物储层;所述套管位于天然气水合物储层的区段设置有射孔通道;
    水平井,其和所述套管的底端相连;
    生产管柱,其设置在所述套管内并下深至所述水平井内;所述生产管柱的底部设置有气水收集进口;
    注热水管,其设置在所述生产管柱内,所述生产管柱和注热水管之间形成的环空区域用以进行抽气抽水降压作业;所述注热水管的底部设置有热水注入口;
    气囊,其设置在所述水平井内,与所述注热水管的热水注入口相连。
  2. 如权利要求1所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,还包括:
    气水储集箱,其和所述生产管柱相连,用以存储从天然气水合物储层中所开采到的天然气和水,并完成天然气和海水的分离和回收利用;
    所述气水储集箱设置在海上平台上,气水储集箱回收的天然气除了收集储运外,一部分供应给燃气动力装置以满足海上平台能源利用所需;
    所述气水储集箱回收的海水通过利用来自燃气动力装置的废烟气热量在余热利用装置中再加热后由注水泵加压后经过注热水管回注到气囊中,以实现热吞吐开采。
  3. 如权利要求2所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,所述气水储集箱还与海水补偿装置相连,当气水储集箱中需要回注到气囊的水量不满足所需 时,通过海水补偿装置的输水管抽取海平面的海水进行补充;当从气囊抽取回到气水储集箱中的海水量大于所需时,气水储集箱回收的水将通过液体收集管道进行收集处理以供其他需要。
  4. 如权利要求1所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,在所述套管与生产管柱之间设置有封隔器,所述封隔器位于所述射孔通道之上。
  5. 如权利要求1所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,在所述生产管柱的底部还设置有出水口,所述出水口低于气水收集进口;所述气囊还和出水口相连。
  6. 如权利要求5所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,在所述气水收集进口和出水口中均设置单向阀。
  7. 如权利要求1所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,在所述热水注入口中设置有恒压阀。
  8. 如权利要求1所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,在所述气囊上设置有排水口。
  9. 如权利要求8所述的降压联合热吞吐法开采海洋天然气水合物资源的系统,其特征在于,在所述水平井内设置有温度传感器和压力传感器,用以对天然气水合物储层及水平井内的温度压力进行实时监测,以掌握天然气水合物储层和开采的最新变化情况,并以此根据最新情况对整个降压联合热吞吐开采进度进行调控。
  10. 一种降压联合热吞吐法开采海洋天然气水合物资源的方法,所述方法基于权利要求9所述的系统,其特征在于,所述方法包括:
    S1、使用钻头钻进天然气水合物储层,然后布置套管贯穿海水层和水合物藏上覆盖层,并下穿至天然气水合物储层,在垂直井眼周围按矿藏甜点位置进一步钻进设置定向分布的水平井,完成垂直井和水平井的固井和砾石防砂;
    S2、当降压开采的采气量减少时,根据垂直井和水平井降压段的开采出气量、天然气水合物储层压力以及温度情况,适时通过套管内布置的注热水管向设置在水平井中的气囊内注入热水,气囊在注入热水后关闭进出口并将其静置一段时间;期间利用气囊的注水扩张延伸功能,在水平井内形成封闭空间,起到焖井作用,以增加气囊内的热水与气囊外的流体及水平井井壁的接触和热量传递效率,达到水合物的热吞吐开采效果,满足水合物进一步降压吸热分解开采的热量需求;
    S3、待天然气水合物储层的水合物进一步分解之后,在保证天然气水合物储层和水平井井壁稳定性的基础上对气囊抽出海水降压,同时根据出气量的情况以及天然气水合物储层储层的压力、温度监测数据决定焖井时间,对气囊中的海水进行排水作业,实现降压与热吞吐联合开采天然气水合物;
    S4、根据出气量判断水平井附近的天然气水合物储层储层流体流通情况,当发现水平井井筒周围堵塞情况时,通过调整气囊排水口阀门的开度来调节向水平井内排水的速度和流量,以此实现抽水降压过程中的天然气水合物储层压力稳定性;
    S5、重复执行步骤S2、S3和S4,通过不断的降压开采和热水吞吐联合循环,实现持续产气的海域天然气水合物资源开采目的。
PCT/CN2022/127373 2022-09-26 2022-10-25 一种开采海洋天然气水合物资源的系统及方法 WO2023142553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/016,683 US12084947B2 (en) 2022-09-26 2022-10-25 System and method for exploiting marine natural gas hydrate resource

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211176316.7A CN115370325B (zh) 2022-09-26 2022-09-26 一种开采海洋天然气水合物资源的系统及方法
CN202211176316.7 2022-09-26

Publications (1)

Publication Number Publication Date
WO2023142553A1 true WO2023142553A1 (zh) 2023-08-03

Family

ID=84074089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127373 WO2023142553A1 (zh) 2022-09-26 2022-10-25 一种开采海洋天然气水合物资源的系统及方法

Country Status (2)

Country Link
CN (1) CN115370325B (zh)
WO (1) WO2023142553A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980970A (zh) * 2014-05-28 2014-08-13 山东科技大学 一种模拟海底可燃冰生成和开采的实验装置及其使用方法
CN106703780A (zh) * 2017-01-05 2017-05-24 大连理工大学 一种倾斜井海洋天然气水合物开采方法
CN107701151A (zh) * 2017-11-17 2018-02-16 中国矿业大学 一种定向钻进降压抽采天然气水合物的方法
JP6679038B1 (ja) * 2018-12-12 2020-04-15 青▲島▼海洋地▲質▼研究所 温海水と砂利の呑吐置換に基づくi型ハイドレートシステムの採掘方法
US20200291754A1 (en) * 2018-05-25 2020-09-17 Southwest Petroleum University Hydrate solid-state fluidization mining method and system under underbalanced reverse circulation condition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114026A1 (en) * 2005-11-23 2007-05-24 Gas Hydrates Corporation Method and apparatus for extracting gas hydrate deposits
US7735554B2 (en) * 2007-03-29 2010-06-15 Texyn Hydrocarbon, Llc System and method for recovery of fuel products from subterranean carbonaceous deposits via an electric device
CN107542441A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种平行水平井注热水开采天然气水合物的方法
CN109882133A (zh) * 2019-03-06 2019-06-14 大连理工大学 一种利用废弃高温高压气藏开采天然气水合物的装置及方法
CN110057121B (zh) * 2019-04-24 2020-01-14 中国矿业大学 利用废弃井工煤矿地热进行高效压气储能的方法及装置
CN113531927A (zh) * 2021-06-23 2021-10-22 姚靖榆 一种同井回灌地热井
CN114412419B (zh) * 2022-01-21 2022-09-09 中国矿业大学 一种叠置煤层气藏高效闭环抽采的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980970A (zh) * 2014-05-28 2014-08-13 山东科技大学 一种模拟海底可燃冰生成和开采的实验装置及其使用方法
CN106703780A (zh) * 2017-01-05 2017-05-24 大连理工大学 一种倾斜井海洋天然气水合物开采方法
CN107701151A (zh) * 2017-11-17 2018-02-16 中国矿业大学 一种定向钻进降压抽采天然气水合物的方法
US20200291754A1 (en) * 2018-05-25 2020-09-17 Southwest Petroleum University Hydrate solid-state fluidization mining method and system under underbalanced reverse circulation condition
JP6679038B1 (ja) * 2018-12-12 2020-04-15 青▲島▼海洋地▲質▼研究所 温海水と砂利の呑吐置換に基づくi型ハイドレートシステムの採掘方法

Also Published As

Publication number Publication date
CN115370325B (zh) 2023-06-09
CN115370325A (zh) 2022-11-22
US20240240541A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
CN103206199B (zh) 热流体压裂开采天然气水合物装置及方法
CN110644963B (zh) 一种基于多分支井开采水合物的方法
WO2021232905A1 (zh) 基于断层导水裂隙带的煤-地热协同开采方法
CN102587873B (zh) 一种水平井二氧化碳吞吐控水增油方法
CN1944949A (zh) 单井注热循环开采海底水合物的方法
CN105422055B (zh) 一种协同开发天然气、水溶气和天然气水合物的系统
CN107542440A (zh) 一种u型井微波加热开采天然气水合物的方法
CN107676061A (zh) 一种平行水平井开采海上天然气水合物的方法
CN107514248A (zh) 一种天然气水合物平行水平井化学驱开采的方法
CN107514245A (zh) 一种天然气水合物排式水平井开采的方法
CN107676060A (zh) 一种天然气水合物u型井微波加热开采的方法
CN107575201A (zh) 一种天然气水合物平行水平井微波加热开采的方法
CN107701150A (zh) 一种海上天然气水合物平行水平井开采的方法
CN107575193A (zh) 一种海上天然气水合物排式水平井开采的方法
CN109695441A (zh) 一种平行水平井微波加热开采天然气水合物的方法
CN112081559A (zh) 一种降压和双管注入改性流体开采天然气水合物的装置和方法
CN111911117B (zh) 一种利用地层能量加热的可燃冰开采管柱及其作业方法
WO2023142553A1 (zh) 一种开采海洋天然气水合物资源的系统及方法
CN211448630U (zh) 一种降压和双管注入改性流体开采天然气水合物的装置
JP7297353B1 (ja) 天然ガスハイドレート-浅層ガス-深層ガスマルチソースマルチ方法共同採掘システム及び方法
CN107575200A (zh) 一种天然气水合物平行水平井开采的方法
US12084947B2 (en) System and method for exploiting marine natural gas hydrate resource
CN109736754A (zh) 一种利用干热岩开采天然气水合物的装置及方法
CN210714650U (zh) 一种浅层地热能中增大换热面积装置
CN107542438A (zh) 一种平行水平井开采天然气水合物的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18016683

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923351

Country of ref document: EP

Kind code of ref document: A1