WO2023139942A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2023139942A1
WO2023139942A1 PCT/JP2022/044512 JP2022044512W WO2023139942A1 WO 2023139942 A1 WO2023139942 A1 WO 2023139942A1 JP 2022044512 W JP2022044512 W JP 2022044512W WO 2023139942 A1 WO2023139942 A1 WO 2023139942A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
cell
scs
carrier
base station
Prior art date
Application number
PCT/JP2022/044512
Other languages
French (fr)
Japanese (ja)
Inventor
真由子 岡野
尚哉 芝池
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023139942A1 publication Critical patent/WO2023139942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to terminals, base stations and communication methods in wireless communication systems.
  • Non-Patent Document 1 NR (New Radio) (also known as “5G”), the successor system to LTE (Long Term Evolution), technologies are being studied that satisfy requirements such as a large-capacity system, high-speed data transmission speed, low latency, simultaneous connection of many terminals, low cost, and power saving (for example, Non-Patent Document 1).
  • Non-Patent Document 2 is considering using a higher frequency band than previous releases (eg, Non-Patent Document 2).
  • a higher frequency band eg., Non-Patent Document 2.
  • applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, possible obstacles in actual wireless communication, etc. are being studied.
  • the present invention has been made in view of the above points, and aims to apply a wireless communication system to a high frequency band.
  • a terminal includes a receiving unit that receives control information including scheduling of shared channels of different cells or triggering of reference signals of different cells on the downlink, and a transmitting unit that transmits terminal capability information indicating restrictions between a cell in which the control information is transmitted and a cell of the shared channel or the reference signal in the uplink.
  • a technique that enables a wireless communication system to be applied to a high frequency band.
  • FIG. 1 is a first diagram for explaining a radio communication system according to an embodiment of the present invention
  • FIG. FIG. 2 is a second diagram for explaining the radio communication system according to the embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing an example of bands
  • FIG. 10 is a diagram showing slot lengths for SCS
  • FIG. 2 is a diagram for explaining cross-carrier scheduling
  • FIG. 1 is a diagram showing a basic operation example of a radio communication system
  • FIG. 1 is a diagram illustrating an example of terminal functions related to conventional cross-carrier scheduling
  • FIG. FIG. 4 is a first diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention
  • FIG. 4 is a second diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention
  • FIG. 4 is a first diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention
  • FIG. 4 is a second diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention
  • FIG. 2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention
  • FIG. It is a figure showing an example of composition of vehicles 2001 in an embodiment of the invention.
  • existing technology may be used as appropriate.
  • the existing technology is, for example, existing NR or LTE, but is not limited to existing NR or LTE.
  • LTE Long Term Evolution
  • LTE-Advanced and LTE-Advanced and subsequent systems eg, NR
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • Terms such as PUCCH (Physical Uplink Control Channel) and PUSCH Physical Uplink Shared Channel
  • the duplex system may be the TDD (Time Division Duplex) system, the FDD (Frequency Division Duplex) system, or other systems (for example, Flexible Duplex, etc.).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • other systems for example, Flexible Duplex, etc.
  • “configuring" wireless parameters and the like may mean that predetermined values are set in advance (Pre-configure), or that wireless parameters notified from a base station or a terminal are set.
  • FIG. 1 is a first diagram for explaining the radio communication system according to the embodiment of the present invention.
  • a radio communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
  • the base station 10 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled and communicated with the terminal 20 .
  • multiple CCs component carriers
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • Synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also called broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink) and receives control signals or data from the terminal 20 on UL (Uplink).
  • control channels such as PUCCH and PDCCH
  • a shared channel such as PUSCH and PDSCH
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby using various communication services provided by the wireless communication system. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
  • FIG. 2 is a second diagram for explaining the wireless communication system according to the embodiment of the present invention.
  • FIG. 2 shows a configuration example of a radio communication system when dual connectivity (DC) is performed.
  • a base station 10A serving as a master node (MN: Master Node) and a base station 10B serving as a secondary node (SN: Secondary Node) are provided.
  • the base station 10A and the base station 10B are connected to the core network 30 respectively.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • a cell group provided by the MN base station 10A is called a master cell group (MCG), and a cell group provided by the SN base station 10B is called a secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • an MCG is composed of one PCell and 0 or more SCells
  • an SCG is composed of one PSCell (Primary SCG Cell) and 0 or more SCells.
  • dual connectivity may be a communication method using two communication standards, and any communication standards may be combined.
  • the combination may be either NR and 6G standard or LTE and 6G standard.
  • dual connectivity may be a communication method using three or more communication standards, and may be called by other names different from dual connectivity.
  • the processing operation in the present embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
  • FIG. 3 is a diagram showing an example of bands.
  • FIG. 3 shows an example of frequency bands used in NR.
  • frequency bands which may be called frequency ranges
  • FR1 (0.41 GHz to 7.125)
  • FR2-1 24.25 GHz to 52.6 GHz
  • FR2-2 52.6 GHz to 71 GHz
  • FR2-1 and FR2-2 may be collectively called FR2.
  • FR1 supports SCS of 15 kHz, 30 kHz, and 60 kHz, and a bandwidth (BW) of 5 to 100 MHz.
  • FR2-1 supports 60 kHz, 120 kHz and 240 kHz (SSB only) as SCS, and 50-400 MHz as bandwidth (BW).
  • FR2-2 is assumed to support SCS greater than 240 kHz. However, these support situations are just examples.
  • the radio communication system supports CA (and DC) between FR1 and FR2-2.
  • CA and DC
  • the following three band combinations may be used: (1) n79+Nx, (2) n77+Nx, (3) n41+Nx.
  • Nx is, for example, the 57-71 GHz unlicensed band and the 66-71 GHz licensed band.
  • FIG. 4 is a diagram showing slot lengths for SCS. As shown in FIG. 4, the larger the SCS, the shorter the symbol length/slot length.
  • FIG. 5 shows an example of a situation where the difference in symbol length/slot length between carriers becomes large.
  • FIG. 5 is a diagram for explaining cross-carrier scheduling.
  • the terminal 20 receives the PDCCH on CC#1, and receives the PDSCH scheduled on that PDCCH on CC#2.
  • the numerology of CC#2 is greater than the numerology of CC#1, and as shown in FIG. 5, the slot length of CC#2 is shorter than the slot length of CC#1, and the difference between them is large. If the difference between numerology is large in this way, the terminal operation becomes complicated, and the cross-carrier scheduling gain may deteriorate.
  • FIG. 6 is a diagram showing a basic operation example of the wireless communication system.
  • the terminal 20 transmits capability information to the base station 10 (step S101). Note that step S101 may not be performed.
  • the base station 10 transmits setting information to the terminal 20 (step S102.
  • This setting information includes, for example, settings for PDCCH, PDSCH, PUCCH, and PUSCH.
  • the terminal 20 receives PDCCH in a certain cell (step S103).
  • PDCCH includes scheduling information of PDSCH in another cell (carrier).
  • the terminal 20 then receives the PDSCH in the scheduled resource (step S104).
  • the terminal 20 transmits feedback information for data reception by the PDSCH on the PUCCH (step S105).
  • FIG. 7 is a diagram showing an example of terminal functions related to conventional cross-carrier scheduling.
  • cross-carrier scheduling in various terminal functions related to carrier numerology is defined as a terminal function for MR-DC (Multi-RAT Dual Connectivity) / CA (Carrier Aggregation) extension, as shown in FIG.
  • Example 1 In this example, the signaling of terminal capabilities for cross-carrier scheduling involving FR2-2 cells is described.
  • Terminal 20 can specify PDCCH and PDSCH/PUSCH SCS limits for cross-carrier scheduling that includes the FR2-2 band, and the limits may vary depending on terminal capabilities.
  • This restriction may be applied when the CC to be scheduled and/or the CC to be scheduled is a carrier of the FR2-2 band.
  • This restriction may be applied when the SCS of the CC to be scheduled and/or the CC to be scheduled is a carrier of 120/480/960 kHz SCS.
  • the terminal 20 may report whether it supports cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band through terminal capability signaling.
  • the terminal 20 may report the terminal capability according to the combination of the SCS of the CC to be scheduled and the CC to be scheduled. For example, terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
  • the terminal 20 supports cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • the terminal 20 may report whether or not to support cross-carrier scheduling from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • the terminal 20 may report whether or not to support cross-carrier scheduling from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • the terminal 20 may report whether or not to support cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • Terminal 20 may report the X value to support cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • the terminal 20 may report the X value for supporting cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • Whether the terminal 20 supports either or both of cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band and cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band may be reported in the same FG (Feature Group) or different FGs.
  • the terminal 20 may report the terminal capabilities indicated in option 2 in the same FG or different FGs depending on the value of the SCS combination for scheduling the CC or the value limiting
  • Terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS, including SCS at 480 kHz and/or 960 kHz, via terminal capability signaling.
  • the terminal 20 may report the terminal capability according to the SCS restrictions of the CC to be scheduled and the CC to be scheduled. For example, terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
  • terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
  • terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
  • terminal 20 may report whether or not it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
  • terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
  • Terminal 20 may report the X value to support cross-carrier scheduling from small SCS to large SCS.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • the terminal 20 may report the X value for supporting cross-carrier scheduling from large SCS to small SCS.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • the terminal 20 may report in the same FG (Feature Group) or different FGs whether or not to support either or both of cross-carrier scheduling from a small SCS to a large SCS and cross-carrier scheduling from a large SCS to a small SCS.
  • FG Feature Group
  • the terminal 20 may report the terminal capabilities indicated in option 3 in the same FG or different FGs depending on the value of the SCS combination for scheduling the CC or the value limiting
  • Terminal 20 may report the maximum or minimum value it supports as the number of unicast DCIs per N consecutive slots for cross-carrier scheduling involving FR2-2 cells via terminal capability signaling.
  • the number X of unicast DCIs may differ depending on the combination of the CC to be scheduled and the SCS of the CC to be scheduled.
  • N may differ depending on the combination of the SCS of the CC to be scheduled and the CC to be scheduled.
  • N may be 1 for cross-carrier scheduling from small SCS to large SCS.
  • the terminal 20 may report the terminal capabilities indicated in option 4 in the same FG or different FGs depending on the value of the SCS combination for scheduling the CC or the value limiting
  • FIG. 8 is a first diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention.
  • FIG. 8 shows an example of reporting in the same FG whether or not the limitation of
  • FG(24-X) is a FG for reporting terminal capabilities of downlink and/or uplink cross-carrier scheduling in different SCSs, including SCSs of 480 kHz and/or 960 kHz.
  • the terminal 20 may report the value of X shown in option 2 or option 3 in FG (24-X). Also, the terminal 20 may report the value of N indicated in option 4 in FG(24-X).
  • FG (24-Y) is a FG for reporting processing up to X unicast DCI scheduling of downlink or uplink per scheduled CC including SCS of 480 kHz and/or 960 kHz.
  • the terminal 20 may report the value of X shown in Option 4 in FG (24-Y).
  • FIG. 9 is a second diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention.
  • FIG. 9 shows an example in which different FGs report whether or not
  • the terminal 20 may report support in the case of
  • the terminal 20 may report support in the case of
  • the terminal 20 may report support in the case of
  • the terminal 20 may report support in the case of
  • Example 2 In this example, the signaling of terminal capabilities for cross-carrier A-CSI-RS triggering involving FR2-2 cells is described.
  • Terminal 20 can specify PDCCH and PDSCH/PUSCH SCS limits for cross-carrier scheduling that includes the FR2-2 band, and the limits may vary depending on terminal capabilities.
  • This restriction may be applied when the CC to be scheduled and/or the CC to be scheduled is a carrier of the FR2-2 band.
  • This restriction may be applied when the SCS of the CC to be scheduled and/or the CC to be scheduled is a carrier of 120/480/960 kHz SCS.
  • Terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band through terminal capability signaling.
  • the terminal 20 may report the terminal function according to the SCS combination of the PDCCH cell and/or the A-CSI-RS cell.
  • terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
  • the numerology of the PDCCH carrier is .mu.PDCCH
  • the numerology of the A-CSI-RS carrier is .mu.CSI-RS.
  • the terminal 20 may report whether or not to support cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • the terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • the terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • the terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • Terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • the terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • the terminal 20 may report whether or not to support either or both of cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band and cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band in the same FG (Feature Group) or different FGs.
  • the terminal 20 may report the terminal functions indicated in Option 2 in the same FG or in different FGs depending on the value of the SCS combination of the PDCCH cell and the A-CSI-RS cell or the value limiting
  • Terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS, including SCS at 480 kHz and/or 960 kHz, via terminal capability signaling.
  • the terminal 20 may report the terminal function according to the SCS combination of the PDCCH cell and/or the A-CSI-RS cell.
  • terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
  • terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
  • terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
  • terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
  • terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
  • Terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from small SCS to large SCS.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • the terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from large SCS to small SCS.
  • X is a value defined as
  • Candidate values for X may be 3, 4, 5 or 6.
  • Terminal 20 may report whether or not to support either or both of cross-carrier A-CSI-RS triggering from a small SCS to a large SCS and cross-carrier A-CSI-RS triggering from a large SCS to a small SCS in the same FG (Feature Group) or different FGs.
  • the terminal 20 may report the terminal functions indicated in option 3 in the same FG or different FGs depending on the value of the SCS combination of the PDCCH cell and the A-CSI-RS cell or the value limiting
  • FIG. 10 is a first diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention.
  • FIG. 10 shows an example of reporting in the same FG whether or not the limitation of
  • FG(24-X) is a FG for reporting terminal capabilities of downlink and/or uplink cross-carrier A-CSI-RS triggering in different SCSs, including 480 kHz and/or 960 kHz SCSs.
  • the terminal 20 may report the value of X shown in option 2 or option 3 in FG (24-X).
  • FIG. 11 is a second diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention.
  • FIG. 11 shows an example of reporting in different FGs whether or not the limitation of
  • the terminal 20 may report support in the case of
  • the terminal 20 may report support in the case of
  • the terminal 20 may report support in the case of
  • the terminal 20 may report support in the case of
  • the terminal functions reported in each of the above-described embodiments may be reported in the same FG or may be reported in different FGs.
  • the base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and the terminal 20 may have only the functions proposed in any of the embodiments.
  • FIG. 12 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 12 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 110 and the receiving unit 120 may be called a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals.
  • the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20 . Also, the transmission unit 110 transmits the setting information and the like described in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary.
  • the control unit 140 performs overall control of the base station 10 including control related to signal transmission/reception, for example. It should be noted that the functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and the functional unit related to signal reception in control unit 140 may be included in receiving unit 120 . Also, the transmitting unit 110 and the receiving unit 120 may be called a transmitter and a receiver, respectively.
  • FIG. 13 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitter 210 , a receiver 220 , a setter 230 and a controller 240 .
  • the functional configuration shown in FIG. 13 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 210 and the receiving unit 220 may be called a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
  • the setting unit 230 stores various types of setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 performs overall control of the terminal 20 including control related to signal transmission/reception. It should be noted that the functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and the functional unit related to signal reception in control unit 240 may be included in receiving unit 220 . Also, the transmitting section 210 and the receiving section 220 may be called a transmitter and a receiver, respectively.
  • the terminal or base station of this embodiment may be configured as a terminal or base station shown in each section below. Also, the following communication method may be implemented.
  • the terminal capability information is information indicating restrictions on subcarrier intervals between the cell in which the control information is transmitted and the cell of the shared channel in scheduling of shared channels of different cells.
  • any of the above configurations provides a technology that enables a wireless communication system to be applied to high frequency bands.
  • terminal capability signaling for cross-carrier scheduling can be realized.
  • terminal capability signaling for cross-carrier A-CSI-RS triggering can be realized.
  • each functional block may be implemented using one device that is physically or logically coupled, or may be implemented using two or more physically or logically separated devices that are directly or indirectly (e.g., wired, wireless, etc.) connected and implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include, but are not limited to, determining, determining, determining, calculating, calculating, processing, deriving, investigating, searching, confirming, receiving, transmitting, outputting, accessing, resolving, selecting, selecting, establishing, comparing, assuming, expecting, assuming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, and the like.
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is realized by loading predetermined software (programs) onto hardware such as the processor 1001 and storage device 1002, causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling at least one of reading and writing data in the storage device 1002 and auxiliary storage device 1003.
  • predetermined software programs
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 12 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • the control unit 240 of the terminal 20 shown in FIG. 13 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, and may be composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing the communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be composed of at least one of, for example, optical discs such as CD-ROMs (Compact Disc ROM), hard disk drives, flexible discs, magneto-optical discs (e.g., compact discs, digital versatile discs, Blu-ray (registered trademark) discs), smart cards, flash memories (e.g., cards, sticks, key drives), floppy (registered trademark) discs, magnetic strips, and the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be implemented by the communication device 1004 .
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 may be configured including hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), FPGAs (Field Programmable Gate Arrays), etc., and part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021 to 2029, an information service unit 2012, and a communication module 2013.
  • a communication device mounted on vehicle 2001 and may be applied to communication module 2013, for example.
  • the driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 .
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021 to 2029 include a current signal from the current sensor 2021 that senses the current of the motor, front and rear wheel rotation speed signals acquired by the rotation speed sensor 2022, front and rear wheel air pressure signals acquired by the air pressure sensor 2023, vehicle speed signals acquired by the vehicle speed sensor 2024, acceleration signals acquired by the acceleration sensor 2025, and accelerator pedal depression amount signals acquired by the accelerator pedal sensor 2029. , a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, an obstacle, a vehicle, a pedestrian, etc. obtained by an object detection sensor 2028.
  • the information service unit 2012 consists of various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
  • the driving support system unit 2030 includes millimeter-wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g., GNSS, etc.), map information (e.g., high-definition (HD) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence ) Chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more ECUs that control these devices.
  • the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports.
  • the communication module 2013 communicates with the driving unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the microprocessor 2031 and the memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 29 provided in the vehicle 2001 through the communication port 2033. to send and receive data.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 2013 may be internal or external to electronic control unit 2010 .
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 receives input to the electronic control unit 2010, front wheel and rear wheel rotation speed signals acquired by the rotation speed sensor 2022, front and rear wheel air pressure signals acquired by the air pressure sensor 2023, vehicle speed signals acquired by the vehicle speed sensor 2024, acceleration signals acquired by the acceleration sensor 2025, accelerator pedal depression amount signals acquired by the accelerator pedal sensor 2029, and brake pedal acquired by the brake pedal sensor 2026.
  • the amount of depression signal, the operation signal of the shift lever acquired by the shift lever sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, etc. are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 .
  • Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 .
  • the microprocessor 2031 may control the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the sensors 2021 to 2029, etc. provided in the vehicle 2001.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention may be stored in random access memory (RAM), flash memory, read-only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • information is notified by physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may also be called an RRC message, such as an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG(x is an integer, decimal)), FRA (Future Radio Access), NR (new Radio), New radio access (NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), other suitable systems, and/or next-generation systems that are extended, modified, created, and defined based on these. Also, a plurality of systems may be applied in
  • a specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases. It is clear that in a network of one or more network nodes with a base station 10, various operations performed for communication with the terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (e.g., MME or S-GW, etc. are possible, but not limited to these). Although the above example illustrates the case where there is one network node other than the base station 10, the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • MME Mobility Management Entity
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), may be made by a true/false value (Boolean: true or false), or may be made by numerical comparison (for example, comparison with a predetermined value).
  • Software should be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using wired technologies (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technologies (infrared, microwave, etc.), then these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technologies coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technologies infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • radio resources may be indexed.
  • the names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure.
  • the various names assigned to these various channels and information elements are not limiting names in any way, as the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Access point e.g., "transmission point”
  • Reception point e.g., "transmission/reception point”
  • Terms such as “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably.
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area can also be served by a base station subsystem (e.g., an indoor remote radio head (RRH)).
  • a base station subsystem e.g., an indoor remote radio head (RRH)
  • RRH indoor remote radio head
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side").
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement”, “determining” can include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (e.g., searching in a table, database, or other data structure), ascertaining as “judging", “determining", etc.
  • “determining” and “determining” include receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, and accessing (e.g., accessing data in memory).
  • determining or “determining” may include resolving, selecting, choosing, establishing, comparing, etc., to be regarded as “determining” or “determining.”
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements can be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, and using electromagnetic energy having wavelengths in the radio frequency, microwave, and light (both visible and invisible) regions, as some non-limiting and non-exhaustive examples.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel.
  • the numerology may indicate, for example, at least one of Sub Carrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, certain filtering operations performed by the transceiver in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and the like.
  • SCS Sub Carrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure certain filtering operations performed by the transceiver in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, may be a period shorter than 1 ms (eg, 1-13 symbols), or may be a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (e.g., normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms
  • a short TTI e.g., shortened TTI, etc.
  • TTI length that is less than the TTI length of the long TTI and is 1 ms or more.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • one or more RBs may be called a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, or the like.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology on a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP.
  • terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be read as "BWP”.
  • radio frames, subframes, slots, minislots and symbols are only examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, and the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc. can be variously changed.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to explicit notification, but may be performed implicitly (e.g., not notification of the predetermined information).
  • Base station 110 Transmitting unit 120 Receiving unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmitting unit 220 Receiving unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving unit 2003 Operation Rudder 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Revolution sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection Sensor 2029 Accelerator pedal sensor 2030 Driving support system unit 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal comprises: a reception unit for receiving, through a downlink, control information including a scheduling of a shared channel of another cell or a triggering of a reference signal of the other cell; and a transmission unit for transmitting, through an uplink, terminal capacity information indicating the limitation between the cell to which the control information is transmitted and the cell which has the shared channel or the reference signal.

Description

端末、基地局及び通信方法Terminal, base station and communication method
 本発明は、無線通信システムにおける端末、基地局及び通信方法に関する。 The present invention relates to terminals, base stations and communication methods in wireless communication systems.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。  In NR (New Radio) (also known as "5G"), the successor system to LTE (Long Term Evolution), technologies are being studied that satisfy requirements such as a large-capacity system, high-speed data transmission speed, low latency, simultaneous connection of many terminals, low cost, and power saving (for example, Non-Patent Document 1).
 NRリリース17では、従来のリリース(例えば非特許文献2)よりも高い周波数帯を使用することが検討されている。例えば、52.6GHzから71GHzまでの周波数帯における、サブキャリア間隔、チャネル帯域幅等を含む適用可能なニューメロロジ、物理レイヤのデザイン、実際の無線通信において想定される障害等が検討されている。  NR Release 17 is considering using a higher frequency band than previous releases (eg, Non-Patent Document 2). For example, in the frequency band from 52.6 GHz to 71 GHz, applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, possible obstacles in actual wireless communication, etc. are being studied.
 無線通信システムを高周波数帯に適用させる仕様が規定されていないという問題がある。例えば、FR2-2セルを含むクロスキャリアスケジューリングに関する端末機能のシグナリングについては、詳細が不明である。また、FR2-2セルを含むクロスキャリアA-CSI-RSトリガリングについても、同様に詳細が不明である。 There is a problem that the specifications for applying wireless communication systems to high frequency bands are not defined. For example, the signaling of terminal capabilities for cross-carrier scheduling involving FR2-2 cells is unclear. Also, cross-carrier A-CSI-RS triggering involving FR2-2 cells is similarly unclear.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムを高周波数帯に適用させることを目的とする。 The present invention has been made in view of the above points, and aims to apply a wireless communication system to a high frequency band.
 開示の技術によれば、異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報をダウンリンクで受信する受信部と、前記制御情報が送信されるセルと、前記共有チャネルまたは前記参照信号のセルとの間の制限を示す端末能力情報を、アップリンクで送信する送信部と、を備える端末が提供される。 According to the disclosed technique, a terminal is provided that includes a receiving unit that receives control information including scheduling of shared channels of different cells or triggering of reference signals of different cells on the downlink, and a transmitting unit that transmits terminal capability information indicating restrictions between a cell in which the control information is transmitted and a cell of the shared channel or the reference signal in the uplink.
 開示の技術によれば、無線通信システムを高周波数帯に適用させることを可能とする技術が提供される。 According to the disclosed technique, a technique is provided that enables a wireless communication system to be applied to a high frequency band.
本発明の実施の形態に係る無線通信システムについて説明するための第一の図である。1 is a first diagram for explaining a radio communication system according to an embodiment of the present invention; FIG. 本発明の実施の形態に係る無線通信システムについて説明するための第二の図である。FIG. 2 is a second diagram for explaining the radio communication system according to the embodiment of the present invention; FIG. バンドの例を示す図である。FIG. 4 is a diagram showing an example of bands; SCSに対するスロット長を示す図である。FIG. 10 is a diagram showing slot lengths for SCS; クロスキャリアスケジューリングについて説明するための図である。FIG. 2 is a diagram for explaining cross-carrier scheduling; FIG. 無線通信システムの基本的な動作例を示す図である。1 is a diagram showing a basic operation example of a radio communication system; FIG. 従来のクロスキャリアスケジューリングに関する端末機能の一例を示す図である。1 is a diagram illustrating an example of terminal functions related to conventional cross-carrier scheduling; FIG. 本発明の実施の形態の実施例1に係るクロスキャリアスケジューリングに関する端末機能の一例を示す第一の図である。FIG. 4 is a first diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention; 本発明の実施の形態の実施例1に係るクロスキャリアスケジューリングに関する端末機能の一例を示す第二の図である。FIG. 4 is a second diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention; 本発明の実施の形態の実施例1に係るクロスキャリアA-CSI-RSトリガリングに関する端末機能の一例を示す第一の図である。FIG. 4 is a first diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention; 本発明の実施の形態の実施例1に係るクロスキャリアA-CSI-RSトリガリングに関する端末機能の一例を示す第二の図である。FIG. 4 is a second diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention; 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention; FIG. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention; FIG. 本発明の実施の形態における車両2001の構成の一例を示す図である。It is a figure showing an example of composition of vehicles 2001 in an embodiment of the invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. In addition, the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 For the operation of the wireless communication system according to the embodiment of the present invention, existing technology may be used as appropriate. The existing technology is, for example, existing NR or LTE, but is not limited to existing NR or LTE. In addition, the term “LTE” used in this specification has a broad meaning including LTE-Advanced and LTE-Advanced and subsequent systems (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 In addition, in the embodiment of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), Terms such as PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel) are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, and so on. However, even a signal used for NR is not necessarily specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Also, in the embodiment of the present invention, the duplex system may be the TDD (Time Division Duplex) system, the FDD (Frequency Division Duplex) system, or other systems (for example, Flexible Duplex, etc.).
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局又は端末から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" wireless parameters and the like may mean that predetermined values are set in advance (Pre-configure), or that wireless parameters notified from a base station or a terminal are set.
 図1は、本発明の実施の形態に係る無線通信システムについて説明するための第一の図である。本発明の実施の形態に係る無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a first diagram for explaining the radio communication system according to the embodiment of the present invention. A radio communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example, and there may be a plurality of each.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. A physical resource of a radio signal is defined in the time domain and the frequency domain. The time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Also, a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。 The base station 10 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled and communicated with the terminal 20 . In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。 The base station 10 transmits a synchronization signal, system information, etc. to the terminal 20. Synchronization signals are, for example, NR-PSS and NR-SSS. System information is transmitted, for example, on NR-PBCH or PDSCH, and is also called broadcast information. As shown in FIG. 1, the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink) and receives control signals or data from the terminal 20 on UL (Uplink). Here, what is transmitted on control channels such as PUCCH and PDCCH is called a control signal, and what is transmitted on a shared channel such as PUSCH and PDSCH is called data.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。 The terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby using various communication services provided by the wireless communication system. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
 図2は、本発明の実施の形態に係る無線通信システムについて説明するための第二の図である。図2は、デュアルコネクティビティ(DC:Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、マスタノード(MN:Master Node)となる基地局10Aと、セカンダリノード(SN:Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワーク30に接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 is a second diagram for explaining the wireless communication system according to the embodiment of the present invention. FIG. 2 shows a configuration example of a radio communication system when dual connectivity (DC) is performed. As shown in FIG. 2, a base station 10A serving as a master node (MN: Master Node) and a base station 10B serving as a secondary node (SN: Secondary Node) are provided. The base station 10A and the base station 10B are connected to the core network 30 respectively. Terminal 20 can communicate with both base station 10A and base station 10B.
 MNである基地局10Aにより提供されるセルグループをマスタセルグループ(MCG:Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをセカンダリセルグループ(SCG:Secondary Cell Group)と呼ぶ。また、デュアルコネクティビティにおいて、MCGは1つのPCellと0以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と0以上のSCellから構成される。 A cell group provided by the MN base station 10A is called a master cell group (MCG), and a cell group provided by the SN base station 10B is called a secondary cell group (SCG). In dual connectivity, an MCG is composed of one PCell and 0 or more SCells, and an SCG is composed of one PSCell (Primary SCG Cell) and 0 or more SCells.
 なお、デュアルコネクティビティは2つの通信規格を利用した通信方法であってもよく、どのような通信規格が組み合わされてもよい。例えば、当該組み合わせは、NRと6G規格、LTEと6G規格のいずれでもよい。また、デュアルコネクティビティは3以上の通信規格を利用した通信方法であってもよく、デュアルコネクティビティとは異なる他の名称で呼ばれてもよい。 Note that dual connectivity may be a communication method using two communication standards, and any communication standards may be combined. For example, the combination may be either NR and 6G standard or LTE and 6G standard. Also, dual connectivity may be a communication method using three or more communication standards, and may be called by other names different from dual connectivity.
 本実施の形態における処理動作は、図1に示されるシステム構成で実行されてもよいし、図2に示されるシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。 The processing operation in the present embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
 3GPP(登録商標)標準化において、強化されたIoT(Internet of Things)及びURLLC(Ultra-reliable and low latency communication)をNRでサポートすることが検討されている。  In 3GPP (registered trademark) standardization, support for enhanced IoT (Internet of Things) and URLLC (Ultra-reliable and low latency communication) in NR is being considered.
 (周波数帯について)
 図3は、バンドの例を示す図である。図3は、NRにおいて使用される周波数帯の例を示す。NRにおける周波数帯(周波数レンジと呼んでもよい)として、FR1(0.41GHz~7.125)とFR2-1(24.25GHz~52.6GHz)とFR2-2(52.6GHz~71GHz)の3つの周波数帯がある。なお、FR2-1とFR2-2とを合わせてFR2と呼んでもよい。図3に示すように、FR1では、SCSとして15kHz、30kHz、60kHzがサポートされ、帯域幅(BW)として5~100MHzがサポートされる。FR2-1では、SCSとして60kHz、120kHz、240kHz(SSBのみ)がサポートされ、帯域幅(BW)として50~400MHzがサポートされる。FR2-2では、240kHzよりも大きなSCSがサポートされることが想定される。ただし、これらのサポート状況は一例である。
(About frequency band)
FIG. 3 is a diagram showing an example of bands. FIG. 3 shows an example of frequency bands used in NR. As frequency bands (which may be called frequency ranges) in NR, there are three frequency bands: FR1 (0.41 GHz to 7.125), FR2-1 (24.25 GHz to 52.6 GHz), and FR2-2 (52.6 GHz to 71 GHz). FR2-1 and FR2-2 may be collectively called FR2. As shown in FIG. 3, FR1 supports SCS of 15 kHz, 30 kHz, and 60 kHz, and a bandwidth (BW) of 5 to 100 MHz. FR2-1 supports 60 kHz, 120 kHz and 240 kHz (SSB only) as SCS, and 50-400 MHz as bandwidth (BW). FR2-2 is assumed to support SCS greater than 240 kHz. However, these support situations are just examples.
 本実施の形態に係る無線通信システムでは、FR1に加えて、FR2-1、FR2-2の周波数帯を利用することを想定している。 In the radio communication system according to the present embodiment, it is assumed that the frequency bands FR2-1 and FR2-2 are used in addition to FR1.
 例えば、本実施の形態に係る無線通信システムでは、FR1とFR2-2とのCA(及びDC)をサポートする。例えば、FR1とFR2-2とのCA又はDCにおいて、例えば、次の3つのバンドコンビネーションが使用されてもよい:(1)n79+Nx、(2)n77+Nx、(3)n41+Nx。ここで、Nxは、例えば、57‐71GHzのアンライセンスバンド、及び、66‐71GHzのライセンスバンドである。 For example, the radio communication system according to the present embodiment supports CA (and DC) between FR1 and FR2-2. For example, in CA or DC between FR1 and FR2-2, for example, the following three band combinations may be used: (1) n79+Nx, (2) n77+Nx, (3) n41+Nx. Here, Nx is, for example, the 57-71 GHz unlicensed band and the 66-71 GHz licensed band.
 52.6GHz以上のバンド運用においては、より大きなSCS(480kHz、960kHzなど)が導入されることが想定される。  It is assumed that a larger SCS (480 kHz, 960 kHz, etc.) will be introduced in the band operation of 52.6 GHz or higher.
 図4は、SCSに対するスロット長を示す図である。図4に示すように、SCSが大きくなるほど、シンボル長/スロット長が短くなる。 FIG. 4 is a diagram showing slot lengths for SCS. As shown in FIG. 4, the larger the SCS, the shorter the symbol length/slot length.
 マルチセル運用において、各キャリアのSCSに応じてキャリア間でのシンボル長/スロット長の違いが大きくなることが考えられる。 In multi-cell operation, it is conceivable that the difference in symbol length/slot length between carriers will increase depending on the SCS of each carrier.
 キャリア間でのシンボル長/スロット長の違いが大きくなる状況の例を図5に示す。図5は、クロスキャリアスケジューリングについて説明するための図である。端末20は、CC#1でPDCCHを受信し、そのPDCCHでスケジューリングされるPDSCHをCC#2で受信する。 Fig. 5 shows an example of a situation where the difference in symbol length/slot length between carriers becomes large. FIG. 5 is a diagram for explaining cross-carrier scheduling. The terminal 20 receives the PDCCH on CC#1, and receives the PDSCH scheduled on that PDCCH on CC#2.
 図5の例では、CC#2のニューメロロジのほうがCC#1のニューメロロジよりも大きく、図5に示すとおり、CC#2のスロット長のほうがCC#1のスロット長よりも短く、その差が大きい。このようにニューメロロジ間の差が大きい場合、端末動作が複雑になり、クロスキャリアスケジューリングゲインが劣化する可能性がある。 In the example of FIG. 5, the numerology of CC#2 is greater than the numerology of CC#1, and as shown in FIG. 5, the slot length of CC#2 is shorter than the slot length of CC#1, and the difference between them is large. If the difference between numerology is large in this way, the terminal operation becomes complicated, and the cross-carrier scheduling gain may deteriorate.
 そこで、FR1またはFR2-1のセルからFR2-2のセルへのクロスキャリアスケジューリング、またはFR2-2のセルからFR1またはFR2-1のセルへのクロスキャリアスケジューリングにおいて、PDCCHのキャリアのニューメロロジ(μPDCCH)とPDSCHのキャリアのニューメロロジ(μPDSCH)との差の大きさの制限を端末能力に応じて規定することが検討されている。 Therefore, in cross-carrier scheduling from the FR1 or FR2-1 cell to the FR2-2 cell or from the FR2-2 cell to the FR1 or FR2-1 cell, it is being considered to limit the size of the difference between the PDCCH carrier numerology (μPDCCH) and the PDSCH carrier numerology (μPDSCH) according to terminal capabilities.
 (基本的な動作例)
 無線通信システムの基本的な動作例について説明する。
(basic operation example)
A basic operation example of the radio communication system will be described.
 図6は、無線通信システムの基本的な動作例を示す図である。端末20は基地局10に対して能力情報を送信する(ステップS101)。なお、ステップS101は行われなくてもよい。 FIG. 6 is a diagram showing a basic operation example of the wireless communication system. The terminal 20 transmits capability information to the base station 10 (step S101). Note that step S101 may not be performed.
 基地局10は端末20に対して設定情報を送信する(ステップS102。この設定情報には、例えば、PDCCH、PDSCH、PUCCH、PUSCHのそれぞれの設定が含まれる。 The base station 10 transmits setting information to the terminal 20 (step S102. This setting information includes, for example, settings for PDCCH, PDSCH, PUCCH, and PUSCH.
 端末20は、あるセルにおいてPDCCHを受信する(ステップS103)。PDCCHには、別のセル(キャリア)におけるPDSCHのスケジューリング情報が含まれる。そして、端末20は、スケジューリングされたリソースにおいて、PDSCHを受信する(ステップS104)。端末20は、PUCCHでPDSCHによるデータ受信に対するフィードバック情報を送信する(ステップS105)。 The terminal 20 receives PDCCH in a certain cell (step S103). PDCCH includes scheduling information of PDSCH in another cell (carrier). The terminal 20 then receives the PDSCH in the scheduled resource (step S104). The terminal 20 transmits feedback information for data reception by the PDSCH on the PUCCH (step S105).
 (従来の問題点)
 図7は、従来のクロスキャリアスケジューリングに関する端末機能の一例を示す図である。従来の端末機能の仕様には、キャリアのニューメロロジに関連するさまざまな端末機能におけるクロスキャリアスケジューリングが、MR-DC(Multi-RAT Dual Connectivity)/CA(Carrier Aggregation)拡張用の端末機能として、図7に示すように規定されている。
(Conventional problems)
FIG. 7 is a diagram showing an example of terminal functions related to conventional cross-carrier scheduling. In the conventional terminal function specifications, cross-carrier scheduling in various terminal functions related to carrier numerology is defined as a terminal function for MR-DC (Multi-RAT Dual Connectivity) / CA (Carrier Aggregation) extension, as shown in FIG.
 しかし、従来の仕様では、FR2-2セルを含むクロスキャリアスケジューリングに関する端末機能のシグナリングについては、詳細が不明である。 However, in the conventional specifications, the details of terminal function signaling related to cross-carrier scheduling including FR2-2 cells are unknown.
 また、FR2-2セルを含むクロスキャリアA-CSI-RSトリガリングについても、同様に詳細が不明である。 Also, the details of cross-carrier A-CSI-RS triggering involving FR2-2 cells are similarly unknown.
 (本実施の形態の概要)
 以下、上述した問題点を解決するために、端末機能を適切に考慮して、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアスケジューリング/クロスキャリアA-CSI-RSトリガリング、またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリング/クロスキャリアA-CSI-RSトリガリングを動作させる端末機能のシグナリングの規定について説明する。以下、具体的な実施例として、実施例1および実施例2について説明する。
(Overview of this embodiment)
Hereinafter, in order to solve the above-mentioned problems, properly considering the terminal functions, from the FR1 / FR2-1 / FR2-2 band to the FR2-2 band cross-carrier scheduling / cross-carrier A-CSI-RS triggering, or cross-carrier scheduling / cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1 / FR2-1 / FR2-2 band. Examples 1 and 2 will be described below as specific examples.
 (実施例1)
 本実施例では、FR2-2セルを含むクロスキャリアスケジューリングのための端末機能のシグナリングについて説明する。
(Example 1)
In this example, the signaling of terminal capabilities for cross-carrier scheduling involving FR2-2 cells is described.
 <オプション1>
 端末20は、FR2-2帯域を含むクロスキャリアスケジューリングのためのPDCCHおよびPDSCH/PUSCHのSCSの制限を指定でき、当該制限は端末能力(端末機能)に応じて異なっていてもよい。
<Option 1>
Terminal 20 can specify PDCCH and PDSCH/PUSCH SCS limits for cross-carrier scheduling that includes the FR2-2 band, and the limits may vary depending on terminal capabilities.
 スケジュールするCCおよび/またはスケジュールされるCCがFR2-2帯域のキャリアである場合に、当該制限が適用されるようにしてもよい。 This restriction may be applied when the CC to be scheduled and/or the CC to be scheduled is a carrier of the FR2-2 band.
 スケジュールするCCおよび/またはスケジュールされるCCのSCSが120/480/960kHzSCSのキャリアである場合に、当該制限が適用されるようにしてもよい。 This restriction may be applied when the SCS of the CC to be scheduled and/or the CC to be scheduled is a carrier of 120/480/960 kHz SCS.
 <オプション2>
 端末20は、端末機能のシグナリングによって、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアスケジューリング、および/またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。
<Option 2>
The terminal 20 may report whether it supports cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band through terminal capability signaling.
 端末20は、当該端末機能を、スケジュールするCCとスケジュールされるCCのSCSの組み合わせに応じて報告してもよい。例えば、端末20は、以下の例1または例2に示すように端末機能を報告してもよい。 The terminal 20 may report the terminal capability according to the combination of the SCS of the CC to be scheduled and the CC to be scheduled. For example, terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
 <例1>
 |μPDCCH-μPDSCH/μPUSCH|≦3の場合、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアスケジューリング、および/またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。
<Example 1>
If |μPDCCH−μPDSCH/μPUSCH|≦3, the terminal 20 supports cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 |μPDCCH-μPDSCH/μPUSCH|≦4の場合、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域内へのクロスキャリアスケジューリング、および/またはFR2-2帯域内からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。 If |μPDCCH−μPDSCH/μPUSCH|≦4, the terminal 20 may report whether or not to support cross-carrier scheduling from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 |μPDCCH-μPDSCH/μPUSCH|≦5の場合、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域内へのクロスキャリアスケジューリング、および/またはFR2-2帯域内からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。 If |μPDCCH−μPDSCH/μPUSCH|≦5, the terminal 20 may report whether or not to support cross-carrier scheduling from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 |μPDCCH-μPDSCH/μPUSCH|≦6の場合(すなわち、SCSの制限が無い場合)、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアスケジューリング、またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。 When |μPDCCH−μPDSCH/μPUSCH|≦6 (that is, when there is no SCS restriction), the terminal 20 may report whether or not to support cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band or cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 <例2>
 端末20は、FR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-μPDSCH/μPUSCH|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。
<Example 2>
Terminal 20 may report the X value to support cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band. Here, X is a value defined as |μPDCCH−μPDSCH/μPUSCH|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアスケジューリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-μPDSCH/μPUSCH|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。 The terminal 20 may report the X value for supporting cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band. Here, X is a value defined as |μPDCCH−μPDSCH/μPUSCH|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアスケジューリング、およびFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアスケジューリングのいずれかまたは両方をサポートするか否かを、同じFG(Feature Group)または異なるFGで報告してもよい。 Whether the terminal 20 supports either or both of cross-carrier scheduling from the FR1/FR2-1/FR2-2 band to the FR2-2 band and cross-carrier scheduling from the FR2-2 band to the FR1/FR2-1/FR2-2 band may be reported in the same FG (Feature Group) or different FGs.
 端末20は、オプション2に示した端末機能を、CCをスケジュールするためのSCSの組み合わせの値または|μPDCCH-μPDSCH/μPUSCH|を制限する値に応じて、同じFGまたは異なるFGで報告してもよい。 The terminal 20 may report the terminal capabilities indicated in option 2 in the same FG or different FGs depending on the value of the SCS combination for scheduling the CC or the value limiting |μPDCCH-μPDSCH/μPUSCH|.
 <オプション3>
 端末20は、端末機能のシグナリングによって、480kHzおよび/または960kHzのSCSを含む、小さいSCSから大きいSCSへのクロスキャリアスケジューリングおよび/または大きいSCSから小さいSCSへのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。
<Option 3>
Terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS, including SCS at 480 kHz and/or 960 kHz, via terminal capability signaling.
 端末20は、当該端末機能を、スケジュールするCCとスケジュールされるCCのSCSの制限に応じて報告してもよい。例えば、端末20は、以下の例1または例2に示すように端末機能を報告してもよい。 The terminal 20 may report the terminal capability according to the SCS restrictions of the CC to be scheduled and the CC to be scheduled. For example, terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
 <例1>
 |μPDCCH-μPDSCH/μPUSCH|≦3の場合、端末20は、小さいSCSから大きいSCSへのクロスキャリアスケジューリングおよび/または大きいSCSから小さいSCSへのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。
<Example 1>
If |μPDCCH−μPDSCH/μPUSCH|≦3, terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
 |μPDCCH-μPDSCH/μPUSCH|≦4の場合、端末20は、小さいSCSから大きいSCSへのクロスキャリアスケジューリングおよび/または大きいSCSから小さいSCSへのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。 If |μPDCCH−μPDSCH/μPUSCH|≦4, terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
 |μPDCCH-μPDSCH/μPUSCH|≦5の場合、端末20は、小さいSCSから大きいSCSへのクロスキャリアスケジューリングおよび/または大きいSCSから小さいSCSへのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。 If |μPDCCH−μPDSCH/μPUSCH|≦5, terminal 20 may report whether or not it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
 |μPDCCH-μPDSCH/μPUSCH|≦6の場合(すなわち、SCSの制限が無い場合)、端末20は、小さいSCSから大きいSCSへのクロスキャリアスケジューリングおよび/または大きいSCSから小さいSCSへのクロスキャリアスケジューリングをサポートするか否かを報告してもよい。 If |μPDCCH−μPDSCH/μPUSCH|≦6 (that is, if there is no SCS restriction), terminal 20 may report whether it supports cross-carrier scheduling from small SCS to large SCS and/or cross-carrier scheduling from large SCS to small SCS.
 <例2>
 端末20は、小さいSCSから大きいSCSへのクロスキャリアスケジューリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-μPDSCH/μPUSCH|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。
<Example 2>
Terminal 20 may report the X value to support cross-carrier scheduling from small SCS to large SCS. Here, X is a value defined as |μPDCCH−μPDSCH/μPUSCH|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、大きいSCSから小さいSCSへのクロスキャリアスケジューリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-μPDSCH/μPUSCH|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。 The terminal 20 may report the X value for supporting cross-carrier scheduling from large SCS to small SCS. Here, X is a value defined as |μPDCCH−μPDSCH/μPUSCH|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、小さいSCSから大きいSCSへのクロスキャリアスケジューリングおよび大きいSCSから小さいSCSへのクロスキャリアスケジューリングのいずれかまたは両方をサポートするか否かを、同じFG(Feature Group)または異なるFGで報告してもよい。 The terminal 20 may report in the same FG (Feature Group) or different FGs whether or not to support either or both of cross-carrier scheduling from a small SCS to a large SCS and cross-carrier scheduling from a large SCS to a small SCS.
 端末20は、オプション3に示した端末機能を、CCをスケジュールするためのSCSの組み合わせの値または|μPDCCH-μPDSCH/μPUSCH|を制限する値に応じて、同じFGまたは異なるFGで報告してもよい。 The terminal 20 may report the terminal capabilities indicated in option 3 in the same FG or different FGs depending on the value of the SCS combination for scheduling the CC or the value limiting |μPDCCH-μPDSCH/μPUSCH|.
 <オプション4>
 端末20は、端末機能のシグナリングによって、FR2-2セルを含むクロスキャリアスケジューリングのN個の連続スロットあたりのユニキャストDCIの数としてサポートする最大値または最小値を報告してもよい。
<Option 4>
Terminal 20 may report the maximum or minimum value it supports as the number of unicast DCIs per N consecutive slots for cross-carrier scheduling involving FR2-2 cells via terminal capability signaling.
 ユニキャストDCIの数Xは、スケジュールするCCとスケジュールされるCCのSCSの組み合わせによって異なっていてもよい。 The number X of unicast DCIs may differ depending on the combination of the CC to be scheduled and the SCS of the CC to be scheduled.
 例えば、Xは、(スケジュールするCCのSCS,スケジュールされるCCのSCS)のペアに基づく値であってもよい。具体的には、(15,960)、(15,480)、(30,960)、(30,480)、(60,960)の場合、X={1,2,4,8}、(60,480)、(120,960)、(120,480)の場合、X={1,2,4}、(480,960)の場合、X={2}であってもよい。 For example, X may be a value based on the pair (SCS of scheduling CC, SCS of scheduled CC). Specifically, for (15,960), (15,480), (30,960), (30,480), (60,960), X = {1,2,4,8}, (60,480), (120,960), (120,480) for X = {1,2,4}, and for (480,960), X = {2}. You can
 また、Nは、スケジュールするCCとスケジュールされるCCのSCSの組み合わせによって異なっていてもよい。 Also, N may differ depending on the combination of the SCS of the CC to be scheduled and the CC to be scheduled.
 小さいSCSから大きいSCSへのクロスキャリアスケジューリングの場合、Nは1であってもよい。 N may be 1 for cross-carrier scheduling from small SCS to large SCS.
 例えば、Nは、(スケジュールするCCのSCS,スケジュールされるCCのSCS)のペアに基づく値であってもよい。具体的には、(960,480)の場合、N=2、(480,120)の場合、N=4、(480,60),(960,120)の場合、N=8、(480,30),(960,60)の場合、N=16、(480,15)、(960,30)の場合、N=32、(960,15)の場合、N=64であってもよい。 For example, N may be a value based on a pair of (SCS of scheduling CC, SCS of scheduled CC). Specifically, for (960, 480), N = 2, (480, 120), N = 4, (480, 60), (960, 120), N = 8, (480, 30), (960, 60), N = 16, (480, 15), (960, 30), N = 32, (960, 15), N=64 may be used.
 端末20は、オプション4に示した端末機能を、CCをスケジュールするためのSCSの組み合わせの値または|μPDCCH-μPDSCH/μPUSCH|を制限する値に応じて、同じFGまたは異なるFGで報告してもよい。 The terminal 20 may report the terminal capabilities indicated in option 4 in the same FG or different FGs depending on the value of the SCS combination for scheduling the CC or the value limiting |μPDCCH-μPDSCH/μPUSCH|.
 図8は、本発明の実施の形態の実施例1に係るクロスキャリアスケジューリングに関する端末機能の一例を示す第一の図である。図8は、|μPDCCH-μPDSCH/μPUSCH|の制限をサポートするか否かを、同じFGで報告する例を示している。 FIG. 8 is a first diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention. FIG. 8 shows an example of reporting in the same FG whether or not the limitation of |μPDCCH-μPDSCH/μPUSCH| is supported.
 例えば、FG(24-X)は、480kHzおよび/または960kHzのSCSを含む、異なるSCSにおけるダウンリンクおよび/またはアップリンクのクロスキャリアスケジューリングの端末機能を報告するためのFGである。 For example, FG(24-X) is a FG for reporting terminal capabilities of downlink and/or uplink cross-carrier scheduling in different SCSs, including SCSs of 480 kHz and/or 960 kHz.
 端末20は、FG(24-X)において、オプション2またはオプション3に示したXの値を報告してもよい。また、端末20は、FG(24-X)において、オプション4に示したNの値を報告してもよい。 The terminal 20 may report the value of X shown in option 2 or option 3 in FG (24-X). Also, the terminal 20 may report the value of N indicated in option 4 in FG(24-X).
 また、FG(24-Y)は、480kHzおよび/または960kHzのSCSを含む、スケジュールされるCCごとに、ダウンリンクまたはアップリンクの最大X個のユニキャストDCIスケジューリングを処理することを報告するためのFGである。 Also, FG (24-Y) is a FG for reporting processing up to X unicast DCI scheduling of downlink or uplink per scheduled CC including SCS of 480 kHz and/or 960 kHz.
 端末20は、FG(24-Y)において、オプション4に示したXの値を報告してもよい。 The terminal 20 may report the value of X shown in Option 4 in FG (24-Y).
 図9は、本発明の実施の形態の実施例1に係るクロスキャリアスケジューリングに関する端末機能の一例を示す第二の図である。図9は、|μPDCCH-μPDSCH/μPUSCH|の制限をサポートするか否かを、異なるFGで報告する例を示している。 FIG. 9 is a second diagram showing an example of terminal functions related to cross-carrier scheduling according to Example 1 of the embodiment of the present invention. FIG. 9 shows an example in which different FGs report whether or not |μPDCCH−μPDSCH/μPUSCH| restrictions are supported.
 例えば、端末20は、FG(24-Xa)において、オプション2またはオプション3に示したように、|μPDCCH-μPDSCH/μPUSCH|≦3の場合におけるサポートについて報告してもよい。 For example, the terminal 20 may report support in the case of |μPDCCH-μPDSCH/μPUSCH|≤3 as indicated in option 2 or option 3 in FG (24-Xa).
 端末20は、FG(24-Xb)において、オプション2またはオプション3に示したように、|μPDCCH-μPDSCH/μPUSCH|≦4の場合におけるサポートについて報告してもよい。 The terminal 20 may report support in the case of |μPDCCH-μPDSCH/μPUSCH|≤4 as indicated in option 2 or option 3 in FG (24-Xb).
 端末20は、FG(24-Xc)において、オプション2またはオプション3に示したように、|μPDCCH-μPDSCH/μPUSCH|≦5の場合におけるサポートについて報告してもよい。 The terminal 20 may report support in the case of |μPDCCH-μPDSCH/μPUSCH|≤5 as indicated in Option 2 or Option 3 in FG (24-Xc).
 端末20は、FG(24-Xd)において、オプション2またはオプション3に示したように、|μPDCCH-μPDSCH/μPUSCH|≦6の場合におけるサポートについて報告してもよい。 The terminal 20 may report support in the case of |μPDCCH-μPDSCH/μPUSCH|≤6 as indicated in option 2 or option 3 in FG (24-Xd).
 (実施例2)
 本実施例では、FR2-2セルを含むクロスキャリアA-CSI-RSトリガリングのための端末機能のシグナリングについて説明する。
(Example 2)
In this example, the signaling of terminal capabilities for cross-carrier A-CSI-RS triggering involving FR2-2 cells is described.
 <オプション1>
 端末20は、FR2-2帯域を含むクロスキャリアスケジューリングのためのPDCCHおよびPDSCH/PUSCHのSCSの制限を指定でき、当該制限は端末能力(端末機能)に応じて異なっていてもよい。
<Option 1>
Terminal 20 can specify PDCCH and PDSCH/PUSCH SCS limits for cross-carrier scheduling that includes the FR2-2 band, and the limits may vary depending on terminal capabilities.
 スケジュールするCCおよび/またはスケジュールされるCCがFR2-2帯域のキャリアである場合に、当該制限が適用されるようにしてもよい。 This restriction may be applied when the CC to be scheduled and/or the CC to be scheduled is a carrier of the FR2-2 band.
 スケジュールするCCおよび/またはスケジュールされるCCのSCSが120/480/960kHzSCSのキャリアである場合に、当該制限が適用されるようにしてもよい。 This restriction may be applied when the SCS of the CC to be scheduled and/or the CC to be scheduled is a carrier of 120/480/960 kHz SCS.
 <オプション2>
 端末20は、端末機能のシグナリングによって、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアA-CSI-RSトリガリング、および/またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。
<Option 2>
Terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band through terminal capability signaling.
 端末20は、当該端末機能を、PDCCHのセルおよび/またはA-CSI-RSのセルのSCSの組み合わせに応じて報告してもよい。例えば、端末20は、以下の例1または例2に示すように端末機能を報告してもよい。以下、PDCCHのキャリアのニューメロロジをμPDCCH、A-CSI-RSのキャリアのニューメロロジをμCSI-RSとする。 The terminal 20 may report the terminal function according to the SCS combination of the PDCCH cell and/or the A-CSI-RS cell. For example, terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below. Hereinafter, the numerology of the PDCCH carrier is .mu.PDCCH, and the numerology of the A-CSI-RS carrier is .mu.CSI-RS.
 <例1>
 |μPDCCH-(μCSI-RS)|≦3の場合、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアA-CSI-RSトリガリング、および/またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。
<Example 1>
If |μPDCCH-(μCSI-RS)|≦3, the terminal 20 may report whether or not to support cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 |μPDCCH-(μCSI-RS)|≦4の場合、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域内へのクロスキャリアA-CSI-RSトリガリング、および/またはFR2-2帯域内からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。 If |μPDCCH-(μCSI-RS)|≤4, the terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 |μPDCCH-(μCSI-RS)|≦5の場合、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域内へのクロスキャリアA-CSI-RSトリガリング、および/またはFR2-2帯域内からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。 If |μPDCCH-(μCSI-RS)|≤5, the terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band into the FR2-2 band and/or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 |μPDCCH-(μCSI-RS)|≦6の場合(すなわち、SCSの制限が無い場合)、端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアA-CSI-RSトリガリング、またはFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。 If |μPDCCH-(μCSI-RS)|≤6 (that is, if there is no SCS restriction), the terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band or cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band.
 <例2>
 端末20は、FR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-(μCSI-RS)|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。
<Example 2>
Terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band. where X is a value defined as |μPDCCH-(μCSI-RS)|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアA-CSI-RSトリガリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-(μCSI-RS)|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。 The terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band. where X is a value defined as |μPDCCH-(μCSI-RS)|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、FR1/FR2-1/FR2-2帯域からFR2-2帯域へのクロスキャリアA-CSI-RSトリガリング、およびFR2-2帯域からFR1/FR2-1/FR2-2帯域へのクロスキャリアA-CSI-RSトリガリングのいずれかまたは両方をサポートするか否かを、同じFG(Feature Group)または異なるFGで報告してもよい。 The terminal 20 may report whether or not to support either or both of cross-carrier A-CSI-RS triggering from the FR1/FR2-1/FR2-2 band to the FR2-2 band and cross-carrier A-CSI-RS triggering from the FR2-2 band to the FR1/FR2-1/FR2-2 band in the same FG (Feature Group) or different FGs.
 端末20は、オプション2に示した端末機能を、PDCCHセルとA-CSI-RSセルのSCSの組み合わせの値または|μPDCCH-(μCSI-RS)|を制限する値に応じて、同じFGまたは異なるFGで報告してもよい。 The terminal 20 may report the terminal functions indicated in Option 2 in the same FG or in different FGs depending on the value of the SCS combination of the PDCCH cell and the A-CSI-RS cell or the value limiting |μPDCCH-(μCSI-RS)|.
 <オプション3>
 端末20は、端末機能のシグナリングによって、480kHzおよび/または960kHzのSCSを含む、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングおよび/または大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。
<Option 3>
Terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS, including SCS at 480 kHz and/or 960 kHz, via terminal capability signaling.
 端末20は、当該端末機能を、PDCCHのセルおよび/またはA-CSI-RSのセルのSCSの組み合わせに応じて報告してもよい。例えば、端末20は、以下の例1または例2に示すように端末機能を報告してもよい。 The terminal 20 may report the terminal function according to the SCS combination of the PDCCH cell and/or the A-CSI-RS cell. For example, terminal 20 may report terminal capabilities as shown in Example 1 or Example 2 below.
 <例1>
 |μPDCCH-(μCSI-RS)|≦3の場合、端末20は、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングおよび/または大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。
<Example 1>
If |μPDCCH−(μCSI-RS)|≦3, terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
 |μPDCCH-(μCSI-RS)|≦4の場合、端末20は、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングおよび/または大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。 If |μPDCCH−(μCSI-RS)|≦4, terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
 |μPDCCH-(μCSI-RS)|≦5の場合、端末20は、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングおよび/または大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。 If |μPDCCH−(μCSI-RS)|≦5, terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
 |μPDCCH-(μCSI-RS)|≦6の場合(すなわち、SCSの制限が無い場合)、端末20は、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングおよび/または大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするか否かを報告してもよい。 If |μPDCCH-(μCSI-RS)|≤6 (i.e., no SCS restriction), terminal 20 may report whether it supports cross-carrier A-CSI-RS triggering from small SCS to large SCS and/or cross-carrier A-CSI-RS triggering from large SCS to small SCS.
 <例2>
 端末20は、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-(μCSI-RS)|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。
<Example 2>
Terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from small SCS to large SCS. where X is a value defined as |μPDCCH-(μCSI-RS)|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングをサポートするためのX値を報告してもよい。ここで、Xは、|μPDCCH-(μCSI-RS)|≦Xとして定義される値である。Xの候補値は、3、4、5または6であってもよい。 The terminal 20 may report the X value to support cross-carrier A-CSI-RS triggering from large SCS to small SCS. where X is a value defined as |μPDCCH-(μCSI-RS)|≦X. Candidate values for X may be 3, 4, 5 or 6.
 端末20は、小さいSCSから大きいSCSへのクロスキャリアA-CSI-RSトリガリングおよび大きいSCSから小さいSCSへのクロスキャリアA-CSI-RSトリガリングのいずれかまたは両方をサポートするか否かを、同じFG(Feature Group)または異なるFGで報告してもよい。 Terminal 20 may report whether or not to support either or both of cross-carrier A-CSI-RS triggering from a small SCS to a large SCS and cross-carrier A-CSI-RS triggering from a large SCS to a small SCS in the same FG (Feature Group) or different FGs.
 端末20は、オプション3に示した端末機能を、PDCCHセルとA-CSI-RSセルのSCSの組み合わせの値または|μPDCCH-(μCSI-RS)|を制限する値に応じて、同じFGまたは異なるFGで報告してもよい。 The terminal 20 may report the terminal functions indicated in option 3 in the same FG or different FGs depending on the value of the SCS combination of the PDCCH cell and the A-CSI-RS cell or the value limiting |μPDCCH-(μCSI-RS)|.
 図10は、本発明の実施の形態の実施例1に係るクロスキャリアA-CSI-RSトリガリングに関する端末機能の一例を示す第一の図である。図10は、|μPDCCH-(μCSI-RS)|の制限をサポートするか否かを、同じFGで報告する例を示している。 FIG. 10 is a first diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention. FIG. 10 shows an example of reporting in the same FG whether or not the limitation of |μPDCCH-(μCSI-RS)| is supported.
 例えば、FG(24-X)は、480kHzおよび/または960kHzのSCSを含む、異なるSCSにおけるダウンリンクおよび/またはアップリンクのクロスキャリアA-CSI-RSトリガリングの端末機能を報告するためのFGである。 For example, FG(24-X) is a FG for reporting terminal capabilities of downlink and/or uplink cross-carrier A-CSI-RS triggering in different SCSs, including 480 kHz and/or 960 kHz SCSs.
 端末20は、FG(24-X)において、オプション2またはオプション3に示したXの値を報告してもよい。 The terminal 20 may report the value of X shown in option 2 or option 3 in FG (24-X).
 図11は、本発明の実施の形態の実施例1に係るクロスキャリアA-CSI-RSトリガリングに関する端末機能の一例を示す第二の図である。図11は、|μPDCCH-(μCSI-RS)|の制限をサポートするか否かを、異なるFGで報告する例を示している。 FIG. 11 is a second diagram showing an example of terminal functions related to cross-carrier A-CSI-RS triggering according to Example 1 of the embodiment of the present invention. FIG. 11 shows an example of reporting in different FGs whether or not the limitation of |μPDCCH-(μCSI-RS)| is supported.
 例えば、端末20は、FG(24-Xa)において、オプション2またはオプション3に示したように、|μPDCCH-(μCSI-RS)|≦3の場合におけるサポートについて報告してもよい。 For example, the terminal 20 may report support in the case of |μPDCCH-(μCSI-RS)|≤3 as shown in option 2 or option 3 in FG(24-Xa).
 端末20は、FG(24-Xb)において、オプション2またはオプション3に示したように、|μPDCCH-(μCSI-RS)|≦4の場合におけるサポートについて報告してもよい。 The terminal 20 may report support in the case of |μPDCCH-(μCSI-RS)|≦4 in FG (24-Xb), as indicated in option 2 or option 3.
 端末20は、FG(24-Xc)において、オプション2またはオプション3に示したように、|μPDCCH-(μCSI-RS)|≦5の場合におけるサポートについて報告してもよい。 The terminal 20 may report support in the case of |μPDCCH-(μCSI-RS)|≤5 in FG (24-Xc), as indicated in option 2 or option 3.
 端末20は、FG(24-Xd)において、オプション2またはオプション3に示したように、|μPDCCH-(μCSI-RS)|≦6の場合におけるサポートについて報告してもよい。 The terminal 20 may report support in the case of |μPDCCH-(μCSI-RS)|≤6 in FG(24-Xd), as indicated in option 2 or option 3.
 上述した各実施例において報告される端末機能については、同じFGで報告されてもよいし、異なるFGで報告されてもよい。 The terminal functions reported in each of the above-described embodiments may be reported in the same FG or may be reported in different FGs.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実行する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例のうちのいずれかの提案の機能のみを備えることとしてもよい。
(Device configuration)
Next, functional configuration examples of the base station 10 and the terminal 20 that execute the processes and operations described above will be described. The base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and the terminal 20 may have only the functions proposed in any of the embodiments.
 <基地局10>
 図12は、基地局10の機能構成の一例を示す図である。図12に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図12に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
<Base station 10>
FIG. 12 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. As shown in FIG. 12, the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 12 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary. The transmitting unit 110 and the receiving unit 120 may be called a communication unit.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明した設定情報等を送信する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals. Also, the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20 . Also, the transmission unit 110 transmits the setting information and the like described in the embodiment.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、信号送受信に係る制御を含む基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary. The control unit 140 performs overall control of the base station 10 including control related to signal transmission/reception, for example. It should be noted that the functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and the functional unit related to signal reception in control unit 140 may be included in receiving unit 120 . Also, the transmitting unit 110 and the receiving unit 120 may be called a transmitter and a receiver, respectively.
 <端末20>
 図13は、端末20の機能構成の一例を示す図である。図13に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
<Terminal 20>
FIG. 13 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. As shown in FIG. 13 , the terminal 20 has a transmitter 210 , a receiver 220 , a setter 230 and a controller 240 . The functional configuration shown in FIG. 13 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary. The transmitting unit 210 and the receiving unit 220 may be called a communication unit.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明した設定情報等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、信号送受信に係る制御を含む端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 230 stores various types of setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary. The setting unit 230 also stores preset setting information. The control unit 240 performs overall control of the terminal 20 including control related to signal transmission/reception. It should be noted that the functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and the functional unit related to signal reception in control unit 240 may be included in receiving unit 220 . Also, the transmitting section 210 and the receiving section 220 may be called a transmitter and a receiver, respectively.
 本実施の形態の端末または基地局は、下記の各項に示す端末または基地局として構成されてもよい。また、下記の通信方法が実施されてもよい。 The terminal or base station of this embodiment may be configured as a terminal or base station shown in each section below. Also, the following communication method may be implemented.
 <本実施の形態に関する構成>
(第1項)
 異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報をダウンリンクで受信する受信部と、
 前記制御情報が送信されるセルと、前記共有チャネルまたは前記参照信号のセルとの間の制限を示す端末能力情報を、アップリンクで送信する送信部と、を備える、
 端末。
(第2項)
 前記端末能力情報は、異なるセルの共有チャネルのスケジューリングにおいて、前記制御情報が送信されるセルと、前記共有チャネルのセルとの間のサブキャリア間隔の制限を示す情報である、
 第1項に記載の端末。
(第3項)
 前記端末能力情報は、異なるセルの参照信号のトリガリングにおいて、前記制御情報が送信されるセルと、前記参照信号のセルとの間のサブキャリア間隔の制限を示す情報である、
 第1項に記載の端末。
(第4項)
 制御情報が送信されるセルと、共有チャネルまたは参照信号のセルとの間の制限を示す端末能力情報を端末から受信する受信部と、
 前記端末能力情報に基づいて、異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報を前記端末に送信する送信部と、を備える、
 基地局。
(第5項)
 異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報をダウンリンクで受信するステップと、
 前記制御情報が送信されるセルと、前記共有チャネルまたは前記参照信号のセルとの間の制限を示す端末能力情報を、アップリンクで送信するステップと、を端末が実行する、
 通信方法。
<Configuration regarding this embodiment>
(Section 1)
a receiving unit for receiving downlink control information including scheduling of shared channels of different cells or triggering of reference signals of different cells;
a transmitting unit configured to transmit, in an uplink, terminal capability information indicating a restriction between a cell in which the control information is transmitted and a cell of the shared channel or the reference signal;
terminal.
(Section 2)
The terminal capability information is information indicating restrictions on subcarrier intervals between the cell in which the control information is transmitted and the cell of the shared channel in scheduling of shared channels of different cells.
A terminal according to Clause 1.
(Section 3)
The terminal capability information, in the triggering of the reference signal of different cells, the cell in which the control information is transmitted, the information indicating the limit of the subcarrier interval between the cell of the reference signal,
A terminal according to Clause 1.
(Section 4)
a receiving unit that receives from a terminal terminal capability information indicating a limit between a cell in which control information is transmitted and a cell of a shared channel or reference signal;
A transmission unit that transmits control information including scheduling of shared channels of different cells or triggering of reference signals of different cells to the terminal based on the terminal capability information,
base station.
(Section 5)
receiving in the downlink control information comprising scheduling of shared channels of different cells or triggering of reference signals of different cells;
transmitting, on the uplink, terminal capability information indicating a restriction between a cell in which the control information is transmitted and a cell of the shared channel or the reference signal;
Communication method.
 上記構成のいずれによっても、無線通信システムを高周波数帯に適用させることを可能とする技術が提供される。第2項によれば、クロスキャリアスケジューリングのための端末機能のシグナリングが実現できる。第3項によれば、クロスキャリアA-CSI-RSトリガリングのための端末機能のシグナリングが実現できる。 Any of the above configurations provides a technology that enables a wireless communication system to be applied to high frequency bands. According to the second term, terminal capability signaling for cross-carrier scheduling can be realized. According to the third term, terminal capability signaling for cross-carrier A-CSI-RS triggering can be realized.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図12及び図13)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 12 and 13) used to describe the above embodiments show blocks in functional units. These functional blocks (components) are implemented by any combination of at least one of hardware and software. Also, the method of realizing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or may be implemented using two or more physically or logically separated devices that are directly or indirectly (e.g., wired, wireless, etc.) connected and implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, determining, determining, determining, calculating, calculating, processing, deriving, investigating, searching, confirming, receiving, transmitting, outputting, accessing, resolving, selecting, selecting, establishing, comparing, assuming, expecting, assuming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, and the like. For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, the terminal 20, etc. according to the embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function of the base station 10 and the terminal 20 is realized by loading predetermined software (programs) onto hardware such as the processor 1001 and storage device 1002, causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling at least one of reading and writing data in the storage device 1002 and auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図12に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図13に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 In addition, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, control unit 140 of base station 10 shown in FIG. 12 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 . Also, for example, the control unit 240 of the terminal 20 shown in FIG. 13 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 . Although it has been explained that the above-described various processes are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, and may be composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. The storage device 1002 may also be called a register, cache, main memory (main storage device), or the like. The storage device 1002 can store executable programs (program code), software modules, etc. for implementing the communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and may be composed of at least one of, for example, optical discs such as CD-ROMs (Compact Disc ROM), hard disk drives, flexible discs, magneto-optical discs (e.g., compact discs, digital versatile discs, Blu-ray (registered trademark) discs), smart cards, flash memories (e.g., cards, sticks, key drives), floppy (registered trademark) discs, magnetic strips, and the like. The storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be implemented by the communication device 1004 . The transceiver may be physically or logically separate implementations for the transmitter and receiver.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the terminal 20 may be configured including hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), FPGAs (Field Programmable Gate Arrays), etc., and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 図15に車両2001の構成例を示す。図15に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 A configuration example of the vehicle 2001 is shown in FIG. As shown in FIG. 15, a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021 to 2029, an information service unit 2012, and a communication module 2013. Each aspect/embodiment described in the present disclosure may be applied to a communication device mounted on vehicle 2001, and may be applied to communication module 2013, for example.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor. The steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 . The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from the various sensors 2021 to 2029 include a current signal from the current sensor 2021 that senses the current of the motor, front and rear wheel rotation speed signals acquired by the rotation speed sensor 2022, front and rear wheel air pressure signals acquired by the air pressure sensor 2023, vehicle speed signals acquired by the vehicle speed sensor 2024, acceleration signals acquired by the acceleration sensor 2025, and accelerator pedal depression amount signals acquired by the accelerator pedal sensor 2029. , a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, an obstacle, a vehicle, a pedestrian, etc. obtained by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 consists of various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices. The information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes millimeter-wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g., GNSS, etc.), map information (e.g., high-definition (HD) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence ) Chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more ECUs that control these devices. In addition, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports. For example, the communication module 2013 communicates with the driving unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the microprocessor 2031 and the memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 29 provided in the vehicle 2001 through the communication port 2033. to send and receive data.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 2013 may be internal or external to electronic control unit 2010 . The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 receives input to the electronic control unit 2010, front wheel and rear wheel rotation speed signals acquired by the rotation speed sensor 2022, front and rear wheel air pressure signals acquired by the air pressure sensor 2023, vehicle speed signals acquired by the vehicle speed sensor 2024, acceleration signals acquired by the acceleration sensor 2025, accelerator pedal depression amount signals acquired by the accelerator pedal sensor 2029, and brake pedal acquired by the brake pedal sensor 2026. The amount of depression signal, the operation signal of the shift lever acquired by the shift lever sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, etc. are also transmitted to the external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 . Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the sensors 2021 to 2029, etc. provided in the vehicle 2001.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, and the like. Although specific numerical examples have been used to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be applied to the items described in another item (as long as there is no contradiction). Boundaries of functional or processing units in functional block diagrams do not necessarily correspond to boundaries of physical components. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. As for the processing procedures described in the embodiments, the processing order may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention may be stored in random access memory (RAM), flash memory, read-only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, information is notified by physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. may be implemented. The RRC signaling may also be called an RRC message, such as an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG(x is an integer, decimal)), FRA (Future Radio Access), NR (new Radio), New radio access (NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), other suitable systems, and/or next-generation systems that are extended, modified, created, and defined based on these. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases. It is clear that in a network of one or more network nodes with a base station 10, various operations performed for communication with the terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (e.g., MME or S-GW, etc. are possible, but not limited to these). Although the above example illustrates the case where there is one network node other than the base station 10, the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), may be made by a true/false value (Boolean: true or false), or may be made by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software should be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using wired technologies (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technologies (infrared, microwave, etc.), then these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. The various names assigned to these various channels and information elements are not limiting names in any way, as the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", Terms such as "cell," "sector," "cell group," "carrier," "component carrier," etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area can also be served by a base station subsystem (e.g., an indoor remote radio head (RRH)). The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). In this case, the terminal 20 may have the functions of the base station 10 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station may have the functions that the above-described user terminal has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement", "determining" can include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (e.g., searching in a table, database, or other data structure), ascertaining as "judging", "determining", etc. In addition, "determining" and "determining" include receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, and accessing (e.g., accessing data in memory). Also, "determining" or "determining" may include resolving, selecting, choosing, establishing, comparing, etc., to be regarded as "determining" or "determining." In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements can be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, and using electromagnetic energy having wavelengths in the radio frequency, microwave, and light (both visible and invisible) regions, as some non-limiting and non-exhaustive examples.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 In the present disclosure, when "include", "including" and variations thereof are used, these terms, like the term "comprising", are intended to be inclusive. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. The numerology may indicate, for example, at least one of Sub Carrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, certain filtering operations performed by the transceiver in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, may be a period shorter than 1 ms (eg, 1-13 symbols), or may be a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 A long TTI (e.g., normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (e.g., shortened TTI, etc.) may be read as a TTI having a TTI length that is less than the TTI length of the long TTI and is 1 ms or more.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs may be called a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (RE: Resource Element). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a bandwidth part) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology on a certain carrier. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for terminal 20 within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above structures such as radio frames, subframes, slots, minislots and symbols are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, and the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc. can be variously changed.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Further, notification of predetermined information (e.g., notification of “being X”) is not limited to explicit notification, but may be performed implicitly (e.g., not notification of the predetermined information).
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in this disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 本国際特許出願は2022年1月21日に出願した日本国特許出願第2022-008311号に基づきその優先権を主張するものであり、日本国特許出願第2022-008311号の全内容を本願に援用する。 This international patent application claims priority based on Japanese Patent Application No. 2022-008311 filed on January 21, 2022, and the entire contents of Japanese Patent Application No. 2022-008311 are incorporated herein.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    コアネットワーク
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting unit 120 Receiving unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmitting unit 220 Receiving unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving unit 2003 Operation Rudder 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Revolution sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection Sensor 2029 Accelerator pedal sensor 2030 Driving support system unit 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port (IO port)

Claims (5)

  1.  異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報をダウンリンクで受信する受信部と、
     前記制御情報が送信されるセルと、前記共有チャネルまたは前記参照信号のセルとの間の制限を示す端末能力情報を、アップリンクで送信する送信部と、を備える、
     端末。
    a receiving unit for receiving downlink control information including scheduling of shared channels of different cells or triggering of reference signals of different cells;
    a transmitting unit configured to transmit, in an uplink, terminal capability information indicating a restriction between a cell in which the control information is transmitted and a cell of the shared channel or the reference signal;
    terminal.
  2.  前記端末能力情報は、異なるセルの共有チャネルのスケジューリングにおいて、前記制御情報が送信されるセルと、前記共有チャネルのセルとの間のサブキャリア間隔の制限を示す情報である、
     請求項1に記載の端末。
    The terminal capability information is information indicating restrictions on subcarrier intervals between the cell in which the control information is transmitted and the cell of the shared channel in scheduling of shared channels of different cells.
    A terminal according to claim 1 .
  3.  前記端末能力情報は、異なるセルの参照信号のトリガリングにおいて、前記制御情報が送信されるセルと、前記参照信号のセルとの間のサブキャリア間隔の制限を示す情報である、
     請求項1に記載の端末。
    The terminal capability information, in the triggering of the reference signal of different cells, the cell in which the control information is transmitted, the information indicating the limit of the subcarrier interval between the cell of the reference signal,
    A terminal according to claim 1 .
  4.  制御情報が送信されるセルと、共有チャネルまたは参照信号のセルとの間の制限を示す端末能力情報を端末から受信する受信部と、
     前記端末能力情報に基づいて、異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報を前記端末に送信する送信部と、を備える、
     基地局。
    a receiving unit that receives from the terminal terminal capability information indicating a limit between a cell in which control information is transmitted and a cell of a shared channel or reference signal;
    A transmission unit that transmits control information including scheduling of shared channels of different cells or triggering of reference signals of different cells to the terminal based on the terminal capability information,
    base station.
  5.  異なるセルの共有チャネルのスケジューリングまたは異なるセルの参照信号のトリガリングを含む制御情報をダウンリンクで受信するステップと、
     前記制御情報が送信されるセルと、前記共有チャネルまたは前記参照信号のセルとの間の制限を示す端末能力情報を、アップリンクで送信するステップと、を端末が実行する、
     通信方法。
    receiving in the downlink control information comprising scheduling of shared channels of different cells or triggering of reference signals of different cells;
    transmitting, on the uplink, terminal capability information indicating a restriction between a cell in which the control information is transmitted and a cell of the shared channel or the reference signal;
    Communication method.
PCT/JP2022/044512 2022-01-21 2022-12-02 Terminal, base station, and communication method WO2023139942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022008311 2022-01-21
JP2022-008311 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023139942A1 true WO2023139942A1 (en) 2023-07-27

Family

ID=87348114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044512 WO2023139942A1 (en) 2022-01-21 2022-12-02 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2023139942A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio access capabilities (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.306, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.7.0, 23 December 2021 (2021-12-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 156, XP052083420 *
QUALCOMM INCORPORATED: "PDCCH monitoring enhancements", 3GPP DRAFT; R1-2200290, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220117 - 20220125, 11 January 2022 (2022-01-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052098149 *

Similar Documents

Publication Publication Date Title
WO2023139942A1 (en) Terminal, base station, and communication method
WO2023162748A1 (en) Terminal, base station, and communication method
WO2023021886A1 (en) Base station, terminal, and communication method
WO2023163019A1 (en) Terminal, base station, wireless communication system, and communication method
WO2023135654A1 (en) Terminal, base station, and communication method
WO2023132062A1 (en) Terminal, base station, and communication method
WO2023132086A1 (en) Terminal and communication method
WO2023157260A1 (en) Terminal, base station, and communication method
WO2023135656A1 (en) Terminal, base station, and communication method
WO2023058246A1 (en) Terminal and communication method
WO2023026915A1 (en) Terminal and communication method
WO2023017592A1 (en) Terminal and communication method
WO2023089790A1 (en) Base station and communication method
WO2023175979A1 (en) Terminal, base station, and communication method
WO2023135655A1 (en) Terminal, base station, and communication method
WO2023053418A1 (en) Terminal, base station, and communication method
WO2023053463A1 (en) Terminal and communication method
WO2023053417A1 (en) Terminal, base station, and communication method
WO2023022137A1 (en) Terminal and communication method
WO2023195141A1 (en) Terminal, base station, and communication method
WO2023053301A1 (en) Terminal and communication method
WO2023148945A1 (en) Terminal, base station, and communication method
WO2023067984A1 (en) Terminal and communication method
WO2023058229A1 (en) Communication device and communication method
WO2023199446A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023575107

Country of ref document: JP