WO2023138911A1 - Mikroarray und verfahren zu seiner herstellung - Google Patents

Mikroarray und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2023138911A1
WO2023138911A1 PCT/EP2023/050045 EP2023050045W WO2023138911A1 WO 2023138911 A1 WO2023138911 A1 WO 2023138911A1 EP 2023050045 W EP2023050045 W EP 2023050045W WO 2023138911 A1 WO2023138911 A1 WO 2023138911A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
inorganic
substrate
microarray
organic
Prior art date
Application number
PCT/EP2023/050045
Other languages
English (en)
French (fr)
Inventor
Ulrich Hasenkox
Susanne Lucas
Stefan Klein
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2023138911A1 publication Critical patent/WO2023138911A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified

Definitions

  • the present invention relates to a method for producing a microarray.
  • the present invention relates to a microarray that can be produced using the method.
  • microarray of a lab-on-chip system requires a modification of the array surface, including the microcavities of the microarray. In this way, on the one hand, sufficient wettability of the surface must be achieved in order to enable the microcavities to be filled with a mixture of samples and reagents.
  • the surface must be biochemically inert or biocompatible. This prevents the nucleic acids, enzymes and additives contained in the sample and reagent mixture as well as the primers and probes to be pre-stored in the microwells from being adsorbed or inhibited on the surface, which would weaken, delay or even completely prevent a biochemical reaction taking place in the microwells, such as a PCR reaction.
  • Microarrays in a lab-on-chip system are usually made of silicon, which inhibits PCR reactions.
  • a surface functionalization that provides the desired surface properties of the microarray can be achieved by silanization with trimethoxysilanes or trichlorosilanes.
  • Short-chain trimethoxysilane and trichlorosilane are suitable for vapor deposition due to their low vapor pressure. They are used as a monolayer (self-assembled monolayer; SAM) on the silicon substrate
  • SUBSTITUTE SHEET (RULE 26) secluded.
  • An additional layer structure for higher layer thicknesses is limited due to the process and material.
  • quality assurance of a silicon substrate coated with SAM can only be carried out with great effort, because a monolayer is not visually visible and the layer thickness cannot be measured. This makes it difficult to detect a SAM that is not completely closed.
  • ALD atomic layer deposition
  • MLD molecular layer deposition
  • a substrate in particular a silicon substrate, which has microcavities, is coated on the surface.
  • the diameter of the microcavities is preferably in the range from 10 micrometers (jjm) to 1000 ⁇ m and particularly preferably in the range from 100 ⁇ m to 400 ⁇ m. This ensures, on the one hand, that the cavities can be easily filled and, on the other hand, that a sufficiently large number of cavities can be arranged on the substrate.
  • the depth of the microcavities is preferably in the range from 100 ⁇ m to 700 ⁇ m, particularly preferably in the range from 200 ⁇ m to 300 ⁇ m. This ensures, on the one hand, that the cavities have a sufficient receiving volume and, on the other hand, avoids that too large a proportion of the material thickness of the substrate is removed.
  • a microarray with such cavities can be used for many lab-on-chip applications.
  • a first precursor and a second precursor are applied alternately to the substrate by means of ALD or MLD.
  • the first precursor is an inorganic or organometallic precursor.
  • the second precursor is an organic precursor. While a silanization of the substrate surface is only suitable for the formation of SAMs, with the present
  • SUBSTITUTE SHEET (RULE 26) Process an arbitrarily thick metal-organic layer can be produced on the substrate surface.
  • the inorganic or organometallic precursor reacts with the organic precursor on the surface of the microarray, in particular in the form of a chemical compound of the two precursors to form what is known as a metal cone.
  • the layer that is preferably produced in this way can thus also be referred to as a metal cone layer.
  • the application of the two precursors is preferably repeated until a layer with a thickness in the range from 10 nanometers (nm) to 100 nm has been produced.
  • the thickness of the layer is particularly preferably in the range from 10 nm to 50 nm.
  • Such a layer is thick enough to be able to easily examine it for defects in a quality assurance process. At the same time, however, it is thin enough not to significantly reduce the internal volume of the cavities. While silanization is based on the use of an organometallic reagent which reacts with the substrate surface, in the present process only reactions of the precursors among themselves take place after a single reaction of the inorganic or organometallic precursor with the substrate surface, which theoretically allows any thickness of layer to be built up.
  • the inorganic or organometallic precursor is preferably selected from the group consisting of SiXa H4 - a , TiXi, ZrX4 and AIRbHa-b.
  • a can assume values in the range from 1 to 4 and b can assume values in the range from 1 to 3.
  • X denotes one of the halogens chlorine, bromine or iodine.
  • R denotes an organic radical of the formula - (CHajcCHa.
  • c can assume values in the range from 0 to 4, so that the radical R can be a methyl group, an ethyl group, an n-propyl group or a n-butyl group.
  • trichlorosilane SiCLH
  • dichlorosilane SiCLHj
  • titanium tetrachloride TiCL
  • AKCHsh trimethylaluminum
  • Conditions of the ALD or MLD are reactive and in particular have a high reactivity towards silicon as the preferred material of the substrate and towards alcohols, since they easily react with hydroxyl groups.
  • the organic precursor is preferably an oligoethylene glycol.
  • Triethylene glycol (C6H14O4) and tetraethylene glycol (CsHisOs) are particularly preferred. Tetraethylene glycol is particularly preferred.
  • These oligoethylene glycols each have two hydroxyl groups. When the first precursor has reacted with the surface of the substrate or the surface of the coating that has already been built up, it can react further with a hydroxyl group of the oligoethylene glycol. The other hydroxyl group, which now points away from the substrate surface, can react with another molecule of the first precursor and thus enables the coating to be built up further.
  • the oligoethylene glycol basic structure is sterically advantageous in order to enable the dense arrangement of many molecules of the second precursor next to one another in the coating.
  • an inorganic or metal-organic precursor and water, ozone or an oxygen plasma are preferably applied alternately to the substrate by means of ALD or MLD.
  • a metal oxide layer or semi-metal oxide layer can first be built up on the substrate surface. This preferably has a thickness in the range from 2 nm to 100 nm. The thickness is particularly preferably in the range from 2 nm to 50 nm.
  • the metal oxide layer or semimetal oxide layer improves the connection of the metal-organic coating to the substrate and is suitable, for example, for smoothing surface irregularities of the substrate.
  • the surface of the substrate is before the first application of an inorganic or organometallic
  • SUBSTITUTE SHEET (RULE 26) Precursors treated with a plasma. This plasma treatment activates the surface for the subsequent reaction with the first precursor.
  • the plasma treatment is carried out not only before the inorganic or organometallic precursor is applied for the first time, but also between the application of the organic precursor and the inorganic or organometallic precursor.
  • the metal-organic layer that is being built up is thus activated with the plasma before each application of the inorganic or metal-organic precursor, thus enabling an easier reaction with the precursor.
  • the plasma is preferably an oxygen plasma. If the plasma treatment not only generates radicals in order to increase the surface reactivity, but also atoms of the plasma accumulate on the surface, an oxygen plasma does not disturb the layer structure, since the reactions of the layer structure take place on the oxygen atoms anyway.
  • the application of the inorganic or organometallic precursor and water is alternated several times. Both alternating applications are in turn repeated several times in alternation.
  • This enables a more complex layer structure in which not only an organometallic layer is applied to a metal oxide layer or semimetal oxide layer, but also a composite of alternating organometallic layers and metal oxide layers or semimetal oxide layers is produced. While the surface properties of this composite layer are determined by the metal-organic layer applied last, the intermediate layers of metal oxide or semi-metal oxide give the composite a particularly high level of robustness.
  • the invention relates to a microarray which has microcavities and which can be produced in particular by means of the method
  • the microarray has a coating that is at least 10 nm thick.
  • the microarray has a low contact angle with respect to aqueous media.
  • it is particularly biochemically inert to biochemical reagents such as nucleic acids, enzymes and additives.
  • FIG. 1 shows a flow chart of a method according to a first exemplary embodiment of the invention.
  • FIG. 2 schematically shows a layer structure for functionalizing a microarray according to a first exemplary embodiment of the invention.
  • FIG. 3 shows in a diagram fluorescence signals of a substrate before its treatment by means of an exemplary embodiment of the method according to the invention.
  • FIG. 4 shows a diagram of fluorescence signals of a substrate after its treatment by means of an exemplary embodiment of the method according to the invention.
  • FIG. 5 shows a flow chart of a second exemplary embodiment of the method according to the invention.
  • FIG. 6 shows a schematic sectional illustration of a layer structure for functionalizing a microarray according to a second exemplary embodiment of the invention.
  • a substrate is provided 12 after the start 11 of the method.
  • the substrate is, for example, a silicon substrate which has microcavities with a diameter of 350 ⁇ m and a depth of 250 ⁇ m.
  • the substrate is treated with an oxygen plasma 21. This removes any foreign atoms on the substrate surface and hydroxyl groups are now exposed on this.
  • Trimethylaluminum is then applied to the substrate surface as the first precursor using ALD/MLD 22. The trimethylaluminum reacts according to formula 1 with the hydroxyl groups of the silicon surface, separating methane:
  • Steps 22 to 23 are repeated until a check 24 shows that, for example, 120 repetitions have been carried out.
  • Further trimethylaluminum reacts according to formula 3 with the hydroxyl groups of the aluminum oxide layer growing in this way in the same way as it reacted with the hydroxyl groups on the surface of the silicon layer according to formula 1:
  • SUBSTITUTE SHEET (RULE 26) A purge takes place between the alternating steps 22 to 23 in order to prevent a reaction between trimethylaluminum and water in the bulk.
  • Steps 31 to 33 are repeated until a check 34 shows that, for example, 100 repetitions have been carried out.
  • a check 34 shows that, for example, 100 repetitions have been carried out.
  • each application of trimethylaluminum to the coating previously treated with tetraethylene glycol causes another trimethylaluminum molecule to bind to the second hydroxyl group of the tetraethylene glycol, with the release of methane, so that the next time tetraethylene glycol is applied, the layer structure according to formula 4 can be continued:
  • Method 13 ends when the desired layer thickness of the metal-organic layer is reached.
  • the desired layer thickness is, for example, 25 nm.
  • FIG. 2 shows the surface of microarray 40 which results as a result.
  • On the substrate 41 there is first a layer 42 made of aluminum oxide and then an organometallic layer 43 which contains tetraethylene glycol building blocks linked via aluminum atoms.
  • This metal-organic layer 43 can also be referred to as an alucone layer.
  • the surface of the organometallic layer 43 has tetraethylene glycol building blocks since tetraethylene glycol was applied in the last application step 33 by means of ALD/MLD.
  • the surface of the organometallic layer 43 is therefore no longer reactive and biologically inert. Due to its terminal hydroxyl groups, it is also hydrophilic, which makes it easier to fill the cavities.
  • a PCR sample mixture was filled into a microarray consisting only of the untreated silicon substrate 41 and into a microarray 40 manufactured according to the first exemplary embodiment of the method.
  • the dimensionless normalized intensity I of a fluorescence signal after isothermal amplification is plotted over time t for several comparative examples with uncoated substrates in FIG.
  • the same plot was made in FIG. 4 for several microarrays 40 according to the invention, the same isothermal amplification and fluorescence excitation being carried out with the same wavelength as in the comparative examples. It can be seen that the signal intensity is higher than in the comparison examples, the signal rise occurs earlier in time and the spread of the family of curves is smaller.
  • steps 21 to 23 are repeated only 20 times, for example, before the method is continued with step 31, and steps 31 to 33 are likewise repeated only 20 times, for example, before the method is continued. In this exemplary embodiment, however, this does not occur with the immediate termination 13 of the method. Instead, there is a jump back to step 22. Only when a check 14 shows that four jumps have already taken place, and steps 22 to 23 and steps 31 to 33 have therefore been run through a total of 100 times, for example, does the method end 13 .
  • FIG. 6 shows that a microarray 40 can be produced in this way, the substrate 41 of which is covered on its surface with a composite of alternating aluminum oxide layers 42 and metal-organic layers 43 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Mikroarrays (40), wobei auf ein Substrat (41), welches Mikrokavitäten aufweist, abwechselnd ein anorganischer oder metallorganischer Precursor und ein organischer Precursor mittels ALD oder MLD aufgebracht werden. Weiterhin betrifft die Erfindung ein Mikroarray, das mittels des Verfahrens herstellbar ist.

Description

Beschreibung
Titel
Mikroarray und Verfahren zu seiner Herstellung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Mikroarrays. Außerdem betrifft die vorliegende Erfindung ein Mikroarray, das mittels des Verfahrens herstellbar ist.
Stand der Technik
Die Funktionalität eines Mikroarrays eines Lab-on-Chip-Systems erfordert eine Modifikation der Arrayoberfläche einschließlich der Mikrokavi täten des Mikroarrays. Hierdurch muss zum einen eine hinreichende Benetzbarkeit der Oberfläche erreicht werden, um eine Befüllung der Mikrokavitäten mit einem Proben- und Reagenzien-Gemisch zu ermöglichen. Außerdem muss die Oberfläche biochemisch inert bzw. biokompatibel ausgerüstet werden. Dies verhindert, dass im Proben- und Reagenzien-Gemisch enthaltene Nukleinsäuren, Enzyme und Additive sowie in den Mikrokavitäten vorzulagernde Primer und Sonden an der Oberfläche adsorbiert oder inhibiert werden, was eine in den Mikrokavitäten ablaufende biochemische Reaktion, wie beispielsweise eine PCR- Reaktion schwächen, verzögern oder sogar komplett unterbinden würde. Mikroarrays eines Lab-on-Chip-Systems bestehen üblicherweise aus Silizium, welches PCR- Reaktionen inhibiert.
Eine Oberflächenfunktionalisierung, welche die gewünschten Oberflächeneigenschaften des Mikroarrays zur Verfügung stellt, kann durch Silanisierung mit Trimethoxysilanen oder Trichlorsilanen erreicht werden. Kurzkettige Trimethoxysiliane und Trichlorsilane eignen sich aufgrund ihres geringen Dampfdrucks für die Abscheidung aus der Gasphase. Hierbei werden sie als Monolage (Self Assembled Monolayer; SAM) auf dem Siliziumsubstrat
ERSATZBLATT (REGEL 26) abgeschieden. Ein weiterer Schichtaufbau für höhere Schichtdicken ist prozess- und materialbedingt limitiert. Eine Qualitätssicherung eines mit SAM beschichteten Siliziumsubstrat ist allerdings nur mit hohem Aufwand durchführbar, weil eine Monolage visuell nicht sichtbar ist und die Schichtdicke nicht messbar ist. Dadurch kann eine nicht vollständig geschlossene SAM nur schwer erkannt werden.
Neben der Gasphasenabscheidung sind beispielsweise auch die Atomlagenabscheidung (Atomic-Layer-Deposition; ALD) und die Moleküllagenabscheidung (Molecular-Layer-Deposition; MLD) bekannt. Diese werden beispielsweise in P. Sundberg, M. Karppinen: Organic and inorganic- organic thin film structures by molecular layer deposition: A review, Beilstein Journal of Nanotechnology, 2014, 5, 1104 bis 1136 beschrieben.
Offenbarung der Erfindung
In dem Verfahren zur Herstellung eines Mikroarrays wird ein Substrat, insbesondere ein Siliziumsubstrat, welches Mikrokavitäten aufweist, oberflächlich beschichtet. Der Durchmesser der Mikrokavitäten liegt bevorzugt im Bereich von 10 Mikrometer (jjm) bis 1.000 pm und besonders bevorzugt im Bereich von 100 pm bis 400 pm. Hierdurch wird einerseits sichergestellt, dass eine Befüllung der Kavitäten einfach möglich ist und andererseits eine ausreichend große Anzahl von Kavitäten auf dem Substrat angeordnet werden kann. Die Tiefe der Mikrokavitäten liegt bevorzugt im Bereich von 100 pm bis 700 pm, besonders bevorzugt im Bereich von 200 pm bis 300 pm. Hierdurch wird einerseits ein ausreichendes Aufnahmevolumen der Kavitäten gewährleistet und andererseits vermieden, dass ein zu großer Anteil der Materialdicke des Substrats abgetragen wird. Ein Mikroarray mit solchen Kavitäten ist für viele Lab-on-Chip- Anwendungen einsetzbar.
Auf das Substrat werden mittels ALD oder MLD abwechselnd ein erster Precursor und ein zweiter Precursor aufgebracht. Der erste Precursor ist ein anorganischer oder metallorganischer Precursor. Der zweite Precursor ist ein organischer Precursor. Während eine Silanisierung der Substratoberfläche lediglich zur Bildung von SAMs geeignet ist, kann mit dem vorliegenden
ERSATZBLATT (REGEL 26) Verfahren eine beliebig dicke metallorganische Schicht auf der Substratoberfläche erzeugt werden. Dabei erfolgt insbesondere eine Reaktion des anorganischen bzw. metallorganischen Precursors mit dem organischen Precursor auf der Oberfläche des Mikroarrays, insbesondere in Form einer chemischen Verbindung der beiden Precursor zu einem sogenannten Metallcone (englisch metalcone). Die vorzugsweise dabei entstehende Schicht kann somit auch als Metallcone-Schicht bezeichnet werden. Vorzugsweise wird das Aufbringen der beiden Precursor so lange wiederholt, bis eine Schicht mit einer Dicke im Bereich von 10 Nanometer (nm) bis 100 nm erzeugt wurde. Besonders bevorzugt liegt die Dicke der Schicht im Bereich von 10 nm bis 50 nm. Eine solche Schicht ist dick genug, um sie in einem Qualitätssicherungsprozess einfach auf Defekte untersuchen zu können. Gleichzeitig ist sie jedoch dünn genug, um das Innenvolumen der Kavitäten nicht nennenswert zu verringern. Während eine Silanisierung auf der Verwendung eines metallorganischen Reagenzes basiert, welches mit der Substratoberfläche reagiert, finden im vorliegenden Verfahren nach einer einmaligen Reaktion des anorganischen oder metallorganischen Precursors mit der Substratoberfläche nur noch Reaktionen der Precursoren untereinander statt, wodurch der theoretisch beliebig dicke Schichtaufbau ermöglicht wird.
Der anorganische oder metallorganische Precursor ist bevorzugt ausgewählt aus der Gruppe, die aus SiXaH4-a, TiXi, ZrX4 und AIRbHa-b besteht. Dabei kann a Werte im Bereich von 1 bis 4 annehmen und b kann Werte im Bereich von 1 bis 3 annehmen. X bezeichnet eines der Halogene Chlor, Brom oder Jod. R bezeichnet einen organischen Rest der Formel -(CHajcCHa. Dabei kann c Werte im Bereich von 0 bis 4 annehmen, sodass es sich bei dem Rest R um eine Methylgruppe, eine Ethylgruppe, eine n-Propylgruppe oder eine n-Butylgruppe handeln kann. Besonders bevorzugt sind unter diesen Precursoren Trichlorsilan (SiCLH), Dichlorsilan (SiCLHj), Titantetrachlorid (TiCL) und Trimethylaluminium (AKCHsh). Hierbei handelt es sich um Precursoren, die unter den Bedingungen der ALD oder MLD reaktiv sind und insbesondere eine hohe Reaktivität gegenüber Silizium als bevorzugtes Material des Substrats und gegenüber Alkoholen aufweisen, da sie leicht mit Hydroxylgruppen reagieren.
ERSATZBLATT (REGEL 26) Der organische Precursor ist bevorzugt ein Oligoethylenglycol. Besonders bevorzugt sind Triethylenglycol (C6H14O4) und Tetraethylenglycol (CsHisOs). Dabei ist Tetraethylenglycol besonders bevorzugt Diese Oligoethylenglycole weisen jeweils zwei Hydroxylgruppen auf. Wenn der erste Precursor mit der Oberfläche des Substrats oder der Oberfläche der bereits aufgebauten Beschichtung reagiert hat, kann er mit einer Hydroxylgruppe des Oligoethylenglycols weiterreagieren. Die andere Hydroxylgruppe, die nun von der Substratoberfläche fortweist, kann mit einem weiteren Molekül des ersten Precursors reagieren und ermöglicht so einen weiteren Aufbau der Beschichtung. Dabei ist das Oligoethylenglycol-Grundgerüst sterisch vorteilhaft, um die dichte Anordnung vieler Moleküle des zweiten Precursors nebeneinander in der Beschichtung zu ermöglichen.
Vor dem abwechselnden Aufbringen des anorganischen oder metallorganischen Precursors und des organischen Precursors auf das Substrat erfolgt bevorzugt abwechselnd ein Aufbringen eines anorganischen oder metallorganischen Precursors und Wassers, Ozons oder eines Sauerstoffplasmas mittels ALD oder MLD auf das Substrat. Hierdurch kann auf der Substratoberfläche zunächst eine Metalloxidschicht oder Halbmetalloxidschicht aufgebaut werden. Diese weist bevorzugt eine Dicke im Bereich von 2 nm bis 100 nm auf. Besonders bevorzugt liegt die Dicke im Bereich von 2 nm bis 50 nm. Die Metalloxidschicht oder Halbmetalloxidschicht verbessert die Anbindung der metallorganischen Beschichtung an das Substrat und ist beispielsweise dazu geeignet, Oberflächenunebenheiten des Substrats zu glätten.
Auch wenn für den Aufbau der metallorganischen Schicht sowie der Metalloxidschicht oder Halbmetalloxidschicht grundsätzlich unterschiedliche anorganische oder metallorganische Precursoren verwendet werden könnten, ist es bevorzugt, in beiden Verfahrensschritten denselben anorganischen oder metallorganischen Precursor einzusetzen. Dies ermöglicht eine Verfahrensführung mit nur zwei unterschiedlichen Precursoren.
In einer Ausführungsform des Verfahrens wird die Oberfläche des Substrats vor dem erstmaligen Aufbringen eines anorganischen oder metallorganischen
ERSATZBLATT (REGEL 26) Precursors mit einem Plasma behandelt. Diese Plasmabehandlung aktiviert die Oberfläche für die anschließende Reaktion mit dem ersten Precursor.
In einer anderen bevorzugten Ausführungsform des Verfahrens erfolgt die Plasmabehandlung nicht nur vor dem erstmaligen Aufbringen des anorganischen oder metallorganischen Precursors, sondern auch zwischen dem Aufbringen des organischen Precursors und dem anorganischen oder metallorganischen Precursor. Damit wird die im Aufbau befindliche metallorganische Schicht vor jedem Aufbringen des anorganischen oder metallorganischen Precursors mit dem Plasma aktiviert und so eine leichtere Reaktion mit dem Precursor ermöglicht.
Das Plasma ist vorzugsweise ein Sauerstoffplasma. Sofern durch die Plasmabehandlung nicht lediglich Radikale erzeugt werden, um so die oberflächliche Reaktivität zu erhöhen, sondern sich auch Atome des Plasmas an der Oberfläche anlagern, führt ein Sauerstoffplasma zu keiner Störung des Schichtaufbaus, da die Reaktionen des Schichtaufbaus sowieso an den Sauerstoffatomen ablaufen.
Weiterhin ist es bevorzugt, dass nach einem mehrfachen abwechselnden Aufbringen des anorganischen oder metallorganischen Precursors und des organischen Precursors ein mehrfaches Abwechseln des Aufbringens des anorganischen oder metallorganischen Precursors und Wassers erfolgt. Dabei werden beide abwechselnden Aufbringungen ihrerseits abwechselnd mehrfach wiederholt. Dies ermöglicht einen komplexeren Schichtaufbau, in dem nicht nur eine metallorganische Schicht auf einer Metalloxidschicht oder Halbmetalloxidschicht aufgebracht wird, sondern ein Verbund sich abwechselnder metallorganischer Schichten und Metalloxidschichten bzw. Halbmetalloxidschichten erzeugt wird. Während die Oberflächeneigenschaften dieser Verbundschicht durch die zuletzt aufgetragene metallorganische Schicht bestimmt werden, verleihen die Zwischenschichten aus Metalloxid oder Halbmetalloxid dem Verbund eine besonders hohe Robustheit.
In einem weiteren Aspekt betrifft die Erfindung ein Mikroarray welches Mikrokavitäten aufweist und das insbesondere mittels des Verfahrens herstellbar
ERSATZBLATT (REGEL 26) ist. Das Mikroarray weist eine Beschichtung auf, welche mindestens 10 nm dick ist. Die Beschichtung enthält mindestens eines der Elemente Titan, Silizium, Aluminium und Zirkonium, sowie weiterhin mindestens eine oder mehrere organische Gruppen der Formel -O-(CH2)X- mit x = 1 - 4, insbesondere (in Form von) ein oder mehrere Metallcones (englisch metalcones). Das Mikroarray weist insbesondere einen niedrigen Kontaktwinkel gegenüber wässrigen Medien auf. Außerdem ist es insbesondere biochemisch inert gegenüber biochemischen Reagenzien wie beispielsweise Nukleinsäuren, Enzymen und Additiven.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Fig. 1 zeigt ein Ablaufdiagramm eines Verfahrens gemäß einem ersten Ausführungsbeispiel der Erfindung.
Fig. 2 zeigt schematisch einen Schichtaufbau zur Funktionalisierung eines Mikroarrays gemäß einem ersten Ausführungsbeispiel der Erfindung.
Fig. 3 zeigt in einem Diagramm Fluoreszenzsignale eines Substrats vor seiner Behandlung mittels eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 4 zeigt in einem Diagramm Fluoreszenzsignale eines Substrats nach seiner Behandlung mittels eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 5 zeigt ein Ablaufdiagramm eines zweiten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 6 zeigt eine schematische Schnittdarstellung eines Schichtaufbau zur Funktionalisierung eines Mikroarrays gemäß einem zweiten Ausführungsbeispiel der Erfindung.
ERSATZBLATT (REGEL 26) Ausführungsbeispiele der Erfindung
In einem ersten Ausführungsbeispiel des erfindungsgemäßen Verfahrens, welches in Fig. 1 dargestellt ist, erfolgt nach dem Start 11 des Verfahrens ein Bereitstellen 12 eines Substrats. Bei dem Substrat handelt es sich beispielsweise um ein Siliziumsubstrat, welches Mikrokavitäten mit einem Durchmesser von 350 pm und einer Tiefe von 250 pm aufweist. Zunächst wird das Substrat mit einem Sauerstoffplasma behandelt 21. Hierdurch werden eventuelle Fremdatome auf der Substratoberfläche entfernt und auf dieser liegen nun Hydroxylgruppen frei. Anschließend wird mittels ALD/MLD Trimethylaluminium als erster Precursor auf die Substratoberfläche aufgebracht 22. Das Trimethylaluminium reagiert gemäß Formel 1 mit den Hydroxylgruppen der Siliziumoberfläche unter Abspaltung von Methan:
9 Si — OH + A1(CH3)3 - > 9 Si - 0 - A1(CH3)2 + CH4
(Formel 1)
Anschließend erfolgt ein Aufbringen 23 von Wasser. Dieses hydrolysiert alle verbleibenden Methylgruppen des mit der Siliziumoberfläche reagierten Trimethylaluminiums gemäß Formel 2, sodass die Oberfläche der auf diese Weise aufgebrachten monomolekularen Beschichtung wie die ursprüngliche Siliziumoberfläche Hydroxylgruppen aufweist:
-0 - A1(CH3)2 + 2 H20 - > -0 - Al(0H)2 + 2 CH4
(Formel 2)
Die Schritte 22 bis 23 werden so oft wiederholt, bis eine Prüfung 24 ergibt, dass beispielsweise 120 Wiederholungen durchgeführt wurden. Weiteres Trimethylaluminium reagiert dabei gemäß Formel 3 mit den Hydroxylgruppen der auf diese Weise anwachsenden Aluminiumoxidschicht in derselben Weise, wie es gemäß Formel 1 mit den Hydroxylgruppen an der Oberfläche der Siliziumschicht reagiert hat:
> Al - 0H + A1(CH3)3 - > > Al - 0 - A1(CH3)2 + CH4
(Formel 3)
ERSATZBLATT (REGEL 26) Zwischen den abwechselnden Schritte 22 bis 23 findet jeweils ein Purgen statt, um eine Reaktion zwischen Trimethylaluminium und Wasser im Volumen zu verhindern.
Im Folgenden beginnt der Aufbau einer metallorganischen Schicht auf der so erzeugten Aluminiumoxidschicht. Hierzu erfolgt wie im Schritt 22 ein Aufbringen
31 von Trimethylaluminium mittels ALD/MLD. Anschließend folgt ein Aufbringen
32 von Tetraethylenglycol mittels ALD/MLD. Eine der Hydroxylgruppen des Tetraethylenglycols reagiert gemäß Formel 4 mit einer Methylgruppe an der Oberfläche der Beschichtung unter Abspaltung von Methan:
-0 - A1(CH3)2 + 2 H0(CH2CH20)4H - > -0 - Al(0(CH2CH20)4H)2 + 2 CH4
(Formel 4)
Eine anschließende Behandlung 33 mit einem Sauerstoffplasma begünstigt das Schichtwachstum. Die Schritte 31 bis 33 werden wiederholt, bis eine Prüfung 34 ergibt, dass beispielsweise 100 Wiederholungen durchgeführt wurden. Jedes Aufbringen von Trimethylaluminium auf die zuvor mit Tetraethylenglycol behandelte Beschichtung führt dabei gemäß Formel 5 dazu, dass an die zweite Hydroxylgruppe des Tetraethylenglycols ein weiteres Trimethylaluminiummolekül unter Methanabspaltung anbindet, sodass beim nächsten Aufbringen von Tetraethylenglycol der Schichtaufbau gemäß Formel 4 fortgesetzt werden kann:
> Al - 0(CH2CH20)4H + A1(CH3)3 - > > Al - 0(CH2CH20)4 - A1(CH3)2
+ CH4
(Formel 5)
Mit dem Erreichen der gewünschten Schichtdicke der metallorganischen Schicht endet das Verfahren 13. Die gewünschte Schichtdicke beträgt beispielsweise 25 nm. In Fig. 2 ist die Oberfläche des Mikroarrays 40 dargestellt, welche sich hierdurch ergibt. Auf dem Substrat 41 ist zunächst eine Schicht 42 aus Aluminiumoxid und dann eine metallorganische Schicht 43 angeordnet, welche über Aluminiumatome verknüpfte Tetraethylenglycol-Bausteine enthält. Diese metallorganische Schicht 43 kann auch als Alucone-Schicht bezeichnet werden.
ERSATZBLATT (REGEL 26) Die Oberfläche der metallorganischen Schicht 43 weist Tetraethylenglycol- Bausteine auf, da im letzten Aufbringungsschritt 33 mittels ALD/MLD Tetraethylenglycol aufgebracht wurde. Damit ist die Oberfläche der metallorganischen Schicht 43 nicht mehr reaktiv und biologisch inert. Durch ihre endständigen Hydroxylgruppen ist sie zudem hydrophil, was ein Befüllen der Kavitäten erleichtert.
Ein PCR-Probengemisch wurde in ein Mikroarray, welches nur aus dem unbehandelten Siliziumsubstrat 41 besteht, und in ein Mikroarray 40, welches gemäß dem ersten Ausführungsbeispiel des Verfahrens hergestellt wurde, gefüllt. Für mehrere Vergleichsbeispiele mit unbeschichteten Substraten ist in Fig. 3 die dimensionslose normierte Intensität I eines Fluoreszenzsignals nach isothermaler Amplifikation über die Zeit t aufgetragen. Dieselbe Auftragung wurde in Fig. 4 für mehrere erfindungsgemäße Mikroarrays 40 vorgenommen, wobei dieselbe isothermale Amplifikation und eine Fluoreszenzanregung mit derselben Wellenlänge vorgenommen wurde, wie in den Vergleichsbeispielen. Es ist erkennbar, dass die Signalintensität gegenüber den Vergleichsbeispielen erhöht ist, der Signalanstieg zeitlich früher erfolgt und die Streubreite der Kurvenschar geringer ist.
Ein zweites Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist in Fig. 5 dargestellt. Im Unterschied zum ersten Ausführungsbeispiel werden die Schritte 21 bis 23 beispielsweise nur 20-mal wiederholt, bevor das Verfahren mit dem Schritt 31 fortgesetzt wird und die Schritte 31 bis 33 werden beispielsweise ebenfalls nur 20-mal wiederholt, bevor eine Fortsetzung des Verfahrens erfolgt. Diese erfolgt jedoch in diesem Ausführungsbeispiel nicht mit der sofortigen Beendigung 13 des Verfahrens. Stattdessen erfolgt ein Rücksprung zum Schritt 22. Erst wenn eine Prüfung 14 ergibt, dass bereits vier Rücksprünge erfolgt sind, und damit die Schritte 22 bis 23 und die Schritte 31 bis 33 beispielsweise jeweils insgesamt 100-mal durchlaufen wurden, erfolgt ein Beenden 13 des Verfahrens.
Fig. 6 zeigt, dass auf diese Weise ein Mikroarray 40 hergestellt werden kann, dessen Substrat 41 an seiner Oberfläche mit einem Verbund aus sich abwechselnden Aluminiumoxidschichten 42 und metallorganischen Schichten 43 bedeckt ist.
ERSATZBLATT (REGEL 26)

Claims

Ansprüche
1 . Verfahren zur Herstellung eines Mikroarrays (40), wobei auf ein Substrat (41), welches Mikrokavitäten aufweist, abwechselnd ein anorganischer oder metallorganischer Precursor und ein organischer Precursor mittels ALD oder MLD aufgebracht werden (31 ,32).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der anorganische oder metallorganische Precursor ausgewählt ist aus der Gruppe bestehend aus SiXaH4-a, TiX i, ZrX4 und AIRbHa-b, mit R = -(CHaJcCHa, X = CI, Br oder I, a = 1 - 4, b = 1 - 3 und c = 0 - 4.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der organische Precursor ein Oligoethylenglycol ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass vor dem abwechselnden Aufbringen (31 , 32) des anorganischen oder metallorganischen Precursors und des organischen Precursors auf das Substrat (41) abwechselnd ein anorganischer oder metallorganischer Precursor und Wasser oder Ozon oder ein Sauerstoffplasma mittels ALD oder MLD auf das Substrat aufgebracht werden (22, 23).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass bei dem abwechselnden Aufbringen (31 , 32) des anorganischen oder metallorganischen Precursors und des organischen Precursors und bei dem abwechselnden Aufbringen (22, 23) des anorganischen oder metallorganischer Precursors und des Wassers derselbe anorganische oder metallorganische Precursor verwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Oberfläche des Substrats (41) vor dem erstmaligen Aufbringen (22, 32) eines anorganischen oder metallorganischen Precursors mit einem Plasma behandelt wird (21). Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass nach jedem Aufbringen (32) des organischen Precursors eine Plasmabehandlung (33) des Substrats (41) erfolgt, bevor ein erneutes Aufbringen (22, 31) des anorganischen oder metallorganischer Precursor erfolgt. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Plasma ein Sauerstoffplasma ist. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass nach einem mehrfachen abwechselnden Aufbringen (31 , 32) des anorganischen oder metallorganischer Precursor und des organischen Precursors ein mehrfaches abwechselndes Aufbringen (22, 23) des anorganischen oder metallorganischer Precursor und Wassers oder Ozons oder eines Sauerstoffplasmas erfolgt, wobei beide abwechselnden Aufbringungen abwechselnd mehrfach wiederholt werden (14). Mikroarray (40), welches Mikrokavitäten aufweist, aufweisend eine mindestens 10 nm dicke Beschichtung, die mindestens eines der Elemente Titan, Silizium, Aluminium und Zirkonium, sowie weiterhin mindestens eine organische Gruppe der Formel -O-(CH2)X- mit x = 1 - 4 enthält. Mikroarray (40) nach Anspruch 10, dadurch gekennzeichnet, dass es mittels eines Verfahrens nach einem der Ansprüche 1 bis 9 hergestellt wurde.
PCT/EP2023/050045 2022-01-21 2023-01-03 Mikroarray und verfahren zu seiner herstellung WO2023138911A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022200665.8 2022-01-21
DE102022200665.8A DE102022200665A1 (de) 2022-01-21 2022-01-21 Mikroarray und Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO2023138911A1 true WO2023138911A1 (de) 2023-07-27

Family

ID=85036740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/050045 WO2023138911A1 (de) 2022-01-21 2023-01-03 Mikroarray und verfahren zu seiner herstellung

Country Status (2)

Country Link
DE (1) DE102022200665A1 (de)
WO (1) WO2023138911A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118139490B (zh) * 2024-05-08 2024-07-02 上海陛通半导体能源科技股份有限公司 基于分子层沉积技术制备的oled结构及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170198393A1 (en) * 2014-04-30 2017-07-13 Imec Vzw Method of Producing a Thin Metal-Organic Framework Film Using Vapor Phase Precursors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007588A1 (de) 2007-02-14 2008-08-21 Sentech Instruments Gmbh Verfahren zur Erzeugung einer Barriereschicht auf einem mikrostrukturierten Bauelement und nach dem Verfahren erhaltene Bauelemente mit einer Barriereschicht
EP2171534B1 (de) 2007-06-22 2015-12-02 The Regents of the University of Colorado Schutzbeschichtungen für aus ablagerungen atomarer schichten entstandene organische elektronische vorrichtungen und verfahren zur ablagerung molekularer schichten
EP2429813B1 (de) 2009-05-11 2018-06-13 The Regents of the University of Colorado, a Body Corporate Ultradünnes metalloxid und durch ablagerung atomarer schichten hergestellte kohlenstoffmetalloxidfilme
US9376455B2 (en) 2013-11-27 2016-06-28 Veeco Ald Inc. Molecular layer deposition using reduction process
US10553874B2 (en) 2017-08-04 2020-02-04 Uchicago Argonne, Llc Protective coatings for lithium anodes
CN112368119A (zh) 2018-04-09 2021-02-12 Ald纳米解决方案股份有限公司 疏水涂层和使用原子或分子沉积制备疏水和疏油涂层的方法
DE102018207101B4 (de) 2018-05-08 2024-06-13 Robert Bosch Gmbh Verfahren zum Herstellen eines Bodens einer Analysezelle zum Analysieren eines biochemischen Materials und Analysezelle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170198393A1 (en) * 2014-04-30 2017-07-13 Imec Vzw Method of Producing a Thin Metal-Organic Framework Film Using Vapor Phase Precursors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HALL ROBERT A ET AL: "Growth of Zircone on Nanoporous Alumina Using Molecular Layer Deposition", JOM: JOURNAL OF METALS, SPRINGER NEW YORK LLC, UNITED STATES, vol. 66, no. 4, 21 March 2014 (2014-03-21), pages 649 - 653, XP035351020, ISSN: 1047-4838, [retrieved on 20140321], DOI: 10.1007/S11837-014-0933-Z *
LI YIWEI ET AL: "Wettability-patterned microchip for emerging biomedical materials and technologies", MATERIALS TODAY, ELSEVIER, AMSTERDAM, NL, vol. 51, 30 October 2021 (2021-10-30), pages 273 - 293, XP086900458, ISSN: 1369-7021, [retrieved on 20211030], DOI: 10.1016/J.MATTOD.2021.10.008 *
P. SUNDBERGM. KARPPINEN: "Organic and inorganicorganic thin film structures by molecular layer deposition: A review", BEILSTEIN JOURNAL OF NANOTECHNOLOGY, vol. 5, 2014, pages 1104 - 1136, XP055514215, DOI: 10.3762/bjnano.5.123
SONG ZHUONAN ET AL: "TiO2nanofiltration membranes prepared by molecular layer deposition for water purification", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 510, 7 March 2016 (2016-03-07), pages 72 - 78, XP029513724, ISSN: 0376-7388, DOI: 10.1016/J.MEMSCI.2016.03.011 *

Also Published As

Publication number Publication date
DE102022200665A1 (de) 2023-07-27

Similar Documents

Publication Publication Date Title
DE10137088B4 (de) Verfahren zum Ausbilden von siliziumhaltigen Dünnschichten mittels Atomschichtabscheidung (Atomic Layer Deposition) unter Verwendung von Aminosilanen
DE60005225T2 (de) Dünnschichten aus diamantartigem glass
DE10123858B4 (de) Atomschicht-Abscheidungsverfahren zur Bildung einer Siliciumnitrid-haltigen Dünnschicht
DE112008000368T5 (de) Herstellung von Verbundmaterialien unter Verwendung von Atomschichtabscheidung
DE60038250T2 (de) Apparat und verfahren für die minimierung parasitischer cvd während der atomschicht-beschichtung
DE68918196T2 (de) Mehrlagig keramisch beschichtete Metallplatte und Verfahren zu ihrer Herstellung.
DE60314640T2 (de) Methoden zur abscheidung von atomschichten
WO2023138911A1 (de) Mikroarray und verfahren zu seiner herstellung
DE2020697A1 (de) Gegenstand aus einem titanhaltigen Traeger und einem UEberzug sowie Verfahren zur Herstellung dieses Gegenstandes
EP1756003B1 (de) Verfahren zur herstellung von silanisierten kohlenstoff-nanoröhren
DE102005010080B4 (de) Verfahren zum Herstellen einer Dünnschicht-Struktur
DE102008018866A1 (de) Reflexionsminderndes Interferenzschichtsystem und Verfahren zu dessen Herstellung
EP2145977B1 (de) Verfahren zur Abscheidung von Schichten auf einem Substrat
DE102008019665A1 (de) Transparentes Barriereschichtsystem
DE19752644C2 (de) Mit Aluminiumoxid beschichtetes Werkzeug und Herstellungsverfahren dafür
DE3882881T2 (de) Verfahren zur Herstellung eines Polyacetylen- oder Polydiacetylenfilms.
DE102017206612A1 (de) Verfahren und Vorrichtung zum Ausbilden einer Schicht auf einem Halbleitersubstrat sowie Halbleitersubstrat
DE19738184C2 (de) Verfahren zur Herstellung organischer dünner Filme
DE4423833C2 (de) Lackschicht zur späteren Beschichtung mit einer gegenüber der organischen Lackschicht härteren Deckschicht und Verfahren zur Oberflächenbehandlung der Lackschicht
DE102012211746A1 (de) Coating layer with low-friction for vehicle component and method for producing the same
WO2011137975A1 (de) Verfahren zur plasmagestützten behandlung von innenflächen eines hohlkörpers, fluid-separator sowie dessen verwendung
EP3790840B1 (de) Verfahren zum herstellen eines bodens einer analysezelle zum analysieren eines biochemischen materials
DE69518586T2 (de) Verfahren zur Passivierung von Werkstücken aus Eisen-Nickelbasis-Superlegierungen
WO2002062698A2 (de) Verfahren zum erzeugen von oberflächenmikromechanikstrukturen und sensor
WO2004055235A1 (de) CVD-BESCHICHTUNGSVERFAHREN FÜR ZRBxCyNz-SCHICHTEN (x+y+z=1) SOWIE BESCHICHTETES SCHNEIDWERKZEUG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23701624

Country of ref document: EP

Kind code of ref document: A1