WO2023136238A1 - Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法 - Google Patents

Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法 Download PDF

Info

Publication number
WO2023136238A1
WO2023136238A1 PCT/JP2023/000301 JP2023000301W WO2023136238A1 WO 2023136238 A1 WO2023136238 A1 WO 2023136238A1 JP 2023000301 W JP2023000301 W JP 2023000301W WO 2023136238 A1 WO2023136238 A1 WO 2023136238A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
metal film
lithium
bnct
carbon substrate
Prior art date
Application number
PCT/JP2023/000301
Other languages
English (en)
French (fr)
Inventor
成人 ▲高▼橋
Original Assignee
株式会社京都メディカルテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都メディカルテクノロジー filed Critical 株式会社京都メディカルテクノロジー
Priority to JP2023574030A priority Critical patent/JPWO2023136238A1/ja
Publication of WO2023136238A1 publication Critical patent/WO2023136238A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/08Holders for targets or for other objects to be irradiated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to a BNCT lithium target and a neutron generation method using the BNCT lithium target.
  • neutron sources used in accelerator-based Boron Neutron Capture Therapy include the 9 Be(p,n) 9 B reaction, 7Li (p,n) 7Be reactions, 2H ( 2H ,n) 3He reactions, 3H ( 2H ,n) 4He reactions, etc. are generally envisioned for use.
  • the target beryllium (Be) is a solid metal, and the melting point of beryllium is as high as 1278° C., which is very stable. It's being used.
  • the acceleration energy of protons is set as low as 2.5 MeV compared to the 9 Be(p, n) 9 B reaction, so that 9 Be(p, n)
  • the acceleration energy of the protons in the 9 B reaction is one order of magnitude lower, and the energy of the generated neutrons is significantly lower than that of the Be target, so there is the advantage that the moderator can be thin.
  • the 2 H( 2 H,n) 3 He reaction and the 3 H( 2 H,n) 4 He reaction require metal targets that occlude deuterium gas or tritium gas. Tritium is a radioactive substance that is very difficult to handle, and there is a problem that it is difficult to manufacture the target and that it is not practical. Therefore, in BNCT, the use of the 7 Li(p,n) 7 Be reaction is currently attracting attention.
  • metallic lithium (Li) target required for the 7 Li(p,n) 7 Be reaction for neutron generation metallic lithium (Li) target required for the 7 Li(p,n) 7 Be reaction for neutron generation.
  • metallic lithium reacts very easily with oxygen and moisture in the air, and it turns into lithium oxide or lithium hydroxide and turns into powder, so it is necessary to be careful when handling metallic lithium. .
  • the melting point of metallic lithium is as low as 179° C., which causes the 7 Li(p,n) 7 Be reaction. There is a problem that it is necessary to efficiently cool the
  • non-patent document 1 CICS Co., Ltd., "Management number 24-105 Development of accelerator-type neutron capture therapy system using new material target technology for treatment of recurrent cancer", [online], commissioned by Japan Agency for Medical Research and Development Medical-Engineer Collaboration Innovation Promotion Project, [searched on December 27, 2021], Internet ⁇ URL: https://www.med-device.jp/development/org/24-105.html>), National Cancer Institute
  • This lithium target is configured as a cone-shaped lithium target by thinly depositing lithium on the surface of a cone-shaped metal material with high thermal conductivity. In this cone-shaped lithium target, it is possible to prevent the temperature rise of lithium due to the heat generated by the irradiation of protons by increasing the area where the protons hit.
  • Non-Patent Document 2 B Bayanov et al, “Neutron producing target for accelerator based neutron capture therapy”, Journal of Physics: Conference Series 41 (2006) 460-465
  • a lithium target prepared by vapor-depositing palladium, which is a hydrogen-absorbing metal, on the vapor-deposited palladium, and then vapor-depositing lithium on the vapor-deposited palladium.
  • cooling water is brought into contact with the rear surface to prevent the temperature of lithium from rising.
  • protons that is, hydrogen atoms
  • the palladium prevents lithium from peeling off from the substrate due to breakage of the metal crystal lattice on the substrate surface (hereinafter referred to as blistering).
  • Patent Document 1 discloses a composite target in which a target for generating neutrons by colliding protons is composed of a lithium material and a nonmetallic material.
  • Patent Document 2 discloses a target for generating neutrons by colliding protons is a material of either one of a beryllium material and a lithium material and a crystal-oriented carbon material.
  • Composite targets are disclosed that are composites made together. Further, in Japanese Patent Application Laid-Open No.
  • a target portion for generating neutrons by colliding protons is composed of a beryllium material, a lithium material and a carbon-based material, and the target portion
  • a composite target is disclosed that provides a vacuum seal to the surface of the target portion and a cooling mechanism with coolant channels at least either outside or inside the target portion.
  • This carbon-based material is a carbon-based material containing at least one of an isotropic graphite material and a crystal-oriented carbon material.
  • Patent Document 4 at least a metal film composed of a beryllium material or a lithium material and a substrate composed of a graphite film are provided, and accelerated protons Targets are disclosed for impacting the surfaces of metal films and substrates to generate neutrons.
  • the thermal conductivity in the film surface direction of the graphite film is 1500 W/(m K) or more, and the thermal conductivity in the film surface direction is 100 times or more the thermal conductivity in the film thickness direction.
  • the thickness of the film is 1 ⁇ m or more and 100 ⁇ m or less.
  • the target has sufficient durability and heat resistance against proton beam irradiation, and the degree of activation can be reduced. Therefore, it is possible to generate low-energy thermal/epithermal neutrality, which is optimal for medical applications such as cancer treatment, by proton beams with lower acceleration energy.
  • Patent Document 5 discloses a target capsule comprising a primary system (liquid metal target system) and a secondary system (liquid metal target cooling system) of the target system. ing.
  • the secondary system of this target capsule can adopt a cooling method using mist (water) and gas.
  • Patent Document 6 a target portion for generating neutrons by colliding protons is composed of a beryllium material, a lithium material, and a carbon-based material, and the target A composite target is disclosed that provides a vacuum seal to the surface of the portion and provides a cooling mechanism with coolant channels at least either outside or inside the target portion. This makes it possible to reduce activation of the target material with higher thermal stability than the conventional type target.
  • BNCT has been further reduced in energy consumption and downsized by using the 7Li (p,n) 7Be reaction so that it can be installed in general hospitals and wards. Exploration and development of lithium targets are actively carried out.
  • Non-Patent Document 1 With the technology described in Non-Patent Document 1, it is necessary to vapor-deposit lithium on a cone-shaped metal that is difficult to manufacture, and there is a problem that it is highly specific and lacks versatility.
  • palladium which is a hydrogen storage metal, absorbs protons to prevent blistering, but when palladium cannot absorb protons, it reliably prevents blistering. There is a problem that it is not possible to
  • Patent Documents 1 to 3 in addition to the lithium material, a carbon-based material is adopted as a non-metallic material, and the crystal-oriented carbon of the carbon-based material and the isotropic graphite material are combined.
  • Patent Document 4 utilizes the thermal conductivity of a graphite film as a carbonaceous material.
  • these techniques have a problem that the characteristics of carbon-based materials are not fully utilized.
  • the technique described in Patent Document 5 assumes a primary system and a secondary system of the target system, and it is unclear whether the target in the BNCT can be cooled.
  • a cooling mechanism having a coolant flow path is provided at least on either the outside or the inside of the target portion, this cooling mechanism is the same as the conventional one, and sufficient cooling cannot be expected.
  • the present invention has been made to solve the above problems, and a lithium target for BNCT and a lithium target for BNCT that can dramatically improve the removal of heat generated by proton irradiation and the prevention of blistering
  • An object of the present invention is to provide a neutron generation method using a lithium target.
  • a BNCT lithium target according to the present invention includes an anisotropic carbon substrate, a lithium metal film, a cooling metal film, and a cooling channel.
  • the anisotropic carbon substrate is composed of a plurality of single-layer graphene layers in which a plurality of carbon atoms are bonded in a hexagonal lattice. It consists of
  • the lithium metal film is provided on the upper surface of the anisotropic carbon substrate where there is a gap between adjacent single-layer graphene layers.
  • the cooling metal film is provided on the edge of the lower surface of the anisotropic carbon substrate where there is a gap between adjacent single-layer graphene layers.
  • the cooling control unit is provided below the cooling metal film so that the cooling medium contacts the lower surface of the cooling metal film.
  • a lithium target for BNCT generates neutrons by irradiating protons from above the lithium metal film.
  • a neutron generation method using a lithium target for BNCT includes a generation control step of generating neutrons by irradiating protons from above the lithium metal film using the lithium target for BNCT described above; and a cooling control step of cooling the cooling metal film in the cooling control unit.
  • the present invention it is possible to dramatically improve the removal of heat generated by proton irradiation and the prevention of blistering. That is, due to the good thermal conductivity of the graphene of the anisotropic carbon substrate, the heat generated by the irradiation of the protons is rapidly released to the outside along the graphene of the anisotropic carbon substrate. Then, the protons injected into the lithium target from the accelerator stop in the substrate provided with lithium. Here, a large amount of hydrogen atoms are generated in the substrate, and if the substrate is copper, the generated hydrogen atoms destroy the metal lattice of copper, resulting in blistering.
  • the implanted protons change to hydrogen atoms, but slip through the gaps (interlayers) of the single-layer graphene of the anisotropic carbon substrate, Blistering does not occur because it is discharged outside.
  • both heat removal and blistering prevention can be achieved.
  • FIG. 1A is a schematic cross-sectional view (FIG. 1A), and a plan perspective view and a bottom perspective view (FIG. 1B) show an example of a lithium target for BNCT according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a lithium target for BNCT according to an embodiment of the present invention provided with an intermediate metal film.
  • FIG. 2 is a schematic cross-sectional view showing an example of a lithium target for BNCT according to an embodiment of the present invention provided with a cooling spray device.
  • FIG. 5A is a plane photograph (FIG. 5A) and a perspective photograph (FIG. 5B) showing an example of a reference example and an example of a lithium target for BNCT according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing an example of measuring the thermal conductivity of an anisotropic carbon substrate of a lithium target for BNCT according to an embodiment of the present invention;
  • FIG. 5A is a plane photograph (FIG. 5A) and a perspective photograph (FIG. 5B) showing an example of a reference example and an example of a lithium target for BNCT according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing an example of measuring the thermal conductivity of an anisotropic carbon substrate of a lithium target for BNCT according to an embodiment of the present invention;
  • FIG. 1 is a graph of temperature difference between an anisotropic carbon substrate and a heat sink; 1 is a schematic cross-sectional view showing an example of measuring the thermal conductivity of an anisotropic carbon substrate of a lithium target for BNCT according to an embodiment of the present invention; FIG. 1 is a graph of temperature differences between anisotropic carbon substrates;
  • the BNCT lithium target 1 includes an anisotropic carbon substrate 10, a lithium metal film 11, a cooling metal film 12, and a cooling control unit 13. .
  • the anisotropic carbon substrate 10 includes a laminated graphene 10b configured by stacking a plurality of single-layer graphenes 10a in which a plurality of carbon atoms C are bonded in a hexagonal lattice, and a gap g between adjacent single-layer graphenes 10a in the vertical direction. It is configured to be provided along.
  • the gap g between the adjacent single-layer graphenes 10a is provided along the left-right direction or the depth direction, but in the present invention, By standing the laminated graphene 10b in the vertical direction, the gap g between the adjacent monolayer graphenes 10a is provided along the vertical direction, and the gap g is provided as a fine through hole running in the vertical direction.
  • the anisotropic carbon substrate 10 has the same dimension in the left-right direction and the dimension in the depth direction, and is configured, for example, in a disk shape as shown in FIG. 1B.
  • the lithium metal film 11 is provided on the upper surface 10c of the anisotropic carbon substrate 10 where there is a gap g between the adjacent single-layer graphene layers 10a. That is, the lithium metal film 11 is provided so as to cover the gap g on the upper surface 10c of the anisotropic carbon substrate 10. As shown in FIG.
  • the cooling metal film 12 is provided on the end portion 10d1 of the lower surface 10d (bottom surface) of the anisotropic carbon substrate 10 where there is a gap g between the adjacent single-layer graphene layers 10a.
  • the cooling metal film 12 is provided, for example, in a donut shape (annular shape).
  • the cooling control unit 13 is provided below the cooling metal film 12 so that the cooling medium R contacts the lower surface of the cooling metal film 12 .
  • the cooling control unit 13 is configured in, for example, a cooling channel, and cools the cooling metal film 12 by circulating the cooling coolant R in the cooling channel.
  • this cooling channel is configured, for example, in a cylindrical shape corresponding to the shape of the cooling metal film 12, and is partially provided with an inlet through which the cooling medium R flows. , and an outlet through which the cooling medium R flows out is provided in the other portion.
  • the cooling control unit 13 maximizes the heat removal effect in addition to the cooling means such as the cooling channel that allows the cooling medium R to flow along the lower surface 10d of the anisotropic carbon substrate 10 of laminated graphene.
  • the cooling means such as the cooling channel that allows the cooling medium R to flow along the lower surface 10d of the anisotropic carbon substrate 10 of laminated graphene.
  • it may be configured as a cooling spray device, and a cooling means may be used in which the cooling coolant R is atomized and sprayed from the lower surface 10 d of the anisotropic carbon substrate 10 . This makes it possible to utilize the heat of vaporization taken when the cooling medium R evaporates.
  • the BNCT lithium target 1 is provided with a holder 14 for holding the anisotropic carbon substrate 10, the lithium metal film 11, the cooling metal film 12, and the cooling channel 13.
  • the holder 14 holds the anisotropic carbon substrate 10, the lithium metal film 11, the cooling metal film 12, and the cooling channel 13 from the sides.
  • the BNCT lithium target 1 generates neutrons n by being irradiated with protons p (proton beams) from above the lithium metal film 11 .
  • the anisotropic carbon substrate 10 is configured such that the gap g between the adjacent monolayer graphenes 10a is provided along the vertical direction in the laminated graphene 10b.
  • the arrangement of the laminated graphene 10b is completely different from the conventional arrangement.
  • the thermal conductivity of the single-layer graphene 10a is 3000 W/(m ⁇ K), surpassing the thermal conductivity of diamond.
  • the portion where the thermal conductivity of the single-layer graphene 10a is exhibited is usually the property along the surface direction of the single-layer graphene 10a, in other words, the property along the interval g between adjacent single-layer graphene 10a. is.
  • the laminated graphene 10b in which a plurality of single-layer graphenes 10a are laminated has a gas permeation property that allows gas to permeate in the direction along the interval g between the adjacent single-layer graphenes 10a (the direction perpendicular to the plane direction of the single-layer graphene 10a). have a sexuality.
  • the single-layer graphene 10a has a breaking strength of 130 GPa and is a tough substance.
  • the breaking strength of the single-layer graphene 10a is generally a property of the single-layer graphene 10a in the plane direction.
  • the carbon substrate 10 is made anisotropic so that the gap g between the adjacent single-layer graphenes 10a of the laminated graphene 10b is provided along the vertical direction in which the protons p are implanted. .
  • the adjacent single-layer graphene 10 a is not formed below the lithium metal film 11 . Since the gap g is arranged along the vertical direction, the generated heat h is instantaneously diffused downward along the planar direction of the single-layer graphene 10a. That is, due to the special anisotropy of the anisotropic carbon substrate 10, the heat h generated in the lithium metal film 11 can be efficiently and immediately released downward.
  • the cooling metal film 12 is provided at the end portion 10d1 of the lower surface 10d of the anisotropic carbon substrate 10, and the cooling coolant R is brought into contact with the lower surface of the cooling metal film 12 through the cooling channel 13. there is As a result, the generated heat h is instantly cooled by the cooling coolant R. That is, accumulation of heat h can be prevented. As a result, the heat h accumulated in the anisotropic carbon substrate 10 as well as the lithium metal film 11 can be efficiently removed.
  • the lower surface 10d of the anisotropic carbon substrate 10 and the cooling control unit 13 are brought into direct contact with each other, the lower surface 10d of the anisotropic carbon substrate 10 is formed from the monolayer graphene 10a by the manufacturing process of the anisotropic carbon substrate 10 or the like. Very fine unevenness due to the edge of the is generated. The unevenness deteriorates the thermal conductivity between the lower surface 10 d of the anisotropic carbon substrate 10 and the cooling control section 13 and causes heat h to accumulate in the anisotropic carbon substrate 10 .
  • the cooling metal film 12 is provided between the lower surface 10 d of the anisotropic carbon substrate 10 and the cooling control unit 13 , so that the cooling metal film 12 extends from the lower surface 10 d of the anisotropic carbon substrate 10 . It penetrates into the unevenness of the metal film 12 to prevent a decrease in thermal conductivity and facilitates the transfer of heat h to the cooling metal film 12 . Further, the heat generated in the anisotropic carbon substrate 10 is more likely to be generated by bringing the cooling control unit 13 into direct contact with the cooling metal film 12 than by bringing the cooling control unit 13 into direct contact with the lower surface 10 d of the anisotropic carbon substrate 10 . h can be easily transmitted to the cooling control unit 13, and the heat h can be effectively removed.
  • the anisotropic carbon substrate 10 can be cooled in such a manner as not to block the central region of the anisotropic carbon substrate 10 through which the neutrons n pass.
  • the anisotropic carbon substrate 10 can be cooled by contacting the cooling coolant R from the end portion 10d1 of the lower surface 10d of the substrate 10 .
  • the neutron generation method using the lithium target for BNCT generates neutrons n by irradiating protons p from above the lithium metal film 11 using the lithium target 1 for BNCT described above.
  • a generation control step and a cooling control step of cooling the cooling metal film 12 by the cooling control unit 13 are provided.
  • the cooling control process cools the cooling metal film 12 by flowing and circulating the cooling medium R in the cooling channel.
  • the cooling control unit 13 is configured as a cooling spray device, the cooling control process cools the cooling metal film 12 by spraying the cooling medium R toward the cooling metal film 12 in the form of mist. . Even with this configuration, it is possible to dramatically improve the removal of heat h generated by the irradiation of protons p and the prevention of blistering.
  • the durability of the anisotropic carbon substrate 10 itself is enhanced due to the high breaking strength of the single-layer graphene 10a. Therefore, the anisotropic carbon substrate 10 can be used for a long period of time.
  • the BNCT lithium target 1 according to the present invention can dramatically improve the removal of heat h and the prevention of blistering, and is also excellent in durability. It can be used for a long period of time as a BNCT target (neutron generation target) rather than a target.
  • a BNCT target neutral generation target
  • the BNCT target can be configured more compactly, and the distance between the BNCT target and the patient to which the neutrons n are applied can be shortened. This makes it possible to reduce the size of the entire BNCT.
  • the dimensions of the anisotropic carbon substrate 10 are not particularly limited. and the thickness in the vertical direction is preferably in the range of 1 mm to 20 mm. Also, the dimensional ratio of the anisotropic carbon substrate 10 is not particularly limited. , 1 to 200. As a result, the irradiation area of the anisotropic carbon substrate 10 with respect to the protons p can be increased, and the heat generated by the irradiation with the protons p can be rapidly diffused downward. Further, the ratio of the dimension in the depth direction of the upper surface 10c of the anisotropic carbon substrate 10 to the thickness in the vertical direction of the anisotropic carbon substrate 10 is preferably within the range of 1-200. The ratio of the dimension in the depth direction of the upper surface 10c of the anisotropic carbon substrate 10 to the dimension in the horizontal direction of the upper surface 10c of the anisotropic carbon substrate 10 is preferably within the range of 0.5 to 1.5. .
  • the shape of the anisotropic carbon substrate 10 is not particularly limited.
  • the upper surface 10c of the anisotropic carbon substrate 10 preferably has a substantially symmetrical shape such as a circle, a square, and a hexagon.
  • the method for manufacturing the anisotropic carbon substrate 10 is not particularly limited, but for example, chemical vapor deposition (CVD) can be used.
  • CVD chemical vapor deposition
  • the dimension of the lithium metal film 11 is not particularly limited.
  • the dimension in the direction preferably corresponds to the dimension in the depth direction of the upper surface 10 c of the anisotropic carbon substrate 10 .
  • the thickness of the lithium metal film 11 in the vertical direction is preferably in the range of 1 ⁇ m to 500 ⁇ m, more preferably in the range of 50 ⁇ m to 400 ⁇ m.
  • the type of lithium forming the lithium metal film 11 is not particularly limited, but examples include lithium and lithium alloys.
  • the method of arranging the lithium metal film 11 is not particularly limited, but for example, a vapor deposition method can be used.
  • the shape of the cooling metal film 12 is not particularly limited, but for example, it may be a donut shape, a C shape, or a square shape depending on the shape of the lower surface 10d of the anisotropic carbon substrate 10. , or in a U-shape.
  • the thickness of the cooling metal film 12 in the vertical direction is preferably in the range of 1 ⁇ m to 100 ⁇ m, more preferably in the range of 10 ⁇ m to 80 ⁇ m.
  • the heat h generated in the anisotropic carbon substrate 10 can be transferred to the cooling control unit 13 through the cooling metal film 12, and the cooling of the anisotropic carbon substrate 10 can be accelerated.
  • the cooling metal film 12 since the cooling metal film 12 only needs to enter the unevenness of the lower surface 10d of the anisotropic carbon substrate 10, there is no problem even if the cooling metal film 12 is thin in the vertical direction.
  • cooling metal film 12 Although there is no particular limitation on the type of metal forming the cooling metal film 12, for example, copper and copper alloys with high thermal conductivity can be used.
  • the cooling metal film 12 can be provided so as to enter the irregularities of the lower surface 10 d of the anisotropic carbon substrate 10 .
  • the shape of the cooling channel of the cooling control unit 13 is not particularly limited. can be made to correspond to
  • the type of the cooling medium R flowing through the cooling flow path of the cooling control unit 13 is not particularly limited, but examples include liquid such as cooling water and gas with high thermal conductivity such as helium gas.
  • the cooling control unit 13 can mainly employ a liquid such as cooling water as the cooling medium R, for example.
  • the configuration of the inlet and outlet of the cooling flow path of the cooling control unit 13 is not particularly limited. For example, as shown in FIGS. I don't mind.
  • the structure of the holder 14 is not particularly limited. can be mentioned.
  • the cooling control unit 13 is provided on part of the inner surface of the frame.
  • the holder 14 can be treated as a cartridge that can be attached to and detached from the target installation portion of the BNCT.
  • the entire holder 14 is configured as a replaceable cartridge, and when the cartridge containing the anisotropic carbon substrate 10 is radioactively contaminated, the old cartridge can be replaced with a new cartridge to prevent radioactive contamination.
  • BNCT can continue to be used in this state.
  • the material that constitutes the holder 14 for example, a metal or a carbon material with high thermal conductivity can be used.
  • the heat h of the anisotropic carbon substrate 10 can be diffused to the outside from the holder 14 in contact with the outer surface of the anisotropic carbon substrate 10 .
  • a metal film is provided on the outer surface of the anisotropic carbon substrate 10, and the metallic holder 14 is brought into contact with the metal film, thereby promoting the diffusion of the heat h of the anisotropic carbon substrate 10.
  • the lithium metal film 11 is provided directly above the upper surface 10c of the anisotropic carbon substrate 10. However, as shown in FIG. An intermediate metal film 15 may be provided between them.
  • the metal forming the intermediate metal film 15 is not particularly limited, but examples include a hydrogen storage metal (for example, palladium) or an alloy of hydrogen storage metals. This makes it easier for protons p to be captured by the intermediate metal film 15 , thereby preventing separation between the anisotropic carbon substrate 10 and the lithium metal film 11 .
  • a hydrogen storage metal for example, palladium
  • an alloy of hydrogen storage metals This makes it easier for protons p to be captured by the intermediate metal film 15 , thereby preventing separation between the anisotropic carbon substrate 10 and the lithium metal film 11 .
  • the metal forming the intermediate metal film 15 can be a metal with high thermal conductivity (eg, copper) or an alloy of metals with high thermal conductivity. As a result, even if heat h is generated in the lithium metal film 11 by the irradiation of the protons p, it is transmitted to the anisotropic carbon substrate 10 via the intermediate metal film 15 and diffused downward. can be removed.
  • a metal with high thermal conductivity eg, copper
  • an alloy of metals with high thermal conductivity e.g, copper
  • the thickness of the intermediate metal film 15 in the vertical direction is not particularly limited. This enables capture of protons p and diffusion of heat h without inhibiting the generation of neutrons n by the protons p irradiated to the lithium metal film 11 .
  • the method of arranging the intermediate metal film 15 is not particularly limited, but for example, a vapor deposition method can be used.
  • the intermediate metal film 15 is a laminate of a first metal film of a hydrogen storage metal or a hydrogen storage metal alloy and a second metal film of a metal with high thermal conductivity or an alloy of metals with high thermal conductivity.
  • the first metal film may be in contact with the lithium metal film 11 and the second metal film may be in contact with the upper surface 10 c of the anisotropic carbon substrate 10 .
  • the intermediate metal film 15 can be provided with both functions of trapping protons p and diffusing heat h.
  • a mixture of a hydrogen storage metal or a hydrogen storage metal alloy and a metal with high thermal conductivity or a metal alloy with high thermal conductivity may be used as the metal forming the intermediate metal film 15 . do not have.
  • the cooling flow path is configured as the cooling control unit 13, but as shown in FIG. 4, a cooling spray device may be configured.
  • the cooling metal film 12 is provided on the entire lower surface 10d (bottom surface) of the anisotropic carbon substrate 10 where there is a gap g between the adjacent single-layer graphene layers 10a. It is provided below the cooling metal film 12 and sprays the cooling medium R toward the cooling metal film 12 in the form of mist.
  • the anisotropic carbon substrate 10 can be significantly cooled by utilizing the heat of vaporization of the mist.
  • a layered graphene structure is formed by stacking a plurality of single-layer graphene layers by a chemical vapor deposition method so that the spacing between adjacent single-layer graphene layers is provided along the vertical direction.
  • an anisotropic carbon substrate 10 was prepared.
  • the lateral dimension of the upper surface 10c of the anisotropic carbon substrate 10 was 10 cm, and the thickness of the anisotropic carbon substrate 10 in the vertical direction was 20 mm.
  • the dimension ratio of the lateral dimension of the upper surface 10c of the anisotropic carbon substrate 10 to the thickness of the anisotropic carbon substrate 10 in the vertical direction was 5. This was used as a reference example.
  • a lithium metal film 11 having a thickness of 200 ⁇ m was formed on the upper surface of the anisotropic carbon substrate 10 where there was a gap between adjacent single-layer graphene layers by vapor deposition. This was used as an example.
  • the lithium metal film 11 of this example was irradiated with protons p from above, and the heat generated by the irradiation of the protons p diffused downward along the gap g between the adjacent single-layer graphene layers 10a. and heat removal proceeded smoothly.
  • the irradiated protons p escaped downward along the gap g between the adjacent single-layer graphene layers 10a, and blistering did not occur.
  • a cooling metal film 12 below the anisotropic carbon substrate 10 and providing a cooling channel 13 for contacting the cooling medium R with this cooling metal film 12 heat can be removed more efficiently. is possible.
  • a ceramic heater 60 is prepared as a heat source.
  • the upper surface 10c of the anisotropic carbon substrate 10 having a gap g between the adjacent single-layer graphene layers 10a is placed on the other end surface of the ceramic heater 60 via the thermally conductive grease G.
  • the upper surface of a heat sink 62 for heat dissipation is installed on the lower surface 10 d of the anisotropic carbon substrate 10
  • the second temperature measurement sensor 63 is attached to the lower surface of the heat sink 62 via thermal conductive grease G. installed.
  • the smaller the temperature difference dT ( T1 ⁇ T2) between the temperature T1 measured by the first temperature measurement sensor 61 and the temperature T2 measured by the second temperature measurement sensor 63, the more the anisotropic carbon substrate 10 and the heat sink existing therebetween. It means that the thermal conductivity of 62 is excellent.
  • FIG. 7 A graph of the temperature difference between the anisotropic carbon substrate 10 and the heat sink 62 is shown in FIG. FIG. 7 also shows the power status of the ceramic heater 60 .
  • the temperature difference dT was 16.7 degrees, indicating that the temperature difference dT was small and the thermal conductivity between the anisotropic carbon substrate 10 and the heat sink 62 was excellent.
  • the temperature difference dT was measured using an iron material of the same size instead of the anisotropic carbon substrate 10, the temperature difference dT was 30 degrees or more.
  • the heat sink 62 was removed and the thermal conductivity of the anisotropic carbon substrate 10 alone was measured.
  • the first temperature measurement sensor 61 is installed on one end surface of the ceramic heater 60 via the thermally conductive grease G, and then the ceramic heater is mounted via the thermally conductive grease G.
  • the upper surface 10c of the anisotropic carbon substrate 10 was placed on the other end face of the anisotropic carbon substrate 10, and the second temperature measurement sensor 63 was placed on the lower surface 10d of the anisotropic carbon substrate 10 with thermal conductive grease G interposed therebetween.
  • FIG. 9 shows a graph of the temperature difference between the anisotropic carbon substrates 10.
  • FIG. 9 also shows the power status of the ceramic heater 60 .
  • the temperature difference dT was 13.2 degrees as shown in FIG.
  • the temperature difference dT was 30 degrees or more. From this, it was found that the thermal conductivity of the anisotropic carbon substrate 10 is superior to that of metal. From these results, it is considered that the lithium target 1 for BNCT of the present invention can dramatically improve the removal of heat h generated by the irradiation of protons p and the prevention of blistering.
  • the lithium target for BNCT and the method for generating neutrons using the lithium target for BNCT according to the present invention are useful for reducing the energy and miniaturizing the BNCT. It is effective as a lithium target for BNCT and a neutron generation method using the lithium target for BNCT, which can dramatically improve ring prevention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Particle Accelerators (AREA)

Abstract

【解決手段】異方性炭素基板10は、複数の炭素原子Cが六角形格子状に結合した単層グラフェン10aを複数積層させることで構成した積層グラフェン10bを、隣り合う単層グラフェン10aの間隔gが上下方向に沿って設けられるように構成している。リチウム金属膜11は、異方性炭素基板10のうち、隣り合う単層グラフェン10aの間隔gが存在する上面10cに設けられる。冷却用金属膜12は、異方性炭素基板10のうち、隣り合う単層グラフェン10aの間隔gが存在する下面10dの端部10d1に設けられる。冷却制御部13は、冷却媒体が冷却用金属膜12の下面に接触するように、冷却用金属膜12の下方に設けられる。BNCT用リチウムターゲット1は、陽子pが、リチウム金属膜11の上方から照射されることで、中性子nを発生させる。

Description

BNCT用リチウムターゲット及びBNCT用リチウムターゲットを用いた中性子発生方法
 本発明は、BNCT用リチウムターゲット及びBNCT用リチウムターゲットを用いた中性子発生方法に関する。
 今日よく知られているように、加速器を用いたホウ素中性子捕獲療法(Boron Neutron Capture Therapy)(以下、BNCTと称する)に使用される中性子源には、Be(p,n)B反応、Li(p,n)Be反応、H(H,n)He反応、H(H,n)He反応などの利用が一般的には想定されている。
 この中でも、Be(p,n)B反応では、ターゲットであるベリリウム(Be)が固体金属であり、且つ、ベリリウムの融点も、1278℃と非常に高く安定であることから取り扱いやすく、よく利用されている。
 しかし、このBe(p,n)B反応が利用される場合、BNCTに必要な中性子量を発生させるためには、陽子の加速エネルギーを30MeVと高くする必要があり、それに伴い発生する中性子エネルギーも高くなる。このために、高い中性子エネルギーを、BNCTで要求される熱エネルギー領域まで減速する必要があり、大きな減速材を用意する必要がある。そのため、BNCTでは、低い中性子エネルギーを効率的に発生する他の核反応の利用が求められている。
 ここで、Li(p,n)Be反応では、陽子の加速エネルギーが、Be(p,n)B反応に比べて2.5MeVと低く設定されることから、Be(p,n)B反応での陽子の加速エネルギーに比べて1桁低く、発生する中性子のエネルギーもBeターゲットに比較して著しく低いことから、減速材も薄くて済むという利点がある。一方、H(H,n)He反応やH(H,n)He反応では、重水素ガスやトリチウムガスを吸蔵した金属ターゲットが必要となる。トリチウムは取り扱いが非常に難しい放射性物質であり、ターゲット製造に困難さが付きまとい、実用性が乏しいという課題がある。そのため、現在、BNCTでは、Li(p,n)Be反応の利用が注目されている。
 ところが、Li(p,n)Be反応に要する金属リチウム(Li)ターゲットを中性子発生用に使用するためには、いくつかの課題を克服しなければならない。先ず、第一に、金属リチウムは、空気中の酸素や水分と非常によく反応し易く、酸化リチウム又は水酸化リチウムに変わってしまい粉末に変わるため、金属リチウムの取り扱いには注意が必要である。第二に、金属リチウムの融点は179℃と大変低く、Li(p,n)Be反応を生じさせるため、陽子線(陽子ビーム)をリチウムに照射する際に発熱し、金属リチウムのターゲットを効率的に冷却する必要があるという課題がある。
 これらのリチウムターゲットの課題を解決するために、これまでにいくつかの方法が考案されている。例えば、非特許文献1(株式会社CICS,“管理番号24-105 再発がん治療のための新素材ターゲット技術を用いた加速器型中性子捕捉療法システムの開発”,[online],日本医療研究開発機構委託 医工連携イノベーション推進事業,[2021年12年27日検索],インターネット <URL:https://www.med-device.jp/development/org/24-105.html>)には、国立がん研究センターの中央病院で使用されたリチウムターゲットが開示されている。このリチウムターゲットは、熱伝導度の高いコーン形状の金属材料の表面にリチウムを薄く蒸着させることで、コーン型リチウムターゲットとして構成している。このコーン型リチウムターゲットでは、陽子が当たる面積を大きくすることで、陽子の照射により発生する熱によるリチウムの温度上昇を防ぐことが出来るとしている。
 又、非特許文献2(B Bayanov et al, “Neutron producing target for accelerator based neutron capture therapy”,Journal of Physics: Conference Series 41 (2006) 460-465)には、超高純度の銅の基板の上に水素吸蔵金属のパラジウムを蒸着し、その蒸着したパラジウムの上にリチウムを蒸着することで、作成したリチウムターゲットが開示されている。このリチウムターゲットでは、裏面に冷却水を接触させることで、リチウムの温度上昇を防止している。更に、加速器から打ち込まれた陽子、つまり、水素原子をパラジウムで受けることで、基板表面の金属の結晶格子の破損(以下、ブリスタリングと呼ばれる)による、基板からのリチウムの剥離を防止している。
 又、特開2021-243640号公報(特許文献1)には、陽子を衝突させて中性子を発生させるためのターゲットがリチウム材料及び非金属材料を複合してなる複合型ターゲットが開示されている。又、特開2013-054889号公報(特許文献2)には、陽子を衝突させて中性子を発生させるためのターゲットが、ベリリウム材料及びリチウム材料のいずれか一つの材料と結晶配向性炭素材料を重ね合わせて成る複合体である複合型ターゲットが開示されている。又、特開2013-206726号公報(特許文献3)には、陽子を衝突させて中性子を発生させるためのターゲット部分が、ベリリウム材料、リチウム材料及び炭素系材料を複合して成り、該ターゲット部分の表面に真空シールを施すと共に、該ターゲット部分の少なくとも外側または内側のどちらかに冷媒流路を有する冷却機構を設ける複合型ターゲットが開示されている。この炭素系材料は、少なくとも等方性黒鉛材料及び結晶配向性炭素材料のいずれか一つの材料を含有する炭素系材料である。このような構成により、低エネルギーの陽子を用いて、BNCTで患者や医師などに有害で、さらには設備を放射化してしまう速中性子が低減された低エネルギーの中性子を発生可能となるとしている。又、ターゲットで発生する熱を容易に除熱することが可能となり、この効率的な除熱によって従来固体ターゲットとしての利用が困難であった低融点のリチウム(融点:約180℃)でも固体ターゲットとしての利用が可能となること、ターゲット材料の水素脆化を防止できること、リチウム材料と非金属材料の接着界面での剥離を防止できること、等の効果が得られるとしている。
 又、国際公開第2017/183693号(特許文献4)には、少なくとも、ベリリウム材料又はリチウム材料から構成される金属膜と、グラファイト膜から構成される基板と、を有し、加速された陽子を金属膜及び基板の面に衝突させて中性子を発生させるためのターゲットが開示されている。このターゲットでは、グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、グラファイト膜の厚さは、1μm以上、100μm以下である。これにより、陽子ビームの照射に対し十分な耐久性、耐熱性を有し、放射化の程度を小さくし得るという効果を奏し、更には、従来のターゲットに比べて非常に薄くする事が可能であるので、より低い加速エネルギーの陽子ビームによって、ガン治療などの医療用途として最適な低エネルギーの熱・熱外中性を発生させることが出来るとしている。
 又、特開2002-148400号公報(特許文献5)には、ターゲットシステムの1次系システム(液体金属ターゲットシステム)及び2次系システム(液体金属ターゲットの冷却システム)からなるターゲットキャプセルが開示されている。このターゲットキャプセルの2次系システムは、ミスト(水)とガスによる冷却方式を採用することが出来るとしている。又、特開2013-206726号公報(特許文献6)には、陽子を衝突させて中性子を発生させるためのターゲット部分が、ベリリウム材料、リチウム材料、及び炭素系材料を複合して成り、該ターゲット部分の表面に真空シールを施すと共に、該ターゲット部分の少なくとも外側または内側のどちらかに冷媒流路を有する冷却機構を設ける複合型ターゲットが開示されている。これにより、従来タイプのターゲットよりも熱安定性が高くターゲット材料の放射化を低減することが可能であるとしている。
特開2021-243640号公報 特開2013-054889号公報 特開2013-206726号公報 国際公開第2017/183693号 特開2002-148400号公報 特開2013-206726号公報
株式会社CICS,"管理番号24-105 再発がん治療のための新素材ターゲット技術を用いた加速器型中性子捕捉療法システムの開発",[online],日本医療研究開発機構委託 医工連携イノベーション推進事業,[2021年12年27日検索],インターネット <URL:https://www.med-device.jp/development/org/24-105.html> B Bayanov et al, "Neutron producing target for accelerator based neutron capture therapy",Journal of Physics: Conference Series 41 (2006) 460-465
 近年、BNCTは、一般的な病院や病棟に設置可能となるように、Li(p,n)Be反応の利用によって、低エネルギー化、小型化がより一層進められており、優れた新規リチウムターゲットの探索や開発が盛んに行われている。
 非特許文献1に記載の技術では、製作の難しいコーン形状の金属上にリチウムを蒸着する必要があり、特殊性が高く、汎用性に乏しいという課題がある。非特許文献2に記載の技術では、水素吸蔵金属のパラジウムが陽子を吸蔵することで、ブリスタリングを防止しているが、パラジウムが陽子を吸蔵しきれなかった場合に、ブリスタリングを確実に防止することが出来ないという課題がある。
 又、特許文献1-3に記載の技術では、リチウム材料に加えて、非金属材料としての炭素系材料を採用し、炭素系材料の結晶配向性炭素及び等方性黒鉛材料を組み合わせるようにしている。特許文献4に記載の技術では、炭素系材料としてのグラファイト膜の熱伝導度を活用している。しかしながら、これらの技術では、炭素系材料の特性を十分に活用しきれていないという課題がある。又、特許文献5に記載の技術では、ターゲットシステムの1次系システム及び2次系システムを想定しており、BNCTでのターゲットを冷却することが出来るかどうか不明である。特許文献6に記載の技術では、ターゲット部分の少なくとも外側または内側のどちらかに冷媒流路を有する冷却機構を設けるものの、この冷却機構は従来と同様であり、十分な冷却を期待出来ないという課題がある。
 そこで、本発明は、前記課題を解決するためになされたものであり、陽子の照射により発生する熱の除去とブリスタリングの防止を飛躍的に向上させることが可能なBNCT用リチウムターゲット及びBNCT用リチウムターゲットを用いた中性子発生方法を提供することを目的とする。
 本発明に係るBNCT用リチウムターゲットは、異方性炭素基板と、リチウム金属膜と、冷却用金属膜と、冷却用流路と、を備える。異方性炭素基板は、複数の炭素原子が六角形格子状に結合した単層グラフェンを複数積層させることで構成した積層グラフェンを、隣り合う単層グラフェンの間隔が上下方向に沿って設けられるように構成している。リチウム金属膜は、前記異方性炭素基板のうち、隣り合う単層グラフェンの間隔が存在する上面に設けられる。冷却用金属膜は、前記異方性炭素基板のうち、隣り合う単層グラフェンの間隔が存在する下面の端部に設けられる。冷却制御部は、冷却媒体が前記冷却用金属膜の下面に接触するように、前記冷却用金属膜の下方に設けられる。BNCT用リチウムターゲットは、陽子が、前記リチウム金属膜の上方から照射されることで、中性子を発生させる。
 本発明に係る及びBNCT用リチウムターゲットを用いた中性子発生方法は、上述のBNCT用リチウムターゲットを用いて、陽子を前記リチウム金属膜の上方から照射することで、中性子を発生させる発生制御工程と、前記冷却制御部で前記冷却用金属膜を冷却する冷却制御工程と、を備える。
 本発明では、陽子の照射により発生する熱の除去とブリスタリングの防止を飛躍的に向上させることが可能となる。即ち、異方性炭素基板のグラフェンの熱伝導率の良さにより、陽子の照射により発生した熱が異方性炭素基板のグラフェンに沿って外部に迅速に放出される。そして、加速器よりターゲットのリチウムに打ち込まれた陽子は、リチウムが設けられた基板中で停止する。ここで、大量の水素原子が基板内に発生するが、基板が銅の場合、発生した水素原子が銅の金属格子を破壊して、ブリスタリングが生じる。一方、基板が本発明の異方性炭素基板の場合、打ち込まれた陽子は水素原子に変わるが、異方性炭素基板の単層グラフェンの間隔(層間)をすり抜けて、異方性炭素基板の外へ排出されるため、ブリスタリングが発生しない。このように、異方性炭素基板の特性を活用することで、熱の除去とブリスタリングの防止との両方を兼ね備えることが出来るのである。
本発明の実施形態に係るBNCT用リチウムターゲットの一例を示す概略断面図(図1A)と、平面視斜視図と底面視斜視図(図1B)と、である。 本発明の実施形態に係るBNCT用リチウムターゲットにおける陽子の照射時の熱の伝わり方の一例を示す概略断面図(図2A)と、中性子と陽子の通過の一例を示す概略断面図(図2B)と、である。 本発明の実施形態に係るBNCT用リチウムターゲットに中間金属膜を設けた場合の一例を示す概略断面図である。 本発明の実施形態に係るBNCT用リチウムターゲットに冷却用噴霧装置を設けた場合の一例を示す概略断面図である。 本発明の実施形態に係るBNCT用リチウムターゲットの参考例と実施例の一例を示す平面写真(図5A)と、斜視写真(図5B)と、である。 本発明の実施形態に係るBNCT用リチウムターゲットの異方性炭素基板の熱伝導率を測定する場合の一例を示す概略断面図である。 異方性炭素基板とヒートシンクの間の温度差のグラフである。 本発明の実施形態に係るBNCT用リチウムターゲットの異方性炭素基板の熱伝導率を測定する場合の一例を示す概略断面図である。 異方性炭素基板の間の温度差のグラフである。
 以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 本発明に係るBNCT用リチウムターゲット1は、図1A、図1Bに示すように、異方性炭素基板10と、リチウム金属膜11と、冷却用金属膜12と、冷却制御部13と、を備える。
 異方性炭素基板10は、複数の炭素原子Cが六角形格子状に結合した単層グラフェン10aを複数積層させることで構成した積層グラフェン10bを、隣り合う単層グラフェン10aの間隔gが上下方向に沿って設けられるように構成している。つまり、従来であれば、積層グラフェン10bの最上の単層グラフェン10aを上面にすることで、隣り合う単層グラフェン10aの間隔gが左右方向又は奥行方向に沿って設けられるが、本発明では、積層グラフェン10bを垂直方向に立てることで、隣り合う単層グラフェン10aの間隔gが上下方向に沿って設けられ、この間隔gを上下方向に走る微細な貫通孔として設置させるのである。尚、ここで、異方性炭素基板10は、左右方向の寸法及び奥行方向の寸法が同じであり、図1Bに示すように、例えば、円盤状に構成されている。
 又、リチウム金属膜11は、異方性炭素基板10のうち、隣り合う単層グラフェン10aの間隔gが存在する上面10cに設けられる。つまり、異方性炭素基板10の上面10cの間隔gを覆うように、リチウム金属膜11が設けられている。
 又、冷却用金属膜12は、異方性炭素基板10のうち、隣り合う単層グラフェン10aの間隔gが存在する下面10d(底面)の端部10d1に設けられる。ここで、冷却用金属膜12は、図1Bに示すように、例えば、ドーナツ状(円環状)に設けられている。
 又、冷却制御部13は、冷却媒体Rが冷却用金属膜12の下面に接触するように、冷却用金属膜12の下方に設けられる。ここで、冷却制御部13は、例えば、冷却用流路に構成されており、冷却用流路に冷却冷媒Rを循環させることで、冷却用金属膜12を冷却する。この冷却用流路は、図1Bに示すように、例えば、冷却用金属膜12の形状に対応して、円筒状に構成されており、一部に冷却媒体Rが流入される入口が設けられ、他部に冷却媒体Rが流出される出口が設けられている。
 さらに、冷却制御部13は、冷却用流路のように、冷却媒体Rを、積層グラフェンの異方性炭素基板10の下面10dに沿って流す冷却手段の他に、除熱効果を最大限に上げるため、冷却用噴霧装置として構成して、冷却冷媒Rを霧状にして、異方性炭素基板10の下面10dから吹き付ける冷却手段にしてもよい。これにより、冷却媒体Rが蒸発する際に奪う気化熱を利用することが出来る。
 又、BNCT用リチウムターゲット1には、異方性炭素基板10と、リチウム金属膜11と、冷却用金属膜12と、冷却用流路13と、を保持するためのホルダー14が設けられる。ホルダー14は、異方性炭素基板10と、リチウム金属膜11と、冷却用金属膜12と、冷却用流路13と、を側面から把持している。
 そして、BNCT用リチウムターゲット1は、図2Aに示すように、陽子p(陽子線)が、リチウム金属膜11の上方から照射されることで、中性子nを発生させる。
 これにより、陽子pの照射により発生する熱hが除去され、打ち込まれた陽子pから変わった水素原子(水素ガス)が溜まることなく、外部に排出され、ブリスタリングの防止を飛躍的に向上させることが可能となる。即ち、本発明では、異方性炭素基板10を、積層グラフェン10bにおいて、隣り合う単層グラフェン10aの間隔gが上下方向に沿って設けられるように構成している。この積層グラフェン10bの配置が従来の配置と全く異なる。
 ここで、単層グラフェン10aの熱伝導率は、3000W/(m・K)であり、ダイアモンドの熱伝導率を凌いでいる。この単層グラフェン10aの熱伝導率が発揮される部分は、通常、単層グラフェン10aの面方向に沿った特性であり、言い換えると、隣り合う単層グラフェン10aの間隔gに沿った方向の特性である。
 又、単層グラフェン10aを複数積層させた積層グラフェン10bは、隣り合う単層グラフェン10aの間隔gに沿った方向(単層グラフェン10aの面方向と直角な方向)に、ガスを透過するガス透過性を有している。
 更に、単層グラフェン10aの破壊強度は、130GPaであり、強靭な物質である。ここで、単層グラフェン10aの破壊強度は、通常、単層グラフェン10aの面方向に対する特性である。
 そこで、本発明では、積層グラフェン10bのうち、隣り合う単層グラフェン10aの間隔gを、陽子pが打ち込まれる上下方向に沿って設けられるように、炭素基板10に異方性を持たせている。
 これにより、先ず、加速器から陽子pがリチウム金属膜11に照射されることで、リチウム金属膜11に熱hが発生したとしても、リチウム金属膜11の下方には、隣り合う単層グラフェン10aの間隔gが上下方向に沿って配置されていることから、発生した熱hが、単層グラフェン10aの面方向に沿って瞬時に下方に拡散される。つまり、異方性炭素基板10の特殊な異方性により、リチウム金属膜11で発生する熱hを効率よく直ちに下方に逃がすことが出来るのである。
 ここで、冷却用金属膜12は、異方性炭素基板10の下面10dの端部10d1に設けられ、冷却冷媒Rは、冷却用流路13により、冷却用金属膜12の下面に接触している。このことから、発生した熱hは、冷却冷媒Rによって瞬時に冷却される。つまり、熱hの蓄積を防止することが出来る。これにより、リチウム金属膜11はもちろん、異方性炭素基板10に蓄積する熱hを効率的に除去することが出来る。
 特に、異方性炭素基板10の下面10dと冷却制御部13とを直接接触させる場合、異方性炭素基板10の下面10dは、異方性炭素基板10の製造工程等により、単層グラフェン10aの端部に起因する非常に細かい凹凸が生じる。この凹凸は、異方性炭素基板10の下面10dと冷却制御部13との間の熱伝導性を悪化させ、異方性炭素基板10への熱hの蓄積の原因になる。そこで、本発明では、異方性炭素基板10の下面10dと冷却制御部13との間に、冷却用金属膜12を設けることで、冷却用金属膜12が異方性炭素基板10の下面10dの凹凸に入り込んで接触し、熱伝導性の低下を防止し、熱hが冷却用金属膜12へ伝達されるのを促進する。又、冷却制御部13を異方性炭素基板10の下面10dに直接接触させるよりも、冷却制御部13を冷却用金属膜12に直接接触させる方が、異方性炭素基板10に発生した熱hを冷却制御部13に伝え易くなり、熱hの除去を効果的に行える。
 尚、冷却用金属膜12を異方性炭素基板10の下面10dの端部10d1に設けることで、中性子nが通過する異方性炭素基板10の中央領域を阻害しない形態で、異方性炭素基板10の下面10dの端部10d1から冷却冷媒Rを接触させ、異方性炭素基板10を冷却することが出来る。
 又、本発明に係る及びBNCT用リチウムターゲットを用いた中性子発生方法は、上述のBNCT用リチウムターゲット1を用いて、陽子pをリチウム金属膜11の上方から照射することで、中性子nを発生させる発生制御工程と、冷却制御部13で冷却用金属膜12を冷却する冷却制御工程と、を備える。冷却制御部13が冷却用流路に構成される場合、冷却制御工程は、冷却媒体Rを冷却用流路に流して循環することで、冷却用金属膜12を冷却する。又、冷却制御部13が冷却用噴霧装置に構成される場合、冷却制御工程は、冷却媒体Rを冷却用金属膜12に向けて霧状に噴霧することで、冷却用金属膜12を冷却する。このように構成しても、陽子pの照射により発生する熱hの除去とブリスタリングの防止を飛躍的に向上させることが可能となる。
 ここで、リチウム金属膜11において、Li(p,n)Be反応が適切に行われずに、陽子pが、異方性炭素基板10に打ち込まれた場合、隣り合う単層グラフェン10aの間隔gの配置により、打ち込まれた陽子pが、隣り合う単層グラフェン10aの間隔gに沿って下方に抜けていくため、陽子p(水素原子)が異方性炭素基板10に残留することが無い。つまり、陽子pが基板に残留することで発生するブリスタリング(水素脆化)を効果的に防止することが出来るのである。
 更に、単層グラフェン10aの破壊強度の高さにより、異方性炭素基板10自体の耐久性を高める。そのため、異方性炭素基板10を長期間利用することが出来るのである。
 このように、本発明に係るBNCT用リチウムターゲット1は、熱hの除去とブリスタリングの防止とを飛躍的に向上させることが可能であり、耐久性にも優れていることから、従来のリチウムターゲットよりも、BNCT用ターゲット(中性子発生ターゲット)として長期間使用することが可能となる。又、BNCT用ターゲットの構造自体が単純であるため、BNCT用ターゲットを、よりコンパクトに構成することが可能となり、BNCT用ターゲットと、中性子nを当てる患者との距離を短くすることが出来る。これにより、BNCT全体の小型化を実現することが出来るのである。
 ここで、異方性炭素基板10の寸法に特に限定は無いが、例えば、上面10cの左右方向の寸法は、1cm~20cmの範囲内であり、上面10cの奥行方向の寸法は、1cm~20cmの範囲内であり、上下方向の厚みは、1mm~20mmの範囲内であると好ましい。又、異方性炭素基板10の寸法比に特に限定は無いが、例えば、異方性炭素基板10の上下方向の厚みに対する異方性炭素基板10の上面10cの左右方向の寸法の寸法比は、1~200の範囲内であると好ましい。これにより、陽子pに対する異方性炭素基板10の照射面積を増やすとともに、陽子pの照射による発生する熱を迅速に下方に拡散させることが出来る。更に、異方性炭素基板10の上下方向の厚みに対する異方性炭素基板10の上面10cの奥行方向の寸法の寸法比は、1~200の範囲内であると好ましい。そして、異方性炭素基板10の上面10cの左右方向の寸法に対する異方性炭素基板10の上面10cの奥行方向の寸法の寸法比は、0.5~1.5の範囲内であると好ましい。
 又、異方性炭素基板10の形状に特に限定は無いが、例えば、円盤状の他に、直方体状にしても良いし、多角体状にしても構わない。又、異方性炭素基板10の上面10cは、略対象形状であると好ましく、円形や正方形、六角形等を挙げることが出来る。
 又、異方性炭素基板10の製造方法に特に限定は無いが、例えば、化学気相堆積法(Chemical Vapor Deposition、CVD)を挙げることが出来る。
 又、リチウム金属膜11の寸法に特に限定は無いが、例えば、上面の左右方向の寸法は、異方性炭素基板10の上面10cの左右方向の寸法に対応し(一致し)、上面の奥行方向の寸法は、異方性炭素基板10の上面10cの奥行方向の寸法に対応すると好ましい。又、リチウム金属膜11の上下方向の厚みは、1μm~500μmの範囲内であると好ましく、50μm~400μmの範囲内であると更に好ましい。これにより、陽子pの照射による中性子nの発生を確実にすることが出来る。
 又、リチウム金属膜11を構成するリチウムの種類に特に限定は無いが、例えば、リチウムやリチウム合金等を挙げることが出来る。
 又、リチウム金属膜11の配置方法に特に限定は無いが、例えば、蒸着法を挙げることが出来る。
 又、冷却用金属膜12の形状に特に限定は無いが、例えば、異方性炭素基板10の下面10dの形状に応じて、ドーナツ状の他に、Cの字状にしたり、ロの字状にしたり、コの字状にしたりしても構わない。
 又、冷却用金属膜12の上下方向の厚みに特に限定は無いが、例えば、1μm~100μmの範囲内であると好ましく、10μm~80μmの範囲内であると更に好ましい。これにより、異方性炭素基板10に発生した熱hを冷却用金属膜12を介して冷却制御部13に伝えて、異方性炭素基板10の冷却を促進することが出来る。特に、冷却用金属膜12は、異方性炭素基板10の下面10dの凹凸に入り込ませるだけで良いので、冷却用金属膜12の上下方向の厚みは薄くても問題は無い。
 又、冷却用金属膜12を構成する金属の種類に特に限定は無いが、例えば、熱伝導率が高い銅や銅合金等を挙げることが出来る。
 又、冷却用金属膜12の配置方法に特に限定は無いが、例えば、蒸着法を挙げることが出来る。これにより、冷却用金属膜12を異方性炭素基板10の下面10dの凹凸に入り込ませて設けることが出来る。
 又、冷却制御部13の冷却用流路の形状に特に限定は無いが、例えば、冷却用金属膜12の下面の形状に対応した円筒状でも良いし、冷却用金属膜12の下面の一部に対応させても良い。
 又、冷却制御部13の冷却用流路に流れる冷却媒体Rの種類に特に限定は無いが、例えば、冷却水等の液体やヘリウムガス等の熱伝導率の高い気体を挙げることが出来る。ここで、冷却制御部13は、冷却用噴霧装置の場合では、例えば、冷却媒体Rとして、主に、冷却水等の液体を採用することが出来る。
 又、冷却制御部13の冷却用流路の入口と出口の構成に特に限定は無いが、例えば、図1A、図1Bに示すように、入口と出口が近接しても良いし、離れていても構わない。
 又、ホルダー14の構成に特に限定は無いが、例えば、異方性炭素基板10と、リチウム金属膜11と、冷却用金属膜12と、冷却制御部13と、を側面から把持する枠体を挙げることが出来る。冷却制御部13は、枠体の内側面の一部に設けられる。ホルダー14を枠体として構成することで、例えば、当該ホルダー14は、BNCTのターゲット設置部に着脱可能とするカートリッジとして取り扱われる。これにより、ホルダー14の全体を交換可能なカートリッジとして構成し、異方性炭素基板10を含むカートリッジが放射能汚染された場合に、古いカートリッジから新しいカートリッジに交換することで、放射能汚染の無い状態でBNCTを継続して使用することが出来る。
 又、ホルダー14を構成する素材に特に限定は無いが、例えば、熱伝導率が高い金属や炭素素材等を挙げることが出来る。これにより、異方性炭素基板10の外側面に接触するホルダー14から異方性炭素基板10の熱hを外部に拡散させることが出来る。更に、異方性炭素基板10の外側面に金属膜を設け、この金属膜に金属製のホルダー14を接触させるように構成することで、異方性炭素基板10の熱hの拡散を促進することが出来る。
 ここで、上述では、異方性炭素基板10の上面10cの直上にリチウム金属膜11を設けるように構成したが、図3に示すように、異方性炭素基板10とリチウム金属膜11との間に中間金属膜15を設けても構わない。
 ここで、中間金属膜15を構成する金属に特に限定は無いが、例えば、水素吸蔵金属(例えば、パラジウム)又は水素吸蔵金属の合金を挙げることが出来る。これにより、陽子pが中間金属膜15に補足され易くすることで、異方性炭素基板10とリチウム金属膜11との剥離を防止することが出来る。
 又、中間金属膜15を構成する金属は、熱伝導率の高い金属(例えば、銅)又は熱伝導率の高い金属の合金を挙げることが出来る。これにより、陽子pの照射によりリチウム金属膜11に熱hが発生したとしても、中間金属膜15を経由して異方性炭素基板10に伝わり、下方に拡散されるため、熱hを効率よく除去することが可能となる。
 ここで、中間金属膜15の上下方向の厚みに特に限定は無いが、例えば、1μm~100μmの範囲内であると好ましく、10μm~50μmの範囲内であると更に好ましい。これにより、リチウム金属膜11に照射した陽子pによる中性子nの発生を阻害することなく、陽子pの捕捉や熱hの拡散を可能とする。
 又、中間金属膜15の配置方法に特に限定は無いが、例えば、蒸着法を挙げることが出来る。更に、中間金属膜15は、水素吸蔵金属又は水素吸蔵金属の合金の第一の金属膜と、熱伝導率の高い金属又は熱伝導率の高い金属の合金の第二の金属膜との積層で構成され、第一の金属膜をリチウム金属膜11に接触させ、第二の金属膜を異方性炭素基板10の上面10cに接触させるよう構成しても良い。これにより、中間金属膜15に、陽子pの捕捉と、熱hの拡散との両方の機能を付与することが出来る。その他に、中間金属膜15を構成する金属に、水素吸蔵金属又は水素吸蔵金属の合金と、熱伝導率の高い金属又は熱伝導率の高い金属の合金とを混合した混合物を採用しても構わない。
 ここで、上述では、冷却制御部13として冷却用流路を構成したが、図4に示すように、冷却用噴霧装置を構成しても良い。図4では、冷却用金属膜12は、異方性炭素基板10のうち、隣り合う単層グラフェン10aの間隔gが存在する下面10d(底面)の全面に設けられ、冷却用噴霧装置13は、冷却用金属膜12の下方に設けられ、冷却媒体Rを冷却用金属膜12に向けて霧状に噴霧している。このように冷却媒体Rをミストとして取り扱って、ミストの気化熱を利用して、異方性炭素基板10を顕著に冷却することが可能となる。
 さて、本発明に係る実施例について説明する。先ず、図5A、図5Bに示すように、化学気相堆積法によって、単層グラフェンを複数積層させることで構成した積層グラフェンを、隣り合う単層グラフェンの間隔が上下方向に沿って設けられるようにして、異方性炭素基板10を用意した。この異方性炭素基板10の上面10cの横寸法は10cmであり、異方性炭素基板10の上下方向の厚みは20mmであった。異方性炭素基板10の上下方向の厚みに対する異方性炭素基板10の上面10cの横寸法の寸法比は、5であった。これを参考例とした。蒸着法により、この異方性炭素基板10のうち、隣り合う単層グラフェンの間隔が存在する上面に、厚さが200μmのリチウム金属膜11を形成した。これを実施例とした。所定の実験施設において、この実施例のリチウム金属膜11の上方から陽子pを照射させたところ、陽子pの照射により発生する熱が、隣り合う単層グラフェン10aの間隔gに沿って下方に拡散し、熱の除去が円滑に進んだ。又、照射した陽子pが、隣り合う単層グラフェン10aの間隔gに沿って下方に抜けていき、ブリスタリングが発生しなかった。更に、異方性炭素基板10の下方に冷却用金属膜12を設け、この冷却用金属膜12に冷却媒体Rを接触させる冷却用流路13を設けることで、更に、効率の良い熱の除去が可能である。
 次に、この実施例の異方性炭素基板10の熱伝導率を測定した。先ず、図6に示すように、熱源としてセラミックヒータ60を用意し、熱伝導性グリスGを介して、セラミックヒータ60の一端面に第一の温度測定センサ61を設置し、次に、熱伝導性グリスGを介して、セラミックヒータ60の他端面に、隣り合う単層グラフェン10aの間隔gが存在する異方性炭素基板10の上面10cを設置し、そして、熱伝導性グリスGを介して、異方性炭素基板10の下面10dに、放熱を目的とするヒートシンク62の上面を設置し、最後に、熱伝導性グリスGを介して、ヒートシンク62の下面に第二の温度測定センサ63を設置した。第一の温度測定センサ61の測定温度T1と第二の温度測定センサ63の測定温度T2との温度差dT(=T1-T2)が小さい程、その間に存在する異方性炭素基板10とヒートシンク62の熱伝導率が優れていることを意味する。
 図7には、異方性炭素基板10とヒートシンク62の間の温度差のグラフを示す。図7には、セラミックヒータ60の電力状況も合わせて示した。その結果、図7に示すように、温度差dTは16.7度であり、温度差dTが小さく、異方性炭素基板10とヒートシンク62の熱伝導率が優れていることが分かった。尚、異方性炭素基板10に代えて、同じサイズの鉄材で測定したところ、温度差dTは30度以上であった。
 次に、ヒートシンク62を除去して、異方性炭素基板10の単体の熱伝導率を測定した。先ず、図8に示すように、熱伝導性グリスGを介して、セラミックヒータ60の一端面に第一の温度測定センサ61を設置し、次に、熱伝導性グリスGを介して、セラミックヒータ60の他端面に異方性炭素基板10の上面10cを設置し、熱伝導性グリスGを介して、異方性炭素基板10の下面10dに第二の温度測定センサ63を設置した。上述と同様に、第一の温度測定センサ61の測定温度T1と第二の温度測定センサ63の測定温度T2との温度差dT(=T1-T2)を算出し、異方性炭素基板10の熱伝導率を確認した。
 図9には、異方性炭素基板10の間の温度差のグラフを示す。図9には、セラミックヒータ60の電力状況も合わせて示した。その結果、図9に示すように、温度差dTは13.2度であり、温度差dTが更に小さくなり、異方性炭素基板10の熱伝導率が優れていることが分かった。尚、異方性炭素基板10に代えて、上述の鉄材で測定したところ、温度差dTは30度以上であった。これにより、異方性炭素基板10の熱伝導率は、金属の熱伝導率と比較して優れていることが分かった。これらの結果により、本発明のBNCT用リチウムターゲット1は、陽子pの照射により発生する熱hの除去とブリスタリングの防止を飛躍的に向上させることが可能と考えられる。
 以上のように、本発明に係るBNCT用リチウムターゲット及びBNCT用リチウムターゲットを用いた中性子発生方法は、BNCTの低エネルギー化や小型化に有用であり、陽子の照射により発生する熱の除去とブリスタリングの防止を飛躍的に向上させることが可能なBNCT用リチウムターゲット及びBNCT用リチウムターゲットを用いた中性子発生方法として有効である。
  1 BNCT用リチウムターゲット
  10 異方性炭素基板
  11 リチウム金属膜
  12 冷却用金属膜
  13 冷却制御部
  14 ホルダー

Claims (8)

  1.  複数の炭素原子が六角形格子状に結合した単層グラフェンを複数積層させることで構成した積層グラフェンを、隣り合う単層グラフェンの間隔が上下方向に沿って設けられるように構成した異方性炭素基板と、
     前記異方性炭素基板のうち、隣り合う単層グラフェンの間隔が存在する上面に設けられたリチウム金属膜と、
     前記異方性炭素基板のうち、隣り合う単層グラフェンの間隔が存在する下面の端部に設けられた冷却用金属膜と、
     冷却媒体が前記冷却用金属膜の下面に接触するように、前記冷却用金属膜の下方に設けられた冷却制御部と、
     を備え、
     陽子が、前記リチウム金属膜の上方から照射されることで、中性子を発生させる、
     BNCT用リチウムターゲット。
  2.  前記異方性炭素基板の上下方向の厚みに対する前記異方性炭素基板の上面の左右方向の寸法の寸法比は、1~200の範囲内である、
     請求項1に記載のBNCT用リチウムターゲット。
  3.  前記冷却用金属膜の上下方向の厚みは、1μm~100μmの範囲内である、
     請求項1に記載のBNCT用リチウムターゲット。
  4.  前記冷却用金属膜は、前記異方性炭素基板の下面の端部に設けられ、
     前記冷却制御部は、冷却用流路に構成され、当該冷却用流路に前記冷却冷媒を循環させることで、前記冷却用金属膜を冷却する、
     請求項1に記載のBNCT用リチウムターゲット。
  5.  前記冷却用金属膜は、前記異方性炭素基板の下面の全面に設けられ、
     前記冷却制御部は、冷却用噴霧装置に構成され、前記冷却媒体を前記冷却用金属膜に向けて霧状に噴霧する、
     請求項1に記載のBNCT用リチウムターゲット。
  6.  前記異方性炭素基板と前記リチウム金属膜との間に設けられ、水素吸蔵金属、水素吸蔵金属の合金、熱伝導率の高い金属、又は、熱伝導率の高い金属の合金のいずれかの金属で構成される中間金属膜
     を更に備える、
     請求項1に記載のBNCT用リチウムターゲット。
  7.  前記異方性炭素基板と、前記リチウム金属膜と、前記冷却用金属膜と、前記冷却制御部と、を側面から把持する枠体のホルダー
     を更に備え、
     前記ホルダーは、BNCTのターゲット設置部に着脱可能とするカートリッジとして取り扱われる、
     請求項1に記載のBNCT用リチウムターゲット。
  8.  複数の炭素原子が六角形格子状に結合した単層グラフェンを複数積層させることで構成した積層グラフェンを、隣り合う単層グラフェンの間隔が上下方向に沿って設けられるように構成した異方性炭素基板と、
     前記異方性炭素基板のうち、隣り合う単層グラフェンの間隔が存在する上面に設けられたリチウム金属膜と、
     前記異方性炭素基板のうち、隣り合う単層グラフェンの間隔が存在する下面の端部に設けられた冷却用金属膜と、
     冷却媒体が前記冷却用金属膜の下面に接触するように、前記冷却用金属膜の下方に設けられた冷却制御部と、
     を備えるBNCT用リチウムターゲットを用いた中性子発生方法であって、
     陽子を前記リチウム金属膜の上方から照射することで、中性子を発生させる発生制御工程と、
     前記冷却制御部で前記冷却用金属膜を冷却する冷却制御工程と、
     を備える
     BNCT用リチウムターゲットを用いた中性子発生方法。
PCT/JP2023/000301 2022-01-13 2023-01-10 Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法 WO2023136238A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023574030A JPWO2023136238A1 (ja) 2022-01-13 2023-01-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003596 2022-01-13
JP2022003596 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136238A1 true WO2023136238A1 (ja) 2023-07-20

Family

ID=85553027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000301 WO2023136238A1 (ja) 2022-01-13 2023-01-10 Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法

Country Status (3)

Country Link
JP (1) JPWO2023136238A1 (ja)
CN (2) CN116474275A (ja)
WO (1) WO2023136238A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142820A (ja) * 1995-11-21 1997-06-03 Matsushita Electric Ind Co Ltd 異方性黒鉛薄膜基板、並びにそれを用いた応用装置及び応用素子
JP2013054889A (ja) * 2011-09-02 2013-03-21 High Energy Accelerator Research Organization 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
WO2017183697A1 (ja) * 2016-04-21 2017-10-26 株式会社カネカ 放射性同位元素製造用の支持基板、放射性同位元素製造用ターゲット板、及び支持基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142820A (ja) * 1995-11-21 1997-06-03 Matsushita Electric Ind Co Ltd 異方性黒鉛薄膜基板、並びにそれを用いた応用装置及び応用素子
JP2013054889A (ja) * 2011-09-02 2013-03-21 High Energy Accelerator Research Organization 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
WO2017183697A1 (ja) * 2016-04-21 2017-10-26 株式会社カネカ 放射性同位元素製造用の支持基板、放射性同位元素製造用ターゲット板、及び支持基板の製造方法

Also Published As

Publication number Publication date
JPWO2023136238A1 (ja) 2023-07-20
CN116474275A (zh) 2023-07-25
CN218652758U (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN109074890B (zh) 靶、靶的制造方法、及中子发生装置
US10470289B2 (en) Target for neutron-generating device and manufacturing method therefor
CN101990686B (zh) 长寿命核反应装置高效靶材的原位沉积和再生方法及系统
WO2012073966A1 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP5697021B2 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
AU2014347830B2 (en) Target for neutron generation
JP2013206726A (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP5888760B2 (ja) 中性子発生源および当該中性子発生源の製造方法、中性子発生装置
JP5751673B2 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
US11239003B2 (en) Support substrate for radioisotope production, target plate for radioisotope production, and production method for support substrate
JP6218174B2 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP5700536B2 (ja) 複合型ターゲット
WO2023136238A1 (ja) Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法
JP2012243640A (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
Nolen et al. Liquid-lithium cooling for 100-kW ISOL and fragmentation targets
Igitkhanov et al. The PFC erosion in DEMO due to runaway electrons
Tanabe et al. Selection of Plasma-Facing Materials
Chia et al. Conceptual design of the INER cyclotron based neutron radiograph facility
Kaiwen et al. Problem Analysis and New Scheme Design for Ab-Bnct Solid Li Targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574030

Country of ref document: JP