WO2023127760A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023127760A1
WO2023127760A1 PCT/JP2022/047775 JP2022047775W WO2023127760A1 WO 2023127760 A1 WO2023127760 A1 WO 2023127760A1 JP 2022047775 W JP2022047775 W JP 2022047775W WO 2023127760 A1 WO2023127760 A1 WO 2023127760A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
mode
modulation
phase
control unit
Prior art date
Application number
PCT/JP2022/047775
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 片岡
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Priority to DE112022006217.7T priority Critical patent/DE112022006217T5/en
Priority to CN202280085818.0A priority patent/CN118648231A/en
Priority to US18/724,586 priority patent/US20250070688A1/en
Priority to JP2023570988A priority patent/JPWO2023127760A1/ja
Publication of WO2023127760A1 publication Critical patent/WO2023127760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a power converter.
  • the two-phase modulation method has the advantage of low switching loss, but has the disadvantage of large noise due to large phase current ripple.
  • the three-phase modulation method has the advantage that the phase current ripple is small (the noise is small) and highly accurate motor control with little torque unevenness can be realized, but it has the disadvantage that the switching loss is large.
  • Patent Document 1 the three-phase modulation method is used when the modulation rate is small, and the modulation method is continuously changed from the three-phase modulation method to the two-phase modulation method as the modulation rate increases. Techniques for suppressing sudden changes in noise caused by switching to the two-phase modulation method have been disclosed.
  • One aspect of the power conversion apparatus of the present invention includes a power conversion circuit that performs mutual conversion between DC power and N-phase AC power (N is an integer of 3 or more), and 2N switches included in the power conversion circuit.
  • a control unit that controls in a first modulation mode, wherein the control unit fixes one phase high-side switch or low-side switch of the 2N switches to ON in the first modulation mode, periodically switching between a first PWM mode in which the remaining phase switches are controlled by pulse width modulation and a second PWM mode in which all phase switches among the 2N switches are controlled by the pulse width modulation;
  • the sum of the first period during which the control section operates in the first PWM mode and the second period during which the control section operates in the second PWM mode appears at the connection terminal of the power conversion circuit.
  • the first period is shorter than 1/2N of one cycle of the electrical angle of the AC waveform, the first period is longer than one cycle of the pulse width modulation, and the length of the first period and the second period is The ratio of the first period to the sum is
  • a power converter capable of suppressing torque unevenness.
  • FIG. 1 is a circuit block diagram schematically showing the configuration of a power converter according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of each high-side gate signal output during a period when the control section in the first embodiment operates in the first modulation mode.
  • FIG. 3 is a diagram showing phase current waveforms obtained by performing a simulation assuming that each switch is controlled in the first modulation mode using the gate signals shown in FIG.
  • FIG. 4 is a diagram showing the magnitude of the phase current ripple shown in FIG. 3 as a standard deviation of current values.
  • FIG. 5 is a diagram showing an example of each high-side gate signal output during periods when the control unit in the second embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be.
  • FIG. 6 is a diagram showing an example of each high-side gate signal output while the control unit in the third embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be.
  • FIG. 7 is a diagram showing an example of each high-side gate signal output during periods when the control unit in the fourth embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be.
  • FIG. 8 is a diagram showing an example of each high-side gate signal output during periods when the control unit in the fifth embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be.
  • FIG. 9 is a diagram showing a specific example of mode ratios in the third embodiment.
  • FIG. 10 is a diagram showing a specific example of mode ratios in the fifth embodiment.
  • FIG. 1 is a circuit block diagram schematically showing the configuration of a power converter 10 according to the first embodiment.
  • the power conversion device 10 is connected with a motor 20 .
  • the motor 20 is an inner rotor type three-phase brushless DC motor.
  • the motor 20 is, for example, a drive motor (traction motor) mounted on an electric vehicle.
  • the motor 20 has a U-phase terminal 21u, a V-phase terminal 21v, a W-phase terminal 21w, a U-phase coil 22u, a V-phase coil 22v, and a W-phase coil 22w.
  • the motor 20 has a motor case, and a rotor and a stator housed in the motor case.
  • the rotor is a rotating body that is rotatably supported inside the motor case by a bearing component such as a rotor bearing.
  • the rotor has an output shaft coaxially joined with the rotor while axially passing through the radially inner side of the rotor.
  • the stator is fixed inside the motor case so as to surround the outer peripheral surface of the rotor, and generates an electromagnetic force necessary to rotate the rotor.
  • the U-phase terminal 21u, the V-phase terminal 21v, and the W-phase terminal 21w are metal terminals exposed from the surface of the motor case.
  • U-phase terminal 21 u is connected to U-phase connection terminal 13 u of power converter 10 .
  • V-phase terminal 21v is connected to V-phase connection terminal 13v of power converter 10 .
  • the W-phase terminal 21w is connected to the W-phase connection terminal 13w of the power converter 10 .
  • the U-phase coil 22u, the V-phase coil 22v, and the W-phase coil 22w are excitation coils provided in the stator, respectively.
  • the U-phase coil 22u, the V-phase coil 22v, and the W-phase coil 22w are star-connected inside the motor 20 .
  • the U-phase coil 22u is connected between the U-phase terminal 21u and the neutral point N.
  • V-phase coil 22v is connected between V-phase terminal 21v and neutral point N.
  • the W-phase coil 22w is connected between the W-phase terminal 21w and the neutral point N.
  • the power conversion device 10 includes a power conversion circuit 11 and a control section 12 .
  • the power conversion circuit 11 is connected to the motor 20 and the DC power supply 30, and performs mutual conversion between DC power and N-phase AC power (N is an integer of 3 or more). In this embodiment, the value of N is 3 because the motor 20 is a three-phase motor. Therefore, the power conversion circuit 11 performs mutual conversion between DC power and three-phase AC power.
  • the power conversion circuit 11 when the power conversion circuit 11 functions as an inverter, the power conversion circuit 11 converts DC power supplied from the DC power supply 30 into three-phase AC power and outputs the three-phase AC power to the motor 20 .
  • DC power supply 30 is one of a plurality of batteries mounted on an electric vehicle.
  • the power conversion circuit 11 includes 2N switches. As described above, in this embodiment, the value of N is 3, so the power conversion circuit 11 includes 6 switches.
  • the power conversion circuit 11 includes a U-phase high-side switch QUH , a V-phase high-side switch QVH , a W-phase high-side switch QWH , a U-phase low-side switch QUL , a V-phase low-side switch QVL , and a W-phase switch QWL. and a phase low side switch QWL .
  • Each switch in this embodiment is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • a collector terminal of the U-phase high-side switch QUH , a collector terminal of the V-phase high-side switch QVH , and a collector terminal of the W-phase high-side switch QWH are connected to the positive terminal of the DC power supply 30, respectively.
  • the emitter terminal of the U-phase low-side switch QUL , the emitter terminal of the V-phase low-side switch QVL , and the emitter terminal of the W-phase low-side switch QWL are connected to the negative terminal of the DC power supply 30, respectively.
  • the emitter terminal of the U-phase high side switch QUH is connected to the U-phase connection terminal 13u and the collector terminal of the U-phase low side switch QUL , respectively. That is, the emitter terminal of the U-phase high side switch QUH is connected to the U-phase terminal 21u of the motor 20 via the U-phase connection terminal 13u.
  • the emitter terminal of the V-phase high side switch QVH is connected to the V-phase connection terminal 13v and the collector terminal of the V-phase low side switch QVL , respectively. That is, the emitter terminal of the V-phase high-side switch QVH is connected to the V-phase terminal 21v of the motor 20 via the V-phase connection terminal 13v.
  • the emitter terminal of the W-phase high side switch QWH is connected to the W-phase connection terminal 13w and the collector terminal of the W-phase low side switch QWL . That is, the emitter terminal of the W-phase high side switch QWH is connected to the W-phase terminal 21w of the motor 20 via the W-phase connection terminal 13w.
  • a gate terminal of the U-phase high-side switch QUH , a gate terminal of the V-phase high-side switch QVH , and a gate terminal of the W-phase high-side switch QWH are connected to the control section 12, respectively.
  • the gate terminal of the U-phase low-side switch QUL , the gate terminal of the V-phase low-side switch QVL , and the gate terminal of the W-phase low-side switch QWL are also connected to the controller 12, respectively.
  • the power conversion circuit 11 is configured by a three-phase full-bridge circuit having three high-side switches and three low-side switches.
  • the power conversion circuit 11 configured in this manner performs mutual conversion between DC power and three-phase AC power by controlling switching of each switch by the control unit 12 .
  • a U-phase connection terminal 13u, a V-phase connection terminal 13v, and a W-phase connection terminal 13w are connection terminals of the power conversion circuit 11 .
  • the control unit 12 is a processor containing a memory (not shown). As an example, the control unit 12 is an MCU (Microcontroller Unit). The control unit 12 controls the power conversion circuit 11 according to a program pre-stored in the memory. Although the details will be described later, the control unit 12 controls the six switches included in the power conversion circuit 11 in the first modulation mode. The controller 12 generates gate signals necessary to control the six switches in the first modulation mode.
  • MCU Microcontroller Unit
  • the control unit 12 generates a U-phase high-side gate signal G1 necessary for controlling the U-phase high-side switch QUH , and transmits the generated U-phase high-side gate signal G1 to the gate terminal of the U-phase high-side switch QUH. output to The control unit 12 generates a U-phase low-side gate signal G2 necessary for controlling the U-phase low-side switch QUL , and outputs the generated U-phase low-side gate signal G2 to the gate terminal of the U-phase low-side switch QUL .
  • the U-phase low-side gate signal G2 is a complementary signal of the U-phase high-side gate signal G1.
  • the control unit 12 generates a V-phase high-side gate signal G3 necessary for controlling the V-phase high-side switch QVH , and transmits the generated V-phase high-side gate signal G3 to the gate terminal of the V-phase high-side switch QVH. output to The control unit 12 generates a V-phase low-side gate signal G4 necessary for controlling the V-phase low-side switch QVL , and outputs the generated V-phase low-side gate signal G4 to the gate terminal of the V-phase low-side switch QVL .
  • the V-phase low side gate signal G4 is a complementary signal of the V-phase high side gate signal G3.
  • the control unit 12 generates a W-phase high-side gate signal G5 necessary for controlling the W-phase high-side switch QWH , and transmits the generated W-phase high-side gate signal G5 to the gate terminal of the W-phase high-side switch QWH. output to The control unit 12 generates a W-phase low-side gate signal G6 necessary for controlling the W-phase low-side switch QWL , and outputs the generated W-phase low-side gate signal G6 to the gate terminal of the W-phase low-side switch QWL .
  • the W-phase low-side gate signal G6 is a complementary signal of the W-phase high-side gate signal G5.
  • a dead time is inserted into each gate signal to prevent the high-side switch and low-side switch of the same phase from being switched on at the same time.
  • the control unit 12 has a first modulation mode as a modulation mode.
  • the control unit 12 controls the six switches included in the power conversion circuit 11 in the first modulation mode.
  • FIG. 2 shows an example of the U-phase high-side gate signal G1, the V-phase high-side gate signal G3, and the W-phase high-side gate signal G5 that are output during the period TM1 in which the control section 12 operates in the first modulation mode. It is a diagram. Since each low side gate signal is a complementary signal of each high side gate signal, illustration of each low side gate signal is omitted in FIG. In the following description, the period TM1 during which the control section 12 operates in the first modulation mode may be referred to as the first modulation mode period.
  • the control unit 12 fixes the high-side switch or low-side switch of one phase among the six switches to ON, and controls the switches of the remaining phases by pulse width modulation. (Pulse Width Modulation) mode and a second PWM mode in which the switches of all phases among the six switches are controlled by pulse width modulation.
  • a first period T1 is a period during which the control section 12 operates in the first PWM mode.
  • the first period T1 may be referred to as the first PWM mode period.
  • the first PWM mode period T1 is divided into a high side continuous ON period T1H and a low side continuous ON period T1L.
  • the control unit 12 fixes the U-phase high-side switch QUH of the six switches to ON, and controls the remaining V-phase and W-phase switches by pulse width modulation.
  • the control unit 12 fixes the W-phase low-side switch QWL of the six switches to ON, and controls the remaining U-phase and V-phase switches by pulse width modulation.
  • the remaining phase switches include the remaining phase high-side switches and low-side switches.
  • the second period T2 is the period during which the control section 12 operates in the second PWM mode.
  • the second period T2 may be referred to as a second PWM mode period.
  • the control unit 12 controls the switches of all phases among the six switches by pulse width modulation. All-phase switches include all-phase high-side switches and low-side switches.
  • the control unit 12 periodically switches between the first PWM mode and the second PWM mode in the first modulation mode period TM1. As a result, as shown in FIG. 2, the first PWM mode period T1 and the second PWM mode period T2 appear alternately in the first modulation mode period TM1.
  • a third PWM mode the mode in which the control unit 12 fixes the high-side switch of one phase out of the six switches to ON and controls the switches of the remaining phases by pulse width modulation.
  • a mode in which the control unit 12 fixes one phase low-side switch of the six switches to ON and controls the remaining phase switches by pulse width modulation is called a fourth PWM mode.
  • the high side continuous ON period T1H is a period during which the control section 12 operates in the third PWM mode.
  • the low-side continuous ON period T1L is a period during which the controller 12 operates in the fourth PWM mode.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1.
  • the high-side continuous ON period T1H and the low-side continuous ON period T1L interpose the second PWM mode period T2 therebetween. appear alternately.
  • the ON period of each phase in one cycle of pulse width modulation that is, the duty of each phase
  • the ON period of each phase in one cycle of pulse width modulation is uniformly offset from the duty when the second PWM mode is applied to the ON period of each phase.
  • the duty of all phases are uniformly offset.
  • the duty of all phases is adjusted so that the minimum duty among the phases when the second PWM mode is applied to the low-side continuous ON period T1L is 0%. are uniformly offset.
  • the phase-to-phase voltage in the first PWM mode period T1 and the phase-to-phase voltage in the second PWM mode period T2 match, and smooth motor control is realized.
  • the sum TS of the first PWM mode period T1 and the second PWM mode period T2 is shorter than 1/2N of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11 .
  • the value of N is 3, so the sum TS of the first PWM mode period T1 and the second PWM mode period T2 is 1/6 of one period of the electrical angle. is also short.
  • the sum TS of the first PWM mode period T1 and the second PWM mode period T2 is the sum of a pair of the first PWM mode period T1 and the second PWM mode period T2 adjacent on the time axis. .
  • the sum TS of the first PWM mode period T1 and the second PWM mode period T2 may be referred to as a mode switching period.
  • the first PWM mode period T1 is longer than one period of pulse width modulation.
  • One cycle of pulse width modulation means one cycle of a PWM waveform (rectangular wave) appearing in each gate signal. If the above condition that "the mode switching period TS is shorter than 1/2N of one period of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11" is satisfied, then the second PWM mode period T2 The length is not particularly limited. As an example, in FIG. 2, the first PWM mode period T1 has a length corresponding to one period of pulse width modulation, and the second PWM mode period T2 has a length corresponding to 1.5 periods of pulse width modulation. have In this case, the mode switching period TS corresponds to 2.5 periods of pulse width modulation. For example, when 90 periods of pulse width modulation are included in one period of electrical angle, 1/6 of one period of electrical angle corresponds to 15 periods of pulse width modulation. The period is sufficiently shorter than 1/6 of one period.
  • the ratio of the first PWM mode period T1 to the sum of the first PWM mode period T1 and the second PWM mode period T2 is variable.
  • the ratio of the first PWM mode period T1 to the sum of the first PWM mode period T1 and the second PWM mode period T2 may be referred to as a mode ratio.
  • the mode ratio becomes larger.
  • the second PWM mode period T2 becomes relatively longer than the first PWM mode period T1
  • the mode ratio becomes smaller.
  • the control unit 12 When the control unit 12 operates in the first modulation mode with the mode ratio relatively large, the ratio of the period during which switching of one phase is stopped in the first modulation mode period TM1 increases, so the switching loss is become relatively small. This corresponds to a state close to the characteristics of two-phase modulation. Therefore, the phase current ripple becomes relatively large.
  • the control unit 12 when the control unit 12 operates in the first modulation mode with the mode ratio relatively small, the ratio of the period during which switching of one phase is stopped in the first modulation mode period TM1 becomes small. Losses are relatively large. This corresponds to a state close to the characteristics of three-phase modulation. Therefore, the phase current ripple becomes relatively small.
  • the higher the mode ratio the closer the characteristics of the first modulation mode to the two-phase modulation.
  • the smaller the mode ratio the closer the characteristics of the first modulation mode to the three-phase modulation.
  • the mode switching period TS which is the sum of the first PWM mode period T1 and the second PWM mode period T2, is the electric current of the AC waveform appearing at the connection terminal of the power conversion circuit 11. Shorter than 1/6 of one angular period.
  • the first PWM mode corresponding to two-phase modulation and the second PWM mode corresponding to three-phase modulation are switched at a high frequency as compared with the technique of Patent Document 1. be replaced.
  • noise can be reduced because the average phase current ripple in the first modulation mode period TM1 can be reduced compared to the case where each switch is controlled only by two-phase modulation. Since the motor 20 is a kind of filter that has an inductance component, by speeding up the switching speed between the first PWM mode and the second PWM mode, the switching loss and the phase current ripple caused by the mode switching can be reduced. can reduce the impact.
  • FIG. 3 is a diagram showing phase current waveforms obtained by performing a simulation assuming that the gate signals shown in FIG. 2 are used to control each switch in the first modulation mode. Note that the simulation was performed under the condition that the rotation angle of the motor 20 was fixed at a predetermined value in order to ignore the current fluctuation accompanying the rotation of the motor 20 and focus only on the phase current ripple.
  • Fig. 3 shows phase current waveforms obtained by performing a simulation assuming that each switch is controlled only by 3-phase modulation, and control of each switch by Min-type 2-phase modulation alone. Phase current waveforms obtained by performing an assumed simulation are shown.
  • Min-type two-phase modulation means so-called low-side-on fixed two-phase modulation.
  • the fixed low-side on-type two-phase modulation is a two-phase modulation method in which one low-side switch of six switches is fixed on and the switches of the remaining phases are controlled by pulse width modulation.
  • the phase switching cycle in which the low-side switch is fixed on corresponds to one-third of one cycle of the electrical angle.
  • Each phase current waveform is the waveform of the W-phase current Iw.
  • FIG. 4 is a diagram showing the magnitude of the phase current ripple shown in FIG. 3 as the standard deviation of the current values.
  • the average phase current ripple can be reduced as compared with the case where each switch is controlled only by Min-type two-phase modulation.
  • the first PWM mode period T1 has a length corresponding to one cycle of the pulse width modulation
  • the second PWM mode period T2 has a length of 1.5 cycles of the pulse width modulation. If it has a length corresponding to the period, the switching frequency in the first modulation mode period TM1 is 13/15 compared to the case where each switch is controlled only by three-phase modulation. Therefore, according to the first embodiment, switching loss can be reduced compared to the case where each switch is controlled only by three-phase modulation.
  • the state of the first modulation mode is changed from a state close to the characteristics of two-phase modulation (a state in which the mode ratio is relatively large) to a state close to the characteristics of three-phase modulation (a state in which the mode ratio is compared).
  • a state close to the characteristics of two-phase modulation a state in which the mode ratio is relatively large
  • three-phase modulation a state in which the mode ratio is compared
  • the mode ratio is gradually changed from a small value to a large value.
  • the transition from a state close to the characteristics of phase modulation to a state close to the characteristics of two-phase modulation progresses gradually.
  • it is possible to reduce a sudden change in noise caused by switching from a state close to characteristics of three-phase modulation to a state close to characteristics of two-phase modulation so that it is possible to prevent the user from feeling discomfort.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1.
  • the first modulation mode period TM1 the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear as the first PWM mode period T1.
  • the switching loss in the high side continuous ON period T1H and the switching loss in the low side continuous ON period T1L are averaged over the entire period of the first modulation mode period TM1.
  • the high side continuous ON period T1H during which the control section 12 operates in the third PWM mode and the low side continuous ON period T1L during which the control section 12 operates in the fourth PWM mode match.
  • each of the high side continuous ON period T1H and the low side continuous ON period T1L has a length corresponding to one period of pulse width modulation.
  • control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1.
  • the invention is not so limited.
  • control unit 12 may control each switch using only the third PWM mode as the first PWM mode during the first modulation mode period TM1. In this case, all first PWM mode periods T1 included in the first modulation mode period TM1 are high side continuous ON periods T1H. Further, for example, the control unit 12 may control each switch using only the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. In this case, all first PWM mode periods T1 included in the first modulation mode period TM1 are low side continuous ON periods T1L.
  • the control unit 12 sets the third PWM mode and the fourth PWM mode to 2N of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11. It may be switched at a period shorter than one. For example, when the value of N is 3, the control unit 12 sets the third PWM mode and the fourth PWM mode to 1/6 of one period of the electrical angle in the first PWM mode period T1. You may switch in a period shorter than. In this case, the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear in each of the first PWM mode periods T1 included in the first modulation mode period TM1.
  • the switching loss in the high side continuous ON period T1H and the switching loss in the low side continuous ON period T1L are averaged.
  • a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the first PWM mode period T1 can be suppressed.
  • the control unit 12 switches between the third PWM mode and the fourth PWM mode during the first PWM mode period T1
  • the control unit 12 switches between the third PWM mode and the fourth PWM mode during the first PWM mode period T1.
  • the high-side continuous ON period T1H during which the control unit 12 operates in the PWM mode 3 may coincide with the low-side continuous ON period T1L during which the control unit 12 operates in the fourth PWM mode.
  • the second embodiment differs from the first embodiment in that the control section 12 has not only the first modulation mode but also the second modulation mode and the third modulation mode as modulation modes. Therefore, the operation of the control unit 12 in the second embodiment will be described in detail below.
  • control unit 12 selects a second modulation mode in which the mode ratio is the first ratio and a third modulation mode in which the mode ratio is a second ratio smaller than the first ratio.
  • the modulation mode between operate in the first modulation mode in the period between the period of operation in the second modulation mode and the period of operation in the third modulation mode, and the first modulation mode
  • the mode ratio is changed continuously or stepwise during the period of operation.
  • FIG. 5 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the controller 12 in the second embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively.
  • FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5; In FIG. 5, a period TM2 is a period during which the control section 12 operates in the second modulation mode, and a period TM3 is a period during which the control section 12 operates in the third modulation mode.
  • the period TM2 during which the control unit 12 operates in the second modulation mode is referred to as the second modulation mode period
  • the period TM3 during which the control unit 12 operates in the third modulation mode is referred to as the third modulation mode.
  • the second modulation mode differs from the first modulation mode in that the mode ratio is fixed at a first ratio that is greater than the mode ratio of the first modulation mode, and is otherwise similar to the first modulation mode. matches. That is, in the second modulation mode, the control unit 12 periodically switches between the first PWM mode and the second PWM mode while the mode ratio is fixed at the first ratio.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the second modulation mode period TM2.
  • the second modulation mode period TM2 as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.
  • the first PWM mode period T1 has a length corresponding to three periods of pulse width modulation
  • the second PWM mode period T2 has a length corresponding to three cycles of pulse width modulation. has a length corresponding to 1.5 periods of . That is, in the example shown in FIG. 5, the mode ratio of the second modulation mode is fixed at 3/4.5. Below, the mode ratio of the second modulation mode may be referred to as a second mode ratio Rm2.
  • the third modulation mode is similar to the first modulation mode and the second modulation mode in that the mode ratio is fixed at a second ratio that is less than the mode ratios of the first modulation mode and the second modulation mode. It is different and otherwise consistent with the first modulation mode and the second modulation mode. That is, in the third modulation mode, the control unit 12 periodically switches between the first PWM mode and the second PWM mode while the mode ratio is fixed at the second ratio.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the third modulation mode period TM3.
  • the third modulation mode period TM3 as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.
  • the first PWM mode period T1 has a length corresponding to one period of pulse width modulation
  • the second PWM mode period T2 has a length corresponding to one period of pulse width modulation. has a length corresponding to 3.5 periods of . That is, in the example shown in FIG. 5, the mode ratio of the third modulation mode is fixed at 1/4.5.
  • the mode ratio of the third modulation mode may be referred to as third mode ratio Rm3.
  • the control unit 12 alternates between the third PWM mode and the fourth PWM mode as the first PWM mode in the first modulation mode period TM1. switch to As a result, as shown in FIG. 5, in the first modulation mode period TM1, as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.
  • the first PWM mode period T1 has a length corresponding to one period of pulse width modulation
  • the second PWM mode period T2 has a length corresponding to one period of pulse width modulation. has a length corresponding to 1.5 periods of . That is, in the example shown in FIG. 5, the mode ratio of the first modulation mode is 1/2.5, but in the second embodiment, the control unit 12 sets the mode ratio to is changed continuously or stepwise.
  • the mode ratio of the first modulation mode may be referred to as a first mode ratio Rm1.
  • Rm1_max be the maximum value of the first mode ratio Rm1
  • Rm1_min be the minimum value of the first mode ratio Rm1.
  • the first mode ratio Rm1 is changed continuously or stepwise within the range.
  • Rm1_min ⁇ Rm1 ⁇ Rm1_max (1)
  • the relationship between the first mode ratio Rm1 and the second mode ratio Rm2 is represented by the following formula (2).
  • the relationship between the first mode ratio Rm1 and the third mode ratio Rm3 is represented by the following formula (3).
  • the relationship between the second mode ratio Rm2 and the third mode ratio Rm3 is represented by the following formula (4).
  • the second mode ratio Rm2 is the largest among the first mode ratio Rm1, the second mode ratio Rm2, and the third mode ratio Rm3.
  • the third mode ratio Rm3 is the smallest among the first mode ratio Rm1, the second mode ratio Rm2, and the third mode ratio Rm3. Therefore, in the second modulation mode period TM2 in which the control unit 12 operates in the second modulation mode, the control unit 12 controls each switch in a state close to the two-phase modulation characteristics, so switching loss is relatively small. However, the phase current ripple becomes relatively large.
  • the control unit 12 controls each switch in a state close to the characteristics of three-phase modulation, so the phase current ripple is relatively It will be small, but the switching loss will be relatively large.
  • the control unit 12 switches between the second modulation mode period TM2 and the third modulation mode when switching the modulation mode between the second modulation mode and the third modulation mode.
  • the first modulation mode is operated in the period between the period TM3, and the first mode ratio Rm1 in the first modulation mode period TM1 is continuously or stepwise within the range represented by the above formula (1) change to
  • the control unit 12 when switching the modulation mode from the third modulation mode to the second modulation mode, the control unit 12 first sets the third mode ratio Rm3 to 1/4.5 in the third modulation mode. After operating, it transitions to the first modulation mode. After shifting to the first modulation mode, the control unit 12 changes the first mode ratio Rm1 from 1/3.5 (Rm1_min) ⁇ 1/2.5 ⁇ 2/3 . 5 (Rm1_max), and after operating in the first modulation mode, it shifts to the second modulation mode. After shifting to the second modulation mode, the control unit 12 operates in the second modulation mode with the second mode ratio Rm2 fixed at 3/4.5.
  • control unit 12 switches the modulation mode from the second modulation mode to the third modulation mode, first, in the second modulation mode with the second mode ratio Rm2 fixed at 3/4.5, After operating, it transitions to the first modulation mode. After shifting to the first modulation mode, the control unit 12 changes the first mode ratio Rm1 from 2/3.5 (Rm1_max) ⁇ 1/2.5 ⁇ 1/3 . 5 (Rm1_min) and after operating in the first modulation mode, it shifts to the third modulation mode. After shifting to the third modulation mode, the control section 12 operates in the third modulation mode with the third mode ratio Rm3 fixed at 1/4.5.
  • the control unit 12 switches the modulation mode between the second modulation mode and the third modulation mode, the second modulation mode period TM2 and By continuously or stepwise changing the first mode ratio Rm1 in the first modulation mode period TM1 between the third modulation mode period TM3, the second modulation mode close to the characteristics of the two-phase modulation and the Modulation mode transition gradually progresses to the third modulation mode, which is close to the characteristics of three-phase modulation.
  • a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the second modulation mode period TM2.
  • the second modulation mode period TM2 the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear as the first PWM mode period T1.
  • the switching loss in the high side continuous ON period T1H and the switching loss in the low side continuous ON period T1L are averaged over the entire second modulation mode period TM2.
  • a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the second modulation mode period TM2 can be suppressed.
  • the third modulation mode period TM3 is the third modulation mode period TM3.
  • the high side continuous ON period T1H during which the control unit 12 operates in the third PWM mode and the low side continuous ON period T1L during which the control unit 12 operates in the fourth PWM mode coincide. do.
  • the high side continuous ON period T1H and the low side continuous ON period T1L each have a length corresponding to three cycles of pulse width modulation.
  • the control unit 12 switches the third PWM mode and the fourth PWM mode to the first PWM mode in the second modulation mode period TM2 and the third modulation mode period TM3.
  • the present invention is not limited to this.
  • the control unit 12 may control each switch using only the third PWM mode as the first PWM mode in at least one of the second modulation mode period TM2 and the third modulation mode period TM3. good.
  • the control unit 12 controls each switch using only the fourth PWM mode as the first PWM mode in at least one of the second modulation mode period TM2 and the third modulation mode period TM3. may
  • the control unit 12 sets the third PWM mode and the fourth PWM mode to 2N of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11. It may be switched at a period shorter than one. For example, when the value of N is 3, the control unit 12 sets the third PWM mode and the fourth PWM mode to 1/6 of one cycle of the electrical angle in the second modulation mode period TM2. You may switch in a period shorter than.
  • the switching loss during the high side continuous ON period T1H and the switching loss during the low side continuous ON period T1L are averaged.
  • a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the second modulation mode period TM2 can be suppressed.
  • the control unit 12 when the control unit 12 switches between the third PWM mode and the fourth PWM mode in the second modulation mode period TM2, the control unit 12 operates in the third PWM mode.
  • the continuous ON period T1H may coincide with the low side continuous ON period T1L during which the controller 12 operates in the fourth PWM mode.
  • the second mode ratio Rm2 (first ratio in the second modulation mode) is 1 and the third mode ratio Rm3 (second ratio in the third modulation mode) is 0. It is different from the second embodiment in that there is
  • FIG. 6 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the controller 12 in the third embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively.
  • FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5;
  • the control unit 12 when the second mode ratio Rm2 is 1, the control unit 12 operates only in the first PWM mode corresponding to two-phase modulation over the entire period of the second modulation mode period TM2. do. That is, the second modulation mode period TM2 is equal to the first PWM mode period T1. In the example shown in FIG. 6, the controller 12 operates in the fourth PWM mode as the first PWM mode during the second modulation mode period TM2. That is, the second modulation mode period TM2 is equal to the low side continuous ON period T1L.
  • the control unit 12 when the third mode ratio Rm3 is 0, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. do. That is, the third modulation mode period TM3 is equal to the second PWM mode period T2.
  • the control unit 12 uses only the fourth PWM mode as the first PWM mode during the first modulation mode period TM1.
  • the control unit 12 continuously or stepwise changes the first mode ratio Rm1 within the range represented by the above formula (1) in the first modulation mode period TM1.
  • the control unit 12 operates only in the first PWM mode corresponding to two-phase modulation over the entire period of the second modulation mode period TM2.
  • the switching loss in the second modulation mode period TM2 can be reduced compared to the mode.
  • the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. As a result, the phase current ripple in the third modulation mode period TM3 can be reduced.
  • the control unit 12 controls the Modulation mode transition between a second modulation mode corresponding to two-phase modulation and a third modulation mode corresponding to three-phase modulation by continuously or stepwise changing the first mode ratio Rm1 progresses gradually.
  • a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed.
  • FIG. 6 shows the case where the control unit 12 operates in the fourth PWM mode as the first PWM mode in the second modulation mode period TM2, but the control unit 12 operates in the second modulation mode It may operate in the third PWM mode during the mode period TM2.
  • the fourth embodiment is consistent with the third embodiment in that the second mode ratio Rm2 is 1 and the third mode ratio Rm3 is 0, but the controller 12 controls the second modulation mode period In TM2, the third PWM mode and the fourth PWM mode are alternately switched in a cycle corresponding to one-sixth of one electrical angle cycle of the AC waveform appearing at the connection terminal of the power conversion circuit 11. 3 differs from the embodiment.
  • FIG. 7 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the controller 12 in the fourth embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively.
  • FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5;
  • the control unit 12 when the second mode ratio Rm2 is 1, the control unit 12 operates only in the first PWM mode corresponding to two-phase modulation over the entire period of the second modulation mode period TM2. do. That is, the second modulation mode period TM2 is equal to the first PWM mode period T1.
  • the control unit 12 sets the third PWM mode and the fourth PWM mode in the second modulation mode period TM2 with a period corresponding to one-sixth of one period of the electrical angle. alternately with . That is, in the second modulation mode period TM2, the high-side continuous ON period T1H and the low-side continuous ON period T1L alternately appear with a period corresponding to 1/6 of one period of the electrical angle.
  • the control unit 12 when the third mode ratio Rm3 is 0, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. do. That is, the third modulation mode period TM3 is equal to the second PWM mode period T2.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1.
  • the control unit 12 continuously or stepwise changes the first mode ratio Rm1 within the range represented by the above formula (1) in the first modulation mode period TM1.
  • the control unit 12 shifts from the first modulation mode to the second modulation mode, in the angle section in which the third PWM mode is applied as the second modulation mode, the low side continuous ON period T1L and the second The ratio with the PWM mode period T2 is decreased, and the ratio of the high side continuous ON period T1H is increased. Further, when the control unit 12 shifts from the first modulation mode to the second modulation mode, in the angle section in which the fourth PWM mode is applied as the second modulation mode, the high side continuous ON period T1H The ratio of the second PWM mode period T2 is decreased to increase the ratio of the low side continuous ON period T1L.
  • the control unit 12 switches the third PWM mode and the fourth PWM mode to 6 minutes of one cycle of the electrical angle.
  • the high-side continuous ON period T1H and the low-side continuous ON period T1L correspond to 1/6 of the electrical angle 1 period. It appears alternately in cycles.
  • the balance between the amount of heat generated in the continuous high-side ON period T1H and the amount of heat generated in the continuous low-side ON period T1 is improved over the entire period of the second modulation mode period TM2. Overheating of the power conversion circuit 11 can be effectively suppressed.
  • the control unit 12 controls the Modulation mode transition between a second modulation mode corresponding to two-phase modulation and a third modulation mode corresponding to three-phase modulation by continuously or stepwise changing the first mode ratio Rm1 progresses gradually.
  • a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed.
  • the fifth embodiment is consistent with the fourth embodiment in that the second mode ratio Rm2 is 1 and the third mode ratio Rm3 is 0, but the controller 12 controls the second modulation mode period In TM2, the third PWM mode and the fourth PWM mode are alternately switched in a period shorter than 1/6 of one electrical angle period of the AC waveform appearing at the connection terminal of the power conversion circuit 11. 4 differs from the embodiment.
  • FIG. 8 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the control unit 12 in the fifth embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively.
  • FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5;
  • the control unit 12 when the second mode ratio Rm2 is 1, the control unit 12 operates only in the first PWM mode close to the two-phase modulation characteristics over the entire period of the second modulation mode period TM2. Operate. That is, the second modulation mode period TM2 is equal to the first PWM mode period T1.
  • the control unit 12 sets the third PWM mode and the fourth PWM mode in the second modulation mode period TM2 in a period shorter than one-sixth of one period of the electrical angle. , for example, alternately with a period corresponding to 2.5 periods of the pulse width modulation. That is, in the second modulation mode period TM2, the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear with a period corresponding to 2.5 periods of the pulse width modulation.
  • the control unit 12 when the third mode ratio Rm3 is 0, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. do. That is, the third modulation mode period TM3 is equal to the second PWM mode period T2.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1.
  • the first modulation mode period TM1 as the first PWM mode period T1, a high-side continuous ON period T1H and a low-side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.
  • the control unit 12 continuously or stepwise changes the first mode ratio Rm1 within the range represented by the above formula (1) in the first modulation mode period TM1.
  • the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode at a cycle corresponding to 2.5 cycles of pulse width modulation.
  • the number of switching times in the second modulation mode period TM2 is 11/15 times the number of switching times in the third modulation mode period TM3. Therefore, according to the fifth embodiment, it is possible to reduce the switching loss during the second modulation mode period TM2 as compared with the third modulation mode period TM3.
  • the control unit 12 controls the By changing the first mode ratio Rm1 continuously or stepwise, the modulation mode is changed between a second modulation mode close to characteristics of two-phase modulation and a third modulation mode corresponding to three-phase modulation. Migration is gradual. As a result, a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed. [Modification]
  • the present invention is not limited to the above-described embodiments, and each configuration described in this specification can be appropriately combined within a mutually consistent range.
  • the first mode ratio Rm1 in the first modulation mode period TM1 may be changed according to the specific example shown in FIG.
  • FIG. 9 shows a specific example in which the mode switching cycle TS is fixed at four cycles of pulse width modulation, and a specific example in which the mode switching cycle TS is not fixed to a constant value but is variable. showing.
  • the first mode ratio Rm1 in the first modulation mode period TM1 may be changed according to the specific example shown in FIG. FIG. 10 shows a specific example in which the mode switching cycle TS is fixed at 4.5 cycles of pulse width modulation, and a specific example in which the mode switching cycle TS is not fixed at a constant value but is variable. and
  • the power conversion device 10 that controls the motor 20, which is a three-phase motor is illustrated, but the motor 20 to be controlled is not limited to a three-phase motor, and is an N-phase motor (n is an integer of 3 or more).
  • IGBTs are used as the arm switches included in the power conversion circuit 11.
  • the arm switches may be switching elements for high power such as MOS-FETs other than IGBTs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device according to one aspect of the present invention comprises a power conversion circuit that converts DC power and N-phase AC power (N represents an integer greater than or equal to 3) to each other, and a control unit that controls 2N switches included in the power conversion circuit in a first modulation mode. The control unit in the first modulation mode periodically switches between a first PWM mode in which, among the 2N switches, a high-side switch or low-side switch corresponding to one phase is fixed in an ON position and the switches corresponding to the other phases are controlled by pulse width modulation, and a second PWM mode in which, among the 2N switches, the switches corresponding to all the phases are controlled by pulse width modulation. The sum of a first period in which the control unit operates in the first PWM mode and a second period in which the control unit operates in the second PWM mode is shorter than one-2Nth of one cycle of the electrical angle of an AC waveform occurring at a connection terminal of the power conversion circuit. The first period is longer than or equal to one cycle of pulse width modulation. The proportion of the first period in the sum of the first period and the second period is variable.

Description

電力変換装置power converter

 本発明は、電力変換装置に関する。 The present invention relates to a power converter.

 従来から、3相インバータ等の電力変換回路に含まれる6個のスイッチのうち1相のハイサイドスイッチ又はローサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御する2相変調方式と、6個のスイッチのうち全相のスイッチをパルス幅変調により制御する3相変調方式とが知られている。 Conventionally, two-phase modulation in which a high-side switch or a low-side switch of one phase out of six switches included in a power conversion circuit such as a three-phase inverter is fixed on, and the switches of the remaining phases are controlled by pulse width modulation. and a three-phase modulation system in which all phase switches out of six switches are controlled by pulse width modulation.

 2相変調方式は、スイッチング損失が低いというメリットを有するが、相電流リプルが大きいことに起因して騒音が大きいというデメリットを有する。3相変調方式は、相電流リプルが小さく(騒音が小さく)、トルクムラの少ない高精度なモータ制御を実現できるというメリットを有するが、スイッチング損失が大きいというデメリットを有する。 The two-phase modulation method has the advantage of low switching loss, but has the disadvantage of large noise due to large phase current ripple. The three-phase modulation method has the advantage that the phase current ripple is small (the noise is small) and highly accurate motor control with little torque unevenness can be realized, but it has the disadvantage that the switching loss is large.

 2相変調方式と3相変調方式とを切り換えながら電力変換回路を制御するという技術的着想は従来から存在するが、2相変調方式と3相変調方式とを瞬間的に切り換えると、スイッチング損失の急変に起因してモータのトルクが変動し、また、騒音の急変に起因してユーザーに違和感を与えるという虞がある。 There is a conventional technical idea of controlling a power conversion circuit while switching between a two-phase modulation method and a three-phase modulation method. There is a risk that the torque of the motor will fluctuate due to the sudden change, and that the user will feel uncomfortable due to the sudden change in noise.

 特許文献1には、変調率が小さい時には3相変調方式を用い、変調率が大きくなるにつれて3相変調方式から2相変調方式へ連続的に変調方式を変化させることにより、3相変調方式から2相変調方式への切り換えに起因する騒音の急変を抑制する技術が開示されている。 In Patent Document 1, the three-phase modulation method is used when the modulation rate is small, and the modulation method is continuously changed from the three-phase modulation method to the two-phase modulation method as the modulation rate increases. Techniques for suppressing sudden changes in noise caused by switching to the two-phase modulation method have been disclosed.

国際公開第2010/119929号WO2010/119929

 特許文献1の技術では、時間軸上で隣り合う一対の3相変調期間と2相変調期間との和を、電力変換回路の接続端子に現れる交流波形の電気角1周期の6分の1に固定した状態で、3相変調方式と2相変調方式とを交互に切り換える。この場合、3相変調方式と2相変調方式とが切り換わるタイミングでスイッチング損失が変化することにより、トルクムラが発生する可能性がある。 In the technique of Patent Document 1, the sum of a pair of three-phase modulation period and two-phase modulation period adjacent on the time axis is reduced to 1/6 of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit. In a fixed state, the three-phase modulation method and the two-phase modulation method are alternately switched. In this case, torque unevenness may occur due to changes in switching loss at the timing of switching between the three-phase modulation method and the two-phase modulation method.

 本発明の電力変換装置における一つの態様は、直流電力とN相交流電力(Nは3以上の整数)との相互変換を行う電力変換回路と、前記電力変換回路に含まれる2N個のスイッチを第1の変調モードで制御する制御部と、を備え、前記制御部は、前記第1の変調モードにおいて、前記2N個のスイッチのうち1相のハイサイドスイッチ又はローサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御する第1のPWMモードと、前記2N個のスイッチのうち全相のスイッチを前記パルス幅変調により制御する第2のPWMモードとを周期的に切り換え、前記制御部が前記第1のPWMモードで動作する第1の期間と、前記制御部が前記第2のPWMモードで動作する第2の期間との和は、前記電力変換回路の接続端子に現れる交流波形の電気角1周期の2N分の1よりも短く、前記第1の期間は、前記パルス幅変調の1周期以上の長さであり、前記第1の期間と前記第2の期間との和に占める前記第1の期間の比率は可変である。 One aspect of the power conversion apparatus of the present invention includes a power conversion circuit that performs mutual conversion between DC power and N-phase AC power (N is an integer of 3 or more), and 2N switches included in the power conversion circuit. a control unit that controls in a first modulation mode, wherein the control unit fixes one phase high-side switch or low-side switch of the 2N switches to ON in the first modulation mode, periodically switching between a first PWM mode in which the remaining phase switches are controlled by pulse width modulation and a second PWM mode in which all phase switches among the 2N switches are controlled by the pulse width modulation; The sum of the first period during which the control section operates in the first PWM mode and the second period during which the control section operates in the second PWM mode appears at the connection terminal of the power conversion circuit. The first period is shorter than 1/2N of one cycle of the electrical angle of the AC waveform, the first period is longer than one cycle of the pulse width modulation, and the length of the first period and the second period is The ratio of the first period to the sum is variable.

 本発明の上記態様によれば、トルクムラを抑制することが可能な電力変換装置が提供される。 According to the above aspect of the present invention, a power converter capable of suppressing torque unevenness is provided.

図1は、本発明の第1実施形態における電力変換装置の構成を模式的に示す回路ブロック図である。FIG. 1 is a circuit block diagram schematically showing the configuration of a power converter according to a first embodiment of the present invention. 図2は、第1実施形態における制御部が第1の変調モードで動作する期間に出力される各ハイサイドゲート信号の一例を示す図である。FIG. 2 is a diagram showing an example of each high-side gate signal output during a period when the control section in the first embodiment operates in the first modulation mode. 図3は、図2に示すゲート信号を用いて各スイッチを第1の変調モードで制御することを想定したシミュレーションを行うことで得られた相電流波形を示す図である。FIG. 3 is a diagram showing phase current waveforms obtained by performing a simulation assuming that each switch is controlled in the first modulation mode using the gate signals shown in FIG. 図4は、図3に示す相電流リプルの大きさを、電流値の標準偏差として表した図である。FIG. 4 is a diagram showing the magnitude of the phase current ripple shown in FIG. 3 as a standard deviation of current values. 図5は、第2実施形態における制御部が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力される各ハイサイドゲート信号の一例を示す図である。FIG. 5 is a diagram showing an example of each high-side gate signal output during periods when the control unit in the second embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be. 図6は、第3実施形態における制御部が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力される各ハイサイドゲート信号の一例を示す図である。FIG. 6 is a diagram showing an example of each high-side gate signal output while the control unit in the third embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be. 図7は、第4実施形態における制御部が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力される各ハイサイドゲート信号の一例を示す図である。FIG. 7 is a diagram showing an example of each high-side gate signal output during periods when the control unit in the fourth embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be. 図8は、第5実施形態における制御部が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力される各ハイサイドゲート信号の一例を示す図である。FIG. 8 is a diagram showing an example of each high-side gate signal output during periods when the control unit in the fifth embodiment operates in each of the first modulation mode, the second modulation mode, and the third modulation mode. be. 図9は、第3実施形態におけるモード比率の具体例を示す図である。FIG. 9 is a diagram showing a specific example of mode ratios in the third embodiment. 図10は、第5実施形態におけるモード比率の具体例を示す図である。FIG. 10 is a diagram showing a specific example of mode ratios in the fifth embodiment.

 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。〔第1実施形態〕
 まず、本発明の第1実施形態について説明する。図1は、第1実施形態における電力変換装置10の構成を模式的に示す回路ブロック図である。図1に示すように、電力変換装置10は、モータ20と接続される。一例として、モータ20は、インナーロータ型の3相ブラシレスDCモータである。また、モータ20は、例えば電動車両に搭載される駆動用モータ(トラクションモータ)である。
An embodiment of the present invention will be described in detail below with reference to the drawings. [First Embodiment]
First, a first embodiment of the present invention will be described. FIG. 1 is a circuit block diagram schematically showing the configuration of a power converter 10 according to the first embodiment. As shown in FIG. 1 , the power conversion device 10 is connected with a motor 20 . As an example, the motor 20 is an inner rotor type three-phase brushless DC motor. Also, the motor 20 is, for example, a drive motor (traction motor) mounted on an electric vehicle.

 モータ20は、U相端子21uと、V相端子21vと、W相端子21wと、U相コイル22uと、V相コイル22vと、W相コイル22wと、を有する。図1では図示を省略するが、モータ20は、モータケースと、モータケースに収容されたロータ及びステータとを有する。ロータは、モータケースの内部において、ロータベアリング等の軸受け部品によって回転可能に支持される回転体である。ロータは、ロータの径方向内側を軸方向に貫通した状態でロータと同軸接合される出力軸を有する。ステータは、モータケースの内部において、ロータの外周面を囲った状態で固定され、ロータを回転させるのに必要な電磁力を発生させる。 The motor 20 has a U-phase terminal 21u, a V-phase terminal 21v, a W-phase terminal 21w, a U-phase coil 22u, a V-phase coil 22v, and a W-phase coil 22w. Although not shown in FIG. 1, the motor 20 has a motor case, and a rotor and a stator housed in the motor case. The rotor is a rotating body that is rotatably supported inside the motor case by a bearing component such as a rotor bearing. The rotor has an output shaft coaxially joined with the rotor while axially passing through the radially inner side of the rotor. The stator is fixed inside the motor case so as to surround the outer peripheral surface of the rotor, and generates an electromagnetic force necessary to rotate the rotor.

 U相端子21u、V相端子21v及びW相端子21wは、それぞれモータケースの表面から露出する金属端子である。U相端子21uは、電力変換装置10のU相接続端子13uに接続される。V相端子21vは、電力変換装置10のV相接続端子13vに接続される。W相端子21wは、電力変換装置10のW相接続端子13wに接続される。U相コイル22u、V相コイル22v及びW相コイル22wは、それぞれステータに設けられた励磁コイルである。一例として、U相コイル22u、V相コイル22v及びW相コイル22wは、モータ20の内部でスター結線される。 The U-phase terminal 21u, the V-phase terminal 21v, and the W-phase terminal 21w are metal terminals exposed from the surface of the motor case. U-phase terminal 21 u is connected to U-phase connection terminal 13 u of power converter 10 . V-phase terminal 21v is connected to V-phase connection terminal 13v of power converter 10 . The W-phase terminal 21w is connected to the W-phase connection terminal 13w of the power converter 10 . The U-phase coil 22u, the V-phase coil 22v, and the W-phase coil 22w are excitation coils provided in the stator, respectively. As an example, the U-phase coil 22u, the V-phase coil 22v, and the W-phase coil 22w are star-connected inside the motor 20 .

 U相コイル22uは、U相端子21uと中性点Nとの間に接続される。V相コイル22vは、V相端子21vと中性点Nとの間に接続される。W相コイル22wは、W相端子21wと中性点Nとの間に接続される。U相コイル22u、V相コイル22v及びW相コイル22wの通電状態が電力変換装置10によって制御されることにより、ロータを回転させるのに必要な電磁力が発生する。ロータが回転することにより、出力軸もロータに同期して回転する。 The U-phase coil 22u is connected between the U-phase terminal 21u and the neutral point N. V-phase coil 22v is connected between V-phase terminal 21v and neutral point N. The W-phase coil 22w is connected between the W-phase terminal 21w and the neutral point N. By controlling the energized states of the U-phase coil 22u, the V-phase coil 22v, and the W-phase coil 22w by the power converter 10, an electromagnetic force necessary to rotate the rotor is generated. As the rotor rotates, the output shaft also rotates in synchronization with the rotor.

 電力変換装置10は、電力変換回路11と、制御部12と、を備える。電力変換回路11は、モータ20及び直流電源30に接続され、直流電力とN相交流電力(Nは3以上の整数)との相互変換を行う。本実施形態では、モータ20が3相モータであるので、Nの値は3である。従って、電力変換回路11は、直流電力と3相交流電力との相互変換を行う。例えば、電力変換回路11がインバータとして機能するとき、電力変換回路11は、直流電源30から供給される直流電力を三相交流電力に変換してモータ20に出力する。一例として、直流電源30は、電動車両に搭載される複数のバッテリの一つである。 The power conversion device 10 includes a power conversion circuit 11 and a control section 12 . The power conversion circuit 11 is connected to the motor 20 and the DC power supply 30, and performs mutual conversion between DC power and N-phase AC power (N is an integer of 3 or more). In this embodiment, the value of N is 3 because the motor 20 is a three-phase motor. Therefore, the power conversion circuit 11 performs mutual conversion between DC power and three-phase AC power. For example, when the power conversion circuit 11 functions as an inverter, the power conversion circuit 11 converts DC power supplied from the DC power supply 30 into three-phase AC power and outputs the three-phase AC power to the motor 20 . As an example, DC power supply 30 is one of a plurality of batteries mounted on an electric vehicle.

 電力変換回路11は、2N個のスイッチを含む。上記のように本実施形態では、Nの値が3であるので、電力変換回路11は、6個のスイッチを含む。電力変換回路11は、U相ハイサイドスイッチQUHと、V相ハイサイドスイッチQVHと、W相ハイサイドスイッチQWHと、U相ローサイドスイッチQULと、V相ローサイドスイッチQVLと、W相ローサイドスイッチQWLと、を有する。本実施形態において各スイッチは、例えばIGBT(Insulated Gate Bipolar Transistor)である。 The power conversion circuit 11 includes 2N switches. As described above, in this embodiment, the value of N is 3, so the power conversion circuit 11 includes 6 switches. The power conversion circuit 11 includes a U-phase high-side switch QUH , a V-phase high-side switch QVH , a W-phase high-side switch QWH , a U-phase low-side switch QUL , a V-phase low-side switch QVL , and a W-phase switch QWL. and a phase low side switch QWL . Each switch in this embodiment is, for example, an IGBT (Insulated Gate Bipolar Transistor).

 U相ハイサイドスイッチQUHのコレクタ端子、V相ハイサイドスイッチQVHのコレクタ端子、及びW相ハイサイドスイッチQWHのコレクタ端子は、それぞれ直流電源30の正極端子に接続される。U相ローサイドスイッチQULのエミッタ端子、V相ローサイドスイッチQVLのエミッタ端子、及びW相ローサイドスイッチQWLのエミッタ端子は、それぞれ直流電源30の負極端子に接続される。 A collector terminal of the U-phase high-side switch QUH , a collector terminal of the V-phase high-side switch QVH , and a collector terminal of the W-phase high-side switch QWH are connected to the positive terminal of the DC power supply 30, respectively. The emitter terminal of the U-phase low-side switch QUL , the emitter terminal of the V-phase low-side switch QVL , and the emitter terminal of the W-phase low-side switch QWL are connected to the negative terminal of the DC power supply 30, respectively.

 U相ハイサイドスイッチQUHのエミッタ端子は、U相接続端子13uと、U相ローサイドスイッチQULのコレクタ端子とのそれぞれに接続される。つまり、U相ハイサイドスイッチQUHのエミッタ端子は、U相接続端子13uを介して、モータ20のU相端子21uに接続される。V相ハイサイドスイッチQVHのエミッタ端子は、V相接続端子13vと、V相ローサイドスイッチQVLのコレクタ端子とのそれぞれに接続される。つまり、V相ハイサイドスイッチQVHのエミッタ端子は、V相接続端子13vを介して、モータ20のV相端子21vに接続される。W相ハイサイドスイッチQWHのエミッタ端子は、W相接続端子13wと、W相ローサイドスイッチQWLのコレクタ端子とのそれぞれに接続される。つまり、W相ハイサイドスイッチQWHのエミッタ端子は、W相接続端子13wを介して、モータ20のW相端子21wに接続される。 The emitter terminal of the U-phase high side switch QUH is connected to the U-phase connection terminal 13u and the collector terminal of the U-phase low side switch QUL , respectively. That is, the emitter terminal of the U-phase high side switch QUH is connected to the U-phase terminal 21u of the motor 20 via the U-phase connection terminal 13u. The emitter terminal of the V-phase high side switch QVH is connected to the V-phase connection terminal 13v and the collector terminal of the V-phase low side switch QVL , respectively. That is, the emitter terminal of the V-phase high-side switch QVH is connected to the V-phase terminal 21v of the motor 20 via the V-phase connection terminal 13v. The emitter terminal of the W-phase high side switch QWH is connected to the W-phase connection terminal 13w and the collector terminal of the W-phase low side switch QWL . That is, the emitter terminal of the W-phase high side switch QWH is connected to the W-phase terminal 21w of the motor 20 via the W-phase connection terminal 13w.

 U相ハイサイドスイッチQUHのゲート端子、V相ハイサイドスイッチQVHのゲート端子、及びW相ハイサイドスイッチQWHのゲート端子は、それぞれ制御部12に接続される。また、U相ローサイドスイッチQULのゲート端子、V相ローサイドスイッチQVLのゲート端子、及びW相ローサイドスイッチQWLのゲート端子も、それぞれ制御部12に接続される。 A gate terminal of the U-phase high-side switch QUH , a gate terminal of the V-phase high-side switch QVH , and a gate terminal of the W-phase high-side switch QWH are connected to the control section 12, respectively. The gate terminal of the U-phase low-side switch QUL , the gate terminal of the V-phase low-side switch QVL , and the gate terminal of the W-phase low-side switch QWL are also connected to the controller 12, respectively.

 上記のように、電力変換回路11は、3つのハイサイドスイッチと3つのローサイドスイッチとを有する三相フルブリッジ回路によって構成される。このように構成された電力変換回路11は、制御部12によって各スイッチのスイッチング制御が行われることにより、直流電力と三相交流電力との相互変換を行う。U相接続端子13u、V相接続端子13vおよびW相接続端子13wは、電力変換回路11の接続端子である。 As described above, the power conversion circuit 11 is configured by a three-phase full-bridge circuit having three high-side switches and three low-side switches. The power conversion circuit 11 configured in this manner performs mutual conversion between DC power and three-phase AC power by controlling switching of each switch by the control unit 12 . A U-phase connection terminal 13u, a V-phase connection terminal 13v, and a W-phase connection terminal 13w are connection terminals of the power conversion circuit 11 .

 制御部12は、不図示のメモリを内蔵するプロセッサである。一例として、制御部12は、MCU(Microcontroller Unit)である。制御部12は、メモリに予め記憶されたプログラムに従って、電力変換回路11を制御する。詳細は後述するが、制御部12は、電力変換回路11に含まれる6個のスイッチを第1の変調モードで制御する。制御部12は、6個のスイッチを第1の変調モードで制御するために必要なゲート信号を生成する。 The control unit 12 is a processor containing a memory (not shown). As an example, the control unit 12 is an MCU (Microcontroller Unit). The control unit 12 controls the power conversion circuit 11 according to a program pre-stored in the memory. Although the details will be described later, the control unit 12 controls the six switches included in the power conversion circuit 11 in the first modulation mode. The controller 12 generates gate signals necessary to control the six switches in the first modulation mode.

 制御部12は、U相ハイサイドスイッチQUHを制御するために必要なU相ハイサイドゲート信号G1を生成し、生成したU相ハイサイドゲート信号G1をU相ハイサイドスイッチQUHのゲート端子に出力する。制御部12は、U相ローサイドスイッチQULを制御するために必要なU相ローサイドゲート信号G2を生成し、生成したU相ローサイドゲート信号G2をU相ローサイドスイッチQULのゲート端子に出力する。U相ローサイドゲート信号G2は、U相ハイサイドゲート信号G1の相補信号である。 The control unit 12 generates a U-phase high-side gate signal G1 necessary for controlling the U-phase high-side switch QUH , and transmits the generated U-phase high-side gate signal G1 to the gate terminal of the U-phase high-side switch QUH. output to The control unit 12 generates a U-phase low-side gate signal G2 necessary for controlling the U-phase low-side switch QUL , and outputs the generated U-phase low-side gate signal G2 to the gate terminal of the U-phase low-side switch QUL . The U-phase low-side gate signal G2 is a complementary signal of the U-phase high-side gate signal G1.

 制御部12は、V相ハイサイドスイッチQVHを制御するために必要なV相ハイサイドゲート信号G3を生成し、生成したV相ハイサイドゲート信号G3をV相ハイサイドスイッチQVHのゲート端子に出力する。制御部12は、V相ローサイドスイッチQVLを制御するために必要なV相ローサイドゲート信号G4を生成し、生成したV相ローサイドゲート信号G4をV相ローサイドスイッチQVLのゲート端子に出力する。V相ローサイドゲート信号G4は、V相ハイサイドゲート信号G3の相補信号である。 The control unit 12 generates a V-phase high-side gate signal G3 necessary for controlling the V-phase high-side switch QVH , and transmits the generated V-phase high-side gate signal G3 to the gate terminal of the V-phase high-side switch QVH. output to The control unit 12 generates a V-phase low-side gate signal G4 necessary for controlling the V-phase low-side switch QVL , and outputs the generated V-phase low-side gate signal G4 to the gate terminal of the V-phase low-side switch QVL . The V-phase low side gate signal G4 is a complementary signal of the V-phase high side gate signal G3.

 制御部12は、W相ハイサイドスイッチQWHを制御するために必要なW相ハイサイドゲート信号G5を生成し、生成したW相ハイサイドゲート信号G5をW相ハイサイドスイッチQWHのゲート端子に出力する。制御部12は、W相ローサイドスイッチQWLを制御するために必要なW相ローサイドゲート信号G6を生成し、生成したW相ローサイドゲート信号G6をW相ローサイドスイッチQWLのゲート端子に出力する。W相ローサイドゲート信号G6は、W相ハイサイドゲート信号G5の相補信号である。 The control unit 12 generates a W-phase high-side gate signal G5 necessary for controlling the W-phase high-side switch QWH , and transmits the generated W-phase high-side gate signal G5 to the gate terminal of the W-phase high-side switch QWH. output to The control unit 12 generates a W-phase low-side gate signal G6 necessary for controlling the W-phase low-side switch QWL , and outputs the generated W-phase low-side gate signal G6 to the gate terminal of the W-phase low-side switch QWL . The W-phase low-side gate signal G6 is a complementary signal of the W-phase high-side gate signal G5.

 なお、各ゲート信号には、同じ相のハイサイドスイッチとローサイドスイッチとが同時にオンに切り替わることを防止するためにデッドタイムが挿入される。 A dead time is inserted into each gate signal to prevent the high-side switch and low-side switch of the same phase from being switched on at the same time.

 以下では、上記のように構成された電力変換装置10が備える制御部12の動作について詳細に説明する。制御部12は、変調モードとして第1の変調モードを有する。制御部12は、電力変換回路11に含まれる6個のスイッチを第1の変調モードで制御する。 Below, the operation of the control unit 12 included in the power converter 10 configured as described above will be described in detail. The control unit 12 has a first modulation mode as a modulation mode. The control unit 12 controls the six switches included in the power conversion circuit 11 in the first modulation mode.

 図2は、制御部12が第1の変調モードで動作する期間TM1に出力されるU相ハイサイドゲート信号G1、V相ハイサイドゲート信号G3、およびW相ハイサイドゲート信号G5の一例を示す図である。なお、各ローサイドゲート信号は、各ハイサイドゲート信号の相補信号であるため、図2では、各ローサイドゲート信号の図示を省略する。以下の説明では、制御部12が第1の変調モードで動作する期間TM1を、第1の変調モード期間と呼称する場合がある。 FIG. 2 shows an example of the U-phase high-side gate signal G1, the V-phase high-side gate signal G3, and the W-phase high-side gate signal G5 that are output during the period TM1 in which the control section 12 operates in the first modulation mode. It is a diagram. Since each low side gate signal is a complementary signal of each high side gate signal, illustration of each low side gate signal is omitted in FIG. In the following description, the period TM1 during which the control section 12 operates in the first modulation mode may be referred to as the first modulation mode period.

 制御部12は、第1の変調モードにおいて、6個のスイッチのうち1相のハイサイドスイッチ又はローサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御する第1のPWM(Pulse Width Modulation)モードと、6個のスイッチのうち全相のスイッチをパルス幅変調により制御する第2のPWMモードとを周期的に切り換える。 In the first modulation mode, the control unit 12 fixes the high-side switch or low-side switch of one phase among the six switches to ON, and controls the switches of the remaining phases by pulse width modulation. (Pulse Width Modulation) mode and a second PWM mode in which the switches of all phases among the six switches are controlled by pulse width modulation.

 図2において、第1の期間T1は、制御部12が第1のPWMモードで動作する期間である。以下の説明では、第1の期間T1を第1のPWMモード期間と呼称する場合がある。第1のPWMモード期間T1は、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとに区別される。ハイサイド連続オン期間T1Hにおいて、制御部12は、6個のスイッチのうちU相ハイサイドスイッチQUHをオンに固定し、残りのV相及びW相のスイッチをパルス幅変調により制御する。ローサイド連続オン期間T1Lにおいて、制御部12は、6個のスイッチのうちW相ローサイドスイッチQWLをオンに固定し、残りのU相及びV相のスイッチをパルス幅変調により制御する。なお、残りの相のスイッチには、残りの相のハイサイドスイッチ及びローサイドスイッチが含まれる。 In FIG. 2, a first period T1 is a period during which the control section 12 operates in the first PWM mode. In the following description, the first period T1 may be referred to as the first PWM mode period. The first PWM mode period T1 is divided into a high side continuous ON period T1H and a low side continuous ON period T1L. During the high-side continuous ON period T1H, the control unit 12 fixes the U-phase high-side switch QUH of the six switches to ON, and controls the remaining V-phase and W-phase switches by pulse width modulation. During the low-side continuous ON period T1L, the control unit 12 fixes the W-phase low-side switch QWL of the six switches to ON, and controls the remaining U-phase and V-phase switches by pulse width modulation. The remaining phase switches include the remaining phase high-side switches and low-side switches.

 図2において、第2の期間T2は、制御部12が第2のPWMモードで動作する期間である。以下の説明では、第2の期間T2を第2のPWMモード期間と呼称する場合がある。第2のPWMモード期間T2において、制御部12は、6個のスイッチのうち全相のスイッチをパルス幅変調により制御する。なお、全相のスイッチには、全相のハイサイドスイッチ及びローサイドスイッチが含まれる。制御部12は、第1の変調モード期間TM1において、第1のPWMモードと第2のPWMモードとを周期的に切り換える。その結果、図2に示すように、第1の変調モード期間TM1において、第1のPWMモード期間T1と第2のPWMモード期間T2とが交互に現れる。 In FIG. 2, the second period T2 is the period during which the control section 12 operates in the second PWM mode. In the following description, the second period T2 may be referred to as a second PWM mode period. During the second PWM mode period T2, the control unit 12 controls the switches of all phases among the six switches by pulse width modulation. All-phase switches include all-phase high-side switches and low-side switches. The control unit 12 periodically switches between the first PWM mode and the second PWM mode in the first modulation mode period TM1. As a result, as shown in FIG. 2, the first PWM mode period T1 and the second PWM mode period T2 appear alternately in the first modulation mode period TM1.

 以下では、制御部12が、6個のスイッチのうち1相のハイサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御するモードを第3のPWMモードと呼称する。また、制御部12が、6個のスイッチのうち1相のローサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御するモードを第4のPWMモードと呼称する。ハイサイド連続オン期間T1Hは、制御部12が第3のPWMモードで動作する期間である。ローサイド連続オン期間T1Lは、制御部12が第4のPWMモードで動作する期間である。 Hereinafter, the mode in which the control unit 12 fixes the high-side switch of one phase out of the six switches to ON and controls the switches of the remaining phases by pulse width modulation is referred to as a third PWM mode. A mode in which the control unit 12 fixes one phase low-side switch of the six switches to ON and controls the remaining phase switches by pulse width modulation is called a fourth PWM mode. The high side continuous ON period T1H is a period during which the control section 12 operates in the third PWM mode. The low-side continuous ON period T1L is a period during which the controller 12 operates in the fourth PWM mode.

 制御部12は、第1の変調モード期間TM1において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、図2に示すように、第1の変調モード期間TM1において、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとが、それらの間に第2のPWMモード期間T2を挟んだ状態で交互に現れる。 The control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. As a result, as shown in FIG. 2, in the first modulation mode period TM1, the high-side continuous ON period T1H and the low-side continuous ON period T1L interpose the second PWM mode period T2 therebetween. appear alternately.

 第1のPWMモード期間T1において、パルス幅変調の1周期に占める各相のオン期間、すなわち各相のデューティは、各相のオン期間に第2のPWMモードを適用する場合のデューティから一律オフセットされた値である。具体的には、ハイサイド連続オン期間T1Hの場合、ハイサイド連続オン期間T1Hに第2のPWMモードを適用した際の各相のデューティのうち最大のデューティとなる相が100%のデューティとなるように、全相のデューティは一律オフセットされる。ローサイド連続オン期間T1Lの場合、ローサイド連続オン期間T1Lに第2のPWMモードを適用した際の各相のデューティのうち最小のデューティとなる相が0%のデューティとなるように、全相のデューティは一律オフセットされる。これにより、第1のPWMモード期間T1における相間電圧と、第2のPWMモード期間T2における相間電圧とが一致し、スムーズなモータ制御が実現される。 In the first PWM mode period T1, the ON period of each phase in one cycle of pulse width modulation, that is, the duty of each phase, is uniformly offset from the duty when the second PWM mode is applied to the ON period of each phase. is the value Specifically, in the case of the high side continuous ON period T1H, the phase having the maximum duty among the duties of the respective phases when the second PWM mode is applied to the high side continuous ON period T1H has a duty of 100%. , the duties of all phases are uniformly offset. In the case of the low-side continuous ON period T1L, the duty of all phases is adjusted so that the minimum duty among the phases when the second PWM mode is applied to the low-side continuous ON period T1L is 0%. are uniformly offset. As a result, the phase-to-phase voltage in the first PWM mode period T1 and the phase-to-phase voltage in the second PWM mode period T2 match, and smooth motor control is realized.

 第1のPWMモード期間T1と第2のPWMモード期間T2との和TSは、電力変換回路11の接続端子に現れる交流波形の電気角1周期の2N分の1よりも短い。上記のように本実施形態では、Nの値が3であるので、第1のPWMモード期間T1と第2のPWMモード期間T2との和TSは、上記電気角1周期の6分の1よりも短い。第1のPWMモード期間T1と第2のPWMモード期間T2との和TSは、時間軸上で隣り合う1対の第1のPWMモード期間T1と第2のPWMモード期間T2との和である。以下では、第1のPWMモード期間T1と第2のPWMモード期間T2との和TSを、モード切り換え周期と呼称する場合がある。 The sum TS of the first PWM mode period T1 and the second PWM mode period T2 is shorter than 1/2N of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11 . As described above, in this embodiment, the value of N is 3, so the sum TS of the first PWM mode period T1 and the second PWM mode period T2 is 1/6 of one period of the electrical angle. is also short. The sum TS of the first PWM mode period T1 and the second PWM mode period T2 is the sum of a pair of the first PWM mode period T1 and the second PWM mode period T2 adjacent on the time axis. . Hereinafter, the sum TS of the first PWM mode period T1 and the second PWM mode period T2 may be referred to as a mode switching period.

 第1のPWMモード期間T1は、パルス幅変調の1周期以上の長さである。パルス幅変調の1周期とは、各ゲート信号に現れるPWM波形(矩形波)の1周期を意味する。上記の「モード切り換え周期TSは、電力変換回路11の接続端子に現れる交流波形の電気角1周期の2N分の1よりも短い」という条件を満たすのであれば、第2のPWMモード期間T2の長さは、とくに限定されない。一例として、図2では、第1のPWMモード期間T1がパルス幅変調の1周期に相当する長さを有し、第2のPWMモード期間T2がパルス幅変調の1.5周期に相当する長さを有する。この場合、モード切り換え周期TSは、パルス幅変調の2.5周期に相当する。例えば、電気角1周期においてパルス幅変調の90周期が含まれる場合、電気角1周期の6分の1はパルス幅変調の15周期に相当し、本実施形態のモード切り換え周期TSは、電気角1周期の6分の1よりも十分に短い周期となる。 The first PWM mode period T1 is longer than one period of pulse width modulation. One cycle of pulse width modulation means one cycle of a PWM waveform (rectangular wave) appearing in each gate signal. If the above condition that "the mode switching period TS is shorter than 1/2N of one period of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11" is satisfied, then the second PWM mode period T2 The length is not particularly limited. As an example, in FIG. 2, the first PWM mode period T1 has a length corresponding to one period of pulse width modulation, and the second PWM mode period T2 has a length corresponding to 1.5 periods of pulse width modulation. have In this case, the mode switching period TS corresponds to 2.5 periods of pulse width modulation. For example, when 90 periods of pulse width modulation are included in one period of electrical angle, 1/6 of one period of electrical angle corresponds to 15 periods of pulse width modulation. The period is sufficiently shorter than 1/6 of one period.

 第1のPWMモード期間T1と第2のPWMモード期間T2との和に占める第1のPWMモード期間T1の比率は可変である。以下の説明では、第1のPWMモード期間T1と第2のPWMモード期間T2との和に占める第1のPWMモード期間T1の比率をモード比率と呼称する場合がある。第1のPWMモード期間T1が第2のPWMモード期間T2に対して相対的に長くなると、モード比率は大きくなる。一方、第2のPWMモード期間T2が第1のPWMモード期間T1に対して相対的に長くなると、モード比率は小さくなる。 The ratio of the first PWM mode period T1 to the sum of the first PWM mode period T1 and the second PWM mode period T2 is variable. In the following description, the ratio of the first PWM mode period T1 to the sum of the first PWM mode period T1 and the second PWM mode period T2 may be referred to as a mode ratio. As the first PWM mode period T1 becomes longer relative to the second PWM mode period T2, the mode ratio becomes larger. On the other hand, when the second PWM mode period T2 becomes relatively longer than the first PWM mode period T1, the mode ratio becomes smaller.

 モード比率が比較的大きい状態で制御部12が第1の変調モードで動作する場合、第1の変調モード期間TM1において1相のスイッチングが停止している期間の比率が大きくなるため、スイッチング損失は比較的小さくなる。これは2相変調の特性に近い状態に相当する。このため相電流リプルは比較的大きくなる。一方、モード比率が比較的小さい状態で制御部12が第1の変調モードで動作する場合、第1の変調モード期間TM1において1相のスイッチングが停止している期間の比率が小さくなるため、スイッチング損失は比較的大きくなる。これは3相変調の特性に近い状態に相当する。このため相電流リプルは比較的小さくなる。このように、モード比率が大きくなるほど、第1の変調モードは2相変調の特性に近い状態となる。また、モード比率が小さくなるほど、第1の変調モードは3相変調の特性に近い状態となる。 When the control unit 12 operates in the first modulation mode with the mode ratio relatively large, the ratio of the period during which switching of one phase is stopped in the first modulation mode period TM1 increases, so the switching loss is become relatively small. This corresponds to a state close to the characteristics of two-phase modulation. Therefore, the phase current ripple becomes relatively large. On the other hand, when the control unit 12 operates in the first modulation mode with the mode ratio relatively small, the ratio of the period during which switching of one phase is stopped in the first modulation mode period TM1 becomes small. Losses are relatively large. This corresponds to a state close to the characteristics of three-phase modulation. Therefore, the phase current ripple becomes relatively small. Thus, the higher the mode ratio, the closer the characteristics of the first modulation mode to the two-phase modulation. Also, the smaller the mode ratio, the closer the characteristics of the first modulation mode to the three-phase modulation.

 上記のように、第1実施形態において、第1のPWMモード期間T1と第2のPWMモード期間T2との和であるモード切り換え周期TSは、電力変換回路11の接続端子に現れる交流波形の電気角1周期の6分の1よりも短い。このような第1実施形態によれば、特許文献1の技術と比較して、2相変調に相当する第1のPWMモードと、3相変調に相当する第2のPWMモードとが高周波で切り換わる。これにより、第1のPWMモードと第2のPWMモードとが切り換わるタイミングでスイッチング損失が変化することを抑制できるため、第1の変調モード期間TM1においてトルクムラが発生することを抑制できる。 As described above, in the first embodiment, the mode switching period TS, which is the sum of the first PWM mode period T1 and the second PWM mode period T2, is the electric current of the AC waveform appearing at the connection terminal of the power conversion circuit 11. Shorter than 1/6 of one angular period. According to the first embodiment, the first PWM mode corresponding to two-phase modulation and the second PWM mode corresponding to three-phase modulation are switched at a high frequency as compared with the technique of Patent Document 1. be replaced. As a result, it is possible to suppress the switching loss from changing at the timing of switching between the first PWM mode and the second PWM mode, so it is possible to suppress the occurrence of torque unevenness in the first modulation mode period TM1.

 また、第1実施形態によれば、2相変調だけで各スイッチを制御する場合と比較して、第1の変調モード期間TM1における平均的な相電流リプルを低減できるため、騒音を低減できる。モータ20は、インダクタンス成分を有する一種のフィルタであるので、第1のPWMモードと第2のPWMモードとの切り換え速度を高速化することにより、モード切り換えに伴うスイッチング損失及び相電流リプルの変化による影響を低減できる。 In addition, according to the first embodiment, noise can be reduced because the average phase current ripple in the first modulation mode period TM1 can be reduced compared to the case where each switch is controlled only by two-phase modulation. Since the motor 20 is a kind of filter that has an inductance component, by speeding up the switching speed between the first PWM mode and the second PWM mode, the switching loss and the phase current ripple caused by the mode switching can be reduced. can reduce the impact.

 図3は、図2に示すゲート信号を用いて各スイッチを第1の変調モードで制御することを想定したシミュレーションを行うことで得られた相電流波形を示す図である。なお、モータ20の回転に伴う電流変動を無視して相電流リプルのみに着目するために、モータ20の回転角が所定値に固定された条件でシミュレーションを行った。図3では、比較のために、3相変調だけで各スイッチを制御することを想定したシミュレーションを行うことで得られた相電流波形と、Min型2相変調だけで各スイッチを制御することを想定したシミュレーションを行うことで得られた相電流波形とを示す。Min型2相変調とは、いわゆるローサイドオン固定型2相変調を意味する。ローサイドオン固定型2相変調とは、6個のスイッチのうち1相のローサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御する2相変調方式である。ローサイドオン固定型2相変調では、ローサイドスイッチがオンに固定される相の切り換え周期が電気角1周期の3分の1に相当する。なお、各相電流波形は、W相電流Iwの波形である。 FIG. 3 is a diagram showing phase current waveforms obtained by performing a simulation assuming that the gate signals shown in FIG. 2 are used to control each switch in the first modulation mode. Note that the simulation was performed under the condition that the rotation angle of the motor 20 was fixed at a predetermined value in order to ignore the current fluctuation accompanying the rotation of the motor 20 and focus only on the phase current ripple. For comparison, Fig. 3 shows phase current waveforms obtained by performing a simulation assuming that each switch is controlled only by 3-phase modulation, and control of each switch by Min-type 2-phase modulation alone. Phase current waveforms obtained by performing an assumed simulation are shown. Min-type two-phase modulation means so-called low-side-on fixed two-phase modulation. The fixed low-side on-type two-phase modulation is a two-phase modulation method in which one low-side switch of six switches is fixed on and the switches of the remaining phases are controlled by pulse width modulation. In the low-side on-fixed two-phase modulation, the phase switching cycle in which the low-side switch is fixed on corresponds to one-third of one cycle of the electrical angle. Each phase current waveform is the waveform of the W-phase current Iw.

 図4は、図3に示す相電流リプルの大きさを、電流値の標準偏差として表した図である。図4に示すように、第1実施形態によれば、Min型2相変調だけで各スイッチを制御する場合と比較して、平均的な相電流リプルを低減できることがわかる。図2に示すゲート信号の例のように、第1のPWMモード期間T1がパルス幅変調の1周期に相当する長さを有し、第2のPWMモード期間T2がパルス幅変調の1.5周期に相当する長さを有する場合、3相変調だけで各スイッチを制御する場合と比較して、第1の変調モード期間TM1におけるスイッチング頻度は15分の13となる。従って、第1実施形態によれば、3相変調だけで各スイッチを制御する場合と比較して、スイッチング損失を低減できる。 FIG. 4 is a diagram showing the magnitude of the phase current ripple shown in FIG. 3 as the standard deviation of the current values. As shown in FIG. 4, according to the first embodiment, the average phase current ripple can be reduced as compared with the case where each switch is controlled only by Min-type two-phase modulation. As in the example of the gate signal shown in FIG. 2, the first PWM mode period T1 has a length corresponding to one cycle of the pulse width modulation, and the second PWM mode period T2 has a length of 1.5 cycles of the pulse width modulation. If it has a length corresponding to the period, the switching frequency in the first modulation mode period TM1 is 13/15 compared to the case where each switch is controlled only by three-phase modulation. Therefore, according to the first embodiment, switching loss can be reduced compared to the case where each switch is controlled only by three-phase modulation.

 第1実施形態によれば、例えば、第1の変調モードの状態を、2相変調の特性に近い状態(モード比率が比較的大きい状態)から3相変調の特性に近い状態(モード比率が比較的小さい状態)に切り換えるときに、モード比率を大きい値から小さい値へ徐々に変化させることにより、2相変調の特性に近い状態から3相変調の特性に近い状態への移行が徐々に進行する。その結果、2相変調の特性に近い状態から3相変調の特性に近い状態への切り換えに起因する騒音の急変を低減できるので、ユーザーに違和感を与えることを抑制できる。 According to the first embodiment, for example, the state of the first modulation mode is changed from a state close to the characteristics of two-phase modulation (a state in which the mode ratio is relatively large) to a state close to the characteristics of three-phase modulation (a state in which the mode ratio is compared). By gradually changing the mode ratio from a large value to a small value when switching to a state with a small target, the transition from a state close to the characteristics of two-phase modulation to a state close to the characteristics of three-phase modulation progresses gradually. . As a result, it is possible to reduce abrupt changes in noise caused by switching from a state close to the two-phase modulation characteristics to a state close to the three-phase modulation characteristics, thereby preventing the user from feeling discomfort.

 同様に、第1の変調モードの状態を、3相変調の特性に近い状態から2相変調の特性に近い状態に切り換えるときには、モード比率を小さい値から大きい値へ徐々に変化させることにより、3相変調の特性に近い状態から2相変調の特性に近い状態への移行が徐々に進行する。その結果、3相変調の特性に近い状態から2相変調の特性に近い状態への切り換えに起因する騒音の急変を低減できるので、ユーザーに違和感を与えることを抑制できる。 Similarly, when switching the state of the first modulation mode from a state close to the characteristics of three-phase modulation to a state close to the characteristics of two-phase modulation, the mode ratio is gradually changed from a small value to a large value. The transition from a state close to the characteristics of phase modulation to a state close to the characteristics of two-phase modulation progresses gradually. As a result, it is possible to reduce a sudden change in noise caused by switching from a state close to characteristics of three-phase modulation to a state close to characteristics of two-phase modulation, so that it is possible to prevent the user from feeling discomfort.

 第1実施形態において、制御部12は、第1の変調モード期間TM1において、第3のPWMモードと、第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、第1の変調モード期間TM1において、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとが、第1のPWMモード期間T1として交互に現れる。 これにより、第1の変調モード期間TM1の全期間にわたって、ハイサイド連続オン期間T1Hにおけるスイッチング損失と、ローサイド連続オン期間T1Lにおけるスイッチング損失とが平均化される。その結果、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1における発熱量とのバランスが保たれるので、第1の変調モード期間TM1における電力変換回路11の過熱を抑制できる。 In the first embodiment, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. As a result, in the first modulation mode period TM1, the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear as the first PWM mode period T1. Thereby, the switching loss in the high side continuous ON period T1H and the switching loss in the low side continuous ON period T1L are averaged over the entire period of the first modulation mode period TM1. As a result, a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the first modulation mode period TM1 can be suppressed.

 第1実施形態において、制御部12が第3のPWMモードで動作するハイサイド連続オン期間T1Hと、制御部12が第4のPWMモードで動作するローサイド連続オン期間T1Lとは、一致する。図2に示す例では、ハイサイド連続オン期間T1H及びローサイド連続オン期間T1Lは、いずれもパルス幅変調の1周期に相当する長さを有する。 In the first embodiment, the high side continuous ON period T1H during which the control section 12 operates in the third PWM mode and the low side continuous ON period T1L during which the control section 12 operates in the fourth PWM mode match. In the example shown in FIG. 2, each of the high side continuous ON period T1H and the low side continuous ON period T1L has a length corresponding to one period of pulse width modulation.

 これにより、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1Lにおける発熱量とのバランスが向上するので、第1の変調モード期間TM1における電力変換回路11の過熱をより効果的に抑制できる。 This improves the balance between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1L, thereby more effectively suppressing overheating of the power conversion circuit 11 during the first modulation mode period TM1. can.

 なお、上記第1実施形態では、制御部12が、第1の変調モード期間TM1において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える形態を例示したが、本発明はこれに限定されない。 In the above-described first embodiment, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. However, the invention is not so limited.

 例えば、制御部12は、第1の変調モード期間TM1において、第1のPWMモードとして第3のPWMモードのみを使用して各スイッチを制御してもよい。この場合、第1の変調モード期間TM1に含まれる全ての第1のPWMモード期間T1は、ハイサイド連続オン期間T1Hになる。また、例えば、制御部12は、第1の変調モード期間TM1において、第1のPWMモードとして第4のPWMモードのみを使用して各スイッチを制御してもよい。この場合、第1の変調モード期間TM1に含まれる全ての第1のPWMモード期間T1は、ローサイド連続オン期間T1Lになる。 For example, the control unit 12 may control each switch using only the third PWM mode as the first PWM mode during the first modulation mode period TM1. In this case, all first PWM mode periods T1 included in the first modulation mode period TM1 are high side continuous ON periods T1H. Further, for example, the control unit 12 may control each switch using only the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. In this case, all first PWM mode periods T1 included in the first modulation mode period TM1 are low side continuous ON periods T1L.

 さらに、制御部12は、第1のPWMモード期間T1において、第3のPWMモードと第4のPWMモードとを、電力変換回路11の接続端子に現れる交流波形の電気角1周期の2N分の1よりも短い周期で切り換えてもよい。例えば、Nの値が3の場合には、制御部12は、第1のPWMモード期間T1において、第3のPWMモードと第4のPWMモードとを、上記電気角1周期の6分の1よりも短い周期で切り換えてもよい。この場合、第1の変調モード期間TM1に含まれる第1のPWMモード期間T1のそれぞれにおいて、ハイサイド連続オン期間T1Hとローサイド連続オン期間T1Lとが交互に現れる。 これにより、第1のPWMモード期間T1において、ハイサイド連続オン期間T1Hにおけるスイッチング損失と、ローサイド連続オン期間T1Lにおけるスイッチング損失とが平均化される。その結果、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1における発熱量とのバランスが保たれるので、第1のPWMモード期間T1における電力変換回路11の過熱を抑制できる。 Furthermore, in the first PWM mode period T1, the control unit 12 sets the third PWM mode and the fourth PWM mode to 2N of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11. It may be switched at a period shorter than one. For example, when the value of N is 3, the control unit 12 sets the third PWM mode and the fourth PWM mode to 1/6 of one period of the electrical angle in the first PWM mode period T1. You may switch in a period shorter than. In this case, the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear in each of the first PWM mode periods T1 included in the first modulation mode period TM1. Thus, in the first PWM mode period T1, the switching loss in the high side continuous ON period T1H and the switching loss in the low side continuous ON period T1L are averaged. As a result, a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the first PWM mode period T1 can be suppressed.

 上記のように、制御部12が、第1のPWMモード期間T1において、第3のPWMモードと第4のPWMモードとを切り換える場合に、第1のPWMモード期間T1において、制御部12が第3のPWMモードで動作するハイサイド連続オン期間T1Hと、制御部12が第4のPWMモードで動作するローサイド連続オン期間T1Lとが一致していてもよい。 As described above, when the control unit 12 switches between the third PWM mode and the fourth PWM mode during the first PWM mode period T1, the control unit 12 switches between the third PWM mode and the fourth PWM mode during the first PWM mode period T1. The high-side continuous ON period T1H during which the control unit 12 operates in the PWM mode 3 may coincide with the low-side continuous ON period T1L during which the control unit 12 operates in the fourth PWM mode.

 これにより、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1Lにおける発熱量とのバランスが向上するので、第1のPWMモード期間T1における電力変換回路11の過熱をより効果的に抑制できる。〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。第2実施形態は、制御部12が第1の変調モードだけでなく、第2の変調モードと第3の変調モードとを変調モードとして有する点で第1実施形態と相違する。従って、以下では、第2実施形態における制御部12の動作について詳細に説明する。
This improves the balance between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1L, thereby more effectively suppressing overheating of the power conversion circuit 11 during the first PWM mode period T1. can. [Second embodiment]
Next, a second embodiment of the invention will be described. The second embodiment differs from the first embodiment in that the control section 12 has not only the first modulation mode but also the second modulation mode and the third modulation mode as modulation modes. Therefore, the operation of the control unit 12 in the second embodiment will be described in detail below.

 第2実施形態において、制御部12は、モード比率が第1の比率である第2の変調モードと、モード比率が第1の比率よりも小さい第2の比率である第3の変調モードとの間で変調モードの切り換えを行う際に、第2の変調モードで動作する期間と第3の変調モードで動作する期間との間の期間において第1の変調モードで動作し、第1の変調モードで動作する期間においてモード比率を連続的又は段階的に変化させる。 In the second embodiment, the control unit 12 selects a second modulation mode in which the mode ratio is the first ratio and a third modulation mode in which the mode ratio is a second ratio smaller than the first ratio. When switching the modulation mode between, operate in the first modulation mode in the period between the period of operation in the second modulation mode and the period of operation in the third modulation mode, and the first modulation mode The mode ratio is changed continuously or stepwise during the period of operation.

 図5は、第2実施形態における制御部12が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力されるU相ハイサイドゲート信号G1、V相ハイサイドゲート信号G3、およびW相ハイサイドゲート信号G5の一例を示す図である。図5において、期間TM2は、制御部12が第2の変調モードで動作する期間であり、期間TM3は、制御部12が第3の変調モードで動作する期間である。以下の説明では、制御部12が第2の変調モードで動作する期間TM2を第2の変調モード期間と呼称し、制御部12が第3の変調モードで動作する期間TM3を第3の変調モード期間と呼称する場合がある。 FIG. 5 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the controller 12 in the second embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively. FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5; In FIG. 5, a period TM2 is a period during which the control section 12 operates in the second modulation mode, and a period TM3 is a period during which the control section 12 operates in the third modulation mode. In the following description, the period TM2 during which the control unit 12 operates in the second modulation mode is referred to as the second modulation mode period, and the period TM3 during which the control unit 12 operates in the third modulation mode is referred to as the third modulation mode. Sometimes called a period.

 第2の変調モードは、モード比率が第1の変調モードのモード比率よりも大きい第1の比率で固定されるという点で第1の変調モードと相違し、他の点で第1の変調モードと一致する。すなわち、制御部12は、第2の変調モードにおいて、モード比率が第1の比率に固定された状態で、第1のPWMモードと第2のPWMモードとを周期的に切り換える。 The second modulation mode differs from the first modulation mode in that the mode ratio is fixed at a first ratio that is greater than the mode ratio of the first modulation mode, and is otherwise similar to the first modulation mode. matches. That is, in the second modulation mode, the control unit 12 periodically switches between the first PWM mode and the second PWM mode while the mode ratio is fixed at the first ratio.

 図5に示す例では、制御部12は、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、図5に示すように、第2の変調モード期間TM2において、第1のPWMモード期間T1として、ハイサイド連続オン期間T1Hとローサイド連続オン期間T1Lとが、それらの間に第2のPWMモード期間T2を挟んだ状態で交互に現れる。 In the example shown in FIG. 5, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the second modulation mode period TM2. As a result, as shown in FIG. 5, in the second modulation mode period TM2, as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.

 一例として、図5では、第2の変調モード期間TM2において、第1のPWMモード期間T1がパルス幅変調の3周期に相当する長さを有し、第2のPWMモード期間T2がパルス幅変調の1.5周期に相当する長さを有する。すなわち、図5に示す例では、第2の変調モードのモード比率は、3/4.5に固定される。以下では、第2の変調モードのモード比率を第2のモード比率Rm2と呼称する場合がある。 As an example, in FIG. 5, in the second modulation mode period TM2, the first PWM mode period T1 has a length corresponding to three periods of pulse width modulation, and the second PWM mode period T2 has a length corresponding to three cycles of pulse width modulation. has a length corresponding to 1.5 periods of . That is, in the example shown in FIG. 5, the mode ratio of the second modulation mode is fixed at 3/4.5. Below, the mode ratio of the second modulation mode may be referred to as a second mode ratio Rm2.

 第3の変調モードは、モード比率が第1の変調モード及び第2の変調モードのモード比率よりも小さい第2の比率に固定されるという点で第1の変調モード及び第2の変調モードと相違し、他の点で第1の変調モード及び第2の変調モードと一致する。すなわち、制御部12は、第3の変調モードにおいて、モード比率が第2の比率に固定された状態で、第1のPWMモードと第2のPWMモードとを周期的に切り換える。 The third modulation mode is similar to the first modulation mode and the second modulation mode in that the mode ratio is fixed at a second ratio that is less than the mode ratios of the first modulation mode and the second modulation mode. It is different and otherwise consistent with the first modulation mode and the second modulation mode. That is, in the third modulation mode, the control unit 12 periodically switches between the first PWM mode and the second PWM mode while the mode ratio is fixed at the second ratio.

 図5に示す例では、制御部12は、第3の変調モード期間TM3において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、図5に示すように、第3の変調モード期間TM3において、第1のPWMモード期間T1として、ハイサイド連続オン期間T1Hとローサイド連続オン期間T1Lとが、それらの間に第2のPWMモード期間T2を挟んだ状態で交互に現れる。 In the example shown in FIG. 5, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the third modulation mode period TM3. As a result, as shown in FIG. 5, in the third modulation mode period TM3, as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.

 一例として、図5では、第3の変調モード期間TM3において、第1のPWMモード期間T1がパルス幅変調の1周期に相当する長さを有し、第2のPWMモード期間T2がパルス幅変調の3.5周期に相当する長さを有する。すなわち、図5に示す例では、第3の変調モードのモード比率は、1/4.5に固定される。以下では、第3の変調モードのモード比率を第3のモード比率Rm3と呼称する場合がある。 As an example, in FIG. 5, in the third modulation mode period TM3, the first PWM mode period T1 has a length corresponding to one period of pulse width modulation, and the second PWM mode period T2 has a length corresponding to one period of pulse width modulation. has a length corresponding to 3.5 periods of . That is, in the example shown in FIG. 5, the mode ratio of the third modulation mode is fixed at 1/4.5. Hereinafter, the mode ratio of the third modulation mode may be referred to as third mode ratio Rm3.

 図5に示す例では、第1実施形態と同様に、制御部12は、第1の変調モード期間TM1において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、図5に示すように、第1の変調モード期間TM1において、第1のPWMモード期間T1として、ハイサイド連続オン期間T1Hとローサイド連続オン期間T1Lとが、それらの間に第2のPWMモード期間T2を挟んだ状態で交互に現れる。 In the example shown in FIG. 5, similarly to the first embodiment, the control unit 12 alternates between the third PWM mode and the fourth PWM mode as the first PWM mode in the first modulation mode period TM1. switch to As a result, as shown in FIG. 5, in the first modulation mode period TM1, as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween.

 一例として、図5では、第1の変調モード期間TM1において、第1のPWMモード期間T1がパルス幅変調の1周期に相当する長さを有し、第2のPWMモード期間T2がパルス幅変調の1.5周期に相当する長さを有する。すなわち、図5に示す例では、第1の変調モードのモード比率は、1/2.5であるが、第2実施形態において、制御部12は、第1の変調モード期間TM1において、モード比率を連続的又は段階的に変化させる。以下では、第1の変調モードのモード比率を第1のモード比率Rm1と呼称する場合がある。 As an example, in FIG. 5, in the first modulation mode period TM1, the first PWM mode period T1 has a length corresponding to one period of pulse width modulation, and the second PWM mode period T2 has a length corresponding to one period of pulse width modulation. has a length corresponding to 1.5 periods of . That is, in the example shown in FIG. 5, the mode ratio of the first modulation mode is 1/2.5, but in the second embodiment, the control unit 12 sets the mode ratio to is changed continuously or stepwise. Hereinafter, the mode ratio of the first modulation mode may be referred to as a first mode ratio Rm1.

 第1のモード比率Rm1の最大値をRm1_maxとし、第1のモード比率Rm1の最小値をRm1_minとすると、制御部12は、第1の変調モード期間TM1において、下式(1)で表される範囲内で第1のモード比率Rm1を連続的又は段階的に変化させる。 Let Rm1_max be the maximum value of the first mode ratio Rm1, and Rm1_min be the minimum value of the first mode ratio Rm1. The first mode ratio Rm1 is changed continuously or stepwise within the range.

 Rm1_min ≦ Rm1 ≦ Rm1_max  …(1)
 第1のモード比率Rm1と第2のモード比率Rm2との関係は、下式(2)で表される。第1のモード比率Rm1と第3のモード比率Rm3との関係は、下式(3)で表される。第2のモード比率Rm2と第3のモード比率Rm3との関係は、下式(4)で表される。
Rm1_min ≤ Rm1 ≤ Rm1_max (1)
The relationship between the first mode ratio Rm1 and the second mode ratio Rm2 is represented by the following formula (2). The relationship between the first mode ratio Rm1 and the third mode ratio Rm3 is represented by the following formula (3). The relationship between the second mode ratio Rm2 and the third mode ratio Rm3 is represented by the following formula (4).

 Rm2 > Rm1_max  …(2)
 Rm1_min > Rm3  …(3)
 Rm2 > Rm3      …(4)
 上記のように、第1のモード比率Rm1、第2のモード比率Rm2、および第3のモード比率Rm3のうち、第2のモード比率Rm2は最も大きい。また、第1のモード比率Rm1、第2のモード比率Rm2、および第3のモード比率Rm3のうち、第3のモード比率Rm3は最も小さい。従って、制御部12が第2の変調モードで動作する第2の変調モード期間TM2において、制御部12は、2相変調の特性に近い状態で各スイッチを制御するため、スイッチング損失は比較的小さくなるが、相電流リプルは比較的大きくなる。一方、制御部12が第3の変調モードで動作する第3の変調モード期間TM3において、制御部12は、3相変調の特性に近い状態で各スイッチを制御するため、相電流リプルは比較的小さくなるが、スイッチング損失は比較的大きくなる。
Rm2>Rm1_max (2)
Rm1_min > Rm3 (3)
Rm2 > Rm3 (4)
As described above, the second mode ratio Rm2 is the largest among the first mode ratio Rm1, the second mode ratio Rm2, and the third mode ratio Rm3. Moreover, the third mode ratio Rm3 is the smallest among the first mode ratio Rm1, the second mode ratio Rm2, and the third mode ratio Rm3. Therefore, in the second modulation mode period TM2 in which the control unit 12 operates in the second modulation mode, the control unit 12 controls each switch in a state close to the two-phase modulation characteristics, so switching loss is relatively small. However, the phase current ripple becomes relatively large. On the other hand, during the third modulation mode period TM3 in which the control unit 12 operates in the third modulation mode, the control unit 12 controls each switch in a state close to the characteristics of three-phase modulation, so the phase current ripple is relatively It will be small, but the switching loss will be relatively large.

 仮に、このような第2の変調モードと第3の変調モードとが瞬間的に切り換えられると、スイッチング損失の急変に起因してトルク変動が生じ、また、騒音の急変に起因してユーザーに違和感を与える虞がある。しかしながら、第2実施形態では、制御部12は、第2の変調モードと第3の変調モードとの間で変調モードの切り換えを行う際に、第2の変調モード期間TM2と第3の変調モード期間TM3との間の期間において第1の変調モードで動作し、第1の変調モード期間TM1において第1のモード比率Rm1を、上式(1)で表される範囲内で連続的又は段階的に変化させる。 If the second modulation mode and the third modulation mode were to be instantaneously switched, torque fluctuation would occur due to a sudden change in switching loss, and a sudden change in noise would make the user uncomfortable. There is a risk of giving However, in the second embodiment, the control unit 12 switches between the second modulation mode period TM2 and the third modulation mode when switching the modulation mode between the second modulation mode and the third modulation mode. The first modulation mode is operated in the period between the period TM3, and the first mode ratio Rm1 in the first modulation mode period TM1 is continuously or stepwise within the range represented by the above formula (1) change to

 例えば、制御部12は、第3の変調モードから第2の変調モードへ変調モードを切り換える場合、まず、第3のモード比率Rm3を1/4.5に固定した状態で第3の変調モードで動作した後、第1の変調モードに移行する。制御部12は、第1の変調モードに移行すると、第1の変調モード期間TM1において、第1のモード比率Rm1を、1/3.5(Rm1_min)→1/2.5→2/3.5(Rm1_max)の順で変化させながら第1の変調モードで動作した後、第2の変調モードに移行する。制御部12は、第2の変調モードに移行すると、第2のモード比率Rm2を3/4.5に固定した状態で第2の変調モードで動作する。 For example, when switching the modulation mode from the third modulation mode to the second modulation mode, the control unit 12 first sets the third mode ratio Rm3 to 1/4.5 in the third modulation mode. After operating, it transitions to the first modulation mode. After shifting to the first modulation mode, the control unit 12 changes the first mode ratio Rm1 from 1/3.5 (Rm1_min)→1/2.5→2/3 . 5 (Rm1_max), and after operating in the first modulation mode, it shifts to the second modulation mode. After shifting to the second modulation mode, the control unit 12 operates in the second modulation mode with the second mode ratio Rm2 fixed at 3/4.5.

 例えば、制御部12は、第2の変調モードから第3の変調モードへ変調モードを切り換える場合、まず、第2のモード比率Rm2を3/4.5に固定した状態で第2の変調モードで動作した後、第1の変調モードに移行する。制御部12は、第1の変調モードに移行すると、第1の変調モード期間TM1において、第1のモード比率Rm1を、2/3.5(Rm1_max)→1/2.5→1/3.5(Rm1_min)の順で変化させながら第1の変調モードで動作した後、第3の変調モードに移行する。制御部12は、第3の変調モードに移行すると、第3のモード比率Rm3を1/4.5に固定した状態で第3の変調モードで動作する。 For example, when the control unit 12 switches the modulation mode from the second modulation mode to the third modulation mode, first, in the second modulation mode with the second mode ratio Rm2 fixed at 3/4.5, After operating, it transitions to the first modulation mode. After shifting to the first modulation mode, the control unit 12 changes the first mode ratio Rm1 from 2/3.5 (Rm1_max)→1/2.5→1/3 . 5 (Rm1_min) and after operating in the first modulation mode, it shifts to the third modulation mode. After shifting to the third modulation mode, the control section 12 operates in the third modulation mode with the third mode ratio Rm3 fixed at 1/4.5.

 以上のように、第2実施形態によれば、制御部12が、第2の変調モードと第3の変調モードとの間で変調モードの切り換えを行う際に、第2の変調モード期間TM2と第3の変調モード期間TM3との間の第1の変調モード期間TM1において第1のモード比率Rm1を連続的又は段階的に変化させることにより、2相変調の特性に近い第2の変調モードと3相変調の特性に近い第3の変調モードとの間で変調モードの移行が徐々に進行する。その結果、変調モードの切り換えに伴うスイッチング損失の急変および騒音の急変を抑制できるので、モータ20のトルク変動を抑制でき、且つユーザーに違和感を与えることを抑制できる。 As described above, according to the second embodiment, when the control unit 12 switches the modulation mode between the second modulation mode and the third modulation mode, the second modulation mode period TM2 and By continuously or stepwise changing the first mode ratio Rm1 in the first modulation mode period TM1 between the third modulation mode period TM3, the second modulation mode close to the characteristics of the two-phase modulation and the Modulation mode transition gradually progresses to the third modulation mode, which is close to the characteristics of three-phase modulation. As a result, a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed.

 制御部12は、第2の変調モード期間TM2において、第3のPWMモードと、第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、第2の変調モード期間TM2において、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとが、第1のPWMモード期間T1として交互に現れる。 The control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the second modulation mode period TM2. As a result, in the second modulation mode period TM2, the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear as the first PWM mode period T1.

 これにより、第2の変調モード期間TM2の全期間にわたって、ハイサイド連続オン期間T1Hにおけるスイッチング損失と、ローサイド連続オン期間T1Lにおけるスイッチング損失とが平均化される。その結果、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1における発熱量とのバランスが保たれるので、第2の変調モード期間TM2における電力変換回路11の過熱を抑制できる。第3の変調モード期間TM3についても同様である。 As a result, the switching loss in the high side continuous ON period T1H and the switching loss in the low side continuous ON period T1L are averaged over the entire second modulation mode period TM2. As a result, a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the second modulation mode period TM2 can be suppressed. The same is true for the third modulation mode period TM3.

 第2の変調モード期間TM2において、制御部12が第3のPWMモードで動作するハイサイド連続オン期間T1Hと、制御部12が第4のPWMモードで動作するローサイド連続オン期間T1Lとは、一致する。図5に示す例では、第2の変調モード期間TM2において、ハイサイド連続オン期間T1H及びローサイド連続オン期間T1Lは、いずれもパルス幅変調の3周期に相当する長さを有する。 In the second modulation mode period TM2, the high side continuous ON period T1H during which the control unit 12 operates in the third PWM mode and the low side continuous ON period T1L during which the control unit 12 operates in the fourth PWM mode coincide. do. In the example shown in FIG. 5, in the second modulation mode period TM2, the high side continuous ON period T1H and the low side continuous ON period T1L each have a length corresponding to three cycles of pulse width modulation.

 これにより、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1Lにおける発熱量とのバランスが向上するので、第2の変調モード期間TM2における電力変換回路11の過熱をより効果的に抑制できる。第3の変調モード期間TM3についても同様である。 This improves the balance between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1L, thereby more effectively suppressing overheating of the power conversion circuit 11 during the second modulation mode period TM2. can. The same is true for the third modulation mode period TM3.

 なお、上記第2実施形態では、制御部12が、第2の変調モード期間TM2及び第3の変調モード期間TM3において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える形態を例示したが、本発明はこれに限定されない。 例えば、制御部12は、第2の変調モード期間TM2及び第3の変調モード期間TM3の少なくとも一方において、第1のPWMモードとして第3のPWMモードのみを使用して各スイッチを制御してもよい。また、例えば、制御部12は、第2の変調モード期間TM2及び第3の変調モード期間TM3の少なくとも一方において、第1のPWMモードとして第4のPWMモードのみを使用して各スイッチを制御してもよい。 In the second embodiment, the control unit 12 switches the third PWM mode and the fourth PWM mode to the first PWM mode in the second modulation mode period TM2 and the third modulation mode period TM3. , the present invention is not limited to this. For example, the control unit 12 may control each switch using only the third PWM mode as the first PWM mode in at least one of the second modulation mode period TM2 and the third modulation mode period TM3. good. Also, for example, the control unit 12 controls each switch using only the fourth PWM mode as the first PWM mode in at least one of the second modulation mode period TM2 and the third modulation mode period TM3. may

 さらに、制御部12は、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを、電力変換回路11の接続端子に現れる交流波形の電気角1周期の2N分の1よりも短い周期で切り換えてもよい。例えば、Nの値が3の場合には、制御部12は、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを、上記電気角1周期の6分の1よりも短い周期で切り換えてもよい。 Furthermore, in the second modulation mode period TM2, the control unit 12 sets the third PWM mode and the fourth PWM mode to 2N of one cycle of the electrical angle of the AC waveform appearing at the connection terminal of the power conversion circuit 11. It may be switched at a period shorter than one. For example, when the value of N is 3, the control unit 12 sets the third PWM mode and the fourth PWM mode to 1/6 of one cycle of the electrical angle in the second modulation mode period TM2. You may switch in a period shorter than.

 これにより、第2の変調モード期間TM2において、ハイサイド連続オン期間T1Hにおけるスイッチング損失と、ローサイド連続オン期間T1Lにおけるスイッチング損失とが平均化される。その結果、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1における発熱量とのバランスが保たれるので、第2の変調モード期間TM2における電力変換回路11の過熱を抑制できる。 Thus, in the second modulation mode period TM2, the switching loss during the high side continuous ON period T1H and the switching loss during the low side continuous ON period T1L are averaged. As a result, a balance is maintained between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1, so overheating of the power conversion circuit 11 during the second modulation mode period TM2 can be suppressed.

 上記のように、制御部12が、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを切り換える場合に、制御部12が第3のPWMモードで動作するハイサイド連続オン期間T1Hと、制御部12が第4のPWMモードで動作するローサイド連続オン期間T1Lとが一致していてもよい。 As described above, when the control unit 12 switches between the third PWM mode and the fourth PWM mode in the second modulation mode period TM2, the control unit 12 operates in the third PWM mode. The continuous ON period T1H may coincide with the low side continuous ON period T1L during which the controller 12 operates in the fourth PWM mode.

 これにより、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1Lにおける発熱量とのバランスが向上するので、第2の変調モード期間TM2における電力変換回路11の過熱をより効果的に抑制できる。〔第3実施形態〕
 次に、本発明の第3実施形態について説明する。第3実施形態は、第2のモード比率Rm2(第2の変調モードにおける第1の比率)が1であり、第3のモード比率Rm3(第3の変調モードにおける第2の比率)が0であるという点で第2実施形態と相違する。
This improves the balance between the amount of heat generated during the high-side continuous ON period T1H and the amount of heat generated during the low-side continuous ON period T1L, thereby more effectively suppressing overheating of the power conversion circuit 11 during the second modulation mode period TM2. can. [Third Embodiment]
Next, a third embodiment of the invention will be described. In the third embodiment, the second mode ratio Rm2 (first ratio in the second modulation mode) is 1 and the third mode ratio Rm3 (second ratio in the third modulation mode) is 0. It is different from the second embodiment in that there is

 図6は、第3実施形態における制御部12が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力されるU相ハイサイドゲート信号G1、V相ハイサイドゲート信号G3、およびW相ハイサイドゲート信号G5の一例を示す図である。 FIG. 6 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the controller 12 in the third embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively. FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5;

 図6に示すように、第2のモード比率Rm2が1である場合、制御部12は、第2の変調モード期間TM2の全期間にわたって、2相変調に相当する第1のPWMモードのみで動作する。すなわち、第2の変調モード期間TM2は、第1のPWMモード期間T1と等しい。図6に示す例では、制御部12は、第2の変調モード期間TM2において、第1のPWMモードとして、第4のPWMモードで動作する。すなわち、第2の変調モード期間TM2は、ローサイド連続オン期間T1Lと等しい。 As shown in FIG. 6, when the second mode ratio Rm2 is 1, the control unit 12 operates only in the first PWM mode corresponding to two-phase modulation over the entire period of the second modulation mode period TM2. do. That is, the second modulation mode period TM2 is equal to the first PWM mode period T1. In the example shown in FIG. 6, the controller 12 operates in the fourth PWM mode as the first PWM mode during the second modulation mode period TM2. That is, the second modulation mode period TM2 is equal to the low side continuous ON period T1L.

 図6に示すように、第3のモード比率Rm3が0である場合、制御部12は、第3の変調モード期間TM3の全期間にわたって、3相変調に相当する第2のPWMモードのみで動作する。すなわち、第3の変調モード期間TM3は、第2のPWMモード期間T2と等しい。 As shown in FIG. 6, when the third mode ratio Rm3 is 0, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. do. That is, the third modulation mode period TM3 is equal to the second PWM mode period T2.

 図6に示す例では、制御部12は、第1の変調モード期間TM1において、第1のPWMモードとして第4のPWMモードのみを使用する。その結果、図6に示すように、第1の変調モード期間TM1において、第1のPWMモード期間T1として、ローサイド連続オン期間T1Lのみが現れる。第2実施形態と同様に、制御部12は、第1の変調モード期間TM1において、第1のモード比率Rm1を上式(1)で表される範囲内で連続的又は段階的に変化させる。 In the example shown in FIG. 6, the control unit 12 uses only the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. As a result, as shown in FIG. 6, only the low side continuous ON period T1L appears as the first PWM mode period T1 in the first modulation mode period TM1. As in the second embodiment, the control unit 12 continuously or stepwise changes the first mode ratio Rm1 within the range represented by the above formula (1) in the first modulation mode period TM1.

 上記のように、第3実施形態によれば、制御部12は、第2の変調モード期間TM2の全期間にわたって、2相変調に相当する第1のPWMモードのみで動作するので、第2実施形態と比較して、第2の変調モード期間TM2におけるスイッチング損失を低減できる。また、第3実施形態によれば、制御部12は、第3の変調モード期間TM3の全期間にわたって、3相変調に相当する第2のPWMモードのみで動作するので、第2実施形態と比較して、第3の変調モード期間TM3における相電流リプルを低減できる。 As described above, according to the third embodiment, the control unit 12 operates only in the first PWM mode corresponding to two-phase modulation over the entire period of the second modulation mode period TM2. The switching loss in the second modulation mode period TM2 can be reduced compared to the mode. Further, according to the third embodiment, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. As a result, the phase current ripple in the third modulation mode period TM3 can be reduced.

 さらに、第3実施形態によれば、第2実施形態と同様に、制御部12が、第2の変調モード期間TM2と第3の変調モード期間TM3との間の第1の変調モード期間TM1において第1のモード比率Rm1を連続的又は段階的に変化させることにより、2相変調に相当する第2の変調モードと、3相変調に相当する第3の変調モードとの間で変調モードの移行が徐々に進行する。その結果、変調モードの切り換えに伴うスイッチング損失の急変および騒音の急変を抑制できるので、モータ20のトルク変動を抑制でき、且つユーザーに違和感を与えることを抑制できる。 Furthermore, according to the third embodiment, as in the second embodiment, the control unit 12 controls the Modulation mode transition between a second modulation mode corresponding to two-phase modulation and a third modulation mode corresponding to three-phase modulation by continuously or stepwise changing the first mode ratio Rm1 progresses gradually. As a result, a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed.

 なお、図6では、制御部12が、第2の変調モード期間TM2において、第1のPWMモードとして、第4のPWMモードで動作する場合を示したが、制御部12は、第2の変調モード期間TM2において、第3のPWMモードで動作してもよい。〔第4実施形態〕
 次に、本発明の第4実施形態について説明する。第4実施形態は、第2のモード比率Rm2が1であり、第3のモード比率Rm3が0であるという点で第3実施形態と一致するが、制御部12が、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを、電力変換回路11の接続端子に現れる交流波形の電気角1周期の6分の1に相当する周期で交互に切り換えるという点で第3実施形態と相違する。
6 shows the case where the control unit 12 operates in the fourth PWM mode as the first PWM mode in the second modulation mode period TM2, but the control unit 12 operates in the second modulation mode It may operate in the third PWM mode during the mode period TM2. [Fourth embodiment]
Next, a fourth embodiment of the invention will be described. The fourth embodiment is consistent with the third embodiment in that the second mode ratio Rm2 is 1 and the third mode ratio Rm3 is 0, but the controller 12 controls the second modulation mode period In TM2, the third PWM mode and the fourth PWM mode are alternately switched in a cycle corresponding to one-sixth of one electrical angle cycle of the AC waveform appearing at the connection terminal of the power conversion circuit 11. 3 differs from the embodiment.

 図7は、第4実施形態における制御部12が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力されるU相ハイサイドゲート信号G1、V相ハイサイドゲート信号G3、およびW相ハイサイドゲート信号G5の一例を示す図である。 FIG. 7 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the controller 12 in the fourth embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively. FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5;

 図7に示すように、第2のモード比率Rm2が1である場合、制御部12は、第2の変調モード期間TM2の全期間にわたって、2相変調に相当する第1のPWMモードのみで動作する。すなわち、第2の変調モード期間TM2は、第1のPWMモード期間T1と等しい。図7に示す例では、制御部12は、第2の変調モード期間TM2において、第3のPWMモードと、第4のPWMモードとを、上記電気角1周期の6分の1に相当する周期で交互に切り換える。すなわち、第2の変調モード期間TM2において、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとが、上記電気角1周期の6分の1に相当する周期で交互に現れる。 As shown in FIG. 7, when the second mode ratio Rm2 is 1, the control unit 12 operates only in the first PWM mode corresponding to two-phase modulation over the entire period of the second modulation mode period TM2. do. That is, the second modulation mode period TM2 is equal to the first PWM mode period T1. In the example shown in FIG. 7, the control unit 12 sets the third PWM mode and the fourth PWM mode in the second modulation mode period TM2 with a period corresponding to one-sixth of one period of the electrical angle. alternately with . That is, in the second modulation mode period TM2, the high-side continuous ON period T1H and the low-side continuous ON period T1L alternately appear with a period corresponding to 1/6 of one period of the electrical angle.

 図7に示すように、第3のモード比率Rm3が0である場合、制御部12は、第3の変調モード期間TM3の全期間にわたって、3相変調に相当する第2のPWMモードのみで動作する。すなわち、第3の変調モード期間TM3は、第2のPWMモード期間T2と等しい。 As shown in FIG. 7, when the third mode ratio Rm3 is 0, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. do. That is, the third modulation mode period TM3 is equal to the second PWM mode period T2.

 図7に示す例では、制御部12は、第1の変調モード期間TM1において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、図7に示すように、第1の変調モード期間TM1において、第1のPWMモード期間T1として、ハイサイド連続オン期間T1Hとローサイド連続オン期間T1Lとが、それらの間に第2のPWMモード期間T2を挟んだ状態で交互に現れる。第3実施形態と同様に、制御部12は、第1の変調モード期間TM1において、第1のモード比率Rm1を上式(1)で表される範囲内で連続的又は段階的に変化させる。 In the example shown in FIG. 7, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. As a result, as shown in FIG. 7, in the first modulation mode period TM1, as the first PWM mode period T1, the high side continuous ON period T1H and the low side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween. As in the third embodiment, the control unit 12 continuously or stepwise changes the first mode ratio Rm1 within the range represented by the above formula (1) in the first modulation mode period TM1.

 制御部12は、第1の変調モードから第2の変調モードへ移行する際に、第2の変調モードとして第3のPWMモードが適用される角度区間では、ローサイド連続オン期間T1Lと第2のPWMモード期間T2との比率を低下させて、ハイサイド連続オン期間T1Hの比率を上昇させる。また、制御部12は、第1の変調モードから第2の変調モードへ移行する際に、第2の変調モードとして第4のPWMモードが適用される角度区間では、ハイサイド連続オン期間T1Hと第2のPWMモード期間T2との比率を低下させて、ローサイド連続オン期間T1Lの比率を上昇させる。 When the control unit 12 shifts from the first modulation mode to the second modulation mode, in the angle section in which the third PWM mode is applied as the second modulation mode, the low side continuous ON period T1L and the second The ratio with the PWM mode period T2 is decreased, and the ratio of the high side continuous ON period T1H is increased. Further, when the control unit 12 shifts from the first modulation mode to the second modulation mode, in the angle section in which the fourth PWM mode is applied as the second modulation mode, the high side continuous ON period T1H The ratio of the second PWM mode period T2 is decreased to increase the ratio of the low side continuous ON period T1L.

 上記のように、第4実施形態によれば、制御部12が、第2の変調モード期間TM2において、第3のPWMモードと、第4のPWMモードとを、上記電気角1周期の6分の1に相当する周期で交互に切り換えることにより、第2の変調モード期間TM2において、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとが、上記電気角1周期の6分の1に相当する周期で交互に現れる。 As described above, according to the fourth embodiment, in the second modulation mode period TM2, the control unit 12 switches the third PWM mode and the fourth PWM mode to 6 minutes of one cycle of the electrical angle. By alternately switching with a period corresponding to 1 of , in the second modulation mode period TM2, the high-side continuous ON period T1H and the low-side continuous ON period T1L correspond to 1/6 of the electrical angle 1 period. It appears alternately in cycles.

 これにより、第2の変調モード期間TM2の全期間にわたって、ハイサイド連続オン期間T1Hにおける発熱量と、ローサイド連続オン期間T1における発熱量とのバランスが向上するので、第2の変調モード期間TM2における電力変換回路11の過熱を効果的に抑制できる。 As a result, the balance between the amount of heat generated in the continuous high-side ON period T1H and the amount of heat generated in the continuous low-side ON period T1 is improved over the entire period of the second modulation mode period TM2. Overheating of the power conversion circuit 11 can be effectively suppressed.

 さらに、第4実施形態によれば、第3実施形態と同様に、制御部12が、第2の変調モード期間TM2と第3の変調モード期間TM3との間の第1の変調モード期間TM1において第1のモード比率Rm1を連続的又は段階的に変化させることにより、2相変調に相当する第2の変調モードと、3相変調に相当する第3の変調モードとの間で変調モードの移行が徐々に進行する。その結果、変調モードの切り換えに伴うスイッチング損失の急変および騒音の急変を抑制できるので、モータ20のトルク変動を抑制でき、且つユーザーに違和感を与えることを抑制できる。〔第5実施形態〕
 次に、本発明の第5実施形態について説明する。第5実施形態は、第2のモード比率Rm2が1であり、第3のモード比率Rm3が0であるという点で第4実施形態と一致するが、制御部12が、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを、電力変換回路11の接続端子に現れる交流波形の電気角1周期の6分の1よりも短い周期で交互に切り換えるという点で第4実施形態と相違する。
Furthermore, according to the fourth embodiment, as in the third embodiment, the control unit 12 controls the Modulation mode transition between a second modulation mode corresponding to two-phase modulation and a third modulation mode corresponding to three-phase modulation by continuously or stepwise changing the first mode ratio Rm1 progresses gradually. As a result, a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed. [Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. The fifth embodiment is consistent with the fourth embodiment in that the second mode ratio Rm2 is 1 and the third mode ratio Rm3 is 0, but the controller 12 controls the second modulation mode period In TM2, the third PWM mode and the fourth PWM mode are alternately switched in a period shorter than 1/6 of one electrical angle period of the AC waveform appearing at the connection terminal of the power conversion circuit 11. 4 differs from the embodiment.

 図8は、第5実施形態における制御部12が第1の変調モード、第2の変調モードおよび第3の変調モードのそれぞれで動作する期間に出力されるU相ハイサイドゲート信号G1、V相ハイサイドゲート信号G3、およびW相ハイサイドゲート信号G5の一例を示す図である。 FIG. 8 shows a U-phase high-side gate signal G1 and a V-phase gate signal G1 output during periods when the control unit 12 in the fifth embodiment operates in the first modulation mode, the second modulation mode, and the third modulation mode, respectively. FIG. 10 is a diagram showing an example of a high-side gate signal G3 and a W-phase high-side gate signal G5;

 図8に示すように、第2のモード比率Rm2が1である場合、制御部12は、第2の変調モード期間TM2の全期間にわたって、2相変調の特性に近い第1のPWMモードのみで動作する。すなわち、第2の変調モード期間TM2は、第1のPWMモード期間T1と等しい。図8に示す例では、制御部12は、第2の変調モード期間TM2において、第3のPWMモードと、第4のPWMモードとを、上記電気角1周期の6分の1よりも短い周期、例えばパルス幅変調の2.5周期に相当する周期で交互に切り換える。すなわち、第2の変調モード期間TM2において、ハイサイド連続オン期間T1Hと、ローサイド連続オン期間T1Lとが、パルス幅変調の2.5周期に相当する周期で交互に現れる。 As shown in FIG. 8, when the second mode ratio Rm2 is 1, the control unit 12 operates only in the first PWM mode close to the two-phase modulation characteristics over the entire period of the second modulation mode period TM2. Operate. That is, the second modulation mode period TM2 is equal to the first PWM mode period T1. In the example shown in FIG. 8, the control unit 12 sets the third PWM mode and the fourth PWM mode in the second modulation mode period TM2 in a period shorter than one-sixth of one period of the electrical angle. , for example, alternately with a period corresponding to 2.5 periods of the pulse width modulation. That is, in the second modulation mode period TM2, the high side continuous ON period T1H and the low side continuous ON period T1L alternately appear with a period corresponding to 2.5 periods of the pulse width modulation.

 図8に示すように、第3のモード比率Rm3が0である場合、制御部12は、第3の変調モード期間TM3の全期間にわたって、3相変調に相当する第2のPWMモードのみで動作する。すなわち、第3の変調モード期間TM3は、第2のPWMモード期間T2と等しい。 As shown in FIG. 8, when the third mode ratio Rm3 is 0, the control unit 12 operates only in the second PWM mode corresponding to three-phase modulation over the entire period of the third modulation mode period TM3. do. That is, the third modulation mode period TM3 is equal to the second PWM mode period T2.

 図8に示す例では、制御部12は、第1の変調モード期間TM1において、第3のPWMモードと第4のPWMモードとを、第1のPWMモードとして交互に切り替える。その結果、図8に示すように、第1の変調モード期間TM1において、第1のPWMモード期間T1として、ハイサイド連続オン期間T1Hとローサイド連続オン期間T1Lとが、それらの間に第2のPWMモード期間T2を挟んだ状態で交互に現れる。第3実施形態と同様に、制御部12は、第1の変調モード期間TM1において、第1のモード比率Rm1を上式(1)で表される範囲内で連続的又は段階的に変化させる。 In the example shown in FIG. 8, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode as the first PWM mode during the first modulation mode period TM1. As a result, as shown in FIG. 8, in the first modulation mode period TM1, as the first PWM mode period T1, a high-side continuous ON period T1H and a low-side continuous ON period T1L are interposed between them. They appear alternately with the PWM mode period T2 interposed therebetween. As in the third embodiment, the control unit 12 continuously or stepwise changes the first mode ratio Rm1 within the range represented by the above formula (1) in the first modulation mode period TM1.

 例えば、上記のように、制御部12が、第2の変調モード期間TM2において、第3のPWMモードと第4のPWMモードとを、パルス幅変調の2.5周期に相当する周期で交互に切り換える場合、第2の変調モード期間TM2におけるスイッチング回数は、第3の変調モード期間TM3におけるスイッチング回数と比較して、15分の11倍となる。従って、第5実施形態によれば、第3の変調モード期間TM3と比較して、第2の変調モード期間TM2におけるスイッチング損失を低減することができる。 For example, as described above, in the second modulation mode period TM2, the control unit 12 alternately switches between the third PWM mode and the fourth PWM mode at a cycle corresponding to 2.5 cycles of pulse width modulation. In the case of switching, the number of switching times in the second modulation mode period TM2 is 11/15 times the number of switching times in the third modulation mode period TM3. Therefore, according to the fifth embodiment, it is possible to reduce the switching loss during the second modulation mode period TM2 as compared with the third modulation mode period TM3.

 また、第5実施形態によれば、第4実施形態と同様に、制御部12が、第2の変調モード期間TM2と第3の変調モード期間TM3との間の第1の変調モード期間TM1において第1のモード比率Rm1を連続的又は段階的に変化させることにより、2相変調の特性に近い第2の変調モードと、3相変調に相当する第3の変調モードとの間で変調モードの移行が徐々に進行する。その結果、変調モードの切り換えに伴うスイッチング損失の急変および騒音の急変を抑制できるので、モータ20のトルク変動を抑制でき、且つユーザーに違和感を与えることを抑制できる。〔変形例〕
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
Further, according to the fifth embodiment, similarly to the fourth embodiment, the control unit 12 controls the By changing the first mode ratio Rm1 continuously or stepwise, the modulation mode is changed between a second modulation mode close to characteristics of two-phase modulation and a third modulation mode corresponding to three-phase modulation. Migration is gradual. As a result, a sudden change in switching loss and a sudden change in noise due to switching of the modulation mode can be suppressed, so that fluctuations in the torque of the motor 20 can be suppressed and uncomfortable feeling given to the user can be suppressed. [Modification]
The present invention is not limited to the above-described embodiments, and each configuration described in this specification can be appropriately combined within a mutually consistent range.

 例えば、第3実施形態を適用する場合、図9に示す具体例に従って、第1の変調モード期間TM1における第1のモード比率Rm1を変化させてもよい。図9では、モード切り換え周期TSが、パルス幅変調の4周期に固定されている場合の具体例と、モード切り換え周期TSが一定値に固定されておらず、可変である場合の具体例とを示している。 For example, when applying the third embodiment, the first mode ratio Rm1 in the first modulation mode period TM1 may be changed according to the specific example shown in FIG. FIG. 9 shows a specific example in which the mode switching cycle TS is fixed at four cycles of pulse width modulation, and a specific example in which the mode switching cycle TS is not fixed to a constant value but is variable. showing.

 例えば、第5実施形態を適用する場合、図10に示す具体例に従って、第1の変調モード期間TM1における第1のモード比率Rm1を変化させてもよい。図10では、モード切り換え周期TSが、パルス幅変調の4.5周期に固定されている場合の具体例と、モード切り換え周期TSが一定値に固定されておらず、可変である場合の具体例とを示している。 For example, when applying the fifth embodiment, the first mode ratio Rm1 in the first modulation mode period TM1 may be changed according to the specific example shown in FIG. FIG. 10 shows a specific example in which the mode switching cycle TS is fixed at 4.5 cycles of pulse width modulation, and a specific example in which the mode switching cycle TS is not fixed at a constant value but is variable. and

 例えば、上記実施形態では、三相モータであるモータ20を制御する電力変換装置10を例示したが、制御対象のモータ20は三相モータに限定されず、N相モータ(nは3以上の整数)であればよい。また、上記実施形態では、電力変換回路11に含まれる各アームスイッチとしてIGBTを例示したが、各アームスイッチは例えばMOS-FETなどのIGBT以外の大電力用スイッチング素子でもよい。 For example, in the above embodiment, the power conversion device 10 that controls the motor 20, which is a three-phase motor, is illustrated, but the motor 20 to be controlled is not limited to a three-phase motor, and is an N-phase motor (n is an integer of 3 or more). ). In the above embodiment, IGBTs are used as the arm switches included in the power conversion circuit 11. However, the arm switches may be switching elements for high power such as MOS-FETs other than IGBTs.

Claims (9)

 直流電力とN相交流電力(Nは3以上の整数)との相互変換を行う電力変換回路と、
前記電力変換回路に含まれる2N個のスイッチを第1の変調モードで制御する制御部と、
 を備え、
 前記制御部は、前記第1の変調モードにおいて、前記2N個のスイッチのうち1相のハイサイドスイッチ又はローサイドスイッチをオンに固定し、残りの相のスイッチをパルス幅変調により制御する第1のPWMモードと、前記2N個のスイッチのうち全相のスイッチを前記パルス幅変調により制御する第2のPWMモードとを周期的に切り換え、
 前記制御部が前記第1のPWMモードで動作する第1の期間と、前記制御部が前記第2のPWMモードで動作する第2の期間との和は、前記電力変換回路の接続端子に現れる交流波形の電気角1周期の2N分の1よりも短く、
 前記第1の期間は、前記パルス幅変調の1周期以上の長さであり、
 前記第1の期間と前記第2の期間との和に占める前記第1の期間の比率は可変である、電力変換装置。
a power conversion circuit that performs mutual conversion between DC power and N-phase AC power (N is an integer of 3 or more);
a control unit that controls 2N switches included in the power conversion circuit in a first modulation mode;
with
The control unit, in the first modulation mode, fixes a high-side switch or a low-side switch of one phase among the 2N switches to ON, and controls the switches of the remaining phases by pulse width modulation. periodically switching between the PWM mode and a second PWM mode in which all phase switches among the 2N switches are controlled by the pulse width modulation;
The sum of the first period during which the control section operates in the first PWM mode and the second period during which the control section operates in the second PWM mode appears at the connection terminal of the power conversion circuit. Shorter than 1/2N of one cycle of the electrical angle of the AC waveform,
The first period has a length of one cycle or more of the pulse width modulation,
The power conversion device, wherein a ratio of the first period to the sum of the first period and the second period is variable.
 前記制御部は、前記比率が第1の比率である第2の変調モードと、前記比率が前記第1の比率よりも小さい第2の比率である第3の変調モードとの間で変調モードの切り換えを行う際に、前記第2の変調モードで動作する期間と前記第3の変調モードで動作する期間との間の期間において前記第1の変調モードで動作し、前記第1の変調モードで動作する期間において前記比率を連続的又は段階的に変化させる、
 請求項1に記載の電力変換装置。
The control unit selects a modulation mode between a second modulation mode in which the ratio is a first ratio and a third modulation mode in which the ratio is a second ratio smaller than the first ratio. When switching, operating in the first modulation mode during a period between operating in the second modulation mode and operating in the third modulation mode, and operating in the first modulation mode changing the ratio continuously or stepwise during the period of operation;
The power converter according to claim 1.
 前記第2の変調モードにおける前記第1の比率は、1である、
 請求項2に記載の電力変換装置。
wherein the first ratio in the second modulation mode is 1;
The power converter according to claim 2.
 前記第3の変調モードにおける前記第2の比率は、0である、
 請求項2または3に記載の電力変換装置。
wherein the second ratio in the third modulation mode is 0;
The power converter according to claim 2 or 3.
 前記制御部は、前記第1の期間において、前記2N個のスイッチのうち1相のハイサイドスイッチをオンに固定し、残りの相のスイッチを前記パルス幅変調により制御する第3のPWMモードと、前記2N個のスイッチのうち1相のローサイドスイッチをオンに固定し、残りの相のスイッチを前記パルス幅変調により制御する第4のPWMモードとを、前記電気角1周期の2N分の1よりも短い周期で切り換える、
 請求項2から4のいずれか一項に記載の電力変換装置。
a third PWM mode in which the control unit fixes one-phase high-side switch of the 2N switches to ON during the first period and controls the remaining phase switches by the pulse width modulation; , and a fourth PWM mode in which the low-side switch of one phase among the 2N switches is fixed to be ON and the switches of the remaining phases are controlled by the pulse width modulation, and 1/2N of one period of the electrical angle. switch at a shorter period than
The power converter according to any one of claims 2 to 4.
 前記制御部が前記第1の変調モードで動作する期間に含まれる前記第1の期間において、前記制御部が前記第3のPWMモードで動作する期間と、前記制御部が前記第4のPWMモードで動作する期間とが一致する、
 請求項5に記載の電力変換装置。
In the first period included in the period in which the control unit operates in the first modulation mode, a period in which the control unit operates in the third PWM mode and a period in which the control unit operates in the fourth PWM mode is consistent with the period that works with,
The power converter according to claim 5.
 前記制御部が前記第2の変調モードで動作する期間に含まれる前記第1の期間において、前記制御部が前記第3のPWMモードで動作する期間と、前記制御部が前記第4のPWMモードで動作する期間とが一致する、
 請求項5または6に記載の電力変換装置。
In the first period included in the period in which the control unit operates in the second modulation mode, a period in which the control unit operates in the third PWM mode and a period in which the control unit operates in the fourth PWM mode is consistent with the period that works with,
The power converter according to claim 5 or 6.
 前記制御部は、前記第1の期間において、前記2N個のスイッチのうち1相のハイサイドスイッチをオンに固定し、残りの相のスイッチを前記パルス幅変調により制御する第3のPWMモードと、前記2N個のスイッチのうち1相のローサイドスイッチをオンに固定し、残りの相のスイッチを前記パルス幅変調により制御する第4のPWMモードとを、前記電気角1周期の2N分の1よりも短い周期で切り換える、
 請求項1に記載の電力変換装置。
a third PWM mode in which the control unit fixes one-phase high-side switch of the 2N switches to ON during the first period and controls the remaining phase switches by the pulse width modulation; , and a fourth PWM mode in which the low-side switch of one phase among the 2N switches is fixed to be ON and the switches of the remaining phases are controlled by the pulse width modulation, and 1/2N of one period of the electrical angle. switch at a shorter period than
The power converter according to claim 1.
 前記第1の期間において、前記制御部が前記第3のPWMモードで動作する期間と、前記制御部が前記第4のPWMモードで動作する期間とが一致する、
 請求項8に記載の電力変換装置。
In the first period, the period during which the control unit operates in the third PWM mode and the period during which the control unit operates in the fourth PWM mode match.
The power converter according to claim 8.
PCT/JP2022/047775 2021-12-27 2022-12-23 Power conversion device WO2023127760A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022006217.7T DE112022006217T5 (en) 2021-12-27 2022-12-23 power conversion device
CN202280085818.0A CN118648231A (en) 2021-12-27 2022-12-23 Power conversion device
US18/724,586 US20250070688A1 (en) 2021-12-27 2022-12-23 Power conversion device
JP2023570988A JPWO2023127760A1 (en) 2021-12-27 2022-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213237 2021-12-27
JP2021213237 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127760A1 true WO2023127760A1 (en) 2023-07-06

Family

ID=86999179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047775 WO2023127760A1 (en) 2021-12-27 2022-12-23 Power conversion device

Country Status (5)

Country Link
US (1) US20250070688A1 (en)
JP (1) JPWO2023127760A1 (en)
CN (1) CN118648231A (en)
DE (1) DE112022006217T5 (en)
WO (1) WO2023127760A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160147A (en) * 2003-11-21 2005-06-16 Hitachi Ltd Motor controller and apparatus using it
JP2009100613A (en) * 2007-10-19 2009-05-07 Meidensha Corp Controller of pwm inverter
JP2012070497A (en) * 2010-09-22 2012-04-05 Hitachi Industrial Equipment Systems Co Ltd Inverter device and control method
JP2014087233A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Device and method for controlling three-phase ac motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304891B2 (en) 2009-04-16 2013-10-02 株式会社明電舎 Power converter control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160147A (en) * 2003-11-21 2005-06-16 Hitachi Ltd Motor controller and apparatus using it
JP2009100613A (en) * 2007-10-19 2009-05-07 Meidensha Corp Controller of pwm inverter
JP2012070497A (en) * 2010-09-22 2012-04-05 Hitachi Industrial Equipment Systems Co Ltd Inverter device and control method
JP2014087233A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Device and method for controlling three-phase ac motor

Also Published As

Publication number Publication date
JPWO2023127760A1 (en) 2023-07-06
US20250070688A1 (en) 2025-02-27
CN118648231A (en) 2024-09-13
DE112022006217T5 (en) 2024-10-31

Similar Documents

Publication Publication Date Title
US8228020B2 (en) Apparatus and method for controlling hybrid motor
US7808201B2 (en) Sensorless field oriented controller for two-phase motor
KR100564193B1 (en) Air conditioner
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
KR20240160036A (en) Motor driving apparatus and method
EP2523343A2 (en) Apparatus and method for controlling rotary electric machine
WO2012008381A1 (en) Power conversion system
KR20220031308A (en) Motor driving apparatus and method
JP7269576B2 (en) Rotating electric machine controller
TWI356578B (en)
JP6243448B2 (en) Electric motor drive
JP6961096B2 (en) Inverter device
WO2023127760A1 (en) Power conversion device
JP6732063B1 (en) Electric power conversion device, generator motor control device, and electric power steering device
Shahbazi et al. A new converter based On DITC for improving Torque ripple and power factor in SRM drives
JPH11136994A (en) Three-phase induction motor drive
CN112042103B (en) Control device for rotary machine
JP6775623B2 (en) Power converter, generator motor control device, and electric power steering device
US20250167714A1 (en) Power conversion device and motor module
JP2011155787A (en) Rotating electric control system
JP2017112817A (en) Variable speed ac electrical machine
CN113411027B (en) Switching frequency control device, motor and switching frequency control method thereof
JP7413238B2 (en) motor control device
JP2024068276A (en) Motor Drive Method
JP2008099508A (en) Power converter and air conditioner using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570988

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280085818.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18724586

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022006217

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22915983

Country of ref document: EP

Kind code of ref document: A1