WO2023127137A1 - 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム - Google Patents

基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム Download PDF

Info

Publication number
WO2023127137A1
WO2023127137A1 PCT/JP2021/048896 JP2021048896W WO2023127137A1 WO 2023127137 A1 WO2023127137 A1 WO 2023127137A1 JP 2021048896 W JP2021048896 W JP 2021048896W WO 2023127137 A1 WO2023127137 A1 WO 2023127137A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
substrate
supplying
substrate processing
Prior art date
Application number
PCT/JP2021/048896
Other languages
English (en)
French (fr)
Inventor
勝吉 原田
亮太 上野
良知 橋本
公彦 中谷
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2021/048896 priority Critical patent/WO2023127137A1/ja
Priority to CN202180102390.1A priority patent/CN117941038A/zh
Priority to JP2023570612A priority patent/JPWO2023127137A1/ja
Priority to TW111138550A priority patent/TWI852120B/zh
Publication of WO2023127137A1 publication Critical patent/WO2023127137A1/ja
Priority to US18/611,093 priority patent/US20240249933A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present disclosure relates to a substrate processing method, a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • a process of supplying raw materials to a substrate having recesses such as trenches and holes on the surface thereof and forming a film in the recesses is sometimes performed (for example, international publication See 2019/003662).
  • An object of the present disclosure is to provide a technique capable of forming a film with high precision in a recess provided on the surface of a substrate.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a longitudinal sectional view showing a processing furnace 202 portion.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a cross-sectional view showing the processing furnace 202 portion taken along line AA of FIG.
  • FIG. 3 is a schematic configuration diagram of the controller 121 of the substrate processing apparatus preferably used in one aspect of the present disclosure, and is a block diagram showing the control system of the controller 121.
  • FIG. 4 is a flow diagram illustrating a processing sequence in accordance with one aspect of the present disclosure; FIG.
  • FIG. 5A shows a wafer after forming a silicon oxide film (SiO film) as a first film in the recesses by supplying a first film-forming agent to the wafer having the recesses on the surface. It is a cross-sectional schematic diagram which shows a surface part.
  • FIG. 5(b) shows that a second film-forming agent is supplied to the wafer in the state of FIG.
  • FIG. 5(c) is a wafer after partially modifying the SiN film having voids by supplying a modifying agent containing fluorine (F) to the wafer in the state of FIG. 5(b).
  • FIG. 5(d) shows the wafer after removing the modified portion (modified layer) of the SiN film by supplying an etchant containing halogen to the wafer in the state of FIG. 5(c). It is a cross-sectional schematic diagram which shows a surface part.
  • FIG. 5(e) by supplying a third film-forming agent to the wafer in the state of FIG. 5(d), a SiN film as a third film is formed on the SiN film after removing the modified layer.
  • FIG. 5(e) by supplying a third film-forming agent to the wafer in the state of FIG. 5(d), a SiN film as a third film is formed on the SiN film after removing the modified layer.
  • FIG. 5(e) by supplying a third film-forming agent to the wafer in the state of FIG. 5(d), a SiN film as a third film is formed on the SiN film after removing the modified layer.
  • FIG. 5(e) by supplying a third film-
  • the drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not necessarily match the actual ones. Moreover, the dimensional relationship of each element, the ratio of each element, etc. do not necessarily match between a plurality of drawings.
  • the processing furnace 202 has a heater 207 as a temperature controller (heating unit).
  • the heater 207 has a cylindrical shape and is installed vertically by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation section) that thermally activates (excites) the gas.
  • a reaction tube 203 is arranged concentrically with the heater 207 inside the heater 207 .
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with a closed upper end and an open lower end.
  • a manifold 209 is arranged concentrically with the reaction tube 203 below the reaction tube 203 .
  • the manifold 209 is made of a metal material such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. The upper end of the manifold 209 engages the lower end of the reaction tube 203 and is configured to support the reaction tube 203 .
  • An O-ring 220a is provided between the manifold 209 and the reaction tube 203 as a sealing member.
  • Reactor tube 203 is mounted vertically like heater 207 .
  • a processing vessel (reaction vessel) is mainly configured by the reaction tube 203 and the manifold 209 .
  • a processing chamber 201 is formed in the cylindrical hollow portion of the processing container. The processing chamber 201 is configured to accommodate a wafer 200 as a substrate. A wafer 200 is processed in the processing chamber 201 .
  • nozzles 249a to 249c as first to third supply units are provided so as to pass through the side wall of the manifold 209, respectively.
  • the nozzles 249a to 249c are also called first to third nozzles, respectively.
  • the nozzles 249a-249c are made of a heat-resistant material such as quartz or SiC.
  • Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
  • the nozzles 249a to 249c are different nozzles, and each of the nozzles 249a and 249c is provided adjacent to the nozzle 249b.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c as flow controllers (flow control units) and valves 243a to 243c as on-off valves, respectively, in this order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • Gas supply pipes 232d and 232f are connected respectively downstream of the valve 243a of the gas supply pipe 232a.
  • Gas supply pipes 232e and 232g are connected respectively downstream of the valve 243b of the gas supply pipe 232b.
  • a gas supply pipe 232h is connected downstream of the valve 243c of the gas supply pipe 232c.
  • the gas supply pipes 232d-232h are provided with MFCs 241d-241h and valves 243d-243h, respectively, in this order from the upstream side of the gas flow.
  • the gas supply pipes 232a to 232h are made of metal material such as SUS, for example.
  • the nozzles 249a to 249c are arranged in an annular space between the inner wall of the reaction tube 203 and the wafer 200 in a plan view, along the inner wall of the reaction tube 203 from the lower part to the upper part. They are provided so as to rise upward in the arrangement direction.
  • the nozzles 249a to 249c are provided on the sides of the wafer arrangement area in which the wafers 200 are arranged, in a region horizontally surrounding the wafer arrangement area, along the wafer arrangement area.
  • the nozzle 249b is arranged so as to face an exhaust port 231a, which will be described later, in a straight line with the center of the wafer 200 loaded into the processing chamber 201 interposed therebetween.
  • the nozzles 249a and 249c are arranged such that a straight line L passing through the nozzle 249b and the center of the exhaust port 231a is sandwiched from both sides along the inner wall of the reaction tube 203 (outer periphery of the wafer 200).
  • the straight line L is also a straight line passing through the nozzle 249 b and the center of the wafer 200 . That is, it can be said that the nozzle 249c is provided on the opposite side of the straight line L from the nozzle 249a.
  • the nozzles 249a and 249c are arranged line-symmetrically with the straight line L as the axis of symmetry.
  • Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively.
  • Each of the gas supply holes 250a to 250c is open to face the exhaust port 231a in a plan view, and is capable of supplying gas toward the wafer 200.
  • a plurality of gas supply holes 250 a to 250 c are provided from the bottom to the top of the reaction tube 203 .
  • a raw material (raw material gas) is supplied from the gas supply pipe 232a into the processing chamber 201 via the MFC 241a, the valve 243a, and the nozzle 249a.
  • the raw material is used as one of the first film-forming agents, is also used as one of the second film-forming agents, and is also used as one of the third film-forming agents.
  • the first raw material first raw material gas
  • the second raw material second raw material gas
  • It can also be called a third source (third source gas).
  • a first reactant (first reaction gas) is supplied from the gas supply pipe 232b into the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b.
  • the first reactant is used as one of the first film forming agents.
  • a second reactant (second reaction gas) is supplied from the gas supply pipe 232c into the processing chamber 201 via the MFC 241c, the valve 243c, and the nozzle 249c.
  • the second reactant is used as one of the second film-forming agents and is also used as one of the third film-forming agents.
  • the second reactant is used as the second film-forming agent and the third film-forming agent, they are referred to as the second reactant (second reaction gas) and the third reactant (third reaction gas), respectively.
  • a modifier (modified gas) is supplied from the gas supply pipe 232d into the processing chamber 201 via the MFC 241d, the valve 243d, the gas supply pipe 232a, and the nozzle 249a.
  • An etchant (etching gas) is supplied from the gas supply pipe 232e into the processing chamber 201 via the MFC 241e, the valve 243e, and the nozzle 249b.
  • inert gas is supplied into the processing chamber 201 through the MFCs 241f to 241h, valves 243f to 243h, gas supply pipes 232a to 232c, and nozzles 249a to 249c, respectively.
  • Inert gases act as purge gas, carrier gas, diluent gas, and the like.
  • a raw material supply system is mainly composed of the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • a first reactant supply system (first reaction gas supply system) is mainly composed of the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • a second reactant supply system (second reactant gas supply system) is mainly composed of the gas supply pipe 232c, the MFC 241c, and the valve 243c.
  • a modifier supply system is mainly composed of the gas supply pipe 232d, the MFC 241d, and the valve 243d.
  • An etchant supply system (etching gas supply system) is mainly composed of the gas supply pipe 232e, the MFC 241e, and the valve 243e.
  • An inert gas supply system is mainly composed of gas supply pipes 232f to 232h, MFCs 241f to 241h, and valves 243f to 243h.
  • Each or all of the raw material supply system and the first reactant supply system are also referred to as the first film forming agent supply system.
  • Each or all of the raw material supply system and the second reactant supply system are also referred to as a second film forming agent supply system and a third film forming agent supply system.
  • any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243h, MFCs 241a to 241h, etc. are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232h, and supplies various substances (various gases) into the gas supply pipes 232a to 232h, that is, the opening and closing operations of the valves 243a to 243h.
  • a controller 121 which will be described later, controls the flow rate adjustment operation and the like by the MFCs 241a to 241h.
  • the integrated supply system 248 is configured as an integral or divided integrated unit, and can be attached/detached to/from the gas supply pipes 232a to 232h or the like in units of integrated units. It is configured so that maintenance, replacement, expansion, etc. can be performed on an integrated unit basis.
  • An exhaust port 231 a for exhausting the atmosphere in the processing chamber 201 is provided below the side wall of the reaction tube 203 . As shown in FIG. 2, the exhaust port 231a is provided at a position facing the nozzles 249a to 249c (gas supply holes 250a to 250c) across the wafer 200 in plan view. The exhaust port 231a may be provided along the upper portion of the side wall of the reaction tube 203, that is, along the wafer arrangement area.
  • An exhaust pipe 231 is connected to the exhaust port 231a.
  • the exhaust pipe 231 is supplied with a pressure sensor 245 as a pressure detector (pressure detector) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure regulator).
  • a vacuum pump 246 as an evacuation device is connected.
  • the inside of the processing chamber 201 can be evacuated and stopped.
  • the pressure in the processing chamber 201 can be adjusted.
  • An exhaust system is mainly composed of the exhaust pipe 231 , the APC valve 244 and the pressure sensor 245 .
  • a vacuum pump 246 may be considered to be included in the exhaust system.
  • a seal cap 219 is provided below the manifold 209 as a furnace mouth cover capable of airtightly closing the lower end opening of the manifold 209 .
  • the seal cap 219 is made of, for example, a metal material such as SUS, and is shaped like a disc.
  • An O-ring 220 b is provided on the upper surface of the seal cap 219 as a sealing member that contacts the lower end of the manifold 209 .
  • a rotating mechanism 267 for rotating the boat 217 which will be described later, is installed below the seal cap 219.
  • a rotating shaft 255 of the rotating mechanism 267 passes through the seal cap 219 and is connected to the boat 217 .
  • the rotating mechanism 267 is configured to rotate the wafers 200 by rotating the boat 217 .
  • the seal cap 219 is vertically moved up and down by a boat elevator 115 as a lifting mechanism installed outside the reaction tube 203 .
  • the boat elevator 115 is configured as a transport device (transport mechanism) for loading and unloading (transporting) the wafer 200 into and out of the processing chamber 201 by raising and lowering the seal cap 219 .
  • a shutter 219s is provided as a furnace port cover that can hermetically close the lower end opening of the manifold 209 in a state where the seal cap 219 is lowered and the boat 217 is carried out from the processing chamber 201.
  • the shutter 219s is made of, for example, a metal material such as SUS, and is shaped like a disc.
  • An O-ring 220c is provided on the upper surface of the shutter 219s as a sealing member that contacts the lower end of the manifold 209. As shown in FIG.
  • the opening/closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening/closing mechanism 115s.
  • the boat 217 as a substrate support supports a plurality of wafers 200, for example, 25 to 200 wafers 200, in a horizontal posture, aligned vertically with their centers aligned with each other, and supported in multiple stages. It is configured to be spaced and arranged.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a plurality of heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203 .
  • the temperature inside the processing chamber 201 has a desired temperature distribution.
  • a temperature sensor 263 is provided along the inner wall of the reaction tube 203 .
  • the controller 121 which is a control unit (control means), is configured as a computer comprising a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d. It is The RAM 121b, storage device 121c, and I/O port 121d are configured to exchange data with the CPU 121a via an internal bus 121e.
  • An input/output device 122 configured as, for example, a touch panel or the like is connected to the controller 121 .
  • an external storage device 123 can be connected to the controller 121 .
  • the storage device 121c is composed of, for example, flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe describing procedures and conditions for substrate processing, which will be described later, and the like are stored in a readable manner.
  • the process recipe functions as a program in which the controller 121 causes the substrate processing apparatus to execute each procedure in substrate processing, which will be described later, so as to obtain a predetermined result.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs and data read by the CPU 121a are temporarily held.
  • the I/O port 121d includes the MFCs 241a-241h, valves 243a-243h, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotating mechanism 267, boat elevator 115, shutter opening/closing mechanism 115s, and the like. It is connected to the.
  • the CPU 121a is configured to be able to read and execute a control program from the storage device 121c, and read recipes from the storage device 121c in response to input of operation commands from the input/output device 122, and the like.
  • the CPU 121a adjusts the flow rate of various substances (various gases) by the MFCs 241a to 241h, opens and closes the valves 243a to 243h, opens and closes the APC valve 244, and controls the APC valve based on the pressure sensor 245, in accordance with the content of the read recipe.
  • the controller 121 can be configured by installing the above-described program stored in the external storage device 123 in the computer.
  • the external storage device 123 includes, for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or an SSD, and the like.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are also collectively referred to simply as recording media.
  • recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123 .
  • Substrate Processing Process A process for forming a film in concave portions such as trenches and holes provided on the surface of a wafer 200 as a substrate, as one step of the semiconductor device manufacturing process using the substrate processing apparatus described above.
  • a sequence example will be described mainly with reference to FIGS. 4 and 5(a) to 5(e).
  • a case will be described in which an SiO film, which is an oxide film, is formed as the first film, and SiN films, which are films other than the SiO film, are formed as the second and third films.
  • the controller 121 controls the operation of each component of the substrate processing apparatus.
  • the processing sequence in this embodiment is as follows: (a) step A of forming a first film (SiO film) in the recesses by supplying a first film-forming agent to the wafer 200 having the recesses on the surface thereof; (b) By supplying a second film forming agent to the wafer 200, a second film having a chemical composition different from that of the first film (SiO film) is formed on the first film (SiO film) formed in the recess.
  • Step A Step B ⁇ Step C ⁇ Step D ⁇ Step E
  • the expression "having different chemical compositions" used in this specification means that at least some of the constituent elements are different in films, layers, and parts (for example, recesses provided on the surface of a wafer).
  • a second film having a chemical composition different from that of the first film is described, at least part of the elements constituting each film is used, such as a SiO film as the first film and a SiN film as the second film. is different.
  • wafer used in this specification may mean the wafer itself, or may mean a laminate of a wafer and a predetermined layer or film formed on its surface.
  • wafer surface used in this specification may mean the surface of the wafer itself or the surface of a predetermined layer formed on the wafer.
  • formation of a predetermined layer on a wafer means that a predetermined layer is formed directly on the surface of the wafer itself, or a layer formed on the wafer, etc. It may mean forming a given layer on top of.
  • substrate in this specification is synonymous with the use of the term "wafer”.
  • the term "agent” used herein includes at least one of gaseous substances and liquid substances.
  • Liquid substances include mist substances. That is, the first film-forming agent (raw material, first reactant), the second film-forming agent (raw material, second reactant), the third film-forming agent (raw material, second reactant), the modifier, the etchant may contain a gaseous substance, may contain a liquid substance such as a mist substance, or may contain both of them.
  • layer used herein includes at least one of a continuous layer and a discontinuous layer.
  • the Si-containing layer and the modified layer to be described later may contain a continuous layer, may contain a discontinuous layer, or may contain both of them.
  • the shutter 219s is moved by the shutter opening/closing mechanism 115s to open the lower end opening of the manifold 209 (shutter open). Thereafter, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat load). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b. Thus, the wafer 200 is prepared inside the processing chamber 201 .
  • the surface of the wafers 200 loaded in the boat 217 is provided with trench-shaped or hole-shaped concave portions.
  • the surface of the recess provided on the wafer 200 is made of a material having a chemical composition different from that of the SiO film as the first film, that is, a material other than the SiO film, such as silicon (Si).
  • the inside of the processing chamber 201 that is, the space in which the wafer 200 exists is evacuated (reduced pressure) by the vacuum pump 246 so as to have a desired pressure (degree of vacuum).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired processing temperature.
  • the energization state of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the rotation of the wafer 200 by the rotation mechanism 267 is started. The evacuation of the processing chamber 201 and the heating and rotation of the wafer 200 continue at least until the processing of the wafer 200 is completed.
  • step A a first film-forming agent is supplied to the wafer 200 in the processing chamber 201, that is, the wafer 200 having the recesses on the surface thereof, thereby forming a SiO film as the first film in the recesses.
  • a first film-forming agent is supplied to the wafer 200 in the processing chamber 201, that is, the wafer 200 having the recesses on the surface thereof, thereby forming a SiO film as the first film in the recesses.
  • an SiO film is formed in the recess with a thickness that leaves the opening of the recess so that a SiN film can be formed in the recess in step B to be performed later.
  • the SiO film is also formed on the surface (upper surface) of the wafer 200 other than the concave portion.
  • the step A1 of supplying the raw material to the wafer 200 and the step A2 of supplying the first reactant to the wafer 200 are alternately performed a predetermined number of times (m times, where m is 1 (integers above) to form a SiO film.
  • the method for forming the SiO film including steps A1 and A2 will be specifically described below.
  • the first film-forming agent includes a raw material and a first reactant.
  • step A1 In step A ⁇ b>1 , a raw material (raw material gas) is supplied as a first film-forming agent to the wafer 200 in the processing chamber 201 .
  • valve 243a is opened to allow the raw material to flow into the gas supply pipe 232a.
  • the raw material flowing through the gas supply pipe 232a is adjusted in flow rate by the MFC 241a, supplied into the processing chamber 201 through the nozzle 249a, and exhausted through the exhaust port 231a.
  • the raw material is supplied to the wafer 200 from the side of the wafer 200 .
  • the valves 243f to 243h may be opened to supply the inert gas into the processing chamber 201 through the nozzles 249a to 249c, respectively.
  • the processing conditions for supplying raw materials in step A1 are as follows: Treatment temperature: 400-700°C, preferably 500-650°C Treatment pressure: 1 to 2666 Pa, preferably 67 to 1333 Pa Raw material supply flow rate: 0.01 to 2 slm, preferably 0.1 to 1 slm Raw material supply time: 1 to 120 seconds, preferably 1 to 60 seconds Inert gas supply flow rate (per gas supply pipe): 0 to 10 slm are exemplified.
  • the expression of a numerical range such as "400 to 700°C” in this specification means that the lower limit and upper limit are included in the range. Therefore, for example, "400 to 700°C” means “400°C to 700°C”.
  • the processing temperature in this specification means the temperature of the wafer 200 or the temperature inside the processing chamber 201
  • the processing pressure means the pressure inside the processing chamber 201 .
  • the processing time means the time during which the processing is continued.
  • 0 slm when 0 slm is included in the supply flow rate, 0 slm means a case where the substance (gas) is not supplied.
  • a Si-containing layer containing Cl is formed on the inner surface of the recess of the wafer 200 by supplying, for example, a chlorosilane-based gas containing Si and chlorine (Cl) as raw materials to the wafer 200 under the above-described processing conditions. It is formed.
  • the Si-containing layer containing Cl is formed on the inner surface of the concave portion of the wafer 200 by physical adsorption or chemical adsorption of the raw material, chemical adsorption of a partially decomposed substance of the raw material, deposition of Si due to thermal decomposition of the raw material, or the like. be.
  • the Si-containing layer containing Cl may be an adsorption layer (physisorption layer or chemisorption layer) of a raw material or a partially decomposed raw material, or may be a deposited layer of Si containing Cl.
  • the Si-containing layer containing Cl is also simply referred to as the Si-containing layer.
  • the valve 243a is closed and the supply of raw material into the processing chamber 201 is stopped. Then, the inside of the processing chamber 201 is evacuated, and gas and the like remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 . At this time, the valves 243f to 243h are opened to supply the inert gas into the processing chamber 201 through the nozzles 249a to 249c. The inert gas supplied into the processing chamber 201 acts as a purge gas, thereby purging the inside of the processing chamber 201 (purge).
  • the raw material which is one of the first film-forming agents
  • a silane-based gas containing Si which is the main element constituting the SiO film formed on the inner surface of the recess
  • a silane-based gas for example, a gas containing Si and a halogen element, that is, a halosilane-based gas can be used.
  • Halogen includes chlorine (Cl), fluorine (F), bromine (Br), iodine (I), and the like.
  • Halosilane-based gases include, for example, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane ( SiCl 4 , abbreviation: 4CS) gas, hexachlorodisilane gas (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, chlorosilane-based gas such as tetrafluorosilane ( fluorosilane-based gases such as SiF 4 ) gas and difluorosilane (SiH 2 F 2 ) gas; bromosilane-based gases such as tetrabromosilane (SiBr 4 ) gas
  • halosilane-based gases include bis(trichlorosilyl)methane ((SiCl 3 ) 2 CH 2 , abbreviation: BTCSM) gas, 1,2-bis(trichlorosilyl)ethane ((SiCl 3 ) 2 C 2 H 4 , alkylenechlorosilane-based gas such as abbreviation: BTCSE) gas and 1,1,2,2-tetrachloro-1,2-dimethyldisilane ((CH 3 ) 2 Si 2 Cl 4 , abbreviation: TCDMDS) gas; ,2-dichloro-1,1,2,2-tetramethyldisilane ((CH 3 ) 4 Si 2 Cl 2 , abbreviation: DCTMDS) gas or other alkylchlorosilane-based gas, or 1,1,3,3-tetrachlorosilane A gas containing a ring structure composed of Si and C and a halogen such as a -1,3-disila
  • a gas containing Si and hydrogen (H) that is, a silicon hydride gas
  • a silicon hydride gas examples include monosilane (SiH 4 ) gas, disilane (Si 2 H 6 ) gas, trisilane (Si 3 H 8 ) gas, tetrasilane (Si 4 H 10 ) gas, and the like. One or more of these can be used as the raw material.
  • a gas containing Si and an amino group that is, an aminosilane-based gas
  • An amino group can be represented as -NH 2 , -NHR, -NR 2 .
  • R represents an alkyl group, and two R's in —NR 2 may be the same or different.
  • aminosilane-based gases examples include tetrakis(dimethylamino)silane (Si[N( CH3 ) 2 ] 4 , abbreviation: 4DMAS) gas, tris(dimethylamino)silane (Si[N( CH3 ) 2 ] 3H , abbreviation: 3DMAS ) gas, bis(diethylamino)silane (Si[N( C2H5 ) 2 ] 2H2 , abbreviation: BDEAS) gas, bis(tertiarybutylamino)silane ( SiH2 [NH( C4 H 9 )] 2 , abbreviation: BTBAS) gas, (diisopropylamino)silane (SiH 3 [N(C 3 H 7 ) 2 ], abbreviation: DIPAS) gas, or the like can also be used. One or more of these can be used as the raw material.
  • 4DMAS tris(di
  • the inert gas examples include nitrogen (N 2 ) gas, rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenon (Xe) gas.
  • nitrogen (N 2 ) gas examples include nitrogen (N 2 ) gas, rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenon (Xe) gas.
  • nitrogen (N 2 ) gas examples include nitrogen (N 2 ) gas, rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenon (Xe) gas.
  • Ar argon
  • He helium
  • Ne neon
  • Xe xenon
  • Step A2 After step A1 is completed, a first reactant (first reaction gas) as a first film-forming agent is applied to the wafer 200 in the processing chamber 201, that is, the wafer 200 having the Si-containing layer formed on the inner surface of the recess. supply.
  • first reactant first reaction gas
  • valve 243b is opened to allow the first reactant to flow into the gas supply pipe 232b.
  • the first reactant flowing through the gas supply pipe 232b is adjusted in flow rate by the MFC 241b, supplied into the processing chamber 201 through the nozzle 249b, and exhausted through the exhaust port 231a.
  • the first reactant is supplied to the wafer 200 from the side of the wafer 200 .
  • the inert gas may be supplied into the processing chamber 201 through each of the nozzles 249a to 249c.
  • the processing conditions for supplying the first reactant in step A2 are as follows: Treatment temperature: 400-700°C, preferably 500-650°C Treatment pressure: 1 to 2000 Pa, preferably 1 to 1000 Pa First reactant (oxidizing agent, O-containing gas) supply flow rate: 0.1 to 10 slm First reactant (reducing gas (H-containing gas)) supply flow rate: 0 to 10 slm Inert gas supply flow rate (each gas supply pipe): 0 to 10 slm Each gas supply time: 1 to 120 seconds, preferably 1 to 60 seconds.
  • At least part of the Si-containing layer formed on the inner surface of the recess of the wafer 200 is oxidized (modified) by supplying, for example, an oxidizing agent as a first reactant to the wafer 200 under the above-described processing conditions. ) is done.
  • a SiO layer is formed as a layer containing Si and O on the inner surface of the concave portion of the wafer 200 .
  • Impurities such as Cl contained in the Si-containing layer when forming the SiO layer form gaseous substances containing at least Cl in the course of the reforming reaction (oxidation reaction) of the Si-containing layer by the first reactant. and discharged from the processing chamber 201 .
  • the SiO layer becomes a layer containing fewer impurities such as Cl than the Si-containing layer formed in step A1.
  • the valve 243b is closed and the supply of the first reactant into the processing chamber 201 is stopped. Then, gas or the like remaining in the processing chamber 201 is removed from the processing chamber 201 (purge) by the same processing procedure as the purge in step A1.
  • the first reactant which is one of the first film-forming agents
  • an oxidizing agent oxidizing gas
  • the oxidizing agent can be used not only by being thermally excited in a non-plasma atmosphere, but also by being plasma-excited. That is, as the oxidizing agent, an oxidizing agent excited to a plasma state can also be used.
  • the oxidizing agent examples include oxygen (O 2 ) gas, oxygen (O)-containing gas such as ozone (O 3 ) gas, water vapor (H 2 O gas), O such as hydrogen peroxide (H 2 O 2 ) gas, and the like. and H-containing gas, nitrous oxide (N 2 O) gas, nitric oxide (NO) gas, nitrogen dioxide (NO 2 ) gas such as O and N-containing gas, carbon monoxide (CO) gas, carbon dioxide (CO 2 ) O and C containing gases such as gas can be used.
  • a mixed gas of the O-containing gas and the reducing gas can also be used.
  • the reducing gas does not have an oxidizing action by itself, but generates an oxidizing species such as atomic oxygen by reacting with an O-containing gas under specific conditions, for example, the above-described processing conditions.
  • an oxidizing species such as atomic oxygen by reacting with an O-containing gas under specific conditions, for example, the above-described processing conditions.
  • an H-containing gas such as hydrogen (H 2 ) gas or deuterium ( 2 H 2 ) gas can be used. That is, as the oxidizing agent, for example, O 2 gas + H 2 gas, O 3 gas + H 2 gas, or the like can be used. One or more of these can be used as the first reactant.
  • H2 gas + O2 gas means a mixed gas of H2 gas and O2 gas.
  • the two gases may be mixed (premixed) in the supply pipe and then supplied into the processing chamber 201, and the two gases may be separately supplied to the processing chamber 201 through different supply pipes. may be fed into the chamber 201 and mixed (post-mixed) in the processing chamber 201 .
  • Predetermined number of times By performing the above-described steps A1 and A2 alternately, that is, by performing a non-simultaneous cycle a predetermined number of times (m times, where m is an integer equal to or greater than 1), the inside of the concave portion of the wafer 200 is formed as shown in FIG. A SiO film can be formed on the surface as the first film.
  • the above cycle is preferably repeated multiple times. That is, the thickness of the SiO layer formed per cycle is made thinner than the desired film thickness, and the thickness of the SiO film formed by stacking the SiO layers reaches the desired thickness. It is preferred to repeat the cycle multiple times.
  • the SiO film may be formed by chemical vapor deposition (CVD) in which the raw material and the first reactant are supplied simultaneously.
  • CVD chemical vapor deposition
  • the raw material and the first reactant are simultaneously supplied to the wafer 200 under the same processing conditions as the processing conditions in steps A1 and A2 described above, so that the CVD method is performed to fill the recesses.
  • a SiO film may be formed.
  • the film thickness of the SiO film can be adjusted by the supply time of the raw material and the first reactant.
  • the supply time of the raw material and the first reactant may be set longer than the supply time of the raw material and the first reactant under the processing conditions in steps A1 and A2 described above.
  • the various raw materials exemplified in steps A1 and A2 above the same raw material as the first reactant, and the first reactant can be used.
  • the surface of the recess made of Si is oxidized by thermal oxidation such as dry oxidation, wet oxidation, and reduced-pressure oxidation, plasma oxidation, ozone oxidation, or the like, thereby forming a SiO film on the inner surface of the recess.
  • thermal oxidation such as dry oxidation, wet oxidation, and reduced-pressure oxidation, plasma oxidation, ozone oxidation, or the like.
  • the above-described step A2 is performed alone on the wafer 200 under the same processing conditions as the processing conditions in the above-described step A2, thereby oxidizing the inner surfaces of the recesses to form the recesses.
  • An SiO film may be formed on the inner surface. In this case, the thickness of the SiO film can be adjusted by the supply time of the first reactant.
  • the supply time of the first reactant may be longer than the supply time of the first reactant under the processing conditions of step A2 described above.
  • the first film-forming agent may contain the first reactant.
  • the first reactant used in this method can be the same first reactant as the various first reactants exemplified in step A2 above.
  • the thickness of the SiO film formed in the recess in this step is preferably 5 nm or more, more preferably 10 nm or more, at the thinnest point of the SiO film. If the thickness of the SiO film is less than 5 nm, the function as a reforming stopper, which will be described later, may become insufficient. By setting the thickness of the SiO film to 5 nm or more, the function as a reforming stopper can be sufficiently obtained. By setting the thickness of the SiO film to 10 nm or more, the function as a modification stopper can be obtained more sufficiently.
  • the thickness of the SiO film formed in the recess in this step is preferably a thickness that does not fill the opening of the recess, that is, a thickness that leaves the opening of the recess.
  • the thickness of the SiO film formed in the concave portion is preferably less than half the diameter of the opening of the concave portion. This is because if the opening of the recess is filled with the SiO film, it becomes difficult to form the SiN film as the second film.
  • the upper limit of the thickness of the SiO film formed in the recess may be determined according to the size of the opening of the recess. For example, it is preferably 30 nm or less, more preferably 20 nm or less. , 15 nm or less. If the thickness of the SiO film is more than 30 nm, the opening of the recess becomes narrow, and it may not be possible to obtain sufficient embedding characteristics of the SiN film. This problem can be solved by setting the thickness of the SiO film to 30 nm or less. By setting the thickness of the SiO film to 20 nm or less, it is possible to sufficiently solve this problem. By setting the thickness of the SiO film to 15 nm or less, it is possible to sufficiently solve this problem.
  • the thickness of the SiO film formed in the recess in this step is preferably 5 nm to 30 nm, more preferably 5 nm to 20 nm, even more preferably 5 nm to 15 nm, and particularly preferably 10 nm to 15 nm.
  • the SiO film formed in this step has low reactivity with the modifier used in step C to be performed later, and has a higher etching resistance than the modified layer formed in step C to be performed later. have.
  • Step B After step A is completed, step B is executed.
  • a second film-forming agent is supplied to the wafer 200 in the processing chamber 201 to form a SiN film as a second film on the SiO film as the first film formed in the recess in step A. form a film.
  • a SiN film which is a film containing Si and nitrogen (N) is formed as the second film so as to have a thickness that fills the recesses having the SiO film formed on the inner surface.
  • the opening of the recess is closed with the SiN film, and a portion not filled with the SiN film (a space caused by voids or seams) is formed in the recess. .
  • the SiN film formed so as to fill the recess has a space (gap, hollow portion) in the film.
  • the SiN film is also formed on the SiO film formed on the surface (upper surface) of the wafer 200 other than the concave portion.
  • the step B1 of supplying the raw material to the wafer 200 and the step B2 of supplying the second reactant to the wafer 200 are alternately performed a predetermined number of times (n times, where n is 1). (integers above) to form a SiN film.
  • the method of forming the SiN film including steps B1 and B2 will be specifically described below.
  • the second film-forming agent includes a raw material and a second reactant.
  • step B1 a raw material (raw material gas) is supplied as a second film-forming agent to the wafer 200 in the processing chamber 201, that is, the wafer 200 having the SiO film formed on the inner surface of the recess.
  • This step can be performed under the same processing procedure as in step A1 described above under the following processing conditions.
  • a Si-containing layer can be formed on the SiO film.
  • gas remaining in the processing chamber 201 is removed (purge) from the processing chamber 201 by the same procedure as the purge in the above-described step A1.
  • the raw material for example, the same raw material as the various raw materials exemplified in step A1 above can be used.
  • the processing conditions for supplying raw materials in step B1 are as follows: Treatment temperature: 400-800°C, preferably 500-650°C Treatment pressure: 1 to 2666 Pa, preferably 67 to 1333 Pa Raw material supply flow rate: 0.01 to 2 slm, preferably 0.1 to 1 slm Raw material supply time: 1 to 120 seconds, preferably 1 to 60 seconds Inert gas supply flow rate (per gas supply pipe): 0 to 10 slm are exemplified.
  • Step B2 After step B1 is completed, the wafer 200 in the processing chamber 201, that is, the wafer 200 having the Si-containing layer formed on the SiO film formed on the inner surface of the recess is subjected to the second reaction using the second film-forming agent. (second reactant gas).
  • valve 243c is opened to allow the second reactant to flow into the gas supply pipe 232c.
  • the flow rate of the second reactant flowing through the gas supply pipe 232c is adjusted by the MFC 241c, supplied into the processing chamber 201 through the nozzle 249c, and exhausted through the exhaust port 231a.
  • the second reactant is supplied to the wafer 200 from the side of the wafer 200 .
  • the inert gas may be supplied into the processing chamber 201 through each of the nozzles 249a to 249c.
  • the processing conditions for supplying the second reactant in step B2 are as follows: Treatment temperature: 400-800°C, preferably 500-650°C Treatment pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa Second reactant supply flow rate: 0.1-10 slm Second reaction pair supply time: 1 to 120 seconds, preferably 1 to 60 seconds Inert gas supply flow rate (per gas supply pipe): 0 to 10 slm are exemplified.
  • At least part of the Si-containing layer is nitrided (modified) by supplying, for example, a nitriding agent (nitriding gas) as a second reactant to the wafer 200 under the above processing conditions.
  • a SiN layer is formed as a layer containing Si and N on the SiO film formed on the inner surface of the recess of the wafer 200 .
  • Impurities such as Cl contained in the Si-containing layer when forming the SiN layer form a gaseous substance containing at least Cl in the course of the reforming reaction (nitriding reaction) of the Si-containing layer by the second reactant. and discharged from the processing chamber 201 .
  • the SiN layer becomes a layer containing fewer impurities such as Cl than the Si-containing layer formed in step B1.
  • the valve 243c is closed and the supply of the second reactant into the processing chamber 201 is stopped. Then, gas or the like remaining in the processing chamber 201 is removed from the processing chamber 201 (purge) by the same processing procedure as the purge in step A1.
  • a nitriding agent for example, can be used as the second reactant (second reacting gas), which is one of the second film-forming agents.
  • the nitriding agent can be used not only by being thermally excited in a non-plasma atmosphere, but also by being plasma-excited. That is, as the nitriding agent, a nitriding agent excited to a plasma state can also be used.
  • N-containing gas for example, can be used as the nitriding agent.
  • N- and H-containing gases can be used as the N-containing gas.
  • a hydrogen nitride-based gas such as ammonia (NH 3 ) gas, diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas can be used.
  • NH 3 ammonia
  • N 2 H 2 diazene
  • N 2 H 4 hydrazine
  • N 3 H 8 gas N 3 H 8 gas
  • the N- and H-containing gas for example, a C-, N- and H-containing gas can be used.
  • Examples of the C, N and H-containing gas include monoethylamine (C 2 H 5 NH 2 , abbreviation: MEA) gas, diethylamine ((C 2 H 5 ) 2 NH, abbreviation: DEA) gas, triethylamine ((C 2 H 5 ) 3 N (abbreviation: TEA) gas, ethylamine-based gas, monomethylamine (CH 3 NH 2 abbreviation: MMA) gas, dimethylamine ((CH 3 ) 2 NH, abbreviation: DMA) gas, trimethylamine ( Methylamine-based gases such as (CH 3 ) 3 N (abbreviation: TMA) gas, monomethylhydrazine ((CH 3 ) HN 2 H 2 , abbreviation: MMH) gas, dimethylhydrazine ((CH 3 ) 2 N 2 H 2 , abbreviation: DMH) gas, trimethylhydrazine ((CH 3 ) 2 N 2 (CH 3
  • the concave portion of the wafer 200 is filled as shown in FIG. , can be embedded with a SiN film as the second film.
  • the above cycle is preferably repeated multiple times. That is, the thickness of the SiN layer formed per cycle is made thinner than the desired film thickness, and the thickness of the SiN film formed by laminating the SiN layers is such that the recess of the wafer 200 is filled.
  • the above cycle is repeated multiple times until the thickness is achieved.
  • the SiN film may be formed by a CVD method in which the raw material and the second reactant are supplied simultaneously.
  • the source material and the second reactant are simultaneously supplied to the wafer 200 under the same processing conditions as the processing conditions in steps B1 and B2 described above, so that the CVD method is performed to fill the recesses.
  • a SiN film may be formed.
  • the film thickness of the SiN film can be adjusted by the supply time of the raw material and the second reactant.
  • the supply time of the raw material and the second reactant may be longer than the supply time of the raw material and the second reactant under the processing conditions in steps B1 and B2 described above.
  • the raw materials and second reactants used in this method may be the same raw materials and second reactants as those exemplified in step A1 above and the various second reactants exemplified in step B2 above.
  • Step C After step B is completed, step C is executed.
  • a modifying agent containing F is supplied to the wafer 200 in the processing chamber 201 to partially modify the SiN film.
  • part of the surface side of the SiN film as the second film formed in step B is formed into an F-containing layer, particularly an F-containing SiO layer or SiOF as an F- and O-containing layer. Modify the layers.
  • F-containing SiO layers or SiOF layers are also referred to as Si-, F- and O-containing layers. Since the F-containing SiO layer or the SiOF layer is a modified portion of the SiN film, it is hereinafter also referred to as a modified layer for convenience.
  • a modified layer is formed (stacked) on the SiN film that is maintained without being modified using the SiO film as a base in the concave portion of the wafer 200. state.
  • the SiN film formed on the surface (upper surface) of the wafer 200 other than the concave portion is also modified into the modified layer.
  • valve 243d is opened to allow the modifier to flow into the gas supply pipe 232d.
  • the modifier flowing through the gas supply pipe 232d is adjusted in flow rate by the MFC 241d, supplied into the processing chamber 201 through the nozzle 249a, and exhausted through the exhaust port 231a.
  • the modifier is supplied to the wafer 200 from the side of the wafer 200 .
  • the inert gas may be supplied into the processing chamber 201 through each of the nozzles 249a to 249c.
  • the treatment conditions for supplying the modifier in step C are as follows: Treatment temperature: 100-500°C, preferably 350-450°C Treatment pressure: 1 to 2666 Pa, preferably 67 to 1333 Pa Modifier supply flow rate: 0.001 to 2 slm, preferably 0.002 to 1 slm Modifier supply time: 30 seconds to 30 minutes, preferably 1 minute to 20 minutes Inert gas supply flow rate (per gas supply pipe): 0 to 10 slm are exemplified.
  • part of the SiN film embedded in the concave portion is modified into a modified layer (a F-containing SiO layer or an SiOF layer). questioned.
  • the modification of the SiN film to the modified layer progresses from the surface of the SiN film in the depth direction as the modifier is supplied to the surface of the SiN film.
  • the SiN film located on the upper side in FIG. 5(c) is converted into a modified layer (F-containing SiO layer or SiOF layer).
  • the thickness of the modified layer can be controlled by the conditions for supplying the modifier to the wafer 200 .
  • the SiO film as the first film formed in step A can act as a modification suppressing film.
  • the SiO film formed in step A can suppress or stop the progress of modification in the depth direction of the SiO film itself due to the modifying agent.
  • the SiO film functions as a modification stopper.
  • the reason why the SiO film functions as a modification stopper is that the reactivity between the modifier and the SiO film is lower than the reactivity between the modifier and the SiN film. This is because a material having lower reactivity with the film than with the SiN film is used. In other words, it can be said that the modifier is supplied under processing conditions in which the reactivity between the modifier and the SiO film is lower than the reactivity between the modifier and the SiN film. By utilizing such a difference in reactivity, it becomes possible in this step to selectively modify a part of the SiN film while suppressing or stopping the progress of modification of the SiO film. Depending on the processing conditions, it is also possible to prevent the modifier from reacting with the SiO film, that is, prevent the SiO film from modifying.
  • the modification of the SiN film can be progressed selectively in the direction of depth in the recess, and the shape as shown in FIG. can form a modified layer.
  • the modified layer F-containing SiO layer or SiOF layer
  • the modification of the SiN film is preferably advanced to a position deeper than the upper portion of the space (void or seam) in the SiN film.
  • FIG. 5C shows an example in which the modification of the SiN film progresses to a position of two-thirds or more of the depth of the space in the SiN film.
  • the modification of the SiN film By advancing the modification of the SiN film as described above, at least part of the space in the SiN film in the recess is eliminated by removing the modified layer in step D to be performed later, and the space is opened. can be done. As a result, the space in the recess can be filled with the third film formed in step E performed after step D.
  • the modification of the SiN film can be advanced to the same depth as the bottom of the space in the SiN film. In this case, the space itself in the SiN film can be eliminated by removing the modified layer in step D to be performed later.
  • the SiN film functions as a modification stopper, the SiN film is formed without altering the inner surface of the recess made of Si or the like and without damaging the inner surface of the recess. It becomes possible to selectively modify a part of the film.
  • valve 243d is closed and the supply of the modifier into the processing chamber 201 is stopped. Then, gas or the like remaining in the processing chamber 201 is removed from the processing chamber 201 (purge) by the same processing procedure as the purge in step A1.
  • the modifier for example, it is preferable to use a substance containing F, more preferably a substance containing F and O, and even more preferably a substance containing F, O and N. .
  • F-containing gas is preferably used
  • F- and O-containing gas is more preferably used
  • F-, O- and N-containing gas is further preferably used. That is, the modifier preferably contains F, more preferably contains F and O, and further preferably contains F, O and N.
  • a mixed gas of an N- and O-containing gas and an F-containing gas for example, a mixed gas of an F-, N- and O-containing gas and an F-containing gas, or an F-, N- and O-containing gas.
  • a mixed gas of an F-, N- and O-containing gas and an F-containing gas, or an F-, N- and O-containing gas can also be used.
  • modifiers include NO gas + fluorine (F 2 ) gas, NO gas + chlorine monofluoride (ClF) gas, NO gas + chlorine trifluoride (ClF 3 ) gas, NO gas + nitrogen trifluoride. (NF 3 ) gas, nitrosyl fluoride (FNO) gas+F 2 gas, FNO gas+ClF gas, FNO gas+ClF 3 gas, FNO gas+NF 3 gas, FNO gas, or the like can be used.
  • a gas that is difficult to store such as FNO gas, is preferably generated by mixing F 2 gas and NO gas in a supply pipe or nozzle, and supplied to the processing chamber 201 . In this case, a mixed gas of F 2 gas, NO gas and FNO gas is supplied into the processing chamber 201 .
  • Step D After step C is completed, step D is executed.
  • an etchant containing halogen is supplied to the wafer 200 in the processing chamber 201 to remove the modified portion (modified layer) of the SiN film. That is, in this step, the portion (modified layer) of the SiN film that has been modified into the F-containing SiO layer or the SiOF layer in step C is removed.
  • the SiN film remains in the concave portion of the wafer 200 without being modified, the surface of the SiN film is exposed, and one part of the SiO film is exposed. A portion, that is, a portion in contact with the modified layer is exposed.
  • the modified layer on the surface (upper surface) of the wafer 200 other than the concave portion is also removed to expose the SiO film.
  • valve 243e is opened to allow the etchant to flow into the gas supply pipe 232e.
  • the flow rate of the etchant is adjusted by the MFC 241e, supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and exhausted through the exhaust port 231a.
  • the etchant is supplied to the wafer 200 from the side of the wafer 200 .
  • the inert gas may be supplied into the processing chamber 201 through each of the nozzles 249a to 249c.
  • the processing conditions for supplying the etchant in step D are as follows: Treatment temperature: room temperature (25°C) to 600°C, preferably 50 to 200°C Treatment pressure: 1 to 13332 Pa, preferably 100 to 1333 Pa Etchant supply flow rate: 0.05 to 5 slm, preferably 0.1 to 2 slm Etchant supply time: 0.1 to 30 minutes, preferably 1 to 10 minutes Inert gas supply flow rate (per gas supply pipe): 0 to 10 slm are exemplified.
  • the modified portion of the SiN film that is, the modified layer (F-containing SiO layer or SiOF layer) is removed.
  • the SiO film formed in step A can act as an etching suppression film, and even when etching the modified layer in contact with the SiO film, etching of the SiO film can be suppressed. can. That is, the SiO film can suppress or stop the progress of etching in the depth direction of the SiO film, that is, toward the underlying side of the SiO film. That is, the SiO film functions as an etching stopper. As a result, it is possible to prevent deterioration of the inner surface of the concave portion of the wafer 200 underlying the SiO film and damage to the inner surface of the concave portion during the execution of this step.
  • the reason why the SiO film functions as an etching stopper is that the reactivity between the etchant and the SiO film is lower than the reactivity between the etchant and the modified layer (F-containing SiO layer or SiOF layer). This is because, as an etchant, a substance having lower reactivity with the SiO film than with the modified layer is used. In other words, it can be said that the etchant is supplied under processing conditions in which the reactivity between the etchant and the SiO film is lower than the reactivity between the etchant and the modified layer.
  • the modified layer By utilizing such a difference in reactivity, in this step, it is possible to selectively etch the modified layer while suppressing or stopping the progress of the etching of the SiO film.
  • the SiO film is an F-free film
  • the modified layer is an F-containing layer.
  • the difference in chemical composition between the SiO film and the modified layer is the reason why the etching rate of the SiO film is lower than the etching rate of the modified layer. This is one of the reasons why it is higher than sex.
  • the portion of the SiN film that has been modified into the F-containing SiO layer or the SiOF layer, that is, the modified layer is etched in the depth direction in the recess, and , can be selectively advanced.
  • the SiN film, which was maintained without being modified with the SiO film as a base remained in the recess, and was in contact with the modified layer of the SiO film. part will be exposed.
  • the valve 243e is closed to stop the supply of the etchant into the processing chamber 201. Then, the processing chamber 201 is evacuated to remove gaseous substances remaining in the processing chamber 201 from the processing chamber 201 . Then, gaseous substances and the like remaining in the processing chamber 201 are removed from the processing chamber 201 (purge) by the same processing procedure as the purge in step A1 described above.
  • etching gas As an etchant (etching gas), it is preferable to use a substance containing halogen, for example, a substance containing at least one of F, Cl, and I. As a result, it is possible to selectively remove the modified portion (modified layer) of the SiN film as the second film while suppressing the etching of the SiO film as the first film. becomes.
  • a substance containing halogen for example, a substance containing at least one of F, Cl, and I.
  • Examples of the etchant include F2 gas, NF3 gas, ClF3 gas, ClF gas, tungsten hexafluoride ( WF6 ) gas, iodine heptafluoride ( IF7 ) gas, and iodine pentafluoride ( IF5 ).
  • hexafluoroacetylacetone C5H2F6O2
  • hydrogen fluoride HF
  • FNO hydrogen fluoride
  • chlorine Cl2
  • hydrogen chloride HCl
  • BCl3 boron trichloride
  • SOCl 2 thionyl chloride
  • WCl 6 tungsten hexachloride
  • the modifier used in step C and the etchant used in step D may be the same substance (gas).
  • FNO gas can be used as the modifier
  • FNO gas can be used as the etchant.
  • the FNO gas can be made to act as a modifier in step C, and the FNO gas can be made to act as an etchant in step D.
  • Step E After step D is completed, step E is executed.
  • a third film-forming agent is supplied to the wafer 200 in the processing chamber 201 to form a SiN film as a third film on the SiN film from which the modified layer has been removed.
  • a SiN film is formed as a third film with a thickness to bury the .
  • the SiN film is also formed on the surface of the wafer 200 other than the concave portion.
  • the SiN film as the second film which is maintained without being modified, remains on the bottom side of the concave portion of the wafer 200 .
  • the depth of the recess that is, the aspect ratio is relaxed (reduced)
  • the SiN film is formed as the third film with a thickness enough to fill the recess, voids and seams do not occur. It becomes possible to fill the concave portion without causing the occurrence of the pitting.
  • the same raw material and second reactant as those of the second film-forming agent in the above-described step B are used as the third film-forming agent.
  • a SiN film can be formed as three films.
  • the raw material for example, the same raw materials as the various raw materials exemplified in step B1 (step A1) described above can be used, and as the second reactant, for example, various second reactants exemplified in step B2 described above can be used.
  • a second reactant similar to can be used.
  • step E After-purge and return to atmospheric pressure, an inert gas is supplied into the processing chamber 201 as a purge gas from each of the nozzles 249a to 249c, and exhausted from the exhaust port 231a.
  • the inside of the processing chamber 201 is purged, and gas remaining in the processing chamber 201 and reaction by-products are removed from the inside of the processing chamber 201 (afterpurge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure recovery).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the manifold 209 is opened. Then, the processed wafer 200 is unloaded from the reaction tube 203 from the lower end of the manifold 209 while being supported by the boat 217 (boat unloading). After the boat is unloaded, the shutter 219s is moved and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter closed). The processed wafers 200 are carried out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • Steps A, B, C, D, and E are preferably performed in the same processing chamber (in-situ). Accordingly, steps A, B, C, D, and E can be performed without exposing the wafer 200 to the atmosphere, that is, while keeping the surface of the wafer 200 clean.
  • the first film is formed in step A before forming the second film in step B in the concave portion provided on the surface of the wafer 200 .
  • the first film when partially modifying the second film in step C, the first film can act as a modification suppressing film, and in step D, the second film is modified.
  • the first film can act as an etching suppressing film. That is, the first film formed in the concave portion before forming the second film functions as a modification stopper when partially modifying the second film, and the second film is modified. It can function as an etching stopper when removing the portion (modified layer).
  • a part of the second film is modified, and the modified portion of the second film (modified layer) can be removed. As a result, it is possible to form a film in the recess with high accuracy.
  • the third film in step E, can be formed in the recess having an inner surface that has been maintained in a proper state that is neither degraded nor damaged. This makes it possible to form a film in the recess with high accuracy. As a result, it is possible to fill the concave portion with a film with high accuracy.
  • the material of the third film By making the material of the third film the same as the material of the second film, it is possible to fill the concave portion with a film of the same material. Further, by making the material of the third film different from the material of the second film, it is possible to fill the concave portion with a film (laminated film) of a different material.
  • a SiO film which is an oxide film
  • the first film can effectively function as a modification stopper when partially modifying the SiN film as the second film in step C, and , when removing the modified portion (modified layer) of the SiN film in step D, the first film can effectively function as an etching stopper.
  • the first film since the first film is the SiO film, the first film functions more effectively as a modification stopper when partially modifying the SiN film as the second film in step C, and , when removing the modified portion (modified layer) of the SiN film in step D, the first film can be made to function more effectively as an etching stopper.
  • a film other than the SiO film that is, a SiN film, which is a film having a chemical composition different from that of the SiO film
  • the second film is a film other than the SiO film, that is, a film having a chemical composition different from that of the SiO film, particularly a SiN film
  • the second film is easily modified by the modifier, and It is possible to form a film that is difficult to remove with an etchant.
  • a wafer 200 is used in which the surface of the recess is made of a material other than the SiO film, that is, Si, which is a material different in chemical composition from the SiO film.
  • the reactivity between the modifier and the first film is made lower than the reactivity between the modifier and the second film. That is, the reactivity between the modifier and the second film is made higher than the reactivity between the modifier and the first film.
  • step C a part of the region of the second film from the surface of the second film to a portion in contact with a part of the first film is modified, and in step D, a part of the first film is modified. be exposed.
  • steps C and D a part of the second film is selectively reformed while suppressing the reformation of the first film, and the second film is reformed while suppressing the etching of the first film. It becomes possible to selectively remove the modified portion (modified layer).
  • the second film has a seam or a void
  • step C a region of the second film from the surface of the second film to at least a portion contacting at least a part of the seam or void is modified
  • step D the modified region (modified layer) is removed while at least part of the seam or void is eliminated.
  • step C part of the second film is modified into an F and O containing layer, particularly a Si, F and O containing layer.
  • the reactivity between the etchant and the first film is made lower than the reactivity between the etchant and the modified portion (modified layer) of the second film. That is, the reactivity between the etchant and the modified layer is made higher than the reactivity between the etchant and the first film. This makes it possible to selectively remove the modified portion of the second film while suppressing the etching of the first film.
  • step C to step D may be repeated a plurality of times (y times, where y is an integer of 2 or more).
  • Step A Step B ⁇ (Step C ⁇ Step D) x y ⁇ Step E
  • the same effect as the above-described mode can be obtained.
  • step C By performing the cycle multiple times, the amount of etching can be increased.
  • the etching amount can be controlled by the number of cycles (y), and the controllability of the etching amount can be improved.
  • the filling can be performed while controlling the etching amount, and void-free and seamless filling can be performed.
  • step C ⁇ step D ⁇ step E may be repeated a plurality of times (z times, where z is an integer of 2 or more).
  • Step A Step B ⁇ (Step C ⁇ Step D ⁇ Step E) ⁇ z
  • step C->step D->step E are repeated a plurality of times to fill recesses while eliminating voids or seams. According to this modification, void-free and seamless embedding can be performed even in such a case.
  • the material of the third film formed in step E may be different from the material of the second film formed in step B.
  • the third film-forming agent (third raw material, third reactant) used in step E is a film-forming agent (second raw material, second reactant) different from the second film-forming agent used in step B. ) and selecting the treatment procedure and treatment conditions according to the material of the third film, the third film can be formed.
  • the material of the third film can be made different from the material of the second film. Also in this modified example, it is possible to form a film in the concave portion with high accuracy.
  • step E step E can be omitted if it is not necessary to fill the concave portion with the third film. Also in this aspect, it is possible to form a film in the concave portion with high accuracy.
  • steps A, B, C, D, and E are performed in the same processing chamber 201 (in-situ) in the same processing chamber 201 (in-situ) has been described. At least one of C, D, and E may be performed (ex-situ) in a different processing chamber (processing section, processing space). If at least one of steps A, B, C, D, and E is performed in separate processing chambers, the temperature in each processing chamber is set in advance to, for example, the processing temperature in each step or a temperature close thereto. It is possible to shorten the time required for temperature adjustment and improve production efficiency.
  • the examples where the surfaces of the recesses are made of Si have been described.
  • it may be made of a material containing Si.
  • the surface of the recess may be composed of single crystal Si, Si film, SiN film, silicon carbide film (SiC film), silicon carbonitride film (SiCN film), silicon oxycarbonitride film (SiOCN film), silicon oxycarbide film (SiOCN film).
  • SiON film a silicon oxynitride film
  • SiBCN film silicon borocarbonitride film
  • SiBN silicon boronitride film
  • SiBC film silicon borocarbide film
  • SiBO film silicon borate film
  • the second film and the third film may be films other than SiO films.
  • Si and N may be used.
  • the second film and the third film may include at least one of SiN film, SiCN film, SiOCN film, SiOCN film, SiON film, SiBCN film, and SiBN film.
  • the recipes used for each process are individually prepared according to the contents of the process and stored in the storage device 121c via the telecommunication line or the external storage device 123. Then, when starting each process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from among the plurality of recipes stored in the storage device 121c according to the content of the process.
  • a single substrate processing apparatus can form films having various film types, composition ratios, film qualities, and film thicknesses with good reproducibility.
  • the burden on the operator can be reduced, and each process can be started quickly while avoiding operational errors.
  • the above-mentioned recipe is not limited to the case of newly creating it, and for example, it may be prepared by modifying an existing recipe that has already been installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium recording the recipe.
  • an existing recipe already installed in the substrate processing apparatus may be directly changed by operating the input/output device 122 provided in the existing substrate processing apparatus.
  • an example of forming a film using a batch-type substrate processing apparatus that processes a plurality of substrates at once has been described.
  • the present disclosure is not limited to the embodiments described above, and can be suitably applied, for example, to the case of forming a film using a single substrate processing apparatus that processes one or several substrates at a time.
  • an example of forming a film using a substrate processing apparatus having a hot wall type processing furnace has been described.
  • the present disclosure is not limited to the embodiments described above, and can be suitably applied to the case of forming a film using a substrate processing apparatus having a cold wall type processing furnace.
  • the above aspects and modifications can be used in combination as appropriate.
  • the processing procedure and processing conditions at this time can be, for example, the same as the processing procedures and processing conditions in the above-described modes and modifications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Weting (AREA)
  • Element Separation (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(a)表面に凹部が設けられた基板に対して第1成膜剤を供給することで、前記凹部内に第1膜を形成する工程と、(b)前記基板に対して第2成膜剤を供給することで、前記凹部内に形成された前記第1膜上に前記第1膜とは化学組成が異なる第2膜を形成する工程と、(c)前記基板に対してフッ素を含む改質剤を供給することで、前記第2膜の一部を改質させる工程と、(d)前記基板に対してハロゲンを含むエッチング剤を供給することで、前記第2膜のうち改質させた部分を除去する工程と、を行う技術。

Description

基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
 本開示は、基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
 半導体装置の製造工程の一工程として、トレンチやホール等の凹部が表面に設けられた基板に対して原料を供給し、凹部内に膜を形成する工程が行われることがある(例えば、国際公開第2019/003662号参照)。
 本開示の目的は、基板の表面に設けられた凹部内に高い精度をもって膜を形成することが可能な技術を提供することにある。
 本開示の一態様によれば、
 (a)表面に凹部が設けられた基板に対して第1成膜剤を供給することで、前記凹部内に第1膜を形成する工程と、
 (b)前記基板に対して第2成膜剤を供給することで、前記凹部内に形成された前記第1膜上に前記第1膜とは化学組成が異なる第2膜を形成する工程と、
 (c)前記基板に対してフッ素を含む改質剤を供給することで、前記第2膜の一部を改質させる工程と、
 (d)前記基板に対してハロゲンを含むエッチング剤を供給することで、前記第2膜のうち改質させた部分を除去する工程と、
 を行う技術が提供される。
 本開示によれば、基板の表面に設けられた凹部内に高い精度をもって膜を形成することが可能となる。
図1は、本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を縦断面図で示す図である。 図2は、本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を図1のA-A線断面図で示す図である。 図3は、本開示の一態様で好適に用いられる基板処理装置のコントローラ121の概略構成図であり、コントローラ121の制御系をブロック図で示す図である。 図4は、本開示の一態様の処理シーケンスを示すフロー図である。 図5(a)は、表面に凹部が設けられたウエハに対して第1成膜剤を供給することで、凹部内に第1膜としてのシリコン酸化膜(SiO膜)を形成した後のウエハ表面部分を示す断面模式図である。図5(b)は、図5(a)の状態のウエハに対して第2成膜剤を供給することで、凹部内に形成されたSiO膜上に、ボイドを有する第2膜としてのシリコン窒化膜(SiN膜)を形成した後のウエハ表面部分を示す断面模式図である。図5(c)は、図5(b)の状態のウエハに対してフッ素(F)を含む改質剤を供給することで、ボイドを有するSiN膜の一部を改質させた後のウエハ表面部分を示す断面模式図である。図5(d)は、図5(c)の状態のウエハに対してハロゲンを含むエッチング剤を供給することで、SiN膜のうち改質させた部分(改質層)を除去した後のウエハ表面部分を示す断面模式図である。図5(e)は、図5(d)の状態のウエハに対して第3成膜剤を供給することで、改質層を除去した後のSiN膜上に、第3膜としてのSiN膜を形成した後のウエハ表面部分を示す断面模式図である。
<本開示の一態様>
 以下、本開示の一態様について、主に、図1~図3、図4、図5(a)~図5(e)を参照しつつ説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
 図1に示すように、処理炉202は温度調整器(加熱部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス鋼(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
 処理室201内には、第1~第3供給部としてのノズル249a~249cが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a~249cを、それぞれ第1~第3ノズルとも称する。ノズル249a~249cは、例えば石英またはSiC等の耐熱性材料により構成されている。ノズル249a~249cには、ガス供給管232a~232cがそれぞれ接続されている。ノズル249a~249cはそれぞれ異なるノズルであり、ノズル249a,249cのそれぞれは、ノズル249bに隣接して設けられている。
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232d,232fがそれぞれ接続されている。ガス供給管232bのバルブ243bよりも下流側には、ガス供給管232e,232gがそれぞれ接続されている。ガス供給管232cのバルブ243cよりも下流側には、ガス供給管232hが接続されている。ガス供給管232d~232hには、ガス流の上流側から順に、MFC241d~241hおよびバルブ243d~243hがそれぞれ設けられている。ガス供給管232a~232hは、例えば,SUS等の金属材料により構成されている。
 図2に示すように、ノズル249a~249cは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a~249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。平面視において、ノズル249bは、処理室201内に搬入されるウエハ200の中心を挟んで後述する排気口231aと一直線上に対向するように配置されている。ノズル249a,249cは、ノズル249bと排気口231aの中心とを通る直線Lを、反応管203の内壁(ウエハ200の外周部)に沿って両側から挟み込むように配置されている。直線Lは、ノズル249bとウエハ200の中心とを通る直線でもある。すなわち、ノズル249cは、直線Lを挟んでノズル249aと反対側に設けられているということもできる。ノズル249a,249cは、直線Lを対称軸として線対称に配置されている。ノズル249a~249cの側面には、ガスを供給するガス供給孔250a~250cがそれぞれ設けられている。ガス供給孔250a~250cは、それぞれが、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a~250cは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、原料(原料ガス)が、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料は、第1成膜剤の1つとして用いられ、第2成膜剤の1つとしても用いられ、第3成膜剤の1つとしても用いられる。なお、原料が、第1成膜剤、第2成膜剤、第3成膜剤として用いられる場合、それぞれを、第1原料(第1原料ガス)、第2原料(第2原料ガス)、第3原料(第3原料ガス)と称することもできる。
 ガス供給管232bからは、第1反応体(第1反応ガス)が、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。第1反応体は、第1成膜剤の1つとして用いられる。
 ガス供給管232cからは、第2反応体(第2反応ガス)が、MFC241c、バルブ243c、ノズル249cを介して処理室201内へ供給される。第2反応体は、第2成膜剤の1つとして用いられ、第3成膜剤の1つとしても用いられる。なお、第2反応体が、第2成膜剤、第3成膜剤として用いられる場合、それぞれを、第2反応体(第2反応ガス)、第3反応体(第3反応ガス)と称することもできる。
 ガス供給管232dからは、改質剤(改質ガス)が、MFC241d、バルブ243d、ガス供給管232a、ノズル249aを介して処理室201内へ供給される。
 ガス供給管232eからは、エッチング剤(エッチングガス)が、MFC241e、バルブ243e、ノズル249bを介して処理室201内へ供給される。
 ガス供給管232f~232hからは、不活性ガスが、それぞれMFC241f~241h、バルブ243f~243h、ガス供給管232a~232c、ノズル249a~249cを介して処理室201内へ供給される。不活性ガスは、パージガス、キャリアガス、希釈ガス等として作用する。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料供給系(原料ガス供給系)が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、第1反応体供給系(第1反応ガス供給系)が構成される。主に、ガス供給管232c、MFC241c、バルブ243cにより、第2反応体供給系(第2反応ガス供給系)が構成される。主に、ガス供給管232d、MFC241d、バルブ243dにより、改質剤供給系(改質ガス供給系)が構成される。主に、ガス供給管232e、MFC241e、バルブ243eにより、エッチング剤供給系(エッチングガス供給系)が構成される。主に、ガス供給管232f~232h、MFC241f~241h、バルブ243f~243hにより、不活性ガス供給系が構成される。
 原料供給系、第1反応体供給系のそれぞれ或いは全てを、第1成膜剤供給系とも称する。原料供給系、第2反応体供給系のそれぞれ或いは全てを、第2成膜剤供給系とも称し、第3成膜剤供給系とも称する。
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243hやMFC241a~241h等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232hのそれぞれに対して接続され、ガス供給管232a~232h内への各種物質(各種ガス)の供給動作、すなわち、バルブ243a~243hの開閉動作やMFC241a~241hによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232h等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。図2に示すように、排気口231aは、平面視において、ウエハ200を挟んでノズル249a~249c(ガス供給孔250a~250c)と対向(対面)する位置に設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。
 マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。また、コントローラ121には、外部記憶装置123を接続することが可能となっている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121によって、基板処理装置に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241h、バルブ243a~243h、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すことが可能なように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241hによる各種物質(各種ガス)の流量調整動作、バルブ243a~243hの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御することが可能なように構成されている。
 コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリやSSD等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200の表面に設けられたトレンチやホール等の凹部内に膜を形成するための処理シーケンス例について、主に、図4、図5(a)~図5(e)を用いて説明する。以下の説明では、第1膜として酸化膜であるSiO膜を形成し、第2膜および第3膜としてSiO膜以外の膜であるSiN膜を形成する場合について説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図4、図5(a)~図5(e)に示すように、本態様における処理シーケンスは、
 (a)表面に凹部が設けられたウエハ200に対して第1成膜剤を供給することで、凹部内に第1膜(SiO膜)を形成するステップAと、
 (b)ウエハ200に対して第2成膜剤を供給することで、凹部内に形成された第1膜(SiO膜)上に、第1膜(SiO膜)とは化学組成が異なる第2膜(SiN膜)を形成するステップBと、
 (c)ウエハ200に対してフッ素を含む改質剤を供給することで、第2膜(SiN膜)の一部を改質させるステップCと、
 (d)ウエハ200に対してハロゲンを含むエッチング剤を供給することで、第2膜(SiN膜)のうち改質させた部分を除去するステップDと、
 (e)ウエハ200に対して第3成膜剤を供給することで、改質させた部分を除去した後の第2膜(SiN膜)上に、第3膜(SiN膜)を形成するステップEと、
 を有する。
 本明細書では、上述の処理シーケンスを、便宜上、以下のように示すこともある。以下の変形例や他の態様等の説明においても、同様の表記を用いる。
 ステップA→ステップB→ステップC→ステップD→ステップE
 本明細書において用いる「化学組成が異なる」という表現は、膜、層、部位(例えば、ウエハの表面に設けられた凹部)において、それらを構成する元素のうち少なくとも一部が異なること意味する。例えば、第1膜と化学組成が異なる第2膜と記載した場合は、第1膜としてのSiO膜と第2膜としてのSiN膜のように、それぞれの膜を構成する元素のうち少なくとも一部が異なることを意味する。
 本明細書において用いる「ウエハ」という用語は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において用いる「ウエハの表面」という言葉は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
 本明細書において用いる「剤」という用語は、ガス状物質および液体状物質のうち少なくともいずれかを含む。液体状物質はミスト状物質を含む。すなわち、第1成膜剤(原料、第1反応体)、第2成膜剤(原料、第2反応体)、第3成膜剤(原料、第2反応体)、改質剤、エッチング剤は、ガス状物質を含んでいてもよく、ミスト状物質等の液体状物質を含んでいてもよく、それらの両方を含んでいてもよい。
 本明細書において用いる「層」という用語は、連続層および不連続層のうち少なくともいずれかを含む。例えば、後述するSi含有層や改質層は、連続層を含んでいてもよく、不連続層を含んでいてもよく、それらの両方を含んでいてもよい。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。このようにして、ウエハ200は、処理室201内に準備されることとなる。
 なお、図5(a)に示すように、ボート217に装填されるウエハ200の表面には、トレンチ形状またはホール形状の凹部が設けられている。ウエハ200に設けられた凹部の表面は、第1膜としてのSiO膜とは化学組成の異なる材料、すなわち、SiO膜以外の材料、例えば、シリコン(Si)により構成されている。
(圧力調整および温度調整)
 ボートロードが終了した後、処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の処理温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(ステップA)
 その後、ステップAを実行する。ステップAでは、処理室201内のウエハ200、すなわち、表面に凹部が設けられたウエハ200に対して第1成膜剤を供給することで、凹部内に第1膜としてSiO膜を形成する。本ステップでは、後に実施するステップBにおいて凹部内にSiN膜を形成することができるように、図5(a)に示すように、凹部の開口部を残す厚みで凹部内にSiO膜を形成する。なお、本ステップでは、図5(a)に示すように、ウエハ200の凹部以外の表面(上面)にも、SiO膜が形成されることとなる。
 本ステップでは、例えば、ウエハ200に対して原料を供給するステップA1と、ウエハ200に対して第1反応体を供給するステップA2と、を交互に行うサイクルを所定回数(m回、mは1以上の整数)行うことによりSiO膜を形成する。以下、ステップA1,A2を含むSiO膜の形成方法について、具体的に説明する。なお、以下の例では、第1成膜剤は、原料および第1反応体を含む。
[ステップA1]
 ステップA1では、処理室201内のウエハ200に対して第1成膜剤として原料(原料ガス)を供給する。
 具体的には、バルブ243aを開き、ガス供給管232a内へ原料を流す。ガス供給管232a内を流れた原料は、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200の側方から、ウエハ200に対して原料が供給される。このとき、バルブ243f~243hを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 ステップA1において原料を供給する際における処理条件としては、
 処理温度:400~700℃、好ましくは500~650℃
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 原料供給流量:0.01~2slm、好ましくは0.1~1slm
 原料供給時間:1~120秒、好ましくは1~60秒
 不活性ガス供給流量(ガス供給管毎):0~10slm
 が例示される。
 なお、本明細書における「400~700℃」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「400~700℃」とは「400℃以上700℃以下」を意味する。他の数値範囲についても同様である。また、本明細書における処理温度とはウエハ200の温度または処理室201内の温度のことを意味し、処理圧力とは処理室201内の圧力のことを意味する。また、処理時間とは、その処理を継続する時間を意味する。また、供給流量に0slmが含まれるような場合、0slmとは、その物質(ガス)を供給しないケースを意味する。これらは、以下の説明においても同様である。
 上述の処理条件下でウエハ200に対して、原料として、例えば、Si及び塩素(Cl)を含むクロロシラン系ガスを供給することにより、ウエハ200の凹部の内表面に、Clを含むSi含有層が形成される。Clを含むSi含有層は、ウエハ200の凹部の内表面への、原料の物理吸着や化学吸着、原料の一部が分解した物質の化学吸着、原料の熱分解によるSiの堆積等により形成される。Clを含むSi含有層は、原料や原料の一部が分解した物質の吸着層(物理吸着層や化学吸着層)であってもよく、Clを含むSiの堆積層であってもよい。本明細書では、Clを含むSi含有層を、単に、Si含有層とも称する。
 Si含有層が形成された後、バルブ243aを閉じ、処理室201内への原料の供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。このとき、バルブ243f~243hを開き、ノズル249a~249cを介して処理室201内へ不活性ガスを供給する。処理室201内へ供給された不活性ガスは、パージガスとして作用し、これにより、処理室201内がパージされる(パージ)。
 第1成膜剤の1つである原料(原料ガス)としては、例えば、凹部の内表面に形成されるSiO膜を構成する主元素であるSiを含むシラン系ガスを用いることができる。シラン系ガスとしては、例えば、Si及びハロゲン元素を含むガス、すなわち、ハロシラン系ガスを用いることができる。ハロゲンには、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等が含まれる。
 ハロシラン系ガスとしては、例えば、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:4CS)ガス、ヘキサクロロジシランガス(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシラン系ガスや、テトラフルオロシラン(SiF)ガス、ジフルオロシラン(SiH)ガス等のフルオロシラン系ガスや、テトラブロモシラン(SiBr)ガス、ジブロモシラン(SiHBr)ガス等のブロモシラン系ガスや、テトラヨードシラン(SiI)ガス、ジヨードシラン(SiH)ガス等のヨードシラン系ガスを用いることができる。また、ハロシラン系ガスとしては、例えば、ビス(トリクロロシリル)メタン((SiClCH、略称:BTCSM)ガス、1,2-ビス(トリクロロシリル)エタン((SiCl、略称:BTCSE)ガス等のアルキレンクロロシラン系ガスや、1,1,2,2-テトラクロロ-1,2-ジメチルジシラン((CHSiCl、略称:TCDMDS)ガス、1,2-ジクロロ-1,1,2,2-テトラメチルジシラン((CHSiCl、略称:DCTMDS)ガス等のアルキルクロロシラン系ガスや、1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(CClSi、略称:TCDSCB)ガス等のSiとCとで構成される環状構造およびハロゲンを含むガスを用いることもできる。原料としては、これらのうち1以上を用いることができる。
 また、原料としては、例えば、Si及び水素(H)を含むガス、すなわち、水素化ケイ素ガスを用いることもできる。水素化ケイ素ガスとしては、例えば、モノシラン(SiH)ガス、ジシラン(Si)ガス、トリシラン(Si)ガス、テトラシラン(Si10)ガス等を用いることができる。原料としては、これらのうち1つ以上を用いることができる。
 また、原料としては、例えば、Si及びアミノ基を含むガス、すなわち、アミノシラン系ガスを用いることもできる。アミノ基とは、-NH,-NHR,-NRのように表すことができる。ここで、Rはアルキル基を示し、-NRの2つのRは、同一であってもよいし、異なっていてもよい。
 アミノシラン系ガスとしては、例えば、テトラキス(ジメチルアミノ)シラン(Si[N(CH、略称:4DMAS)ガス、トリス(ジメチルアミノ)シラン(Si[N(CHH、略称:3DMAS)ガス、ビス(ジエチルアミノ)シラン(Si[N(C、略称:BDEAS)ガス、ビス(ターシャリーブチルアミノ)シラン(SiH[NH(C)]、略称:BTBAS)ガス、(ジイソプロピルアミノ)シラン(SiH[N(C]、略称:DIPAS)ガス等を用いることもできる。原料としては、これらのうち1以上を用いることができる。
 不活性ガスとしては、例えば、窒素(N)ガスや、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。この点は、後述する各ステップにおいても同様である。
[ステップA2]
 ステップA1が終了した後、処理室201内のウエハ200、すなわち、凹部の内表面にSi含有層が形成されたウエハ200に対して第1成膜剤として第1反応体(第1反応ガス)を供給する。
 具体的には、バルブ243bを開き、ガス供給管232b内へ第1反応体を流す。ガス供給管232b内を流れた第1反応体は、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200の側方から、ウエハ200に対して第1反応体が供給される。このとき、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 ステップA2において第1反応体を供給する際における処理条件としては、
 処理温度:400~700℃、好ましくは500~650℃
 処理圧力:1~2000Pa、好ましくは1~1000Pa
 第1反応体(酸化剤、O含有ガス)供給流量:0.1~10slm
 第1反応体(還元ガス(H含有ガス))供給流量:0~10slm
 不活性ガス供給流量(ガス供給管毎):0~10slm
 各ガス供給時間:1~120秒、好ましくは1~60秒
 が例示される。
 上述の処理条件下でウエハ200に対して第1反応体として、例えば、酸化剤を供給することにより、ウエハ200の凹部の内表面に形成されたSi含有層の少なくとも一部が酸化(改質)される。結果として、ウエハ200の凹部の内表面に、Si及びOを含む層として、SiO層が形成される。SiO層を形成する際、Si含有層に含まれていたCl等の不純物は、第1反応体によるSi含有層の改質反応(酸化反応)の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。これにより、SiO層は、ステップA1で形成されたSi含有層に比べて、Cl等の不純物が少ない層となる。
 SiO層が形成された後、バルブ243bを閉じ、処理室201内への第1反応体の供給を停止する。そして、ステップA1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 第1成膜剤の1つである第1反応体(第1反応ガス)としては、例えば、酸化剤(酸化ガス)を用いることができる。なお、酸化剤は、ノンプラズマの雰囲気下で熱励起させて用いるだけでなく、プラズマ励起させて用いることもできる。すなわち、酸化剤としては、プラズマ状態に励起させた酸化剤を用いることもできる。
 酸化剤としては、例えば、酸素(O)ガス、オゾン(O)ガス等の酸素(O)含有ガス、水蒸気(HOガス)、過酸化水素(H)ガス等のO及びH含有ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス等のO及びN含有ガス、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等のO及びC含有ガスを用いることができる。また、酸化剤としては、上述のO含有ガスと還元ガスとの混合ガスを用いることもできる。ここで、還元ガスとは、それ単体では酸化作用は得られないが、特定の条件下、例えば、上述の処理条件下でO含有ガスと反応することで原子状酸素等の酸化種を生成し、酸化処理の効率を向上させるように作用する物質である。還元ガスとしては、例えば、水素(H)ガス、重水素()ガス等のH含有ガスを用いることができる。つまり、酸化剤としては、例えば、Oガス+Hガス、Oガス+Hガス等を用いることができる。第1反応体としては、これらのうち1以上を用いることができる。
 本明細書において「Hガス+Oガス」のような2つのガスの併記記載は、HガスとOガスとの混合ガスを意味する。混合ガスを供給する場合は、2つのガスを供給管内で混合(プリミックス)させた後、処理室201内へ供給するようにしてもよく、2つのガスを異なる供給管より別々に処理室201内へ供給し、処理室201内で混合(ポストミックス)させるようにしてもよい。
[所定回数実施]
 上述のステップA1,A2を交互に、すなわち、非同時に行うサイクルを所定回数(m回、mは1以上の整数)行うことにより、図5(a)に示すように、ウエハ200の凹部の内表面に、第1膜としてSiO膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiO層の厚さを所望の膜厚よりも薄くし、SiO層を積層することで形成されるSiO膜の厚さが所望の厚さになるまで、上述のサイクルを複数回繰り返すことが好ましい。
 なお、本ステップでは、原料と第1反応体とを同時に供給する化学気相成長法(CVD法)によりSiO膜を形成するようにしてもよい。例えば、本ステップでは、上述のステップA1,A2での処理条件と同様の処理条件下で、ウエハ200に対して、原料と第1反応体とを同時に供給することで、CVD法により凹部内にSiO膜を形成するようにしてもよい。この場合、原料、第1反応体の供給時間によりSiO膜の膜厚を調整することができる。なお、原料、第1反応体の供給時間を、上述のステップA1,A2での処理条件における原料、第1反応体の供給時間よりも長くするようにしてもよい。この方法で用いる原料および第1反応体は、上述のステップA1,A2で例示した各種原料、第1反応体と同様の原料、第1反応体を用いることができる。
 また、本ステップでは、ドライ酸化、ウェット酸化、減圧酸化等の熱酸化や、プラズマ酸化、オゾン酸化等により、Siで構成される凹部の表面を酸化させることで、凹部の内表面にSiO膜を形成するようにしてもよい。例えば、本ステップでは、上述のステップA2での処理条件と同様の処理条件下で、ウエハ200に対して、上述のステップA2を単独で行うことにより、凹部の内表面を酸化させて、凹部の内表面にSiO膜を形成するようにしてもよい。この場合、第1反応体の供給時間によりSiO膜の膜厚を調整することができる。なお、第1反応体の供給時間を、上述のステップA2の処理条件における第1反応体の供給時間よりも長くするようにしてもよい。この方法の場合、第1成膜剤は第1反応体を含んでいればよい。また、この方法で用いる第1反応体は、上述のステップA2で例示した各種第1反応体と同様の第1反応体を用いることができる。
 本ステップにて凹部内に形成するSiO膜の厚さは、SiO膜の最も薄いところで、5nm以上とすることが好ましく、10nm以上とすることがより好ましい。SiO膜の厚さを5nm未満とすると、後述する改質ストッパとしての機能が不十分となることがある。SiO膜の厚さを5nm以上とすることで、改質ストッパとしての機能が十分に得られるようになる。SiO膜の厚さを10nm以上とすることで、改質ストッパとしての機能がより十分に得られるようになる。
 本ステップにて凹部内に形成するSiO膜の厚さは、凹部の開口部が埋まらない厚さ、すなわち、凹部の開口部を残す厚さとすることが好ましい。例えば、凹部が円柱状であれば、凹部内に形成するSiO膜の厚さは、凹部の開口部の直径の半分未満とすることが好ましい。凹部の開口部がSiO膜にて埋まってしまうと、第2膜としてのSiN膜が形成し難くなるためである。
 凹部内に形成するSiO膜の厚さの上限としては、凹部の開口部の大きさに応じて決定されればよいが、例えば、30nm以下とすることが好ましく、20nm以下とすることがより好ましく、15nm以下とすることがさらに好ましい。SiO膜の厚さを30nm超とすると、凹部の開口部が狭くなり、SiN膜による埋め込み特性が十分に得られなくなることがある。SiO膜の厚さを30nm以下とすることで、この課題を解消することが可能となる。SiO膜の厚さを20nm以下とすることで、この課題を十分に解消することが可能となる。SiO膜の厚さを15nm以下とすることで、この課題をより十分に解消することが可能となる。
 以上のことから、本ステップにて凹部内に形成するSiO膜の厚さは、5nm~30nmが好ましく、5nm~20nmがより好ましく、5nm~15nmがさらにこのましく、10nm~15nmが特に好ましい。
 本ステップにて形成されたSiO膜は、後に実施するステップCにて用いる改質剤との反応性が低く、また、後に実施するステップCにて形成される改質層よりも高いエッチング耐性を有する。
(ステップB)
 ステップAが終了した後、ステップBを実行する。本ステップでは、処理室201内のウエハ200に対して第2成膜剤を供給することで、ステップAにて凹部内に形成された第1膜としてのSiO膜上に、第2膜としてSiN膜を形成する。本ステップでは、内表面にSiO膜が形成された凹部内を埋め込む厚みで、第2膜として、Si及び窒素(N)を含む膜であるSiN膜を形成する。このとき、図5(b)に示すように、凹部の開口部はSiN膜により塞がれ、また、凹部内にはSiN膜により埋め込まれない部分(ボイドやシームにより生じる空間)が形成される。すなわち、凹部内を埋め込むように形成されたSiN膜は、その膜中に空間(隙間、中空部)を有することとなる。なお、本ステップでは、図5(b)に示すように、ウエハ200の凹部以外の表面(上面)上に形成されたSiO膜上にも、SiN膜が形成されることとなる。
 本ステップでは、例えば、ウエハ200に対して原料を供給するステップB1と、ウエハ200に対して第2反応体を供給するステップB2と、を交互に行うサイクルを所定回数(n回、nは1以上の整数)行うことによりSiN膜を形成する。以下、ステップB1,B2を含むSiN膜の形成方法について、具体的に説明する。なお、以下の例では、第2成膜剤は、原料および第2反応体を含む。
[ステップB1]
 ステップB1では、処理室201内のウエハ200、すなわち、凹部の内表面にSiO膜が形成されたウエハ200に対して第2成膜剤として原料(原料ガス)を供給する。本ステップは、上述のステップA1と同様の処理手順、下記の処理条件にて行うことができる。本ステップにより、SiO膜上に、Si含有層を形成することができる。Si含有層を形成した後、上述のステップA1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。原料としては、例えば、上述のステップA1で例示した各種原料と同様の原料を用いることができる。
 ステップB1において原料を供給する際における処理条件としては、
 処理温度:400~800℃、好ましくは500~650℃
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 原料供給流量:0.01~2slm、好ましくは0.1~1slm
 原料供給時間:1~120秒、好ましくは1~60秒
 不活性ガス供給流量(ガス供給管毎):0~10slm
 が例示される。
[ステップB2]
 ステップB1が終了した後、処理室201内のウエハ200、すなわち、凹部の内表面に形成されたSiO膜上にSi含有層が形成されたウエハ200に対して第2成膜剤として第2反応体(第2反応ガス)を供給する。
 具体的には、バルブ243cを開き、ガス供給管232c内へ第2反応体を流す。ガス供給管232c内を流れた第2反応体は、MFC241cにより流量調整され、ノズル249cを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200の側方から、ウエハ200に対して第2反応体が供給される。このとき、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 ステップB2において第2反応体を供給する際における処理条件としては、
 処理温度:400~800℃、好ましくは500~650℃
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 第2反応体供給流量:0.1~10slm
 第2反応対供給時間:1~120秒、好ましくは1~60秒
 不活性ガス供給流量(ガス供給管毎):0~10slm
 が例示される。
 上述の処理条件下でウエハ200に対して第2反応体として、例えば、窒化剤(窒化ガス)を供給することにより、Si含有層の少なくとも一部が窒化(改質)される。結果として、ウエハ200の凹部の内表面に形成されたSiO膜上に、SiおよびNを含む層として、SiN層が形成される。SiN層を形成する際、Si含有層に含まれていたCl等の不純物は、第2反応体によるSi含有層の改質反応(窒化反応)の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。これにより、SiN層は、ステップB1で形成されたSi含有層に比べて、Cl等の不純物が少ない層となる。
 SiN層が形成された後、バルブ243cを閉じ、処理室201内への第2反応体の供給を停止する。そして、ステップA1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 第2成膜剤の1つである第2反応体(第2反応ガス)としては、例えば、窒化剤(窒化ガス)を用いることができる。なお、窒化剤は、ノンプラズマの雰囲気下で熱励起させて用いるだけでなく、プラズマ励起させて用いることもできる。すなわち、窒化剤としては、プラズマ状態に励起させた窒化剤を用いることもできる。
 窒化剤としては、例えば、窒素(N)含有ガスを用いることができる。N含有ガスとしては、N及びH含有ガスを用いることができる。N及びH含有ガスとしては、例えば、アンモニア(NH)ガス、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスを用いることができる。また、N及びH含有ガスとしては、例えば、C、N及びH含有ガスを用いることができる。C、N及びH含有ガスとしては、例えば、モノエチルアミン(CNH、略称:MEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス、トリエチルアミン((CN、略称:TEA)ガス等のエチルアミン系ガスや、モノメチルアミン(CHNH、略称:MMA)ガス、ジメチルアミン((CHNH、略称:DMA)ガス、トリメチルアミン((CHN、略称:TMA)ガス等のメチルアミン系ガスや、モノメチルヒドラジン((CH)HN、略称:MMH)ガス、ジメチルヒドラジン((CH、略称:DMH)ガス、トリメチルヒドラジン((CH(CH)H、略称:TMH)ガス等の有機ヒドラジン系ガス等を用いることができる。第2反応体としては、これらのうち1以上を用いることができる。なお、アミン系ガスや有機ヒドラジン系ガスのようなCを含有する第2反応体を用いる場合、ステップB2では、Cを含むSiN層を形成することができる。
[所定回数実施]
 上述のステップB1,B2を交互に、すなわち、非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、図5(b)に示すように、ウエハ200の凹部内を、第2膜としてのSiN膜により埋め込むことができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも薄くし、SiN層を積層することで形成されるSiN膜の厚さが、ウエハ200の凹部内を埋め込むような厚さになるまで、上述のサイクルを複数回繰り返すことが好ましい。
 なお、本ステップでは、原料と第2反応体とを同時に供給するCVD法によりSiN膜を形成するようにしてもよい。例えば、本ステップでは、上述のステップB1,B2での処理条件と同様の処理条件下で、ウエハ200に対して、原料と第2反応体とを同時に供給することで、CVD法により凹部内にSiN膜を形成するようにしてもよい。この場合、原料、第2反応体の供給時間によりSiN膜の膜厚を調整することができる。なお、原料、第2反応体の供給時間を、上述のステップB1,B2での処理条件における原料、第2反応体の供給時間よりも長くするようにしてもよい。この方法で用いる原料および第2反応体は、上述のステップA1で例示した各種原料、上述のステップB2で例示した各種第2反応体と同様の、原料、第2反応体を用いることができる。
(ステップC)
 ステップBが終了した後、ステップCを実行する。本ステップでは、処理室201内のウエハ200に対してFを含む改質剤を供給することで、SiN膜の一部を改質させる。具体的には、本ステップでは、ステップBにて形成された第2膜としてのSiN膜の表面側の一部を、F含有層、特に、F及びO含有層としてのF含有SiO層またはSiOF層に改質させる。F含有SiO層またはSiOF層を、Si、F及びO含有層とも称する。F含有SiO層またはSiOF層は、SiN膜のうち改質された部分であることから、以下、便宜上、改質層とも称する。本ステップにより、ウエハ200の凹部内には、図5(c)に示すように、SiO膜を下地として、改質されることなく維持されたSiN膜上に、改質層が形成(積層)された状態となる。なお、本ステップでは、図5(c)に示すように、ウエハ200の凹部以外の表面(上面)上に形成されたSiN膜も改質層に改質されることとなる。
 具体的には、バルブ243dを開き、ガス供給管232d内へ改質剤を流す。ガス供給管232d内を流れた改質剤は、MFC241dにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200の側方から、ウエハ200に対して改質剤が供給される。このとき、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 ステップCにおいて改質剤を供給する際における処理条件としては、
 処理温度:100~500℃、好ましくは350~450℃
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 改質剤供給流量:0.001~2slm、好ましくは0.002~1slm
 改質剤供給時間:30秒~30分、好ましくは1分~20分
 不活性ガス供給流量(ガス供給管毎):0~10slm
 が例示される。
 上述の処理条件下でウエハ200に対してFを含む改質剤を供給することにより、凹部内に埋め込まれたSiN膜の一部が改質層(F含有SiO層またはSiOF層)へと改質される。SiN膜の改質層への改質は、改質剤のSiN膜表面への供給に従い、SiN膜の表面から深さ方向に向かって進行することから、凹部内のSiN膜のうち、表面側(図5(c)では上部側)に位置するSiN膜から改質層(F含有SiO層またはSiOF層)へと変換されることとなる。改質層の厚みは、ウエハ200への改質剤の供給条件により制御することができる。
 本ステップでは、ステップAで形成した第1膜としてのSiO膜を改質抑制膜として作用させることができる。これにより、SiN膜のうち、SiN膜の表面からSiO膜の一部と接する箇所までの領域の一部を改質させる場合であっても、改質剤によりSiO膜が改質されることを抑制することができる。換言すると、ステップAで形成したSiO膜は、改質剤による、SiO膜自身の深さ方向への改質の進行を抑制またはストップすることができる。つまり、SiO膜は改質ストッパとして機能することとなる。これにより、本ステップを実施している間は、SiO膜の下地であるウエハ200の凹部の内表面の変質や凹部の内表面へのダメージを防止することが可能となる。
 SiO膜が改質ストッパとして機能する理由は、改質剤とSiO膜との反応性が、改質剤とSiN膜との反応性よりも低いからであり、換言すると、改質剤として、SiO膜との反応性が、SiN膜との反応性よりも低い物質を用いるからである。さらに換言すると、改質剤とSiO膜との反応性が、改質剤とSiN膜との反応性よりも低くなる処理条件下で改質剤を供給するからである、ということもできる。このような反応性の違いを利用することで、本ステップでは、SiO膜の改質の進行を抑制またはストップしつつ、SiN膜の一部を選択的に改質させることが可能となる。なお、処理条件によっては、改質剤とSiO膜とが反応しないように、すなわち、SiO膜を改質させないようにすることもできる。
 以上のことから、本ステップでは、SiN膜の改質を、凹部内で深さ方向に向かって方向性をもって、また、選択的に、進めることができ、図5(c)に示すような形状の改質層を形成することができる。結果として、凹部内には、SiO膜を下地として、改質されることなく維持されたSiN膜上に、改質層(F含有SiO層またはSiOF層)が積層されてなる積層膜が存在する状態となる。
 本ステップでは、SiN膜のうち、SiN膜の表面からSiN膜の形成の過程で生じた空間(ボイドまたはシーム)の少なくとも一部に接する箇所までの領域を改質させることが好ましい。すなわち、本ステップでは、SiN膜の改質を、SiN膜中の空間(ボイドまたはシーム)の上部よりも深い位置まで進行させることが好ましい。例えば、SiN膜の改質を、SiN膜中の空間の深さの少なくとも半分の位置まで進行させることが好ましい。また例えば、SiN膜の改質を、SiN膜中の空間の深さの半分を超えた位置まで進行させることがより好ましい。更に例えば、SiN膜の改質を、SiN膜中の空間の深さの2/3以上の位置まで進行させることがより好ましい。なお、図5(c)は、SiN膜の改質を、SiN膜中の空間の深さの2/3以上の位置まで進行させた例を示している。
 これらのようにSiN膜の改質を進行させることで、後に実施するステップDにおける改質層の除去により、凹部内のSiN膜中の空間の少なくとも一部を消滅させて、空間を開口させることができる。結果として、ステップDの後に実施するステップEで形成される第3膜により凹部内の空間を埋め込むことができる。なお、SiN膜の改質を、SiN膜中の空間の底部と同じ深さまで進行させることもできる。この場合、後に実施するステップDにおける改質層の除去により、SiN膜中の空間そのものを消滅させることができる。
 このように、本ステップでは、SiO膜が改質ストッパとして機能することにより、Si等により構成される凹部の内表面を変質させることなく、また、凹部の内表面にダメージを与えることなく、SiN膜の一部を選択的に改質させることが可能となる。
 改質層が形成された後、バルブ243dを閉じ、処理室201内への改質剤の供給を停止する。そして、ステップA1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 改質剤(改質ガス)としては、例えば、Fを含む物質を用いることが好ましく、F及びOを含む物質を用いることがより好ましく、F、O及びNを含む物質を用いることがさらに好ましい。また、改質剤としては、例えば、F含有ガスを用いることが好ましく、F及びO含有ガスを用いることがより好ましく、F、O及びN含有ガスを用いることがさらに好ましい。すなわち、改質剤は、Fを含むことが好ましく、F及びOを含むことがより好ましく、F、O及びNを含むことがさらに好ましい。さらに、改質剤としては、例えば、N及びO含有ガスとF含有ガスとの混合ガス、F、N及びO含有ガスとF含有ガスとの混合ガス、または、F、N及びO含有ガスを用いることもできる。これらのような改質剤を用いることで、第2膜としてのSiN膜の一部をエッチング剤により除去され易い層(F含有SiO層またはSiOF層)へ改質させることが可能となる。
 改質剤としては、例えば、NOガス+フッ素(F)ガス、NOガス+一フッ化塩素(ClF)ガス、NOガス+三フッ化塩素(ClF)ガス、NOガス+三フッ化窒素(NF)ガス、フッ化ニトロシル(FNO)ガス+Fガス、FNOガス+ClFガス、FNOガス+ClFガス、FNOガス+NFガス、FNOガス等を用いることができる。改質剤としては、これらのうち1以上を用いることができる。なお、例えば、FNOガス等のように保管が難しいガスは、FガスとNOガスとを例えば供給管内やノズル内で混合させることで生成させて、処理室201内へ供給することが好ましい。この場合、処理室201内へは、FガスとNOガスとFNOガスとの混合ガスが供給されることとなる。
(ステップD)
 ステップCが終了した後、ステップDを実行する。本ステップでは、処理室201内のウエハ200に対してハロゲンを含むエッチング剤を供給することで、SiN膜のうち改質させた部分(改質層)を除去する。すなわち、本ステップでは、ステップCにて、SiN膜のうちF含有SiO層またはSiOF層に改質させた部分(改質層)を除去する。本ステップにより、ウエハ200の凹部内には、図5(d)に示すように、改質されることなく維持されたSiN膜が残り、SiN膜の表面が露出するとともに、SiO膜のうち一部、すなわち、改質層と接していた部分が露出する。なお、本ステップでは、図5(d)に示すように、ウエハ200の凹部以外の表面(上面)上の改質層も除去され、SiO膜が露出する。
 具体的には、バルブ243eを開き、ガス供給管232e内へエッチング剤を流す。エッチング剤は、MFC241eにより流量調整され、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200の側方から、ウエハ200に対してエッチング剤が供給される。このとき、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 ステップDにおいてエッチング剤を供給する際における処理条件としては、
 処理温度:室温(25℃)~600℃、好ましくは50~200℃
 処理圧力:1~13332Pa、好ましくは100~1333Pa
 エッチング剤供給流量:0.05~5slm、好ましくは0.1~2slm
 エッチング剤供給時間:0.1~30分、好ましくは1~10分
 不活性ガス供給流量(ガス供給管毎):0~10slm
 が例示される。
 上述の処理条件下でウエハ200に対してエッチング剤を供給することにより、SiN膜のうち改質させた部分、すなわち、改質層(F含有SiO層またはSiOF層)が除去される。このとき、ステップAにて形成したSiO膜をエッチング抑制膜として作用させることができ、SiO膜と接する改質層をエッチングする場合であっても、SiO膜がエッチングされることを抑制することができる。すなわち、SiO膜により、SiO膜の深さ方向、すなわち、SiO膜の下地側へのエッチングの進行を抑制またはストップすることができる。つまり、SiO膜はエッチングストッパとして機能することとなる。これにより、本ステップを実施している間も、SiO膜の下地であるウエハ200の凹部の内表面の変質や凹部の内表面へのダメージを防止することが可能となる。
 SiO膜がエッチングストッパとして機能する理由は、エッチング剤とSiO膜との反応性が、エッチング剤と改質層(F含有SiO層またはSiOF層)との反応性よりも低いからであり、換言すると、エッチング剤として、SiO膜との反応性が、改質層との反応性よりも低い物質を用いるからである。さらに換言すると、エッチング剤とSiO膜との反応性が、エッチング剤と改質層との反応性よりも低くなる処理条件下でエッチング剤を供給するからである、ということもできる。このような反応性の違いを利用することで、本ステップでは、SiO膜のエッチングの進行を抑制またはストップしつつ、改質層を選択的にエッチングすることが可能となる。なお、SiO膜はF非含有膜であり、対して、改質層はF含有層である。このSiO膜と改質層との化学組成の差が、SiO膜のエッチングレートが改質層のエッチングレートよりも低くなる理由、換言すれば、SiO膜の耐エッチング性が改質層の耐エッチング性よりも高くなる理由の1つとして挙げられる。
 以上のことから、本ステップでは、SiN膜のうちF含有SiO層またはSiOF層に改質された部分、すなわち、改質層のエッチングを、凹部内で深さ方向に向かって方向性をもって、また、選択的に進行させることができる。結果として、図5(d)に示すように、凹部内には、SiO膜を下地として、改質されることなく維持されたSiN膜が残留し、SiO膜のうち改質層と接していた部分が露出されることとなる。
 改質層を除去し、改質されることなく維持されたSiN膜の表面を露出させた後、バルブ243eを閉じ、処理室201内へのエッチング剤の供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス状物質等を処理室201内から排除する。そして、上述のステップA1におけるパージと同様の処理手順により、処理室201内に残留するガス状物質等を処理室201内から排除する(パージ)。
 エッチング剤(エッチングガス)としては、ハロゲンを含む物質、例えば、F、Cl、Iのうち少なくともいずれか1つを含む物質を用いることが好ましい。これにより、第1膜としてのSiO膜のエッチングを抑制しつつ第2膜としてのSiN膜のうち改質させた部分(改質層)を選択的に除去することを効果的に行うことが可能となる。
 エッチング剤としては、例えば、Fガス、NFガス、ClFガス、ClFガス、六フッ化タングステン(WF)ガス、七フッ化ヨウ素(IF)ガス、五フッ化ヨウ素(IF)ガス、ヘキサフルオロアセチルアセトン(C)ガス、フッ化水素(HF)ガス、FNOガス、塩素(Cl)ガス、塩化水素(HCl)ガス、三塩化ホウ素(BCl)ガス、塩化チオニル(SOCl)ガス、六塩化タングステン(WCl)ガス等を用いることができる。エッチング剤としては、これらのうち1以上を用いることができる。
 なお、ステップCにて用いる改質剤とステップDにて用いるエッチング剤とが同じ物質(ガス)であってもよい。例えば、ステップCにて改質剤として例えばFNOガスを用い、ステップDにてエッチング剤として例えばFNOガスを用いることもできる。この場合、ステップC,Dそれぞれの処理条件を制御することで、ステップCではFNOガスを改質剤として作用させ、ステップDではFNOガスをエッチング剤として作用させることが可能となる。
(ステップE)
 ステップDが終了した後、ステップEを実行する。本ステップでは、処理室201内のウエハ200に対して第3成膜剤を供給することで、改質層を除去した後のSiN膜上に第3膜としてSiN膜を形成する。本ステップでは、ステップDにて改質層が除去され、凹部内に残留したSiN膜(改質されることなく維持されたSiN膜)上に、図5(e)に示すように、凹部内を埋め込む厚みで第3膜としてSiN膜を形成する。なお、本ステップでは、図5(e)に示すように、ウエハ200の凹部以外の表面にも、SiN膜が形成されることとなる。
 ステップDが終了した時点においては、ウエハ200の凹部内の底部側には、改質されることなく維持された第2膜としてのSiN膜が残留した状態となる。これにより凹部(トレンチまたはホール)の深さ、すなわち、アスペクト比は緩和されており(小さくなっており)、凹部内を埋め込む厚みで第3膜としてのSiN膜を形成してもボイドやシームを発生させることなく凹部内を埋め込むことが可能となる。
 本ステップでは、第3成膜剤として、上述のステップBにおける第2成膜剤と同様の原料と第2反応体とを用い、上述のステップBと同様の処理手順、処理条件にて、第3膜としてのSiN膜を形成することができる。原料としては、例えば、上述のステップB1(ステップA1)で例示した各種原料と同様の原料を用いることができ、第2反応体としては、例えば、上述のステップB2で例示した各種第2反応体と同様の第2反応体を用いることができる。
(アフターパージおよび大気圧復帰)
 ステップEが終了した後、ノズル249a~249cのそれぞれからパージガスとして不活性ガスを処理室201内へ供給し、排気口231aより排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
 ステップA,B,C,D,Eは、同一処理室内にて(in-situにて)行うことが好ましい。これにより、ウエハ200を大気に曝すことなく、すなわち、ウエハ200の表面を清浄な状態に保持したまま、ステップA,B,C,D,Eを行うことができる。
(3)本態様による効果
 本態様によれば、以下に示す1つ又は複数の効果が得られる。
 本態様では、ウエハ200の表面に設けられた凹部内に、ステップBにて第2膜を形成する前に、ステップAにて第1膜を形成する。これにより、ステップCにて第2膜の一部を改質させる際に、第1膜を改質抑制膜として作用させることができ、また、ステップDにて第2膜のうち改質させた部分(改質層)を除去する際に、第1膜をエッチング抑制膜として作用させることができる。つまり、第2膜を形成する前に凹部内に形成した第1膜を、第2膜の一部を改質させる際の改質ストッパとして機能させ、また、第2膜のうち改質させた部分(改質層)を除去する際のエッチングストッパとして機能させることができる。これにより、凹部の内表面を変質させることなく、また、凹部の内表面にダメージを与えることなく、第2膜の一部を改質させ、第2膜のうち改質させた部分(改質層)を除去することが可能となる。結果として、凹部内に高い精度をもって膜を形成することが可能となる。
 本態様では、変質しておらず、また、ダメージも受けていない適正な状態に維持した内表面を有する凹部内に、ステップEにて、第3膜を形成することができる。これにより、凹部内に高い精度をもって膜を形成することが可能となる。結果として、高い精度をもって凹部内を膜により埋め込むことが可能となる。なお、第3膜の材質を第2膜の材質と同一とすることで、凹部内を同一の材質の膜で埋め込むことが可能となる。また、第3膜の材質を第2膜の材質と異ならせることで、凹部内を異なる材質の膜(積層膜)で埋め込むことが可能となる。
 本態様では、ステップAにて、第1膜として酸化膜であるSiO膜を形成する。このように第1膜が酸化膜であることで、ステップCにて第2膜としてのSiN膜の一部を改質させる際に、第1膜を改質ストッパとして効果的に機能させ、また、ステップDにてSiN膜のうち改質させた部分(改質層)を除去する際に、第1膜をエッチングストッパとして効果的に機能させることが可能となる。また、第1膜がSiO膜であることで、ステップCにて第2膜としてのSiN膜の一部を改質させる際に、第1膜を改質ストッパとしてより効果的に機能させ、また、ステップDにてSiN膜のうち改質させた部分(改質層)を除去する際に、第1膜をエッチングストッパとしてより効果的に機能させることが可能となる。
 本態様では、ステップBにて、第2膜としてSiO膜以外の膜、すなわち、SiO膜とは化学組成が異なる膜であるSiN膜を形成する。このように第2膜がSiO膜以外の膜、すなわち、SiO膜とは化学組成が異なる膜、特に、SiN膜であることで、第2膜を、改質剤により改質されやすく、また、エッチング剤により除去され難い膜とすることが可能となる。
 本態様では、凹部の表面がSiO膜以外の材料、すなわち、SiO膜とは化学組成が異なる材料であるSiにより構成されるウエハ200を用いる。このように凹部の表面がSiO膜以外の材料、すなわち、SiO膜とは化学組成が異なる材料、特にSiを含む材料により構成されることで、上述の効果をより顕著に生じさせることが可能となる。
 本態様では、改質剤と第1膜との反応性が、改質剤と第2膜との反応性よりも低くなるようにする。すなわち、改質剤と第2膜との反応性の方が、改質剤と第1膜との反応性よりも高くなるようにする。これにより、ステップCにおいて、第1膜の改質を抑制しつつ第2膜の一部を選択的に改質させることが可能となる。
 本態様では、ステップCにおいて、第2膜のうち、第2膜の表面から第1膜の一部と接する箇所までの領域の一部を改質させ、ステップDでは、第1膜の一部を露出させるようにする。このようなステップC,Dにより、第1膜の改質を抑制しつつ第2膜の一部を選択的に改質させ、また、第1膜のエッチングを抑制しつつ第2膜のうち改質させた部分(改質層)を選択的に除去することが可能となる。
 本態様では、第2膜がシームまたはボイドを有し、ステップCでは、第2膜のうち、第2膜の表面から少なくともシームまたはボイドの少なくとも一部に接する箇所までの領域を改質させ、ステップDでは、その改質させた領域(改質層)を除去しつつ、シームまたはボイドの少なくとも一部を消滅させるようにする。このようにして第2膜におけるシームまたはボイドの少なくとも一部を消滅させることにより、凹部に対しシームレスかつボイドフリーな埋め込みを行うことが可能となる。
 本態様では、ステップCにおいて、第2膜の一部を、F及びO含有層、特に、Si、F及びO含有層に改質させるようにする。これにより、第2膜の一部をエッチング剤により除去され易い層へ改質させることが可能となり、第1膜のエッチングを抑制しつつ第2膜のうち改質させた部分を選択的に除去することを効果的に行うことが可能となる。
 本態様では、エッチング剤と第1膜との反応性が、エッチング剤と第2膜のうち改質させた部分(改質層)との反応性よりも低くなるようにする。すなわち、エッチング剤と改質層との反応性の方が、エッチング剤と第1膜との反応性よりも高くなるようにする。これにより、第1膜のエッチングを抑制しつつ第2膜のうち改質させた部分を選択的に除去することが可能となる。
(4)変形例
 本態様における処理シーケンスは、以下に示す変形例のように変更することができる。これらの変形例は、任意に組み合わせることができる。特に説明がない限り、各変形例の各ステップにおける処理手順、処理条件は、上述の処理シーケンスの各ステップにおける処理手順、処理条件と同様とすることができる。
(変形例1)
 以下に示す処理シーケンスのように、ステップC→ステップDのサイクルを複数回(y回、yは2以上の整数)行うようにしてもよい。
 ステップA→ステップB→(ステップC→ステップD)×y→ステップE
 本変形例においても、上述の態様と同様の効果が得られる。また、本変形例によれば、ステップC,Dが終了した後に、ステップBにて形成されたSiN膜のエッチング量(除去量)が不十分な場合であっても、ステップC→ステップDのサイクルを複数回行うことにより、エッチング量を増加させることができる。また、この場合、サイクル数(y)によりエッチング量を制御することが可能となり、エッチング量の制御性を高めることも可能となる。本変形例によれば、このような場合であっても、エッチング量を制御しつつ埋め込みを行うことができ、ボイドフリーかつシームレスな埋め込みを行うことが可能となる。
(変形例2)
 以下に示す処理シーケンスのように、ステップC→ステップD→ステップEのサイクルを複数回(z回、zは2以上の整数)行うようにしてもよい。
 ステップA→ステップB→(ステップC→ステップD→ステップE)×z
 本変形例においても、上述の態様と同様の効果が得られる。また、本変形例によれば、例えば、凹部が深い(アスペクト比が大きい)場合等において、ステップEにより形成した第3膜としてのSiN膜にボイドまたはシーム(空間)が生じる場合であっても、ステップC→ステップD→ステップEのサイクルを複数回行うことにより、ボイドまたはシームを消滅させつつ、凹部の埋め込みを行うことができる。本変形例によれば、このような場合であってもボイドフリーかつシームレスな埋め込みを行うことが可能となる。
(変形例3)
 ステップEにて形成する第3膜の材質を、ステップBにて形成する第2膜の材質と異ならせるようにしてもよい。第3膜の材質を第2膜の材質と異ならせることで、凹部内を異なる材質の膜(積層膜)で埋め込むことが可能となる。この場合、ステップEにて用いる第3成膜剤(第3原料、第3反応体)として、ステップBにて用いる第2成膜剤とは異なる成膜剤(第2原料、第2反応体)を用い、第3膜の材質に応じた処理手順、処理条件を選択することで、第3膜を形成することができる。この場合、原料および反応体のうち少なくともいずれかを、ステップEとステップBとで異ならせるようにすることで、第3膜の材質を第2膜の材質と異ならせることができる。本変形例においても、凹部内に高い精度をもって膜を形成することが可能となる。
<本開示の他の態様>
 以上、本開示の態様を具体的に説明した。しかしながら、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の態様や変形例では、ステップA,B,C,D,Eを行う例について説明したが、以下に示す処理シーケンスのように、上述の態様におけるステップEを省略するようにしてもよい。例えば、ステップEにおいて、凹部内を第3膜にて埋め込む必要がない場合には、ステップEを省略することができる。本態様においても、凹部内に高い精度をもって膜を形成することが可能となる。
 ステップA→ステップB→ステップC→ステップD
 ステップA→ステップB→(ステップC→ステップD)×y
 また、例えば、上述の態様や変形例では、ステップA,B,C,D,Eを、同一の処理室201内で(in-situにて)行う例について説明したが、ステップA,B,C,D,Eのうち少なくともいずれかを、異なる処理室内(処理部、処理空間)にて(ex-situにて)行うようにしてもよい。ステップA,B,C,D,Eのうち少なくともいずれかを、別々の処理室内で行うようにすれば、それぞれの処理室内の温度を例えば各ステップでの処理温度又はそれに近い温度に予め設定しておくことができ、温度調整に要する時間を短縮させ、生産効率を高めることが可能となる。
 また、例えば、上述の態様や変形例では、凹部の表面がSiにより構成される例について説明したが、凹部の表面は、第1膜とは化学組成が異なる材料により構成されていればよく、例えば、Siを含む材料により構成されていてもよい。例えば、凹部の表面は、単結晶Si、Si膜、SiN膜、シリコン炭化膜(SiC膜)、シリコン炭窒化膜(SiCN膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸炭化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)、シリコン硼炭窒化膜(SiBCN膜)、シリコン硼窒化膜(SiBN)、シリコン硼炭化膜(SiBC膜)、シリコン硼酸化膜(SiBO膜)のうち少なくともいずれかにより構成されていてもよい。
 また、例えば、上述の態様や変形例では、第2膜や第3膜がSiN膜である例について説明したが、第2膜や第3膜は、SiO膜以外の膜であればよく、例えば、Si及びNを含む膜であってもよい。例えば、第2膜や第3膜は、SiN膜、SiCN膜、SiOCN膜、SiOCN膜、SiON膜、SiBCN膜、SiBN膜のうち少なくともいずれかを含んでいてもよい。
 各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意するようにしてもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールするようにしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用することができる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用することができる。
 これらの基板処理装置を用いる場合においても、上述の態様や変形例と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様や変形例と同様の効果が得られる。
 上述の態様や変形例は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様や変形例における処理手順、処理条件と同様とすることができる。
200  ウエハ(基板)

Claims (21)

  1.  (a)表面に凹部が設けられた基板に対して第1成膜剤を供給することで、前記凹部内に第1膜を形成する工程と、
     (b)前記基板に対して第2成膜剤を供給することで、前記凹部内に形成された前記第1膜上に前記第1膜とは化学組成が異なる第2膜を形成する工程と、
     (c)前記基板に対してフッ素を含む改質剤を供給することで、前記第2膜の一部を改質させる工程と、
     (d)前記基板に対してハロゲンを含むエッチング剤を供給することで、前記第2膜のうち改質させた部分を除去する工程と、
     を有する基板処理方法。
  2.  (e)前記基板に対して第3成膜剤を供給することで、改質させた部分を除去した後の前記第2膜上に、第3膜を形成する工程を、更に有する請求項1に記載の基板処理方法。
  3.  前記第1膜は酸化膜である請求項1に記載の基板処理方法。
  4.  前記第1膜はシリコン酸化膜である請求項1に記載の基板処理方法。
  5.  前記第2膜は、シリコン酸化膜以外の膜である請求項1に記載の基板処理方法。
  6.  前記第2膜は、シリコン及び窒素を含む膜である請求項1に記載の基板処理方法。
  7.  前記凹部の表面はシリコン酸化膜以外の材料により構成される請求項1に記載の基板処理方法。
  8.  前記凹部の表面はシリコンを含む材料により構成される請求項1に記載の基板処理方法。
  9.  前記改質剤はフッ素及び酸素を含む請求項1に記載の基板処理方法。
  10.  前記改質剤はフッ素、窒素及び酸素を含む請求項1に記載の基板処理方法。
  11.  前記改質剤は、窒素及び酸素含有ガスとフッ素含有ガスとの混合ガス、フッ素、窒素及び酸素含有ガスとフッ素含有ガスとの混合ガス、または、フッ素、窒素及び酸素含有ガスである請求項1に記載の基板処理方法。
  12.  前記改質剤と前記第1膜との反応性は、前記改質剤と前記第2膜との反応性よりも低い請求項1に記載の基板処理方法。
  13.  (c)では、前記第2膜のうち、前記第2膜の表面から前記第1膜の一部と接する箇所までの領域の一部を改質させ、(d)では、前記第1膜の一部を露出させる請求項1に記載の基板処理方法。
  14.  前記第2膜はシームまたはボイドを有し、
     (c)では、前記第2膜のうち、前記第2膜の表面から少なくとも前記シームまたはボイドの少なくとも一部に接する箇所までの領域を改質させ、(d)では前記シームまたはボイドの少なくとも一部を消滅させる請求項1に記載の基板処理方法。
  15.  (c)では、前記第2膜の一部を、フッ素及び酸素含有層に改質させる請求項1に記載の基板処理方法。
  16.  (c)では、前記第2膜の一部を、シリコン、フッ素及び酸素含有層に改質させる請求項1に記載の基板処理方法。
  17.  前記エッチング剤は、フッ素、塩素、ヨウ素のうち少なくともいずれか1つを含む物質である請求項1に記載の基板処理方法。
  18.  前記エッチング剤と前記第1膜との反応性は、前記エッチング剤と前記第2膜のうち改質させた部分との反応性よりも低い請求項1に記載の基板処理方法。
  19.  (a)表面に凹部が設けられた基板に対して第1成膜剤を供給することで、前記凹部内に第1膜を形成する工程と、
     (b)前記基板に対して第2成膜剤を供給することで、前記凹部内に形成された前記第1膜上に前記第1膜とは化学組成が異なる第2膜を形成する工程と、
     (c)前記基板に対してフッ素を含む改質剤を供給することで、前記第2膜の一部を改質させる工程と、
     (d)前記基板に対してハロゲンを含むエッチング剤を供給することで、前記第2膜のうち改質させた部分を除去する工程と、
     を有する半導体装置の製造方法。
  20.  基板が処理される処理室と、
     前記処理室内の基板に対して第1成膜剤を供給する第1成膜剤供給系と、
     前記処理室内の基板に対して第2成膜剤を供給する第2成膜剤供給系と、
     前記処理室内の基板に対してフッ素を含む改質剤を供給する改質剤供給系と、
     前記処理室内の基板に対してハロゲンを含むエッチング剤を供給するエッチング剤供給系と、
      前記処理室内において、(a)表面に凹部が設けられた基板に対して前記第1成膜剤を供給することで、前記凹部内に第1膜を形成する処理と、(b)前記基板に対して前記第2成膜剤を供給することで、前記凹部内に形成された前記第1膜上に前記第1膜とは化学組成が異なる第2膜を形成する処理と、(c)前記基板に対して前記改質剤を供給することで、前記第2膜の一部を改質させる処理と、(d)前記基板に対して前記エッチング剤を供給することで、前記第2膜のうち改質させた部分を除去する処理と、を行わせるように、前記第1成膜剤供給系、前記第2成膜剤供給系、前記改質剤供給系、および前記エッチング剤供給系を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  21.  (a)表面に凹部が設けられた基板に対して第1成膜剤を供給することで、前記凹部内に第1膜を形成する手順と、
     (b)前記基板に対して第2成膜剤を供給することで、前記凹部内に形成された前記第1膜上に前記第1膜とは化学組成が異なる第2膜を形成する手順と、
     (c)前記基板に対してフッ素を含む改質剤を供給することで、前記第2膜の一部を改質させる手順と、
     (d)前記基板に対してハロゲンを含むエッチング剤を供給することで、前記第2膜のうち改質させた部分を除去する手順と、
     をコンピュータによって基板処理装置に実行させるプログラム。
PCT/JP2021/048896 2021-12-28 2021-12-28 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム WO2023127137A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/048896 WO2023127137A1 (ja) 2021-12-28 2021-12-28 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
CN202180102390.1A CN117941038A (zh) 2021-12-28 2021-12-28 衬底处理方法、半导体器件的制造方法、衬底处理装置及程序
JP2023570612A JPWO2023127137A1 (ja) 2021-12-28 2021-12-28
TW111138550A TWI852120B (zh) 2021-12-28 2022-10-12 基板處理方法,半導體裝置的製造方法,基板處理裝置及程式
US18/611,093 US20240249933A1 (en) 2021-12-28 2024-03-20 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048896 WO2023127137A1 (ja) 2021-12-28 2021-12-28 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/611,093 Continuation US20240249933A1 (en) 2021-12-28 2024-03-20 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2023127137A1 true WO2023127137A1 (ja) 2023-07-06

Family

ID=86998462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048896 WO2023127137A1 (ja) 2021-12-28 2021-12-28 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Country Status (4)

Country Link
US (1) US20240249933A1 (ja)
JP (1) JPWO2023127137A1 (ja)
CN (1) CN117941038A (ja)
WO (1) WO2023127137A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053024A (ja) * 2015-08-07 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation タングステン堆積充填の強化のためのタングステンの原子層エッチング
WO2019003662A1 (ja) 2017-06-27 2019-01-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN112071900A (zh) * 2020-11-16 2020-12-11 晶芯成(北京)科技有限公司 半导体隔离结构及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053024A (ja) * 2015-08-07 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation タングステン堆積充填の強化のためのタングステンの原子層エッチング
WO2019003662A1 (ja) 2017-06-27 2019-01-03 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN112071900A (zh) * 2020-11-16 2020-12-11 晶芯成(北京)科技有限公司 半导体隔离结构及其制作方法

Also Published As

Publication number Publication date
CN117941038A (zh) 2024-04-26
US20240249933A1 (en) 2024-07-25
JPWO2023127137A1 (ja) 2023-07-06
TW202325884A (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
KR102368311B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
JP7368427B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7174016B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR20190028326A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
TWI813048B (zh) 基板處理方法,半導體裝置的製造方法,基板處理裝置,及程式
KR102297247B1 (ko) 처리 용기 내의 부재를 클리닝하는 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
TWI829048B (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
TWI817260B (zh) 半導體裝置之製造方法、基板處理方法、程式及基板處理裝置
JP7328293B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム
CN113363151B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
JP7496884B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2023127137A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
TWI852120B (zh) 基板處理方法,半導體裝置的製造方法,基板處理裝置及程式
JP7135190B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7305013B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7349033B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR20240129164A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
JP7182577B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7303168B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
US20240287676A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2024120206A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP2023131341A (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JP2022040906A (ja) クリーニング方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR20240131889A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21970017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102390.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023570612

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021970017

Country of ref document: EP

Effective date: 20240729