WO2023125464A1 - 岩矿石标本阻抗测量信号源生成电路与装置 - Google Patents

岩矿石标本阻抗测量信号源生成电路与装置 Download PDF

Info

Publication number
WO2023125464A1
WO2023125464A1 PCT/CN2022/142136 CN2022142136W WO2023125464A1 WO 2023125464 A1 WO2023125464 A1 WO 2023125464A1 CN 2022142136 W CN2022142136 W CN 2022142136W WO 2023125464 A1 WO2023125464 A1 WO 2023125464A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically connected
resistor
module
electrode
throw relay
Prior art date
Application number
PCT/CN2022/142136
Other languages
English (en)
French (fr)
Inventor
陈兴生
陈儒军
王小杰
淳少恒
李生杰
王子辉
申瑞杰
姚红春
刘志同
侯胜蓝
王飞飞
Original Assignee
长沙巨杉智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙巨杉智能科技有限公司 filed Critical 长沙巨杉智能科技有限公司
Priority to US18/576,730 priority Critical patent/US20240288604A1/en
Publication of WO2023125464A1 publication Critical patent/WO2023125464A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/20Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
    • G01V3/24Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current using ac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/06Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using ac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention relates to the technical field of DDS signal source generation, in particular to a generating circuit and device for a rock ore specimen impedance measurement signal source.
  • the Spectrum Induced Pollution Method (abbreviated as SIP), also known as the complex resistivity method, is to measure the apparent complex in a wide frequency range (between 10 -2 and n ⁇ 10 2 Hz) by transmitting an alternating current underground.
  • Resistivity according to the amplitude spectrum and phase spectrum characteristics and spatial distribution of the measured apparent complex resistivity, finds geoelectric anomalies, and judges the physical properties of the target anomaly, so as to achieve an electrical prospecting method to solve geological problems.
  • the high-density measurement of the spectrum IP method in the space domain and frequency domain has stronger anti-interference ability, more electrical parameters can be obtained, and the comparison and interpretation of multiple parameters can provide more abundant abnormal information.
  • the mainstream spectrum IP measuring instrument impedance analyzer can only complete the constant voltage measurement in the frequency domain, but cannot do the constant current measurement;
  • the Canadian SCIP electrical physical property measuring instrument is a constant voltage and constant current measuring instrument in the time domain, and currently has no frequency domain constant voltage and constant current measurement products, and most of the spectrum IP measurement instruments use external signal generators as signal sources, which are only suitable for indoor measurement, and a 220V inverter is required for outdoor measurement.
  • the outcrop measurement is extremely inconvenient, so it is of great significance to develop a frequency domain multi-level constant voltage and constant current rock ore specimen impedance tester with integrated signals originating from the instrument with high precision, low power consumption, and mobile power supply.
  • the key technical difficulty is the integrated broadband multi-level constant current constant voltage signal source generation circuit.
  • the present invention provides a rock ore specimen impedance measurement signal source generation circuit and device, the purpose of which is to solve the problem that the existing rock ore specimen impedance (spectrum induced electricity) measuring instrument needs an external signal generator to provide a signal source, which is not suitable for outdoor measurement The problem.
  • an embodiment of the present invention provides a rock ore specimen impedance measurement signal source generation circuit and device, including:
  • An integrated instrument the integrated instrument is connected to the smart mobile device through a wireless network; the integrated instrument is fixedly provided with a first electrode interface, a second electrode interface, a third electrode interface and a fourth electrode interface;
  • a sample holder includes a first non-polarizable electrode, a second non-polarizable electrode, a third non-polarizable electrode and a fourth non-polarizable electrode; the second non-polarizable electrode and the third non-polarizable electrode
  • a rock ore sample is placed between the polarized electrodes; the first end of the first non-polarized electrode is electrically connected to the first electrode interface through a triaxial cable; the first end of the second non-polarized electrode The third non-polarized electrode is electrically connected to the third electrode interface through a triaxial cable; the second end of the second non-polarized electrode is electrically connected to the second end of the first non-polarized electrode; the third non-polarized electrode The first end of the electrode is electrically connected to the fourth electrode interface through a triaxial cable; the first end of the fourth non-polarized electrode is electrically connected to the second electrode interface through a triaxial cable; The second terminals of the four non-polarized electrodes are electrically connected to the second terminals
  • the rock ore specimen impedance measurement signal source generating circuit and device described in the above-mentioned embodiments of the present invention utilizes DDS technology to integrate the DDS signal generator on the circuit board, and installs the instrument control equipment in a chassis, and uses a mobile power supply for power supply , no other power supply is required, the DDS signal generator and instrument control equipment are integrated inside the integrated instrument, which reduces the size and weight of the integrated instrument, reduces the difficulty of field measurement, and well compensates for the need to carry inverters for power supply in the field. Inconvenient problems such as transformers and batteries, thus solving the problem of unfavorable terrain and harsh environments that cannot be measured.
  • the DDS chip used has programmable frequency and phase. Functions such as internal frequency division, phase-locked loop and linear frequency sweep can be flexibly configured by writing registers, leaving a large design margin for applications with new requirements and new functions for signal source output in the future, which is convenient for expansion, maintenance and upgrade.
  • Fig. 1 is the overall structure schematic diagram of the present invention
  • Fig. 2 is the concrete structural representation of DDS signal generator of the present invention
  • Fig. 3 is the concrete structural representation of DDS chip of the present invention.
  • Fig. 4 is the specific circuit schematic diagram of multi-speed regulating module of the present invention.
  • FIG. 5 is a schematic diagram of a specific circuit of the constant current and constant voltage module of the present invention.
  • 1-intelligent mobile device 2-integrated instrument; 3-sample rack; 4-first electrode interface; 5-second electrode interface; 6-third electrode interface; 7-fourth electrode interface; 8-first electrode interface Polarized electrode; 9-second non-polarized electrode; 10-third non-polarized electrode; 11-fourth non-polarized electrode; 12-rock ore specimen; 13-triaxial cable; 14-instrument control equipment; 15-DDS signal generator; 16-sampling resistor; 17-embedded control system; 18-acquisition card module; 19-CPLD module; 20-multi-channel ADC; Buffer module; 23-power module; 24-DDS chip; 25-differential to single-ended module; 26-second seventh-order low-pass elliptic filter; 27-multi-level adjustment module; 28-constant current and constant voltage module; 29 -phase accumulator; 30-N bit accumulator; 31-N bit register; 32-waveform memory; 33-D/A converter; 34-third and seventh order low-pass elliptic filter; 35-first resistance; 36 -First
  • the invention provides a rock ore sample impedance test signal source generating circuit and device.
  • an embodiment of the present invention provides a rock ore specimen impedance measurement signal source generating circuit and device, including: an intelligent mobile device 1; an integrated instrument 2, the integrated instrument 2 and the The smart mobile device 1 is connected through a wireless network; the integrated instrument 2 is fixedly provided with a first electrode interface 4, a second electrode interface 5, a third electrode interface 6 and a fourth electrode interface 7; the sample holder 3, the The sample holder 3 comprises a first non-polarized electrode 8, a second non-polarized electrode 9, a third non-polarized electrode 10 and a fourth non-polarized electrode 11; the second non-polarized electrode 9 and the third non-polarized electrode A rock ore sample 12 is placed between the non-polarized electrodes 10; the first end of the first non-polarized electrode 8 is electrically connected to the first electrode interface 4 through a triaxial cable 13; the second non-polarized The first end of the polarized electrode 9 is electrically connected to the third electrode interface 6 through a triaxial cable 13; the second end of the second non-
  • Terminals are electrically connected; the first end of the third non-polarized electrode 10 is electrically connected to the fourth electrode interface 7 through a triaxial cable 13; the first end of the fourth non-polarized electrode 11 is connected through a triaxial cable
  • the axial cable 13 is electrically connected to the second electrode interface 5; the second end of the fourth non-polarized electrode 11 is electrically connected to the second end of the third non-polarized electrode 10; the fourth non-polarized
  • the third end of the electrode 11 is electrically connected to the ground end.
  • the smart mobile device 1 includes an Android APP, and the Android APP is used for sending and receiving data.
  • the smart mobile device 1 and the integrated instrument 2 are connected to a wireless network through Bluetooth, and the integrated instrument 2 is connected to the integrated instrument 2
  • Sample rack 3 is connected by triaxial cable 13
  • described smart mobile device 1 comprises: Android APP, and described Android APP sends order and receives data to described integrated instrument 2, and described smart mobile device 1 mainly carries Android operation
  • the smart phone of the system can also be a smart phone, a tablet or other smart mobile device 1 equipped with ios, linux and other systems, and the rock ore specimen impedance measurement signal source generation circuit and device are formed by the smart mobile device 1 as the
  • the controller of the integrated instrument 2 the intelligent mobile device 1 is compact, light, widely used, low power consumption, small in size, and can be controlled remotely, which greatly reduces the difficulty of field work and improves the safety of staff.
  • the control command of the intelligent mobile device 1 to the integrated instrument 2 includes: at the beginning of the measurement, the integrated instrument 2 2.
  • the integrated instrument 2 includes: an instrument control device 14, the instrument control device 14 is installed in the cabinet of the integrated instrument 2; a DDS signal generator 15, and the DDS signal generator 15 is installed in the In the cabinet of the integrated instrument 2, the first end of the DDS signal generator 15 is electrically connected to the first end of the instrument control device 14, and the second end of the DDS signal generator 15 is connected to the second electrode
  • the interface 5 is electrically connected, and the third end of the DDS signal generator 15 is electrically connected to the second end of the instrument control device 14; a sampling resistor 16, the first end of the sampling resistor 16 is connected to the DDS signal generator The third end of 15 is electrically connected.
  • the DDS signal generator 15 converts the frequency control command, multi-level adjustment control command and multi-level constant
  • the voltage constant current switching control command is buffered to avoid the situation that the transmission distance of the DDS signal generator 15 is too long and the driving capability of the control command is insufficient and cannot be correctly controlled.
  • the instrument control device 14 includes: an embedded control system 17 and an acquisition card module 18; the embedded control system 17 is wirelessly connected to the smart mobile device 1; the first end of the acquisition card module 18 is connected to the The first end of the embedded control system 17 is electrically connected; the second end of the acquisition card module 18 is electrically connected to the first end of the DDS signal generator 15; the third end of the acquisition card module 18 is electrically connected to the The third end of the DDS signal generator 15 is electrically connected; the fourth end of the acquisition card module 18 is electrically connected to the first electrode interface 4; the fifth end of the acquisition card module 18 is electrically connected to the third electrode The interface 6 is electrically connected; the sixth end of the acquisition card module 18 is electrically connected to the fourth electrode interface 7 .
  • described acquisition card module 18 comprises: CPLD module 19, and the first end of described CPLD module 19 is electrically connected with the first end of described embedded control system 17; The second end of described CPLD module 19 is connected with described The first end of DDS signal generator 15 is electrically connected; Multi-channel ADC20, the first end of described multi-channel ADC20 is electrically connected with the second end of described CPLD module 19; The first seven-order low-pass elliptic filter 21, so The first end of the first seventh-order low-pass elliptic filter 21 is electrically connected to the second end of the multi-channel ADC20; buffer module 22, the first end of the buffer module 22 is connected to the first seventh-order The second end of the low-pass elliptic filter 21 is electrically connected; the second end of the buffer module 22 is electrically connected to the third end of the DDS signal generator 15; the third end of the buffer module 22 is electrically connected to the The first electrode interface 4 is electrically connected; the fourth end of the buffer module 22 is electrically connected to the third electrode
  • the integrated instrument 2 includes: the buffer module 22, the CPLD module 19, the first seventh-order low-pass The elliptic filter 21 and the multi-channel ADC20; the buffer module 22 is used to buffer the potential value of the electrode to reduce the measurement error; the first seventh-order low-pass elliptic filter 21 is used to filter out the high frequency of the potential value Interference; the multi-channel ADC20 converts the measured potential analog signal into a digital signal and transmits it to the CPLD module 19; the CPLD module 19 receives the command issued by the embedded control system 17 and decodes and controls each module and The collected data is uploaded to the embedded control system 17; the embedded control system 17 is used to receive the wireless transmission order of the smart mobile device 1 and send it to the CPLD module 19, and receive the collected data and upload it to the The smart mobile device 1, the sampling resistor 16 measures the current passing through the rock ore sample 12, and the DDS signal
  • the embedded control system 17 has the function of sending the result of the potential signal collection to the host computer for processing and displaying.
  • the card module 18 provides a hardware circuit for collecting the potential signal measured by the signal source according to the DDS signal generator 15 .
  • described integrated instrument 2 also comprises: power supply module 23, and described power supply module 23 is arranged in the cabinet of described integrated instrument 2, and described power supply module 23 and the first of described acquisition card module 18 Seven-terminal electrical connection.
  • the DDS signal generator 15 includes: a DDS chip 24, the first end of the DDS chip 24 is electrically connected to the second end of the acquisition card module 18; a differential to single-ended module 25, the differential to single-ended The first end of end module 25 is electrically connected with the second end of described DDS chip 24; The second seven-order low-pass elliptic filter 26, the first end of described second seventh-order low-pass elliptic filter 26 is connected with described The second end of the differential to single-ended module 25 is electrically connected; the multi-level adjustment module 27, the first end of the multi-level adjustment module 27 is electrically connected to the second end of the second seventh-order low-pass elliptic filter 26; A constant current and constant voltage module 28, the first end of the constant current and constant voltage module 28 is electrically connected to the second end of the multi-speed adjustment module 27, and the second end of the constant current and constant voltage module 28 is connected to the sample Rack 3 is electrically connected.
  • the DDS chip 24 of the DDS signal generator 15 receives and executes the frequency control command sent by the instrument control device 14.
  • the multi-level adjustment module 27 receives and executes the adjustment control command sent by the instrument control device 14, and the constant current and constant voltage module 28 receives and executes the constant voltage and constant current switching control command sent by the instrument control device 14 .
  • the rock ore specimen impedance measurement signal source generation circuit and device described in the above-mentioned embodiments of the present invention perform power conversion through the power module 23 to provide the required power supply for the rock ore specimen impedance measurement signal source generation circuit and device.
  • the DDS chip 24 is used to generate a DDS composite signal with programmable frequency and phase; the differential to single-ended module 25 converts the differential constant current signal generated by the DDS chip 24 into a single-ended constant voltage signal to compensate for the DDS
  • the second seventh-order low-pass elliptic filter 26 filters the single-ended constant voltage signal of the differential-to-single-ended module 25, and filters out the DDS composite signal generated by the DDS chip 24
  • the high-frequency interference and stray in the medium, the constant voltage and constant current conversion is performed through the constant current and constant voltage module 28, and the signal source output is generated, and the attenuator is used to perform multi-level adjustment through the multi-level adjustment circuit, and there are five levels in total.
  • the output signal of the DDS chip 24 is an adjustable constant current differential signal, and the DDS chip 24 has the function of adjusting the signal amplitude through an external resistor, but because the DDS chip 24 is highly integrated and contains digital and analog interactive parts , and relying solely on the DDS chip 24 for insufficient power supply and driving capability, it is impossible to drive high-power loads, so the design of multi-level adjustment is not carried out inside the DDS chip 24, and the DDS output signal is converted through the differential to single-ended module 25 For the single-ended voltage signal, the integrated operational amplifier is used for multi-level amplification.
  • described DDS chip 24 comprises: phase accumulator 29, and described phase accumulator 29 comprises N accumulator 30 and N register 31; The first end of described N accumulator 30 and described The second end of the acquisition card module 18 is electrically connected; the second end of the N-bit accumulator 30 is electrically connected to the second end of the acquisition card module 18; the first end of the N-bit register 31 is connected to the N The third end of the bit accumulator 30 is electrically connected; the second end of the N-bit register 31 is electrically connected to the fourth end of the N-bit accumulator 30; a waveform memory 32, the first end of the waveform memory 32 is connected to The three terminals of the N-bit register 31 are electrically connected; the D/A converter 33, the first end of the D/A converter 33 is electrically connected to the second end of the waveform memory 32; the D/A converter The second end of the device 33 is electrically connected with the second end of the N-bit accumulator 30; the third and seventh-order low-pass ellip
  • the DDS signal generator 15 generation process is: the DDS chip 24 provides frequency control words and references through the acquisition card module 18 Frequency fclk control, generate the DDS composite signal of the response frequency, create a digital phase relationship according to the frequency control word and the reference frequency fclk through the phase accumulator 29, accumulate the frequency control word at each reference frequency fclk by the N-bit accumulator 30 The converted phase component stores the accumulated total phase component through the N-bit memory, receives the total phase component of the N-bit memory through the waveform memory 32 and takes out the corresponding address in the stored waveform memory 32.
  • the digital signal of the amplitude value is converted into an analog signal output by the D/A converter 33, and the high-frequency interference and spurs of the DDS composite signal are preliminarily filtered out by the third and seventh order low-pass elliptic filters 34 .
  • the output frequency is calculated by the frequency control word FTW, the reference frequency fclk and the number of digits N of the phase accumulator 29 of the DDS chip 24:
  • the multi-level adjustment module 27 includes: a first resistor 35, the first end of the first resistor 35 is electrically connected to the second end of the second seventh-order low-pass elliptic filter 26;
  • the first SPST relay 36 the first end of the first SPST relay 36 is electrically connected to the second end of the first resistor 35;
  • the second resistor 37 the first end of the second resistor 37 Electrically connected to the second end of the first resistor 35;
  • second SPST relay 38 the first end of the second SPST relay 38 is electrically connected to the second end of the second resistor 37;
  • the second end of the second SPST relay 38 is electrically connected to the second end of the first SPST relay 36;
  • the third resistor 39 the first end of the third resistor 39 is connected to the second resistor
  • the second end of 37 is electrically connected;
  • the third SPST relay 40 the first end of the third SPST relay 40 is electrically connected with the second end of the third resistor 39;
  • the third SPST The second end of the relay 40 is
  • the multi-level adjustment module 27 can eliminate the influence of the on-resistance on the precise value of the gear position, reduce the voltage error of the gear position, and adopt a single-pole Single-throw relay control, the advantage of relay control is that the relay has extremely low turn-on and turn-off time, and the control signal and output signal are completely isolated without mutual influence, and the turn-on resistance is extremely low.
  • the first resistor 35, the The second resistor 37, the third resistor 39, the fourth resistor 41, the fifth resistor 43 and the sixth resistor 45 are used to form a feedback amplification or attenuation signal, and the first single pole single throw relay 36.
  • the second SPST relay 38, the third SPST relay 40, the fourth SPST relay 42 and the fifth SPST relay 44 are used to control the fifth gear amplification;
  • the first integrated operational amplifier 46 provides driving energy for multi-level adjustment of the signal, and the multi-level adjustment module 27 can eliminate the influence of the on-resistance on the precise value of the gear and reduce the voltage error of the gear. Specifically, there is a certain ratio relationship between resistance design and gear size:
  • K1-K5 is the ratio of output to input
  • R1 is the first resistor 35
  • R2 is the second resistor 37
  • R3 is the third resistor 39
  • R4 is the fourth resistor 41
  • R5 is The fifth resistor 43 and R6 are the sixth resistor 45
  • S 1 -S 5 are SPST relays directly controlled by digital signals respectively, and S 1 -S 5 are respectively connected to the first SPST relay 36
  • the second SPST relay 38, the third SPST relay 40, the fourth SPST relay 42 and the fifth SPST relay 44 correspond one-to-one, and the SPST relay has a very low
  • the turn-on and turn-off time is very fast, and the control signal and the output signal are completely isolated without mutual influence, and the on-resistance is extremely low.
  • the first integrated operational amplifier 46 requires a low noise level, an output voltage and power that meet the requirements of the gear, avoids distortion and drift, and minimizes the interference of signals in multi-level adjustment.
  • the constant current and constant voltage module 28 includes: a seventh resistor 47, the first end of the seventh resistor 47 is electrically connected to the output end of the first integrated operational amplifier 46; Amplifier 48, the positive input end of the second integrated operational amplifier 48 is electrically connected to the second end of the seventh resistor 47; the eighth resistor 49, the first end of the eighth resistor 49 is connected to the second integrated The positive input terminal of the operational amplifier 48 is electrically connected; the third integrated operational amplifier 50, the output terminal of the third integrated operational amplifier 50 is electrically connected with the second end of the eighth resistor 49; the third integrated operational amplifier 50 The negative input terminal of the first integrated operational amplifier 50 is electrically connected to the output terminal of the third integrated operational amplifier; the ninth resistor 51, and the first end of the ninth resistor 51 is electrically connected to the negative input terminal of the second integrated operational amplifier 48; The second end of the ninth resistor 51 is electrically connected to the ground terminal; the tenth resistor 52, the first end of the tenth resistor 52 is electrically connected to the output
  • the seventh resistor 47, the eighth resistor 49 and the ninth resistor 51 are used for feedback signals and constant voltage and constant current Conversion; the second integrated operational amplifier 48 and the third integrated operational amplifier 50 provide driving energy for constant voltage and constant current conversion.
  • R7 is the seventh resistor 47
  • R8 is the eighth resistor 49
  • R9 is the ninth resistor 51.
  • the resistance design that is, the size of K needs to be selected according to the specific constant voltage signal, considering power consumption, noise, signal Distortion and integrated operational amplifier offset problems, designed two kinds of circuits for high voltage (10V) and low voltage (1V, 100mV, 10mV, 1mV) constant voltage to constant current, because the integrated operational amplifier power supply is only ⁇ 14V,
  • the conversion of high voltage (10V) is prone to distortion and is not easily affected by noise and imbalance, so the circuit requirement for this voltage conversion is K ⁇ 1/5, and the resistance value of the eleventh resistor 53 is correspondingly increased to meet the current I
  • the conversion of low voltage (1V, 100mV, 10mV, 1mV) is easily affected by noise and offset without distortion, so the conversion circuit for low voltage requires K to be as large as possible (K>5 ), which in turn reduces the noise and offset experienced by the output signal.
  • the rock ore specimen impedance measurement signal source generation circuit and device described in the above-mentioned embodiments of the present invention control the power supply module 23 by soft switching on and off; output the DDS composite signal programmable frequency and phase to the DDS chip 24 control of the signal source gear of the multi-gear regulating circuit; configuration of the constant voltage and constant current mode for the constant current and constant voltage module 28; realization of programmable waveform function, on-chip frequency division function, and on-chip lock Phase loop function, adjustable step linear frequency sweep function, multiple DDS signal source synchronization function and CML current mode logic output function, etc., can all be extended and used.
  • the rock ore specimen impedance measurement signal source generation circuit and device realize the DDS For the generation of the signal source, the intelligent mobile device 1 is used as the controller of the signal source to make the control more convenient and fast.
  • the integrated instrument 2 is light in weight, small in size and low in power consumption , which is convenient for field collection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明提供了一种岩矿石标本阻抗测量信号源生成电路与装置,包括:智能移动设备;一体化仪器,所述一体化仪器与所述智能移动设备通过无线网络连接,所述一体化仪器上固定设置有第一电极接口、第二电极接口、第三电极接口和第四电极接口;样本架,所述样本架包括第一不极化电极、第二不极化电极、第三不极化电极和第四不极化电极,所述第二不极化电极和所述第三不极化电极之间放置有岩矿石标本,所述第一不极化电极的第一端通过三同轴电缆与所述第一电极接口电连接。本发明实现了标本阻抗测量信号源的生成,将智能移动设备作为信号源的控制器,一体化仪器整机重量轻,体积小,功耗低,便于野外岩矿石标本和露头阻抗测量。

Description

岩矿石标本阻抗测量信号源生成电路与装置
本申请要求于2021年12月30日提交中国专利局、申请号为202111658518.0、发明名称为“岩矿石标本阻抗测量信号源生成电路与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及DDS信号源生成技术领域,特别涉及一种岩矿石标本阻抗测量信号源生成电路与装置。
背景技术
频谱激电法(简写为SIP)亦称为复电阻率法,是通过向地下发射交变电流,在一个很宽的频率范围内(10 -2~n×10 2Hz之间)测量视复电阻率,根据测量得到的视复电阻率的振幅谱和相位谱特征及空间分布寻找地电异常,并对目标异常体的物性进行判断,从而达到解决地质问题的一种电法勘探方法。频谱激电法在空间域和频率域的高密度测量,较其他物探方法具有抗干扰能力强,获取电性参数多,多参数对比解释可提供更丰富的异常信息的优点,但也存在仪器设备昂贵、所需人员多、工作效率低、输入阻抗不够及生产成本高的不足。为了在一定程度上克服上述缺点,设计出更高性能的频谱激电测量仪器刻不容缓。测量岩矿石标本阻抗是频谱激电法工作的物性基础,意义重大。通过岩矿石标本阻抗测量了解矿体与围岩电性的差异,是能否有效找矿的物性前提,而想要在地球物理勘探的一些艰苦环境下精确地测量出岩矿石标本或露头的阻抗,就需要更加精密、便携、续航时间更久的测量仪器。
目前,主流的频谱激电测量仪器阻抗分析仪只能完成频率域的恒压测量,无法做到恒流测量;加拿大SCIP电物性测量仪为时间域恒压、恒流测量仪器,目前暂无频率域恒压、恒流测量产品,且绝大多数频谱激电测量仪器都是用外部信号发生器作为信号源,只适合室内测量,在室外测量还需配备220V的逆变器,对于野外岩矿石露头的测量极不方便,所以研制出集成信号源于仪器内部的高精度、低功耗、移动电源供电的频率域多档恒压恒流岩矿石标本阻抗测试仪有很重要的意义,其中最关键的技术难 点就是集成的宽频带多档恒流恒压信号源生成电路。
虽然在其它行业已有基于逻辑器件控制DDS芯片产生所需的模拟信号的设计,但是大部分都是针对于电子、医学测控等特需的经过特有的信号处理电路输出的信号,不能适用于地球物理测量,尤其是针对岩矿石标本阻抗测量需要的频率域多档恒压恒流信号源的需求。
发明内容
本发明提供了一种岩矿石标本阻抗测量信号源生成电路与装置,其目的是为了解决现有岩矿石标本阻抗(频谱激电)测量仪器需要外部信号发生器提供信号源,不适用于室外测量的问题。
为了达到上述目的,本发明的实施例提供了一种岩矿石标本阻抗测量信号源生成电路与装置,包括:
智能移动设备;
一体化仪器,所述一体化仪器与所述智能移动设备通过无线网络连接;所述一体化仪器上固定设置有第一电极接口、第二电极接口、第三电极接口和第四电极接口;
样本架,所述样本架包括第一不极化电极、第二不极化电极、第三不极化电极和第四不极化电极;所述第二不极化电极和所述第三不极化电极之间放置有岩矿石标本;所述第一不极化电极的第一端通过三同轴电缆与所述第一电极接口电连接;所述第二不极化电极的第一端通过三同轴电缆与所述第三电极接口电连接;所述第二不极化电极的第二端与所述第一不极化电极的第二端电连接;所述第三不极化电极的第一端通过三同轴电缆与所述第四电极接口电连接;所述第四不极化电极的第一端通过三同轴电缆与所述第二电极接口电连接;所述第四不极化电极的第二端与所述第三不极化电极的第二端电连接;所述第四不极化电极的第三端与接地端电连接。
本发明的上述方案有如下的有益效果:
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,利用DDS技术将DDS信号发生器集成于电路板上,与仪器控制设 备安装于一个机箱内,采用移动电源进行供电,不需要其他电源,DDS信号发生器与仪器控制设备集成于一体化仪器内部,减小了一体化仪器的大小和重量,降低了野外测量的难度,很好地弥补了在野外供电需要携带逆变器和蓄电池等不方便的问题,从而解决了不利地形、恶劣环境下无法测量的难题。一体化仪器除了电极接口外置,其他模块均密封固定在机箱内部,提高了岩矿石标本阻抗测量仪的防尘、防震、防潮的能力,采用的DDS芯片具有频率可编程、相位可编程、片内分频、锁相环和线性扫频等功能,可通过写入寄存器灵活配置,为今后对信号源输出有新需求和新功能的应用留有很大的设计余量,便于扩展、维护和升级。
说明书附图
图1为本发明的整体结构示意图;
图2为本发明的DDS信号发生器具体结构示意图;
图3为本发明的DDS芯片具体结构示意图;
图4为本发明的多档调节模块具体电路示意图;
图5为本发明的恒流恒压模块具体电路示意图。
【附图标记说明】
1-智能移动设备;2-一体化仪器;3-样本架;4-第一电极接口;5-第二电极接口;6-第三电极接口;7-第四电极接口;8-第一不极化电极;9-第二不极化电极;10-第三不极化电极;11-第四不极化电极;12-岩矿石标本;13-三同轴电缆;14-仪器控制设备;15-DDS信号发生器;16-取样电阻;17-嵌入式控制系统;18-采集卡模块;19-CPLD模块;20-多路ADC;21-第一七阶低通椭圆滤波器;22-缓冲器模块;23-电源模块;24-DDS芯片;25-差分转单端模块;26-第二七阶低通椭圆滤波器;27-多档调节模块;28-恒流恒压模块;29-相位累加器;30-N位累加器;31-N位寄存器;32-波形存储器;33-D/A转换器;34-第三七阶低通椭圆滤波器;35-第一电阻;36-第一单刀单掷继电器;37-第二电阻;38-第二单刀单掷继电器;39-第三电阻;40-第三单刀单掷继电器;41-第四电阻;42-第四单刀单掷继电器;43-第五电阻;44-第五单刀单掷继电器;45-第六电阻;46-第一集成运算 放大器;47-第七电阻;48-第二集成运算放大器;49-第八电阻;50-第三集成运算放大器;51-第九电阻;52-第十电阻;53-第十一电阻;54-第十二电阻。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明针对现有的频谱激电测量仪器需要外部信号发生器提供信号源,不适用于室外测量的问题,提供了一种岩矿石标本标本阻抗测试信号源生成电路与装置。
如图1至图5所示,本发明的实施例提供了一种岩矿石标本阻抗测量信号源生成电路与装置,包括:智能移动设备1;一体化仪器2,所述一体化仪器2与所述智能移动设备1通过无线网络连接;所述一体化仪器2上固定设置有第一电极接口4、第二电极接口5、第三电极接口6和第四电极接口7;样本架3,所述样本架3包括第一不极化电极8、第二不极化电极9、第三不极化电极10和第四不极化电极11;所述第二不极化电极9和所述第三不极化电极10之间放置有岩矿石标本12;所述第一不极化电极8的第一端通过三同轴电缆13与所述第一电极接口4电连接;所述第二不极化电极9的第一端通过三同轴电缆13与所述第三电极接口6电连接;所述第二不极化电极9的第二端与所述第一不极化电极8的第二端电连接;所述第三不极化电极10的第一端通过三同轴电缆13与所述第四电极接口7电连接;所述第四不极化电极11的第一端通过三同轴电缆13与所述第二电极接口5电连接;所述第四不极化电极11的第二端与所述第三不极化电极10的第二端电连接;所述第四不极化电极11的第三端与接地端电连接。
其中,所述智能移动设备1包括Android APP,所述Android APP用于发送和接收数据。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述智能移动设备1与所述一体化仪器2通过蓝牙与无线网络连接, 所述一体化仪器2与所述样本架3通过三同轴电缆13连接,所述智能移动设备1包括:Android APP,所述Android APP向所述一体化仪器2发送命令与接收数据,所述智能移动设备1主要为搭载Android操作系统的智能手机,也可以是搭载ios、linux等系统的智能手机、平板或其他智能移动设备1,所述岩矿石标本阻抗测量信号源生成电路与装置是由所述智能移动设备1作为所述一体化仪器2的控制器,所述智能移动设备1小巧、轻便、使用广泛、功耗低、体积小、可远程控制,很大程度上降低了野外工作难度,提高了工作人员的安全性。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述智能移动设备1对所述一体化仪器2的控制命令包括:在测量之初,对所述一体化仪器2进行所述DDS信号发生器15信号频率、幅度和恒压恒流模式的配置,对所述多路ADC20采样率和增益的配置,对所述多路ADC20进行校准和自检;在测量之时,对所述多路ADC20采集的控制,对所述CPLD模块19及所述嵌入式控制系统17的数据上传控制。
其中,所述一体化仪器2包括:仪器控制设备14,所述仪器控制设备14安装在所述一体化仪器2的机箱内;DDS信号发生器15,所述DDS信号发生器15安装在所述一体化仪器2的机箱内,所述DDS信号发生器15的第一端与所述仪器控制设备14的第一端电连接,所述DDS信号发生器15的第二端与所述第二电极接口5电连接,所述DDS信号发生器15的第三端与所述仪器控制设备14的第二端电连接;取样电阻16,所述取样电阻16的第一端与所述DDS信号发生器15的第三端电连接。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述DDS信号发生器15将所述仪器控制设备14产生的频率控制命令、多档调节控制命令和多档恒压恒流切换控制命令进行缓冲,避免所述DDS信号发生器15传输距离过远导致控制命令驱动能力不足而无法正确控制的情况。
其中,所述仪器控制设备14包括:嵌入式控制系统17和采集卡模块18;所述嵌入式控制系统17与所述智能移动设备1无线连接;所述采集 卡模块18的第一端与所述嵌入式控制系统17的第一端电连接;所述采集卡模块18的第二端与所述DDS信号发生器15的第一端电连接;所述采集卡模块18的第三端与所述DDS信号发生器15的第三端电连接;所述采集卡模块18的第四端与所述第一电极接口4电连接;所述采集卡模块18的第五端与所述第三电极接口6电连接;所述采集卡模块18的第六端与所述第四电极接口7电连接。
其中,所述采集卡模块18包括:CPLD模块19,所述CPLD模块19的第一端与所述嵌入式控制系统17的第一端电连接;所述CPLD模块19的第二端与所述DDS信号发生器15的第一端电连接;多路ADC20,所述多路ADC20的第一端与所述CPLD模块19的第二端电连接;第一七阶低通椭圆滤波器21,所述第一七阶低通椭圆滤波器21的第一端与所述多路ADC20的第二端电连接;缓冲器模块22,所述缓冲器模块22的第一端与所述第一七阶低通椭圆滤波器21的第二端电连接;所述缓冲器模块22的第二端与所述DDS信号发生器15的第三端电连接;所述缓冲器模块22的第三端与所述第一电极接口4电连接;所述缓冲器模块22的第四端与所述第三电极接口6电连接;所述缓冲器模块22的第五端与所述第四电极接口7电连接。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述一体化仪器2包括:所述缓冲器模块22、所述CPLD模块19、所述第一七阶低通椭圆滤波器21和所述多路ADC20;所述缓冲器模块22用于缓冲电极的电位值,降低测量误差;所述第一七阶低通椭圆滤波器21用于滤除电位值的高频干扰;所述多路ADC20将测量的电位模拟信号转换为数字信号并传输到所述CPLD模块19;所述CPLD模块19接收所述嵌入式控制系统17下发的命令并解码控制各个模块并将采集到的数据上传到所述嵌入式控制系统17;所述嵌入式控制系统17用于接收智能移动设备1无线传输的命令并下发至所述CPLD模块19,接收采集的数据并上传到所述智能移动设备1,所述取样电阻16测量经过所述岩矿石标本12的电流,所述DDS信号发生器15产生可编程频率与相位、五个档位和可选恒压恒流模式的DDS合成信号,所述第一不极化电极8、 所述第二不极化电极9、所述第三不极化电极10和所述第四不极化电极11用于测量电位信号,所述岩矿石标本12为待测量标本。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述嵌入式控制系统17将所述电位信号采集的结果上发至上位机处理并显示的功能,所述采集卡模块18根据所述DDS信号发生器15提供信号源测量的电位信号采集的硬件电路。
如图2所示,所述一体化仪器2还包括:电源模块23,所述电源模块23设置在所述一体化仪器2的机箱内,所述电源模块23与所述采集卡模块18的第七端电连接。
其中,所述DDS信号发生器15包括:DDS芯片24,所述DDS芯片24的第一端与所述采集卡模块18的第二端电连接;差分转单端模块25,所述差分转单端模块25的第一端与所述DDS芯片24的第二端电连接;第二七阶低通椭圆滤波器26,所述第二七阶低通椭圆滤波器26的第一端与所述差分转单端模块25的第二端电连接;多档调节模块27,所述多档调节模块27的第一端与所述第二七阶低通椭圆滤波器26的第二端电连接;恒流恒压模块28,所述恒流恒压模块28的第一端与所述多档调节模块27的第二端电连接,所述恒流恒压模块28的第二端与所述样本架3电连接。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述DDS信号发生器15的所述DDS芯片24接收并执行所述仪器控制设备14所发送的频率控制命令,所述多档调节模块27接收并执行所述仪器控制设备14所发送的调节控制命令,所述恒流恒压模块28接收并执行所述仪器控制设备14所发送的恒压恒流切换控制命令。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,通过电源模块23进行电源转换,为所述岩矿石标本阻抗测量信号源生成电路与装置提供所需要的电源,所述DDS芯片24用于产生可编程频率与相位的DDS合成信号;所述差分转单端模块25,将所述DDS芯片24产生的差分恒流信号转换为单端恒压信号以弥补所述DDS芯片24驱动力不足的缺点,所述第二七阶低通椭圆滤波器26将所述差分转单端模块25的单端恒压信号进行滤波,滤除所述DDS芯片24产生的DDS 合成信号中的高频干扰和杂散,通过所述恒流恒压模块28进行恒压恒流转换,产生信号源输出,通过所述多档调节电路使用衰减器进行多档调节,总共为五档,所述DDS芯片24输出信号为可调恒流差分信号,所述DDS芯片24有通过外接电阻调节信号幅度的功能,但是由于所述DDS芯片24集成度很高,且内含数字和模拟交互部分,且只靠所述DDS芯片24供电驱动能力不足,无法驱动高功率负载,所以不在所述DDS芯片24内部进行多档调节的设计,而将DDS输出信号通过所述差分转单端模块25转化为单端电压信号再用集成运放进行多档放大。
如图3所示,所述DDS芯片24包括:相位累加器29,所述相位累加器29包括N位累加器30和N位寄存器31;所述N位累加器30的第一端与所述采集卡模块18的第二端电连接;所述N位累加器30的第二端与所述采集卡模块18的第二端电连接;所述N位寄存器31的第一端与所述N位累加器30的第三端电连接;所述N位寄存器31的第二端与所述N位累加器30的第四端电连接;波形存储器32,所述波形存储器32的第一端与所述N位寄存器31的三端电连接;D/A转换器33,所述D/A转换器33的第一端与所述波形存储器32的第二端电连接;所述D/A转换器33的第二端与所述N位累加器30的第二端电连接;第三七阶低通椭圆滤波器34,所述第三七阶低通椭圆滤波器34的第一端与所述D/A转换器33的第三端电连接。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述DDS信号发生器15产生过程为:所述DDS芯片24通过所述采集卡模块18提供频率控制字与参考频率fclk控制,产生响应频率的DDS合成信号,通过所述相位累加器29根据频率控制字与参考频率fclk创建数字相位关系,通过所述N位累加器30在每个参考频率fclk累加频率控制字转化的相位分量,通过N位存储器存储累加后的总相位分量,通过所述波形存储器32接收所述N位存储器的总相位分量并在已经存储好的所述波形存储器32中寻址取出对应的幅度值,通过所述D/A转换器33将幅度值的数字信号转化为模拟信号输出,通过所述第三七阶低通椭圆滤波器34初步滤除DDS合成信号的高频干扰和杂散。
具体地,输出频率通过频率控制字FTW与参考频率fclk与所述DDS芯片24的所述相位累加器29的位数N计算所得:
Figure PCTCN2022142136-appb-000001
更高的所述相位累加器29的位数N可得到更精确的频率分辨率,参考频率fclk的信号质量直接决定了输出频率fout的信号质量,故参考频率fclk需要有稳定的时钟信号来源,可通过有源晶振、所述CPLD模块19或锁相环提供,尽可能地提高参考频率fclk的稳定性,在可编程逻辑器件具有足够预留资源的情况下,所述DDS芯片24的功能也可以直接由可编程逻辑器件加D/A转换器33来实现。
如图4所示,所述多档调节模块27包括:第一电阻35,所述第一电阻35的第一端与所述第二七阶低通椭圆滤波器26的第二端电连接;第一单刀单掷继电器36,所述第一单刀单掷继电器36的第一端与所述第一电阻35的第二端电连接;第二电阻37,所述第二电阻37的第一端与所述第一电阻35的第二端电连接;第二单刀单掷继电器38,所述第二单刀单掷继电器38的第一端与所述第二电阻37的第二端电连接;所述第二单刀单掷继电器38的第二端与所述第一单刀单掷继电器36的第二端电连接;第三电阻39,所述第三电阻39的第一端与所述第二电阻37的第二端电连接;第三单刀单掷继电器40,所述第三单刀单掷继电器40的第一端与所述第三电阻39的第二端电连接;所述第三单刀单掷继电器40的第二端与所述第二单刀单掷继电器38的第二端电连接;第四电阻41,所述第四电阻41的第一端与所述第三电阻39的第二端电连接;第四单刀单掷继电器42,所述第四单刀单掷继电器42的第一端与所述第四电阻41的第二端电连接;所述第四单刀单掷继电器42的第二端与所述第三单刀单掷继电器40的第二端电连接;第五电阻43,所述第五电阻43的第一端与所述第四电阻41的第二端电连接;第五单刀单掷继电器44,所述第五单刀单掷继电器44的第一端与所述第五电阻43的第二端电连接;所述第五单 刀单掷继电器44的第二端与所述第四单刀单掷继电器42的第二端电连接;第六电阻45,所述第六电阻45的第一端与所述第五电阻43的第一端电连接;第一集成运算放大器46,所述第一集成运算放大器46的负输入端与所述第五单刀单掷继电器44的第二端电连接;所述第一集成运算放大器46的正输入端与接地端电连接;所述第一集成运算放大器46的输出端与所述第六电阻45的第二端电连接。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述多档调节模块27可以消除导通电阻对档位精确值的影响,降低档位电压误差,且采用单刀单掷继电器控制,继电器控制的优势为继电器有极低的导通与关断时间,且控制信号与输出信号完全隔离,不会互相影响,导通电阻极低,所述第一电阻35、所述第二电阻37、所述第三电阻39、所述第四电阻41、所述第五电阻43和所述第六电阻45用于形成反馈放大或衰减信号,所述第一单刀单掷继电器36、所述第二单刀单掷继电器38、所述第三单刀单掷继电器40、所述第四单刀单掷继电器42和所述第五单刀单掷继电器44用于控制五档放大;所述第一集成运算放大器46为信号多档调节提供驱动能源,所述多档调节模块27可以消除导通电阻对档位精确值的影响,降低档位电压误差。具体地,电阻设计和档位大小存在着一定比值关系:
Figure PCTCN2022142136-appb-000002
其中,K1-K5为输出与输入的比值,R1为所述第一电阻35、R2为所述第二电阻37、R3为所述第三电阻39、R4为所述第四电阻41、R5为所述第五电阻43和R6为所述第六电阻45,S 1-S 5分别为数字信号直接控制的单刀单掷继电器,S 1-S 5分别与所述第一单刀单掷继电器36、所述第二单刀单掷继电器38、所述第三单刀单掷继电器40、所述第四单刀单掷继电器42和所述第五单刀单掷继电器44一一对应,单刀单掷继电器有 极低的导通与关断时间,且控制信号与输出信号完全隔离,不会互相影响,导通电阻极低。所述第一集成运算放大器46要求较低的噪声水平,符合档位要求的输出电压和功率,避免出现失真和漂移现象,最大限度降低信号在多档调节受到的干扰。
如图5所示,所述恒流恒压模块28包括:第七电阻47,所述第七电阻47的第一端与所述第一集成运算放大器46的输出端电连接;第二集成运算放大器48,所述第二集成运算放大器48的正输入端与所述第七电阻47的第二端电连接;第八电阻49,所述第八电阻49的第一端与所述第二集成运算放大器48的正输入端电连接;第三集成运算放大器50,所述第三集成运算放大器50的输出端与所述第八电阻49的第二端电连接;所述第三集成运算放大器50的负输入端与所述第三集成运算放大器50的输出端电连接;第九电阻51,所述第九电阻51的第一端与所述第二集成运算放大器48的负输入端电连接;所述第九电阻51的第二端与接地端电连接;第十电阻52,所述第十电阻52的第一端与所述第二集成运算放大器48的输出端电连接;所述第十电阻52的第二端与所述第九电阻51的第一端电连接;第十一电阻53,所述第十一电阻53的第一端与所述第十电阻52的第一端电连接;所述第十一电阻53的第二端与所述第三集成运算放大器50的正输入端电连接;第十二电阻54,所述第十二电阻54的第一端与所述第十一电阻53的第二端电连接;所述第十二电阻54的第二端与接地端电连接。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,所述第七电阻47、所述第八电阻49和所述第九电阻51用于反馈信号和恒压恒流转换;所述第二集成运算放大器48和所述第三集成运算放大器50为恒压恒流转换提供驱动能源。
具体地,电阻设计和恒流输出存在着一定比值关系:
Figure PCTCN2022142136-appb-000003
Figure PCTCN2022142136-appb-000004
Figure PCTCN2022142136-appb-000005
及U +=U _
Figure PCTCN2022142136-appb-000006
整理得:
Figure PCTCN2022142136-appb-000007
所以有:
Figure PCTCN2022142136-appb-000008
其中
Figure PCTCN2022142136-appb-000009
与负载电阻无关。
R7为所述第七电阻47、R8为所述第八电阻49和R9为所述第九电阻51,电阻设计即K的大小需要根据具体恒压信号取值,考虑到功耗、噪声、信号失真和集成运算放大器失调等问题,设计了两种针对于高电压(10V)以及低电压(1V、100mV、10mV、1mV)恒压转恒流的电路,由于集成运算放大器供电电源只有±14V,对高电压(10V)的转换容易产生失真现象而不容易被噪声及失调影响,故对该电压转换的电路要求K<1/5,相应提高所述第十一电阻53阻值以满足电流I的输出要求;同理对低电压(1V、100mV、10mV、1mV)的转换容易受到噪声和失调的影响,而不会产生失真现象,故对低电压的转换电路要求K尽量大(K>5),继而降低输出信号受到的噪声和失调。
本发明的上述实施例所述的岩矿石标本阻抗测量信号源生成电路与装置,通过对所述电源模块23进行软开关机的控制;对所述DDS芯片24输出DDS合成信号可编程频率与相位的控制;对所述多档调节电路进行信号源档位的控制;对所述恒流恒压模块28进行恒压恒流模式的配置;实现可编程波形功能、片内分频功能、片上锁相环功能、可调步进线性扫频功能、多个DDS信号源同步功能和CML电流模式逻辑输出功能等,均可扩展使用,所述岩矿石标本阻抗测量信号源生成电路与装置实现了DDS信号源的生成,将所述智能移动设备1作为信号源的控制器,使控制更加方便、快捷,通过一体化的仪器设计,所述一体化仪器2整机重量轻,体积小,功耗低,便于野外采集。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,包括:
    智能移动设备;
    一体化仪器,所述一体化仪器与所述智能移动设备通过无线网络连接;所述一体化仪器上固定设置有第一电极接口、第二电极接口、第三电极接口和第四电极接口;
    样本架,所述样本架包括第一不极化电极、第二不极化电极、第三不极化电极和第四不极化电极;所述第二不极化电极和所述第三不极化电极之间放置有岩矿石标本,所述第一不极化电极的第一端通过三同轴电缆与所述第一电极接口电连接;所述第二不极化电极的第一端通过三同轴电缆与所述第三电极接口电连接;所述第二不极化电极的第二端与所述第一不极化电极的第二端电连接;所述第三不极化电极的第一端通过三同轴电缆与所述第四电极接口电连接;所述第四不极化电极的第一端通过三同轴电缆与所述第二电极接口电连接;所述第四不极化电极的第二端与所述第三不极化电极的第二端电连接;所述第四不极化电极的第三端与接地端电连接。
  2. 根据权利要求1所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述智能移动设备包括AndroidAPP,所述AndroidAPP用于发送和接收数据。
  3. 根据权利要求2所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述一体化仪器包括:
    仪器控制设备,所述仪器控制设备安装在所述一体化仪器的机箱内;
    DDS信号发生器,所述DDS信号发生器安装在所述一体化仪器的机箱内;所述DDS信号发生器的第一端与所述仪器控制设备的第一端电连接;所述DDS信号发生器的第二端与所述第二电极接口电连接;所述DDS信号发生器的第三端与所述仪器控制设备的第二端电连接;
    取样电阻,所述取样电阻的第一端与所述DDS信号发生器的第三端电连接。
  4. 根据权利要求3所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述仪器控制设备包括:嵌入式控制系统和采集卡模块;
    所述嵌入式控制系统与所述智能移动设备无线连接;
    所述采集卡模块的第一端与所述嵌入式控制系统的第一端电连接;所述采集卡模块的第二端与所述DDS信号发生器的第一端电连接;所述采集卡模块的第三端与所述DDS信号发生器的第三端电连接;所述采集卡模块的第四端与所述第一电极接口电连接;所述采集卡模块的第五端与所述第三电极接口电连接;所述采集卡模块的第六端与所述第四电极接口电连接。
  5. 根据权利要求4所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述采集卡模块包括:
    CPLD模块,所述CPLD模块的第一端与所述嵌入式控制系统的第一端电连接;所述CPLD模块的第二端与所述DDS信号发生器的第一端电连接;
    多路ADC,所述多路ADC的第一端与所述CPLD模块的第二端电连接;
    第一七阶低通椭圆滤波器,所述第一七阶低通椭圆滤波器的第一端与所述多路ADC的第二端电连接;
    缓冲器模块,所述缓冲器模块的第一端与所述第一七阶低通椭圆滤波器的第二端电连接;所述缓冲器模块的第二端与所述DDS信号发生器的第三端电连接;所述缓冲器模块的第三端与所述第一电极接口电连接;所述缓冲器模块的第四端与所述第三电极接口电连接;所述缓冲器模块的第五端与所述第四电极接口电连接。
  6. 根据权利要求5所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述一体化仪器还包括:
    电源模块,所述电源模块设置在所述一体化仪器的机箱内,所述电源模块与所述采集卡模块的第七端电连接。
  7. 根据权利要求6所述的岩矿石标本阻抗测量信号源生成电路与装置, 其特征在于,所述DDS信号发生器包括:
    DDS芯片,所述DDS芯片的第一端与所述采集卡模块的第二端电连接;
    差分转单端模块,所述差分转单端模块的第一端与所述DDS芯片的第二端电连接;
    第二七阶低通椭圆滤波器,所述第二七阶低通椭圆滤波器的第一端与所述差分转单端模块的第二端电连接;
    多档调节模块,所述多档调节模块的第一端与所述第二七阶低通椭圆滤波器的第二端电连接;
    恒流恒压模块,所述恒流恒压模块的第一端与所述多档调节模块的第二端电连接;所述恒流恒压模块的第二端与所述样本架电连接。
  8. 根据权利要求7所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述DDS芯片包括:
    相位累加器,所述相位累加器包括N位累加器和N位寄存器,所述N位累加器的第一端与所述采集卡模块的第二端电连接;所述N位累加器的第二端与所述采集卡模块的第二端电连接;所述N位寄存器的第一端与所述N位累加器的第三端电连接;所述N位寄存器的第二端与所述N位累加器的第四端电连接;
    波形存储器,所述波形存储器的第一端与所述N位寄存器的三端电连接;
    D/A转换器,所述D/A转换器的第一端与所述波形存储器的第二端电连接;所述D/A转换器的第二端与所述N位累加器的第二端电连接;
    第三七阶低通椭圆滤波器,所述第三七阶低通椭圆滤波器的第一端与所述D/A转换器的第三端电连接。
  9. 根据权利要求8所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述多档调节模块包括:
    第一电阻,所述第一电阻的第一端与所述第二七阶低通椭圆滤波器的第二端电连接;
    第一单刀单掷继电器,所述第一单刀单掷继电器的第一端与所述第一电阻的第二端电连接;
    第二电阻,所述第二电阻的第一端与所述第一电阻的第二端电连接;
    第二单刀单掷继电器,所述第二单刀单掷继电器的第一端与所述第二电阻的第二端电连接;所述第二单刀单掷继电器的第二端与所述第一单刀单掷继电器的第二端电连接;
    第三电阻,所述第三电阻的第一端与所述第二电阻的第二端电连接;
    第三单刀单掷继电器,所述第三单刀单掷继电器的第一端与所述第三电阻的第二端电连接;所述第三单刀单掷继电器的第二端与所述第二单刀单掷继电器的第二端电连接;
    第四电阻,所述第四电阻的第一端与所述第三电阻的第二端电连接;
    第四单刀单掷继电器,所述第四单刀单掷继电器的第一端与所述第四电阻的第二端电连接;所述第四单刀单掷继电器的第二端与所述第三单刀单掷继电器的第二端电连接;
    第五电阻,所述第五电阻的第一端与所述第四电阻的第二端电连接;
    第五单刀单掷继电器,所述第五单刀单掷继电器的第一端与所述第五电阻的第二端电连接;所述第五单刀单掷继电器的第二端与所述第四单刀单掷继电器的第二端电连接;
    第六电阻,所述第六电阻的第一端与所述第五电阻的第一端电连接;
    第一集成运算放大器,所述第一集成运算放大器的负输入端与所述第五单刀单掷继电器的第二端电连接;所述第一集成运算放大器的正输入端与接地端电连接;所述第一集成运算放大器的输出端与所述第六电阻的第二端电连接。
  10. 根据权利要求9所述的岩矿石标本阻抗测量信号源生成电路与装置,其特征在于,所述恒流恒压模块包括:
    第七电阻,所述第七电阻的第一端与所述第一集成运算放大器的输出端电连接;
    第二集成运算放大器,所述第二集成运算放大器的正输入端与所述第 七电阻的第二端电连接;
    第八电阻,所述第八电阻的第一端与所述第二集成运算放大器的正输入端电连接;
    第三集成运算放大器,所述第三集成运算放大器的输出端与所述第八电阻的第二端电连接;所述第三集成运算放大器的负输入端与所述第三集成运算放大器的输出端电连接;
    第九电阻,所述第九电阻的第一端与所述第二集成运算放大器的负输入端电连接;所述第九电阻的第二端与接地端电连接;
    第十电阻,所述第十电阻的第一端与所述第二集成运算放大器的输出端电连接;所述第十电阻的第二端与所述第九电阻的第一端电连接;
    第十一电阻,所述第十一电阻的第一端与所述第十电阻的第一端电连接;所述第十一电阻的第二端与所述第三集成运算放大器的正输入端电连接;
    第十二电阻,所述第十二电阻的第一端与所述第十一电阻的第二端电连接;所述第十二电阻的第二端与接地端电连接。
PCT/CN2022/142136 2021-12-30 2022-12-27 岩矿石标本阻抗测量信号源生成电路与装置 WO2023125464A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/576,730 US20240288604A1 (en) 2021-12-30 2022-12-27 Circuit and apparatus for generating signal source for impedance measurement of rock and ore samples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111658518.0A CN114296508B (zh) 2021-12-30 2021-12-30 岩矿石标本阻抗测量信号源生成装置
CN202111658518.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125464A1 true WO2023125464A1 (zh) 2023-07-06

Family

ID=80973616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142136 WO2023125464A1 (zh) 2021-12-30 2022-12-27 岩矿石标本阻抗测量信号源生成电路与装置

Country Status (3)

Country Link
US (1) US20240288604A1 (zh)
CN (1) CN114296508B (zh)
WO (1) WO2023125464A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296508B (zh) * 2021-12-30 2024-04-23 长沙巨杉智能科技有限公司 岩矿石标本阻抗测量信号源生成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197861A1 (en) * 2007-02-21 2008-08-21 Em Microelectronic-Marin Sa Method of automatically testing an electronic circuit with a capacitive sensor and electronic circuit for the implementation of the same
CN103941293A (zh) * 2014-04-30 2014-07-23 武汉普瑞通科技有限公司 一种自然电场动电观测系统
CN205991957U (zh) * 2016-08-31 2017-03-01 山东电力工程咨询院有限公司 一种分布式多功能测量电极装置
CN108227004A (zh) * 2018-01-03 2018-06-29 重庆深地科技有限公司 一种高密度交直流激电系统及其工作方法
CN114296508A (zh) * 2021-12-30 2022-04-08 长沙巨杉智能科技有限公司 岩矿石标本阻抗测量信号源生成电路与装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915658B2 (ja) * 2003-12-04 2012-04-11 パワートロン エンジニアリング カンパニー リミテッド 蓄電池セルの端子電圧及び内部インピーダンス測定回路
CN202383201U (zh) * 2011-12-22 2012-08-15 中国地质科学院地球物理地球化学勘查研究所 岩矿石电性测量仪
CN102944799B (zh) * 2012-11-30 2015-04-22 东华理工大学 一种岩石或矿石标本的电性测量装置
CN103454698B (zh) * 2013-09-11 2015-12-09 东华理工大学 直流电法勘探中三维电阻率采集系统在线故障检测系统
CN103513211B (zh) * 2013-10-25 2016-03-02 国家电网公司 交流阻抗测试仪检测装置
CN103913634B (zh) * 2014-04-03 2016-08-17 中色地科矿产勘查股份有限公司 一种岩矿石标本真电参数测试方法及装置
CN105136859B (zh) * 2015-06-11 2017-11-07 四川大学 基于钢筋电极的二维混凝土健康监测方法
CN110208604B (zh) * 2019-05-10 2024-08-27 湖南科技大学 一种电极接地回路阻抗测量装置及测量方法
CN110703344B (zh) * 2019-10-18 2021-03-30 中国科学院地质与地球物理研究所 一种隐伏资源预测方法及岩石电磁学测井系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197861A1 (en) * 2007-02-21 2008-08-21 Em Microelectronic-Marin Sa Method of automatically testing an electronic circuit with a capacitive sensor and electronic circuit for the implementation of the same
CN103941293A (zh) * 2014-04-30 2014-07-23 武汉普瑞通科技有限公司 一种自然电场动电观测系统
CN205991957U (zh) * 2016-08-31 2017-03-01 山东电力工程咨询院有限公司 一种分布式多功能测量电极装置
CN108227004A (zh) * 2018-01-03 2018-06-29 重庆深地科技有限公司 一种高密度交直流激电系统及其工作方法
CN114296508A (zh) * 2021-12-30 2022-04-08 长沙巨杉智能科技有限公司 岩矿石标本阻抗测量信号源生成电路与装置

Also Published As

Publication number Publication date
CN114296508A (zh) 2022-04-08
CN114296508B (zh) 2024-04-23
US20240288604A1 (en) 2024-08-29

Similar Documents

Publication Publication Date Title
WO2023125464A1 (zh) 岩矿石标本阻抗测量信号源生成电路与装置
CN101963634B (zh) 一体化光隔离雷电电场测量仪
CN102096088B (zh) 辐射探测中多路脉冲信号的获取装置
CN106918795B (zh) 基于fpga的高精度电阻校准系统及采用该系统实现的电阻校准方法
CN104481519A (zh) 一种井间电磁测井信号发射电子系统
CN103604982A (zh) Pxi微电流检测装置
CN106680602B (zh) 一种基于霍尔传感器的静电场测试仪
CN105300269B (zh) 一种无线精密应变测量装置和一种无线精密应变测量方法
CN204855783U (zh) 一种三相电能表现场校验系统
CN202182950U (zh) 台阵式磁通门磁力仪
Gao et al. Design of distributed three component seismic data acquisition system based on LoRa wireless communication technology
Qian et al. Development of front-end readout electronics for silicon strip detectors
Albrecht et al. The Outer Tracker detector of the HERA-B experiment. Part II: Front-end electronics
CN101706523B (zh) 一种通道隔离的手持式数字示波器
CN103149593A (zh) 一种解决天然电场物探仪的场源稳定性的方法及装置
CN205317861U (zh) 一种三分量瞬变电磁探测接收机
CN113863921B (zh) 一种近钻头无线短传驱动电路及其功率自调节方法
Li et al. Development of a new multifunctional induced polarization instrument based on remote wireless communication technology
Piccolo et al. The first ASIC prototype of a 28 nm time-space front-end electronics for real-time tracking
CN206649051U (zh) 具有恒流源供电的数字加速度测量装置
CN213023598U (zh) 一种瞬变电磁仪
CN101866735A (zh) 三轴磁场模拟装置及其构建方法
CN203191546U (zh) 一种tvlf探水雷达发射机发射信号测量装置
CN207598225U (zh) 油基泥浆电成像测井仪频率自适应系统
CN202502254U (zh) 一种电法仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18576730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE