WO2023120893A1 - 전기 삼투압 펌프 - Google Patents

전기 삼투압 펌프 Download PDF

Info

Publication number
WO2023120893A1
WO2023120893A1 PCT/KR2022/014727 KR2022014727W WO2023120893A1 WO 2023120893 A1 WO2023120893 A1 WO 2023120893A1 KR 2022014727 W KR2022014727 W KR 2022014727W WO 2023120893 A1 WO2023120893 A1 WO 2023120893A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
fluid
housing
pump
elastic member
Prior art date
Application number
PCT/KR2022/014727
Other languages
English (en)
French (fr)
Inventor
이도경
전준성
윤광식
Original Assignee
이오플로우㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이오플로우㈜ filed Critical 이오플로우㈜
Publication of WO2023120893A1 publication Critical patent/WO2023120893A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14513Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons with secondary fluid driving or regulating the infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking

Definitions

  • the present invention relates to an electroosmotic pump, and more particularly to an electroosmotic pump using a fluid.
  • a drug solution injection device such as an insulin injection device is used to inject a drug solution into a patient's body.
  • a liquid injection device is also used by professional medical personnel such as doctors and nurses, but in most cases, it is used by ordinary people such as patients themselves or their guardians.
  • a patch-type drug injection device that can be attached to the human body for a certain period of time and used conveniently has been developed, and this drug injection device can be used while attached to the patient's abdomen or waist for a certain period of time there is.
  • the drug solution injection device may be provided with a driving member such as an electroosmotic pump in order to actively inject the drug solution.
  • a driving member such as an electroosmotic pump
  • An electroosmotic pump is a pump that uses a movement phenomenon of a fluid generated when a voltage is applied to both ends of a capillary tube or a porous membrane.
  • the electroosmotic pump includes a piston capable of linear reciprocating motion according to the movement of fluid in a part formed in a cylinder structure, and the piston is coupled to a shaft to allow the linear reciprocating motion of the shaft.
  • One end of the shaft is coupled to the piston inside the pump, and the other end is exposed to the outside of the pump and may be coupled to a movable member provided outside the pump.
  • the movable member performs a linear reciprocating motion together with the motion of the piston and the shaft, and can transmit power to the chemical liquid dispensing mechanism.
  • a lateral force that intersects the moving direction of the shaft may act on the shaft.
  • the force on the side may be caused by various factors such as vibration generated when the pump operates or an external shock.
  • the alignment state of the piston performing the linear reciprocating motion in the cylinder part is disturbed, so that the fluid inside the pump leaks through between the cylinder part and the piston.
  • a driving member such as various types of motors or pumps may be used as a mechanism for driving a drug infusion device such as an insulin infusion device.
  • the present invention relates to a driving member capable of fine pumping using fluid, and is intended to prevent leakage of fluid inside the pump to the outside through a piston during pumping.
  • these tasks are illustrative, and the scope of the present invention thereby is not limited.
  • an electroosmotic pump provides an internal space in which fluid is accommodated, and is provided with a shaft hole connecting the internal space and the external space. It may include a housing, and a shaft assembly that covers the shaft hole outside the housing, is connected to the housing, and is deformable in a longitudinal direction by the flow of the fluid passing through the shaft hole.
  • the shaft assembly may include an elastic member in which an elastic space communicating with the shaft hole is formed, and a rod member coupled to the elastic member and extending while sharing a longitudinal central axis with the elastic member. there is.
  • the elastic member a body portion formed in the form of a corrugated pipe, an opening formed therein facing the shaft hole, a flange portion extending radially from one end of the body portion having an opening, and a head portion formed at the other end opposite to the one end of the body portion to which the flange portion extends, and the flange portion may be bonded to the housing.
  • the elastic member may be made of a rubber material.
  • the internal space may further include a membrane dividing the inner space into a first space and a second space, and the flow of the fluid passing through the shaft hole may depend on the flow of the fluid passing through the membrane.
  • the airtightness of the pump can be stably secured. Accordingly, it is possible to prevent the performance of the pump from deteriorating by preventing the fluid inside the pump from leaking to the outside during pump operation.
  • a coating process required between the outer circumferential surface of the piston and the inner circumferential surface of the cylinder can be omitted.
  • Silicone oil may be used in the coating process, and problems (eg, bubble generation) caused by the silicone oil may be prevented by omitting the coating process.
  • FIG. 1 is a perspective view illustrating an electroosmotic pump according to an embodiment of the present invention.
  • FIG. 2 is a view showing a shaft assembly coupled to a housing according to an embodiment of the present invention.
  • 3A to 3B are views showing that the shape of the shaft assembly is deformed by the fluid flow accommodated inside the pump.
  • Figure 4 is a view showing the inside of the pump of Figure 1;
  • 5A and 5B are schematic diagrams illustrating reactions in a first electrode body and a second electrode body centered on a membrane according to an embodiment of the present invention.
  • 6a to 6b are views for explaining the operation of the pump according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the ratio of the volume of the second subspace to the volume of the first space according to the reciprocating motion of the shaft.
  • regions and components when regions and components are connected, not only are regions and components directly connected, but also indirectly connected through intervening regions and components.
  • FIG. 1 is a perspective view of an electroosmotic pump according to an embodiment of the present invention.
  • an electroosmotic pump (hereinafter referred to as a 'pump') 100 may include a housing 110 and a shaft assembly 120.
  • the housing 110 forms the exterior of the pump 100 and provides an internal space in which various components provided in the pump 100, including fluid used for operation of the pump 100, can be accommodated therein.
  • the housing 110 may include a first housing 111 and a second housing 112 and may be configured such that the first housing 111 and the second housing 112 are assembled.
  • the housing 110 may include a first terminal 153 and a second terminal 163 electrically connected to the electrode body.
  • the housing 110 may have an inlet 180 through which fluid may be injected into the housing 110 .
  • the housing 110 may be provided with a deformable part 191 to respond to pressure changes generated by fluid flow therein.
  • the first terminal 153, the second terminal 163, the inlet 180, and the deformable portion 191 will be described in detail again.
  • the pump 100 may be operated by an electrical signal applied to the pump 100, and the shape of the shaft assembly 120 may be deformed in the Z direction by the operation of the pump 100.
  • the shaft assembly 120 may be disposed outside the housing 110 so that one side is installed in the housing 110 and the other side is coupled to the movable member 130 .
  • the movable member 130 is configured to transmit power by being connected to another drive mechanism, and transmits power to the other drive mechanism while linearly reciprocating as the shape of the shaft assembly 120 is deformed between the pump and the other drive mechanism. can be configured.
  • FIG. 2 is a view showing a coupled state of the housing 110 and the shaft assembly of FIG. 1 .
  • a shaft hole 120H may be provided at one side of the housing 110 .
  • the shaft hole 120H may be provided in the form of a through hole penetrating the inner and outer surfaces of the housing 110 .
  • the inside and outside of the housing 110 may communicate with each other through the shaft hole 120H.
  • the fluid accommodated in the inner space S of the housing 110 may flow from the inside to the outside of the housing 110 and from the outside to the inside of the housing 110 through the shaft hole 120H.
  • the shaft assembly may be coupled to the outside of the housing 110 .
  • the shaft assembly may be coupled to a portion where the shaft hole 120H is formed to cover the shaft hole 120H from the outside of the housing 110 . Since the shaft assembly is tightly fixed to the housing 110 so that fluid does not leak at the coupling portion between the housing 110 and the shaft assembly, airtightness of the coupling portion can be secured.
  • the shape of the shaft assembly may be deformed in the longitudinal direction A as fluid accommodated inside the housing 110 flows through the shaft hole 120H.
  • the shaft assembly may include an elastic member 121 and a rod member 122 .
  • the elastic member 121 may be made of a hydrocarbon polymer (rubber) having elasticity. One side of the elastic member 121 may be fixed to the housing 110 and the other side may be coupled to the rod member 122 . One side of the rod member 122 is coupled to the elastic member 121 and may extend in the longitudinal direction (A). The rod member 122 may share a central axis with the elastic member 121 . While one side of the elastic member 121 is stretched and contracted while being fixed to the housing 110, the rod member 122 coupled to the other side may be linearly reciprocated in the longitudinal direction A.
  • rubber hydrocarbon polymer
  • the elastic member 121 may include a body portion 1211, a flange portion 1212 provided at one end of the body portion 1211, and a head portion 1213 provided at the other end of the body portion 1211.
  • the body part 1211 may be formed in the form of a corrugated pipe to have elasticity.
  • the shape of the body portion 1211 may be changed and stretched by force applied in the longitudinal direction (A).
  • the body part 1211 may provide an expansion space 1211a.
  • the expansion space 1211a is a space formed inside the body part 1211, has an opening 1211b with one side open, and may have a size (volume) that varies according to the expansion and contraction of the body part 1211.
  • the opening 1211b of the elastic space 1211a may face the shaft hole 120H.
  • the expansion space 1211a may communicate with the inner space S provided inside the housing 110 .
  • the flange portion 1212 may be formed to facilitate coupling with the housing 110 .
  • the flange portion 1212 may radially extend from one open end of the body portion 1211 to provide a surface that can be bonded to the housing 110 .
  • a seating groove 110a may be formed around the shaft hole 120H in the housing 110 to facilitate bonding with the flange portion 1212 .
  • the head portion 1213 may be provided on the other side of the body portion 1211 and coupled to the rod member 122 .
  • the head portion 1213 may have a predetermined thickness to enable coupling of the rod member 122 .
  • the rod member 122 coupled to the head part 1213 may linearly reciprocate in the longitudinal direction A according to the expansion and contraction of the body part 1211 .
  • 3A to 3B are views showing that the shape of the shaft assembly is deformed by the fluid flow accommodated inside the pump.
  • a pressure change and a corresponding fluid flow may occur in the inner space S of the housing 110 .
  • the fluid in the inner space (S) can be introduced into the expansion space (1211a) through the shaft hole (120H) and the opening (1211b).
  • the elastic member 121 may be extended in the longitudinal direction (A) while increasing the size of the elastic space (1211a) due to the inflow of fluid.
  • the rod member 122 fixedly coupled to the elastic member 121 may linearly move in a direction away from the housing 110 along the extension direction P1 of the elastic member 121 .
  • the fluid accommodated in the expansion space (1211a) flows into the inner space (S) of the housing 110 through the opening (1211b) and the shaft hole (120H) can do.
  • the elastic member 121 may be reduced in the longitudinal direction (A).
  • the rod member 122 fixedly coupled to the elastic member 121 may linearly move toward the housing 110 along the contraction direction P2 of the elastic member 121 .
  • the fluid used to change the shape of the shaft assembly can flow only in the space (S, 1211a) provided by the housing 110 and the shaft assembly, that is, inside the pump. Since the housing 110 and the shaft assembly are coupled and operated while ensuring airtightness, the performance of the pump can be maintained constant because the fluid does not leak even when vibration due to pump operation or external shock occurs.
  • FIG. 4 is a view showing the inside of the pump 100 of FIG. 1 .
  • the membrane 140 may be disposed in the inner space of the housing 110 .
  • the first housing 111 and the second housing 112 may be coupled with the membrane 140 interposed therebetween.
  • the inner space may include a first space S1 and a second space S2 respectively located on both sides of the membrane 140 as the center.
  • a space distant from the shaft assembly 120 based on the membrane 140 is a first space S1
  • a space adjacent to the shaft assembly 120 based on the membrane 140 is referred to as a second space S2.
  • the membrane 140 may have a porous structure in which fluid and ions can move.
  • the membrane 140 may be, for example, a frit-type membrane manufactured by heating spherical silica.
  • the spherical silica used to form the membrane may have a diameter of about 20 nm to about 500 nm, specifically about 30 nm to about 300 nm, and more specifically about 40 nm. nm to about 200 nm in diameter.
  • the membrane 140 includes spherical silica, but the membrane 140 is not limited thereto.
  • the type of membrane 140 is not limited if it is a material capable of causing an electrokinetic phenomenon by zeta potential, such as porous silica or porous alumina.
  • the membrane 140 may have a thickness of about 20 ⁇ m to about 10 mm, specifically about 300 ⁇ m to about 5 mm, and more specifically about 1,000 ⁇ m to about 4 mm. can have
  • the first electrode body 150 and the second electrode body 160 may be respectively disposed on both sides of the membrane 140 .
  • the first electrode body 150 may include a first porous plate 151 and a first electrode strip 152 disposed on a first side of the membrane 140 .
  • the second electrode body 160 may include a second porous plate 161 and a second electrode strip 162 disposed on the second side of the membrane 140 .
  • the first porous plate 151 and the second porous plate 161 may be disposed to contact both main surfaces of the membrane 140 , respectively.
  • the first porous plate 151 and the second porous plate 161 can effectively move fluid and ions through the porous structure.
  • the first porous plate 151 and the second porous plate 161 may have a structure in which an electrochemical reaction material is formed on a porous base layer.
  • the electrochemical reaction material may be formed by electrodeposition or coating on the porous base layer through, for example, electroless plating, vacuum deposition, coating, sol-gel process, or the like.
  • the porous base layer may be an insulator.
  • the porous base layer may include at least one selected from non-conductive ceramics, non-conductive polymer resins, non-conductive glass, and combinations thereof.
  • the non-conductive ceramic may include, for example, at least one selected from the group consisting of rock wool, gypsum, ceramics, cement, and combinations thereof, and specifically, at least one selected from the group consisting of rock wool, gypsum, and combinations thereof. It may include, but is not limited thereto.
  • the non-conductive polymer resin may be, for example, synthetic fibers such as those selected from the group consisting of polypropylene, polyethylene terephthalate, polyacrylonitrile, and combinations thereof; natural fibers such as those selected from the group consisting of wool, cotton and combinations thereof; sponge; porous materials derived from organisms, such as bones of organisms; And it may include one or more selected from the group consisting of combinations thereof, but is not limited thereto.
  • Non-conductive glass may include one or more selected from the group consisting of glass wool, glass frit, porous glass, and combinations thereof, but is not limited thereto.
  • the porous base layer may have a pore size of about 0.1 ⁇ m to about 500 ⁇ m, specifically about 5 ⁇ m to about 300 ⁇ m, and more specifically about 10 ⁇ m to about 200 ⁇ m. can have a size.
  • the electrochemical reaction material can achieve a pair of reactions in which the anode and the cathode exchange cations, for example, hydrogen ions, during the electrode reaction of the first electrode body 150 and the second electrode body 160, and at the same time reversible It may contain a material capable of constituting a phosphorus electrochemical reaction.
  • the anode and the cathode exchange cations for example, hydrogen ions
  • electrochemical reactant examples include silver/silver oxide, silver/silver chloride, MnO(OH), polyaniline, polypyrrole, polythiophene, polythionine, and quinone-based polymers. based polymer) and combinations thereof.
  • the first strip 152 and the second strip 162 may be disposed on the edges of the first porous plate 151 and the second porous plate 161, and the first terminal 153 outside the housing 110 And it may be connected to the second terminal 163.
  • the first strip 152 and the second strip 162 may include a conductive material such as silver or copper.
  • the fluid provided in the inner space of the housing 110 may include a first fluid and a second fluid having different phases.
  • the first fluid may include a liquid such as water and the second fluid may include a gas such as air.
  • the first fluid present in the inner space may not entirely fill the inner space. That is, the volume of the inner space is greater than the volume of the first fluid present in the inner space.
  • the second fluid may exist in a portion of the inner space where the first fluid does not exist.
  • Sealing materials 170 are disposed on both sides of structures of the membrane 140 , the first electrode body 150 , and the second electrode body 160 .
  • the sealing material 170 may have a ring shape having an area corresponding to the edge of the aforementioned structure.
  • the first fluid moves along the thickness direction of the membrane 140 from the first space S1 to the second space S2 or in the reverse direction so as to pass through the membrane 140.
  • the sealing material The numeral 170 may block a gap between the inner surface of the housing 110 and the aforementioned structure to prevent liquid from moving into the gap.
  • Fluid may be introduced into the inner space through the inlet 180 as shown in FIG. 1 .
  • a portion of the first fluid is discharged to the outside through the inlet 180, and then the inlet 180 is closed, so that the first fluid And the second fluid may exist in the inner space of the housing 110 .
  • 5A and 5B are schematic diagrams showing reactions in the first electrode body 150 and the second electrode body 160 centered on the membrane.
  • the first electrode body 150 and the second electrode body 160 are electrically connected to the power supply unit 200 through the first terminal 153 and the second terminal 163, respectively. do.
  • the moving direction of liquid such as water may be changed.
  • the first electrode body 150 when the first electrode body 150 is an anode and the second electrode body 160 is a cathode, in the first electrode body 150, Ag(s) + H2O ⁇ Ag2O(s) ) + 2H++ 2e- reaction occurs, and in the second electrode body 160, a reaction of Ag2O(s) + 2H++ 2e- ⁇ Ag(s) + H2O occurs.
  • Positive ions (Mn+, eg, hydrogen ions) generated by the oxidation reaction in the first electrode body 150 pass through the membrane 140 and move toward the second electrode body 160 by a voltage difference. At this time, the positive ions A predetermined pressure may be generated while the water (H2O) moves along with.
  • FIGS. 6a to 6b are views for explaining the operation of the pump 100 according to an embodiment of the present invention.
  • 6A shows a state in which the fluid on the housing 110 side moves to the shaft assembly 120 side by the operation of the pump 100
  • FIG. 6B shows the fluid on the shaft assembly 120 side by the operation of the pump 100. represents a state in which is moved toward the housing 110.
  • a first fluid such as water is present in the inner space of the housing 110, but the volume of the first fluid present in the inner space is smaller than the volume of the inner space.
  • a second space containing a gas such as air is formed in a portion of the inner space in which the first fluid does not exist, specifically, in the first space S1 of the housing 110 and the third space S3, which is the space of the deformable part 191. fluid may be present.
  • the first fluid exists in each of the first space S1 and the second space S2, but the first fluid and the second fluid coexist in the first space S1 while existing in the first space S1.
  • the volume of the first fluid may be smaller than the volume of the first space S1.
  • the first fluid also exists in the second space S2, but unlike the first space S1, the second fluid does not exist.
  • a space in which a first fluid, which is a liquid, exists among the first space S1 is referred to as a first subspace SS1
  • a space in which a second fluid, which is a gas, exists is referred to as a second subspace ( SS2).
  • the first subspace SS1 and the second subspace SS2 may form the first space S1.
  • the rest of the first space S1 excluding the first subspace SS1 may be the second subspace SS2.
  • the second fluid may exist in the first space S1, specifically, in the third space S3, which is an inner space of the second subspace SS2 and the deformable part 191 communicating therewith.
  • Positive ions eg, hydrogen ions
  • the reaction described with reference to FIG. 5A occurs, as shown in FIG. 6A.
  • Positive ions eg, hydrogen ions
  • the first fluid eg, H2O
  • the first space S1 along with the positive ions moves along the first direction (-Z direction in FIG. 6B) past the membrane 140, and the pressure is generated.
  • the first fluid may move from the housing 110 side to the shaft assembly 120 side, specifically, to the expansion space 1211a provided in the expansion member.
  • the deformable part 191 communicates with one side of the housing 110 where the first space S1 is formed (upper side based on FIG. 6A), and the deformable part Through a hole 111H formed on one surface of the housing 110 facing the housing 110 (the upper surface of FIG. 6A), the first space S1 and the third space S3, which is the inner space of the deformable part, may communicate with each other. .
  • An elastic part 192 capable of elastic deformation may be formed on one side of the deformable part 191 according to an embodiment of the present invention.
  • the elastic part 192 may be formed at the center of the deformable part 191 and may be formed concavely or convexly with respect to an outer direction of the deformable part 191 (upward direction based on FIG. 6A ).
  • the volume of the third space S3 may increase or decrease.
  • the shape of the elastic part 192 may be deformed according to the internal pressure of the inner space of the deformable part 191, specifically, the third space S3. Referring to FIG. 6A , negative pressure may be formed in the third space S3.
  • the elastic part 192 may have an elastic restoring force in a direction formed convexly with respect to the outer direction of the deformable part 191 (upper direction based on FIG. 6A ).
  • FIG. 6B when the first fluid moves from the second space S2 to the first space S1 together with positive ions, a space in which the second fluid such as air is accommodated is secured as much as the third space S3, It is possible to relatively reduce the force required for contraction of the elastic member, and there is an effect that the contraction of the elastic member is easily performed.
  • the volume ratio of the first subspace SS1 to the volume of the first space S1 decreases.
  • the ratio occupied by the second subspace SS2 in the first space S1 increases.
  • the volume of the third space S3 increases, and there is an effect of easily shrinking the elastic member.
  • the deformable part 191 when compression occurs in the first space S1 and the third space S3, the deformable part 191, specifically, the elastic part 192 has an elastic restoring force in the direction in which it is convexly formed, so that it expands and contracts. There is an effect that the reduction of the member is made more easily.
  • the gas when gas is generated while the reaction in FIGS. 5A and 5B occurs, the gas can be accommodated in the third space S3, so that it can function as a buffer.
  • the elastic member When the polarity of the voltage applied to the first electrode body 150 and the second electrode body 160 by the power supply unit 200 is alternately changed, the elastic member repeatedly expands and contracts, and the rod member coupled to the elastic member Linear reciprocating motion may be performed along the first direction and the second direction.
  • the expansion and contraction of the elastic member and the reciprocating motion of the rod member can be explained as a change according to the volume ratio of the space where the second fluid exists in the first space S1, that is, the second subspace SS2.
  • FIG. 7 is a graph showing the ratio of the volume VSS2 of the second subspace to the volume VS1 of the first space according to the shape deformation of the shaft assembly.
  • the first volume of the first space S1 in a state before the power source 200 applies voltage to the first electrode body 150 and the second electrode body 160, that is, before the operation of the pump 100.
  • the ratio is “ B" (A ⁇ B, where A is greater than 0 and B is less than 1).
  • each component may be assembled in a state in which the elastic member is relatively reduced.
  • the pump 100 may be assembled with each component in a state in which the elastic member is relatively stretched.
  • the second fluid eg, air
  • the second fluid present in the second subspace SS2 and the third space S3
  • a predetermined force may be stored in the second fluid according to expansion or compression of the second fluid, and this force may act on the expansion and contraction of the elastic member. Precise control of the stretching stroke of the elastic member may affect the injection amount of the drug in the drug injection device in which the pump 100 is used.
  • the stretching stroke of the elastic member can be designed in consideration of the aforementioned force as well, for example.
  • an elastic part 192 capable of elastic deformation is formed on one side (upper side based on FIGS. 6A and 6B) of the deformable part 191 according to an embodiment of the present invention, and the elastic part 192 As ) is elastically deformed, the volume of the third space S3 may be deformed.
  • the elastic part 192 is elastic in a direction formed convexly with respect to the outer direction of the deformable part 191. Due to the restoring force, the shape may be deformed in a direction in which the volume of the third space S3 increases. And, by removing the force stored in the second fluid, it is possible to facilitate contraction of the elastic member, and to accurately control the expansion and contraction of the elastic member, preferably the movement of the rod member connected to the elastic member.
  • the fixing member 193 according to an embodiment of the present invention is coupled to the housing 110 and the deformable portion 191, respectively, the deformable portion 191 is positioned on the housing 110 so that it can be fixed.
  • the fixing member 193 adheres along the outer circumference of the deformable part 191 and may be installed in the housing 110 .
  • a sealing wall 111W protrudes outward from one surface of the housing 110 facing the deformable portion 191 and is in close contact with the inner circumferential circumference of the deformable portion 191 .
  • the inner circumferential surface of the deformable portion 191 is in close contact with the sealing wall (111W)
  • the outer circumferential surface is in close contact with the fixing member 193, and the fluid accommodated in the third space (S3) flows out to the outside. can prevent
  • the pump 100 may be a small pump used in a device for injecting drugs such as insulin.
  • the pump operates the shaft assembly 120 using the structure and mechanism as described above, the use is not particularly limited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Reciprocating Pumps (AREA)

Abstract

본 발명의 일 실시예에 따른 전기 삼투압 펌프는, 내부에 유체가 수용되는 내부 공간을 제공하고, 상기 내부 공간과 외부 공간을 연결하는 샤프트 홀이 구비되는 하우징, 및 상기 하우징의 외측에서 상기 샤프트 홀을 커버하며 상기 하우징에 연결되고, 상기 샤프트 홀을 통과하는 상기 유체의 유동에 의하여 길이 방향으로 형상 변형이 가능한 샤프트 어셈블리를 포함할 수 있다.

Description

전기 삼투압 펌프
본 발명은 전기 삼투압 펌프에 관한 것으로서, 보다 구체적으로 유체를 이용한 전기 삼투압 펌프에 관한 것이다.
일반적으로 인슐린 주입장치와 같은 약액 주입 장치는 환자의 몸 안에 약액을 주입하기 위해 사용된다. 이러한 약액 주입 장치는 의사나 간호사와 같은 전문 의료진에 의해 사용되기도 하지만, 대부분의 경우 환자 자신 또는 보호자와 같은 일반인에 의해 사용되고 있다.
이에, 일정한 기간 동안 인체에 부착하여 간편하게 사용할 수 있는 패치 형태의 약액 주입 장치가 개발되고 있으며, 이러한 약액 주입 장치는 환자의 복부 또는 허리 등의 인체에 일정한 기간 동안 패치 형태로 부착한 상태로 사용될 수 있다.
약액 주입 장치에는 약액을 능동적으로 주입하기 위하여, 전기 삼투 펌프와 같은 구동 부재가 제공될 수 있다. 전기 삼투 펌프는 모세관 또는 다공성 분리막의 양단에 전압을 가하였을 때 발생하는 유체의 이동 현상을 이용하는 펌프이다.
전기 삼투압 펌프는 내부에 실린더 구조로 형성된 부분에서 유체의 이동에 따라 선형 왕복 운동할 수 있는 피스톤이 마련되고, 피스톤은 샤프트와 결합되어 샤프트가 선형 왕복 운동하도록 할 수 있다. 샤프트는 일단이 펌프 내부에서 피스톤과 결합되고, 타단이 펌프 외부로 노출되어 펌프 외부에 제공되는 이동 부재와 결합될 수 있다. 이동 부재는 피스톤 및 샤프트의 운동과 아울러 선형 왕복 운동하며, 약액 토출 메커니즘에 동력을 전달할 수 있다.
피스톤이 펌프 내부에서 왕복 운동할 때, 샤프트에 샤프트의 이동 방향과 교차하는 측방에 대한 힘이 작용할 수 있다. 측방에 대한 힘은 펌프가 작동하면 발생하는 진동이나 외부에서 가해지는 충격 등과 같은 여러 요인에 의해 발생할 수 있다. 이때, 실린더 부분에서 선형 왕복 운동을 하는 피스톤의 정렬 상태가 흐트러져서, 실린더 부분과 피스톤 사이를 통하여 펌프 내부의 유체가 누출되는 문제가 발생할 수 있다.
인슐린 주입 장치와 같은 약물 주입 장치의 구동을 위한 메커니즘에는 다양한 종류의 모터나 펌프와 같은 구동 부재가 사용될 수 있다. 본 발명은 유체를 이용하여 미세한 펌핑이 가능한 구동 부재에 관한 것으로서, 펌핑 시에 피스톤을 통하여 펌프 내부의 유체가 외부로 누출되는 것을 방지하고자 한다. 그러나, 이러한 과제는 예시적인 것으로서, 이에 의한 본 발명의 범위가 한정되는 것은 아니다.
상술한 기술적 과제를 달성하기 위한 수단으로서, 본 발명의 일 실시예에 따른 전기 삼투압 펌프는, 내부에 유체가 수용되는 내부 공간을 제공하고, 상기 내부 공간과 외부 공간을 연결하는 샤프트 홀이 구비되는 하우징, 및 상기 하우징의 외측에서 상기 샤프트 홀을 커버하며 상기 하우징에 연결되고, 상기 샤프트 홀을 통과하는 상기 유체의 유동에 의하여 길이 방향으로 형상 변형이 가능한 샤프트 어셈블리를 포함할 수 있다.
일 실시예에서, 상기 샤프트 어셈블리는, 상기 샤프트 홀과 연통되는 신축 공간이 형성되는 신축 부재 및 상기 신축 부재에 결합되며, 상기 신축 부재와 길이 방향 중심축을 공유하며 연장 형성되는 로드 부재를 포함할 수 있다.
일 실시예에서, 상기 신축 부재는, 상기 샤프트 홀과 마주하는 개구가 형성된 신축 공간이 내부에 마련되고, 주름관 형태로 형성되는 바디부, 개구가 형성된 상기 바디부의 일단에서 방사상으로 확장되는 플랜지부, 및 상기 플랜지부가 확장되는 상기 바디부의 상기 일단에 대향하는 타단에 형성되는 헤드부를 포함하고, 상기 플랜지부는 상기 하우징에 접합될 수 있다.
일 실시예에서, 상기 신축 부재는 고무 재질로 이루어질 수 있다.
일 실시예에서, 상기 내부 공간을 제1 공간 및 제2 공간으로 구분하는 멤브레인을 더 포함하고, 상기 샤프트 홀을 통과하는 상기 유체의 유동은 상기 멤브레인을 통과하는 상기 유체의 유동에 의존할 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명의 일 실시예에 따른 전기 삼투압 펌프에 의하면, 펌프의 기밀성을 안정적으로 확보할 수 있다. 이에, 펌프 작동 시에 펌프 내부의 유체가 외부로 누출되는 것을 방지하여 펌프의 성능이 저하되는 것을 방지할 수 있다.
또한, 피스톤의 외주면과 실린더의 내주면 사이에 요구되는 코팅 공정을 생략할 수 있다. 코팅 공정에 실리콘 오일이 사용될 수 있는데, 코팅 공정을 생략함으로써 실리콘 오일로 인한 문제점(예를 들어, 기포 발생)을 예방할 수 있다.
그리고, 펌프 제조 시 피스톤과 코팅 공정을 생략할 수 있어, 펌프 제조에 요구되는 시간과 비용을 절약할 수 있다.
그러나, 전술한 효과는 예시적인 것으로서, 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 전기 삼투압 펌프를 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 하우징에 결합되는 샤프트 어셈블리를 도시한 도면이다.
도 3a 내지 도 3b는 펌프 내부에 수용되는 유체 유동에 의해 샤프트 어셈블리의 형상이 변형되는 것을 나타내는 도면이다.
도 4는 도 1의 펌프의 내부를 도시한 도면이다.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 멤브레인을 중심으로 한 제1 전극체 및 2 전극체에서의 반응을 나타낸 모식도이다.
도 6a 내지 도 6b는 본 발명의 일 실시예에 따른 펌프의 작동을 설명하기 위한 도면이다.
도 7은 샤프트의 왕복 운동에 따른 제1 공간의 체적에 대한 제2 서브공간의 체적의 비율을 나타낸 그래프이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하기 위한 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예를 들어, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.
이하의 실시예에서, 영역, 구성 요소 등이 연결되었다고 할 때, 영역, 구성 요소들이 직접적으로 연결되는 경우뿐만 아니라 영역, 구성요소들 중간에 다른 영역, 구성 요소들이 개재되어 간접적으로 연결되는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 전기 삼투압 펌프의 사시도이다.
도 1을 참조하면, 전기 삼투압 펌프(이하, '펌프'라 함)(100)는 하우징(110) 및 샤프트 어셈블리(120)를 포함할 수 있다.
하우징(110)은 펌프(100)의 외관을 형성하고, 내부에 펌프(100)의 작동에 이용되는 유체를 포함하여 펌프(100)에 구비되는 여러 구성요소가 수용될 수 있는 내부 공간을 제공할 수 있다. 하우징(110)은 제1 하우징(111) 및 제2 하우징(112)을 포함하고 제1 하우징(111) 및 제2 하우징(112)이 조립되도록 구성될 수 있다.
하우징(110)은 전극체와 전기적으로 연결될 수 있는 제1 단자(153) 및 제2 단자(163)가 구비될 수 있다. 하우징(110)은 하우징(110) 내부로 유체를 주입할 수 있는 주입구(180)가 형성될 수 있다. 하우징(110)은 내부에서 유체의 유동에 의해 발생하는 압력 변화에 대응하기 위한 변형부(191)가 마련될 수 있다. 제1 단자(153), 제2 단자(163), 주입구(180) 및 변형부(191)에 대해서는 다시 구체적으로 설명하기로 한다.
펌프(100)는 펌프(100)에 가해지는 전기적 신호에 의해 작동될 수 있고, 샤프트 어셈블리(120)는 펌프(100)의 작동에 의해 Z방향으로 형상이 변형될 수 있다.
샤프트 어셈블리(120)는 하우징(110)의 외부에 배치되어 일측이 하우징(110)에 설치되고 타측이 이동 부재(130)와 결합될 수 있다. 이동 부재(130)는 다른 구동 메커니즘에 연결되어 동력을 전달하기 위한 구성으로, 펌프와 다른 구동 메커니즘 사이에서 샤프트 어셈블리(120)의 형상이 변형됨에 따라 선형 왕복 운동하며 다른 구동 메커니즘으로 동력을 전달하도록 구성될 수 있다.
도 2는 도 1의 하우징(110)과 샤프트 어셈블리의 결합 상태를 도시한 도면이다.
하우징(110)의 일 측에는 샤프트 홀(120H)이 구비될 수 있다. 샤프트 홀(120H)은 하우징(110)의 내측면과 외측면을 관통하는 통공의 형태로 제공될 수 있다. 샤프트 홀(120H)을 통하여 하우징(110)의 내외부가 연통될 수 있다. 하우징(110)의 내부 공간(S)에 수용되는 유체는 샤프트 홀(120H)을 통하여 하우징(110)의 내부에서 외부로 그리고 하우징(110)의 외부에서 내부로 유동할 수 있다.
샤프트 어셈블리는 하우징(110)의 외측에 결합될 수 있다. 샤프트 어셈블리는 샤프트 홀(120H)이 형성된 부분에 결합되어, 하우징(110)의 외측에서 샤프트 홀(120H)을 덮을 수 있다. 하우징(110)과 샤프트 어셈블리의 결합 부위에서 유체가 누출되지 않도록, 샤프트 어셈블리가 하우징(110)에 밀착 고정됨으로써 결합 부위는 기밀성을 확보할 수 있다.
샤프트 어셈블리는, 하우징(110)의 내부에 수용되는 유체가 샤프트 홀(120H)을 통하여 유동함에 따라 길이 방향(A)으로 형상이 변형될 수 있다.
샤프트 어셈블리는 신축 부재(121) 및 로드 부재(122)를 포함할 수 있다.
신축 부재(121)는 탄성을 가지는 탄화수소 중합체(고무)로 이루어질 수 있다. 신축 부재(121)는 일측이 하우징(110)에 고정 설치되고 타측이 로드 부재(122)와 결합될 수 있다. 로드 부재(122)는 일측이 신축 부재(121)에 결합되어 길이 방향(A)으로 연장될 수 있다. 로드 부재(122)는 신축 부재(121)와 중심축을 공유할 수 있다. 신축 부재(121)의 일측은 하우징(110)에 고정된 상태에서 신축되면서, 타측에 결합된 로드 부재(122)를 길이 방향(A)으로 선형 왕복 운동 가능하게 할 수 있다.
신축 부재(121)는 바디부(1211)와, 바디부(1211)의 일단에 마련되는 플랜지부(1212) 및 바디부(1211)의 타단에 마련되는 헤드부(1213)를 포함할 수 있다.
바디부(1211)는 신축성을 가지기 위해 주름관 형태로 이루어질 수 있다. 바디부(1211)는 길이 방향(A)으로 가해지는 힘에 의해 형상이 변하며 신축될 수 있다.
바디부(1211)는 신축 공간(1211a)을 제공할 수 있다. 신축 공간(1211a)은 바디부(1211) 내부에 형성되는 공간으로서, 일측이 개방된 개구(1211b)를 갖고, 바디부(1211)의 신축에 따라 가변되는 크기(체적)를 가질 수 있다.
신축 부재(121)가 하우징(110)과 결합되면, 신축 공간(1211a)의 개구(1211b)는 샤프트 홀(120H)과 마주할 수 있다. 이에, 신축 공간(1211a)이 하우징(110) 내부에 제공되는 내부 공간(S)과 연통할 수 있다.
플랜지부(1212)는 하우징(110)과의 결합이 용이하도록 형성될 수 있다. 예를 들어, 플랜지부(1212)는 바디부(1211)의 개방되는 일단에서 방사상으로 확장 형성되어, 하우징(110)에 접합 가능한 면을 제공할 수 있다. 하우징(110)에는 샤프트 홀(120H) 주변으로 플랜지부(1212)와의 접합을 용이하도록 안착홈(110a)이 형성될 수 있다.
헤드부(1213)는 바디부(1211)의 타측에 마련되어, 로드 부재(122)와 결합될 수 있다. 헤드부(1213)는 로드 부재(122)의 결합이 가능하도록 소정의 두께를 가질 수 있다. 헤드부(1213)에 결합된 로드 부재(122)는 바디부(1211)의 신축에 따라 길이 방향(A)으로 선형 왕복 운동할 수 있다.
도 3a 내지 도 3b는 펌프 내부에 수용되는 유체 유동에 의해 샤프트 어셈블리의 형상이 변형되는 것을 나타내는 도면이다.
펌프가 작동하면 하우징(110)의 내부 공간(S)에서 압력 변화와 이에 따른 유체의 유동이 발생할 수 있다.
도 3a를 참조하면, 내부 공간(S)의 압력 변화에 따라, 내부 공간(S)의 유체가 샤프트 홀(120H)과 개구(1211b)를 통하여 신축 공간(1211a)으로 유입될 수 있다. 유체의 유입으로 인하여 신축 공간(1211a)의 크기가 증가하면서 길이 방향(A)으로 신축 부재(121)가 신장될 수 있다. 이때, 신축 부재(121)에 고정 결합된 로드 부재(122)는 신축 부재(121)의 신장 방향(P1)을 따라 하우징(110)과 멀어지는 방향으로 선형 이동할 수 있다.
도 3b를 참조하면, 내부 공간(S)의 압력 변화에 따라, 신축 공간(1211a)에 수용된 유체가 개구(1211b)와 샤프트 홀(120H)을 통하여 하우징(110)의 내부 공간(S)으로 유동할 수 있다. 이러한 유체의 유동으로 인하여 신축 공간(1211a)의 크기가 감소하면서, 길이 방향(A)으로 신축 부재(121)가 축소될 수 있다. 이때, 신축 부재(121)에 고정 결합된 로드 부재(122)는 신축 부재(121)의 축소 방향(P2)을 따라 하우징(110) 측으로 선형 이동할 수 있다.
펌프가 작동하는 동안, 샤프트 어셈블리의 형상을 변형시키기 위하여 이용되는 유체는 하우징(110)과 샤프트 어셈블리에 의해 제공되는 공간(S, 1211a), 즉 펌프의 내부에서만 유동할 수 있다. 하우징(110)과 샤프트 어셈블리는 기밀성을 확보한 상태로 결합되어 작동하기 때문에, 펌프 작동에 의한 진동이나 외부에서 가해지는 충격이 발생하더라도 유체는 누출되지 않기 때문에 펌프의 성능을 일정하게 유지할 수 있다.
도 4는 도 1의 펌프(100)의 내부를 도시한 도면이다.
멤브레인(140)은 하우징(110)의 내부 공간에 배치될 수 있다. 제1 하우징(111) 및 제2 하우징(112)은 멤브레인(140)을 사이에 개재한 채 결합할 수 있다. 내부 공간은 멤브레인(140)을 중심으로 양측에 각각 위치하는 제1 공간(S1)과 제2 공간(S2)을 포함할 수 있다.
도면에서, 멤브레인(140)을 기준으로 샤프트 어셈블리(120)에서 먼 공간이 제1 공간(S1)이고, 멤브레인(140)을 기준으로 샤프트 어셈블리(120)에 인접한 공간을 제2 공간(S2)으로 나타낸다.
멤브레인(140)은 유체와 이온의 이동이 가능한 다공성 구조를 가질 수 있다. 멤브레인(140)은 예컨대, 구형 실리카를 열로 소성하여 제조한 프릿형 멤브레인일 수 있다. 예컨대, 멤브레인의 형성에 사용하는 구형 실리카는 약 20 nm 내지 약 500 nm의 직경을 가지는 것일 수 있고, 구체적으로는 약 30 nm 내지 약 300 nm의 직경을 가지는 것일 수 있고, 더욱 구체적으로는 약 40 nm 내지 약 200 nm의 직경을 가지는 것일 수 있다.
상기 구형 실리카의 직경이 전술한 범위를 만족하는 경우, 멤브레인(140)을 통과하는 제1 유체에 의한 압력, 즉 샤프트 어셈블리(120)의 형상을 변형시키기에 충분한 압력을 발생시킬 수 있다.
전술한 실시예에서 멤브레인(140)이 구형 실리카를 포함하는 것을 설명하였으나, 멤브레인(140)이 이에 한정되는 것은 아니다.
다른 실시예로, 멤브레인(140)은 다공성 실리카 또는 다공성 알루미나와 같이 제타포텐셜(zeta potential)에 의한 일렉트로키네틱(eletrokinetic) 현상을 야기할 수 있는 소재라면 그 종류를 한정할 것은 아니다.
멤브레인(140)은 약 20 ㎛ 내지 약 10 mm의 두께를 가질 수 있고, 구체적으로는 약 300 ㎛ 내지 약 5 mm의 두께를 가질 수 있고, 더욱 구체적으로는 약 1,000 ㎛ 내지 약 4 mm의 두께를 가질 수 있다.
멤브레인(140)의 양측에는 제1 전극체(150)와 제2 전극체(160)가 각각 배치될 수 있다. 제1 전극체(150)는 멤브레인(140)의 제1 측에 배치된 제1 다공성 플레이트(151) 및 제1 전극 스트립(152)을 포함할 수 있다. 제2 전극체(160)는 멤브레인(140)의 제2 측에 배치된 제2 다공성 플레이트(161) 및 제2 전극 스트립(162)을 포함할 수 있다.
제1 다공성 플레이트(151) 및 제2 다공성 플레이트(161)는 각각 멤브레인(140)의 양측 주면(main surface)와 접촉하도록 배치될 수 있다. 제1 다공성 플레이트(151) 및 제2 다공성 플레이트(161)는 다공 구조를 통해 유체와 이온을 효과적으로 이동시킬 수 있다.
제1 다공성 플레이트(151) 및 제2 다공성 플레이트(161)는 다공성 베이스층에 전기화학 반응 물질이 형성된 구조를 가질 수 있다. 전기화학 반응 물질은 예컨대, 무전해 도금, 진공증착, 코팅, 졸-겔 프로세스 등의 방법을 통해 다공성 베이스층에 전착 또는 코팅함으로써 형성될 수 있다.
다공성 베이스층은 절연체일 수 있다. 예컨대, 다공성 베이스층은, 비도전성의 세라믹, 비도전성의 고분자 수지, 비도전성의 유리 및 이들의 조합에서 선택된 하나 이상을 포함할 수 있다.
비도전성의 세라믹은, 예컨대 암면, 석고, 도자기, 시멘트 및 이들의 조합으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있고, 구체적으로는 암면, 석고 및 이들의 조합으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
비도전성의 고분자 수지는, 예컨대, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리아크릴로니트릴 및 이들의 조합으로 이루어진 군에서 선택되는 것과 같은 합성 섬유; 양모, 목면 및 이들의 조합으로 이루어진 군에서 선택되는 것과 같은 천연 섬유; 해면; 생물체, 예컨대 생물체의 뼈에서 유래한 다공성 소재; 및 이들의 조합으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
비도전성의 유리는 유리솜, 글라스 프릿(glass frit), 다공질 유리 및 이들의 조합으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
다공성 베이스층은 약 0.1 ㎛ 내지 약 500 ㎛의 기공크기를 가질 수 있고, 구체적으로는 약 5 ㎛ 내지 약300 ㎛의 기공크기를 가질 수 있으며, 더욱 구체적으로는 약 10 ㎛ 내지 약 200 ㎛의 기공크기를 가질 수 있다.
다공성 지지체의 기공크기가 전술한 범위를 만족하는 경우, 유체와 이온을 효과적으로 이동시켜, 펌프(100)의 안정성과 수명 특성 및 효율을 향상시킬 수 있다.
전기화학 반응 물질은, 제1 전극체(150) 및 제2 전극체(160)의 전극 반응 시에 산화 전극과 환원 전극이 양이온, 예컨대 수소이온을 주고받는 한 쌍의 반응을 이룰 수 있으며 동시에 가역적인 전기화학 반응을 구성할 수 있는 물질을 포함할 수 있다.
전기화학 반응 물질은 예컨대, 은/산화은, 은/염화은, MnO(OH), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene), 폴리타이오닌(polythionine), 퀴논계 폴리머(quinone-based polymer) 및 이들의 조합으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.
제1 스트립(152) 및 제2 스트립(162)은 제1 다공성 플레이트(151) 및 제2 다공성 플레이트(161)의 가장자리에 배치될 수 있으며, 하우징(110)의 외부의 제1 단자(153) 및 제2 단자(163)와 연결될 수 있다. 제1 스트립(152) 및 제2 스트립(162)은 은, 구리 등과 같은 도전성 재질을 포함할 수 있다.
하우징(110)의 내부 공간에 구비된 유체는 서로 다른 상(phase)을 갖는 제1 유체와 제2 유체를 포함할 수 있다. 제1 유체는 물과 같은 액체를 포함하고 제2 유체는 공기와 같은 기체를 포함할 수 있다.
내부 공간에 존재하는 제1 유체는 내부 공간을 전체적으로 채우지 않을 수 있다. 즉, 내부 공간의 체적은 내부 공간에 존재하는 제1 유체의 체적 보다 크다. 내부 공간 중에서 제1 유체가 존재하지 않는 부분에는 제2 유체가 존재할 수 있다.
멤브레인(140), 제1 전극체(150), 및 제2 전극체(160)의 구조물의 양 측에는 실링재(170)가 배치된다. 실링재(170)는 전술한 구조물의 가장자리에 대응하는 면적을 갖는 고리 형상일 수 있다.
전술한 유체, 예컨대 제1 유체는 멤브레인(140)을 통과하도록 멤브레인(140)의 두께 방향을 따라 제1 공간(S1)에서 제2 공간(S2)으로 또는 그 역방향으로 이동하게 되는데, 이 때 실링재(170)는 하우징(110)의 내측면과 전술한 구조물 사이의 틈을 막아 액체가 이 틈으로 이동하는 것을 방지할 수 있다.
유체는 도 1에 도시된 바와 같은 주입구(180)를 통해 내부 공간으로 유입될 수 있다. 일 실시예로, 일측의 주입구(180)를 통해 제1 유체를 내부 공간에 전체적으로 채운 후에 주입구(180)를 통해 제1 유체의 일부를 외부로 빼낸 후에 주입구(180)를 폐쇄함으로써, 제1 유체 및 제2 유체가 하우징(110)의 내부 공간에 존재할 수 있다.
도 5a 및 도 5b는 멤브레인을 중심으로 한 제1 전극체(150) 및 제2 전극체(160)에서의 반응을 나타낸 모식도이다.
도 5a 및 도 5b를 참조하면, 제1 전극체(150)와 제2 전극체(160)는 각각, 제1 단자(153) 및 제2 단자(163)를 통해 전원부(200)와 전기적으로 연결된다. 전원부(200)가 공급하는 전압의 극성을 교번적으로 변경하여 공급함으로써, 물과 같은 액체의 이동 방향을 바꿀 수 있다.
일 실시예로, 은/산화은을 전기화학적 반응물질로 사용하고, 제1 유체가 물을 포함하는 용액인 경우를 설명한다.
도 5a에 도시된 바와 같이, 제1 전극체(150)가 산화전극이고 제2 전극체(160)가 환원전극인 경우, 제1 전극체(150)에서는 Ag(s) + H2O → Ag2O(s) + 2H++ 2e- 의 반응이 일어나고, 제2 전극체(160)에서는 Ag2O(s) + 2H++ 2e- → Ag(s) + H2O 의 반응이 일어난다.
제1 전극체(150)에서의 산화반응에 따라 생성된 양이온(Mn+, 예, 수소이온)은 전압차에 의해 멤브레인(140)을 지나 제2 전극체(160)를 향해 이동하는데, 이 때 양이온과 함께 물(H2O)이 함께 이동하면서 소정의 압력이 발생할 수 있다.
이 후, 도 5b에 도시된 바와 같이 전원부(200)가 공급하는 전압의 극성을 반대로 바꾸면, 앞서 산화전극으로 사용될 때 소모되었던 전기화학적 반응물질이 환원전극으로 사용될 때 회복되며, 환원전극의 경우도 마찬가지로 회복되면서, 제1 전극체(150) 및 제2 전극체(160)는 전원부(200)의 전압 공급에 따라 계속적으로 반응이 가능하다. 도 5a에서와 달리, 제1 전극체(150) 및 제2 전극체(160)으로 공급되는 전압의 극성이 바뀌면 도 5b에 도시된 바와 같이, 양이온(Mn+, 예, 수소이온)과 물(H2O)이 제2 공간(S2)에서 제1 공간(S1)으로 다시 이동하게 된다.
도 6a 내지 도 6b는 본 발명의 일 실시예에 따른 펌프(100)의 작동을 설명하기 위한 도면이다. 도 6a는 펌프(100)의 작동에 의해 하우징(110) 측의 유체가 샤프트 어셈블리(120) 측으로 이동하는 상태를 나타내고, 도 6b는 펌프(100)의 작동에 의해 샤프트 어셈블리(120) 측의 유체가 하우징(110) 측으로 이동하는 상태를 나타낸다.
도 6a 및 6b를 참조하면, 하우징(110)의 내부 공간에는 물과 같은 액체의 제1 유체가 존재하되, 내부 공간에 존재하는 제1 유체의 체적은 내부 공간의 체적 보다 작다. 내부 공간 중에서 제1 유체가 존재하지 않는 부분, 구체적으로 하우징(110)의 제1 공간(S1) 및 변형부(191)의 공간인 제3 공간(S3)에는 공기와 같은 기체를 포함하는 제2 유체가 존재할 수 있다.
예컨대, 제1 공간(S1) 및 제2 공간(S2)에는 각각 제1 유체가 존재하되, 제1 공간(S1)에는 제1 유체 및 제2 유체 공존하면서, 제1 공간(S1)에 존재하는 제1 유체의 체적은 제1 공간(S1)의 체적 보다 작을 수 있다.
제2 공간(S2)에도 제1 유체가 존재하지만, 제1 공간(S1)과 달리 제2 유체는 존재하지 않는다. 이하, 설명의 편의를 위하여, 제1 공간(S1) 중 액체인 제1 유체가 존재하는 공간을 제1 서브공간(SS1)이라 하고, 기체인 제2 유체가 존재하는 공간을 제2 서브공간(SS2)라 한다. 제1 서브공간(SS1)과 제2 서브공간(SS2)은 제1 공간(S1)을 이룰 수 있다. 예컨대, 제1 공간(S1)에서 제1 서브공간(SS1)을 제외한 나머지가 제2 서브공간(SS2)일 수 있다.
제2 유체는 제1 공간(S1), 구체적으로 제2 서브공간(SS2)과 이에 연통되는 변형부(191)의 내부 공간인 제3 공간(S3)에 존재할 수 있다.
도 5a에서 설명한 바와 같이 전원부(200)가 제1 전극체(150) 및 제2 전극체(160)에 전압을 공급하면, 도 5a를 참조하여 설명한 반응이 일어나면서, 도 6a에 도시된 바와 같이 양이온(예, 수소이온)이 제1 공간(S1)에서 제2 공간(S2)을 향하는 제1 방향(도 6b에서의 -Z방향)을 따라 이동할 수 있다.
이 때, 양이온과 함께 제1 공간(S1)의 제1 유체(예, H2O)가 멤브레인(140)을 지나 제1 방향(도 6b에서의 -Z방향)을 따라 이동하면서 압력이 생성되며, 압력에 의해 제1 유체가 하우징(110) 측에서 샤프트 어셈블리(120) 측, 구체적으로 신축 부재에 마련되는 신축 공간(1211a)으로 이동할 수 있다.
도 6a 및 도 6b를 참조하면, 본 발명의 일 실시예에 따른 변형부(191)는 제1 공간(S1)이 형성되는 하우징(110)의 일측(도 6a 기준 상측)에 연통되고, 변형부(191)와 마주보는 하우징(110)의 일면(도 6a 기준 상면)에 형성되는 홀(111H)을 통해서 제1 공간(S1)과 변형부의 내부 공간인 제3 공간(S3)이 연통될 수 있다.
본 발명의 일 실시예에 따른 변형부(191)의 일측에는 탄성 변형이 가능한 탄성부(192)가 형성될 수 있다. 탄성부(192)는 변형부(191)의 중앙부에 형성될 수 있으며, 변형부(191)의 외측 방향(도 6a 기준 상측 방향)에 대하여 오목하게 형성되거나, 볼록하게 형성될 수 있다.
탄성부(192)의 형상이 변형됨에 따라 제3 공간(S3)의 체적이 증가하거나 감소할 수 있다.
탄성부(192)는 변형부(191)의 내부 공간, 구체적으로 제3 공간(S3)의 내부 압력에 따라 형상이 변형될 수 있다. 도 6a를 참조하면, 제3 공간(S3)에는 음압(negative pressure)이 형성될 수 있다.
탄성부(192)는 변형부(191)의 외측 방향(도 6a 기준 상측 방향)에 대하여 볼록하게 형성되는 방향으로 탄성복원력을 가질 수 있다. 이로 인하여 도 6b와 같이 양이온과 함께 제1 유체가 제2 공간(S2)에서 제1 공간(S1)으로 이동 시 공기와 같은 제2 유체가 수용되는 공간이 제3 공간(S3)만큼 확보되고, 신축 부재의 축소에 필요한 힘을 상대적으로 저감시킬 수 있으며, 신축 부재의 축소가 용이하게 이루어지는 효과가 있다.
제1 공간(S1)의 제1 유체(예, H2O)가 제2 공간(S2)로 이동하면서, 제1 공간(S1)의 체적에 대한 제1 서브공간(SS1)의 체적 비율은 감소하는 반면, 제1 공간(S1) 중에서 제2 서브공간(SS2)이 차지하는 비율은 증가한다.
한편, 도 5b에서 설명한 바와 같이 전원부(200)가 제1 전극체(150) 및 제2 전극체(160)에 전압의 극성을 바꾸어 공급하면, 양이온(예, 수소이온)과 제1 유체(예, 물)가 제2 공간(S2)에서 제1 공간(S1)을 향하는 제2 방향(도 6에서의 +Z 방향)을 따라 이동하고, 도 6b에 도시된 바와 같이 신축 공간(1211a)의 유체가 하우징(110) 측으로 이동함에 따라 샤프트 어셈블리(120)는 다시 원래의 위치로 이동할 수 있다.
샤프트 어셈블리(120)가 제2 방향(도 6b에서의 +Z방향)으로 이동하면서 양이온과 함께 제1 유체가 제2 방향으로 이동하고, 변형부(191), 구체적으로 탄성부(192)의 형상이 변형될 수 있다.
구체적으로 탄성부(192)가 변형부(191)의 외측 방향에 대하여 오목한 형상에서 볼록한 형상으로 변형되면서, 제3 공간(S3)의 체적이 증가하고, 신축 부재의 축소에 용이한 효과가 있다.
이에 더하여 제1 공간(S1) 및 제3 공간(S3)에 대한 압축이 일어나는 경우에, 변형부(191), 구체적으로 탄성부(192)는 볼록하게 형성되는 방향으로 탄성복원력을 가지게 되므로, 신축 부재의 축소가 더욱 용이하게 이루어지는 효과가 있다.
이에 더하여 도 5a, 도 5b에서의 반응이 일어나면서 가스가 발생되는 경우에 상기 가스를 제3 공간(S3)에서 수용할 수 있어 완충(buffer) 기능을 할 수 있는 효과가 있다.
전원부(200)가 제1 전극체(150) 및 제2 전극체(160)에 인가하는 전압의 극성을 교번적으로 바꾸면, 신축 부재는 신장 및 축소가 반복되면서, 신축 부재에 결합된 로드 부재가 제1 방향 및 제2 방향을 따라 선형 왕복 운동할 수 있다.
신축 부재의 신축 및 로드 부재의 왕복 운동은 제1 공간(S1) 중에서 제2 유체가 존재하는 공간, 즉 제2 서브공간(SS2)의 체적 비율에 따른 변화로 설명할 수 있다.
도 7는 샤프트 어셈블리의 형상 변형에 따른 제1 공간의 체적(VS1)에 대한 제2 서브공간의 체적(VSS2)의 비율의 나타낸 그래프이다.
전원부(200)가 제1 전극체(150) 및 제2 전극체(160)에 전압을 인가하기 전의 상태, 즉 펌프(100)의 작동 전의 상태에서의 제1 공간(S1)의 체적에 대한 제2 서브공간(SS2)의 체적의 비율(Ratio= VSS2/VS1)을 "A" 라 할 때, 샤프트 어셈블리(120)의 전진 행정 시, 즉 제1 방향으로의 형상 변형 시 비율(Ratio)은 "B"로 증가한다 (A <B, 단, A는 0 보다 크고 B는 1보다 작음).
전진했던 샤프트 어셈블리(120)가 제2 방향으로 후퇴하는 행정에서, 전술한 비율(Ratio)은 B에서 A로 감소하나, 비율이 A 보다 더 작아지지는 않는다.
본 발명의 일 실시예에 따른 펌프(100)는, 신축 부재가 상대적으로 축소된 상태에서 각 구성요소들이 조립된 것일 수 있다. 다른 실시예로, 펌프(100)는 신축 부재가 상대적으로 신장된 상태에서 각 구성요소들이 조립된 것일 수 있다
신축 부재가 신축되는 경우, 제2 서브공간(SS2) 및 제3 공간(S3)에 존재하는 제2 유체(예, 공기)는 약간(slightly) 팽창하거나 압축될 수 있다. 제2 유체의 팽창이나 압축에 따라 소정의 힘이 제2 유체에 저장될 수 있으며, 이 힘은 신축 부재의 신축에 작용할 수 있다. 신축 부재의 신축 행정의 정확한 제어는 펌프(100)가 사용되는 약물 주입 장치에서 약물의 주입량에 영향을 줄 수 있다.
따라서, 신축 부재의 신축 행정은 예컨대 전술한 힘도 고려하여 설계될 수 있다.
도 6a 내지 도 6b를 참조하면, 본 발명의 일 실시예에 따른 변형부(191)의 일측(도 6a, 6b 기준 상측)에는 탄성 변형이 가능한 탄성부(192)가 형성되고, 탄성부(192)가 탄성 변형됨에 따라 제3 공간(S3)의 체적이 변형될 수 있다.
도 5a의 반응이 일어나면, 제3 공간(S3)에는 음압이 형성되고, 도 6a에 도시된 바와 같이 탄성부(192)의 형상이 변형부(191)의 외측 방향을 기준으로 오목하게 형성될 수 있다.
도 5b의 반응이 일어나면, 제1 유체의 압력 등에 의하여 압력이 증가되고, 도 6b에 도시된 바와 같이 탄성부(192)는 변형부(191)의 외측 방향을 기준으로 볼록하게 형성되는 방향으로 탄성복원력을 가짐으로 인하여 제3 공간(S3)의 체적이 증가하는 방향으로 형상 변형될 수 있다. 그리고, 제2 유체에 저장되는 힘을 제거하여, 신축 부재의 축소를 용이하게 하고, 신축 부재의 신축, 바람직하게는 신축 부재에 연결된 로드 부재의 이동에 대한 정확한 제어가 가능한 효과가 있다.
도 1, 도 4, 도 6a 내지 도 6b를 참조하면, 본 발명의 일 실시예에 따른 고정부재(193)는 하우징(110)과 변형부(191)에 각각 결합되는 것으로, 변형부(191)가 하우징(110) 상에 위치 고정될 수 있도록 한다.
이에 더하여 변형부(191)의 내부 공간인 제3 공간(S3)으로부터 외부로 공기를 포함하는 제2 유체가 유출되는 것을 차단할 수 있는 효과가 있다.
고정부재(193)는 변형부(191)의 외주면 둘레를 따라 밀착되며 하우징(110)에 설치될 수 있다.
변형부(191)와 마주보는 하우징(110)의 일면에는 외측 방향으로 돌출되며 변형부(191)의 내주면 둘레를 따라 밀착되는 실링벽(111W)이 돌출 형성될 수 있다.
실링벽(111W)으로 인하여 변형부(191)의 내주면은 실링벽(111W)과 밀착되고, 외주면은 고정부재(193)와 밀착되며, 제3 공간(S3)에 수용되는 유체가 외부로 유출되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따른 펌프(100)는 인슐린과 같은 약물을 주입하는 장치에 사용되는 소형 펌프일 수 있다. 그러나, 전술한 설명에서와 같은 구조 및 메커니즘을 이용하여 샤프트 어셈블리(120)를 작동시키는 펌프라면, 그 용도를 특별히 제한할 것은 아니다.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (5)

  1. 내부에 유체가 수용되는 내부 공간을 제공하고, 상기 내부 공간과 외부 공간을 연결하는 샤프트 홀이 구비되는 하우징; 및
    상기 하우징의 외측에서 상기 샤프트 홀을 커버하며 상기 하우징에 연결되고, 상기 샤프트 홀을 통과하는 상기 유체의 유동에 의하여 길이 방향으로 형상 변형이 가능한 샤프트 어셈블리;를 포함하는, 전기 삼투압 펌프.
  2. 제 1 항에 있어서,
    상기 샤프트 어셈블리는,
    상기 샤프트 홀과 연통되는 신축 공간이 형성되는 신축 부재; 및
    상기 신축 부재에 결합되며, 상기 신축 부재와 길이 방향 중심축을 공유하며 연장 형성되는 로드 부재;를 포함하는, 전기 삼투압 펌프.
  3. 제 2 항에 있어서,
    상기 신축 부재는,
    상기 샤프트 홀과 마주하는 개구가 형성된 신축 공간이 내부에 마련되고, 주름관 형태로 형성되는 바디부;
    개구가 형성된 상기 바디부의 일단에서 방사상으로 확장되는 플랜지부; 및
    상기 플랜지부가 확장되는 상기 바디부의 상기 일단에 대향하는 타단에 형성되는 헤드부;를 포함하고,
    상기 플랜지부는 상기 하우징에 접합되는, 전기 삼투압 펌프.
  4. 제 2 항에 있어서,
    상기 신축 부재는 고무 재질로 이루어지는, 전기 삼투압 펌프.
  5. 제 1 항에 있어서,
    상기 내부 공간을 제1 공간 및 제2 공간으로 구분하는 멤브레인;을 더 포함하고,
    상기 샤프트 홀을 통과하는 상기 유체의 유동은 상기 멤브레인을 통과하는 상기 유체의 유동에 의존하는, 전기 삼투압 펌프.
PCT/KR2022/014727 2021-12-24 2022-09-30 전기 삼투압 펌프 WO2023120893A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0187463 2021-12-24
KR1020210187463A KR102683865B1 (ko) 2021-12-24 2021-12-24 전기 삼투압 펌프

Publications (1)

Publication Number Publication Date
WO2023120893A1 true WO2023120893A1 (ko) 2023-06-29

Family

ID=86902763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014727 WO2023120893A1 (ko) 2021-12-24 2022-09-30 전기 삼투압 펌프

Country Status (2)

Country Link
KR (2) KR102683865B1 (ko)
WO (1) WO2023120893A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150083231A (ko) * 2014-01-09 2015-07-17 강원대학교산학협력단 삼투압 약물주입펌프
KR101752326B1 (ko) * 2016-01-15 2017-06-29 중소기업은행 전기삼투압을 이용한 펌프모듈
KR20180024990A (ko) * 2016-08-31 2018-03-08 중소기업은행 전기 삼투 펌프
KR101998369B1 (ko) * 2017-06-23 2019-07-09 서강대학교산학협력단 전기삼투펌프에 기반한 세포간액 연속 추출 장치 및 방법
KR20210022514A (ko) * 2019-08-20 2021-03-03 이오플로우(주) 전기 삼투압 펌프

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2441484A1 (de) * 2010-10-13 2012-04-18 Fresenius Kabi Deutschland GmbH Pumpenmodul, Pumpenbasismodul und Pumpenssystem
KR102101938B1 (ko) * 2018-08-20 2020-04-17 이오플로우(주) 펌프

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150083231A (ko) * 2014-01-09 2015-07-17 강원대학교산학협력단 삼투압 약물주입펌프
KR101752326B1 (ko) * 2016-01-15 2017-06-29 중소기업은행 전기삼투압을 이용한 펌프모듈
KR20180024990A (ko) * 2016-08-31 2018-03-08 중소기업은행 전기 삼투 펌프
KR101998369B1 (ko) * 2017-06-23 2019-07-09 서강대학교산학협력단 전기삼투펌프에 기반한 세포간액 연속 추출 장치 및 방법
KR20210022514A (ko) * 2019-08-20 2021-03-03 이오플로우(주) 전기 삼투압 펌프

Also Published As

Publication number Publication date
KR20240112800A (ko) 2024-07-19
KR102683865B1 (ko) 2024-07-11
KR20230097707A (ko) 2023-07-03

Similar Documents

Publication Publication Date Title
WO2020040519A1 (ko) 전기 삼투압 펌프
KR101910932B1 (ko) 전기 삼투 펌프
WO2018004164A1 (ko) 전기 삼투 펌프 및 이를 포함하는 유체 펌핑 시스템
EP3842087A1 (en) Electroosmotic pump
KR102379943B1 (ko) 펌프
KR20230022296A (ko) 약액 제어 주입 디바이스
WO2023120893A1 (ko) 전기 삼투압 펌프
WO2023120894A1 (ko) 전기 삼투압 펌프
WO2022182030A1 (ko) 펌프
KR102477258B1 (ko) 전기 삼투압 펌프
KR102173812B1 (ko) 전기 삼투압 펌프
WO2024063275A1 (ko) 전기 삼투 펌프
WO2023120796A1 (ko) 펌프
WO2021133072A1 (ko) 복막 투석 디바이스
KR102534944B1 (ko) 전기 삼투압 펌프
WO2021066566A2 (ko) 약액 주입 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022911532

Country of ref document: EP

Effective date: 20240724