WO2023120325A1 - Sliding member for press die components - Google Patents

Sliding member for press die components Download PDF

Info

Publication number
WO2023120325A1
WO2023120325A1 PCT/JP2022/046049 JP2022046049W WO2023120325A1 WO 2023120325 A1 WO2023120325 A1 WO 2023120325A1 JP 2022046049 W JP2022046049 W JP 2022046049W WO 2023120325 A1 WO2023120325 A1 WO 2023120325A1
Authority
WO
WIPO (PCT)
Prior art keywords
press die
sliding member
sliding
cam
impact
Prior art date
Application number
PCT/JP2022/046049
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 後藤
貴志 黄木
優太 森
正仁 藤田
Original Assignee
三協オイルレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三協オイルレス工業株式会社 filed Critical 三協オイルレス工業株式会社
Priority to CN202280085165.6A priority Critical patent/CN118450953A/en
Publication of WO2023120325A1 publication Critical patent/WO2023120325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/18Lubricating, e.g. lubricating tool and workpiece simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Definitions

  • the present invention relates to a press die component sliding member used in a press die peripheral device.
  • Patent Document 1 the surface of an aluminum-based bearing alloy having a surface roughness of 1.0 ⁇ m or more and less than 4.5 ⁇ mRz is coated with 98% to 55% by weight of a solid lubricant and 2% to 45% by weight of a thermosetting resin,
  • a plain bearing for an internal combustion engine provided with a coating layer having a film thickness of 2 ⁇ m to 10 ⁇ m and a surface roughness of 5 ⁇ mRz or less is disclosed.
  • Patent Document 2 describes a wet radial bearing composed of 10% to 45% by weight of carbon fiber, 0.1% to 8.5% by weight of polytetrafluoroethylene, and the balance being substantially polyether ether ketone or polyphenylene sulfide. Disclosed is a sliding member for a .
  • Patent Document 3 on a porous sintered layer, PEEK resin is mixed with a filler with good thermal conductivity of 5% to 40% by volume, and the filler is graphite particles, Cu powder, carbon fiber , ZnO whiskers, etc. are adopted, the average particle size of graphite particles and Cu powder is 10 ⁇ m or less, and the carbon fiber and ZnO whiskers have a fiber diameter of 5 ⁇ m or less and an aspect ratio (fiber length/fiber diameter) of 2 or more. It is
  • Patent Document 4 discloses a technique for isotropically dispersing fibrous particles in a sliding layer.
  • Patent Document 5 a resin layer containing no additive is added between composite layers containing a binder resin and an additive in a sliding member made of polyamideimide and polyimide in order to prevent refrigerant from entering the compressor.
  • the technology provided is disclosed.
  • an intermediate layer containing a thermoplastic polyimide resin and a polyarylketone resin is formed on a metal substrate that is not a sintered layer, and a surface layer formed on the intermediate layer and made of the polyarylketone resin.
  • a sliding member is disclosed having:
  • the polyimide resin disclosed in the prior art has a problem with impact resistance. Therefore, it may be difficult to use in applications that require impact resistance, such as cam devices.
  • an object of the present invention is to provide a sliding member for press die parts used in a press die peripheral device in which an impact load is generated in press working, and to provide necessary impact relaxation properties.
  • the present invention relates to a press die part sliding member used in a press die peripheral device in which an impact load is generated in press working, comprising an iron-based base material and a solid body formed on the iron-based base material. It has an intermediate layer made of polyetheretherketone resin that does not contain a lubricant and a polyimide resin, and a sliding layer that is formed on the intermediate layer and made of polyetheretherketone resin and contains a solid lubricant. , the impact momentum attenuation rate of the sliding member for press die parts is 5% or more.
  • the schematic diagram which shows the cross-section of the sliding member for press die components of embodiment The schematic diagram which shows the cross-section of the sliding member of a comparative example.
  • FIG. 1 shows a cross-sectional structure of a sliding member for press die parts according to an embodiment.
  • the press die part sliding member 1 of the embodiment is a member for a press die peripheral device such as a cam device.
  • the press die peripheral device referred to in this specification is, for example, a device attached to a die for pressing an outer panel of an automobile.
  • a cam device which is a type of press die peripheral device, uses a slider to change the direction of the vertical motion of the press and punch or cut the side of the steel plate. As a result, the slider portion of the cam device is subjected to an impact load that accompanies the up-and-down motion of the press, which is not present in ordinary sliding members.
  • the press die part sliding member 1 of the embodiment includes a base material 3 having a surface roughness Rz, and mica 8 and base resin 9 on the base material 3.
  • An intermediate layer T2 containing no solid lubricant such as polytetrafluoroethylene (PTFE) particles 4 or graphite particles 5; and a sliding layer T1.
  • PTFE particles 4 and the graphite particles 5 are collectively referred to as a solid lubricant.
  • the sliding member 1 for press die parts of the embodiment has an intermediate layer T2 and a sliding layer T1 on a base material 3 of cast iron or steel member having a surface roughness Rz.
  • the sliding layer T1 contains pitch-based carbon fiber and a solid lubricant such as PTFE.
  • the intermediate layer T2 does not contain solid lubricants or carbon fibers. As a result, the shock absorbing property of the sliding member 1 for press die parts is improved.
  • the sliding member 1 for press die parts of the embodiment comprises an intermediate layer T2 having a film thickness t2 of 15 ⁇ m or more and less than 180 ⁇ m and a film thickness t1 of 20 ⁇ m or more on a base material 3 made of cast iron or steel having a surface roughness Rz. and a sliding layer T1 of less than 60 ⁇ m.
  • the intermediate layer T2 and the base material 3 are bonded together due to the strong bonding force between the intermediate layer T2 and the base material 3 against the strong shear force generated by the thrust load. be kept.
  • the carbon fiber 6 and the solid lubricant 5 contained in the sliding layer T1 reduce the frictional force on the surface and ensure the sliding performance.
  • the base material 3 of the embodiment is an iron-based base material having a surface roughness Rz.
  • the surface roughness Rz of the base material 3 is the maximum roughness (maximum height) defined in JIBS-B0601-2001.
  • the roughness of the base material 3 made of steel or cast iron is formed by, for example, shot blasting. Concavities and convexities having a maximum roughness Rz are provided by roughening the substrate 3 . This improves the adhesion of the intermediate layer T2 made of polyetheretherketone (PEEK).
  • PEEK polyetheretherketone
  • the surface roughness Rz of the base material 3 is preferably 15 ⁇ m or more and less than 80 ⁇ m in order to have the anchoring effect of the intermediate layer T2 containing PEEK.
  • the surface roughness Rz is less than 15 ⁇ m, the impact resistance adhesion of the intermediate layer T2 is reduced, and when the surface roughness Rz of the substrate 3 is 80 ⁇ m or more, the roughness affects the surface of the intermediate layer T2. do. More preferably, the surface roughness Rz of the substrate 3 is 40 ⁇ m or more and less than 60 ⁇ m.
  • the sliding layer T1 of the embodiment is formed on the intermediate layer T2 and contains base resin 7, solid lubricants such as PTFE particles 4 and graphite particles 5, and carbon fibers 6.
  • the sliding layer T1 may contain other additives (not shown).
  • Base resin 7 is polyetheretherketone (PEEK).
  • the sliding layer T1 is a layer portion of the base resin 7 from the surface to including the carbon fibers 6, the PTFE particles 4, and the graphite particles 5.
  • the thickness t1 of the sliding layer T1 extends from the highest portion of the many projections on the surface of the base resin 7 to the lowest portion of the base resin 7 containing the carbon fibers 6, PTFE particles 4 and graphite particles 5 (Fig. 1) with a dotted line).
  • the sliding layer T1 contains carbon fibers 6, graphite particles 5, PTFE particles 4, etc., because it requires properties such as wear resistance, seizure resistance, and low ⁇ properties.
  • the solid lubricant such as graphite particles 5 and PTFE particles 4 contained in the sliding layer T1 has excellent transfer performance to the mating material, has the effect of lowering and stabilizing the coefficient of friction, and at the same time improves the conformability and finishes. Ensure workability.
  • Graphite particles 5 are preferably natural graphite having excellent lubricity.
  • the graphite particles 5 may be scaly, earthy, or granulated graphite.
  • MoS 2 , WS 2 , h-BN, etc. can also be used as solid lubricants.
  • the PTFE particles 4 added to the sliding layer T1 are preferably 5% by mass or more and less than 15% by mass, and the graphite particles 5 are preferably 3% by mass or more and less than 10% by mass. As a result, performance with excellent friction characteristics can be ensured.
  • the carbon fiber 6 may be either pitch-based or PAN-based, which are classified from raw materials.
  • the carbon fibers 6 are preferably pitch-based carbon fibers having high slidability.
  • the firing temperature of the carbon fiber 6 is not particularly limited, but if it is fired at a high temperature of 2000° C. or more to be graphitized, it is preferable because the mating material is less likely to be worn and damaged.
  • the carbon fiber 6 strengthens the sliding layer T1 by fiber reinforcement, exhibits wear resistance and low friction properties, and contributes to the improvement of shock mitigation and slidability.
  • the average fiber diameter of the carbon fibers 6 is 20 ⁇ m or less, preferably 10 ⁇ m or more and less than 20 ⁇ m. If the average fiber diameter exceeds 20 ⁇ m, extreme pressure is generated, so that the effect of improving the load resistance is poor and the wear and damage of the mating member increases, which is not preferable.
  • the carbon fiber 6 may be either chopped fiber or milled fiber.
  • the carbon fiber 6 is preferably a milled fiber having a fiber length of less than 1 mm.
  • the carbon fibers 6 have a diameter of 10 ⁇ m or more and less than 20 ⁇ m and a maximum length of 1000 ⁇ m, preferably 100 ⁇ m or more and less than 500 ⁇ m.
  • the press die part sliding member 1 of the embodiment has wear resistance and low friction (low ⁇ ) according to the basic tribology formula (formula 4) below.
  • ⁇ 0 /P H (Formula 4)
  • coefficient of friction
  • ⁇ 0 shear force of lubricating substance
  • PH hardness (load/area).
  • Low friction means that the coefficient of friction is low.
  • the friction coefficient ⁇ is proportional to the shear force of the lubricating substance and inversely proportional to the substrate hardness. Therefore, pitch-based carbon fibers, which are hard and have excellent sliding performance, can be selected as the carbon fibers 6 that serve as load points during friction.
  • An extremely low coefficient of friction is derived by interposing PTFE 4 and graphite 5, which are solid lubricants, on the surface. PTFE 4 and graphite 5 are additive components effective for maintaining the lubricating state, especially in a state where the oil film tends to break under impact load.
  • the intermediate layer T2 of the embodiment is formed on the base material 3 and contains a base resin 9 and mica 8 that do not contain solid lubricants such as PTFE particles 4 and graphite particles 5 above the top of the surface roughness of the base material 3 .
  • the intermediate layer T2 is a layer portion from the lower surface of the sliding layer T1 to the upper surface of the base material 3.
  • the thickness t2 of the intermediate layer T2 extends from the lowest portion (indicated by the dotted line in FIG. 1) of the base resin 7 containing the carbon fibers 6 and the solid lubricant 5 of the sliding layer T1 to the surface roughness Rz is the thickness of the base resin 9 to the base line of .
  • the intermediate layer T2 is a layer provided to improve the adhesion between the sliding layer T1 and the base material 3 made of steel or cast iron and to withstand impact loads. Therefore, the intermediate layer T2 does not contain solid lubricants such as PTFE particles 4 and graphite particles 5 in the base resin 9.
  • the base resin 9 is preferably PEEK resin.
  • the base resin 9 may contain mica 8 for resin reinforcement.
  • the difference (t2-Rz) between the thickness t2 of the intermediate layer T2 and the surface roughness Rz is 0 ⁇ m or more and less than 100 ⁇ m.
  • FIG. 2 shows a schematic diagram of the cross-sectional structure when a high shearing force acts on the sliding member without the intermediate layer T2 of the comparative example.
  • A indicates the shear force
  • S-S' indicates the shear band caused by the impact load.
  • a rough Rz is set in order to secure the bonding strength between the PEEK resin and the metal material.
  • an additive such as pitch-based carbon fiber or PTFE
  • the presence of the additive on the surface causes a decrease in adhesive strength.
  • this effect is greatly influenced by solid lubricants such as PTFE. That is, contact with a low-shear substance such as PTFE or graphite on the surface causes an extreme decrease in adhesiveness.
  • a high shear load A due to the impact is applied directly above the bonding surface, in the shaded area SS' in FIG. occurs in If this high-shear zone S-S' is interspersed with additives such as low-shear substances such as solid lubricants, PTFE, graphite, and carbon fibers, the shear resistance is lowered.
  • the present inventors paid attention to this point, and provided an intermediate layer T2 that does not contain additives such as low-shear substances, hard fibers that tend to cause stress concentration, and solid lubricants in the high-shear band SS'. It was found that strong bonding strength and excellent impact relaxation can be obtained. In the sliding member of the embodiment, it is possible to achieve both impact relaxation properties and peeling prevention properties.
  • the impact momentum attenuation rate of the sliding member 1 for press die parts of the embodiment is 5% or more. It is preferably 7% or more and 30% or less. The impact momentum attenuation rate will be described below.
  • press die peripheral devices such as cam devices, which are applications of the sliding member 1 for press die parts of the embodiment.
  • the press die peripheral device such as the cam device having the slide member 1 for press die parts of the embodiment in the sliding part
  • the difference between the thickness of the intermediate layer and the surface roughness is appropriately maintained, so that it is satisfactory. Required performance is obtained.
  • the entirety of the elastically deformable resin layers absorbs the impact load caused by the collision of the mating member.
  • the base resin 7 and base resin 9 are PEEK resin.
  • a PEEK resin is a crystalline thermoplastic resin having a polymer structure in which a benzene ring is at the para position and is linked to a carbonyl group by an ether bond.
  • PEEK resin has excellent heat resistance, creep resistance, load resistance, wear resistance, sliding properties, and the like.
  • the resin for example, a resin selected from the group consisting of polyether ketone resin, polyphenylene sulfide resin, and polyamide resin can be used.
  • the PEEK resin exhibits excellent performance in impact relaxation required for the sliding member 1 for press die parts of the embodiment.
  • the cam device for press dies is set with a predetermined angle of inclination. Since the cam device has an inclination angle, the impact energy due to press working is divided into impact energy and sliding energy. However, even if the impact energy is partially converted to sliding energy, the damage to the material due to the impact energy is large, and mitigating the impact energy is a problem.
  • Fig. 4 shows a device for measuring the magnitude of impact energy.
  • the measuring device shown in FIG. 4 comprises a press slide 1, a cam device 2, a press bolster 3, and a strain gauge 4 for measuring the impact momentum attenuation rate.
  • a strain gauge 4 was set at the bottom of the cam device to measure the magnitude of the impact energy when simulating thin plate processing.
  • a load-time curve as shown in FIG. 3 was obtained.
  • This load-time curve shows the time variation of the load applied to the cam, and its area S shows the value of the impact momentum. Impact energy was obtained for various members, and the impact relaxation properties of the materials were evaluated by comparing the impact momentum attenuation rates shown in Equation (3).
  • the impact force generated in the cam device will be described.
  • the speed v (m/s) at the landing point when an object of mass m (kg) falls from height h (m) is given by the following formula, where ⁇ (m/s 2 ) is the acceleration: (1).
  • This object has a momentum of mv [kg ⁇ m/s]. At the falling point, it receives a force T[N] for a time ⁇ t[s] and its momentum becomes zero, which can be expressed by the following equation (2).
  • F is defined as the impact force.
  • a cam device with a strain gauge attached is set in the press device shown in FIG. 4, and the area S (impact momentum referred to in this specification) of the load (F)-time ( ⁇ t) curve (FIG. 3) generated in the cam device is measured. bottom.
  • the impact momentum attenuation rate when the area S when measuring the cam device that does not use the sliding member of the embodiment is S1
  • the area S when measuring the cam device using the sliding member of the embodiment is S2.
  • R is represented by the following formula (3).
  • the sliding layer T1 contains 10% by mass of PTFE as the solid lubricant 5, 5% by mass of carbon fiber 6,
  • the base resin 7 is PEEK resin, and the sliding layer T1 has a thickness t1 of 35 ⁇ m.
  • the intermediate layer T2 is made of only the base resin 9 of PEEK resin, and the thickness t2 of the intermediate layer T2 is 30 ⁇ m.
  • the substrate 3 has a base roughness Rz of 15 ⁇ m.
  • Comparative Example 2 does not include the intermediate layer T2, and the sliding layer T1 is applied directly on the base material 3.
  • Comparative Example 3 is a steel material that is not coated with PEEK resin (that is, a steel material that does not have the sliding layer T1 and the intermediate layer T2).
  • the sliding layer T1 and the intermediate layer T2 according to the embodiment were formed on the sliding portion of the cam device of the bottom type, and an impact test was performed under the following conditions.
  • a hitting impact test was performed under the following conditions.
  • Table 2 shows the test results.
  • Comparative Example 2 which did not include the intermediate layer T2 and consisted only of the sliding layer T1
  • the sliding layer peeled off before the end of the test. From the test results, it was found that the impact momentum attenuation rate of the sliding members of Examples exceeded 5% and exceeded 7%, indicating that they had impact relaxation properties. On the other hand, the impact momentum attenuation rate of the sliding member of Comparative Example 3 was 0%, indicating that the sliding member had no impact relaxation properties.
  • a press die peripheral device such as a cam device, which has a sliding layer T1 and an intermediate layer T2, and which contains a solid lubricant and pitch-based carbon fiber in the sliding layer, is required. It shows excellent impact relaxation and anti-peeling properties of the sliding layer.
  • the sliding layer T1 and the intermediate layer T2 improve the shock absorbing property, and the intermediate layer T2 prevents the peeling of the sliding layer T1.
  • An excellent material can be provided as a sliding member for the sliding portion of the peripheral device.
  • a method of forming the sliding layer T1 and the intermediate layer T2 of the sliding member 1 for press die parts of the embodiment will be described.
  • the cast iron cam slide plate which is the object to be treated, is processed into a predetermined shape, it is degreased in an alkaline treatment liquid such as caustic soda, followed by washing with water and hot water to remove alkali adhering to the surface. Surface roughness is adjusted by blasting conditions.
  • a resin obtained by diluting a PEEK resin containing mica as a reinforcing material with a diluent is sprayed onto the lining to a predetermined thickness as an intermediate layer, and dried and baked at 250°C to 400°C.
  • a PEEK resin containing a solid lubricant, graphite PTFE, and carbon fiber is sprayed onto the lining, and dried and baked at 250°C to 400°C.
  • buffing or the like is performed for smoothing.
  • the sliding layer T1 and the intermediate layer T2 can be formed by a roll coating method, a dipping method, a brush coating method, a printing method, or the like, in addition to the spray method.
  • the press die component sliding member 1 according to the embodiment is used, for example, as a sliding surface of a press die peripheral device.
  • one side of the sliding surface of the steel material or cast iron material of the cam device is used as the base material 3, and the sliding layer T1 and the intermediate layer T2 are provided to provide the cam device excellent in shock absorbing property and slidability. can be done.
  • cam devices such as lower cams, upper suspended cams, double cams, roller cams, etc. All cams have a sliding portion, and a sliding layer T1 and an intermediate layer T2 are provided on one side of this portion. can be done.
  • a compact and high-performance cam device can be provided.
  • the press die part sliding member 1 according to the embodiment is used for the sliding portion of the press die part peripheral device shown in Table 3 and FIGS. 5 to 11 .
  • Table 3 the name of each device, the name of the constituent parts, and the parts having a surface provided with the sliding layer T1 and the intermediate layer T2 on the sliding surface are indicated by ⁇ marks.
  • the press die part sliding member 1 according to the embodiment can also be applied to a sliding member that receives an impact load, such as an automobile part, a generator part, an industrial machine part, and the like.
  • the press die component sliding member 1 of the embodiment can be applied to, for example, a sliding portion of a press die peripheral device or a sliding portion of a cam device component.
  • the press die part sliding member 1 may be a separate part, or may be a sliding part of a press die peripheral device or a part for a cam device. It may be integrated with the sliding portion.
  • the cam device 300 has a cam holder 301 , a slide keeper 302 , a cam slider 303 and a cam driver 304 .
  • the cam holder 301 is attached to the upper die.
  • the cam slider 303 is slidably attached to the cam holder 301 on which a machining tool for machining a work can be installed.
  • a cam driver 304 is attached to the lower die and drives the cam slider 303 in the machining direction.
  • the sliding member of the embodiment to any one or more of the sliding surface of the slide keeper 302, the sliding surface of the cam driver 304, and the sliding surface of the cam slider 303, impact relaxation and sliding It is possible to realize the cam device 300 with excellent performance.
  • FIG. 6 shows an exploded view of the cam-type coil support device 400.
  • FIG. A cam-type coil support device 400 has a cam driver 401 , a cam slider 402 , a cam holder 403 , and cam slider sliding surfaces 404 and 405 .
  • the cam driver 401 is attached to the upper mold and the cam holder 403 is attached to the lower mold.
  • the cam-type coil support device 400 holds the coil material (panel) flowing in the top dead center state, and as the bottom dead center approaches, the cam driver 401 attached to the upper die moves the cam slider attached to the lower die. 402 is pushed horizontally and retracted so that the panel scraps fall.
  • the cam-type coil support device 400 can be used for the purpose of correcting deflection of the coil material and preventing collision with the cutting edge in the blank die.
  • a cam-type coil support device 400 with excellent shock absorbing properties and slidability is realized. be able to.
  • FIG. 7 shows an exploded view of the cam-type side gauge device 500.
  • a side gauge device also called a panel positioning device, is used to prevent the panel from slipping during processing and to abut the panel in the lateral direction (horizontal direction), and has the function of accurately positioning the panel.
  • a cam type side gauge device 500 has a cam driver 501 , a cam slider 502 , a cam holder 503 , cam slider sliding surfaces 504 and 505 .
  • the cam driver 501 attached to the upper mold pushes out the cam slider 502 attached to the lower mold, whereby the blank material (panel) is set at the regular position. be.
  • a cam-type side gauge device 500 with excellent shock absorbing properties and slidability is realized. be able to.
  • the double cam device 600 has a guide cam holder 601 , a guide cam 602 , a cam slider 603 and a cam holder 604 . If the molded panel has a negative angle, the panel cannot be transported. By using this cam, the guide cam 602 can be moved faster than the timing at which the cam holder 604 attached to the upper die pushes the cam slider 603, and the negative corner portion of the panel can be avoided.
  • a rotary cam device 700 has a rotor 701 , a holder 702 , a cap 703 , a cam slider 704 and a cam holder 705 .
  • the cam slider 704 attached to the upper die pushes the rotor 701
  • the rotor 701 rotates and is set at the processing position, enabling panel molding.
  • the cam slider 704 separates from the rotor 701 after the panel is molded, it rotates to the position where the negative corner portion escapes, and the panel can be transported upward.
  • the push-up cam device 800 has a cam driver 801, a cam slider A802, a thrust block 803, a cam holder 804, and a cam slider B805.
  • cam driver 801 moves downward, it slides on the inclined surface of the cam slider A802, and the cam slider A802 moves horizontally.
  • the cam slider B805 is moved upward by the inclined surface of the cam slider A802, the thrust block 803, and the guides of the cam holder 804, so that the panel can be pushed upward and molded.
  • a cam device 800 can be implemented.
  • cam side block 901 cam upper plate 902, slide plate 903, and cam slide V-guide 904 are shown.
  • sliding member of the embodiment it is possible to provide a cam component with excellent shock absorbing properties and slidability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Sliding-Contact Bearings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] The present invention addresses the problem of providing a sliding member for peripheral devices for a press die, the sliding member being prevented from separation of a sliding layer, while having excellent impact attenuation properties. [Solution] The present invention provides a sliding member for press die components, the sliding member being used for a peripheral device for a press die, to which an impact load is applied during pressing; this sliding member for press die components comprises an iron-based substrate, an intermediate layer which is formed on the iron-based substrate and is formed of a polyether ether ketone resin without containing a solid lubricant and a polyimide resin, and a sliding layer which is formed on the intermediate layer and is formed of a polyether ether ketone resin, while containing a solid lubricant; and this sliding member for press die components has an impact momentum attenuation rate of 5% or more.

Description

プレス金型部品用摺動部材Sliding member for press die parts
 本発明は、プレス金型周辺装置に用いられるプレス金型部品用摺動部材に関する。 The present invention relates to a press die component sliding member used in a press die peripheral device.
 特許文献1には、表面粗さが1.0μm以上4.5μmRz未満のアルミニウム系軸受合金の表面に、固体潤滑剤98重量%~55重量%及び熱硬化性樹脂2重量%~45重量%からなり、膜厚が2μm~10μmであり、かつ表面粗さが5μmRz以下であるコーティング層を設けた内燃機関のすべり軸受が開示されている。 In Patent Document 1, the surface of an aluminum-based bearing alloy having a surface roughness of 1.0 μm or more and less than 4.5 μmRz is coated with 98% to 55% by weight of a solid lubricant and 2% to 45% by weight of a thermosetting resin, A plain bearing for an internal combustion engine provided with a coating layer having a film thickness of 2 μm to 10 μm and a surface roughness of 5 μmRz or less is disclosed.
 特許文献2には、カーボンファイバー10重量%~45重量%と、ポリテトラフルオロエチレン0.1重量%~8.5重量%、及び残部が実質的にポリエーテルエーテルケトン又はポリフェニレンサルファイドとから構成された湿式ラジアル軸受用摺動部材が開示されている。 Patent Document 2 describes a wet radial bearing composed of 10% to 45% by weight of carbon fiber, 0.1% to 8.5% by weight of polytetrafluoroethylene, and the balance being substantially polyether ether ketone or polyphenylene sulfide. Disclosed is a sliding member for a .
 特許文献3には、多孔質焼結層上に、PEEK樹脂に5体積%~40体積%の熱伝導性の良い充填材を配合して構成し、充填材としてグラファイト粒子、Cu粉、カーボンファイバー、ZnOウィスカー等を採用し、グラファイト粒子及びCu粉の平均粒径を10μm以下とし、カーボンファイバー及びZnOウィスカーを、繊維径5μm以下且つアスペクト比(繊維長/繊維径)2以上とした技術が開示されている。 In Patent Document 3, on a porous sintered layer, PEEK resin is mixed with a filler with good thermal conductivity of 5% to 40% by volume, and the filler is graphite particles, Cu powder, carbon fiber , ZnO whiskers, etc. are adopted, the average particle size of graphite particles and Cu powder is 10 μm or less, and the carbon fiber and ZnO whiskers have a fiber diameter of 5 μm or less and an aspect ratio (fiber length/fiber diameter) of 2 or more. It is
 特許文献4には、摺動層中に繊維状粒子を無配向すなわち等方的に分散させる技術が開示されている。 Patent Document 4 discloses a technique for isotropically dispersing fibrous particles in a sliding layer.
 特許文献5には、ポリアミドイミドおよびポリイミドから構成される摺動部材においてバインダー樹脂および添加剤を含む複合層の間に、コンプレッサーの冷媒の侵入を抑止するために、添加剤を含まない樹脂層を設けた技術が開示されている。 In Patent Document 5, a resin layer containing no additive is added between composite layers containing a binder resin and an additive in a sliding member made of polyamideimide and polyimide in order to prevent refrigerant from entering the compressor. The technology provided is disclosed.
 特許文献6には、焼結層ではない金属製の基材上に、熱可塑性ポリイミド樹脂およびポリアリールケトン樹脂を含む中間層と、中間層の上に形成されポリアリールケトン樹脂からなる表面層と、を有する摺動部材が開示されている。 In Patent Document 6, an intermediate layer containing a thermoplastic polyimide resin and a polyarylketone resin is formed on a metal substrate that is not a sintered layer, and a surface layer formed on the intermediate layer and made of the polyarylketone resin. A sliding member is disclosed having:
特開平7-238936号公報JP-A-7-238936 特開平10-204282号公報JP-A-10-204282 特開2002-61653号公報JP-A-2002-61653 特開2013-194204号公報JP 2013-194204 A 特開2018-105422号公報JP 2018-105422 A 特開2006-045493号公報JP 2006-045493 A
 しかしながら、上述した先行文献は、樹脂強度および摺動性能に主眼が置かれているため用途には限界があり、特に、衝撃荷重を受けるプレス金型向けのカム装置もしくはプレス金型周辺装置などには十分ではない。 However, the above-mentioned prior art documents are limited in application because they focus on resin strength and sliding performance. is not enough.
 また、先行文献に開示されるポリイミド樹脂は、耐衝撃性に課題がある。したがって、カム装置など耐衝撃性を要求される用途に使用することは難しい場合がある。 In addition, the polyimide resin disclosed in the prior art has a problem with impact resistance. Therefore, it may be difficult to use in applications that require impact resistance, such as cam devices.
 上記の先行文献では、接着性を高めるために多孔質焼結層を利用し、表面粗さを規定しているが、いずれも耐衝撃性に対する配慮は開示されていない。 In the above-mentioned prior documents, a porous sintered layer is used to improve adhesion and the surface roughness is specified, but none of them disclose consideration for impact resistance.
 そこで、本発明は、プレス加工において衝撃荷重が生じるプレス金型周辺装置に用いられるプレス金型部品用摺動部材に必要な衝撃緩和性を提供することを目的とする。 Therefore, an object of the present invention is to provide a sliding member for press die parts used in a press die peripheral device in which an impact load is generated in press working, and to provide necessary impact relaxation properties.
 本発明は、プレス加工において衝撃荷重が生じるプレス金型周辺装置に用いられるプレス金型部品用摺動部材であって、鉄系基材と、鉄系基材の上に形成されており、固体潤滑剤とポリイミド樹脂を含まず、ポリエーテルエーテルケトン樹脂からなる中間層と、中間層の上に形成されており、固体潤滑剤を含み、ポリエーテルエーテルケトン樹脂からなる摺動層とを有し、プレス金型部品用摺動部材の衝撃運動量減衰率は、5%以上である。 The present invention relates to a press die part sliding member used in a press die peripheral device in which an impact load is generated in press working, comprising an iron-based base material and a solid body formed on the iron-based base material. It has an intermediate layer made of polyetheretherketone resin that does not contain a lubricant and a polyimide resin, and a sliding layer that is formed on the intermediate layer and made of polyetheretherketone resin and contains a solid lubricant. , the impact momentum attenuation rate of the sliding member for press die parts is 5% or more.
 本発明によれば、衝撃緩和性に優れたプレス金型周辺装置用の摺動部材を提供することができる。 According to the present invention, it is possible to provide a sliding member for a peripheral device of a press die that has excellent shock absorbing properties.
実施形態のプレス金型部品用摺動部材の断面構造を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram which shows the cross-section of the sliding member for press die components of embodiment. 比較例の摺動部材の断面構造を示す模式図。The schematic diagram which shows the cross-section of the sliding member of a comparative example. 実施形態の衝撃運動量曲線を示す図。The figure which shows the impact momentum curve of embodiment. プレス装置にセットされた衝撃摩擦試験装置を示す図。The figure which shows the impact friction test apparatus set to the press apparatus. カム装置分解図を示す図。The figure which shows a cam apparatus exploded view. コイルサポートカムタイプ装置分解図を示す図。The figure which shows the coil support cam type apparatus exploded view. サイドゲージカムタイプ装置分解図を示す図。The figure which shows the side gauge cam type apparatus exploded view. ダブルカム装置分解図を示す図。The figure which shows a double cam apparatus exploded view. ロータリーカム装置分解図を示す図。The figure which shows the rotary cam apparatus exploded view. 突上げカム装置分解図を示す図。The figure which shows the push-up cam apparatus exploded view. カム部品装置分解図を示す図。The figure which shows a cam components apparatus exploded view.
 以下に、実施の形態を詳細に説明する。なお、本発明はこれらの実施形態に限定されるものではない。 The embodiment will be described in detail below. However, the present invention is not limited to these embodiments.
 図1は、実施形態のプレス金型部品用摺動部材の断面構造を示す。実施形態のプレス金型部品用摺動部材1は、カム装置などのプレス金型周辺装置用の部材である。 FIG. 1 shows a cross-sectional structure of a sliding member for press die parts according to an embodiment. The press die part sliding member 1 of the embodiment is a member for a press die peripheral device such as a cam device.
 本明細書でいうプレス金型周辺装置とは、例えば、自動車用外板のプレス加工用の金型に付属する装置である。プレス金型周辺装置の一種であるカム装置は、プレスの上下運動を、スライダーを用いて方向変換し、鋼板側面を打ち抜いたり切断する装置である。そのため、カム装置のスライダー部には、プレスの上下運動に伴う、通常の摺動材には無い衝撃荷重が生じる。 The press die peripheral device referred to in this specification is, for example, a device attached to a die for pressing an outer panel of an automobile. A cam device, which is a type of press die peripheral device, uses a slider to change the direction of the vertical motion of the press and punch or cut the side of the steel plate. As a result, the slider portion of the cam device is subjected to an impact load that accompanies the up-and-down motion of the press, which is not present in ordinary sliding members.
 図1に示すように、実施形態のプレス金型部品用摺動部材1は、表面粗さRzを有する基材3と、基材3上に、マイカ8、及び、基部樹脂9を含むが、ポリテトラフルオロエチレン(PTFE)粒子4や黒鉛粒子5などの固体潤滑剤を含まない中間層T2と、中間層T2上に、PTFE粒子4、黒鉛粒子5、カーボンファイバー6、及び、素地樹脂7を含む摺動層T1と、を有する。なお、PTFE粒子4と黒鉛粒子5を総じて固体潤滑剤とする。 As shown in FIG. 1, the press die part sliding member 1 of the embodiment includes a base material 3 having a surface roughness Rz, and mica 8 and base resin 9 on the base material 3. An intermediate layer T2 containing no solid lubricant such as polytetrafluoroethylene (PTFE) particles 4 or graphite particles 5; and a sliding layer T1. The PTFE particles 4 and the graphite particles 5 are collectively referred to as a solid lubricant.
 実施形態のプレス金型部品用摺動部材1は、表面粗さRzの鋳鉄もしくは鋼材部材の基材3上に、中間層T2と摺動層T1を有する。摺動層T1は、ピッチ系カーボンファイバーとともに、PTFEなどの固体潤滑剤を含有する。中間層T2は、固体潤滑剤やカーボンファイバーを含まない。これにより、プレス金型部品用摺動部材1の衝撃緩和性が改善される。 The sliding member 1 for press die parts of the embodiment has an intermediate layer T2 and a sliding layer T1 on a base material 3 of cast iron or steel member having a surface roughness Rz. The sliding layer T1 contains pitch-based carbon fiber and a solid lubricant such as PTFE. The intermediate layer T2 does not contain solid lubricants or carbon fibers. As a result, the shock absorbing property of the sliding member 1 for press die parts is improved.
 実施形態のプレス金型部品用摺動部材1は、表面粗さRzの鋳鉄もしくは鋼材である基材3上に、膜厚t2が15μm以上180μm未満の中間層T2と、膜厚t1が20μm以上60μm未満の摺動層T1とを有する。 The sliding member 1 for press die parts of the embodiment comprises an intermediate layer T2 having a film thickness t2 of 15 μm or more and less than 180 μm and a film thickness t1 of 20 μm or more on a base material 3 made of cast iron or steel having a surface roughness Rz. and a sliding layer T1 of less than 60 μm.
 実施形態のプレス金型部品用摺動部材1では、スラスト荷重によって生じる強いせん断力に対して、中間層T2と基材3との強い接合力により、中間層T2と基材3との接合が保たれる。また、摺動層T1に含まれるカーボンファイバー6と固体潤滑剤5は、表面の摩擦力を低減し、すべり性能を確保する。 In the press die part sliding member 1 of the embodiment, the intermediate layer T2 and the base material 3 are bonded together due to the strong bonding force between the intermediate layer T2 and the base material 3 against the strong shear force generated by the thrust load. be kept. In addition, the carbon fiber 6 and the solid lubricant 5 contained in the sliding layer T1 reduce the frictional force on the surface and ensure the sliding performance.
 実施形態の基材3は、表面粗さRzを有する鉄系基材である。基材3の表面粗さRzは、JIBS-B0601-2001に定義される最大粗さ(最大高さ)である。 The base material 3 of the embodiment is an iron-based base material having a surface roughness Rz. The surface roughness Rz of the base material 3 is the maximum roughness (maximum height) defined in JIBS-B0601-2001.
 鋼材や鋳鉄材からなる基材3の粗さは、例えば、ショットブラストにより形成される。基材3の粗さ加工により最大粗さRzの凹凸を設ける。これにより、ポリエーテルエーテルケトン(PEEK)からなる中間層T2の接着力を向上させる。 The roughness of the base material 3 made of steel or cast iron is formed by, for example, shot blasting. Concavities and convexities having a maximum roughness Rz are provided by roughening the substrate 3 . This improves the adhesion of the intermediate layer T2 made of polyetheretherketone (PEEK).
 実施形態においては、PEEKを含む中間層T2のアンカー効果を持たせるため、基材3の表面粗さRzは15μm以上80μm未満であることが好ましい。表面粗さRzが15μm未満の場合には、中間層T2の耐衝撃密着力が低下し、基材3の表面粗さRzが80μm以上の場合には、中間層T2表面までその粗さが影響する。より好ましくは、基材3の表面粗さRzは、40μm以上60μm未満である。 In the embodiment, the surface roughness Rz of the base material 3 is preferably 15 μm or more and less than 80 μm in order to have the anchoring effect of the intermediate layer T2 containing PEEK. When the surface roughness Rz is less than 15 μm, the impact resistance adhesion of the intermediate layer T2 is reduced, and when the surface roughness Rz of the substrate 3 is 80 μm or more, the roughness affects the surface of the intermediate layer T2. do. More preferably, the surface roughness Rz of the substrate 3 is 40 µm or more and less than 60 µm.
 実施形態の摺動層T1は、中間層T2上に形成され、素地樹脂7、PTFE粒子4や黒鉛粒子5などの固体潤滑剤、及び、カーボンファイバー6を含む。摺動層T1は、他の添加剤(不図示)を含んでもよい。素地樹脂7は、ポリエーテルエーテルケトン(PEEK)である。 The sliding layer T1 of the embodiment is formed on the intermediate layer T2 and contains base resin 7, solid lubricants such as PTFE particles 4 and graphite particles 5, and carbon fibers 6. The sliding layer T1 may contain other additives (not shown). Base resin 7 is polyetheretherketone (PEEK).
 図1に示すように、摺動層T1は、表面からカーボンファイバー6やPTFE粒子4や黒鉛粒子5を含むまでの素地樹脂7の層部分である。摺動層T1の厚さt1は、素地樹脂7の表面の多数の凸部の一番高い部分から、カーボンファイバー6やPTFE粒子4や黒鉛粒子5を含む素地樹脂7の一番低い部分(図1に点線で表示)までの厚さである。 As shown in FIG. 1, the sliding layer T1 is a layer portion of the base resin 7 from the surface to including the carbon fibers 6, the PTFE particles 4, and the graphite particles 5. The thickness t1 of the sliding layer T1 extends from the highest portion of the many projections on the surface of the base resin 7 to the lowest portion of the base resin 7 containing the carbon fibers 6, PTFE particles 4 and graphite particles 5 (Fig. 1) with a dotted line).
 摺動層T1は、耐摩耗性、耐焼付性、低μ性などの特性を必要とするため、カーボンファイバー6、黒鉛粒子5、及び、PTFE粒子4などを含む。 The sliding layer T1 contains carbon fibers 6, graphite particles 5, PTFE particles 4, etc., because it requires properties such as wear resistance, seizure resistance, and low μ properties.
 摺動層T1に含まれる黒鉛粒子5やPTFE粒子4等の固体潤滑剤は、相手材への移着性能に優れ、摩擦係数を低くかつ安定化させる作用を持ち、同時になじみ性を改善し仕上げ加工性を確保する。黒鉛粒子5は、潤滑性に優れる天然黒鉛であることが好ましい。黒鉛粒子5は、鱗片状、土状、もしくは、造粒された黒鉛でもよい。その他、固体潤滑剤として、MoS,WS,h-BNなども使用することができる。 The solid lubricant such as graphite particles 5 and PTFE particles 4 contained in the sliding layer T1 has excellent transfer performance to the mating material, has the effect of lowering and stabilizing the coefficient of friction, and at the same time improves the conformability and finishes. Ensure workability. Graphite particles 5 are preferably natural graphite having excellent lubricity. The graphite particles 5 may be scaly, earthy, or granulated graphite. In addition, MoS 2 , WS 2 , h-BN, etc. can also be used as solid lubricants.
 摺動層T1に添加されるPTFE粒子4は、5質量%以上15質量%未満が好ましく、黒鉛粒子5は、3質量%以上10質量%未満であることが好ましい。これにより、摩擦特性が優れた性能を確保できる。 The PTFE particles 4 added to the sliding layer T1 are preferably 5% by mass or more and less than 15% by mass, and the graphite particles 5 are preferably 3% by mass or more and less than 10% by mass. As a result, performance with excellent friction characteristics can be ensured.
 カーボンファイバー6は、原材料から分類されるピッチ系、または、PAN系のいずれのものであってもよい。カーボンファイバー6は、高摺動性を有するピッチ系炭素繊維の方が好ましい。カーボンファイバー6の焼成温度は特に限定するものではないが、2000℃またはそれ以上の高温で焼成されて黒鉛(グラファイト)化されたものであると、相手材を摩耗損傷しにくいので好ましい。 The carbon fiber 6 may be either pitch-based or PAN-based, which are classified from raw materials. The carbon fibers 6 are preferably pitch-based carbon fibers having high slidability. The firing temperature of the carbon fiber 6 is not particularly limited, but if it is fired at a high temperature of 2000° C. or more to be graphitized, it is preferable because the mating material is less likely to be worn and damaged.
 カーボンファイバー6は、摺動層T1を繊維強化により強靭化するとともに、耐摩耗性、低摩擦性を発揮し、衝撃緩和性および摺動性の向上に寄与する。 The carbon fiber 6 strengthens the sliding layer T1 by fiber reinforcement, exhibits wear resistance and low friction properties, and contributes to the improvement of shock mitigation and slidability.
 カーボンファイバー6の平均繊維径は20μm以下、好ましくは、10μm以上20μm未満である。平均繊維径が20μmを超える場合には、極圧が発生するため、耐荷重性の向上効果が乏しく、相手材の摩耗損傷が大きくなるため好ましくない。 The average fiber diameter of the carbon fibers 6 is 20 µm or less, preferably 10 µm or more and less than 20 µm. If the average fiber diameter exceeds 20 μm, extreme pressure is generated, so that the effect of improving the load resistance is poor and the wear and damage of the mating member increases, which is not preferable.
 カーボンファイバー6は、チョップドファイバー、ミルドファイバーのいずれであってもよい。滑り軸受部を薄肉で成形する場合は、カーボンファイバー6は、繊維長が1mm未満のミルドファイバーの方が好ましい。カーボンファイバー6は、直径が10μm以上20μm未満、かつ、長さが最大1000μmであり、好ましくは、長さが100μm以上500μm未満である。 The carbon fiber 6 may be either chopped fiber or milled fiber. When forming a thin plain bearing, the carbon fiber 6 is preferably a milled fiber having a fiber length of less than 1 mm. The carbon fibers 6 have a diameter of 10 μm or more and less than 20 μm and a maximum length of 1000 μm, preferably 100 μm or more and less than 500 μm.
 実施形態のプレス金型部品用摺動部材1は、下記トライボロジー基礎式(式4)に従い、耐摩耗性と低摩擦性(低μ性)を有する。 The press die part sliding member 1 of the embodiment has wear resistance and low friction (low μ) according to the basic tribology formula (formula 4) below.
 μ=τ0/PH (式4)
 ただし、μ:摩擦係数、τ0:潤滑物質のせん断力、PH:硬さ(荷重/面積)である。
μ=τ 0 /P H (Formula 4)
where μ: coefficient of friction, τ 0 : shear force of lubricating substance, and PH : hardness (load/area).
 低摩擦性とは、摩擦係数が低いことである。摩擦係数μは、潤滑物質のせん断力に比例し、下地硬さに反比例する。従って、摩擦時に荷重点となるカーボンファイバー6には、硬質かつ摺動性能に優れるピッチ系カーボンファイバーを選択することができる。固体潤滑剤であるPTFE4や黒鉛5がその表面に介在することで、極めて低い摩擦係数を導出する。特に衝撃荷重下で油膜が途切れがちの状態では、PTFE4や黒鉛5は、潤滑状態を維持するために有効な添加成分である。 "Low friction" means that the coefficient of friction is low. The friction coefficient μ is proportional to the shear force of the lubricating substance and inversely proportional to the substrate hardness. Therefore, pitch-based carbon fibers, which are hard and have excellent sliding performance, can be selected as the carbon fibers 6 that serve as load points during friction. An extremely low coefficient of friction is derived by interposing PTFE 4 and graphite 5, which are solid lubricants, on the surface. PTFE 4 and graphite 5 are additive components effective for maintaining the lubricating state, especially in a state where the oil film tends to break under impact load.
 実施形態の中間層T2は、基材3上に形成され、基材3の表面粗さ頂点上部にPTFE粒子4や黒鉛粒子5などの固体潤滑剤を含まない基部樹脂9とマイカ8を含む。 The intermediate layer T2 of the embodiment is formed on the base material 3 and contains a base resin 9 and mica 8 that do not contain solid lubricants such as PTFE particles 4 and graphite particles 5 above the top of the surface roughness of the base material 3 .
 中間層T2は、摺動層T1の下面から、基材3の上面までの層部分である。中間層T2の厚さt2は、摺動層T1のカーボンファイバー6や固体潤滑剤5を含む素地樹脂7の一番低い部分(図1に点線で表示)から、基材3の表面粗さRzの基底線までの基部樹脂9の厚さである。 The intermediate layer T2 is a layer portion from the lower surface of the sliding layer T1 to the upper surface of the base material 3. The thickness t2 of the intermediate layer T2 extends from the lowest portion (indicated by the dotted line in FIG. 1) of the base resin 7 containing the carbon fibers 6 and the solid lubricant 5 of the sliding layer T1 to the surface roughness Rz is the thickness of the base resin 9 to the base line of .
 中間層T2は、摺動層T1と、鋼材や鋳鉄材からなる基材3との接着力を向上させ、衝撃荷重に耐えるために設けられた層である。従って、中間層T2は、基部樹脂9内にPTFE粒子4や黒鉛粒子5などの固体潤滑剤を含まない。基部樹脂9は、PEEK樹脂であることが好ましい。基部樹脂9は、樹脂強化のためマイカ8を含んでもよい。 The intermediate layer T2 is a layer provided to improve the adhesion between the sliding layer T1 and the base material 3 made of steel or cast iron and to withstand impact loads. Therefore, the intermediate layer T2 does not contain solid lubricants such as PTFE particles 4 and graphite particles 5 in the base resin 9. FIG. The base resin 9 is preferably PEEK resin. The base resin 9 may contain mica 8 for resin reinforcement.
 実施形態のプレス金型部品用摺動部材1は、中間層T2の厚さt2と表面粗さRzとの差(t2―Rz)が0μm以上100μm未満である。これにより、衝撃緩和性において、優れた性質を示す。 In the press die part sliding member 1 of the embodiment, the difference (t2-Rz) between the thickness t2 of the intermediate layer T2 and the surface roughness Rz is 0 µm or more and less than 100 µm. As a result, excellent properties are exhibited in terms of impact relaxation.
 図2に、比較例の中間層T2を持たない摺動部材に高せん断力が働く場合の断面構造の模式図を示す。図2において、Aはせん断力、S-S’は衝撃荷重により生じるせん断帯を示す。 FIG. 2 shows a schematic diagram of the cross-sectional structure when a high shearing force acts on the sliding member without the intermediate layer T2 of the comparative example. In FIG. 2, A indicates the shear force, and S-S' indicates the shear band caused by the impact load.
 比較例では、PEEK樹脂と金属材料との接合強度を確保するために、粗いRzを設定する。ピッチ系カーボンファイバーやPTFEなどの添加物を含む層が、直接下地の鋼や鋳鉄の表面に接する場合には、添加物が表面に介在することで、接着強度の低下が生じる。特にこの影響は、PTFEなど固体潤滑剤による影響が大きい。即ちPTFE、黒鉛など低せん断な物質が表面に接することで、接着性が極端に低下する。 In the comparative example, a rough Rz is set in order to secure the bonding strength between the PEEK resin and the metal material. When a layer containing an additive such as pitch-based carbon fiber or PTFE is in direct contact with the surface of the underlying steel or cast iron, the presence of the additive on the surface causes a decrease in adhesive strength. In particular, this effect is greatly influenced by solid lubricants such as PTFE. That is, contact with a low-shear substance such as PTFE or graphite on the surface causes an extreme decrease in adhesiveness.
 実施形態のプレス金型部品用摺動部材1がカム装置等のプレス金型周辺装置に備わる場合には、衝撃に伴う高いせん断荷重Aは、接着面直上、図2の斜線部S-S’に発生する。この高せん断帯S-S’に、低せん断物質である固体潤滑剤、PTFE、黒鉛、カーボンファイバーなどの添加物が点在した場合、耐せん断性の低下を招く。 When the press die part sliding member 1 of the embodiment is provided in a press die peripheral device such as a cam device, a high shear load A due to the impact is applied directly above the bonding surface, in the shaded area SS' in FIG. occurs in If this high-shear zone S-S' is interspersed with additives such as low-shear substances such as solid lubricants, PTFE, graphite, and carbon fibers, the shear resistance is lowered.
 本発明者らはこの点に注目し、高せん断帯S-S’中に低せん断物質や応力集中が生じやすい硬質な繊維や固体潤滑剤など添加物を含まない中間層T2を設けることで、強い接合力と優れた衝撃緩和性が得られることを見出した。実施形態の摺動部材では、衝撃緩和性と剥離防止性を両立させることが可能になる。 The present inventors paid attention to this point, and provided an intermediate layer T2 that does not contain additives such as low-shear substances, hard fibers that tend to cause stress concentration, and solid lubricants in the high-shear band SS'. It was found that strong bonding strength and excellent impact relaxation can be obtained. In the sliding member of the embodiment, it is possible to achieve both impact relaxation properties and peeling prevention properties.
 実施形態のプレス金型部品用摺動部材1の衝撃運動量減衰率は、5%以上である。好ましくは7%以上30%以下である。以下、衝撃運動量減衰率について説明する。 The impact momentum attenuation rate of the sliding member 1 for press die parts of the embodiment is 5% or more. It is preferably 7% or more and 30% or less. The impact momentum attenuation rate will be described below.
 実施形態のプレス金型部品用摺動部材1の用途であるカム装置等のプレス金型周辺装置には、耐衝撃性および潤滑性が要求される。実施形態のプレス金型部品用摺動部材1を摺動部に備えるカム装置等のプレス金型周辺装置では、中間層厚さと表面粗さの差が適切に保たれていることにより、満足する要求性能が得られる。実施形態のカム装置では、相手材の衝突によって生じる衝撃荷重を、弾性変形する樹脂層(摺動層T1と中間層T2)全体で吸収する。 Impact resistance and lubricity are required for press die peripheral devices such as cam devices, which are applications of the sliding member 1 for press die parts of the embodiment. In the press die peripheral device such as the cam device having the slide member 1 for press die parts of the embodiment in the sliding part, the difference between the thickness of the intermediate layer and the surface roughness is appropriately maintained, so that it is satisfactory. Required performance is obtained. In the cam device of the embodiment, the entirety of the elastically deformable resin layers (the sliding layer T1 and the intermediate layer T2) absorbs the impact load caused by the collision of the mating member.
 素地樹脂7及び基部樹脂9は、PEEK樹脂である。PEEK樹脂は、ベンゼン環がパラの位置で、カルボニル基とエーテル結合によって連結されたポリマー構造を持つ結晶性の熱可塑性樹脂である。PEEK樹脂は、優れた耐熱性、耐クリープ性、耐荷重性、耐摩耗性、摺動特性などを有する。 The base resin 7 and base resin 9 are PEEK resin. A PEEK resin is a crystalline thermoplastic resin having a polymer structure in which a benzene ring is at the para position and is linked to a carbonyl group by an ether bond. PEEK resin has excellent heat resistance, creep resistance, load resistance, wear resistance, sliding properties, and the like.
 その他にも、樹脂としては、例えば、ポリエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂からなる群より選択された樹脂を使用することができる。特に、実施形態のプレス金型部品用摺動部材1に要求される衝撃緩和性にはPEEK樹脂が優れた性能を示す。 In addition, as the resin, for example, a resin selected from the group consisting of polyether ketone resin, polyphenylene sulfide resin, and polyamide resin can be used. In particular, the PEEK resin exhibits excellent performance in impact relaxation required for the sliding member 1 for press die parts of the embodiment.
 プレス金型用のカム装置は所定の傾斜角をもって設定される。カム装置は、傾斜角を有することによりプレス加工による衝撃エネルギーを、衝撃エネルギーとすべりエネルギーに分配する。しかしながら、衝撃エネルギーがすべりエネルギーに一部変換されたとしても、衝撃エネルギーによる素材のダメージは大きく、衝撃エネルギーを緩和することが課題となる。 The cam device for press dies is set with a predetermined angle of inclination. Since the cam device has an inclination angle, the impact energy due to press working is divided into impact energy and sliding energy. However, even if the impact energy is partially converted to sliding energy, the damage to the material due to the impact energy is large, and mitigating the impact energy is a problem.
 図4は、衝撃エネルギーの大きさの測定装置を示す。図4に示す測定装置は、プレス装置のスライド1、カム装置2、プレス装置のボルスタ3、及び、衝撃運動量減衰率を計測するための歪ゲージ4からなる。 Fig. 4 shows a device for measuring the magnitude of impact energy. The measuring device shown in FIG. 4 comprises a press slide 1, a cam device 2, a press bolster 3, and a strain gauge 4 for measuring the impact momentum attenuation rate.
 図4に示すように、カム装置の底部に歪ゲージ4をセットして、薄板加工を模擬加工した場合の衝撃エネルギーの大きさの測定を実施した。その結果、図3のような荷重-時間曲線を得た。この荷重-時間曲線はカムにかかる荷重の時間的変化を示し、その面積Sは衝撃運動量の値を示す。種々の部材において衝撃エネルギーを求め、式(3)に示す衝撃運動量減衰率を比較することで、素材の衝撃緩和性を評価した。 As shown in Fig. 4, a strain gauge 4 was set at the bottom of the cam device to measure the magnitude of the impact energy when simulating thin plate processing. As a result, a load-time curve as shown in FIG. 3 was obtained. This load-time curve shows the time variation of the load applied to the cam, and its area S shows the value of the impact momentum. Impact energy was obtained for various members, and the impact relaxation properties of the materials were evaluated by comparing the impact momentum attenuation rates shown in Equation (3).
 カム装置に生じる衝撃力について説明する。質量m(kg)の物体が、高さh(m)から落下した時の着地点での速さv(m/s)は、加速度をα(m/s)とした時、以下の式(1)で表すことができる。 The impact force generated in the cam device will be described. The speed v (m/s) at the landing point when an object of mass m (kg) falls from height h (m) is given by the following formula, where α (m/s 2 ) is the acceleration: (1).
 mαh(位置エネルギー)=1/2・mV2(運動エネルギー)・・・(式1) mαh (potential energy)=1/2·mV 2 (kinetic energy) (Formula 1)
 この物体は、mv[kg・m/s]という運動量を持つ。落下点で、力T[N]を時間Δt[s]だけ受け、この運動量はゼロになり、以下の式(2)で表すことができる。 This object has a momentum of mv [kg・m/s]. At the falling point, it receives a force T[N] for a time Δt[s] and its momentum becomes zero, which can be expressed by the following equation (2).
 FΔt=mv・・・(式2)  FΔt=mv (Equation 2)
 この時、Fは衝撃力と定義される。 At this time, F is defined as the impact force.
 図4に示すプレス装置に歪ゲージを貼付したカム装置をセットし、カム装置に生じる荷重(F)-時間(Δt)曲線(図3)の面積S(本明細書でいう衝撃運動量)を測定した。 A cam device with a strain gauge attached is set in the press device shown in FIG. 4, and the area S (impact momentum referred to in this specification) of the load (F)-time (Δt) curve (FIG. 3) generated in the cam device is measured. bottom.
 実施形態の摺動部材を使用しないカム装置を測定した場合の面積SをS1とし、実施形態の摺動部材を使用したカム装置を測定した場合の面積SをS2とした場合の衝撃運動量減衰率Rは、以下の式(3)で表される。 The impact momentum attenuation rate when the area S when measuring the cam device that does not use the sliding member of the embodiment is S1, and the area S when measuring the cam device using the sliding member of the embodiment is S2. R is represented by the following formula (3).
 R=[(S1-S2)/S1] ×100(%)・・・(式3)  R=[(S1-S2)/S1]×100(%)...(Formula 3)
 実施形態のプレス金型部品用摺動部材1について衝撃試験を行った結果を示す。表1の実施例の摺動部材は、摺動層T1に固体潤滑剤5としてPTFEを10質量%含み、カーボンファイバー6を5質量%含み、素地樹脂7がPEEK樹脂であり、摺動層T1の厚さt1が35μmである。中間層T2は、PEEK樹脂の基部樹脂9のみからなり、中間層T2の厚さt2が30μmである。基材3は、下地粗さRzが15μmである。比較例2は、中間層T2を含まず、基材3の上に直接摺動層T1を施工したものである。比較例3は、PEEK樹脂をコーティングしていない鋼材(すなわち、摺動層T1及び中間層T2を有しない鋼材)である。  The results of an impact test on the sliding member 1 for press die parts of the embodiment are shown. In the sliding members of the examples in Table 1, the sliding layer T1 contains 10% by mass of PTFE as the solid lubricant 5, 5% by mass of carbon fiber 6, the base resin 7 is PEEK resin, and the sliding layer T1 has a thickness t1 of 35 μm. The intermediate layer T2 is made of only the base resin 9 of PEEK resin, and the thickness t2 of the intermediate layer T2 is 30 μm. The substrate 3 has a base roughness Rz of 15 μm. Comparative Example 2 does not include the intermediate layer T2, and the sliding layer T1 is applied directly on the base material 3. Comparative Example 3 is a steel material that is not coated with PEEK resin (that is, a steel material that does not have the sliding layer T1 and the intermediate layer T2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本試験では、下置き型のカム装置の摺動部に実施例による摺動層T1及び中間層T2を形成し、以下の条件で衝撃試験を実施した。試験により得られた衝撃運動量の平均値(n=5)から、衝撃運動量減衰率を算出した。以下の条件において打回衝撃試験を行った。
<試験条件>
・使用試験機 :150tonfサーボプレス装置(コマツ産機)
・ストローク長:250mm
・ストローク数:60SPM
・カムスライダー接触時の速度:0.54m/s
・試験回数:5回
・カム幅:58mm
・カム角度:0°
・カムスライダー材質:FCD600
・潤滑油   :初期グリース塗布0.2~0.5g/面
・使用計測器 :NR―ST04(キーエンス)
・サンプリング周期:20μs
・ローパスフィルタ:5kHz
・歪ゲージ:FLAB-1-11-5LJCT-F(東京測器研究所)
In this test, the sliding layer T1 and the intermediate layer T2 according to the embodiment were formed on the sliding portion of the cam device of the bottom type, and an impact test was performed under the following conditions. The impact momentum attenuation rate was calculated from the average value (n=5) of the impact momentum obtained from the test. A hitting impact test was performed under the following conditions.
<Test conditions>
・Test machine used: 150tonf servo press machine (Komatsu Industries)
・Stroke length: 250mm
・Number of strokes: 60 SPM
・Speed when contacting cam slider: 0.54m/s
・Number of tests: 5 times ・Cam width: 58 mm
・Cam angle: 0°
・Cam slider material: FCD600
・Lubricating oil: Initial grease application 0.2 to 0.5 g/surface ・Measuring instrument used: NR-ST04 (Keyence)
・Sampling cycle: 20 μs
・Low-pass filter: 5 kHz
・Strain gauge: FLAB-1-11-5LJCT-F (Tokyo Measuring Instruments Laboratory)
 表2に試験結果を示す。中間層T2を含まず、摺動層T1のみからなる比較例2は、試験終了前に摺動層が剥離してしまった。試験結果からは実施例の摺動部材の衝撃運動量減衰率は、5%を超える7%を示し、衝撃緩和性を有することが解った。一方、比較例3の摺動部材の衝撃運動量減衰率は、0%を示し、衝撃緩和性が無いことが解った。 Table 2 shows the test results. In Comparative Example 2, which did not include the intermediate layer T2 and consisted only of the sliding layer T1, the sliding layer peeled off before the end of the test. From the test results, it was found that the impact momentum attenuation rate of the sliding members of Examples exceeded 5% and exceeded 7%, indicating that they had impact relaxation properties. On the other hand, the impact momentum attenuation rate of the sliding member of Comparative Example 3 was 0%, indicating that the sliding member had no impact relaxation properties.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示される結果より、摺動層T1及び中間層T2を設け、摺動層中に固体潤滑剤およびピッチ系カーボンファイバーを含む材料が、カム装置等のプレス金型周辺装置に必要とされる優れた衝撃緩和性と摺動層の剥離防止性を示している。以上説明したように、実施形態によると、摺動層T1及び中間層T2が衝撃緩和性を良好にし、中間層T2が摺動層T1の剥離を防止することから、カム装置等のプレス金型周辺装置の摺動部分の摺動部材として優れた材料を提供することができる。 From the results shown in Table 2, it was found that a press die peripheral device such as a cam device, which has a sliding layer T1 and an intermediate layer T2, and which contains a solid lubricant and pitch-based carbon fiber in the sliding layer, is required. It shows excellent impact relaxation and anti-peeling properties of the sliding layer. As described above, according to the embodiment, the sliding layer T1 and the intermediate layer T2 improve the shock absorbing property, and the intermediate layer T2 prevents the peeling of the sliding layer T1. An excellent material can be provided as a sliding member for the sliding portion of the peripheral device.
 実施形態のプレス金型部品用摺動部材1の摺動層T1及び中間層T2の形成方法を説明する。被処理物である鋳鉄製カムスライド板を所定形状に加工した後、苛性ソーダなどのアルカリ処理液中において脱脂処理し、続いて水洗及び湯洗を行い表面に付着したアルカリを除去する。表面粗さはブラスト処理条件にて調整される。その後、強化材マイカを含むPEEK樹脂を希釈剤で希釈した樹脂を中間層としてスプレーでライニング上に所定厚さに塗し、250℃~400℃で乾燥・焼成する。次に固体潤滑剤、黒鉛PTFE、およびカーボンファイバーを含むPEEK樹脂をスプレーでライニング上に塗布し、同じく250℃~400℃で乾燥・焼成する。成膜後の表面粗さが粗い時はバフ等による平滑化処理を行う。スプレー法の他にロールコート法、浸漬法、はけ塗り法、印刷法などの方法により摺動層T1及び中間層T2を成膜することができる。 A method of forming the sliding layer T1 and the intermediate layer T2 of the sliding member 1 for press die parts of the embodiment will be described. After the cast iron cam slide plate, which is the object to be treated, is processed into a predetermined shape, it is degreased in an alkaline treatment liquid such as caustic soda, followed by washing with water and hot water to remove alkali adhering to the surface. Surface roughness is adjusted by blasting conditions. Thereafter, a resin obtained by diluting a PEEK resin containing mica as a reinforcing material with a diluent is sprayed onto the lining to a predetermined thickness as an intermediate layer, and dried and baked at 250°C to 400°C. Next, a PEEK resin containing a solid lubricant, graphite PTFE, and carbon fiber is sprayed onto the lining, and dried and baked at 250°C to 400°C. When the surface roughness after film formation is rough, buffing or the like is performed for smoothing. The sliding layer T1 and the intermediate layer T2 can be formed by a roll coating method, a dipping method, a brush coating method, a printing method, or the like, in addition to the spray method.
(適用例)
 実施形態によるプレス金型部品用摺動部材1は、例えば、プレス金型周辺装置の摺動面に用いられる。
(Application example)
The press die component sliding member 1 according to the embodiment is used, for example, as a sliding surface of a press die peripheral device.
 実施形態において、カム装置の鋼材や鋳鉄材の摺動面の片側を基材3とし、摺動層T1及び中間層T2を設けることにより衝撃緩和性と摺動性に優れたカム装置とすることができる。カム装置は下置きカム、上吊りカム、ダブルカム、ローラーカムなど種々のタイプがあるが、いずれのカムにおいても摺動部分があり、この部分の片側に摺動層T1及び中間層T2を設けることができる。これにより、従来の銅合金に黒鉛を埋設する摺動材に比較し、コンパクトで高性能なカム装置とすることができる。 In the embodiment, one side of the sliding surface of the steel material or cast iron material of the cam device is used as the base material 3, and the sliding layer T1 and the intermediate layer T2 are provided to provide the cam device excellent in shock absorbing property and slidability. can be done. There are various types of cam devices such as lower cams, upper suspended cams, double cams, roller cams, etc. All cams have a sliding portion, and a sliding layer T1 and an intermediate layer T2 are provided on one side of this portion. can be done. As a result, compared to the conventional sliding member in which graphite is embedded in a copper alloy, a compact and high-performance cam device can be provided.
 実施形態によるプレス金型部品用摺動部材1は、表3および図5から図11に示すプレス金型部品用の周辺装置の摺動部に用いられる。表3にはそれぞれの装置名、構成する部品名、摺動面に摺動層T1及び中間層T2を設けた面を有する部品を〇印で示す。これに限らず、実施形態によるプレス金型部品用摺動部材1は、自動車部品、発電装置部品、産業用機械部品などの衝撃荷重を受ける摺動部材への適用も可能である。 The press die part sliding member 1 according to the embodiment is used for the sliding portion of the press die part peripheral device shown in Table 3 and FIGS. 5 to 11 . In Table 3, the name of each device, the name of the constituent parts, and the parts having a surface provided with the sliding layer T1 and the intermediate layer T2 on the sliding surface are indicated by ◯ marks. Not limited to this, the press die part sliding member 1 according to the embodiment can also be applied to a sliding member that receives an impact load, such as an automobile part, a generator part, an industrial machine part, and the like.
 実施形態のプレス金型部品用摺動部材1の適用例を説明する。実施形態のプレス金型部品用摺動部材1は、例えば、プレス金型周辺装置の摺動部や、カム装置用部品の摺動部に適用することができる。なお、実施形態のプレス金型部品用摺動部材1の適用において、プレス金型部品用摺動部材1を別部品としてもよいし、プレス金型周辺装置の摺動部やカム装置用部品の摺動部に一体化することでもよい。 An application example of the sliding member 1 for press die parts of the embodiment will be described. The press die component sliding member 1 of the embodiment can be applied to, for example, a sliding portion of a press die peripheral device or a sliding portion of a cam device component. In addition, in applying the press die part sliding member 1 of the embodiment, the press die part sliding member 1 may be a separate part, or may be a sliding part of a press die peripheral device or a part for a cam device. It may be integrated with the sliding portion.
 図5に、カム装置300の分解図を示す。カム装置300は、カムホルダー301、スライドキーパー302、カムスライダー303、カムドライバー304を有する。カムホルダー301は上型に取り付けられている。カムスライダー303は、ワークを加工する加工工具が設置可能であり、カムホルダー301に摺動可能に取り付けられている。カムドライバー304は下型に取り付けられ、カムスライダー303を加工方向に駆動する。 An exploded view of the cam device 300 is shown in FIG. The cam device 300 has a cam holder 301 , a slide keeper 302 , a cam slider 303 and a cam driver 304 . The cam holder 301 is attached to the upper die. The cam slider 303 is slidably attached to the cam holder 301 on which a machining tool for machining a work can be installed. A cam driver 304 is attached to the lower die and drives the cam slider 303 in the machining direction.
 例えば、スライドキーパー302の摺動面、カムドライバー304の摺動面、カムスライダー303の摺動面のいずれか1以上に、実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れたカム装置300を実現することができる。 For example, by applying the sliding member of the embodiment to any one or more of the sliding surface of the slide keeper 302, the sliding surface of the cam driver 304, and the sliding surface of the cam slider 303, impact relaxation and sliding It is possible to realize the cam device 300 with excellent performance.
 図6に、カムタイプのコイルサポート装置400の分解図を示す。カムタイプのコイルサポート装置400は、カムドライバー401、カムスライダー402、カムホルダー403、カムスライダー摺動面404、及び、405を有する。カムドライバー401は上型に取り付けられ、カムホルダー403は下型に取り付けられる。 FIG. 6 shows an exploded view of the cam-type coil support device 400. FIG. A cam-type coil support device 400 has a cam driver 401 , a cam slider 402 , a cam holder 403 , and cam slider sliding surfaces 404 and 405 . The cam driver 401 is attached to the upper mold and the cam holder 403 is attached to the lower mold.
 カムタイプのコイルサポート装置400は、上死点状態において流れてくるコイル材(パネル)を保持し、下死点に近づくにつれ上型に取り付けられたカムドライバー401が、下型に取り付けられたカムスライダー402を水平方向へ押し出し、パネルスクラップが落ちるように退避する。カムタイプのコイルサポート装置400は、ブランク型において、コイル材のたわみを矯正し、切刃への衝突を防止することを目的に使用することができる。 The cam-type coil support device 400 holds the coil material (panel) flowing in the top dead center state, and as the bottom dead center approaches, the cam driver 401 attached to the upper die moves the cam slider attached to the lower die. 402 is pushed horizontally and retracted so that the panel scraps fall. The cam-type coil support device 400 can be used for the purpose of correcting deflection of the coil material and preventing collision with the cutting edge in the blank die.
 例えば、カムスライダー摺動面404、及び、405のいずれか1以上に、実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れたカムタイプのコイルサポート装置400を実現することができる。 For example, by applying the sliding member of the embodiment to one or more of the cam slider sliding surfaces 404 and 405, a cam-type coil support device 400 with excellent shock absorbing properties and slidability is realized. be able to.
 図7に、カムタイプのサイドゲージ装置500の分解図を示す。サイドゲージ装置は、パネル位置決め装置とも呼ばれ、加工時におけるパネルのズレ防止や、横方向(左右方向)の突き当てに使用され、パネルの正確な位置決めの機能を有する。カムタイプのサイドゲージ装置500は、カムドライバー501、カムスライダー502、カムホルダー503、カムスライダー摺動面504、及び、505を有する。ブランク材(パネル)が型に投入されると、上型に取り付けられたカムドライバー501が、下型に取り付けられたカムスライダー502を押し出すことにより、ブランク材(パネル)が正規の位置にセットされる。 FIG. 7 shows an exploded view of the cam-type side gauge device 500. FIG. A side gauge device, also called a panel positioning device, is used to prevent the panel from slipping during processing and to abut the panel in the lateral direction (horizontal direction), and has the function of accurately positioning the panel. A cam type side gauge device 500 has a cam driver 501 , a cam slider 502 , a cam holder 503 , cam slider sliding surfaces 504 and 505 . When the blank material (panel) is put into the mold, the cam driver 501 attached to the upper mold pushes out the cam slider 502 attached to the lower mold, whereby the blank material (panel) is set at the regular position. be.
 例えば、カムスライダー摺動面504、及び、505のいずれか1以上に、実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れたカムタイプのサイドゲージ装置500を実現することができる。 For example, by applying the sliding member of the embodiment to one or more of the cam slider sliding surfaces 504 and 505, a cam-type side gauge device 500 with excellent shock absorbing properties and slidability is realized. be able to.
 図8に、ダブルカム装置600の分解図を示す。ダブルカム装置600は、案内カムホルダー601、案内カム602、カムスライダー603、カムホルダー604を有する。成形パネルに負角がある場合、パネルの搬送ができない。このカムを使うことで、上型に付くカムホルダー604がカムスライダー603を押し込むタイミングより速く案内カム602を動かし、パネルの負角部を回避することができる。 An exploded view of the double cam device 600 is shown in FIG. The double cam device 600 has a guide cam holder 601 , a guide cam 602 , a cam slider 603 and a cam holder 604 . If the molded panel has a negative angle, the panel cannot be transported. By using this cam, the guide cam 602 can be moved faster than the timing at which the cam holder 604 attached to the upper die pushes the cam slider 603, and the negative corner portion of the panel can be avoided.
 例えば、案内カムホルダー601、案内カム602、カムスライダー603、のいずれか1以上の摺動面に、実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れたダブルカム装置600を実現することができる。 For example, by applying the sliding member of the embodiment to the sliding surface of any one or more of the guide cam holder 601, the guide cam 602, and the cam slider 603, a double cam device excellent in shock absorption and slidability. 600 can be realized.
 図9に、ロータリーカム装置700の分解図を示す。ロータリーカム装置700は、ローター701、ホルダー702、キャップ703、カムスライダー704、及び、カムホルダー705を有する。上型に付くカムスライダー704がローター701を押し込むと、ローター701が回転し、加工位置にセットされパネル成形が可能となる。この動作とは逆にカムスライダー704がパネル成形後ローター701から離れることで負角部が逃げる位置まで回転し、パネルを上方へ搬送可能となる。 An exploded view of the rotary cam device 700 is shown in FIG. A rotary cam device 700 has a rotor 701 , a holder 702 , a cap 703 , a cam slider 704 and a cam holder 705 . When the cam slider 704 attached to the upper die pushes the rotor 701, the rotor 701 rotates and is set at the processing position, enabling panel molding. Contrary to this operation, when the cam slider 704 separates from the rotor 701 after the panel is molded, it rotates to the position where the negative corner portion escapes, and the panel can be transported upward.
 例えば、ローター701の摺動面に、実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れたロータリーカム装置700を実現することができる。 For example, by applying the sliding member of the embodiment to the sliding surface of the rotor 701, it is possible to realize the rotary cam device 700 with excellent shock absorbing properties and slidability.
 図10に、突上げカム装置800の分解図を示す。突上げカム装置800は、カムドライバー801、カムスライダーA802、スラストブロック803、カムホルダー804、及び、カムスライダーB805を有する。カムドライバー801が下方に移動すると、カムスライダーA802の傾斜面と摺動し、カムスライダーA802が水平方向に移動する。カムスライダーA802の傾斜面と、スラストブロック803、及び、カムホルダー804のガイドにより、カムスライダーB805が上方に移動することで、パネルを上方に突き上げて成形することができる。 An exploded view of the push-up cam device 800 is shown in FIG. The push-up cam device 800 has a cam driver 801, a cam slider A802, a thrust block 803, a cam holder 804, and a cam slider B805. When the cam driver 801 moves downward, it slides on the inclined surface of the cam slider A802, and the cam slider A802 moves horizontally. The cam slider B805 is moved upward by the inclined surface of the cam slider A802, the thrust block 803, and the guides of the cam holder 804, so that the panel can be pushed upward and molded.
 例えば、カムスライダーA802、スラストブロック803、及び、カムスライダーB805のいずれか1以上の摺動面に、実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れた突上げカム装置800を実現することができる。 For example, by applying the sliding member of the embodiment to the sliding surface of any one or more of the cam slider A802, the thrust block 803, and the cam slider B805, it is possible to achieve excellent impact relaxation and sliding performance. A cam device 800 can be implemented.
 図11に、カム部品900の分解図を示す。カムサイドブロック901、カムアッパープレート902、スライドプレート903、及び、カムスライドVガイド904が示されている。実施形態の摺動部材を適用することにより、衝撃緩和性と摺動性に優れたカム部品を提供することができる。 An exploded view of the cam component 900 is shown in FIG. Cam side block 901, cam upper plate 902, slide plate 903, and cam slide V-guide 904 are shown. By applying the sliding member of the embodiment, it is possible to provide a cam component with excellent shock absorbing properties and slidability.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上、実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This novel embodiment can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and its equivalents.
1:プレス金型部品用摺動部材
3:基材
T1:摺動層
T2:中間層
4:PTFE粒子
5:黒鉛粒子
6:カーボンファイバー
7:素地樹脂
8:マイカ
9:基部樹脂
 
1: Sliding member for press mold parts 3: Base material
T1: sliding layer
T2: intermediate layer 4: PTFE particles 5: graphite particles 6: carbon fiber 7: base resin 8: mica 9: base resin

Claims (9)

  1.  プレス加工において衝撃荷重が生じるプレス金型周辺装置に用いられるプレス金型部品用摺動部材であって、
     鉄系基材と、
     前記鉄系基材の上に形成されており、固体潤滑剤とポリイミド樹脂を含まず、ポリエーテルエーテルケトン樹脂からなる中間層と、
     前記中間層の上に形成されており、前記固体潤滑剤を含み、前記ポリエーテルエーテルケトン樹脂からなる摺動層と、
    を有し、
     前記プレス金型部品用摺動部材の衝撃運動量減衰率は、5%以上である、ことを特徴とするプレス金型部品用摺動部材。
    A sliding member for press die parts used in a press die peripheral device in which an impact load is generated in press working,
    an iron-based base material;
    an intermediate layer formed on the iron-based base material, which does not contain a solid lubricant and a polyimide resin and is made of a polyetheretherketone resin;
    a sliding layer formed on the intermediate layer, containing the solid lubricant, and made of the polyetheretherketone resin;
    has
    A sliding member for press die parts, characterized in that an impact momentum attenuation rate of the sliding member for press die parts is 5% or more.
  2.  前記衝撃運動量減衰率は、下記数式1により算出される、請求項1に記載のプレス金型部品用摺動部材。
    (数式1)
     衝撃運動量減衰率R=[(S1-S2)/S1]×100
     前記S1は、前記プレス金型部品用摺動部材を使用しないカム装置を用いて衝撃エネルギーを測定した場合の、前記カム装置に生じる荷重-時間曲線の面積から導かれた衝撃運動量である。
     前記S2は、前記プレス金型部品用摺動部材を使用したカム装置を用いて衝撃エネルギーを測定した場合の、前記カム装置に生じる荷重-時間曲線の面積から導かれた衝撃運動量である。
    2. The sliding member for press die parts according to claim 1, wherein said impact momentum attenuation rate is calculated by Equation 1 below.
    (Formula 1)
    Impact momentum attenuation rate R=[(S1-S2)/S1]×100
    The S1 is the impact momentum derived from the area of the load-time curve generated in the cam device when the impact energy is measured using the cam device that does not use the slide member for the press die part.
    The S2 is the impact momentum derived from the area of the load-time curve generated in the cam device when the impact energy is measured using the cam device using the sliding member for press die parts.
  3.  前記中間層は、前記固体潤滑剤を含まず、前記ポリエーテルエーテルケトン樹脂のみの樹脂からなる、請求項1または2に記載のプレス金型部品用摺動部材。 The sliding member for press die parts according to claim 1 or 2, wherein the intermediate layer does not contain the solid lubricant and is made of only the polyetheretherketone resin.
  4.  前記中間層は、無機充填剤を含む、請求項1から3のいずれかに記載のプレス金型部品用摺動部材。 The sliding member for press die parts according to any one of claims 1 to 3, wherein the intermediate layer contains an inorganic filler.
  5.  前記摺動層は、カーボンファイバーを含む、請求項1から4のいずれかに記載のプレス金型部品用摺動部材。 The sliding member for press die parts according to any one of claims 1 to 4, wherein the sliding layer contains carbon fiber.
  6.  前記固体潤滑剤は、ポリテトラフルオロエチレン及び黒鉛のうち少なくとも1つを含む、請求項1から5のいずれかに記載のプレス金型部品用摺動部材。 The sliding member for press die parts according to any one of claims 1 to 5, wherein the solid lubricant contains at least one of polytetrafluoroethylene and graphite.
  7.  前記カーボンファイバーは、直径が10μm以上20μm未満、かつ、長さが最大1000μmのピッチ系カーボンファイバーである、請求項5に記載のプレス金型部品用摺動部材。 The sliding member for press die parts according to claim 5, wherein the carbon fibers are pitch-based carbon fibers having a diameter of 10 µm or more and less than 20 µm and a maximum length of 1000 µm.
  8.  前記無機充填剤は、マイカである、請求項4に記載のプレス金型部品用摺動部材。 The sliding member for press die parts according to claim 4, wherein the inorganic filler is mica.
  9.  請求項1から8のいずれかに記載のプレス金型部品用摺動部材を有するプレス金型周辺装置。
     
    A press die peripheral device comprising the slide member for press die parts according to any one of claims 1 to 8.
PCT/JP2022/046049 2021-12-23 2022-12-14 Sliding member for press die components WO2023120325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280085165.6A CN118450953A (en) 2021-12-23 2022-12-14 Sliding member for press mold member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209144A JP7177541B1 (en) 2021-12-23 2021-12-23 Sliding member for press die parts
JP2021-209144 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120325A1 true WO2023120325A1 (en) 2023-06-29

Family

ID=84178867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046049 WO2023120325A1 (en) 2021-12-23 2022-12-14 Sliding member for press die components

Country Status (3)

Country Link
JP (1) JP7177541B1 (en)
CN (1) CN118450953A (en)
WO (1) WO2023120325A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253437A (en) * 1987-12-25 1989-10-09 Kureha Chem Ind Co Ltd Covering metal body
JPH09234522A (en) * 1996-02-29 1997-09-09 Ship & Ocean Zaidan Superplastic forming apparatus
JPH10193513A (en) * 1997-01-13 1998-07-28 Kawasaki Steel Corp Fluoroplastic film adhesion primer composition and fluoroplastic coated metal plate
JP2000055054A (en) * 1998-08-11 2000-02-22 Ntn Corp Combined layer bearing
JP2000272049A (en) * 1999-03-23 2000-10-03 Nikken Toso Kogyo Kk Method for forming peek resin film and peek resin film
JP2001054935A (en) * 1999-08-17 2001-02-27 Kawatetsu Galvanizing Co Ltd Metal plate coated with thermoplastic resin and it production
JP2006044224A (en) * 2004-07-09 2006-02-16 Mitsubishi Plastics Ind Ltd Laminated body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190931A (en) * 1990-11-26 1992-07-09 Toyota Motor Corp Drawing die with locking mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253437A (en) * 1987-12-25 1989-10-09 Kureha Chem Ind Co Ltd Covering metal body
JPH09234522A (en) * 1996-02-29 1997-09-09 Ship & Ocean Zaidan Superplastic forming apparatus
JPH10193513A (en) * 1997-01-13 1998-07-28 Kawasaki Steel Corp Fluoroplastic film adhesion primer composition and fluoroplastic coated metal plate
JP2000055054A (en) * 1998-08-11 2000-02-22 Ntn Corp Combined layer bearing
JP2000272049A (en) * 1999-03-23 2000-10-03 Nikken Toso Kogyo Kk Method for forming peek resin film and peek resin film
JP2001054935A (en) * 1999-08-17 2001-02-27 Kawatetsu Galvanizing Co Ltd Metal plate coated with thermoplastic resin and it production
JP2006044224A (en) * 2004-07-09 2006-02-16 Mitsubishi Plastics Ind Ltd Laminated body

Also Published As

Publication number Publication date
JP2023093976A (en) 2023-07-05
CN118450953A (en) 2024-08-06
JP7177541B1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
RU2521854C2 (en) Sliding element
US9970483B2 (en) Self-lubricating thermoplastic layers containing PTFE additive having a polymodal molecular weight
EP1894987B1 (en) Double-layer lubrication coating composition, double-layer lubrication coating and piston having same coating
US6863994B2 (en) Sliding bearing and method of manufacturing the same
JP6417400B2 (en) Sliding engine parts
US7910527B2 (en) Wear resistant lubricious composite
KR101000428B1 (en) Sliding bearing
JP4688161B2 (en) Sliding member and coating layer forming method thereof
CN103415604A (en) Sliding material composition and sliding member
US6305847B1 (en) Sliding bearing
Ul Haq et al. Friction and wear behavior of AA 7075-Si3N4 composites under dry conditions: effect of sliding speed
US6866421B2 (en) Plain bearing and process for producing the same
KR20150144821A (en) Sliding member and sliding material composition
US7101087B2 (en) Sliding member
JPH01261514A (en) Sliding material
JP2004019758A (en) Slide bearing
JP5878061B2 (en) Plain bearing
WO2023120325A1 (en) Sliding member for press die components
Tyagi et al. Wettability and performance of Cu-MoS2/SiC coating prepared by electro-discharge coating process
KR20240128932A (en) Contact member for press mold parts
Paturi et al. Investigation on wear behavior of electrostatic micro-solid lubricant coatings under dry sliding conditions
JP6545781B2 (en) Sliding bearing
JP2004010707A (en) Coating composition for sliding, and slide member
Pawlak et al. A hexagonal boron nitride-based model of porous bearings with reduced friction and increased load
JP7315153B2 (en) Coating composition for sliding member and sliding member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE