WO2023115783A1 - 电动汽车、热管理系统及其控制方法 - Google Patents

电动汽车、热管理系统及其控制方法 Download PDF

Info

Publication number
WO2023115783A1
WO2023115783A1 PCT/CN2022/091139 CN2022091139W WO2023115783A1 WO 2023115783 A1 WO2023115783 A1 WO 2023115783A1 CN 2022091139 W CN2022091139 W CN 2022091139W WO 2023115783 A1 WO2023115783 A1 WO 2023115783A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal management
heat
management subsystem
condenser
way valve
Prior art date
Application number
PCT/CN2022/091139
Other languages
English (en)
French (fr)
Inventor
赵宇
刘耀
周正柱
姜利文
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22790438.0A priority Critical patent/EP4223566A4/en
Priority to KR1020227039748A priority patent/KR20230098093A/ko
Priority to JP2022570381A priority patent/JP2024508062A/ja
Priority to US18/087,716 priority patent/US20230191870A1/en
Publication of WO2023115783A1 publication Critical patent/WO2023115783A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of electric vehicles, in particular to an electric vehicle, a heat management system and a control method thereof.
  • the present application provides an electric vehicle, a heat management system and a control method thereof, which can solve the problem of serious waste of heat.
  • the present application provides a thermal management system for an electric vehicle, the electric vehicle has a passenger compartment, and the thermal management system includes:
  • Passenger compartment thermal management subsystem which includes a compressor, a first throttle and an evaporator for cooling the passenger compartment; the compressor, the first throttle and the evaporator are controlled and connected in sequence to form a first refrigerant circuit;
  • the cabin heat management subsystem also includes a condenser, which is arranged between the compressor and the first throttling part and can exchange heat with the first refrigerant circuit;
  • Heat-generating components thermal management subsystem including heat-generating components and cooling water tanks for cooling the heat-generating components
  • the control valve system is connected to the thermal management subsystem of the passenger compartment and the thermal management subsystem of the heat-generating components; the control valve system can control the communication between the cooling water tank and the condenser to form the first cooling water circuit, and the first cooling water circuit is used to dissipate heat for the heating components.
  • the control valve system can connect the cooling water tank of the thermal management subsystem of the heat-generating component with the condenser of the thermal management subsystem of the passenger compartment to form a first cooling water circuit.
  • the first cooling water circuit can not only dissipate heat to the heat-generating components, but at the same time, because the water circulates in the first cooling water circuit, the condenser will circulate and replace water with a lower temperature, so that the condenser and the first refrigerant Heat is absorbed during the circuit heat exchange.
  • the cooling water tank is not only used as the radiator of the heat-generating components, but also as the radiator of the condenser, thereby avoiding the need to set up another radiator to dissipate heat for the condenser, so that the integration of the entire thermal management system is relatively high, and the waste of heat is reduced .
  • the condenser is cooled by water cooling, compared with the prior art in which the condenser is used as a part of the first refrigerant circuit, the refrigerant circuit is simplified, thereby reducing the amount of refrigerant charged, achieving energy-saving effect.
  • the heat-generating component thermal management subsystem includes a motor thermal management subsystem, and the heat-generating component includes an electric motor; and/or
  • the heat-generating component thermal management subsystem includes the power battery thermal management subsystem, and the heat-generating component includes the power battery;
  • control valve system can control the first cooling water circuit to selectively dissipate heat for the motor thermal management subsystem and/or the power battery thermal management subsystem.
  • the temperature of the electric motor and/or the power battery can be reduced, thereby ensuring that the electric motor and/or the power battery are within a normal operating temperature range.
  • the thermal management subsystem of the electric motor further includes a first water pump, the first water pump is arranged in the first cooling water circuit, and is used to provide a first flow force for water flowing in the first cooling water circuit.
  • the first water pump is a machine for conveying water or pressurizing water. The first flow force provided by the first water pump can make water circulate in the first cooling water circuit, thereby facilitating the dissipation of heat from the heat-generating components and the cooling of the condenser.
  • the heat-generating component thermal management subsystem further includes an electronic control device for controlling the motor, and the control valve system enables the first cooling water circuit to dissipate heat to the electronic control device.
  • the electric control device is radiated through the first heat dissipation water circuit, so as to ensure that the electric control device is within a normal working temperature range and avoid the working temperature of the electric control device from being too high.
  • the thermal management subsystem of the passenger compartment further includes a second throttling element and a cooler, and the compressor communicates with the second throttling element in a controlled manner to form a second refrigerant circuit;
  • the condenser is arranged between the air outlet end and the second throttling part and can exchange heat with the second refrigerant circuit
  • the cooler is arranged between the air return end and the second throttling part and can communicate with the second refrigerant circuit Agent circuit heat exchange;
  • the thermal management subsystem of the passenger cabin and the thermal management subsystem of the power battery are connected through the control valve system, and the two ends of the cooler are controlled and connected to form the second heat dissipation water circuit; the first heat dissipation water circuit is used for heat dissipation of the motor, and the second heat dissipation water circuit Used for power battery cooling.
  • the thermal management subsystem of the passenger compartment is integrated with the thermal management subsystem of the motor through the condenser, and integrated with the thermal management subsystem of the power battery through the cooler, which further improves the integration of the entire thermal management system and reduces the waste of heat.
  • the thermal management subsystem of the power battery includes a second water pump, and the second water pump is arranged in the second cooling water circuit for providing a second flow force for water flowing in the second cooling water circuit.
  • the second water pump is a machine for conveying water or pressurizing the water, and the second flow power provided by the second water pump can make the water circulate in the second cooling water circuit, thereby facilitating the heat dissipation of the electric battery.
  • the thermal management subsystem of the passenger compartment, the thermal management subsystem of the power battery and the thermal management subsystem of the electric motor are connected through a control valve system;
  • the control valve system can connect the heat dissipation water tank, the condenser and the cooler to form a third heat dissipation water circuit, and the third heat dissipation water circuit is used for heat dissipation of the electric motor and the power battery.
  • the thermal management subsystem of the passenger compartment, the thermal management subsystem of the electric motor and the thermal management subsystem of the power battery are integrated to reduce the heat waste of the thermal management system.
  • the motor thermal management subsystem further includes a first pipeline; the power battery thermal management subsystem further includes a second pipeline;
  • the control valve system can connect the first pipeline with the second pipeline to form the first heating water circuit.
  • the first heating water circuit can conduct heat conduction with the motor, heat the battery with the heat absorbed by the motor, and make the cooler and the cooling water tank Connected to form the fourth heat dissipation water circuit for the heat dissipation of the heat dissipation water tank.
  • the above arrangement can use the heat generated by the electric motor to heat the power battery, reducing the waste of heat.
  • the cooler radiates heat to the cooling water tank to further reduce the waste of heat.
  • the condenser has a first end and a second end connected to each other, the radiator tank has a third end and a fourth end connected to each other, and the third end communicates with the first end; the cooler has a first end connected to each other. Five ends and sixth ends, the first pipeline has seventh and eighth ends connected to each other, and the second pipeline has ninth and tenth ends connected to each other;
  • the control valve system includes a first control valve assembly and a second control valve assembly.
  • the first control valve assembly has five controllably communicated first ports, and the five first ports are respectively connected to the first end, the second end, and the seventh end. , the fifth end and the ninth end are connected;
  • the second control valve assembly has five second ports that are controllably communicated, and the five second ports are respectively connected to the third end, the fourth end, the sixth end, the eighth end and the third end. The ten ends are connected.
  • the first control valve assembly includes five first ports that are controllably communicated
  • the second control valve assembly includes five second ports that are controllably communicated
  • the first control valve assembly includes a first three-way valve and a first four-way valve, one of the valve ports of the first three-way valve communicates with one of the first four-way valve ports, and communicates with one of the first four-way valve ports.
  • the two first ports connected to the first end and the second end are set on the first three-way valve, and the remaining three first ports are set on the first four-way valve; or
  • the first control valve assembly includes a first five-way valve, and five first ports are arranged on the first five-way valve.
  • the second control valve assembly includes a second three-way valve and a second four-way valve, one of the valve ports of the second three-way valve communicates with one of the second four-way valve ports, and communicates with one of the third four-way valve ports.
  • the two second ports connected to the end and the fourth end are set in the second three-way valve, and the remaining three second ports are set in the second four-way valve; or
  • the second control valve assembly includes a second five-way valve, and five second ports are arranged on the second five-way valve.
  • the passenger compartment thermal management subsystem further includes a heater core for heating the passenger compartment, and the control valve system communicates the condenser with the heater core to form a second heating water circuit.
  • the control valve system connects the condenser and the heater core to form the second heating water circuit, the second heating water circuit can heat the passenger cabin, improving the comfort of the passenger cabin.
  • the temperature of the water flowing in it decreases, and accordingly, the effect of cooling the condenser is achieved.
  • the thermal management subsystem of the passenger compartment further includes a heater, and the heater is provided in the second heating water circuit and located on a flow path of the water flow from the condenser to the heater core.
  • the heater is provided in the second heating water circuit and located on a flow path of the water flow from the condenser to the heater core.
  • control valve system includes a third three-way valve, the third three-way valve is arranged in the second heating water circuit, and is located on the flow path of the water flow from the condenser to the heater core;
  • the three valve ports of the third three-way valve are respectively connected with the condenser, the cooling water tank and the warm air core body. In this way, by controlling the switches of the three valve ports of the third three-way valve, the condenser can be connected or disconnected from the cooling water tank, or the condenser can be connected or disconnected from the heater core.
  • the valve system is controlled to cause the second heated water circuit to heat the traction battery. That is, in the low temperature scene, the control valve system can make the second heating water circuit heat the power battery, so that the temperature of the power battery can be maintained within the normal working temperature range, and the effect of fully utilizing the heat can be achieved.
  • the thermal management subsystem of the power battery includes a second pipeline capable of exchanging heat with the power battery;
  • the control valve system includes a fourth three-way valve, and the fourth three-way valve is set in the second heating water
  • the circuit is located on the flow path where the water flow flows from the warm air core to the second pipeline;
  • the three valve ports of the fourth three-way valve are respectively connected with the warm air core body, the condenser and one end of the second pipeline, and the other end of the second pipeline is connected with the condenser. In this way, by controlling the switches of the three valve ports of the fourth three-way valve, the second heating water circuit can be made to heat the power battery or not to heat the power battery.
  • the passenger compartment thermal management subsystem further includes a third water pump, the third water pump is provided in the second heating water circuit, and is used to provide a third flow force for water flow in the second heating water circuit.
  • the third water pump is a machine for conveying water or pressurizing the water, and the third flow power provided by the third water pump can make the water circulate in the second heating water circuit, thereby facilitating the heating of the passenger compartment.
  • the passenger compartment thermal management subsystem further includes a liquid storage drier, the liquid storage drier is arranged on the first refrigerant circuit, and is located between the compressor and the first throttling part, and is used for drying the refrigerant .
  • the liquid receiver drier plays the role of drying the refrigerant, and can filter out tiny impurities in the refrigerant circuit, so as to facilitate the flow of the refrigerant and improve the performance of the thermal management subsystem of the passenger compartment.
  • the thermal management subsystem of the heat-generating component further includes a heat dissipation fan, and the heat dissipation fan is arranged next to the heat dissipation water tank for heat dissipation of the heat dissipation water tank.
  • the cooling fan can promote the flow of air, so that the heat of the cooling water tank can be dissipated in the air, thereby facilitating the cooling of the cooling water tank.
  • the present application provides an electric vehicle, including a passenger compartment and the thermal management system in the above embodiment, and the evaporator of the thermal management system is used for cooling the passenger compartment.
  • the present application provides a method for controlling a thermal management system, including the steps of:
  • the compressor, the first throttling member, and the evaporator are controlled to communicate in sequence to form a first refrigerant circuit for cooling the passenger compartment of the electric vehicle;
  • the heat dissipation water tank is used for heat dissipation of the heat-generating components, and the condenser is arranged between the compressor and the first throttling part and can exchange heat with the first refrigerant circuit.
  • the first heat dissipation water circuit can not only realize the heat dissipation of heat-generating components, but at the same time, because the water circulates in the first heat dissipation water circuit, the condenser will circulate and replace the water with a lower temperature, so as to facilitate The condenser absorbs heat when exchanging heat with the first refrigerant circuit. That is, the cooling water tank is not only used as the radiator of the heat-generating components, but also as the radiator of the condenser, thereby avoiding the need to set up another radiator to dissipate heat for the condenser, so that the integration of the entire thermal management system is relatively high, and the waste of heat is reduced .
  • the condenser is cooled by water cooling, compared with the prior art in which the condenser is used as a part of the first refrigerant circuit, the refrigerant circuit is simplified, thereby reducing the amount of refrigerant charged, achieving energy-saving effect.
  • the first cooling water circuit is used for cooling the electric motor and/or the power battery.
  • the temperature of the electric motor and/or the power battery can be reduced, thereby ensuring that the electric motor and/or the power battery are within a normal operating temperature range.
  • the compressor When the ambient temperature is higher than the second preset threshold, the compressor is controlled to communicate with the second throttling member to form a second refrigerant circuit;
  • the second preset threshold value is greater than the first preset threshold value;
  • the compressor has an air outlet end and an air return end connected to each other, and the condenser is arranged between the air outlet end and the second throttling part and can be thermally connected with the second refrigerant circuit
  • the cooler is arranged between the air return end and the second throttling part and can exchange heat with the second refrigerant circuit.
  • the first refrigerant circuit is controlled to be disconnected, and the condenser and the warm air core are controlled to be connected to form a second heating water circuit, and the warm air core is used to heat the passenger compartment;
  • the third preset threshold is smaller than the first preset threshold.
  • the thermal management subsystem of the passenger compartment is integrated with the thermal management subsystem of the motor through the condenser, and is integrated with the thermal management subsystem of the power battery through the cooler, which further improves the integration of the entire thermal management system and reduces the waste of heat.
  • the thermal management system includes a first pipeline and a second pipeline, and the second heating water circuit is used to heat the power battery;
  • the first pipeline is controlled to communicate with the second pipeline to form a first heating water circuit
  • the cooling water tank is communicated with a cooler to form a water circuit.
  • the heat generated by the electric motor can be used to heat the power battery, reducing the waste of heat.
  • the cooler radiates heat to the cooling water tank to further reduce the waste of heat.
  • control first refrigerant circuit is connected and the evaporator is used for dehumidification of the passenger compartment. In this way, while the second refrigerant circuit is heating the passenger compartment, the first refrigerant circuit can be used for dehumidification of the passenger compartment to improve the comfort of the passenger compartment.
  • the two ends of the cooler are controlled to form a second heat dissipation water loop to dissipate heat for the power battery; the first heat dissipation water loop dissipates heat to the motor; or
  • the condenser is used to defrost the cooling water tank.
  • the hot water in the condenser can be passed into the cooling water tank to defrost the cooling water tank.
  • FIG. 1 is a schematic diagram of a thermal management system according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a thermal management system provided by another embodiment of the present application.
  • Fig. 3 is a schematic diagram of the thermal management system shown in Fig. 1 in a first cooling mode
  • FIG. 4 is a schematic diagram of the thermal management system shown in FIG. 1 in a second cooling mode
  • Fig. 5 is a schematic diagram of the thermal management system shown in Fig. 1 in the first heating mode
  • FIG. 6 is a schematic diagram of the thermal management system shown in FIG. 1 in a second heating mode
  • FIG. 7 is a schematic diagram of the thermal management system shown in FIG. 1 in the first dehumidification mode
  • FIG. 8 is a schematic diagram of the thermal management system shown in FIG. 1 in a second dehumidification mode
  • Fig. 9 is a schematic diagram of the thermal management system shown in Fig. 1 in a third dehumidification mode
  • FIG. 10 is a schematic diagram of the thermal management system shown in FIG. 1 in the defrosting mode of the cooling water tank;
  • Fig. 11 is a schematic diagram of the thermal management system shown in Fig. 2 in the first cooling mode
  • Fig. 12 is a schematic diagram of the thermal management system shown in Fig. 2 in the second cooling mode
  • Fig. 13 is a schematic diagram of the thermal management system shown in Fig. 2 in the first heating mode
  • Fig. 14 is a schematic diagram of the thermal management system shown in Fig. 2 in the second heating mode
  • Fig. 15 is a schematic diagram of the thermal management system shown in Fig. 2 in the first dehumidification mode
  • Fig. 16 is a schematic diagram of the thermal management system shown in Fig. 2 in a second dehumidification mode
  • FIG. 17 is a schematic diagram of the thermal management system shown in FIG. 2 in a third dehumidification mode
  • Fig. 18 is a schematic diagram of the thermal management system shown in Fig. 2 in the defrosting mode of the cooling water tank;
  • FIG. 19 is a flowchart of a control method of a thermal management system provided by an embodiment of the present application.
  • Thermal management system 10. Passenger compartment thermal management subsystem; 11. Compressor; 12. First throttle; 13. Evaporator; 14. Condenser; 15. Second throttle; 16. Third Water pump; 17. Heater; 18. Warm air core; 19. Liquid storage dryer; 20. Motor heat management subsystem; 21. Motor; 22. Cooling water tank; 23. First water pump; 24. Electric control device; 25. First pipeline; 26. Cooling fan; 30. Power battery thermal management subsystem; 31. Power battery; 32. Cooler; 33. Second water pump; 34. Second pipeline; 41.
  • the fourth three-way valve; 80 The bypass pipeline; 200. The passenger compartment.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the thermal management system optimizes the use of heat, etc.
  • the optimized utilization of heat can improve the energy-saving performance of electric vehicles.
  • the thermal management system generally includes the passenger cabin thermal management subsystem and the heat-generating component thermal management subsystem, and the heat-generating component thermal management subsystem includes the motor thermal management subsystem and the power battery thermal management subsystem.
  • the passenger compartment thermal management subsystem and the heat-generating component thermal management subsystem are set independently, that is, the integration of the entire thermal management system is low, resulting in a serious waste of heat in the vehicle, which is not conducive to the energy saving and emission reduction of electric vehicles.
  • the thermal management subsystem of the passenger compartment and the thermal management subsystem of the heat-generating components included in the thermal management system can be integrated.
  • the motor thermal management subsystem can be integrated with the power battery thermal management subsystem, or the electric motor thermal management subsystem can be integrated with the passenger cabin thermal management subsystem, or the passenger cabin thermal management subsystem can be integrated with the power battery thermal management subsystem.
  • System integration can also integrate the motor thermal management subsystem, power battery thermal management subsystem and passenger cabin thermal management subsystem.
  • the thermal management system is applied to electric vehicles, and the electric vehicle has a passenger compartment.
  • the thermal management system includes the passenger compartment thermal management subsystem and the heat-generating component thermal management subsystem.
  • the condenser of the thermal management subsystem of the passenger compartment can exchange heat with its first refrigerant circuit, so that the temperature of the refrigerant in the first refrigerant circuit is reduced, so that the refrigerant circulates in the first refrigerant circuit to realize the passenger compartment of refrigeration.
  • the control valve system can connect the heat dissipation water tank of the thermal management subsystem of the heat-generating component with the condenser of the thermal management subsystem of the passenger cabin to form the first heat dissipation water circuit.
  • the first heat dissipation water circuit can not only realize the heat dissipation of the heat-generating
  • the first cooling water circuit circulates, and the condenser circulates and replaces water with a lower temperature, so that the condenser absorbs heat when exchanging heat with the first refrigerant circuit.
  • the cooling water tank when cooling the passenger compartment, not only serves as the radiator of the heat-generating components, but also serves as the radiator of the condenser, thereby avoiding the need for additional radiators to dissipate heat for the condenser, making the entire thermal management system
  • the high integration level reduces the waste of heat.
  • the condenser since the condenser is cooled by water cooling, the refrigerant circuit is simplified compared with the arrangement of the condenser as a part of the first refrigerant circuit in the prior art, thereby reducing the charging amount of the refrigerant .
  • the present application provides a thermal management system 100, including a passenger compartment thermal management subsystem 10, a heat-generating component thermal management subsystem and a control valve system, and the control valve system is connected to the passenger compartment thermal management subsystem 10 and Heat-generating components thermal management subsystem.
  • the passenger compartment thermal management subsystem 10 includes a compressor 11, a first throttling member 12 and an evaporator 13, the evaporator 13 is used for cooling the passenger compartment 200, and the compressor 11, the first throttling member 12 and the evaporator 13 are controlled They are connected in sequence to form the first refrigerant circuit.
  • the passenger compartment thermal management subsystem 10 further includes a condenser 14, which is arranged between the compressor 11 and the first throttling element 12, and capable of exchanging heat with the first refrigerant circuit.
  • the heat-generating component heat management subsystem includes a heat-generating component and a heat-dissipating water tank 22 for dissipating heat from the heat-generating component.
  • the control valve system can control the communication between the heat dissipation water tank 22 and the condenser 14 to form a first heat dissipation water circuit, and the first heat dissipation water circuit is used to dissipate heat to heat-generating components.
  • the passenger compartment thermal management subsystem 10 is used to manage the heat of the passenger compartment 200 , and the passenger compartment 200 can be refrigerated and/or heated through the passenger compartment thermal management subsystem 10 .
  • the passenger compartment thermal management subsystem 10 can only realize the cooling of the passenger compartment 200, that is, when the temperature in the passenger compartment 200 is high, the passenger compartment thermal management subsystem 10 can make the passenger compartment 200 cool. temperature drops.
  • the passenger compartment thermal management subsystem 10 can only realize the heating of the passenger compartment 200, that is, when the temperature in the passenger compartment 200 is low, the passenger compartment thermal management subsystem 10 can make the passenger compartment 200 The temperature inside rises.
  • the passenger compartment thermal management subsystem 10 can not only realize the cooling of the passenger compartment 200, but also realize the heating of the passenger compartment 200.
  • the passenger compartment thermal management subsystem 10 can 10 can reduce the temperature in the passenger compartment 200 , and when the temperature in the passenger compartment 200 is low, the passenger compartment thermal management subsystem 10 can increase the temperature in the passenger compartment 200 .
  • the thermal management subsystem of the heat-generating component can manage the heat of the heat-generating component, for example, it can dissipate heat and/or heat the heat-generating component.
  • the thermal management subsystem of the heat-generating component can only dissipate heat to the heat-generating component, that is, when the temperature of the heat-generating component is high, the thermal management subsystem of the heat-generating component can reduce the temperature of the heat-generating component.
  • the thermal management subsystem of the heat-generating component can only heat the heat-generating component, that is, when the temperature of the heat-generating component is low, the thermal management subsystem of the heat-generating component can increase the temperature of the heat-generating component.
  • the thermal management subsystem of the heat-generating component can both dissipate heat and heat the heat-generating component.
  • the thermal management subsystem of the heat-generating component can reduce the temperature of the
  • the heat-generating component thermal management subsystem can increase the temperature of the heat-generating component.
  • the control valve system is used to connect the passenger compartment thermal management subsystem 10 and the heat-generating component thermal management subsystem, so that the passenger compartment thermal management subsystem 10 and the heat-generating component thermal management subsystem can be integrated to reduce the waste of heat in the whole vehicle.
  • the compressor 11 is the driving force of the refrigeration cycle. It is driven by the motor to rotate continuously. In addition to extracting the vapor in the evaporator 13 in time to maintain low temperature and low pressure, it also increases the pressure and temperature of the refrigerant vapor through compression, creating The conditions under which the heat of the refrigerant vapor is transferred to the external environment. It can compress the low-temperature and low-pressure refrigerant vapor to a high-temperature and high-pressure state.
  • Condenser 14 is a heat exchange device whose function is to use the cooling medium (air or water) to take away the heat from the high-temperature and high-pressure refrigeration vapor from compressor 11, so that the high-temperature and high-pressure refrigerant vapor is cooled and condensed into a high-pressure and normal-temperature refrigeration system. agent liquid.
  • the condenser 14 is a plate heat exchanger, which has the characteristics of high heat exchange efficiency, small heat loss, compact and light structure, small footprint, wide application, and long service life.
  • the first throttling element 12 decompresses the high-pressure and normal-temperature steam to obtain a low-temperature and low-pressure refrigerant, which is sent to the condenser 14 for evaporation.
  • the evaporator 13 is also a heat exchange device, in which the low-temperature and low-pressure refrigerant formed after throttling evaporates and absorbs the heat of the substance to be cooled. That is, the low-temperature and low-pressure refrigerant in the evaporator 13 can absorb the heat in the passenger compartment 200 to reduce the temperature of the air in the passenger compartment 200 .
  • the compressor 11 When the passenger compartment 200 is cooled, the compressor 11 , the first throttling element 12 and the evaporator 13 are controlled and communicated in sequence to form a first refrigerant circuit. In this way, the refrigerant is compressed by the compressor 11 to be in a high-temperature and high-pressure state.
  • the high-temperature and high-pressure refrigerant flows in the first refrigerant circuit, it exchanges heat with the condenser 14, and the condenser 14 takes away the heat of the high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant vapor is cooled and condensed into a high-pressure and normal-temperature refrigerant liquid.
  • the high-pressure and normal-temperature refrigerant becomes a low-temperature and low-pressure refrigerant after being throttled by the first throttling member 12.
  • the low-temperature and low-pressure refrigerant evaporates in the evaporator 13, absorbs the heat of the air in the passenger compartment 200, and then flows back to the compressor 11. In order to achieve the effect of reducing the temperature in the passenger compartment 200 .
  • refrigerant pipelines are usually provided between the compressor 11 and the first throttling element 12, between the first throttling element 12 and the evaporator 13, and between the evaporator 13 and the compressor 11. , the above-mentioned two are communicated through a refrigerant pipeline, and at this time, the first refrigerant circuit also includes a refrigerant pipeline.
  • the condenser 14 can exchange heat with the refrigerant pipeline arranged between the compressor 11 and the first throttling member 12, that is, the cooling medium flowing in the condenser 14 can exchange heat with the refrigerant flowing in the refrigerant pipeline. heat exchange.
  • the heat-generating component refers to a component that can generate heat when it is working. Water is filled in the cooling water tank 22, and the water in the cooling water tank 22 can exchange heat with the heating component, so that the temperature of the heating component is reduced to avoid The temperature of the heating component is too high to affect its normal operation.
  • the first cooling water circuit is formed by controlling the communication between the cooling water tank 22 and the condenser 14 by a control valve system.
  • the cooling water tank 22 communicates with the condenser 14 through a water pipe, and at this time, the first cooling water circuit also includes a water pipe.
  • the heat-generating component can perform heat exchange with the water pipe, that is, the heat-generating component can perform heat exchange with the cooling medium (water) flowing in the water pipe.
  • the control valve system can connect the cooling water tank 22 of the heating component thermal management subsystem with the condenser 14 of the passenger compartment thermal management subsystem 10 to form a first cooling water loop.
  • the first heat dissipation water circuit can not only realize heat dissipation to the heat-generating components, but at the same time, because the water circulates in the first heat dissipation water circuit, the water with a lower temperature will be circulated and replaced in the condenser 14, so that the condenser 14 and the first The refrigerant circuit absorbs heat during heat exchange.
  • the cooling water tank 22 is not only used as a radiator for heat-generating components, but also as a radiator for the condenser 14, thereby avoiding setting up another radiator to dissipate heat for the condenser 14, so that the integration of the entire thermal management system 100 is relatively high, reducing waste of heat.
  • the condenser 14 is cooled by water cooling, compared with the arrangement in which the condenser 14 is used as a part of the first refrigerant circuit in the prior art, the refrigerant circuit is simplified, thereby reducing the charge amount of the refrigerant , to achieve the effect of energy saving.
  • the heat-generating component thermal management subsystem includes a motor thermal management subsystem 20, at this time, the heat-generating component includes a motor 21, and the first cooling water circuit can dissipate heat to the motor 21.
  • the heat-generating component thermal management subsystem includes the power battery thermal management subsystem 30 , at this time, the heat-generating component includes the power battery 31 , and the first cooling water circuit can dissipate heat to the motor 21 .
  • the heat-generating component thermal management subsystem includes the motor thermal management subsystem 20 and the power battery thermal management subsystem 30, the heat-generating component includes the electric motor 21 and the power battery 31, and the first cooling water circuit can optionally be the electric motor 21 and the power battery. /or the power battery 31 dissipates heat.
  • the power battery 31 is the power source of the electric vehicle, and the electric motor 21 can drive the wheels of the electric vehicle. Specifically, when working, the power battery 31 provides electric energy to the electric motor 21, and the electric motor 21 drives the wheels to travel through the transmission system of the electric vehicle.
  • the motor 21 and/or the power battery 31 can be cooled by the first cooling water circuit, so that the temperature of the motor 21 and/or the power battery 31 can be lowered, thereby ensuring that the motor 21 and/or the power battery 31 are within a normal working temperature range.
  • cooling water tank 22 is a part of the thermal management subsystem 20 of the electric motor. It should be understood that, in some other embodiments, the radiator tank 22 may also serve as a part of the power battery thermal management subsystem 30 .
  • the motor thermal management subsystem 20 also includes a first water pump 23, which is provided in the first cooling water circuit and used to provide a first flow force for water flowing in the first cooling water circuit.
  • the first water pump 23 is assembled on the water pipe included in the first cooling water circuit.
  • the first water pump 23 is a machine that transports water or pressurizes water.
  • the first flow force provided by the first water pump 23 can make the water circulate in the first cooling water circuit, thereby facilitating the dissipation of heat from the heat-generating components and the cooling of the condenser 14. .
  • the heat-generating component thermal management subsystem also includes an electronic control device 24 for controlling the motor 21 , that is, the heat-generating component also includes an electronic control device 24 , and the control valve system enables the first cooling water circuit to dissipate heat to the electronic control device 24 .
  • the electronic control device 24 is part of the motor thermal management subsystem 20 , and the electronic control device 24 is used to control the operation of the motor 21 .
  • the electric control device 24 is dissipated through the first cooling water circuit, so as to ensure that the electric control device 24 is within a normal working temperature range and avoid the working temperature of the electric control device 24 from being too high.
  • the passenger compartment thermal management subsystem 10 further includes a second throttling element 15 and a cooler 32 , and the compressor 11 communicates with the second throttling element 15 in a controlled manner to form a second refrigerant circuit.
  • the compressor 11 has an air outlet and an air return end connected to each other, high temperature and high pressure refrigerant flows out of the compressor 11 from the air outlet, and low temperature and low pressure refrigerant flows back into the compressor 11 from the air return end.
  • the condenser 14 is arranged between the air outlet end and the second throttling member 15 and can exchange heat with the second refrigerant circuit
  • the cooler 32 is arranged between the air return end and the second throttling member 15 and can communicate with the second refrigerant circuit.
  • Agent circuit heat exchange the thermal management subsystem 10 of the passenger compartment and the thermal management subsystem 30 of the power battery are connected through a control valve system, and the two ends of the cooler 32 are controlled and connected to form a second cooling water circuit.
  • the second cooling water circuit is used for the power battery 31 to dissipate heat.
  • the second throttling element 15 decompresses the high-pressure and normal-temperature steam to obtain a low-temperature and low-pressure refrigerant, which flows to the cooler 32 for evaporation.
  • the cooler 32 is also a heat exchange device.
  • the low-temperature and low-pressure refrigerant formed after throttling is evaporated by exchanging heat with it, and absorbs the heat of the substance to be cooled. That is, the refrigerant exchanging heat with the cooler 32 can absorb the heat of the water in the cooler 32 to reduce the temperature of the water in the cooler 32 .
  • the cooler 32 is a plate heat exchanger.
  • the above-mentioned compressor 11 and the second throttling member 15 are connected in a controlled manner to form a second refrigerant circuit.
  • the refrigerant is compressed by the compressor 11 into a high-temperature and high-pressure state, and the high-temperature and high-pressure refrigerant exchanges heat with the condenser 14 when flowing in the second refrigerant circuit, and the condenser 14 takes away the heat of the high-temperature and high-pressure refrigerant, so that The high-temperature and high-pressure refrigerant vapor is cooled and condensed into a high-pressure and normal-temperature refrigerant liquid.
  • the high-pressure and normal-temperature refrigerant After being throttled by the second throttling member 15, the high-pressure and normal-temperature refrigerant becomes a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant passes through the cooler 32, it absorbs the heat of the water in the cooler 32 and then flows back to the compressor 11 to The effect of lowering the temperature of the water in the cooler 32 is achieved.
  • the second refrigerant circuit also includes a refrigerant pipeline road.
  • the condenser 14 is capable of exchanging heat with the refrigerant pipeline arranged between the gas outlet end of the compressor 11 and the second throttling member 15, that is, the cooling medium flowing in the condenser 14 can exchange heat with the refrigerant pipeline flowing in the refrigerant pipeline.
  • the refrigerant performs heat exchange.
  • the cooler 32 can exchange heat with the refrigerant pipeline between the return air end of the compressor 11 and the second throttling member 15, that is, the cooling medium flowing in the cooler 32 can flow with the refrigerant pipeline. refrigerant for heat exchange.
  • the two ends of the cooler 32 are communicated through water pipes, and at this time, the second cooling water circuit also includes water pipes.
  • the electric motor 21 can exchange heat with the water pipe of the first cooling water circuit, and the power battery 31 can exchange heat with the water pipe of the second cooling water circuit.
  • the passenger cabin thermal management subsystem 10 is integrated with the motor thermal management subsystem 20 through the condenser 14, and is integrated with the power battery thermal management subsystem 30 through the cooler 32, which further improves the integration degree of the entire thermal management system 100, Reduced waste of heat.
  • the thermal management subsystem 30 of the power battery includes a second water pump 33 , which is provided in the second cooling water circuit for providing a second flow force for water flowing in the second cooling water circuit.
  • the second water pump 33 is assembled on the water pipe included in the second cooling water circuit.
  • the second water pump 33 is a machine for delivering water or pressurizing the water.
  • the second flow power provided by the second water pump 33 can make the water circulate in the second cooling water circuit, thereby facilitating the heat dissipation of the electric battery.
  • the thermal management subsystem 10 of the passenger compartment, the thermal management subsystem 30 of the power battery, and the thermal management subsystem 20 of the electric motor are connected through a control valve system.
  • the control valve system can connect the cooling water tank 22 , the condenser 14 and the cooler 32 to form a third cooling water circuit, and the third cooling water circuit is used for the motor 21 and the power battery 31 to dissipate heat.
  • the thermal management subsystem 10 of the passenger compartment, the thermal management subsystem 20 of the electric motor and the thermal management subsystem 30 of the power battery are integrated together, reducing the heat waste of the thermal management system 100 .
  • the cooling water tank 22 , the condenser 14 and the cooler 32 are connected to form the third cooling water circuit, the first cooling water circuit and the second cooling water circuit are disconnected. And when the radiator water tank 22 , the condenser 14 and the cooler 32 are connected to form the third radiator water circuit, the first refrigerant circuit is controlled to be conducted and the second refrigerant circuit is disconnected.
  • the motor thermal management subsystem 20 further includes a first pipeline 25
  • the power battery thermal management subsystem 30 further includes a second pipeline 34 .
  • the control valve system can connect the first pipeline 25 and the second pipeline 34 to form a first heating water circuit.
  • the first heating water circuit can conduct heat with the motor 21 and absorb the heat of the motor 21 to heat the power battery 31 .
  • the control valve system can make the cooler 32 communicate with the cooling water tank 22 to form a fourth cooling water circuit for the cooling water tank 22 to dissipate heat.
  • first pipeline 25 and the second pipeline 34 are both water pipes.
  • the above arrangement can use the heat generated by the electric motor 21 to heat the power battery 31, reducing the waste of heat.
  • the cooler 32 dissipates heat to the cooling water tank 22 to further reduce the waste of heat.
  • the condenser 14 , the cooling water tank 22 , the cooler 32 , the first pipeline 14 and the second pipeline 34 respectively have two ends connected to each other.
  • the two ends that define condenser 14 are respectively the first end and the second end
  • the two ends of radiator water tank 22 are respectively the third end and the fourth end
  • the two ends of cooler 32 are respectively the fifth end and the sixth end
  • the second end
  • the two ends of the first pipeline 25 are respectively the seventh end and the eighth end
  • the two ends of the second pipeline 34 are respectively the ninth end and the tenth end.
  • the third end of the cooling water tank 22 communicates with the first end of the condenser 14 .
  • the control valve system includes a first control valve assembly, the first control valve assembly has five first ports that are controllably communicated, and the five first ports are respectively connected to the first end, the second end, the seventh end, the fifth end and the The nine ends are connected.
  • the control valve system also includes a second control valve assembly, the second control valve assembly has five second ports in controllable communication, and the five second ports are respectively connected to the third end, the fourth end, the sixth end, the eighth end and the The tenth end is connected.
  • the above-mentioned condenser 14, cooling water tank 22, cooler 32, first pipeline 25 and second pipeline 34 all have two ends, wherein one end of each component is used as the water inlet end, and the other end is used as the water outlet end.
  • the water end, which end is used as the water inlet depends on the flow direction of the water circuit.
  • the fact that the first control valve assembly has five first ports in controllable communication means that the first control valve assembly has five first ports, and that any two or any number of the five first ports are in controllable communication.
  • the fact that the second control valve assembly has five second ports in controllable communication means that the second control valve assembly has five second ports, and that any two or any number of the five second ports are in controllable communication.
  • how the five first ports of the first control valve assembly communicate with each other it varies according to different working modes. Furthermore, how the five second ports of the second control valve assembly are communicated is also different according to different working modes.
  • the first control valve assembly includes five first ports that are controllably communicated
  • the second control valve assembly includes five second ports that are controllably communicated
  • the first control valve assembly includes a first three-way valve 41 and a first four-way valve 42 , one of the valve ports of the first three-way valve 41 is connected to the first four-way valve One of the valve ports of 42 is communicated, the two first ports connected to the first end and the second end are set in the first three-way valve 41 , and the remaining three first ports are set in the first four-way valve 42 .
  • the second control valve assembly includes a second three-way valve 51 and a second four-way valve 52, one of the valve ports of the second three-way valve 51 communicates with one of the valve ports of the second four-way valve 52, and communicates with the third end and the second four-way valve 52.
  • the two second ports connected to the fourth end are set at the second three-way valve 51 , and the remaining three second ports are set at the second four-way valve 52 .
  • the above-mentioned first cooling water circuit, second cooling water circuit, third cooling water circuit, and fourth cooling water circuit can be formed. and the first heating water circuit.
  • the first control valve assembly includes a first five-way valve 43 , and five first ports are provided on the first five-way valve 43 .
  • the second control valve assembly includes a second five-way valve 53 , and five second ports are provided on the second five-way valve 53 .
  • the first cooling water circuit, the second cooling water circuit, the third cooling water circuit, the fourth cooling water circuit and the first heating water circuit can be formed by using a small number of control valves, which simplifies the thermal management system. 100's of structures.
  • first control valve assembly and the second control valve assembly may also be arranged in other ways, which are not limited here.
  • the passenger compartment thermal management subsystem 10 further includes a warm air core 18 for heating the passenger compartment 200 .
  • the control valve system makes the condenser 14 communicate with the warm air core 18 to form a second heating water circuit.
  • the warm air core 18 is used to transfer heat to the passenger compartment 200 , so as to increase the temperature in the passenger compartment 200 to improve the comfort of the passenger compartment 200 in a low temperature environment.
  • the second heating water circuit can heat the passenger compartment 200, improving the comfort of the passenger compartment 200.
  • the temperature of the water flowing in the warm air core 18 decreases, and accordingly, the effect of cooling the condenser 14 is achieved.
  • the thermal management subsystem 10 of the passenger compartment further includes a heater 17, the heater 17 is arranged on the second heating water circuit, and is located where the water flows from the condenser 14 to the heater. On the flow path of the wind core body 18.
  • the condenser 14 in the second heating water circuit and the warm air core body 18 are also communicated by water pipe, at this moment, the second heating water circuit comprises water pipe, and heater 17 is located at the second heating water circuit. on the water pipe.
  • the heater 17 is a heating device capable of increasing the temperature of the water flowing therethrough.
  • the heater 17 is a PTC heater 17, and the PTC heater 17 is also called a PTC heating element. It adopts a PTC ceramic heating element and an aluminum tube to claim that this type of PTC heating element has the advantages of small thermal resistance and high heat exchange efficiency.
  • a heater 17 with automatic constant temperature and power saving It is conceivable that, in other embodiments, the type of the heater 17 is not limited, as long as the heater 17 capable of increasing the temperature of the water flow is considered.
  • the control valve system further includes a third three-way valve 60 .
  • the third three-way valve 60 is arranged in the second heating water circuit and is located on the flow path of the water flow from the condenser 14 to the heater core 18 .
  • the three valve ports of the third three-way valve 60 are respectively connected with the condenser 14 , the cooling water tank 22 and the warm air core 18 . In this way, by controlling the switches of the three valve ports of the third three-way valve 60 , the condenser 14 can be connected or disconnected from the cooling water tank 22 , or the condenser 14 can be connected or disconnected from the heater core 18 .
  • the third three-way valve 60 is arranged on the flow path of the water flow from the condenser 14 to the heater 17, and the third three-way valve 60 is also installed on the second
  • the heating water circuit is located on the water pipes of the condenser 14 and the heater 17 .
  • control valve system may also omit the third three-way valve 60 .
  • the control valve system omits the third three-way valve 60
  • the control valve system omits the third three-way valve 60
  • the passenger compartment thermal management subsystem 10 cools the passenger compartment 200
  • the water in the condenser 14 will flow to the warm air core 18, and avoid the heating of the warm air core 18.
  • the heat emitted affects the cooling effect of the passenger compartment 200.
  • an opening and closing door that can be opened and closed is arranged between the warm air core body 18 and the passenger compartment 200. At this time, the opening and closing door is closed, and the heat emitted by the warm air core body 18 The heat will not flow to the passenger compartment 200 and will not affect the cooling effect of the passenger compartment 200 .
  • control valve system may not use the third three-way valve 60 to control the flow of water between the condenser 14, the cooling water tank 22 and the warm air core 18, and it may also use other It is controlled by the valve structure, which is not limited here.
  • the control valve system enables the second heating water circuit to heat the power battery 31 . That is, in a low temperature scene, the control valve system can make the second heating water circuit heat the power battery 31, so that the temperature of the power battery 31 is maintained within the normal operating temperature range, and the effect of fully utilizing the heat is achieved.
  • the control valve system includes a fourth three-way valve 70, the fourth three-way valve 70 is arranged in the second heating water circuit, and is located in the flow of the water flow from the heater core 18 to the second pipeline 34 on the path.
  • Three valve ports of the fourth three-way valve 70 are respectively connected with the heater core 18 , the condenser 14 and one end of the second pipeline 34 , and the other end of the second pipeline 34 is connected with the condenser 14 .
  • the second heating water circuit can be made to heat the power battery 31 or not to heat the power battery 31 .
  • control valve system can also adopt other arrangements to realize the heating of the power battery 31 by the first heating water circuit, which is not limited here.
  • the passenger compartment thermal management subsystem 10 further includes a third water pump 16, and the third water pump 16 is arranged in the second heating water circuit, and is used to provide a third flow of water flowing in the second heating water circuit. power.
  • the third water pump 16 is a machine for conveying water or pressurizing the water.
  • the third flow power provided by the third water pump 16 can make the water circulate in the second heating water circuit, so as to heat the passenger compartment 200 .
  • the passenger compartment thermal management subsystem 10 further includes a liquid storage drier 19, the liquid storage drier 19 is arranged on the first refrigerant circuit, and is located between the compressor 11 and the first throttling member 12 room for drying the refrigerant.
  • the liquid receiver drier 19 plays a role of drying the refrigerant, and can filter out tiny impurities in the refrigerant circuit, so as to facilitate the flow of the refrigerant and improve the performance of the thermal management subsystem 10 in the passenger compartment.
  • the thermal management subsystem of the heat-generating component further includes a heat dissipation fan 26 , and the heat dissipation fan 26 is arranged beside the heat dissipation water tank 22 for heat dissipation of the heat dissipation water tank 22 .
  • the cooling fan 26 can promote the flow of air, so that the heat of the cooling water tank 22 can be dissipated in the air, thereby facilitating the cooling of the cooling water tank 22 .
  • the present application also provides an electric vehicle, including the passenger compartment 200 and the above-mentioned thermal management system 100 .
  • the thermal management system 100 includes a passenger compartment thermal management subsystem 10 and a heat-generating component thermal management subsystem, and the heat-generating component thermal management subsystem includes a motor thermal management subsystem 20 and a power battery thermal management subsystem 30 .
  • the thermal management system 100 also includes a control valve system, which is connected to the thermal management subsystem 10 of the passenger compartment, the thermal management subsystem 20 of the electric motor and the thermal management subsystem 30 of the power battery.
  • the passenger compartment thermal management subsystem 10 includes a compressor 11 , a condenser 14 , a liquid receiver dryer 19 , a first throttling element 12 , an evaporator 13 , a second throttling element 15 and a cooler 32 .
  • the compressor 11 , the first throttling element 12 and the evaporator 13 can be in controlled communication to form a first refrigerant circuit, and the compressor 11 and the second throttling element 15 can be in controlled communication to form a second refrigerant circuit.
  • the compressor 11 has a gas outlet and a gas return end
  • the condenser 14 is located between the gas outlet and the liquid storage drier 19 and performs heat exchange with the first refrigerant circuit and the second refrigerant circuit
  • the cooler 32 is located in the liquid storage drier 19 and the return air end and conduct heat exchange with the second refrigerant circuit.
  • the receiver drier 19 is used to dry the refrigerant.
  • the passenger compartment thermal management subsystem 10 also includes a heater 17 and a heater core 18 .
  • the motor thermal management subsystem 20 includes a motor 21 , an electric control device 24 , a cooling water tank 22 , a cooling fan 26 , a first pipeline 25 and a bypass pipeline 80 .
  • the power battery thermal management subsystem 30 includes a power battery 31 and a second pipeline 34 .
  • the control valve system includes a first three-way valve 41 , a second three-way valve 51 , a third three-way valve 60 , a fourth three-way valve 70 , a first four-way valve 42 and a second four-way valve 52 .
  • the three valve ports of the first three-way valve 41 are respectively A1, A2 and A3, and the four valve ports of the first four-way valve 42 are respectively B1, B2, B3 and B4.
  • A1 communicates with the first end of the condenser 14
  • A2 communicates with B1
  • A3 communicates with the second end of the condenser 14
  • B2 communicates with the fifth end of the cooler 32
  • B3 communicates with the ninth end of the second pipeline 34
  • B4 communicates with the seventh end of the first pipeline 25 .
  • A1, A3, B2, B3 and B4 respectively form five first ports of the first control component.
  • the three valve ports of the second three-way valve 51 are respectively C1, C2 and C3, and the four valve ports of the second four-way valve 52 are respectively D1, D2, D3 and D4.
  • C2 communicates with the third end of the cooling water tank 22
  • C1 communicates with the fourth end of the cooling water tank 22
  • C3 communicates with D1
  • D2 communicates with the sixth end of the cooler 32
  • D3 communicates with the tenth end of the second pipeline 34
  • D4 communicates with the eighth end of the first pipeline 25 .
  • C1, C2, D2, D3 and D4 respectively form five second ports of the second control component.
  • C2 communicates with the third end of the cooling water tank 22 through the bypass pipeline 80 .
  • the three valve ports of the third three-way valve 60 are respectively E1, E2 and E3, E1 communicates with the first end of the condenser 14, E2 communicates with the third end of the cooling water tank 22 and A1, and E3 communicates with the heater 17.
  • the three valve ports of the fourth three-way valve 70 are respectively F1, F2 and F3, F1 communicates with the heater core 18, F2 communicates with the second end of the cooler 32, and F3 communicates with the ninth end of the second pipeline 34 The tenth end of the second pipeline 34 is also in communication with the second end of the condenser 14 .
  • the motor thermal management subsystem 20 further includes a first water pump 23
  • the power battery thermal management subsystem 30 further includes a second water pump 33
  • the passenger compartment thermal management subsystem 10 further includes a third water pump 16 .
  • the first water pump 23 , the second water pump 33 and the third water pump 16 are all used to provide flow force for water flow in the water circuit.
  • the thermal management system 100 provided in the first specific embodiment will be described in detail below in combination with specific application scenarios.
  • the dotted line in the figure represents that the pipeline is in a disconnected state
  • the solid line represents that the pipeline is in a connected state
  • the arrows in the figure represent the flow direction of refrigerant or water.
  • Scenario 1 in a high-temperature environment, the passenger compartment 200 needs to be cooled, and the power battery 31 needs to be forcibly cooled. Specifically, when the ambient temperature is higher than the second preset threshold, the thermal management system 100 operates in the first cooling mode at this time.
  • the compressor 11 , the first throttling element 12 and the evaporator 13 communicate to form a first refrigerant circuit, and the compressor 11 communicates with the second throttling element 15 to form a second refrigerant circuit.
  • A2 and A3 of the first three-way valve 41 are connected, and A1 is disconnected from A2 and A3.
  • B1 and B4 of the first four-way valve 42 are connected, and B2 and B3 are connected.
  • C1 and C3 of the second three-way valve 51 are connected, and C2 is disconnected from C1 and C3.
  • D1 and D4 of the second four-way valve 52 are connected, and D2 and D3 are connected.
  • E1 and E2 of the third three-way valve 60 are connected, and E3 is disconnected from E1 and E2.
  • the first cooling water circuit and the second cooling water circuit are formed, and the first water pump 23 and the second water pump 33 work.
  • the third water pump 16 is stopped, and water cannot flow from the condenser 14 to the power battery 31 .
  • the high-temperature and high-pressure refrigerant from the exhaust end of the compressor 11 dissipates heat to the first heat dissipation water circuit through the condenser 14, and passes through the heat dissipation water tank 22, and passes through the heat dissipation water tank 22.
  • the radiating fan 26 of the radiating fan 26 radiates heat into the air, and the heat of the motor 21 and the electric control device 24 can also be radiated into the air through the radiating water tank 22 .
  • the evaporator 13 in the first refrigerant circuit is used for cooling the passenger compartment 200
  • the second cooling water circuit is used for cooling the power battery 31 .
  • Scenario 2 (see FIG. 4 ): In a high-temperature environment, the passenger compartment 200 needs cooling, and the power battery 31 is passively cooled. Specifically, when the ambient temperature is lower than the first preset threshold, the thermal management system 100 operates in the second cooling mode at this time. Wherein, the first preset threshold is smaller than the second preset threshold.
  • the compressor 11 , the first throttling element 12 and the evaporator 13 communicate to form a first refrigerant circuit.
  • A2 and A3 of the first three-way valve 41 are connected, and A1 is disconnected from A2 and A3.
  • B1 and B4 of the first four-way valve 42 are connected, and B2 and B3 are connected.
  • C1 and C3 of the second three-way valve 51 are connected, and C2 is disconnected from C1 and C3.
  • D3 and D4 of the second four-way valve 52 are connected, and D2 and D1 are connected.
  • E1 and E2 of the third three-way valve 60 are connected, and E3 is disconnected from E1 and E2.
  • the third cooling water circuit is formed, the first water pump 23 and the second water pump 33 are working, the third water pump 16 is stopped, and water cannot flow from the condenser 14 to the power battery 31 .
  • the high-temperature and high-pressure refrigerant from the exhaust end of the compressor 11 dissipates heat to the third heat dissipation water circuit through the condenser 14, and passes through the heat dissipation water tank 22, and passes through the heat dissipation water tank 22.
  • the cooling fan 26 of the cooling fan 26 radiates heat into the air, and the heat of the motor 21, the electric control device 24 and the power battery 31 can also be radiated into the air through the cooling water tank 22.
  • the evaporator 13 in the first refrigerant circuit is used for cooling the passenger compartment 200 .
  • Scenario 3 in a low-temperature environment, the passenger compartment 200 needs to be heated, and the power battery 31 needs to be heated. At this time, the thermal management system 100 operates in the first heating mode.
  • the compressor 11 communicates with the second throttling element 15 to form a second refrigerant circuit.
  • A1 and A2 of the first three-way valve 41 are connected, and A3 is disconnected from A1 and A2.
  • B1 and B2 of the first four-way valve 42 are connected, and B3 and B4 are connected.
  • C1 and C3 of the second three-way valve 51 are connected, and C2 is disconnected from C1 and C3.
  • D3 and D4 of the second four-way valve 52 are connected, and D2 and D1 are connected.
  • E1 and E3 of the third three-way valve 60 are connected, and E2 is disconnected from E1 and E3.
  • F1, F2 and F3 of the fourth three-way valve 70 are all connected.
  • the fourth cooling water circuit is formed, and the first water pump 23 and the second water pump 33 work.
  • the second heating water circuit is formed and passes through the power battery 31, and the third water pump 16 works.
  • the high-temperature and high-pressure refrigerant from the discharge end of the compressor 11 dissipates heat to the second heating water circuit through the condenser 14 to be used for heating and heating power of the passenger compartment 200 battery31.
  • the heat of the electric motor 21 is also used to heat the power battery 31 .
  • the cooler 32 can absorb heat from the environment through the cooling water tank 22 .
  • the fourth three-way valve 70 can also be adjusted so that the second heating water circuit does not heat the power battery 31, and the power battery 31 only relies on the electric motor 21 and the electric control device 24 to generate heat. The heat heats up.
  • Scenario 4 (see FIG. 6 ): In a low-temperature environment, the passenger compartment 200 needs to be heated, but the power battery 31 does not need to be heated. At this time, the thermal management system 100 operates in the second heating mode.
  • A1 and A2 of the first three-way valve 41 are connected, and A3 is disconnected from A1 and A2.
  • B1 and B4 of the first four-way valve 42 are connected, and B2 and B3 are connected.
  • C2 and C3 of the second three-way valve 51 are connected, and C1 is disconnected from C2 and C3.
  • D3 and D4 of the second four-way valve 52 are connected, and D2 and D1 are connected.
  • E1 and E3 of the third three-way valve 60 are connected, and E2 is disconnected from E1 and E3.
  • F1 and F2 of the fourth three-way valve 70 are connected, and F3 is disconnected from F1 and F2.
  • the two ends of the cooler 32 form a second cooling water circuit, and the first water pump 23 and the second water pump 33 work.
  • the second heating water circuit is formed, and the third water pump 16 works.
  • the high-temperature and high-pressure refrigerant from the discharge end of the compressor 11 dissipates heat to the second heating water circuit through the condenser 14 for heating the passenger compartment 200 .
  • the cooler 32 recovers the heat of the motor 21, the electric control device 24 and the power battery 31, and the cooling water tank 22 is bypassed to ensure that the heat will not be lost to the external environment and realize the recovery of heat.
  • Scenario 5 (see FIG. 7 ): In a low-temperature environment, the passenger compartment 200 needs to be heated and dehumidified, and the power battery 31 needs to be heated. At this time, the thermal management system 100 runs the first dehumidification mode, which is suitable for when the ambient temperature is low. Generally, it is applicable to scenarios where the ambient temperature is less than 10°C.
  • the difference between the first dehumidification mode and the first heating mode is that: the first refrigerant circuit is formed, and the low-temperature refrigerant enters the evaporator 13 to realize the effect of cooling and dehumidification.
  • Scenario 6 (see FIG. 8 ): In a low-temperature environment, the passenger compartment 200 needs to be heated and dehumidified, and the power battery 31 needs to dissipate heat. At this time, the thermal management system 100 runs the second dehumidification mode, which is suitable for when the ambient temperature is low. Generally, it is applicable to scenarios where the ambient temperature is less than 10°C.
  • the difference between the second dehumidification mode and the second heating mode is that: the first refrigerant circuit is formed, and the low-temperature refrigerant enters the evaporator 13 to realize the effect of cooling and dehumidification.
  • Scenario 7 (see FIG. 9 ): In a low-temperature environment, the passenger compartment 200 needs to be heated and dehumidified, and the power battery 31 needs to dissipate heat. At this time, the thermal management system 100 runs the third dehumidification mode, and the ambient temperature applicable to this mode is higher than the ambient temperature applicable to the first dehumidification mode and the second dehumidification mode. Generally, it is applicable to scenarios where the ambient temperature is greater than 10°C.
  • the difference is that A1 and A2 of the first three-way valve 41 are connected, A3 is disconnected from A1 and A2, and B1 and B4 of the first four-way valve 42 are connected, and B2 and B3 are connected. C1 and C3 of the second three-way valve 51 are connected, C2 is disconnected from C1 and C3, and D1 and D4 of the first four-way valve 42 are connected, and D2 and D3 are connected.
  • E1 and E3 of the third three-way valve 60 are connected, and E2 is disconnected from both E1 and E3.
  • F1 and F2 of the fourth four-way valve are connected, and F3 is disconnected from both F1 and F2.
  • the first refrigerant circuit is formed, and the low-temperature refrigerant enters the evaporator 13 to achieve the effect of cooling and dehumidification.
  • the second heat dissipation water circuit dissipates heat for the power battery 31
  • the heat dissipation water tank 22 dissipates heat for the motor 21 and the electronic control device 24 .
  • Scenario 8 when the first heating mode is running, since the cooling water tank 22 absorbs heat from the environment, frost may form on the surface of the cooling water tank 22 .
  • This mode is the defrosting mode of the cooling water tank 22 to defrost the cooling water tank 22 .
  • A2 of the first three-way valve 41 is connected to A3, and A1 is disconnected from both A2 and A3.
  • B1 and B4 of the first four-way valve 42 are connected, and B2 and B3 are connected.
  • D1 and D4 of the second four-way valve 52 are connected, and D2 and D3 are connected.
  • E1 , E2 and E3 of the third three-way valve 60 are all connected.
  • F1 and F2 of the fourth four-way valve are connected, and F3 is disconnected from both F1 and F2.
  • the water flowing out of the condenser 14 passes through the third three-way valve 60 , part of it flows to the cooling water tank 22 to defrost through the first water pump 23 , and the other part flows to the heater core 18 through the heater 17 , for heating the passenger compartment 200 .
  • the second cooling water circuit cools the power battery 31
  • the first cooling water circuit cools the motor 21 and the electronic control device 24 .
  • the above eight operating modes are the main operating modes of the thermal management system 100 provided in the first specific embodiment, and the thermal management system 100 can also realize more operating modes by adjusting the control valve system.
  • the five valve ports of the first five-way valve 43 are respectively G1, G2, G3, G4 and G5, which are respectively the five first ports of the first control valve assembly.
  • the five valve ports of the second five-way valve 53 are respectively H1, H2, H3, H4 and H5, which are respectively the five second ports of the second control valve assembly.
  • G2 communicates with the first end of the cooler 32
  • G1 communicates with the second end of the condenser 14
  • G3 communicates with the seventh end of the first pipeline 25
  • G4 communicates with the fifth end of the cooler 32
  • G5 communicates with the second The ninth end of the pipeline 34 communicates.
  • H1 communicates with the fourth end of the cooling water tank 22
  • H2 communicates with the third end of the cooling water tank 22
  • H3 communicates with the eighth end of the first pipeline
  • H4 communicates with the sixth end of the cooler 32
  • H5 communicates with the second The tenth end of the pipeline 34 communicates.
  • the application scenarios of the second specific embodiment are the same as those of the first specific embodiment, including eight main application scenarios.
  • the main difference is that the communication between the valve ports of the first five-way valve 43 and the second five-way valve 53 is different Change.
  • the following only introduces the differences, and will not repeat them for the same connectivity relations.
  • the difference from the first specific embodiment is that G1 and G3 of the first five-way valve 43 are connected, G4 and G5 are connected, and G2 is disconnected from G1, G3, G4 and G5. H1 and H3 of the second five-way valve 53 are connected, H4 and H5 are connected, and H2 is disconnected from H1, H3, H4 and H5.
  • G1 and G3 of the first five-way valve 43 are connected, G4 and G5 are connected, and G2 is disconnected from G1, G3, G4 and G5.
  • H1 and H4 of the second five-way valve 53 are connected, H3 and H5 are connected, and H2 is disconnected from H1, H3, H4 and H5.
  • G2 and G4 of the first five-way valve 43 are connected, G3 and G5 are connected, and G1 is disconnected from G2, G3, G4 and G5.
  • H1 and H4 of the second five-way valve 53 are connected, H3 and H5 are connected, and H2 is disconnected from H1, H3, H4 and H5.
  • G2 and G3 of the first five-way valve 43 are connected, G4 and G5 are connected, and G1 is disconnected from G2, G3, G4 and G5.
  • H2 and H4 of the second five-way valve 53 are connected, H3 and H5 are connected, and H1 is disconnected from H2, H3, H4 and H5.
  • the difference between the first dehumidification mode and the first heating mode in the second specific embodiment is that: the first refrigerant circuit is formed, and the low-temperature refrigerant enters the evaporator 13 to achieve the effect of cooling and dehumidification.
  • the difference between the second dehumidification mode and the second heating mode in the second specific embodiment is that: the first refrigerant circuit is formed, and the low-temperature refrigerant enters the evaporator 13 to achieve the effect of cooling and dehumidification.
  • the third dehumidification mode differs from the first dehumidification mode in that:
  • G2 and G3 of the first five-way valve 43 are connected, G4 and G5 are connected, and G1 is disconnected from G2, G3, G4 and G5.
  • H1 and H3 of the second five-way valve 53 are connected, H4 and H5 are connected, and H2 is disconnected from H1, H3, H4 and H5.
  • the defrosting mode of the cooling water tank 22, compared with the first heating mode, the difference between this mode is:
  • G1 and G3 of the first five-way valve 43 are connected, G4 and G5 are connected, and G2 is disconnected from G1, G3, G4 and G5.
  • H1 and H3 of the second five-way valve 53 are connected, H4 and H5 are connected, and H2 is disconnected from H1, H3, H4 and H5.
  • the present application also provides a control method of the thermal management system 100, including steps:
  • the cooling water tank 22 is used to dissipate heat for the heat-generating components, and the condenser 14 is arranged between the compressor 11 and the first throttling element 12 and can exchange heat with the first refrigerant circuit.
  • the compressor 11 the first throttling member 12 , the evaporator 13 , the cooling water tank 22 and the heating components have been introduced above, and will not be described in detail here.
  • the first preset threshold can be set as required.
  • the compressor 11, the first throttling member 12 and the evaporator 13 are controlled to communicate in sequence to form the first refrigerant. circuit to cool the passenger compartment 200.
  • the cooling water tank 22 is controlled to communicate with the condenser 14 to form a first cooling water loop, and the first cooling water loop can cool the condenser 14 and the heating components.
  • the first cooling water circuit can not only realize heat dissipation for the heat-generating components, but at the same time, since the water circulates in the first cooling water circuit, the condenser 14 will circulate and replace the water with a lower temperature, so that Heat is absorbed when the condenser 14 exchanges heat with the first refrigerant circuit. That is, the cooling water tank 22 is not only used as a radiator for heat-generating components, but also as a radiator for the condenser 14, thereby avoiding setting up another radiator to dissipate heat for the condenser 14, so that the integration of the entire thermal management system 100 is relatively high, reducing waste of heat.
  • the condenser 14 is cooled by water cooling, compared with the arrangement in which the condenser 14 is used as a part of the first refrigerant circuit in the prior art, the refrigerant circuit is simplified, thereby reducing the charge amount of the refrigerant , to achieve the effect of energy saving.
  • the heat-generating component thermal management subsystem includes a motor thermal management subsystem 20 and a power battery thermal management subsystem 30, the heat-generating component includes a motor 21 and a power battery 31, and the first cooling water circuit can optionally be a motor 21 and/or power battery 31 to dissipate heat.
  • the motor 21 and/or the power battery 31 can be cooled by the first cooling water circuit, so that the temperature of the motor 21 and/or the power battery 31 can be lowered, thereby ensuring that the motor 21 and/or the power battery 31 are within a normal working temperature range.
  • control method of the thermal management system 100 further includes the steps of:
  • the second preset threshold value is greater than the first preset threshold value;
  • the compressor 11 has an air outlet end and an air return end connected to each other, and the condenser 14 is arranged between the air outlet end and the second throttling member 15 and can be connected with the second refrigeration unit.
  • the heat exchange of the refrigerant circuit, the cooler 32 is arranged between the air return end and the second throttling element 15 and can exchange heat with the second refrigerant circuit.
  • the second throttling member 15 and the cooler 32 have been introduced above, and will not be described in detail here.
  • the second preset threshold can be set as required.
  • the first refrigerant circuit cools the passenger compartment 200
  • the motor 21 dissipates heat through the first cooling water circuit
  • the power battery 31 dissipates heat through the second cooling water circuit.
  • Such setting makes the thermal management system 100 more integrated, further improves the integration of the entire thermal management system 100, and reduces heat waste.
  • the compressor 11 and the second throttling member 15 are controlled to communicate to form a second refrigerant circuit
  • the control cooler 32 , the condenser 14 and the heat dissipation water tank 22 are connected to form a third heat dissipation water circuit to dissipate heat to the motor 21 and the power battery 31 .
  • This setting also makes the thermal management system 100 more integrated, which further improves the integration of the entire thermal management system 100 and reduces heat waste.
  • control method of the thermal management system 100 further includes the steps of:
  • the first refrigerant circuit is controlled to be disconnected, and the condenser 14 and the heater core 18 are controlled to connect to form a second heating water circuit, and the heater core 18 is used to heat the passenger compartment 200;
  • the third preset threshold is smaller than the first preset threshold.
  • the warm air core 18 has been introduced above, and will not be described in detail here.
  • the third preset threshold can be set as required.
  • the second heating water circuit will heat the passenger compartment 200 at this time.
  • the temperature of the water flowing in it decreases, and correspondingly, the effect of cooling the condenser 14 is achieved.
  • the first refrigerant circuit when the ambient temperature is lower than the third preset threshold, the first refrigerant circuit is controlled to be disconnected, and the condenser 14 and the warm air core 18 are controlled to connect to form a second heating water circuit.
  • the warm air core 18 For heating the passenger compartment 200;
  • Two ends of the cooler 32 are controlled to form a second heat dissipation water circuit to dissipate heat to the power battery 31 and the motor 21 .
  • the passenger compartment thermal management subsystem 10 is integrated with the motor thermal management subsystem 20 through the condenser 14, and is integrated with the power battery thermal management subsystem 30 through the cooler 32, which further improves the integration degree of the entire thermal management system 100, Reduced waste of heat.
  • the thermal management system 100 includes a first pipeline 25 and a second pipeline 34, and the second heating water circuit is used to heat the power battery 31;
  • the control first pipeline 25 communicates with the second pipeline 34 to form a first heating water circuit, and the cooling water tank 22 communicates with the cooler 32 to form a water circuit.
  • the heat generated by the electric motor 21 can be used to heat the power battery 31 , reducing the waste of heat.
  • the cooler 32 dissipates heat to the cooling water tank 22 to further reduce the waste of heat.
  • the first refrigerant circuit is controlled to communicate, and the evaporator 13 is used for dehumidification of the passenger compartment 200 .
  • the first refrigerant circuit can be used for dehumidification of the passenger compartment 200 to improve the comfort of the passenger compartment 200 .
  • the condenser 14 is used for defrosting the cooling water tank 22 .
  • the hot water in the condenser 14 can be passed into the cooling water tank 22 to defrost the cooling water tank 22 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种电动汽车、热管理系统(100)及其控制方法,热管理系统(100)包括乘客舱热管理子系统(10),其包括压缩机(11)、第一节流件(12)及用于制冷乘客舱的蒸发器(13);压缩机(11)、第一节流件(12)及蒸发器(13)受控依次连通形成第一制冷剂回路;乘客舱热管理子系统(10)还包括冷凝器(14),冷凝器(14)设于压缩机(11)与第一节流件(12)之间并能与第一制冷剂回路热交换;发热部件热管理子系统,包括发热部件及用于为发热部件散热的散热水箱(22);控制阀系统,连接乘客舱热管理子系统(10)及发热部件热管理子系统;控制阀系统能够控制散热水箱(22)与冷凝器(14)连通形成第一散热水回路,第一散热水回路用于为发热部件散热。整个热管理系统的集成度较高,减少了热量的浪费。

Description

电动汽车、热管理系统及其控制方法
交叉引用
本申请引用于2021年12月20日递交的名称为“一种热管理系统及新能源汽车”的第202123215232.3号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电动汽车技术领域,特别是涉及一种电动汽车、热管理系统及其控制方法。
背景技术
节能减排是汽车产业可持续发展的关键,电动汽车由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而随着电动汽车的广泛普及,对整车的热管理的要求也越来越高。
但是,传统的电动汽车,其热管理系统设置不佳,导致整车的热量浪费严重,不利于电动汽车的节能。
发明内容
基于此,本申请提供一种电动汽车、热管理系统及其控制方法,能够解决热量浪费严重的问题。
第一方面,本申请提供了一种热管理系统,用于电动汽车,电动汽车具有乘客舱,热管理系统包括:
乘客舱热管理子系统,其包括压缩机、第一节流件及用于制冷乘客舱的蒸发器;压缩机、第一节流件及蒸发器受控依次连通形成第一制冷剂回路;乘客舱热管理子系统还包括冷凝器,冷凝器设于压缩机与第一节流件之间并能与第一制冷剂回路热交换;
发热部件热管理子系统,包括发热部件及用于为发热部件散热的散热水箱;
控制阀系统,连接乘客舱热管理子系统及发热部件热管理子系统;控制阀系统能够控制散热水箱与冷凝器连通形成第一散热水回路,第一散热水回路用于为发热部件散热。
本申请实施例的技术方案中,控制阀系统能够使发热部件热管理子系统的散热水箱与乘客舱热管理子系统的冷凝器连通形成第一散热水回路。这样,第一散热水回路不但能够实现给发热部件散热,同时,由于水在第一散热水回路中循环流动,冷凝器中会循环更换温度较低的水,以便于冷凝器与第一制冷剂回路热交换时吸热。即,散热水箱不但作为发热部件的散热器,同时还作为冷凝器的散热器,从而避免了另设散热器以给冷凝器散热,使整个热管理系统的集成度较高,减少了热量的浪费。且由于冷凝器通过水冷的方式冷却,相对于现 有技术中将冷凝器作为第一制冷剂回路的一部分的设置方式,使制冷剂回路得到了简化,进而减少了制冷剂的充注量,达到了节能的效果。
在一些实施例中,发热部件热管理子系统包括电动机热管理子系统,发热部件包括电动机;和/或
发热部件热管理子系统包括动力电池热管理子系统,发热部件包括动力电池;
其中,控制阀系统能够控制第一散热水回路可选择地为电动机热管理子系统和/或动力电池热管理子系统散热。
通过第一散热水回路为电动机和/或动力电池散热,能够使电动机和/或动力电池的温度降低,从而保证电动机和/或动力电池在正常工作的温度范围内。
在一些实施例中,电动机热管理子系统还包括第一水泵,第一水泵设于第一散热水回路,用于提供水流在第一散热水回路中流动的第一流动力。第一水泵是输送水或使水增压的机械,第一水泵提供的第一流动力能够使水在第一散热水回路中循环流动,从而便于发热部件热量的散发及冷凝器的冷却。
在一些实施例中,发热部件热管理子系统还包括用于控制电动机的电控装置,控制阀系统能够使第一散热水回路给电控装置散热。通过第一散热水回路给电控装置散热,从而保证电控装置在正常的工作温度范围内,避免电控装置的工作温度过高。
在一些实施例中,乘客舱热管理子系统还包括第二节流件及冷却器,压缩机与第二节流件受控连通形成第二制冷剂回路;压缩机具有相互连接的出气端和回气端,冷凝器设于出气端与第二节流件之间并能与第二制冷剂回路热交换,冷却器设于回气端与第二节流件之间并能与第二制冷剂回路热交换;
其中,乘客舱热管理子系统及动力电池热管理子系统通过控制阀系统连接,冷却器两端受控连通形成第二散热水回路;第一散热水回路用于电动机散热,第二散热水回路用于动力电池散热。上述设置,乘客舱热管理子系统通过冷凝器与电动机热管理子系统集成,且通过冷却器与动力电池热管理子系统集成,进一步提高了整个热管理系统的集成度,减少了热量的浪费。
在一些实施例中,动力电池热管理子系统包括第二水泵,第二水泵设于第二散热水回路,用于提供水流在第二散热水回路中流动的第二流动力。第二水泵是输送水或使水增压的机械,第二水泵提供的第二流动力能够使水在第二散热水回路中循环流动,从而便于电动电池散热。
在一些实施例中,乘客舱热管理子系统、动力电池热管理子系统及电动机热管理子系统三者通过控制阀系统连接;
控制阀系统能够使散热水箱、冷凝器及冷却器连通形成第三散热水回路,第三散热水回路用于电动机及动力电池散热。如此,乘客舱热管理子系统、电动机热管理子系统及动力 电池热管理子系统集成在一起,减少了热管理系统的热量浪费。
在一些实施例中,电动机热管理子系统还包括第一管路;动力电池热管理子系统还包括第二管路;
控制阀系统能够使第一管路与第二管路连通形成第一加热水回路,第一加热水回路能够与电动机进行热传导,并将吸收的电动机的热量加热电池,并使冷却器与散热水箱连通形成用于散热水箱散热的第四散热水回路。上述设置,能够采用电动机产生的热量加热动力电池,减少了热量的浪费。同时,冷却器给散热水箱散热,以进一步减小了热量的浪费。
在一些实施例中,冷凝器具有相互连接的第一端和第二端,散热水箱具有相互连接的第三端和第四端,第三端与第一端连通;冷却器具有相互连接的第五端和第六端,第一管路具有相互连接的第七端和第八端,第二管路具有相互连接的第九端和第十端;
控制阀系统包括第一控制阀组件与第二控制阀组件,第一控制阀组件具有五个可控连通的第一端口,五个第一端口分别与第一端、第二端、第七端、第五端及第九端连接;第二控制阀组件具有五个可控连通的第二端口,五个第二端口分别与第三端、第四端、第六端、第八端及第十端连通。通过设置控制阀系统包括第一控制阀组件和第二控制阀组件,第一控制阀组件包括五个可控连通的第一端口,第二控制阀组件包括五个可控连通的第二端口,以便于上述第一散热水回路、第二散热水回路、第三散热水回路、第四散热水回路及第一加热水回路的形成。
在一些实施例中,第一控制阀组件包括第一三通阀及第一四通阀,第一三通阀的其中一个阀口与第一四通阀的其中一个阀口连通,与第一端及第二端连接的两个第一端口设于第一三通阀,剩余三个第一端口设于第一四通阀;或者
第一控制阀组件包括第一五通阀,五个第一端口设于第一五通阀。
在一些实施例中,第二控制阀组件包括第二三通阀及第二四通阀,第二三通阀的其中一个阀口与第二四通阀的其中一个阀口连通,与第三端及第四端连接的两个第二端口设于第二三通阀,剩余三个第二端口设于第二四通阀;或者
第二控制阀组件包括第二五通阀,五个第二端口设于第二五通阀。
在一些实施例中,乘客舱热管理子系统还包括制热乘客舱的暖风芯体,控制阀系统使冷凝器与暖风芯体连通形成第二加热水回路。控制阀系统使冷凝器和暖风芯体连通形成第二加热水回路时,第二加热水回路能够加热乘客舱,提高了乘客舱的舒适性,同时,由于水在冷凝器和暖风芯体中循环流动,暖风芯体在制热乘客舱时,流动于其内的水的温度降低,相应地,达到了给冷凝器散热的效果。
在一些实施例中,乘客舱热管理子系统还包括加热器,加热器设于第二加热水回路,并位于水流从冷凝器流向暖风芯体的流动路径上。通过设置加热器,提高了冷凝器流向暖风芯体的水的水温,以保证制热效果。
在一些实施例中,控制阀系统包括第三三通阀,第三三通阀设于第二加热水回路,并位于水流从冷凝器流向暖风芯体的流动路径上;
第三三通阀的三个阀口分别与冷凝器、散热水箱及暖风芯体相连。这样,通过控制第三三通阀的三个阀口的开关,能够使冷凝器与散热水箱连通或断开,或者控制冷凝器与暖风芯体连通或断开。
在一些实施例中,控制阀系统使第二加热水回路加热动力电池。即为,在低温场景时,控制阀系统能够使第二加热水回路加热动力电池,以使动力电池的温度维持在正常工作的温度范围内,达到了对热量充分利用的效果。
在一些实施例中,动力电池热管理子系统包括第二管路,第二管路能够与动力电池热交换;控制阀系统包括第四三通阀,第四三通阀设于第二加热水回路,并位于水流从暖风芯体流向第二管路的流动路径上;
第四三通阀的三个阀口分别与暖风芯体、冷凝器及第二管路的一端相连,第二管路的另一端与冷凝器相连。这样,通过控制第四三通阀的三个阀口的开关,能够使第二加热水回路加热动力电池或者不加热动力电池。
在一些实施例中,乘客舱热管理子系统还包括第三水泵,第三水泵设于第二加热水回路,用于提供水流在第二加热水回路中流动的第三流动力。第三水泵是输送水或使水增压的机械,第三水泵提供的第三流动力能够使水在第二加热水回路中循环流动,从而便于给乘客舱制热。
在一些实施例中,乘客舱热管理子系统还包括储液干燥器,储液干燥器设于第一制冷剂回路上,并位于压缩机与第一节流件之间,用于干燥制冷剂。储液干燥器起到了干燥制冷剂的作用,且能过滤掉制冷剂回路中的微小杂质,以便于制冷剂的流动,提高了乘客舱热管理子系统的使用性能。
在一些实施例中,发热部件热管理子系统还包括散热风扇,散热风扇设于散热水箱旁,用于散热水箱的散热。如此,散热风扇能够促进气流流动,以使散热水箱的热量散热于空气中,从而方便散热水箱的散热。
第二方面,本申请提供了一种电动汽车,包括乘客舱及上述实施例中的热管理系统,热管理系统的蒸发器用于乘客舱的制冷。
第三方面,本申请提供了一种热管理系统的控制方法,包括步骤:
在环境温度低于第一预设阈值时,控制压缩机、第一节流件及蒸发器依次连通形成用于制冷电动汽车中乘客舱的第一制冷剂回路;
控制散热水箱与冷凝器连通形成用于给发热部件及第一制冷剂回路散热的第一散热水回路;
其中,散热水箱用于为发热部件散热,冷凝器设于压缩机与第一节流件之间并能与第 一制冷剂回路热交换。
本申请实施例的技术方案中,第一散热水回路不但能够实现给发热部件散热,同时,由于水在第一散热水回路中循环流动,冷凝器中会循环更换温度较低的水,以便于冷凝器与第一制冷剂回路热交换时吸热。即,散热水箱不但作为发热部件的散热器,同时还作为冷凝器的散热器,从而避免了另设散热器以给冷凝器散热,使整个热管理系统的集成度较高,减少了热量的浪费。且由于冷凝器通过水冷的方式冷却,相对于现有技术中将冷凝器作为第一制冷剂回路的一部分的设置方式,使制冷剂回路得到了简化,进而减少了制冷剂的充注量,达到了节能的效果。
在一些实施例中,第一散热水回路用于给电动机和/或动力电池散热。通过第一散热水回路为电动机和/或动力电池散热,能够使电动机和/或动力电池的温度降低,从而保证电动机和/或动力电池在正常工作的温度范围内。
在一些实施例中,还包括步骤:
在环境温度高于第二预设阈值时,控制压缩机及第二节流件连通形成第二制冷剂回路;
控制冷却器两端形成第二散热水回路,以给动力电池散热;第一散热水回路给电动机散热;或者
控制冷却器、冷凝器及散热水箱连通形成第三散热水回路,以给电动机及动力电池散热;
其中,第二预设阈值大于第一预设阈值;压缩机具有相互连接的出气端和回气端,冷凝器设于出气端与第二节流件之间并能与第二制冷剂回路热交换,冷却器设于回气端与第二节流件之间并能与第二制冷剂回路热交换。这样设置,使得热管理系统的集成度较高,进一步提高了整个热管理系统的集成度,减少了热量的浪费。
在一些实施例中,还包括步骤:
在环境温度低于第三预设阈值时,控制第一制冷剂回路断开,控制冷凝器及暖风芯体连通形成第二加热水回路,暖风芯体用于制热乘客舱;
控制冷却器两端形成第二散热水回路,以给动力电池散热,散热水箱给电动机散热;或者
控制冷却器两端形成第二散热水回路以给动力电池及电动机散热;
其中,第三预设阈值小于第一预设阈值。上述方式,乘客舱热管理子系统通过冷凝器与电动机热管理子系统集成,且通过冷却器与动力电池热管理子系统集成,进一步提高了整个热管理系统的集成度,减少了热量的浪费。
在一些实施例中,热管理系统包括第一管路和第二管路,第二加热水回路用于加热动力电池;
控制第一管路与第二管路连通形成第一加热水回路,散热水箱与冷却器连通形成水回路。上述方式,能够采用电动机产生的热量加热动力电池,减少了热量的浪费。同时,冷却器给散热水箱散热,以进一步减小了热量的浪费。
在一些实施例中,控制第一制冷剂回路连通,蒸发器用于乘客舱的除湿。这样,在第二制冷剂回路加热乘客舱时,第一制冷剂回路能够用于乘客舱的除湿,以提高乘客舱的舒适性。
在一些实施例中,控制冷却器两端形成第二散热水回路,以给动力电池散热;第一散热水回路给电动机散热;或者
控制冷却器、冷凝器及散热水箱连通形成第三散热水回路,以给电动机及动力电池散热;
其中,冷凝器用于为散热水箱除霜。
由于在乘客舱制热,且冷却器通过散热水箱从环境中吸收热量时,容易导致散热水箱的表面结霜。上述设置,可以将冷凝器中的热水通入散热水箱,以使给散热水箱除霜。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一实施例的热管理系统的原理图;
图2为本申请另一实施例提供的热管理系统的原理图;
图3为图1中所示的热管理系统在第一制冷模式下的原理图;
图4为图1中所示的热管理系统在第二制冷模式下的原理图;
图5为图1中所示的热管理系统在第一制热模式下的原理图;
图6为图1中所示的热管理系统在第二制热模式下的原理图;
图7为图1中所示的热管理系统在第一除湿模式下的原理图;
图8为图1中所示的热管理系统在第二除湿模式下的原理图;
图9为图1中所示的热管理系统在第三除湿模式下的原理图;
图10为图1中所示的热管理系统在散热水箱除霜模式下的原理图;
图11为图2中所示的热管理系统在第一制冷模式下的原理图;
图12为图2中所示的热管理系统在第二制冷模式下的原理图;
图13为图2中所示的热管理系统在第一制热模式下的原理图;
图14为图2中所示的热管理系统在第二制热模式下的原理图;
图15为图2中所示的热管理系统在第一除湿模式下的原理图;
图16为图2中所示的热管理系统在第二除湿模式下的原理图;
图17为图2中所示的热管理系统在第三除湿模式下的原理图;
图18为图2中所示的热管理系统在散热水箱除霜模式下的原理图;
图19为本申请一实施例提供的热管理系统的控制方法的流程图。
100、热管理系统;10、乘客舱热管理子系统;11、压缩机;12、第一节流件;13、蒸发器;14、冷凝器;15、第二节流件;16、第三水泵;17、加热器;18、暖风芯体;19、储液干燥器;20、电动机热管理子系统;21、电动机;22、散热水箱;23、第一水泵;24、电控装置;25、第一管路;26、散热风扇;30、动力电池热管理子系统;31、动力电池;32、冷却器;33、第二水泵;34、第二管路;41、第一三通阀;42、第一四通阀;43、第一五通阀;51、第二三通阀;52、第二四通阀;53、第二五通阀;60、第三三通阀;70、第四三通阀;80、旁通管路;200、乘客舱。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组” 指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着电动汽车的广泛普及,其节能减排性能一直是研究人员所致力于追求的。比如:热管理系统对于热量的优化利用等。对于热量的优化利用,能够提高电动汽车的节能性能。
本申请人注意到,热管理系统一般包括乘客舱热管理子系统及发热部件热管理子系统,发热部件热管理子系统包括电动机热管理子系统和动力电池热管理子系统。一般地,乘客舱热管理子系统和发热部件热管理子系统独立设置,即为整个热管理系统的集成度较低,从而导致整车的热量浪费严重,从而不利于电动汽车的节能减排。
为了减少热量浪费,申请人研究发现,可以将热管理系统所包括的乘客舱热管理子系统及发热部件热管理子系统进行集成。例如,可以将电动机热管理子系统与动力电池热管理子系统进行集成,或者将电动机热管理子系统与乘客舱热管理子系统进行集成,或者将乘客舱热管理子系统与动力电池热管理子系统进行集成,还可以将电动机热管理子系统、动力电池热管理子系统及乘客舱热管理子系统三者进行集成。
基于上述考虑,为了解决电动汽车热量浪费严重的问题,发明人经过深入研究,设计了一种热管理系统,该热管理系统应用于电动汽车,电动汽车具有乘客舱。热管理系统包括乘客舱热管理子系统和发热部件热管理子系统。乘客舱热管理子系统的冷凝器能够与其第一制冷剂回路进行热交换,从而第一制冷剂回路里的制冷剂的温度降低,以使制冷剂在第一制冷剂回路中循环流行实现乘客舱的制冷。控制阀系统能够使发热部件热管理子系统的散热水箱与乘客舱热管理子系统的冷凝器连通形成第一散热水回路,第一散热水回路不但能实现发热部件的散热,同时,由于水在第一散热水回路中循环流动,冷凝器中会循环更换温度较低的水,以便于冷凝器与第一制冷剂回路热交换时吸热。
在这样的热管理系统中,制冷乘客舱时,散热水箱不但作为发热部件的散热器,同时还作为冷凝器的散热器,从而避免了另设散热器以给冷凝器散热,使整个热管理系统的集成度较高,减少了热量的浪费。同时,由于冷凝器通过水冷的方式冷却,相对于现有技术中将 冷凝器作为第一制冷剂回路的一部分的设置方式,使制冷剂回路得到了简化,从而也减少了制冷剂的充注量。
参阅图1及图2,本申请提供了一种热管理系统100,包括乘客舱热管理子系统10、发热部件热管理子系统和控制阀系统,控制阀系统连接乘客舱热管理子系统10及发热部件热管理子系统。乘客舱热管理子系统10包括压缩机11、第一节流件12及蒸发器13,蒸发器13用于乘客舱200的制冷,压缩机11、第一节流件12及蒸发器13受控依次连通形成第一制冷剂回路。乘客舱热管理子系统10还包括冷凝器14,冷凝器14设于压缩机11与第一节流件12之间,并能与第一制冷剂回路热交换。发热部件热管理子系统包括发热部件及用于为发热部件散热的散热水箱22。控制阀系统能够控制散热水箱22和冷凝器14连通形成第一散热水回路,第一散热水回路用于给发热部件散热。
乘客舱热管理子系统10用于对乘客舱200的热量进行管理,通过乘客舱热管理子系统10能够实现乘客舱200的制冷和/或制热。如在一种情况下,乘客舱热管理子系统10只能够实现乘客舱200的制冷,即为,当乘客舱200内的温度较高时,乘客舱热管理子系统10能够使乘客舱200内的温度降低。在另一种情况下,乘客舱热管理子系统10只能够实现乘客舱200的制热,即为,当乘客舱200内的温度较低时,乘客舱热管理子系统10能够使乘客舱200内的温度升高。在又一种情况下,乘客舱热管理子系统10既能够实现乘客舱200的制冷,又能够实现乘客舱200的制热,当乘客舱200内的温度较高时,乘客舱热管理子系统10能够使乘客舱200内的温度降低,当乘客舱200内的温度较低时,乘客舱热管理子系统10能够使乘客舱200内的温度升高。
发热部件热管理子系统能够对发热部件的热量进行管理,如能够给发热部件散热和/或给发热部件加热。在一种情况下,发热部件热管理子系统只能够给发热部件散热,即为,当发热部件温度较高时,发热部件热管理子系统能够使发热部件的温度降低。在另一种情况下,发热部件热管理子系统只能够给发热部件加热,即为,当发热部件温度较低时,发热部件热管理子系统能够使发热部件的温度升高。在又一种情况下,发热部件热管理子系统既能够给发热部件散热又能够给发热部件加热,当发热部件温度较高时,发热部件热管理子系统能够使发热部件的温度降低,当发热部件温度较低时,发热部件热管理子系统能够使发热部件的温度升高。
控制阀系统用于连接乘客舱热管理子系统10和发热部件热管理子系统,以使乘客舱热管理子系统10和发热部件热管理子系统进行集成,减少整车热量的浪费。
压缩机11是制冷循环的动力,它由电机拖动而不停地旋转,它除了及时抽出蒸发器13内的蒸气,维持低温低压外,还通过压缩作用提高制冷剂蒸气的压力和温度,创造将制冷剂蒸气的热量向外界环境介质转移的条件。其能将低温低压制冷剂蒸气压缩至高温高压状态。
冷凝器14是一种热交换设备,作用是利用冷却介质(空气或水),将来自压缩机11 的高温高压制冷蒸气的热量带走,使高温高压制冷剂蒸气冷却、冷凝成高压常温的制冷剂液体。一个具体实施例中,冷凝器14为板式换热器,板式换热器具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、应用广泛、使用寿命长等特点。
第一节流件12将高压常温蒸气降压,得到低温低压制冷剂,并送入冷凝器14蒸发。
蒸发器13也是一种热交换设备,节流后形成的低温低压制冷剂在其内蒸发,吸收被冷却物质的热量。即为,蒸发器13中低温低压制冷剂能够吸收乘客舱200内的热量,达到降低乘客舱200内空气的温度的效果。
在乘客舱200制冷时,上述压缩机11、第一节流件12及蒸发器13受控依次连通形成第一制冷剂回路。如此,制冷剂经压缩机11压缩呈高温高压状态,高温高压的制冷剂在第一制冷剂回路中流动时与冷凝器14热交换,冷凝器14将高温高压的制冷剂的热量带走,使高温高压制冷剂蒸气冷却、冷凝成高压常温的制冷剂液体。高压常温的制冷剂经第一节流件12节流后,变为低温低压制冷剂,低温低压制冷剂在蒸发器13内蒸发,吸收乘客舱200中的空气的热量后回流至压缩机11,以达到降低乘客舱200中温度的效果。
在此需要说明的是,为了方便设置,上述压缩机11与第一节流件12、第一节流件12与蒸发器13、蒸发器13与压缩机11之间通常设有制冷剂管路,上述每两者之间通过制冷剂管路连通,此时,第一制冷剂回路还包括制冷剂管路。冷凝器14能够与设于压缩机11与第一节流件12之间的制冷剂管路进行热交换,即为冷凝器14中流动的冷却介质能够与制冷剂管路内流动的制冷剂进行热交换。
发热部件指代的是在其工作时能够发热产生热量的部件,散热水箱22内充注有水,散热水箱22内的水能够与发热部件产生热交换,以使发热部件的温度降低,以避免发热部件的温度过高而影响其正常工作。
第一散热水回路由控制阀系统控制散热水箱22和冷凝器14连通形成。一般地,散热水箱22通过水管与冷凝器14连通,此时,第一散热水回路还包括水管。发热部件能够与水管进行热交换,即为发热部件能够与流动于水管内的冷却介质(水)进行热交换。
上述热管理系统100,控制阀系统能够使发热部件热管理子系统的散热水箱22与乘客舱热管理子系统10的冷凝器14连通形成第一散热水回路。这样,第一散热水回路不但能够实现给发热部件散热,同时,由于水在第一散热水回路中循环流动,冷凝器14中会循环更换温度较低的水,以便于冷凝器14与第一制冷剂回路热交换时吸热。即,散热水箱22不但作为发热部件的散热器,同时还作为冷凝器14的散热器,从而避免了另设散热器以给冷凝器14散热,使整个热管理系统100的集成度较高,减少了热量的浪费。且由于冷凝器14通过水冷的方式冷却,相对于现有技术中将冷凝器14作为第一制冷剂回路的一部分的设置方式,使制冷剂回路得到了简化,进而减少了制冷剂的充注量,达到了节能的效果。
根据本申请的一些实施例,发热部件热管理子系统包括电动机热管理子系统20,此 时发热部件包括电动机21,第一散热水回路能够给电动机21散热。另一些实施例中,发热部件热管理子系统包括动力电池热管理子系统30,此时发热部件包括动力电池31,第一散热水回路能够给电动机21散热。又一些实施例中,发热部件热管理子系统包括电动机热管理子系统20和动力电池热管理子系统30,发热部件包括电动机21和动力电池31,第一散热水回路可选择地为电动机21和/或动力电池31散热。
上述动力电池31为电动汽车的动力源,电动机21能够驱动电动汽车的车轮行驶。具体地,在工作时,动力电池31向电动机21提供电能,电动机21通过电动汽车的传动系统驱动车轮行驶。
通过第一散热水回路为电动机21和/或动力电池31散热,能够使电动机21和/或动力电池31的温度降低,从而保证电动机21和/或动力电池31在正常工作的温度范围内。
在此需要说明的是,上述散热水箱22属于电动机热管理子系统20的一部分。应当理解的是,在另一些实施例中,散热水箱22也可以作为动力电池热管理子系统30的一部分。
电动机热管理子系统20还包括第一水泵23,第一水泵23设于第一散热水回路,用于提供水流在第一散热水回路中流动的第一流动力。具体地,第一水泵23装配于第一散热水回路所包括的水管上。
第一水泵23是输送水或使水增压的机械,第一水泵23提供的第一流动力能够使水在第一散热水回路中循环流动,从而便于发热部件热量的散发及冷凝器14的冷却。
发热部件热管理子系统还包括用于控制电动机21的电控装置24,即为发热部件还包括电控装置24,控制阀系统能够使第一散热水回路给电控装置24散热。具体地,电控装置24属于电动机热管理子系统20的一部分,电控装置24用于控制电动机21工作。
通过第一散热水回路给电控装置24散热,从而保证电控装置24在正常的工作温度范围内,避免电控装置24的工作温度过高。
根据本申请的一些实施例,乘客舱热管理子系统10还包括第二节流件15及冷却器32,压缩机11与第二节流件15受控连通形成第二制冷剂回路。压缩机11具有相互连接的出气端和回气端,高温高压的制冷剂从出气端流出压缩机11,低温低压的制冷剂从回气端回流至压缩机11。冷凝器14设于出气端与第二节流件15之间并能与第二制冷剂回路热交换,冷却器32设于回气端与第二节流件15之间并能与第二制冷剂回路热交换。其中,乘客舱热管理子系统10及动力电池热管理子系统30通过控制阀系统连接,冷却器32两端受控连通形成第二散热水回路,第一散热水回路用于电动机21散热,第二散热水回路用于动力电池31散热。
第二节流件15将高压常温蒸气降压,得到低温低压制冷剂,并流向冷却器32蒸发。
冷却器32也是一种热交换设备,节流后形成的低温低压制冷剂与其热交换蒸发,吸收被冷却物质的热量。即为,与冷却器32热交换的制冷剂能够吸收冷却器32中水的热量, 达到降低冷却器32中水的温度的效果。具体地,冷却器32为板式换热器。
当需要冷却动力电池31时,上述压缩机11、第二节流件15受控连通形成第二制冷剂回路。如此,制冷剂经压缩机11压缩呈高温高压状态,高温高压的制冷剂在第二制冷剂回路中流动时与冷凝器14热交换,冷凝器14将高温高压的制冷剂的热量带走,使高温高压制冷剂蒸气冷却、冷凝成高压常温的制冷剂液体。高压常温的制冷剂经第二节流件15节流后,变为低温低压制冷剂,低温低压制冷剂在经过冷却器32时,吸收冷却器32中水的热量后回流至压缩机11,以达到降低冷却器32中的水的温度的效果。
同第一制冷剂回路相同,压缩机11与第二节流件15之间通常设有制冷剂管路,两者通过制冷剂管路连通,此时,第二制冷剂回路还包括制冷剂管路。冷凝器14能够与设于压缩机11的出气端与第二节流件15之间的制冷剂管路进行热交换,即为冷凝器14中流动的冷却介质能够与制冷剂管路内流动的制冷剂进行热交换。冷却器32能够与设于压缩机11的回气端与第二节流件15之间的制冷剂管路进行热交换,即为冷却器32中流动的冷却介质能够与制冷剂管路内流动的制冷剂进行热交换。
同样,冷却器32的两端通过水管连通,此时,第二散热水回路还包括水管。电动机21能够与第一散热水回路的水管热交换,动力电池31能够与第二散热水回路的水管热交换。
上述设置,乘客舱热管理子系统10通过冷凝器14与电动机热管理子系统20集成,且通过冷却器32与动力电池热管理子系统30集成,进一步提高了整个热管理系统100的集成度,减少了热量的浪费。
动力电池热管理子系统30包括第二水泵33,第二水泵33设于第二散热水回路,用于提供水流在第二散热水回路中流动的第二流动力。具体地,第二水泵33装配于第二散热水回路所包括的水管上。
第二水泵33是输送水或使水增压的机械,第二水泵33提供的第二流动力能够使水在第二散热水回路中循环流动,从而便于电动电池散热。
根据本申请的一些实施例,乘客舱热管理子系统10、动力电池热管理子系统30及电动机热管理子系统20三者通过控制阀系统连接。控制阀系统能够使散热水箱22、冷凝器14和冷却器32连通形成第三散热水回路,第三散热水回路用于电动机21和动力电池31散热。如此,乘客舱热管理子系统10、电动机热管理子系统20及动力电池热管理子系统30集成在一起,减少了热管理系统100的热量浪费。
在此需要说明的是,当散热水箱22、冷凝器14和冷却器32三者连通形成第三散热水回路时,第一散热水回路和第二散热水回路断开。且当散热水箱22、冷凝器14和冷却器32三者连通形成第三散热水回路时,控制第一制冷剂回路导通,第二制冷剂回路断开。
根据本申请的一些实施例,电动机热管理子系统20还包括第一管路25,动力电池热管理子系统30还包括第二管路34。控制阀系统能够使第一管路25和第二管路34连通形成 第一加热水回路,第一加热水回路能够与电动机21进行热传导,并吸收电动机21的热量加热动力电池31。此时,控制阀系统能够使冷却器32和散热水箱22连通形成用于散热水箱22散热的第四散热水回路。
在此需要说明的是,上述第一管路25与第二管路34均为水管。
上述设置,能够采用电动机21产生的热量加热动力电池31,减少了热量的浪费。同时,冷却器32给散热水箱22散热,以进一步减小了热量的浪费。
根据本申请的一些实施例,冷凝器14、散热水箱22、冷却器32、第一管路14和第二管路34分别具有相互连接的两端。定义冷凝器14的两端分别为第一端和第二端,散热水箱22的两端分别为第三端和第四端,冷却器32的两端分别为第五端和第六端,第一管路25的两端分别为第七端和第八端,第二管路34的两端分别为第九端和第十端。
其中,散热水箱22的第三端和冷凝器14的第一端连通。
控制阀系统包括第一控制阀组件,第一控制阀组件具有五个可控连通的第一端口,五个第一端口分别与第一端、第二端、第七端、第五端及第九端连通。控制阀系统还包括第二控制阀组件,第二控制阀组件具有五个可控连通的第二端口,五个第二端口分别与第三端、第四端、第六端、第八端及第十端连通。
上述冷凝器14、散热水箱22、冷却器32、第一管路25及第二管路34均具有两端,各个部件的其中一端作为进水端,另一端作为出水端,至于哪一端作为进水端,哪一端作为进水端要依据水回路的流动方向而定。
第一控制阀组件具有五个可控连通的第一端口的意思是:第一控制阀组件具有五个第一端口,五个第一端口中的任意两个或者任意多个可控的连通。第二控制阀组件具有五个可控连通的第二端口的意思是:第二控制阀组件具有五个第二端口,五个第二端口中的任意两个或者任意多个可控的连通。而至于第一控制阀组件的五个第一端口到底如何连通,则依据工作模式的不同而有所不同。且第二控制阀组件的五个第二端口到底如何连通,也依据工作模式的不同而有所不同。
通过设置控制阀系统包括第一控制阀组件和第二控制阀组件,第一控制阀组件包括五个可控连通的第一端口,第二控制阀组件包括五个可控连通的第二端口,以便于上述第一散热水回路、第二散热水回路、第三散热水回路、第四散热水回路及第一加热水回路的形成。
继续参阅图1,根据本申请的一些实施例,第一控制阀组件包括第一三通阀41和第一四通阀42,第一三通阀41的其中一个阀口与第一四通阀42的其中一个阀口连通,与第一端及第二端连接的两个第一端口设于第一三通阀41,剩余三个第一端口设于第一四通阀42。第二控制阀组件包括第二三通阀51及第二四通阀52,第二三通阀51的其中一个阀口与第二四通阀52的其中一个阀口连通,与第三端及第四端连接的两个第二端口设于第二三通阀51,剩余三个第二端口设于第二四通阀52。这样,通过两个结构相对简单的三通阀和两个结构相 对简单的四通阀,能够形成上述第一散热水回路、第二散热水回路、第三散热水回路、第四散热水回路及第一加热水回路。
继续参阅图2,根据本申请的一些实施例,第一控制阀组件包括第一五通阀43,五个第一端口设于第一五通阀43。第二控制阀组件包括第二五通阀53,五个第二端口设于第二五通阀53。这样,采用数量较少的控制阀,便能形成上述第一散热水回路、第二散热水回路、第三散热水回路、第四散热水回路及第一加热水回路,简化了热管理系统100的结构。
可以想到的是,在另一些实施例中,第一控制阀组件和第二控制阀组件还可以采用其他方式设置,在此不作限定。
根据本申请的一些实施例,乘客舱热管理子系统10还包括暖风芯体18,暖风芯体18用于制热乘客舱200。控制阀系统使冷凝器14与暖风芯体18连通形成第二加热水回路。
暖风芯体18用于传输热量于乘客舱200,从而使乘客舱200内的温度升高,以在低温环境下提高乘客舱200的舒适性。
控制阀系统使冷凝器14和暖风芯体18连通形成第二加热水回路时,第二加热水回路能够加热乘客舱200,提高了乘客舱200的舒适性,同时,由于水在冷凝器14和暖风芯体18中循环流动,暖风芯体18在制热乘客舱200时,流动于其内的水的温度降低,相应地,达到了给冷凝器14散热的效果。
继续参阅图1及图2,根据本申请的一些实施例,乘客舱热管理子系统10还包括加热器17,加热器17设于第二加热水回路上,并位于水流从冷凝器14流向暖风芯体18的流动路径上。为了方便设置加热器17,第二加热水回路中的冷凝器14和暖风芯体18也通过水管连通,此时,第二加热水回路包括水管,加热器17设于第二加热水回路的水管上。
加热器17是一种加热设备,其能够使流过其的水流的温度升高。例如,加热器17为PTC加热器17,PTC加热器17又叫PTC发热体,采用PTC陶瓷发热元件与铝管自称,该类型PTC发热体有热阻小、换热效率高的优点,是一种自动恒温、省电的加热器17。可以想到的是,在另外的实施例中,对于加热器17的种类不作限定,只要能够使水流的温度升高的加热器17均在考虑范围内。
控制阀系统还包括第三三通阀60,第三三通阀60设于第二加热水回路,并位于水流从冷凝器14流向暖风芯体18的流动路径上。第三三通阀60的三个阀口分别与冷凝器14、散热水箱22及暖风芯体18相连。这样,通过控制第三三通阀60的三个阀口的开关,能够使冷凝器14与散热水箱22连通或断开,或者控制冷凝器14与暖风芯体18连通或断开。
进一步,当乘客舱热管理子系统10包括加热器17时,第三三通阀60设于水流从冷凝器14流向加热器17的流动路径上,则第三三通阀60也装配于第二加热水回路位于冷凝器14和加热器17的水管上。
应当理解的是,在另一些实施例中,控制阀系统也可以省略第三三通阀60。而当控 制阀系统省略第三三通阀60时,当乘客舱热管理子系统10制冷乘客舱200时,冷凝器14中的水将会流向暖风芯体18,而避免暖风芯体18散发出来的热量影响乘客舱200的制冷效果,通常暖风芯体18与乘客舱200之间设置可以启闭的启闭门,此时将启闭门关闭,则暖风芯体18散发出来的热量将不会流向乘客舱200,则也不会对乘客舱200的制冷效果产生影响。
还应当理解的是,控制阀系统也可以不采用设置第三三通阀60的方式来控制水流在冷凝器14与散热水箱22及暖风芯体18之间的流通,其还可以采用其他的阀结构来控制,在此亦不作限定。
根据本申请的一些实施例,控制阀系统使第二加热水回路加热动力电池31。即为,在低温场景时,控制阀系统能够使第二加热水回路加热动力电池31,以使动力电池31的温度维持在正常工作的温度范围内,达到了对热量充分利用的效果。
根据本申请的一些实施例,控制阀系统包括第四三通阀70,第四三通阀70设于第二加热水回路,并位于水流从暖风芯体18流向第二管路34的流动路径上。第四三通阀70的三个阀口分别与暖风芯体18、冷凝器14及第二管路34的一端相连,第二管路34的另一端与冷凝器14相连。这样,通过控制第四三通阀70的三个阀口的开关,能够使第二加热水回路加热动力电池31或者不加热动力电池31。
可以理解的是,在另一些实施例中,控制阀系统还可以采用其他设置方式,来实现第一加热水回路加热动力电池31,在此亦不作限定。
根据本申请的一些实施例,乘客舱热管理子系统10还包括第三水泵16,第三水泵16设于第二加热水回路,用于提供水流在第二加热水回路中流动的第三流动力。
第三水泵16是输送水或使水增压的机械,第三水泵16提供的第三流动力能够使水在第二加热水回路中循环流动,从而便于给乘客舱200制热。
根据本申请的一些实施例,乘客舱热管理子系统10还包括储液干燥器19,储液干燥器19设于第一制冷剂回路上,并位于压缩机11与第一节流件12之间,用于干燥制冷剂。储液干燥器19起到了干燥制冷剂的作用,且能过滤掉制冷剂回路中的微小杂质,以便于制冷剂的流动,提高了乘客舱热管理子系统10的使用性能。
根据本申请的一些实施例,发热部件热管理子系统还包括散热风扇26,散热风扇26设于散热水箱22旁,用于散热水箱22的散热。如此,散热风扇26能够促进气流流动,以使散热水箱22的热量散热于空气中,从而方便散热水箱22的散热。
根据本申请的一些实施例,本申请还提供一种电动汽车,包括乘客舱200及上述的热管理系统100。
继续参阅图1,本申请的第一具体实施例中,热管理系统100包括乘客舱热管理子系统10和发热部件热管理子系统,发热部件热管理子系统包括电动机热管理子系统20和动力电池热管理子系统30。热管理系统100还包括控制阀系统,控制阀系统连接乘客舱热管理子 系统10、电动机热管理子系统20和动力电池热管理子系统30。
乘客舱热管理子系统10包括压缩机11、冷凝器14、储液干燥器19、第一节流件12、蒸发器13、第二节流件15及冷却器32。压缩机11、第一节流件12和蒸发器13能够受控连通形成第一制冷剂回路,压缩机11与第二节流件15能够受控连通形成第二制冷剂回路。压缩机11具有出气端和回气端,冷凝器14位于出气端和储液干燥器19之间并与第一制冷剂回路和第二制冷剂回路进行热交换,冷却器32位于储液干燥器19与回气端之间并与第二制冷剂回路进行热交换。储液干燥器19用于干燥制冷剂。
乘客舱热管理子系统10还包括加热器17及暖风芯体18。电动机热管理子系统20包括电动机21、电控装置24、散热水箱22、散热风扇26、第一管路25及旁通管路80。动力电池热管理子系统30包括动力电池31及第二管路34。控制阀系统包括第一三通阀41、第二三通阀51、第三三通阀60、第四三通阀70、第一四通阀42及第二四通阀52。
第一三通阀41的三个阀口分别为A1、A2和A3,第一四通阀42的四个阀口分别为B1、B2、B3及B4。A1与冷凝器14的第一端连通,A2与B1连通,A3与冷凝器14的第二端连通。B2与冷却器32的第五端连通,B3与第二管路34的第九端连通,B4与第一管路25的第七端连通。其中,A1、A3、B2、B3及B4分别形成第一控制组件的五个第一端口。
第二三通阀51的三个阀口分别为C1、C2和C3,第二四通阀52的四个阀口分别为D1、D2、D3及D4。C2与散热水箱22的第三端连通,C1与散热水箱22的第四端连通,C3与D1连通。D2与冷却器32的第六端连通,D3第二管路34的第十端连通,D4与第一管路25的第八端连通。其中,C1、C2、D2、D3及D4分别形成第二控制组件的五个第二端口。具体地,C2通过旁通管路80与散热水箱22的第三端连通。
第三三通阀60的三个阀口分别为E1、E2和E3,E1与冷凝器14的第一端连通,E2与散热水箱22的第三端及A1连通,E3与加热器17连通。
第四三通阀70的三个阀口分别为F1、F2和F3,F1与暖风芯体18连通,F2与冷却器32的第二端连通,F3与第二管路34的第九端连通,第二管路34的第十端也与冷凝器14的第二端连通。
电动机热管理子系统20还包括第一水泵23,动力电池热管理子系统30还包括第二水泵33,乘客舱热管理子系统10还包括第三水泵16。第一水泵23、第二水泵33及第三水泵16均用于提供水流在水回路流动的流动力。
下面结合具体应用场景,详细描述第一具体实施例中提供的热管理系统100。
在此需要说明的是,图中虚线代表管路处于断开状态,实线代表管路处于连通状态,图中箭头指向代表制冷剂或水的流动方向。
场景一(参阅图3):高温环境中,乘客舱200需要制冷,且动力电池31需要强制冷却时。具体地,在环境温度高于第二预设阈值时,此时热管理系统100运行第一制冷模式。
压缩机11、第一节流件12及蒸发器13连通形成第一制冷剂回路,压缩机11与第二节流件15连通形成第二制冷剂回路。
第一三通阀41的A2和A3连通,A1与A2和A3断开连通。第一四通阀42的B1和B4连通,B2和B3连通。第二三通阀51的C1和C3连通,C2与C1和C3断开连通。第二四通阀52的D1和D4连通,D2和D3连通。
第三三通阀60的E1和E2连通,E3与E1和E2断开连通。此时,第一散热水回路及第二散热水回路形成,第一水泵23及第二水泵33工作。第三水泵16停机,水不可从冷凝器14流向动力电池31。
如此,在第一制冷模式下,来自压缩机11的排气端的高温高压制冷剂,经过冷凝器14将热量散热至第一散热水回路中,并经散热水箱22,通过设置于散热水箱22旁的散热风扇26将热量散热至空气中,电动机21及电控装置24的热量也可以通过散热水箱22散热至空气中。第一制冷剂回路中的蒸发器13用于乘客舱200的制冷,第二散热水回路用于动力电池31的冷却。
场景二(参阅图4):高温环境中,乘客舱200需要制冷,动力电池31被动冷却。具体地,在环境温度低于第一预设阈值时,此时热管理系统100运行第二制冷模式。其中,第一预设阈值小于第二预设阈值。
压缩机11、第一节流件12及蒸发器13连通形成第一制冷剂回路。
第一三通阀41的A2和A3连通,A1与A2和A3断开连通。第一四通阀42的B1和B4连通,B2和B3连通。第二三通阀51的C1和C3连通,C2与C1和C3断开连通。第二四通阀52的D3和D4连通,D2和D1连通。
第三三通阀60的E1和E2连通,E3与E1和E2断开连通。此时,第三散热水回路形成,第一水泵23及第二水泵33工作,第三水泵16停机,水不可从冷凝器14流向动力电池31。
如此,在第二制冷模式下,来自压缩机11的排气端的高温高压制冷剂,经过冷凝器14将热量散热至第三散热水回路中,并经散热水箱22,通过设置与散热水箱22旁的散热风扇26将热量散热至空气中,电动机21、电控装置24及动力电池31的热量也可以通过散热水箱22散热至空气中。第一制冷剂回路中的蒸发器13用于乘客舱200的制冷。
场景三(参阅图5):低温环境中,乘客舱200需要制热,动力电池31需要加热。此时,热管理系统100运行第一制热模式。
压缩机11与第二节流件15连通形成第二制冷剂回路。
第一三通阀41的A1和A2连通,A3与A1和A2断开连通。第一四通阀42的B1和B2连通,B3和B4连通。第二三通阀51的C1和C3连通,C2与C1和C3断开连通。第二四通阀52的D3和D4连通,D2和D1连通。
第三三通阀60的E1和E3连通,E2与E1和E3断开连通。第四三通阀70的F1、F2和F3均连通。此时,第四散热水回路形成,第一水泵23及第二水泵33工作。第二加热水回路形成,并经过动力电池31,且第三水泵16工作。
如此,在第一制热模式下,来自压缩机11的排气端的高温高压制冷剂,经过冷凝器14将热量散发至第二加热水回路中,以用于乘客舱200的制热及加热动力电池31。同时,电动机21的热量也用于加热动力电池31。此时,冷却器32能够通过散热水箱22从环境中吸收热量。
在此需要说明的是,在该模式下,也可以通过调节第四三通阀70,以使第二加热水回路不加热动力电池31,动力电池31仅依靠电动机21和电控装置24产生的热量加热。
场景四(参阅图6):低温环境中,乘客舱200需要制热,动力电池31不需要加热。此时,热管理系统100运行第二制热模式。
第一三通阀41的A1和A2连通,A3与A1和A2断开连通。第一四通阀42的B1和B4连通,B2和B3连通。第二三通阀51的C2和C3连通,C1与C2和C3断开连通。第二四通阀52的D3和D4连通,D2和D1连通。
第三三通阀60的E1和E3连通,E2与E1和E3断开连通。第四三通阀70的F1和F2连通,F3与F1和F2断开连通。此时,冷却器32的两端形成第二散热水回路,第一水泵23及第二水泵33工作。第二加热水回路形成,第三水泵16工作。
如此,在第二制热模式下,来自压缩机11的排气端的高温高压制冷剂,经过冷凝器14将热量散发至第二加热水回路中,以用于乘客舱200的制热。此时冷却器32回收电动机21、电控装置24及动力电池31的热量,散热水箱22旁通,确保热量不会散失到外界环境中,实现热量的回收。
场景五(参阅图7):低温环境中,乘客舱200需要制热且需要除湿,动力电池31需要加热。此时,热管理系统100运行第一除湿模式,该模式适于环境温度较低时。一般地,适用于环境温度小于10℃的场景。
第一除湿模式与第一制热模式的区别在于:第一制冷剂回路形成,低温制冷剂进入蒸发器13,实现制冷除湿的效果。
场景六(参阅图8):低温环境中,乘客舱200需要制热且需要除湿,动力电池31需要散热。此时,热管理系统100运行第二除湿模式,该模式适于环境温度较低时。一般地,适用于环境温度小于10℃的场景。
第二除湿模式与第二制热模式的区别在于:第一制冷剂回路形成,低温制冷剂进入蒸发器13,实现制冷除湿的效果。
场景七(参阅图9):低温环境中,乘客舱200需要制热且需要除湿,动力电池31需要散热。此时,热管理系统100运行第三除湿模式,该模式适用的环境温度比第一除湿模式 及第二除湿模式适用的环境温度高。一般地,适用于环境温度大于10℃的场景。
与第一除湿模式相比,区别在于:第一三通阀41的A1和A2连通,A3与A1和A2均断开连通,第一四通阀42的B1和B4连通,B2和B3连通。第二三通阀51的C1和C3连通,C2与C1和C3均断开连通,第一四通阀42的D1和D4连通,D2和D3连通。
第三三通阀60的E1和E3连通,E2与E1和E3均断开连通。第四四通阀的F1和F2连通,F3与F1和F2均断开连通。
如此,在第三除湿模式下,第一制冷剂回路形成,低温制冷剂进入蒸发器13,实现制冷除湿的效果。第二散热水回路给动力电池31散热,散热水箱22给电动机21和电控装置24散热。
场景八(参阅图10):当运行第一制热模式时,由于散热水箱22要从环境中吸收热量,可能导致散热水箱22表面结霜。该模式为散热水箱22化霜模式,以给散热水箱22化霜。
该模式相对于第一制热模式,第一三通阀41的A2与A3连通,A1与A2和A3均断开连通。第一四通阀42的B1和B4连通,B2和B3连通。第二四通阀52的D1和D4连通,D2和D3连通。
第三三通阀60的E1、E2及E3均连通。第四四通阀的F1和F2连通,F3与F1和F2均断开连通。
如此,在散热水箱22化霜模式下,冷凝器14流出的水经第三三通阀60,一部分经过第一水泵23流向散热水箱22化霜,另一部分经过加热器17流向暖风芯体18,以用于乘客舱200制热。与此同时,第二散热水回路冷却动力电池31,第一散热水回路冷却电动机21和电控装置24。
在此需要说明的是,上述八个运行模式,为第一具体实施例提供的热管理系统100的主要运行模式,热管理系统100还可以通过控制阀系统的调节,实现更多的运行模式。
继续参阅图2,本申请的第二具体实施例中,与第一具体实施例的区别在于:
将控制阀系统的第一三通阀41和第一四通阀42替换为第一五通阀43,并将第二三通阀51和第二四通阀52替换为第二五通阀53。第一五通阀43的五个阀口分别为G1、G2、G3、G4和G5,其分别为第一控制阀组件的五个第一端口。第二五通阀53的五个阀口分别为H1、H2、H3、H4和H5,其分别为第二控制阀组件的五个第二端口。
G2与冷却器32的第一端连通,G1与冷凝器14的第二端连通,G3与第一管路25的第七端连通,G4与冷却器32的第五端连通,G5与第二管路34的第九端连通。H1与散热水箱22的第四端连通,H2与散热水箱22的第三端连通,H3与第一管路25的第八端连通,H4与冷却器32的第六端连通,H5与第二管路34的第十端连通。
第二具体实施例与第一具体实施例的应用场景相同,均包括八个主要应用场景,其主要区别是第一五通阀43和第二五通阀53各阀口之间的连通有所改变。下面只介绍区别,而 对于相同的连通关系不再赘述。
场景一(参阅图11):
在第一制冷模式下,与第一具体实施例的区别在于:第一五通阀43的G1和G3连通,G4和G5连通,G2与G1、G3、G4和G5均断开连通。第二五通阀53的H1和H3连通,H4和H5连通,H2与H1、H3、H4和H5均断开连通。
场景二(参阅图12):
在第二制冷模式下,第一五通阀43的G1和G3连通,G4和G5连通,G2与G1、G3、G4和G5均断开连通。第二五通阀53的H1和H4连通,H3和H5连通,H2与H1、H3、H4和H5均断开连通。
场景三(参阅图13):
第一制热模式下,第一五通阀43的G2和G4连通,G3和G5连通,G1与G2、G3、G4和G5均断开连通。第二五通阀53的H1和H4连通,H3和H5连通,H2与H1、H3、H4和H5均断开连通。
场景四(参阅图14):
第二制热模式下,第一五通阀43的G2和G3连通,G4和G5连通,G1与G2、G3、G4和G5均断开连通。第二五通阀53的H2和H4连通,H3和H5连通,H1与H2、H3、H4和H5均断开连通。
场景五(参阅图15):
第二具体实施例中的第一除湿模式与其第一制热模式的区别在于:第一制冷剂回路形成,低温制冷剂进入蒸发器13,实现制冷除湿的效果。
场景六(参阅图16):
第二具体实施例中的第二除湿模式与第二制热模式的区别在于:第一制冷剂回路形成,低温制冷剂进入蒸发器13,实现制冷除湿的效果。
场景七(参阅图17):
第三除湿模式,与第一除湿模式的区别在于:
第二制热模式下,第一五通阀43的G2和G3连通,G4和G5连通,G1与G2、G3、G4和G5均断开连通。第二五通阀53的H1和H3连通,H4和H5连通,H2与H1、H3、H4和H5均断开连通。
场景八(参阅图18):
散热水箱22化霜模式,该模式相对于第一制热模式,区别在于:
第一五通阀43的G1和G3连通,G4和G5连通,G2与G1、G3、G4和G5均断开连通。第二五通阀53的H1和H3连通,H4和H5连通,H2与H1、H3、H4和H5均断开连通。
在此还需要说明的是,在八个主要运行模式下,第二具体实施例与第一具体实施例的区别在于阀口的控制上,但是两个具体实施例在相应的模式下所实现的功能相同。
参阅图19,本申请还提供一种热管理系统100的控制方法,包括步骤:
S110:在环境温度低于第一预设阈值时,控制压缩机11、第一节流件12及蒸发器13依次连通形成用于制冷电动汽车中乘客舱200的第一制冷剂回路;
S120:控制散热水箱22与冷凝器14连通形成用于给发热部件及第一制冷剂回路散热的第一散热水回路;
其中,散热水箱22用于为发热部件散热,冷凝器14设于压缩机11与第一节流件12之间并能与第一制冷剂回路热交换。
压缩机11、第一节流件12、蒸发器13、散热水箱22及发热部件上述已介绍,在此不作详述。
第一预设阈值可以根据需要设定,当环境温度较高且低于第一预设阈值时,此时控制压缩机11、第一节流件12及蒸发器13依次连通形成第一制冷剂回路,以制冷乘客舱200。并控制散热水箱22与冷凝器14连通形成第一散热水回路,第一散热水回路能够冷却冷凝器14和发热部件。
上述热管理系统100的控制方法,第一散热水回路不但能够实现给发热部件散热,同时,由于水在第一散热水回路中循环流动,冷凝器14中会循环更换温度较低的水,以便于冷凝器14与第一制冷剂回路热交换时吸热。即,散热水箱22不但作为发热部件的散热器,同时还作为冷凝器14的散热器,从而避免了另设散热器以给冷凝器14散热,使整个热管理系统100的集成度较高,减少了热量的浪费。且由于冷凝器14通过水冷的方式冷却,相对于现有技术中将冷凝器14作为第一制冷剂回路的一部分的设置方式,使制冷剂回路得到了简化,进而减少了制冷剂的充注量,达到了节能的效果。
根据本申请的一些实施例,发热部件热管理子系统包括电动机热管理子系统20和动力电池热管理子系统30,发热部件包括电动机21和动力电池31,第一散热水回路可选择地为电动机21和/或动力电池31散热。通过第一散热水回路为电动机21和/或动力电池31散热,能够使电动机21和/或动力电池31的温度降低,从而保证电动机21和/或动力电池31在正常工作的温度范围内。
根据本申请的一些实施例,热管理系统100的控制方法还包括步骤:
在环境温度高于第二预设阈值时,控制压缩机11及第二节流件15连通形成第二制冷剂回路;
控制冷却器32两端形成第二散热水回路,以给动力电池31散热;第一散热水回路给电动机21散热;
其中,第二预设阈值大于第一预设阈值;压缩机11具有相互连接的出气端和回气端, 冷凝器14设于出气端与第二节流件15之间并能与第二制冷剂回路热交换,冷却器32设于回气端与第二节流件15之间并能与第二制冷剂回路热交换。
第二节流件15及冷却器32上述已介绍,在此不作详述。
第二预设阈值可以根据需要设定,当环境温度较高且高于第二预设阈值时,此时第一制冷剂回路制冷乘客舱200,电动机21通过第一散热水回路散热,动力电池31通过第二散热水回路散热。
这样设置,使得热管理系统100的集成度较高,进一步提高了整个热管理系统100的集成度,减少了热量的浪费。
另一实施例中,在环境温度高于第二预设阈值时,控制压缩机11及第二节流件15连通形成第二制冷剂回路;
控制冷却器32、冷凝器14及散热水箱22连通形成第三散热水回路,以给电动机21及动力电池31散热。
这样设置,也使得热管理系统100的集成度较高,进一步提高了整个热管理系统100的集成度,减少了热量的浪费。
根据本申请的一些实施例,热管理系统100的控制方法还包括步骤:
在环境温度低于第三预设阈值时,控制第一制冷剂回路断开,控制冷凝器14及暖风芯体18连通形成第二加热水回路,暖风芯体18用于制热乘客舱200;
控制冷却器32两端形成第二散热水回路,以给动力电池31散热,散热水箱22给电动机21散热;
其中,第三预设阈值小于第一预设阈值。
暖风芯体18上述已介绍,在此不作详述。
第三预设阈值可以根据需要设定,当环境温度较低且低于第三预设阈值时,此时第二加热水回路加热乘客舱200,同时,由于水在冷凝器14和暖风芯体18中循环流动,暖风芯体18在制热乘客舱200时,流动于其内的水的温度降低,相应地,达到了给冷凝器14散热的效果。
另一实施例中,在环境温度低于第三预设阈值时,控制第一制冷剂回路断开,控制冷凝器14及暖风芯体18连通形成第二加热水回路,暖风芯体18用于制热乘客舱200;
控制冷却器32两端形成第二散热水回路以给动力电池31及电动机21散热。
上述方式,乘客舱热管理子系统10通过冷凝器14与电动机热管理子系统20集成,且通过冷却器32与动力电池热管理子系统30集成,进一步提高了整个热管理系统100的集成度,减少了热量的浪费。
根据本申请的一些实施例,热管理系统100包括第一管路25和第二管路34,所述第二加热水回路用于加热动力电池31;
控制第一管路25与第二管路34连通形成第一加热水回路,散热水箱22与所述冷却器32连通形成水回路。
上述方式,能够采用电动机21产生的热量加热动力电池31,减少了热量的浪费。同时,冷却器32给散热水箱22散热,以进一步减小了热量的浪费。
根据本申请的一些实施例,控制第一制冷剂回路连通,蒸发器13用于乘客舱200的除湿。
这样,在第二制冷剂回路加热乘客舱200时,第一制冷剂回路能够用于乘客舱200的除湿,以提高乘客舱200的舒适性。
根据本申请的一些实施例,控制冷却器32两端形成第二散热水回路,以给动力电池31散热;第一散热水回路给电动机21散热;或者
控制冷却器32、冷凝器14及散热水箱22连通形成第三散热水回路,以给电动机21及动力电池31散热;
其中,冷凝器14用于为散热水箱22除霜。
由于在乘客舱200制热,且冷却器32通过散热水箱22从环境中吸收热量时,容易导致散热水箱22的表面结霜。上述设置,可以将冷凝器14中的热水通入散热水箱22,以使给散热水箱22除霜。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (27)

  1. 一种热管理系统,用于电动汽车,所述电动汽车具有乘客舱,其中,所述热管理系统包括:
    乘客舱热管理子系统,其包括压缩机、第一节流件及用于制冷所述乘客舱的蒸发器;所述压缩机、所述第一节流件及所述蒸发器受控依次连通形成第一制冷剂回路;所述乘客舱热管理子系统还包括冷凝器,所述冷凝器设于所述压缩机与所述第一节流件之间并能与所述第一制冷剂回路热交换;
    发热部件热管理子系统,包括发热部件及用于为所述发热部件散热的散热水箱;
    控制阀系统,连接所述乘客舱热管理子系统及所述发热部件热管理子系统;所述控制阀系统能够控制所述散热水箱与所述冷凝器连通形成第一散热水回路,所述第一散热水回路用于为所述发热部件散热。
  2. 根据权利要求1所述的热管理系统,其中,所述发热部件热管理子系统包括电动机热管理子系统,所述发热部件包括电动机;和/或
    所述发热部件热管理子系统包括动力电池热管理子系统,所述发热部件包括动力电池;
    其中,所述控制阀系统能够控制所述第一散热水回路可选择地为所述电动机热管理子系统和/或所述动力电池热管理子系统散热。
  3. 根据权利要求2所述的热管理系统,其中,所述电动机热管理子系统还包括第一水泵,所述第一水泵设于所述第一散热水回路,用于提供水流在所述第一散热水回路中流动的第一流动力。
  4. 根据权利要求2所述的热管理系统,其中,所述发热部件热管理子系统还包括用于控制所述电动机的电控装置,所述控制阀系统能够使所述第一散热水回路给所述电控装置散热。
  5. 根据权利要求2-4任一项所述的热管理系统,其中,所述乘客舱热管理子系统还包括第二节流件及冷却器,所述压缩机与所述第二节流件受控连通形成第二制冷剂回路;所述压缩机具有相互连接的出气端和回气端,所述冷凝器设于所述出气端与所述第二节流件之间并能与所述第二制冷剂回路热交换,所述冷却器设于所述回气端与所述第二节流件之间并能与所述第二制冷剂回路热交换;
    其中,所述乘客舱热管理子系统及所述动力电池热管理子系统通过所述控制阀系统连接,所述冷却器两端受控连通形成第二散热水回路;所述第一散热水回路用于所述电动机散热,所述第二散热水回路用于所述动力电池散热。
  6. 根据权利要求5所述的热管理系统,其中,所述动力电池热管理子系统包括第二水泵,所述第二水泵设于所述第二散热水回路,用于提供水流在所述第二散热水回路中流动的第二流动力。
  7. 根据权利要求5所述的热管理系统,其中,所述乘客舱热管理子系统、所述动力电池热管理子系统及所述电动机热管理子系统三者通过所述控制阀系统连接;
    所述控制阀系统能够使所述散热水箱、所述冷凝器及所述冷却器连通形成第三散热水回路,所述第三散热水回路用于所述电动机及所述动力电池散热。
  8. 根据权利要求5-7任一项所述的热管理系统,其中,所述电动机热管理子系统还包括第一管路;所述动力电池热管理子系统还包括第二管路;
    所述控制阀系统能够使所述第一管路与所述第二管路连通形成第一加热水回路,所述第一加热水回路能够与所述电动机进行热传导,并将吸收的所述电动机的热量加热所述电池,并使所述冷却器与所述散热水箱连通形成用于所述散热水箱散热的第四散热水回路。
  9. 根据权利要求8所述的热管理系统,其中,所述冷凝器具有相互连接的第一端和第二端,所述散热水箱具有相互连接的第三端和第四端,所述第三端与所述第一端连通;所述冷却器具有相互连接的第五端和第六端,所述第一管路具有相互连接的第七端和第八端,所述第二管路具有相互连接的第九端和第十端;
    所述控制阀系统包括第一控制阀组件与第二控制阀组件,所述第一控制阀组件具有五个可控连通的第一端口,五个所述第一端口分别与所述第一端、所述第二端、所述第七端、第五端及第九端连接;所述第二控制阀组件具有五个可控连通的第二端口,五个所述第二端口分别与所述第三端、所述第四端、所述第六端、所述第八端及所述第十端连通。
  10. 根据权利要求9所述的热管理系统,其中,所述第一控制阀组件包括第一三通阀及第一四通阀,所述第一三通阀的其中一个阀口与所述第一四通阀的其中一个阀口连通,与所述第一端及所述第二端连接的两个所述第一端口设于所述第一三通阀,剩余三个所述第一端口设于所述第一四通阀;或者
    所述第一控制阀组件包括第一五通阀,五个所述第一端口设于所述第一五通阀。
  11. 根据权利要求9所述的热管理系统,其中,所述第二控制阀组件包括第二三通阀及第二四通阀,所述第二三通阀的其中一个阀口与所述第二四通阀的其中一个阀口连通,与所述第三端及所述第四端连接的两个所述第二端口设于所述第二三通阀,剩余三个所述第二端口设于所述第二四通阀;或者
    所述第二控制阀组件包括第二五通阀,五个所述第二端口设于所述第二五通阀。
  12. 根据权利要求5所述的热管理系统,其中,所述乘客舱热管理子系统还包括制热所述乘客舱的暖风芯体,所述控制阀系统使所述冷凝器与所述暖风芯体连通形成第二加热水回路。
  13. 根据权利要求12所述的热管理系统,其中,所述乘客舱热管理子系统还包括加热器,所述加热器设于所述第二加热水回路,并位于水流从所述冷凝器流向所述暖风芯体的流动路径上。
  14. 根据权利要求12所述的热管理系统,其中,所述控制阀系统包括第三三通阀,所述第三三通阀设于所述第二加热水回路,并位于水流从所述冷凝器流向所述暖风芯体的流动路径上;
    所述第三三通阀的三个阀口分别与所述冷凝器、所述散热水箱及所述暖风芯体相连。
  15. 根据权利要求12-14任一项所述的热管理系统,其中,所述控制阀系统使所述第二加热水回路加热所述动力电池。
  16. 根据权利要求15所述的热管理系统,其中,所述动力电池热管理子系统包括第二管路,所述第二管路能够与所述动力电池热交换;所述控制阀系统包括第四三通阀,所述第四三通阀设于所述第二加热水回路,并位于水流从所述暖风芯体流向所述第二管路的流动路径上;
    所述第四三通阀的三个阀口分别与所述暖风芯体、所述冷凝器及所述第二管路的一端相连,所述第二管路的另一端与所述冷凝器相连。
  17. 根据权利要求12所述的热管理系统,其中,所述乘客舱热管理子系统还包括第三水泵,所述第三水泵设于所述第二加热水回路,用于提供水流在所述第二加热水回路中流动的第三流动力。
  18. 根据权利要求1-17任一项所述的热管理系统,其中,所述乘客舱热管理子系统还包括储液干燥器,所述储液干燥器设于所述第一制冷剂回路上,并位于所述压缩机与所述第一节流件之间,用于干燥制冷剂。
  19. 根据权利要求1-18任一项所述的热管理系统,其中,所述发热部件热管理子系统还包括散热风扇,所述散热风扇设于所述散热水箱旁,用于所述散热水箱的散热。
  20. 一种电动汽车,其中,包括乘客舱及如权利要求1-19任一项所述的热管理系统,所述热管理系统的所述蒸发器用于所述乘客舱的制冷。
  21. 一种热管理系统的控制方法,其中,包括步骤:
    在环境温度低于第一预设阈值时,控制压缩机、第一节流件及蒸发器依次连通形成用于制冷电动汽车中乘客舱的第一制冷剂回路;
    控制散热水箱与冷凝器连通形成用于给发热部件及所述第一制冷剂回路散热的第一散热水回路;
    其中,所述散热水箱用于为所述发热部件散热,所述冷凝器设于所述压缩机与所述第一节流件之间并能与所述第一制冷剂回路热交换。
  22. 根据权利要求21所述的热管理系统的控制方法,其中,所述第一散热水回路用于给电动机和/或动力电池散热。
  23. 根据权利要求21或22所述的热管理系统的控制方法,其中,还包括步骤:
    在环境温度高于第二预设阈值时,控制所述压缩机及第二节流件连通形成第二制冷剂回 路;
    控制冷却器两端形成第二散热水回路,以给动力电池散热;所述第一散热水回路给电动机散热;或者
    控制所述冷却器、所述冷凝器及所述散热水箱连通形成第三散热水回路,以给所述电动机及所述动力电池散热;
    其中,所述第二预设阈值大于所述第一预设阈值;所述压缩机具有相互连接的出气端和回气端,所述冷凝器设于所述出气端与所述第二节流件之间并能与所述第二制冷剂回路热交换,所述冷却器设于所述回气端与所述第二节流件之间并能与所述第二制冷剂回路热交换。
  24. 根据权利要求23所述的热管理系统的控制方法,其中,还包括步骤:
    在环境温度低于第三预设阈值时,控制所述第一制冷剂回路断开,控制所述冷凝器及暖风芯体连通形成第二加热水回路,所述暖风芯体用于制热所述乘客舱;
    控制冷却器两端形成第二散热水回路,以给动力电池散热,所述散热水箱给所述电动机散热;或者
    控制冷却器两端形成第二散热水回路以给所述动力电池及所述电动机散热;
    其中,所述第三预设阈值小于所述第一预设阈值。
  25. 根据权利要求24所述的热管理系统的控制方法,其中,所述热管理系统包括第一管路和第二管路,所述第二加热水回路用于加热动力电池;
    控制第一管路与第二管路连通形成第一加热水回路,所述散热水箱与所述冷却器连通形成水回路。
  26. 根据权利要求24或25所述的热管理系统的控制方法,其中,控制所述第一制冷剂回路连通,所述蒸发器用于所述乘客舱的除湿。
  27. 根据权利要求24所述的热管理系统的控制方法,其中,控制冷却器两端形成第二散热水回路,以给动力电池散热;所述第一散热水回路给电动机散热;或者
    控制所述冷却器、所述冷凝器及所述散热水箱连通形成第三散热水回路,以给所述电动机及所述动力电池散热;
    其中,所述冷凝器用于为所述散热水箱除霜。
PCT/CN2022/091139 2021-12-20 2022-05-06 电动汽车、热管理系统及其控制方法 WO2023115783A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22790438.0A EP4223566A4 (en) 2021-12-20 2022-05-06 ELECTRIC VEHICLE, THERMAL MANAGEMENT SYSTEM AND ASSOCIATED CONTROL METHOD
KR1020227039748A KR20230098093A (ko) 2021-12-20 2022-05-06 전기 자동차, 열관리 시스템 및 그의 제어 방법
JP2022570381A JP2024508062A (ja) 2021-12-20 2022-05-06 電気自動車、熱管理システム及びその制御方法
US18/087,716 US20230191870A1 (en) 2021-12-20 2022-12-22 Electric vehicle, thermal management system, and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123215232.3U CN216659508U (zh) 2021-12-20 2021-12-20 一种热管理系统及新能源汽车
CN202123215232.3 2021-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/087,716 Continuation US20230191870A1 (en) 2021-12-20 2022-12-22 Electric vehicle, thermal management system, and method for controlling same

Publications (1)

Publication Number Publication Date
WO2023115783A1 true WO2023115783A1 (zh) 2023-06-29

Family

ID=81792560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091139 WO2023115783A1 (zh) 2021-12-20 2022-05-06 电动汽车、热管理系统及其控制方法

Country Status (2)

Country Link
CN (1) CN216659508U (zh)
WO (1) WO2023115783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080625A (zh) * 2023-08-25 2023-11-17 无锡柯诺威新能源科技有限公司 一种直冷电池热管理系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150143826A1 (en) * 2013-10-31 2015-05-28 John Lingelbach Refrigeration system and methods for refrigeration
CN108482064A (zh) * 2018-04-18 2018-09-04 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
JP2019027601A (ja) * 2017-07-25 2019-02-21 東プレ株式会社 冷媒回路装置
CN208797144U (zh) * 2018-08-15 2019-04-26 中国电子科技集团公司第十六研究所 一种风冷耦合汽车空调的电动汽车电池液冷系统
CN112109521A (zh) * 2020-09-17 2020-12-22 东风汽车集团有限公司 一种纯电动汽车整车热管理系统
KR20210059276A (ko) * 2019-11-15 2021-05-25 현대자동차주식회사 차량용 히트펌프 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150143826A1 (en) * 2013-10-31 2015-05-28 John Lingelbach Refrigeration system and methods for refrigeration
JP2019027601A (ja) * 2017-07-25 2019-02-21 東プレ株式会社 冷媒回路装置
CN108482064A (zh) * 2018-04-18 2018-09-04 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
CN208797144U (zh) * 2018-08-15 2019-04-26 中国电子科技集团公司第十六研究所 一种风冷耦合汽车空调的电动汽车电池液冷系统
KR20210059276A (ko) * 2019-11-15 2021-05-25 현대자동차주식회사 차량용 히트펌프 시스템
CN112109521A (zh) * 2020-09-17 2020-12-22 东风汽车集团有限公司 一种纯电动汽车整车热管理系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080625A (zh) * 2023-08-25 2023-11-17 无锡柯诺威新能源科技有限公司 一种直冷电池热管理系统及其控制方法

Also Published As

Publication number Publication date
CN216659508U (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
JP7250658B2 (ja) 車両用ヒートポンプシステム
KR102470421B1 (ko) 열관리 시스템
US20230158856A1 (en) Heat pump system for vehicle
KR20210021728A (ko) 차량용 히트펌프 시스템
KR102091809B1 (ko) 자동차용 히트펌프
CN114734778B (zh) 一种集成式模块化整车热管理系统
CN110422082A (zh) 一种混合动力汽车集成式热管理系统及其控制方法
CN109849617B (zh) 一种用于电动汽车的热管理系统
CN111251802A (zh) 车辆的热管理系统及车辆
US20230191870A1 (en) Electric vehicle, thermal management system, and method for controlling same
CN115675013A (zh) 新能源电动汽车多工况整车热管理系统及方法
CN109203912A (zh) 一种空调系统及其控制方法、以及纯电动冷链物流车
WO2023115783A1 (zh) 电动汽车、热管理系统及其控制方法
CN106183719A (zh) 一种利用回路热管调节车内温度的系统
CN216659503U (zh) 车辆热管理系统
WO2022017443A1 (zh) 阀组装置、控制方法、车辆冷却系统及车辆
CN111251814A (zh) 车辆的热管理系统及车辆
CN106585318B (zh) 电动车的电池冷却系统
CN108275021B (zh) 一种用于电动汽车电池的温度控制装置及一种充电桩
CN112297757B (zh) 一种冷却液集中循环的电动汽车热管理系统及其使用方法
CN114379326A (zh) 电动汽车双分流热管理系统
CN111251804B (zh) 车辆的热管理系统及车辆
CN111845244B (zh) 热综合管理系统
CN113263889A (zh) 热管理系统
WO2024007935A1 (zh) 一种电动汽车热管理系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022570381

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022790438

Country of ref document: EP

Effective date: 20221028