WO2023115436A1 - 越野跑等价水平配速的估算方法、装置、设备和介质 - Google Patents

越野跑等价水平配速的估算方法、装置、设备和介质 Download PDF

Info

Publication number
WO2023115436A1
WO2023115436A1 PCT/CN2021/140693 CN2021140693W WO2023115436A1 WO 2023115436 A1 WO2023115436 A1 WO 2023115436A1 CN 2021140693 W CN2021140693 W CN 2021140693W WO 2023115436 A1 WO2023115436 A1 WO 2023115436A1
Authority
WO
WIPO (PCT)
Prior art keywords
pace
running
slope
oxygen uptake
data
Prior art date
Application number
PCT/CN2021/140693
Other languages
English (en)
French (fr)
Inventor
刘新
马淑慧
Original Assignee
广东高驰运动科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东高驰运动科技股份有限公司 filed Critical 广东高驰运动科技股份有限公司
Priority to PCT/CN2021/140693 priority Critical patent/WO2023115436A1/zh
Publication of WO2023115436A1 publication Critical patent/WO2023115436A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising

Definitions

  • the embodiments of the present application relate to the field of estimating sports pace, for example, to a method, device, device and medium for estimating the equivalent level pace of cross-country running.
  • the embodiment of the present application provides a method for estimating the equivalent level pace of cross-country running, including:
  • the relationship equation between the equivalent level pace in cross-country running and the road surface gradient and slope pace is obtained, which is recorded as the third model equation; wherein, the equivalent level pace is the same as that of horizontal running The horizontal pace corresponding to the slope pace under the same physiological intensity information condition;
  • the equivalent level pace of trail running is estimated.
  • the embodiment of the present application also provides a device for estimating the equivalent level pace of cross-country running, including:
  • the first model equation building module is configured to establish at least one first relational equation between at least one kind of physiological intensity information in cross-country running and the road surface slope and slope pace, and establishes the first model equation according to at least one of the first relational equations ;
  • the second model equation building module is configured to establish at least one second relationship equation between at least one kind of physiological strength information and horizontal pace in horizontal running, and establish a second model equation according to at least one of the second relationship equations, said Horizontal pace is the pace corresponding to horizontal running;
  • the third model equation building module is set to obtain the relationship equation between the equivalent level pace in cross-country running and the road surface slope and slope pace based on the first model equation and the second model equation, which is denoted as the third model equation; wherein, the The equivalent horizontal pace is the horizontal pace corresponding to the slope pace under the same physiological intensity information condition in horizontal running;
  • the equivalent level pace estimating module is configured to estimate the equivalent level pace of off-road running according to the third model equation and the acquired slope pace and road surface gradient of off-road running.
  • the embodiment of the present application also provides an electronic device for estimating the equivalent level pace of cross-country running, including:
  • processors one or more processors
  • a storage device configured to store one or more programs
  • the one or more processors are made to implement any method for estimating the equivalent level pace of trail running provided by the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the cross-country running provided in the embodiment of the present application is realized. Estimation method for equivalence level pace.
  • Fig. 1 is a schematic flow chart of a method for estimating a cross-country running equivalent level pace provided in Embodiment 1 of the present application;
  • Fig. 2 is a schematic flowchart of a method for estimating the equivalent level pace of cross-country running provided by Embodiment 2 of the present application;
  • Fig. 3 is a schematic structural diagram of an estimation device for cross-country running equivalent level pace provided by Embodiment 3 of the present application;
  • FIG. 4 is a schematic structural diagram of an electronic device for estimating the equivalent level pace of cross-country running provided by Embodiment 4 of the present application.
  • Smart wearable devices are widely used in running sports, including cross-country running and marathon running. Smart wearable devices are increasingly used by sports enthusiasts because of their lightness, positioning, navigation and training guidance functions; while road running A concept is often used-pace, which is the time it takes to run each kilometer. Pace is an important indicator to describe the endurance level of a runner in long-distance running. Through the pace, the ability and level of road runners such as marathons can be identified. But in cross-country running, the concept of pace is constantly weakened. The reason is that the terrain of cross-country running is more complicated, and the running process will include a large number of uphill and downhill sections.
  • the pace in conventional road running is not suitable for cross-country running to measure the runner's ability and level .
  • the embodiment of the present application proposes a method for estimating the equivalent pace of cross-country running to solve the above-mentioned problems.
  • the method for estimating the trail running equivalent level pace proposed in the embodiment of the present application is introduced below.
  • Figure 1 is a schematic flow chart of a method for estimating the equivalent pace of cross-country running provided by Embodiment 1 of the present application. This method can estimate the pace during cross-country running.
  • the estimation device can be implemented by software and/or hardware, and the device is configured in a smart wearable device. As shown in Figure 1, the method for estimating the equivalent level pace of cross-country pace running provided by Embodiment 1 of the present application includes the following steps:
  • the physiological intensity refers to the physiological indicators of runners under different exercise intensities, and the physiological intensity information may be oxygen uptake information, lactic acid information, or heart rate information.
  • the type and quantity of the physiological intensity information are not specifically limited.
  • the oxygen uptake information includes at least one of the oxygen uptake percentage and the oxygen uptake growth percentage
  • the lactate information includes at least one of the lactate percentage and the lactate growth percentage
  • the heart rate information includes the reserve heart rate percentage, the lactate threshold heart rate percentage and At least one of the percentages of maximum heart rate.
  • the percentage of oxygen uptake is the ratio of the current oxygen uptake to the maximum oxygen uptake.
  • the maximum oxygen uptake refers to the amount of oxygen that the body can take in when the body performs maximum-intensity exercise and the functions of various organs and systems reach the highest level.
  • oxygen uptake is an important index reflecting the aerobic exercise capacity of the human body.
  • a high level of maximum oxygen uptake is the basis of a high level of aerobic exercise capacity.
  • the concentration value refers to the concentration of blood lactic acid in the human body during normal activities, and normal activities refer to activities without strenuous exercise.
  • Lactate Threshold maximum heart rate - resting heart rate
  • heart rate reserve percentage (actual heart rate - resting heart rate)/(maximum heart rate - resting heart rate) * 100%.
  • Lactate Threshold Heart Rate Percentage: Lactate Threshold (LT, Lactate Threshold) is an important reference index for evaluating the aerobic endurance level of the human body. When the exercise intensity reaches a certain value, the rate of lactic acid accumulation in the blood begins to exceed the rate of decomposition, and lactic acid begins to accumulate in large quantities. The starting point corresponding to the rapid accumulation is called the lactic acid threshold, and the heart rate corresponding to this point during exercise is called the lactic acid threshold heart rate. . Lactate threshold heart rate percentage actual heart rate / lactate threshold heart rate * 100%.
  • the percentage is used to represent the physiological strength itself, and the increase percentage represents the growth of the physiological strength. After the two are combined, they are more suitable for evaluating the pace in cross-country running.
  • the slope of the road surface refers to the slope of the road surface, which can be represented by a specific slope value, and the slope value can be -5°, -10°, -15°, -20°, -25 °, 0°, 5°, 10°, 15°, 20° or 25°, the negative value of the slope represents a downhill slope, and the positive value of the slope represents an uphill slope.
  • the slope value here limited.
  • Pace is the time it takes to run each kilometer. Pace is also an important indicator to describe the endurance level of a runner in long-distance running. Through the pace, the ability and level of road runners such as marathons can be identified. Hill pace is the time it takes to run each kilometer on an incline (both uphill and downhill).
  • each piece of physiological intensity information in the at least one type of physiological intensity information will establish a corresponding first relational equation.
  • the two types of physiological intensity information will respectively establish two first relational equations.
  • At least one first relational equation is established between the physiological strength information, the road surface gradient, and the slope pace, and the first model equation is established according to the first relational equation.
  • the first model equation satisfies:
  • W 1 , W 2 ?? W n are all greater than or equal to 0 and less than or equal to 1;
  • X 1 is the slope pace, y is the sin value of the road slope, Z n is the physiological intensity information, and n is the type of physiological intensity information , n is a positive integer, -0.42 ⁇ y ⁇ 0.42, g n is the first functional relationship.
  • W 1 , W 2 . . . W n are weight proportions, 1, 2, 3, ..., n refer to the types of physiological intensity information involved.
  • the physiological intensity information includes three types of oxygen uptake percentage, lactate percentage and reserve heart rate percentage.
  • the corresponding oxygen uptake percentage, lactate percentage and reserve heart rate of runners under different road slopes and different slope paces can be obtained.
  • percentage For example, runner A, at a pace of A, on an incline of ⁇ 1 , with a percentage of oxygen uptake of k 1 , a percentage of lactate of l 1 and a percentage of heart rate reserve of j 1 , at a pace of A, on an incline of ⁇ 2 , the percentage of oxygen uptake is k 2 , the percentage of lactic acid is l 2 and the percentage of reserve heart rate is j 2 , and so on, you can get multiple groups of data when the pace is A, when the pace is B, the slope is When ⁇ 1 , the percentage of oxygen uptake is K 1 , the percentage of lactic acid is L 1 and the percentage of reserve heart rate is J 1 , when the pace is B and the slope is ⁇ 2 ,
  • the first model equation is obtained. For example, with 50% oxygen uptake, 30% lactate and 20% heart rate reserve, the first model equation could be
  • Z 1 is the percentage of oxygen uptake
  • Z 2 is the percentage of lactic acid
  • Z 3 is the percentage of reserve heart rate.
  • the proportion of each physiological intensity information is different, that is, the weight is different, which can be calibrated in advance according to the runners at different running intensities.
  • the heart rate percentage can better represent the user's real exercise intensity. Therefore, it is more beneficial to use the heart rate percentage as the highest weighted physiological intensity information in this intensity range to construct a model equation.
  • the percentage of heart rate is 50%
  • the percentage of oxygen uptake is 30%
  • the percentage of lactic acid is 20%.
  • the percentage of oxygen uptake is more representative of the user's real exercise intensity. Therefore, in In this intensity range, the percentage of oxygen uptake is used as the highest weighted physiological intensity information. It is more favorable to construct a model equation. The percentage accounts for 30%; while in high-intensity running, the lactic acid percentage can better represent the user's real exercise intensity. Therefore, it is more beneficial to use the lactic acid percentage as the highest weighted physiological intensity information in this intensity range to construct a model equation, for example , in high-intensity running, the percentage of lactate is 50%, the percentage of oxygen uptake is 30%, and the percentage of lactate is 20%.
  • the second relational equation is established between the physiological intensity information in the horizontal running and the horizontal pace, and the second model equation is established according to the second relational equation.
  • the horizontal run is a road run with a slope of 0.
  • W 1 , W 2 ?? W n are all greater than or equal to 0 and less than or equal to 1;
  • X 2 is the horizontal pace,
  • Z n is the physiological intensity information,
  • n is the type of physiological intensity information,
  • n is a positive integer,
  • h n is the second functional relationship.
  • the physiological intensity information includes three types of oxygen uptake percentage, lactic acid percentage and reserve heart rate percentage.
  • the corresponding oxygen uptake percentage, lactate percentage and reserve heart rate percentage of runners at different paces can be obtained on a level road surface.
  • runner B at pace C 1 , with percent oxygen uptake of k 3 , percent lactate of l 3 , and percent heart rate reserve of j 3
  • at pace C 2 has percent oxygen uptake of k 4
  • the lactate percentage is l 4 and the reserve heart rate percentage is j 4
  • the pace is C 3
  • the oxygen uptake percentage is k 5
  • the lactate percentage is l 5
  • the reserve heart rate percentage is j 5
  • multiple groups can be obtained Data at different speeds.
  • multiple groups of different physiological intensity information corresponding to different horizontal paces can be obtained.
  • the corresponding relationship h n between different level paces and the same physiological intensity information can be obtained, and here a mathematical method can be used for fitting, and the fitting method is not specifically limited in this embodiment of the present application.
  • the second model equation is obtained according to the weights of different physiological intensity information. For example, if the percentage of oxygen uptake is 40%, the percentage of lactate is 30%, and the percentage of heart rate reserve is 30%, then the second model equation can be
  • Z 1 is the percentage of oxygen uptake
  • Z 2 is the percentage of lactic acid
  • Z 3 is the percentage of reserve heart rate.
  • the proportion of each physiological intensity information is different, that is, the weight is different, which can be calibrated in advance according to the runners at different running intensities.
  • the percentage of heart rate is 50%
  • the percentage of oxygen uptake is 30%
  • the percentage of lactic acid is 20%.
  • the weight proportion of the physiological intensity information is determined, and the credibility of the fitting result of the second model equation is improved.
  • the physiological intensity information may also be composed of six parts: oxygen uptake percentage, oxygen uptake growth percentage, lactate percentage, lactate growth percentage, lactate threshold rate percentage and maximum heart rate percentage.
  • the physiological intensity information can also be composed of five parts: oxygen uptake percentage, lactate percentage, lactate growth percentage, lactate threshold rate percentage and maximum heart rate percentage.
  • the above examples are illustrated with oxygen uptake percentage, lactate percentage and reserve heart rate percentage. , but it does not specifically limit the physiological intensity information.
  • the physiological intensity information includes three, four, and five corresponding percentage parameters, and the corresponding second model equation can be established to achieve the corresponding effect. 1. Repeat and explain.
  • the first model equation obtains the equation established by the relationship between physiological strength information, road gradient and slope pace
  • the second model equation obtains the equation established by the relationship between physiological strength information and horizontal pace
  • the third model equation can be obtained by combining the relation and equation of the first model equation and the second model equation.
  • the third model equation is in, is the equivalent level pace, n is the type of physiological intensity information, and n is a positive integer.
  • the third model equation is realized by obtaining the relationship equation between the equivalent level pace in cross-country running, the road surface slope, and the slope pace on the basis of the first model equation and the second model equation.
  • the physiological intensity information is, for example, three types of oxygen uptake percentage, lactic acid percentage, and reserve heart rate percentage; for the corresponding second model equation, the physiological intensity information is, for example, the oxygen uptake percentage, lactate percentage, and reserve There are three types of heart rate percentages.
  • the equivalent horizontal pace in the third model equation is the horizontal pace corresponding to the slope pace under the same physiological information intensity in horizontal running.
  • the physiological intensity information of the second model equation is also the percentage of oxygen uptake , lactic acid percentage and heart rate reserve percentage.
  • the first model equation is fitted by a mathematical method, and the fitting method is not specifically limited in this embodiment of the present application.
  • the first model equation is obtained.
  • the percentage of oxygen uptake is 50%
  • the percentage of lactate is 30%
  • the percentage of heart rate reserve is 20%
  • Z 1 is the percentage of oxygen uptake
  • Z 2 is the percentage of lactic acid
  • Z 3 is the percentage of reserve heart rate.
  • Z 1 is the percentage of oxygen uptake
  • Z 2 is the percentage of lactic acid
  • Z 3 is the percentage of reserve heart rate.
  • Z 1 is the percentage of oxygen uptake
  • Z 2 is the percentage of lactic acid
  • Z 3 is the percentage of reserve heart rate.
  • h 1 , h 2 and h 3 are the second functional relationship.
  • 50% T 1 , 30% T 2 , and 20% T 3 are the equivalent level paces respectively.
  • One (50% T 1 +30% T 2 +20% T 3 ) value can be recorded as a value of one equivalent level pace.
  • the equivalent level pace of the trail running can be estimated by obtaining real-time slope pace and road surface slope information during the cross-country running.
  • the equivalent horizontal pace means that the slope pace is equivalent to the horizontal pace in horizontal running.
  • the embodiment of the present application provides a method for estimating the equivalent level pace of cross-country running.
  • the first model equation is established through the first relationship equation between at least one kind of physiological intensity information, road surface slope and slope pace in cross-country running , establish the second model equation through the second relationship equation between at least one kind of physiological intensity information in horizontal running and the horizontal pace; secondly, according to the first model equation and the second model equation, obtain the equivalent horizontal pace and cross-country running
  • the equivalent horizontal pace of the third model equation is the horizontal pace corresponding to the slope pace under the same physiological intensity information condition in horizontal running.
  • FIG. 2 is a schematic flow chart of a method for estimating a cross-country running equivalent level pace provided by Embodiment 2 of the present application.
  • the second embodiment is described by taking the physiological intensity information as the percentage of oxygen uptake as an example.
  • the steps of the trail running equivalent level pace estimation method are as follows:
  • the maximum oxygen uptake can be obtained by direct method, indirect method, Bruce method, 12-minute running, and estimation method.
  • the direct method is obtained through laboratory tests.
  • the subject wears a special instrument to run on a treadmill or ride a power bicycle. By mobilizing the speed level to make the subject exercise to exhaustion, a special instrument is equipped to collect the breath of the subject.
  • the gas is analyzed to determine the maximum oxygen uptake.
  • the indirect method is based on the fact that the oxygen consumption of the human body is closely related to the power completed by itself and the heart rate during exercise, so the maximum oxygen uptake of the subject can be estimated from the heart rate during exercise and the power completed during exercise.
  • the Bruce method uses a treadmill and a heart rate monitor. When the heart rate reaches 180 beats/min, it is determined that the body is exhausted.
  • the 12-minute run is to let the subjects run as hard as possible for 12 minutes, and record the distance completed. Use the formula to calculate the maximum oxygen uptake of the subject.
  • the estimation method is obtained by obtaining the tester's age, gender, weight, resting heart rate and maximum heart rate.
  • the maximum heart rate can be preset or generated in real time according to the tester's age characteristics; by detecting the tester's real-time heart rate during exercise and reflecting body movement The real-time exercise speed to obtain the basic heart rate data and basic speed data during the exercise of the tester; select a characteristic time period of a preset length of time from the tester's exercise duration, and use the basic heart rate data and the basic speed
  • the data is the basic data, and the characteristic average heart rate and characteristic average speed in the characteristic time period are calculated;
  • A is a constant from 40 to 50
  • P1 is a constant from 7 to 8
  • S is a gender constant
  • 1 is a male
  • 0 is a female
  • P2 is a constant from 0.1 to 0.2
  • G is the user's weight
  • P3 is 4 to 5
  • V is the characteristic average speed
  • P4 is the constant of 3 ⁇ 4
  • B is the constant of 1 ⁇ 2
  • C is the constant of 15 ⁇ 20
  • the HR characteristic is the characteristic average heart rate, is the resting heart rate of the user in an awake and quiet state
  • HR max is the maximum heart rate
  • a is the age of the user.
  • select testers with different cross-country running abilities collect the corresponding oxygen uptake and maximal oxygen uptake of the testers, and calculate their oxygen uptake under different conditions Percentage, and the corresponding relationship data tables collected from multiple groups of different slopes, different slope paces and different oxygen uptake percentages. As shown in Table 1.
  • the oxygen uptake of the tester is in an unstable rising or falling period, the above unstable period is removed, and the time when the oxygen uptake is stable is selected, and the time per unit time is used.
  • the average oxygen uptake is used as the current oxygen uptake, for example, the average oxygen uptake within one minute is selected as the oxygen uptake under the slope speed and slope.
  • the established first relationship equation is the first model equation.
  • the first model equation satisfies the following formula:
  • Z -1.7+0.71x 1 +12.4y-0.02x 1 ⁇ 2-0.54x 1 y, where Z is the percentage of oxygen uptake, x1 is the slope pace, y is the Sin value of the road gradient, -0.42 ⁇ y ⁇ 0.42.
  • the selected testers conduct flat road running tests, respectively collect the testers' different levels of pace and the oxygen uptake corresponding to different levels of pace, and calculate the oxygen uptake at different paces based on their respective maximum oxygen uptake volume percentage.
  • the slope value of the horizontal road surface is 0°. Based on the sample data in the following table, calculate the percentage of oxygen uptake at different paces. As shown in table 2.
  • X 2 0.036Z ⁇ 4-0.27Z ⁇ 3+0.86Z ⁇ 2+0.79Z, wherein, Z is the percentage of oxygen uptake, and X 2 is the horizontal pace.
  • n is the type of physiological intensity information
  • n is a positive integer
  • the method for estimating the pace at the equivalent level of cross-country running provided by the embodiment of the present application, firstly, multiple sets of sample data of slope running are obtained, and the relevant data of the current oxygen uptake, maximum oxygen uptake and percentage of oxygen uptake are obtained according to the sample data , and then further establish the first relational equation according to the percentage of oxygen uptake, road gradient and slope pace, determine the first model equation, and establish the second relational equation through the second relational equation between the physiological intensity information in horizontal running and horizontal pace Model equation; Secondly, the third model equation is established based on the first model equation and the second model equation, and the equivalent horizontal pace of the third model equation is the horizontal pace corresponding to the slope pace under the same physiological intensity information condition in horizontal running.
  • FIG. 3 is a schematic structural diagram of a cross-country running equivalent level pace estimation device provided in Embodiment 3 of the present application.
  • the device can perform the equivalent conversion operation of the pace in trail running.
  • the device can be implemented by software and/or hardware, and generally integrated on computers, servers and other equipment.
  • the device includes: a first model equation building module 310, a second model equation building module 320, a third model equation building module 330, an equivalent level pace estimation module 340, a first sample data acquisition module 350 , the first oxygen uptake percentage data acquisition module 360 , the second sample data acquisition module 370 , and the second oxygen uptake percentage data acquisition module 380 .
  • the first model equation establishing module 310 is configured to establish at least one first relational equation between at least one kind of physiological intensity information in cross-country running and road surface slope and slope pace, and establish the first model equation according to at least one first relational equation;
  • the second model equation building module 320 is configured to establish at least one second relational equation between at least one kind of physiological intensity information and horizontal pace in horizontal running, and establish a second model equation according to at least one second relational equation, horizontal pace Pace corresponding to horizontal running;
  • the third model equation building module 330 is set to obtain the relationship equation between the equivalent level pace in cross-country running and the road surface slope and slope pace based on the first model equation and the second model equation, which is recorded as the third model equation; where, etc.
  • Valence level pace is the level pace corresponding to the slope pace under the same physiological intensity information condition in horizontal running;
  • the equivalent level pace estimation module 340 is configured to estimate the equivalent level pace of the trail running according to the third model equation and the acquired slope pace and road surface gradient of the trail running.
  • the physiological intensity information is the percentage of oxygen uptake.
  • the first sample data acquisition module 350 is configured to acquire multiple sets of slope running standard sample data, the slope running standard sample data includes maximum oxygen uptake data, road slope data, slope pace data and current oxygen uptake data;
  • the first oxygen uptake percentage data acquisition module 360 is configured to obtain the first oxygen uptake percentage data according to the current oxygen uptake data and the maximum oxygen uptake data;
  • the first model equation establishing module 310 is also configured to establish a first relational equation according to the first oxygen uptake percentage data, road surface slope data and slope pace data, which is denoted as the first model equation.
  • Z -1.7+0.71x 1 +12.4y-0.02x 1 ⁇ 2-0.54x 1 y, where Z is the percentage of oxygen uptake, x1 is the slope pace, y is the Sin value of the road gradient, -0.42 ⁇ y ⁇ 0.42.
  • the second sample data acquisition module 370 is configured to acquire multiple sets of horizontal running standard sample data, the horizontal running standard sample data includes maximum oxygen uptake data, horizontal pace data and current oxygen uptake data;
  • the second oxygen uptake percentage data acquisition module 380 is configured to obtain the second oxygen uptake percentage data according to the current oxygen uptake data and the maximum oxygen uptake data;
  • the second model equation establishing module 320 is also configured to establish a second relational equation according to the second oxygen uptake percentage data and the horizontal pace data, which is denoted as the second model equation.
  • X 2 0.036Z ⁇ 4-0.27Z ⁇ 3+0.86Z ⁇ 2+0.79Z, wherein, Z is the percentage of oxygen uptake, and X 2 is the horizontal pace.
  • the device for estimating the equivalent level pace of cross-country running uses the first model equation building module and the second model equation building module to build the third model equation building module, based on the first sample data acquisition module, the first The oxygen uptake percentage data acquisition module, the second sample data acquisition module, the second oxygen uptake percentage data acquisition module and the equivalent level pace estimation module effectively convert and evaluate the cross-country running pace.
  • the above-mentioned device for estimating the equivalent pace of cross-country running can execute the method for estimating the equivalent pace of trail running provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 4 is a schematic structural diagram of an electronic device for estimating the equivalent level pace of cross-country running provided by Embodiment 4 of the present application.
  • the electronic equipment provided by Embodiment 4 of the present application includes: one or more processors 41 and storage devices 42; there may be one or more processors 41 in the electronic equipment, and one processing
  • the device 41 is taken as an example; the storage device 42 is configured to store one or more programs; one or more programs are executed by one or more processors 41, so that one or more processors 41 realize any one of the embodiments of the present application. Estimation method of trail running equivalent level pace.
  • the electronic device may further include: an input device 43 and an output device 44 .
  • the processor 41, the storage device 42, the input device 43 and the output device 44 in the electronic device may be connected through a bus or in other ways.
  • connection through a bus is taken as an example.
  • the storage device 42 in the electronic device can be used to store one or more programs, and the programs can be software programs, computer-executable programs and modules, as provided in Embodiment 1 or 2 of the present application.
  • Run the program instructions/modules corresponding to the equivalent level pace estimation method for example, the first model equation building module 310 shown in Figure 3, the second model equation building module 320, the third model equation building module 330, the equivalent level Pace estimation module 340, first sample data acquisition module 350, first oxygen uptake percentage data acquisition module 360, second sample data acquisition module 370, second oxygen uptake percentage data acquisition module 380).
  • the processor 41 executes various functional applications and data processing of the terminal device by running the software programs, instructions and modules stored in the storage device 42, that is, realizes the trail running equivalent level pace estimation method in the above method embodiment.
  • the storage device 42 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the storage device 42 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 42 may further include memories that are remotely located relative to the processor 41, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 43 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the output device 44 may include a display device such as a display screen.
  • Embodiment 5 of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, it is used to perform a method for estimating the equivalent level pace of cross-country running.
  • the method includes: establishing a cross-country running At least one first relational equation between at least one kind of physiological strength information and road surface gradient and slope pace, establish a first model equation according to at least one said first relational equation; establish at least one kind of physiological strength information and level running in level running At least one second relationship equation between the paces, the second model equation is established according to at least one second relationship equation, the horizontal pace is the pace corresponding to the horizontal running; based on the first model equation and the second model equation, the cross-country running medium
  • the relationship equation between the price level pace and the road surface slope and slope pace is recorded as the third model equation; where, the equivalent level pace is the level pace corresponding to the slope pace under the same physiological intensity information condition in the horizontal running ; According to the third model equation and the acquired slope pace and
  • the program when executed by the processor, it can also be used to execute the trail running equivalent level pace estimation method provided in any embodiment of the present application.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more conductors, portable computer disks, hard disks, Random Access Memory (RAM), read-only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above .
  • a computer readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to: wireless, wires, optical cables, Radio Frequency (RF), etc., or any suitable combination of the above.
  • RF Radio Frequency
  • Computer program code for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional procedural Programming language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (for example, using an Internet service provider to connected via the Internet).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider to connected via the Internet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请实施例公开了一种越野跑等价水平配速的估算方法、装置、设备和介质,方法包括:建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程并建立第一模型方程,建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程并建立第二模型方程;第一和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程为第三模型方程;等价水平配速为与水平跑中相同生理强度信息条件下的斜坡配速对应的水平配速;根据第三模型方程以及越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。

Description

越野跑等价水平配速的估算方法、装置、设备和介质 技术领域
本申请实施例涉及运动配速的估算领域,例如涉及一种越野跑等价水平配速的估算方法、装置、设备和介质。
背景技术
随着运动热潮的发展,运动爱好者依据自身的需求,可以合理地选择适合自己的体育项目。众多体育项目中越野跑可以考验人体的耐力,这成为广大跑步爱好者热衷的项目,近年来由于智能穿戴设备轻便、具有定位、导航以及训练指导等功能,被广泛应用于跑步运动,而耐力可以通过智能穿戴设备监测运动过程中的配速来体现。
但是,在智能穿戴中往往得到的是跑步者的水平配速,而水平配速仅适应于水平道路而不适合越野跑道路,利用水平配速衡量跑步者在越野跑中的实际配速其实存在配速偏差,降低了评估越野跑者的耐力的准确。
发明内容
第一方面,本申请实施例提供了一种越野跑等价水平配速的估算方法,包括:
建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程;
建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程,所述水平配速为水平跑对应的配速;
基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,所述等价水平配速为与水平跑中相同生理强度信息条件下的所述斜坡配速对应的水平配速;
根据所述第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
第二方面,本申请实施例还提供了一种越野跑等价水平配速的估算装置,包括:
第一模型方程建立模块,设置为建立越野跑中至少一种生理强度信息与路 面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程;
第二模型方程建立模块,设置为建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程,所述水平配速为水平跑对应的配速;
第三模型方程建立模块,设置为基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,所述等价水平配速为与水平跑中相同生理强度信息条件下的所述斜坡配速对应的水平配速;
等价水平配速估算模块,设置为根据所述第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
第三方面,本申请实施例还提供了一种用于越野跑等价水平配速的估算的电子设备,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请实施例提供的任意越野跑等价水平配速的估算方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的越野跑等价水平配速的估算方法。
附图说明
图1为本申请实施例一提供的一种越野跑等价水平配速的估算方法的流程示意图;
图2为本申请实施例二提供的一种越野跑等价水平配速的估算方法的流程示意图;
图3为本申请实施例三提供的一种越野跑等价水平配速的估算装置的结构示意图;
图4为本申请实施例四提供的一种用于越野跑等价水平配速的估算的电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。
智能穿戴设备被广泛应用于跑步运动,包括越野跑和马拉松跑步,智能穿戴设备因为其轻便,具有定位,导航以及训练指导等功能,越来越多地被体育爱好者所使用;而路跑中经常会使用到一个概念——配速,配速即为跑完每公里所耗费的时间。配速是描述一个跑者长距离跑步中耐力水平的一个重要指标,通过配速,可以识别马拉松等路跑者的能力和水平。但在越野跑中,配速的概念被不断的弱化,究其原因,越野跑的地形较为复杂,跑步过程中会包括大量的上坡和下坡路段,与相对平缓的路跑相比,同样的配速,越野跑和路跑所耗费的体力以及所反馈的能力是决然不同的,因而,常规意义上的路跑中的配速用于越野跑来衡量跑者的能力和水平是不合适的。
由此,本申请实施例提出了一种越野跑等价水平配速的估算方法,以解决上述问题。下面介绍本申请实施例提出的越野跑等价水平配速的估算方法。
实施例一
图1为本申请实施例一提供的一种越野跑等价水平配速的估算方法的流程示意图,该方法可进行越野跑过程中对于配速的估算,该方法由越野跑等价水平配速的估算装置来执行,所述装置可由软件和/或硬件实现,所述装置配置在智能穿戴设备中。如图1所示,本申请实施例一提供的一种越野配速跑等价水平配速的估算方法,包括如下步骤:
S110、建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程。
其中,生理强度指的是不同运动强度下跑步者的生理指标,生理强度信息可以是摄氧量信息、乳酸信息、也可以是心率信息。此处,对于生理强度信息的种类和数量不做具体限定。例如,摄氧量信息包括摄氧量百分比和摄氧量增长百分比中的至少一种,乳酸信息包括乳酸百分比和乳酸增长百分比中的至少一种,心率信息包括储备心率百分比、乳酸阈心率百分比和最大心率百分比中的至少一种。
例如,摄氧量百分比为当前摄氧量与最大摄氧量的比值,最大摄氧量指的是人体进行最大强度的运动,各器官、系统机能达到最高,机体所能摄入的氧气含量。摄氧量作为耐力运动员的重要选材依据之一,是反映人体有氧运动能 力的重要指标,高水平最大摄氧量是高水平有氧运动能力的基础。摄氧量增长百分比是当前摄氧量较安静时摄氧量增长的百分比,摄氧量增长百分比=(当前摄氧量值-安静摄氧量值)/安静摄氧量值*100%,安静摄氧量指的是人体在正常活动中机体所摄入的氧气含量,正常活动指的是不做剧烈运动的活动。
乳酸百分比是当前血乳酸浓度值占安静血乳酸浓度值的百分比,乳酸百分比=当前血乳酸浓度值/安静血乳酸浓度值*100%。乳酸增长百分比是当前血乳酸浓度值较安静时血乳酸浓度值增长的百分比,乳酸增长百分比=(当前血乳酸浓度值-安静血乳酸浓度值)/安静血乳酸浓度值*100%,安静血乳酸浓度值指的是人体在正常活动中的血乳酸的浓度,正常活动指的是不做剧烈运动的活动。
储备心率=最大心率-安静心率,储备心率百分比=(实际心率-安静心率)/(最大心率-安静心率)*100%。乳酸阈心率百分比:乳酸阈值(LT,Lactate Threshold)是评估人体有氧耐力水平的重要参考指标。当运动强度达到某一数值时,乳酸在血液中积累的速度开始超过分解的速度,乳酸开始大量积累,对应快速积累的起点称为乳酸阈值,在运动中该点对应的心率称为乳酸阈心率。乳酸阈心率百分比=实际心率/乳酸阈心率*100%。最大心率指机体能达到的最大心率值,一般情况下为220-年龄;最大心率百分比=实际心率/最大心率*100%。
在一实施例中,百分比用于表征生理强度本身,而增长百分比表征生理强度的增长情况,两者相互结合后,更加适用于对于越野跑中配速的评估。
在一实施例中,路面坡度指的是路面的坡度大小,坡度的大小可以用具体的坡度数值来表示,坡度值可以是-5°、-10°、-15°、-20°、-25°、0°、5°、10°、15°、20°或者25°,坡度值为负值代表是下坡、坡度值为正值代表是上坡,此处对于斜坡值大小不做具体的限定。配速是跑完每公里所耗费的时间,配速也是描述一个跑者长距离跑步中耐力水平的一个重要指标,通过配速,可以识别马拉松等路跑者的能力和水平。斜坡配速是在斜坡(包括上坡和下坡)跑完每公里所消耗的时间。
在一实施例中,至少一种生理强度信息中的每个生理强度信息,将建立一个对应的第一关系方程。同理地,两类生理强度信息,将分别建立两个第一关系方程。
在一实施例中,在生理强度信息与路面坡度、斜坡配速之间建立至少一个第一关系方程,根据第一关系方程建立第一模型方程。
第一关系方程满足Z n=g n(X 1,y);
第一模型方程满足:
Figure PCTCN2021140693-appb-000001
Figure PCTCN2021140693-appb-000002
W 1、W 2……W n均满足大于或等于0且小于或等于1;X 1为斜坡配速,y为路面坡度的sin值,Z n为生理强度信息,n为生理强度信息的种类,n为正整数,-0.42<y<0.42,g n为第一函数关系。W 1、W 2……W n为权重占比大小,1、2、3、……、n指的是涉及到的生理强度信息的类型。
其中,生理强度信息比如为摄氧量百分比、乳酸百分比和储备心率百分比三种,首先可以获取跑步者在不同路面坡度下,不同斜坡配速下,对应的摄氧量百分比、乳酸百分比和储备心率百分比。比如,跑步者甲,在配速为A时,坡度为α 1时,摄氧量百分比为k 1,乳酸百分比为l 1和储备心率百分比为j 1,在配速为A时,坡度为α 2时,摄氧量百分比为k 2,乳酸百分比为l 2和储备心率百分比为j 2,依次类推,可以获取多组在配速为A时的数据,当在配速为B时,坡度为α 1时,摄氧量百分比为K 1,乳酸百分比为L 1和储备心率百分比为J 1,当在配速为B时,坡度为α 2时,摄氧量百分比为K 2,乳酸百分比为L 2和储备心率百分比为J 2,依次类推,可以获取多组在配速为B时的数据,最终,可以获取多组不同的斜坡配速、不同路面坡度、不同生理强度信息。
进而可以获取找到不同的斜坡配速、不同路面坡度和同一种生理强度信息之间的对应关系g n,这里可以通过数学方法进行拟合,拟合的方法本申请实施例对此不作具体限制。接着,依据不同的生理强度信息所占的权重,获得第一模型方程。举例来说,摄氧量百分比占50%,乳酸百分比占30%,储备心率百分比占20%,那么第一模型方程可以为
50%Z 1+30%Z 2+20%Z 3=50%g 1+30%g 2+20%g 3
其中,Z 1为摄氧量百分比,Z 2为乳酸百分比,Z 3为储备心率百分比。不同越野跑强度下,各生理强度信息的占比不同,即权重不同,这可以依据跑步者在不同的跑步强度下来提前进行标定。比如中低等强度跑步中,心率百分比更能表征用户的真实运动强度,因此,在该强度区间内采用心率百分比作为最高权重的生理强度信息,构建模型方程是比较有利的,例如,在中低等强度跑步中,采用心率百分比占50%,摄氧量百分比占30%,乳酸百分比占20%;而在中高等强度跑步中,摄氧量百分比更能表征用户的真实运动强度,因此,在该强度区间内采用摄氧量百分比作为最高权重的生理强度信息,构建模型方程是比较有利的,例如,在中高等强度的跑步中,摄氧量百分比占50%,心率百分比占20%,乳酸百分比占30%;而在高强度跑步中,乳酸百分比更能表征用户的真实运动强度,因此,在该强度区间内采用乳酸百分比作为最高权重的生理强度信息,构建模型方程是比较有利的,例如,在高强度的跑步中,乳酸百分 比占50%,摄氧量百分比占30%,乳酸百分比占20%。
S120、建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个第二关系方程建立第二模型方程,水平配速为水平跑对应的配速。
其中,第二关系方程是建立在水平跑中的生理强度信息和水平配速之间,根据第二关系方程建立第二模型方程。
其中,水平跑为坡度为0的路跑。
例如,第二关系方程满足:X 2=h n(Z n);
第二模型方程满足:
Figure PCTCN2021140693-appb-000003
Figure PCTCN2021140693-appb-000004
W 1、W 2……W n均满足大于或等于0且小于或等于1;X 2为水平配速,Z n为生理强度信息,n为生理强度信息的种类,n为正整数,h n为第二函数关系。
其中,生理强度信息比如为摄氧量百分比、乳酸百分比和储备心率百分比三种,首先可以获取跑步者在水平路面下,不同配速下,对应的摄氧量百分比、乳酸百分比和储备心率百分比。比如,跑步者乙,在配速为C 1时,摄氧量百分比为k 3,乳酸百分比为l 3和储备心率百分比为j 3,在配速为C 2时,摄氧量百分比为k 4,乳酸百分比为l 4和储备心率百分比为j 4,在配速为C 3时,摄氧量百分比为k 5,乳酸百分比为l 5和储备心率百分比为j 5,依次类推,可以获取多组不同配速下的数据。最终,可以获取多组不同的水平配速下对应的不同生理强度信息。
进而可以获取找到不同的水平配速和同一种生理强度信息之间的对应关系h n,这里可以通过数学方法进行拟合,拟合的方法本申请实施例对此不作具体限制。接着,依据不同的生理强度信息所占的权重,获得第二模型方程。举例来说,摄氧量百分比占40%,乳酸百分比占30%,储备心率百分比占30%,那么第二模型方程可以为
40%X 2+30%X 2+30%X 2=40%h 1(Z 1)+30%h 2(Z 2)+30%h 3(Z 3)。
其中,Z 1为摄氧量百分比,Z 2为乳酸百分比,Z 3为储备心率百分比。不同跑步强度下,各生理强度信息的占比不同,即权重不同,这可以依据跑步者在不同的跑步强度下来提前进行标定。比如中低等强度跑步中,心率百分比占50%,摄氧量百分比占30%,乳酸百分比占20%,中高等强度跑步中,摄氧量百分比占50%,心率百分比占20%,乳酸百分比占30%,高强度跑步中,乳酸百分比占50%,摄氧量百分比占30%,乳酸百分比占20%。依据不同的等级强 度,确定生理强度信息的权重占比大小,提高第二模型方程的拟合结果的可信度。
在一实施例中,生理强度信息还可以是摄氧量百分比、摄氧量增长百分比、乳酸百分比、乳酸增长百分比、乳酸阈值率百分比和最大心率百分比六个部分组成。或者生理强度信息还可以是摄氧量增长百分比、乳酸百分比、乳酸增长百分比、乳酸阈值率百分比和最大心率百分比五个部分组成,上述举例以摄氧量百分比、乳酸百分比和储备心率百分比进行举例说明,但并不是对生理强度信息做具体的限定,生理强度信息包括三种、四种、五种相应的百分比参数均可建立相应的第二模型方程,实现相对应的效果,此处不再一一进行赘述和解释。
S130、基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,等价水平配速为与水平跑中相同生理强度信息条件下的斜坡配速对应的水平配速。
其中,第一模型方程获取的是生理强度信息、路面坡度以及斜坡配速之间的关系式建立的方程,第二模型方程获取的是生理强度信息和水平配速之间的关系式建立的方程。通过将第一模型方程和第二模型方程的关系式和方程进行结合,可以获得第三模型方程。
第三模型方程为
Figure PCTCN2021140693-appb-000005
其中,
Figure PCTCN2021140693-appb-000006
为等价水平配速,n为生理强度信息的种类,n为正整数。
其中,第三模型方程是在第一模型方程和第二模型方程的基础上获取越野跑中等价水平配速和路面坡度、斜坡配速之间的关系方程来实现。示例性的,对于第一模型方程,生理强度信息比如为摄氧量百分比、乳酸百分比和储备心率百分比三种;对应的第二模型方程,生理强度信息比如为摄氧量百分比、乳酸百分比和储备心率百分比三种,第三模型方程中的等价水平配速是水平跑中相同生理信息强度条件下斜坡配速对应的水平配速,在建立第三模型方程前,确保第一模型方程和第二模型方程对应相同的生理强度信息,换言之,当第一模型方程的生理强度信息为摄氧量百分比、乳酸百分比和储备心率百分比三种,第二模型方程的生理强度信息也为摄氧量百分比、乳酸百分比和储备心率百分比三种。
通过数学方法对第一模型方程进行拟合,拟合的方法本申请实施例对此不作具体限制。接着,依据不同的生理强度信息所占的权重,获得第一模型方程。举例来说,摄氧量百分比占50%,乳酸百分比占30%,储备心率百分比占20%, 那么第一模型方程可以为50%Z 1+30%Z 2+20%Z 3=50%g 1+30%g 2+20%g 3。其中,Z 1为摄氧量百分比,Z 2为乳酸百分比,Z 3为储备心率百分比。随后,通过数学方法对第二模型方程进行拟合,摄氧量百分比占50%,乳酸百分比占30%,储备心率百分比占20%,那么第二模型方程可以为50%X 2+30%X 2+20%X 2=50%h 1(Z 1)+30%h 2(Z 2)+20%h 3(Z 3)。其中,Z 1为摄氧量百分比,Z 2为乳酸百分比,Z 3为储备心率百分比。依据第一模型方程和第二模型方程以及等价水平配速与路面斜坡、斜坡配速的关系建立第三模型方程,第三模型方程可以是50%T 1+30%T 2+20%T 3=50%h 1(g 1)+30%h 2(g 2)+20%h 3(g 3)。其中,Z 1为摄氧量百分比,Z 2为乳酸百分比,Z 3为储备心率百分比。h 1、h 2和h 3为第二函数关系。50%T 1、30%T 2、20%T 3分别为等价水平配速。
1个(50%T 1+30%T 2+20%T 3)的数值可记为1个等价水平配速的数值。
S140、根据第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
例如,基于第一模型方程和第二模型方程得到的第三模型方程后,通过获取越野跑过程中实时的斜坡配速和路面坡度信息,估算越野跑的等价水平配速。其中,等价水平配速是斜坡配速等价到水平跑中的水平配速。
本申请实施例提供了一种越野跑等价水平配速的估算方法,首先,通过越野跑中至少一种生理强度信息、路面坡度和斜坡配速之间的第一关系方程建立第一模型方程,通过水平跑中的至少一种生理强度信息和水平配速之间的第二关系方程建立第二模型方程;其次,依据第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间的第三模型方程。第三模型方程的等价水平配速为水平跑中相同生理强度信息条件下斜坡配速对应的水平配速。利用上述实施例,基于第一模型方程、第二模型方程以及第三模型方程获取越野跑的斜坡配速和路面坡度,以估算跑步者在越野跑中的等价水平配速,提高越野跑者的耐力的评估准确性,并可通过等价水平配速指导跑步者在越野跑中合理分配体力,提升越野跑水平。
实施例二
图2为本申请实施例二提供的一种越野跑等价水平配速的估算方法的流程示意图。本实施例二以生理强度信息为摄氧量百分比为例进行说明。在本实施 例中越野跑等价水平配速估算方法的步骤如下:
S210、获取多组斜坡跑标准样本数据,斜坡跑标准样本数据包括最大摄氧量数据、路面坡度数据、斜坡配速数据和当前摄氧量数据。
S220、根据当前摄氧量数据和最大摄氧量数据获取第一摄氧量百分比数据。
其中,最大摄氧量可以通过直接法、间接法、Bruce法、12分钟跑、估算法获得。直接法是通过实验室测试获得,受试者带上专门的仪器在跑台上跑步或者骑功率自行车,通过调动速度级别使得受试者运动至力竭,同时配备专门仪器收集受试者呼吸的气体进行分析,从而确定最大摄氧量。间接法是依据人体的耗氧量与本身完成的功率和运动时的心率密切相关,因而通过运动时的心率和运动完成的功率推测受试者的最大摄氧量。Bruce法是通过跑台和心率监测仪,当心率出现180次/分时,断定机体已经力竭。
推测公式为:
Figure PCTCN2021140693-appb-000007
(健康成人,性别:男=1,女=2)。12分钟跑是让受试者竭尽全力的跑12分钟,记录完成的距离。
Figure PCTCN2021140693-appb-000008
利用公式计算出受试者的最大摄氧量。
估算法是通过获取测试者的年龄、性别、体重、静息心率和最大心率,最大心率可预先设置或根据测试者的年龄特征实时生成;通过检测测试者运动过程中的实时心率和反映身体移动的实时运动速度,以得到测试者运动过程中的基础心率数据和基础速度数据;从测试者的运动时长中选取一预设时间长度的特征时间段,以所述基础心率数据和所述基础速度数据为基础数据,计算出所述特征时间段内的特征平均心率和特征平均速度;
根据下述第一公式计算出当前用户的最大摄氧量
Figure PCTCN2021140693-appb-000009
公式:
Figure PCTCN2021140693-appb-000010
其中,A为40~50的常数,P1为7至~8的常数,S为性别常数,男性为1,女性为0;P2为0.1~0.2的常数,G为用户体重;P3为4~5的常数,V为特征平均速度,P4为3~4的常数,B为1~2的常数;C为15~20的常数,HR 特征 为特征平均心率,
Figure PCTCN2021140693-appb-000011
为用户在清醒、安静状态下的静息心率,HR max为最大心率;a为用户年龄。
示例性的,选取不同越野跑能力的测试者,对于不同的坡度,不同的斜坡配速,分别采集测试者的对应的摄氧量和最大摄氧量,并计算其不同情况下的摄氧量百分比,而采集到的多组不同坡度,不同斜坡配速和不同摄氧量百分比的对应关系数据表。如表1所示。
需要说明的是,在上述数据采集过程中,若测试者的摄氧量处于不稳定的上升期或下降期,则移除上述不稳定期,选取摄氧量稳定的时间,采用单位时间内的平均摄氧量作为当前摄氧量,例如,选取一分钟内平均摄氧量作为该斜坡速度和坡度下的摄氧量。
表1
Figure PCTCN2021140693-appb-000012
Figure PCTCN2021140693-appb-000013
Figure PCTCN2021140693-appb-000014
S230、根据第一摄氧量百分比数据、路面坡度数据和斜坡配速数据建立第一关系方程,记为第一模型方程。
例如,建立的第一关系方程为第一模型方程。
其中,第一模型方程满足如下公式:
Z=-1.7+0.71x 1+12.4y-0.02x 1^2-0.54x 1y,其中,Z为摄氧量百分比,x1为斜坡配速,y为路面坡度的Sin值,-0.42<y<0.42。
S240、获取多组水平跑标准样本数据,水平跑标准样本数据包括最大摄氧量数据,水平配速数据和当前摄氧量数据。
S250、根据当前摄氧量数据和最大摄氧量数据获取第二摄氧量百分比数据。
示例性的,选取的测试者,进行平地路跑测试,分别采集测试者不同水平配速和不同水平配速对应的摄氧量,基于各自的最大摄氧量,计算不同配速下的摄氧量百分比。水平路面的坡度值为0°,依据下述表格的样本数据,计算不同配速下的摄氧量百分比。如表2所示。
表2
Figure PCTCN2021140693-appb-000015
Figure PCTCN2021140693-appb-000016
S260、根据第二摄氧量百分比数据和水平配速数据建立第二关系方程,记为第二模型方程。
第二模型方程满足如下公式,
X 2=0.036Z^4-0.27Z^3+0.86Z^2+0.79Z,其中,Z为摄氧量百分比,X 2为水 平配速。
S270、基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,等价水平配速为与水平跑中相同生理强度信息条件下的斜坡配速对应的水平配速。
第三模型方程满足如下公式,
Figure PCTCN2021140693-appb-000017
其中,
Figure PCTCN2021140693-appb-000018
为等价水平配速,n为生理强度信息的种类,n为正整数。
S280、根据第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
本申请实施例提供的越野跑等价水平配速的估算方法,首先,获取到多组斜坡跑的样本数据,依据样本数据获取当前摄氧量、最大摄氧量和摄氧量百分比的相关数据,随后根据摄氧量百分比、路面坡度数和斜坡配速进一步建立第一关系方程,确定第一模型方程,通过水平跑中的生理强度信息和水平配速之间的第二关系方程建立第二模型方程;其次,依据第一模型方程和第二模型方程建立第三模型方程,第三模型方程的等价水平配速为水平跑中相同生理强度信息条件下斜坡配速对应的水平配速。利用上述实施例,基于第一模型方程、第二模型方程以及第三模型方程获取越野跑的斜坡配速和路面坡度,以估算跑步者在越野跑中的等价水平配速,提高越野跑者的耐力的评估准确性,并可通过等价水平配速指导跑步者在越野跑中合理分配体力,提升越野跑水平。
实施例三
图3为本申请实施例三提供的一种越野跑等价水平配速的估算装置的结构示意图。该装置可进行越野跑中配速的等价转换操作。其中,该装置可由软件和/或硬件实现,并一般集成在计算机、服务器等设备上。
如图3所示,该装置包括:第一模型方程建立模块310、第二模型方程建立模块320、第三模型方程建立模块330、等价水平配速估算模块340、第一样本数据获取模块350、第一摄氧量百分比数据获取模块360、第二样本数据获取模块370、第二摄氧量百分比数据获取模块380。
第一模型方程建立模块310,设置为建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个第一关系方程建立第一模型方程;
第二模型方程建立模块320,设置为建立水平跑中至少一种生理强度信息与 水平配速之间的至少一个第二关系方程,根据至少一个第二关系方程建立第二模型方程,水平配速为水平跑对应的配速;
第三模型方程建立模块330,设置为基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,等价水平配速为与水平跑中相同生理强度信息条件下的斜坡配速对应的水平配速;
等价水平配速估算模块340,设置为根据第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
其中,生理强度信息为摄氧量百分比。
第一样本数据获取模块350,设置为获取多组斜坡跑标准样本数据,斜坡跑标准样本数据包括最大摄氧量数据、路面坡度数据、斜坡配速数据和当前摄氧量数据;
第一摄氧量百分比数据获取模块360,设置为根据当前摄氧量数据和最大摄氧量数据获取第一摄氧量百分比数据;
第一模型方程建立模块310还设置为根据第一摄氧量百分比数据、路面坡度数据和斜坡配速数据建立第一关系方程,记为第一模型方程。
第一模型方程满足如下公式,
Z=-1.7+0.71x 1+12.4y-0.02x 1^2-0.54x 1y,其中,Z为摄氧量百分比,x1为斜坡配速,y为路面坡度的Sin值,-0.42<y<0.42。
第二样本数据获取模块370,设置为获取多组水平跑标准样本数据,水平跑标准样本数据包括最大摄氧量数据,水平配速数据和当前摄氧量数据;
第二摄氧量百分比数据获取模块380,设置为根据当前摄氧量数据和最大摄氧量数据获取第二摄氧量百分比数据;
第二模型方程建立模块320还设置为根据第二摄氧量百分比数据和水平配速数据建立第二关系方程,记为第二模型方程。
第二模型方程满足如下公式,
X 2=0.036Z^4-0.27Z^3+0.86Z^2+0.79Z,其中,Z为摄氧量百分比,X 2为水平配速。
本申请实施例提供的越野跑等价水平配速的估算装置,通过第一模型方程建立模块和第二模型方程建立模块建立第三模型方程建立模块,基于第一样本数据获取模块、第一摄氧量百分比数据获取模块、第二样本数据获取模块和第二摄氧量百分比数据获取模块以及等价水平配速估算模块对越野跑配速进行有 效的转换和评估。上述越野跑等价水平配速的估算装置可执行本申请任意实施例所提供的越野跑等价水平配速的估算方法,具备执行方法相应的功能模块和有益效果。
实施例四
图4为本申请实施例四提供的一种用于越野跑等价水平配速的估算的电子设备的结构示意图。如图4所示,本申请实施例四提供的电子设备包括:一个或多个处理器41和存储装置42;该电子设备中的处理器41可以是一个或多个,图4中以一个处理器41为例;存储装置42设置为存储一个或多个程序;一个或多个程序被一个或多个处理器41执行,使得一个或多个处理器41实现如本申请实施例中任一项的越野跑等价水平配速的估算方法。
电子设备还可以包括:输入装置43和输出装置44。
电子设备中的处理器41、存储装置42、输入装置43和输出装置44可以通过总线或其他方式连接,图4中以通过总线连接为例。
该电子设备中的存储装置42作为一种计算机可读存储介质,可用于存储一个或多个程序,程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例一或二所提供越野跑等价水平配速估算方法对应的程序指令/模块(例如,附图3所示的第一模型方程建立模块310、第二模型方程建立模块320、第三模型方程建立模块330、等价水平配速估算模块340、第一样本数据获取模块350、第一摄氧量百分比数据获取模块360、第二样本数据获取模块370、第二摄氧量百分比数据获取模块380)。处理器41通过运行存储在存储装置42中的软件程序、指令以及模块,从而执行终端设备的各种功能应用以及数据处理,即实现上述方法实施例中越野跑等价水平配速估算方法。
存储装置42可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储装置42可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置42可进一步包括相对于处理器41远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置43可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。输出装置44可包括显示屏等显示设备。
实施例五
本申请实施例五提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时用于执行越野跑等价水平配速估算方法,该方法包括:建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程;建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个第二关系方程建立第二模型方程,水平配速为水平跑对应的配速;基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,等价水平配速为与水平跑中相同生理强度信息条件下的斜坡配速对应的水平配速;根据第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
在一实施例中,该程序被处理器执行时还可以用于执行本申请任意实施例所提供的越野跑等价水平配速估算方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不 限于:无线、电线、光缆、无线电频率(RadioFrequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种越野跑等价水平配速的估算方法,包括以下步骤:
    建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程;
    建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程,所述水平配速为水平跑对应的配速;
    基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,所述等价水平配速为与水平跑中相同生理强度信息条件下的所述斜坡配速对应的水平配速;
    根据所述第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
  2. 根据权利要求1所述的越野跑等价水平配速的估算方法,其中,所述建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程中,
    所述第一关系方程满足:Z n=g n(X 1,y);
    所述第一模型方程满足:
    Figure PCTCN2021140693-appb-100001
    Figure PCTCN2021140693-appb-100002
    W 1、W 2……W n分别满足大于或等于0且小于或等于1;X 1为斜坡配速,y为路面坡度的sin值,Z n为生理强度信息,n为生理强度信息的种类,n为正整数,g n为第一函数关系。
  3. 根据权利要求2所述的越野跑等价水平配速的估算方法,其中,所述建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程中,
    所述第二关系方程满足:X 2=h n(Z n);
    所述第二模型方程满足:
    Figure PCTCN2021140693-appb-100003
    Figure PCTCN2021140693-appb-100004
    W 1、W 2……W n分别满足大于或等于0且小于或等于1;X 2为水平配速,Z n为生理强度信息,n为生理强度信息的种类,n为正整数,h n为第二函数关系。
  4. 根据权利要求3所述的越野跑等价水平配速的估算方法,其中,所述基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程中,所述第三模型方程满足:
    Figure PCTCN2021140693-appb-100005
    其中,
    Figure PCTCN2021140693-appb-100006
    为等价水平配速,n为生理强度信息的种类,n为正整数。
  5. 根据权利要求1-4任一项所述的越野跑等价水平配速的估算方法,其中,所述生理强度信息包括摄氧量信息、乳酸信息和心率信息中的至少一种。
  6. 根据要求5所述的越野跑等价水平配速的估算方法,其中,所述摄氧量信息包括摄氧量百分比和摄氧量增长百分比中的至少一种;所述乳酸信息包括乳酸百分比和乳酸增长百分比中的至少一种;所述心率信息包括储备心率百分比、乳酸阈心率百分比和最大心率百分比中的至少一种。
  7. 根据权利要求1-4任一项所述的越野跑等价水平配速的估算方法,其中,所述生理强度信息为摄氧量百分比。
  8. 根据权利要求7所述的越野跑等价水平配速的估算方法,建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程之前,还包括:
    获取多组斜坡跑标准样本数据,所述多组斜坡跑标准样本数据中的每组斜坡跑标准样本数据包括最大摄氧量数据、路面坡度数据、斜坡配速数据和当前摄氧量数据;
    根据所述当前摄氧量数据和所述最大摄氧量数据获取第一摄氧量百分比数据;
    所述建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程,包括:
    根据所述第一摄氧量百分比数据、路面坡度数据和斜坡配速数据建立第一关系方程,记为第一模型方程。
  9. 根据权利要求8所述的越野跑等价水平配速的估算方法,其中,
    所述第一模型方程满足如下公式,
    Z=-1.7+0.71x 1+12.4y-0.02x 1^2-0.54x 1y,其中,Z为摄氧量百分比,x 1为斜坡配速,y为路面坡度的Sin值,-0.42<y<0.42。
  10. 根据权利要求7所述的越野跑等价水平配速的估算方法,建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程之前,还包括:
    获取多组水平跑标准样本数据,所述多组水平跑标准样本数据中的每组水平跑标准样本数据包括最大摄氧量数据,水平配速数据和当前摄氧量数据;
    根据所述当前摄氧量数据和所述最大摄氧量数据获取第二摄氧量百分比数据;
    所述建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程,包括:
    根据所述第二摄氧量百分比数据和所述水平配速数据建立第二关系方程,记为第二模型方程。
  11. 根据权利要求10所述的越野跑等价水平配速的估算方法,其中,
    所述第二模型方程满足如下公式,
    X 2=0.036Z^4-0.27Z^3+0.86Z^2+0.79Z,其中,Z为摄氧量百分比,X 2为水平配速。
  12. 根据权利要求1所述的越野跑等价水平配速的估算方法,其中,所述建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程中,
    所述第二关系方程满足:X 2=h n(Z n);
    所述第二模型方程满足:
    Figure PCTCN2021140693-appb-100007
    Figure PCTCN2021140693-appb-100008
    W 1、W 2……W n分别满足大于或等于0且小于或等于1;X 2为水平配速,Z n为生理强度信息,n为生理强度信息的种类,n为正整数,h n为第二函数关系。
  13. 一种越野跑等价水平配速的估算装置,包括:
    第一模型方程建立模块,设置为建立越野跑中至少一种生理强度信息与路面坡度、斜坡配速之间的至少一个第一关系方程,根据至少一个所述第一关系方程建立第一模型方程;
    第二模型方程建立模块,设置为建立水平跑中至少一种生理强度信息与水平配速之间的至少一个第二关系方程,根据至少一个所述第二关系方程建立第二模型方程,所述水平配速为水平跑对应的配速;
    第三模型方程建立模块,设置为基于第一模型方程和第二模型方程获取越野跑中等价水平配速与路面坡度、斜坡配速之间关系方程,记为第三模型方程;其中,所述等价水平配速为与水平跑中相同生理强度信息条件下的所述斜坡配速对应的水平配速;
    等价水平配速估算模块,设置为根据所述第三模型方程以及获取的越野跑的斜坡配速和路面坡度,估算越野跑的等价水平配速。
  14. 根据权利要求13所述的越野跑等价水平配速的估算装置,其中,所述生理强度信息为摄氧量百分比。
  15. 根据权利要求14所述的越野跑等价水平配速的估算装置,还包括:
    第一样本数据获取模块,设置为获取多组斜坡跑标准样本数据,所述多组斜坡跑标准样本数据中的每组斜坡跑标准样本数据包括最大摄氧量数据、路面坡度数据、斜坡配速数据和当前摄氧量数据;
    第一摄氧量百分比数据获取模块,设置为根据所述当前摄氧量数据和所述最大摄氧量数据获取第一摄氧量百分比数据;
    所述第一模型方程建立模块还设置为根据所述第一摄氧量百分比数据、路面坡度数据和斜坡配速数据建立第一关系方程,记为第一模型方程。
  16. 根据权利要求15所述的越野跑等价水平配速的估算装置,其中,
    所述第一模型方程满足如下公式,
    Z=-1.7+0.71x 1+12.4y-0.02x 1^2-0.54x 1y,其中,Z为摄氧量百分比,x1为斜坡配速,y为路面坡度的Sin值,-0.42<y<0.42。
  17. 根据权利要求14所述的越野跑等价水平配速的估算装置,还包括:
    第二样本数据获取模块,设置为获取多组水平跑标准样本数据,所述多组水平跑标准样本数据中的每组水平跑标准样本数据包括最大摄氧量数据,水平配速数据和当前摄氧量数据;
    第二摄氧量百分比数据获取模块,设置为根据所述当前摄氧量数据和所述最大摄氧量数据获取第二摄氧量百分比数据;
    第二模型方程建立模块设置为根据所述第二摄氧量百分比数据和所述水平配速数据建立第二关系方程,记为第二模型方程。
  18. 根据权利要求17所述的越野跑等价水平配速的估算装置,其中,
    所述第二模型方程满足如下公式,
    X 2=0.036Z^4-0.27Z^3+0.86Z^2+0.79Z,其中,Z为摄氧量百分比,X 2为水平配速。
  19. 一种用于越野跑等价水平配速的估算的电子设备,所述电子设备包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-12中任一所述的越野跑等价水平配速的估算方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-12中任一所述的越野跑等价水平配速的估算方法。
PCT/CN2021/140693 2021-12-23 2021-12-23 越野跑等价水平配速的估算方法、装置、设备和介质 WO2023115436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140693 WO2023115436A1 (zh) 2021-12-23 2021-12-23 越野跑等价水平配速的估算方法、装置、设备和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140693 WO2023115436A1 (zh) 2021-12-23 2021-12-23 越野跑等价水平配速的估算方法、装置、设备和介质

Publications (1)

Publication Number Publication Date
WO2023115436A1 true WO2023115436A1 (zh) 2023-06-29

Family

ID=86901102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140693 WO2023115436A1 (zh) 2021-12-23 2021-12-23 越野跑等价水平配速的估算方法、装置、设备和介质

Country Status (1)

Country Link
WO (1) WO2023115436A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105808959A (zh) * 2016-03-16 2016-07-27 北京永数网络科技有限公司 一种运动检测系统、运动检测终端及云平台
US20160375306A1 (en) * 2015-06-26 2016-12-29 Samsung Electronics Co., Ltd. Method and device for providing workout guide information
CN110111869A (zh) * 2019-05-06 2019-08-09 上海海济斯健康管理咨询有限公司 马拉松训练计划制定方法、装置、终端及存储介质
CN111202955A (zh) * 2019-12-11 2020-05-29 华为技术有限公司 运动数据处理方法及电子设备
CN112289405A (zh) * 2020-11-10 2021-01-29 北京顺源开华科技有限公司 配速推荐方法、装置、电子设备和存储介质
CN113192654A (zh) * 2021-05-12 2021-07-30 广东高驰运动科技有限公司 一种运动心率的追踪方法、装置、设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160375306A1 (en) * 2015-06-26 2016-12-29 Samsung Electronics Co., Ltd. Method and device for providing workout guide information
CN105808959A (zh) * 2016-03-16 2016-07-27 北京永数网络科技有限公司 一种运动检测系统、运动检测终端及云平台
CN110111869A (zh) * 2019-05-06 2019-08-09 上海海济斯健康管理咨询有限公司 马拉松训练计划制定方法、装置、终端及存储介质
CN111202955A (zh) * 2019-12-11 2020-05-29 华为技术有限公司 运动数据处理方法及电子设备
CN112289405A (zh) * 2020-11-10 2021-01-29 北京顺源开华科技有限公司 配速推荐方法、装置、电子设备和存储介质
CN113192654A (zh) * 2021-05-12 2021-07-30 广东高驰运动科技有限公司 一种运动心率的追踪方法、装置、设备和存储介质

Similar Documents

Publication Publication Date Title
US12057225B2 (en) Stamina monitoring method and device
Helgerud et al. Are there differences in running economy at different velocities for well-trained distance runners?
CN106166063B (zh) 体力监测方法和装置
Nybo et al. Physiological characteristics of an aging Olympic athlete.
Enoksen et al. The effect of high-vs. low-intensity training on aerobic capacity in well-trained male middle-distance runners
Dittrich et al. Validity of Carminatti's test to determine physiological indices of aerobic power and capacity in soccer and futsal players
US9731184B2 (en) Exercise assistive device
Leleu et al. Relationships between physiological variables and race performance in French standardbred trotters
Lockie et al. Yo-yo intermittent recovery test level 2 and its relationship with other typical soccer field tests in female collegiate soccer players
US10213155B2 (en) Method and apparatus for processing user lactate level information
Stanula et al. Calculating lactate anaerobic thresholds in sports involving different endurance preparation
Burtscher et al. The upper limit of aerobic power in humans
Hays et al. Understanding the physiological requirements of the mountain bike cross-country Olympic race format
US20170105664A1 (en) Real-Time and Continuous Determination of Excess Post-Exercise Oxygen Consumption and the Estimation of Blood Lactate
Massidda et al. Energy expenditure during competitive Latin American dancing simulation
US20150359480A1 (en) Methods, media, and apparatus for optimizing physical training based on real-time blood lactate monitoring
Bunn et al. Evaluation of earbud and wristwatch heart rate monitors during aerobic and resistance training
de Lucas et al. Is the critical running speed related to the intermittent maximal lactate steady state?
Runacres et al. The reliability of force-velocity-power profiling during over-ground sprinting in children and adolescents
Kraft et al. Validation of the garmin forerunner 920XT fitness watch VO2peak test
US20160270725A1 (en) Wearable lactate threshold monitor
CN111544853A (zh) 跑步运动中体力指标评估方法和设备
WO2023115436A1 (zh) 越野跑等价水平配速的估算方法、装置、设备和介质
Kramer et al. Critical speed as a measure of aerobic fitness for male rugby union players
US10579670B2 (en) Physiology-based selection of performance enhancing music

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE