WO2023106601A1 - 세탁기 및 그 제어 방법 - Google Patents

세탁기 및 그 제어 방법 Download PDF

Info

Publication number
WO2023106601A1
WO2023106601A1 PCT/KR2022/015447 KR2022015447W WO2023106601A1 WO 2023106601 A1 WO2023106601 A1 WO 2023106601A1 KR 2022015447 W KR2022015447 W KR 2022015447W WO 2023106601 A1 WO2023106601 A1 WO 2023106601A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching circuit
inverter
end connected
capacitor
upper switching
Prior art date
Application number
PCT/KR2022/015447
Other languages
English (en)
French (fr)
Inventor
이성모
지수환
박준현
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2023106601A1 publication Critical patent/WO2023106601A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/10Power supply arrangements, e.g. stand-by circuits
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/28Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress
    • D06F34/30Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress characterised by mechanical features, e.g. buttons or rotary dials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/28Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress
    • D06F34/34Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress characterised by mounting or attachment features, e.g. detachable control panels or detachable display panels
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors

Definitions

  • the present disclosure relates to a washing machine and a control method thereof, and more particularly, to a washing machine driving a motor and a control method thereof.
  • the washing machine includes an inverter for supplying three-phase power to the motor.
  • the inverter may measure the current of the motor and drive the motor based on the measured current.
  • Hall CT is a device that measures the current by sensing the magnetic field generated in the current-carrying wire. Hall CT has good precision, but has a problem in that the parts are expensive. Since all three-phase currents of the motor are always zero when added, it is possible to use only two Hall CTs, but the expensive component price is still a problem.
  • FIG. 1B there is also a method using a shunt resistor.
  • shunt resistors are connected in series to each of the three-phase legs of the inverter, and the three-phase current of the motor can be measured using voltages generated across the shunt resistor.
  • the method using a shunt resistor has an advantage of being cheaper than the method using a Hall CT, but has a problem of increasing material cost when applied to a recent dual inverter.
  • the dual inverter uses two inverters and has a structure in which the neutral point of the motor is disconnected from the existing inverter and motor circuits and connected to phases A, B, and C of the new inverter.
  • the dual inverter has the advantage of being 1.73 times higher than the conventional voltage utilization rate and operating the motor at a higher speed.
  • the present disclosure has been made in accordance with the above-described needs, and an object of the present disclosure is to provide a washing machine including a current sensing circuit of a dual inverter capable of cost reduction and a control method thereof.
  • a washing machine includes a washing tub, a driving unit, and a processor for controlling the driving unit to rotate the washing tub
  • the driving unit includes a rectifier, a capacitor connected in parallel with the rectifier, A first inverter connected in parallel with the capacitor, a second inverter connected in parallel with the first inverter, a three-phase output terminal of the first inverter, and a drive motor open winding with the three-phase output terminal of the second inverter
  • the processor may control the first inverter and the second inverter based on current flowing through a plurality of shunt resistors included in the first inverter.
  • the first inverter has a first upper switching circuit having one end connected to one end of the capacitor, a first lower switching circuit having one end connected to the other end of the first upper switching circuit, and one end connected to the other end of the first lower switching circuit.
  • a first shunt resistor having one end connected to the other end of the capacitor
  • a second upper switching circuit having one end connected to one end of the capacitor
  • a second lower switching circuit having one end connected to the other end of the second upper switching circuit, and one end having A second shunt resistor connected to the other end of the second lower switching circuit and the other end connected to the other end of the capacitor
  • a third upper switching circuit having one end connected to one end of the capacitor, and one end connected to the other end of the third upper switching circuit
  • a third lower switching circuit connected thereto and a third shunt resistor having one end connected to the other end of the third lower switching circuit and the other end connected to the other end of the capacitor.
  • the second inverter has a fourth upper switching circuit having one end connected to one end of the capacitor, a fourth lower switching circuit having one end connected to the other end of the fourth upper switching circuit and the other end connected to the other end of the capacitor, one end A fifth upper switching circuit connected to one end of the capacitor, a fifth lower switching circuit having one end connected to the other end of the fifth upper switching circuit and the other end connected to the other end of the capacitor, and a fifth lower switching circuit having one end connected to one end of the capacitor.
  • 6 upper switching circuits and a sixth lower switching circuit having one end connected to the other end of the sixth upper switching circuit and the other end connected to the other end of the capacitor.
  • the processor operates the first inverter and the second inverter based on a first current flowing through the first shunt resistor, a second current flowing through the second shunt resistor, and a third current flowing through the third shunt resistor. You can control it.
  • the processor determines that the first inverter and the second inverter are a first AC voltage of a first phase and a second AC voltage of a second phase based on the first current, the second current, and the third current. and controlling control terminals of the first to sixth upper switching circuits and control terminals of the first to sixth lower switching circuits to output a third AC voltage of a third phase, wherein the first phase is the second phase. and a difference of 120 degrees from each of the third phases, and the second phase may be a difference of 120 degrees from the third phase.
  • the processor is configured to provide at least one AC voltage among the first AC voltage, the second AC voltage, and the third AC voltage as a positive voltage, and the first AC voltage corresponding to the at least one positive AC voltage.
  • the upper switching circuit and the lower switching circuit of the second inverter corresponding to the at least one negative AC voltage may be PWM controlled.
  • the processor applies a PWM signal obtained by inverting the PWM signal applied to the upper switching circuit of the first inverter to the lower switching circuit of the first inverter, and the PWM signal applied to the upper switching circuit of the second inverter is An inverted PWM signal may be applied to a lower switching circuit of the second inverter.
  • the processor when the PWM signal applied to the upper switching circuit of the first inverter and the PWM signal applied to the upper switching circuit of the second inverter are both low values, the processor generates the first current and the second current And the third current can be sensed.
  • the processor may control the PWM pulse width based on the first current, the second current, and the third current.
  • the device may further include a plurality of sensing circuits for sensing the first current, the second current, and the third current and providing the sensed signals to the processor.
  • each of the plurality of sensing circuits includes an operational amplifier (OP-Amp), one end of which is connected to one end of the corresponding shunt resistor, and the other end of which is connected to the (+) input terminal of the OP-Amp, a first resistor, one end of which is connected to the OP.
  • OP-Amp operational amplifier
  • the processor identifies the first current as a current flowing through the fourth lower switching circuit, identifies the second current as a current flowing through the fifth lower switching circuit, and identifies the third current as a current flowing through the sixth lower switching circuit. It can be identified by the current flowing through the switching circuit.
  • the driving motor may include a first node to which the first upper switching circuit and the first lower switching circuit are connected, a second node to which the second upper switching circuit and the second lower switching circuit are connected, and the third upper switching circuit and a third node to which the third lower switching circuit is connected, a fourth node to which the fourth upper switching circuit and the fourth lower switching circuit are connected, and a fifth node to which the fifth upper switching circuit and the fifth lower switching circuit are connected. and a sixth node to which the sixth upper switching circuit and the sixth lower switching circuit are connected.
  • the driving unit includes a rectifier, a capacitor connected in parallel with the rectifier, a first inverter connected in parallel with the capacitor, A second inverter connected in parallel with the first inverter, a three-phase output terminal of the first inverter, and a driving motor open-winding with the three-phase output terminal of the second inverter, wherein the control method comprises the first inverter.
  • the method may include sensing current flowing through a plurality of shunt resistors included in the burr and controlling the first inverter and the second inverter based on the sensed current.
  • a first upper switching circuit having one end of the first inverter connected to one end of the capacitor, a first lower switching circuit having one end connected to the other end of the first upper switching circuit, and one end connected to the other end of the first lower switching circuit.
  • a first shunt resistor the other end of which is connected to the other end of the capacitor, a second upper switching circuit having one end connected to one end of the capacitor, a second lower switching circuit having one end connected to the other end of the second upper switching circuit, and one end of the above
  • a second shunt resistor connected to the other end of the second lower switching circuit and the other end connected to the other end of the capacitor, a third upper switching circuit having one end connected to the other end of the capacitor, and one end connected to the other end of the third upper switching circuit
  • a third lower switching circuit and a third shunt resistor having one end connected to the other end of the third lower switching circuit and the other end connected to the other end of the capacitor.
  • the second inverter has a fourth upper switching circuit having one end connected to one end of the capacitor, a fourth lower switching circuit having one end connected to the other end of the fourth upper switching circuit and the other end connected to the other end of the capacitor, one end A fifth upper switching circuit connected to one end of the capacitor, a fifth lower switching circuit having one end connected to the other end of the fifth upper switching circuit and the other end connected to the other end of the capacitor, and a fifth lower switching circuit having one end connected to one end of the capacitor.
  • 6 upper switching circuits and a sixth lower switching circuit having one end connected to the other end of the sixth upper switching circuit and the other end connected to the other end of the capacitor.
  • the controlling of the first inverter and the second inverter may be performed based on a first current flowing through the first shunt resistor, a second current flowing through the second shunt resistor, and a third current flowing through the third shunt resistor. Inverter can be controlled.
  • the controlling may include the first AC voltage of the first phase and the second AC voltage of the second phase based on the first current, the second current, and the third current.
  • a control terminal of the first to sixth upper switching circuits and a control terminal of the first to sixth lower switching circuits are controlled to output an AC voltage and a third AC voltage of a third phase, wherein the first phase controls the control terminals of the first to sixth upper switching circuits.
  • a difference of 120 degrees from each of the two phases and the third phase, and the second phase may be a difference of 120 degrees from the third phase.
  • the controlling may include providing at least one of the first AC voltage, the second AC voltage, and the third AC voltage as a positive voltage, corresponding to the at least one positive AC voltage.
  • An upper switching circuit and a lower switching circuit of the first inverter are PWM (pulse width modulation) controlled, and at least one AC voltage among the first AC voltage, the second AC voltage, and the third AC voltage is converted to a negative voltage.
  • the upper switching circuit and the lower switching circuit of the second inverter corresponding to the at least one negative AC voltage may be PWM controlled.
  • the controlling step is to apply a PWM signal obtained by inverting the PWM signal applied to the upper switching circuit of the first inverter to the lower switching circuit of the first inverter, and to apply the PWM signal to the upper switching circuit of the second inverter.
  • a PWM signal having an inverted signal may be applied to a lower switching circuit of the second inverter.
  • the washing machine is provided with a plurality of shunt resistors in only one inverter among the dual inverters, thereby reducing manufacturing costs.
  • FIG. 2 is a diagram schematically illustrating a washing machine according to an embodiment of the present disclosure.
  • FIG. 3 is a block diagram showing the configuration of a washing machine according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining a driving unit according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating three-phase power applied to a driving motor according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram for explaining a control method of an inverter for outputting three-phase power according to an embodiment of the present disclosure.
  • FIG 7 and 8 are diagrams for explaining current flow by PWM control according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram for explaining a current sensing circuit according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating a method of controlling a washing machine according to an embodiment of the present disclosure.
  • expressions such as “has,” “can have,” “includes,” or “can include” indicate the existence of a corresponding feature (eg, numerical value, function, operation, or component such as a part). , which does not preclude the existence of additional features.
  • the term user may refer to a person using an electronic device or a device (eg, an artificial intelligence electronic device) using an electronic device.
  • a device eg, an artificial intelligence electronic device
  • FIG. 2 is a diagram schematically illustrating a washing machine 100 according to an embodiment of the present disclosure.
  • the washing machine 100 may refer to a device for washing laundry using water and detergent and dehydrating wet laundry. Also, according to an embodiment, the washing machine 100 may dry the laundry for which dehydration has been completed.
  • a washing machine 100 may include a main body 10, a tub 20, and a washing tub 110.
  • the main body 10 forms the exterior of the washing machine 100, and a laundry input unit 11 for putting laundry into and taking out laundry is provided on the front of the main body 10.
  • a door 12 may be installed in the laundry inlet 11 to be opened and closed.
  • an input interface 13 for receiving a user command may be provided on the front of the main body 10 .
  • the input interface 13 may include a plurality of buttons 13-1 for receiving user commands for controlling the washing machine 100 and a display 13-2 for displaying information related to washing. there is.
  • the tub 20 is installed inside the main body 10 of the washing machine 100 and may be formed in a cylindrical shape with an opening toward the laundry inlet 11 .
  • the tub 20 may store a predetermined amount of water required for washing.
  • the washing tub 110 may form a space in which loaded laundry is washed, and may be formed in a cylindrical shape. Meanwhile, the washing tub 110 may also be called a drum, but hereinafter, it will be collectively referred to as the washing tub 110.
  • An opening corresponding to the laundry input port 11 is provided on the front side of the washing tub 110, and laundry can be put into the washing tub 110 through the opening.
  • a plurality of through holes through which water can pass may be provided in the washing tub 110 .
  • water stored in the tub 20 may flow into the washing tub 110 and water inside the washing tub 110 may flow out into the tub 20 through the through hole.
  • the washing tub 110 may be rotated by a driving unit (not shown) provided in the washing machine 100 .
  • a driving unit not shown
  • dirt from the laundry put into the washing tub 110 may be removed from the laundry while rubbing against water stored in the tub 20 .
  • the washing machine 100 may include a water supply device (not shown) for supplying water to the tub 20 (or the washing tub 110).
  • the water supply device may include a water supply pipe (not shown) connected to an external water supply source such as a tap, and a water supply valve (not shown) that opens and closes the water supply pipe.
  • the washing machine 100 may include a detergent accommodating part 14 for supplying detergent, fabric softener, and the like to the tub 20 .
  • a detergent accommodating part 14 for supplying detergent, fabric softener, and the like to the tub 20 .
  • the washing machine 100 may include a drainage device (not shown) for draining water stored in the tub 20 to the outside.
  • the drainage device may include a pump (not shown) and a drain pipe (not shown).
  • a pump may discharge water stored in the tub 20 to the outside of the washing machine 100 through a drain pipe (not shown).
  • the washing machine 100 may remove dirt from laundry by performing washing processes such as washing, rinsing, and spin-drying. Meanwhile, the washing machine 100 according to an embodiment of the present disclosure may detect the material (or fabric) of the laundry and perform an optimal washing course suitable for the detected material.
  • the fabric of the laundry is fabric (eg, cotton, hemp, wool, silk, synthetic fiber, dame, fur, leather, suede, etc.), mixing ratio (eg, 70% cotton, 30% acrylic, etc.) can include
  • a washing course suitable for laundry refers to a washing course for removing contaminants from laundry while minimizing damage to the laundry based on characteristics of the material (or fabric, fiber) of the laundry.
  • the washing course may include at least one of a washing process, a rinsing process, and a spin-drying process.
  • the determination related to the washing process may include at least one of a supply amount of wash water into the washing tub 110, a load of a driving unit (eg, a motor) for rotating the washing tub 110, a rotation speed, and a washing time.
  • a driving unit eg, a motor
  • Each of the decision related to the rinsing process and the spin-drying process determines at least one of a supply amount of wash water into the washing tub 110, a load of a driving unit (eg, a motor) for rotating the washing tub 110, a rotational speed, and a stroke execution time. Of course it can be included.
  • a driving unit eg, a motor
  • the washing machine 100 includes a washing tub 110 , a driving unit 120 and a processor 130 .
  • Laundry is disposed in the washing tub 110, and washing may be performed through rotation. For example, when the washing tub 110 rotates, laundry inside the tub 110 rubs against water, and in the process, dirt from the laundry may be removed.
  • the driver 120 may rotate the washing tub 110 under the control of the processor 130 .
  • the driver 120 may include a rectifier for rectifying AC power, a capacitor connected in parallel with the rectifier and removing ripple of the rectified power, a first inverter connected in parallel with the capacitor, a second inverter connected in parallel with the first inverter, and a second inverter connected in parallel with the first inverter.
  • a three-phase output terminal of one inverter and a three-phase output terminal of a second inverter may include a drive motor that is open-wound.
  • the first inverter and the second inverter may generate 3-phase power from the ripple-removed power and provide the 3-phase power to the driving motor.
  • the rectifier can rectify 50Hz or 60Hz AC power input from the outside.
  • the rectifier may be implemented with a plurality of bridge diodes, and may allow AC power flowing in both directions to flow in one direction.
  • the capacitor can output a voltage of a certain size by removing the ripple of the rectified power. That is, the capacitor may output a constant voltage by adjusting the magnitude of the voltage output by the rectifier.
  • the first inverter has a first upper switching circuit having one end connected to one end of the capacitor, a first lower switching circuit having one end connected to the other end of the first upper switching circuit, one end connected to the other end of the first lower switching circuit, and the other end connected to the capacitor.
  • a second shunt resistor connected to the other end and the other end connected to the other end of the capacitor, a third upper switching circuit having one end connected to one end of the capacitor, a third lower switching circuit having one end connected to the other end of the third upper switching circuit, and one end 3 may include a third shunt resistor connected to the other end of the lower switching circuit and the other end connected to the other end of the capacitor.
  • the second inverter has a fourth upper switching circuit having one end connected to one end of the capacitor, a fourth lower switching circuit having one end connected to the other end of the fourth upper switching circuit and the other end connected to the other end of the capacitor, and one end connected to one end of the capacitor.
  • a fifth upper switching circuit one end connected to the other end of the fifth upper switching circuit, the other end connected to the other end of the capacitor, the sixth upper switching circuit having one end connected to the other end of the capacitor, and one end connected to the sixth upper end It may include a sixth lower switching circuit connected to the other end of the switching circuit and the other end connected to the other end of the capacitor.
  • the first inverter may be implemented in a form including a plurality of shunt resistors, but the second inverter may be implemented in a form not including a shunt resistor.
  • the plurality of switching circuits included in the first inverter and the second inverter may be controlled by the processor 130 to output 3-phase power to the driving motor.
  • the driving motor may be implemented in an open winding form with the three-phase output terminal of the first inverter and the three-phase output terminal of the second inverter. That is, the open-winding type may be a structure in which a neutral point of a driving motor is released and connected to a new inverter in a conventional type in which one inverter and a driving motor are connected.
  • the driving motor may include a first node to which a first upper switching circuit and a first lower switching circuit are connected, a second node to which a second upper switching circuit and a second lower switching circuit are connected, a third upper switching circuit and a third lower switching circuit.
  • the driving motor may have six input terminals connected to the first node, the second node, the third node, the fourth node, the fifth node, and the sixth node, respectively, and receive three-phase power.
  • This form is called a dual inverter structure, and the voltage utilization rate is 1.73 times higher than the case of using one inverter, and the motor can be operated at a higher speed.
  • the processor 130 controls overall operations of the washing machine 100 .
  • the processor 130 may be connected to each component of the washing machine 100 to control the overall operation of the washing machine 100.
  • the processor 130 may be connected to components such as the washing tub 110 and the driving unit 120 to control the operation of the washing machine 100 .
  • the processor 130 may be implemented as a digital signal processor (DSP), a microprocessor, or a time controller (TCON). However, it is not limited thereto, and the central processing unit ( central processing unit (CPU)), micro controller unit (MCU), micro processing unit (MPU), controller, application processor (AP), or communication processor (CP), ARM processor
  • the processor 130 may be implemented as a system on chip (SoC) having a built-in processing algorithm, a large scale integration (LSI), or an FPGA ( It may be implemented in the form of a field programmable gate array).
  • SoC system on chip
  • the processor 130 may control the first inverter and the second inverter based on the current flowing through the plurality of shunt resistors included in the first inverter.
  • the processor 130 may control the first inverter and the second inverter based on a first current flowing through the first shunt resistor, a second current flowing through the second shunt resistor, and a third current flowing through the third shunt resistor.
  • the processor 130 may cause the first inverter and the second inverter to have a first phase first AC voltage, a second phase second AC voltage, and a second inverter based on the first current, the second current, and the third current.
  • Control terminals of the first to sixth upper switching circuits and control terminals of the first to sixth lower switching circuits may be controlled to output the third AC voltage of the third phase.
  • the first phase may be 120 degrees different from the second phase and the third phase
  • the second phase may be 120 degrees different from the third phase.
  • the processor 130 switches the top of the first inverter corresponding to the at least one positive AC voltage to provide at least one AC voltage among the first AC voltage, the second AC voltage, and the third AC voltage as a positive voltage.
  • At least one negative AC voltage is provided to control the circuit and the lower switching circuit through PWM (pulse width modulation), and to provide at least one AC voltage among the first AC voltage, the second AC voltage, and the third AC voltage as a negative voltage.
  • PWM pulse width modulation
  • the processor 130 PWM-controls the first upper switching circuit and the first lower switching circuit of the first inverter to provide the first AC voltage as a positive voltage, and the second upper switching circuit of the first inverter. circuit and the third upper switching circuit may be turned off, and the second lower switching circuit and the third lower switching circuit of the first inverter may be turned on. Also, the processor 130 may apply a PWM signal obtained by inverting the PWM signal applied to the upper switching circuit of the first inverter to the lower switching circuit of the first inverter.
  • the processor 130 provides the second AC voltage and the third AC voltage as negative voltages, the fifth upper switching circuit, the fifth lower switching circuit, the sixth upper switching circuit, and the sixth lower switching circuit of the second inverter. PWM control, the fourth upper switching circuit of the second inverter may be turned off, and the fourth lower switching circuit of the second inverter may be turned on. Also, the processor 130 may apply a PWM signal obtained by inverting the PWM signal applied to the upper switching circuit of the second inverter to the lower switching circuit of the second inverter.
  • the processor 130 When the PWM signal applied to the upper switching circuit of the first inverter and the PWM signal applied to the upper switching circuit of the second inverter are both low values, the processor 130 generates the first current, the second current, and the third current can detect When the PWM signal applied to the upper switching circuit of the first inverter and the PWM signal applied to the upper switching circuit of the second inverter are both low values, the PWM signal applied to the lower switching circuit of the first inverter and the lower switching circuit of the second inverter All of the PWM signals applied to the circuit have high values, and in this case, current flows through the plurality of shunt resistors of the first inverter. That is, the processor 130 may sense the current flowing in each phase.
  • the processor 130 may control the PWM pulse width based on the first current, the second current, and the third current. For example, the processor 130 changes the target voltage of each of the first AC voltage, the second AC voltage, and the third AC voltage by comparing the first current, the second current, and the third current with the target current, respectively, and The PWM pulse width can be controlled based on the target voltage. This will be described in detail through drawings.
  • the washing machine 100 may further include a plurality of sensing circuits that sense the first current, the second current, and the third current and provide the sensed signals to the processor 130 .
  • each of the plurality of sensing circuits is an operational amplifier (OP-Amp), one end of which is connected to one end of the corresponding shunt resistor, the other end of which is connected to the (+) input terminal of the OP-Amp, a first resistor, one end of the OP-Amp ( A second resistor connected to the +) input terminal and the other end of which is grounded, a third resistor having one end connected to the other end of the corresponding shunt resistor and the other end connected to the (-) input terminal of the op amp, and one end connected to the op amp's (-) input terminal.
  • a fourth resistor is connected to the (-) input terminal and the other end is connected to the output terminal of the op amp.
  • the output terminal of the op amp may be connected to the processor 130. Noise can be removed by using both the (+) and (-) input terminals of the op-amp as input terminals.
  • the processor 130 identifies the first current as a current flowing through the fourth lower switching circuit, the second current as a current flowing through the fifth lower switching circuit, and the third current as a current flowing through the sixth lower switching circuit. can be identified.
  • the current flowing through the second inverter can be identified using the current flowing through the plurality of shunt resistors included in the first inverter, and the second inverter can be controlled accordingly.
  • FIGS. 4 to 9 describe individual embodiments for convenience of description. However, the individual embodiments of FIGS. 4 to 9 may be implemented in any combination.
  • FIG. 4 is a diagram for explaining the driving unit 120 according to an embodiment of the present disclosure.
  • the driver 120 includes a rectifier, a capacitor C connected in parallel with the rectifier, a first inverter connected in parallel with the capacitor Inverter 1, a second inverter connected in parallel with the first inverter Inverter 2, and A 3-phase output terminal of the first inverter and a 3-phase output terminal of the second inverter and an open winding motor may be included.
  • the first inverter has a first upper switching circuit (SU1) having one end connected to one end of the capacitor, a first lower switching circuit (SD1) having one end connected to the other end of the first upper switching circuit, and one end of the first lower switching circuit.
  • a first shunt resistor connected to the other end and the other end connected to the other end of the capacitor, a second upper switching circuit SU2 having one end connected to one end of the capacitor, and a second lower switching circuit having one end connected to the other end of the second upper switching circuit ( SD2), a second shunt resistor having one end connected to the other end of the second lower switching circuit and the other end connected to the other end of the capacitor, a third upper switching circuit SU3 having one end connected to one end of the capacitor, and one end connected to the third upper switching circuit It may include a third lower switching circuit SD3 connected to the other end of the circuit and a third shunt resistor having one end connected to the other end of the third lower switching circuit and the other end connected to the other end of the capacitor.
  • the second inverter has a fourth upper switching circuit (SU4) having one end connected to one end of the capacitor, a fourth lower switching circuit (SD4) having one end connected to the other end of the fourth upper switching circuit and the other end connected to the other end of the capacitor, A fifth upper switching circuit (SU5) connected to one end of the capacitor, a fifth lower switching circuit (SD5) having one end connected to the other end of the fifth upper switching circuit and the other end connected to the other end of the capacitor, and one end connected to one end of the capacitor. It may include a connected sixth upper switching circuit SU6 and a sixth lower switching circuit SD6 having one end connected to the other end of the sixth upper switching circuit and the other end connected to the other end of the capacitor.
  • the first inverter may include three more shunt resistors than the second inverter.
  • the processor 130 may control the first inverter and the second inverter based on the current flowing through the plurality of shunt resistors included in the first inverter.
  • the processor 130 may control the first inverter based on the first current flowing through the first shunt resistor, the second current flowing through the second shunt resistor, and the third current flowing through the third shunt resistor. Then, the processor 130 identifies the first current as a current flowing through the fourth lower switching circuit, identifies the second current as a current flowing through the fifth lower switching circuit, and identifies the third current as a current flowing through the sixth lower switching circuit. It is identified as a current, and the second inverter may be controlled based on the identified current.
  • the second inverter does not have a shunt resistor, but the processor 130 may control the second inverter based on the current sensed by the first inverter. That is, the second inverter can be controlled without providing a separate shunt resistor to the second inverter, and material costs can be reduced.
  • FIG. 5 is a diagram illustrating three-phase power applied to a driving motor according to an embodiment of the present disclosure.
  • the processor 130 may control a total of 12 switching circuits to apply 3-phase power as shown in FIG. 5 to the driving motor.
  • the processor 130 may operate the switching circuit of the first inverter when the AC voltage has a positive voltage and operate the switching circuit of the second inverter when the AC voltage has a negative voltage.
  • the processor 130 controls the first upper switching circuit and the first lower switching circuit of the first inverter by PWM, and at time t1, the first AC voltage Va has a positive voltage.
  • the processor 130 controls the first upper switching circuit and the first lower switching circuit of the first inverter by PWM, and at time t1, the first AC voltage Va has a positive voltage.
  • the AC voltage (Vb) has a negative voltage
  • the fifth upper switching circuit and the fifth lower switching circuit of the second inverter are PWM controlled
  • the third AC voltage (Vc) since the third AC voltage (Vc) has a negative voltage
  • the sixth upper switching circuit and the sixth lower switching circuit of the second inverter may be PWM controlled.
  • the processor 130 may turn off the remaining upper switching circuits and turn on the remaining lower switching circuits.
  • the above control method is shown in FIG. 6 .
  • FIG. 6 is a diagram for explaining a control method of an inverter for outputting three-phase power according to an embodiment of the present disclosure.
  • the processor 130 controls 12 switching circuits in the inverter according to the inverter control method described in FIG. 5 , and may control 12 switching circuits as shown in FIG. 6 at a time point t1 in FIG. 5 .
  • the triangular waveform at the top of FIG. 6 is a waveform driven by the processor 130 itself to determine the pulse width during PWM control.
  • the processor 130 may identify a comparator value based on the value of AC power, and may determine an intersection point between the comparison value and the triangular waveform as a pulse width.
  • the second AC voltage Vb and the third AC voltage Vc are the same, and the comparison values of the fifth upper switching circuit and the sixth upper switching circuit are the same, and accordingly, the fifth upper switching circuit.
  • the pulse width of the PWM control signal for the circuit and the sixth upper switching circuit is also the same.
  • the first AC voltage Va is greater than the second AC voltage Vb and the third AC voltage Vc. Accordingly, the comparison value of the first upper switching circuit is smaller than the comparison value of the fifth upper switching circuit and the comparison value of the sixth upper switching circuit, and the pulse width of the PWM control signal for the first upper switching circuit is smaller than that of the fifth upper switching circuit. greater than the pulse width of the PWM control signal for the switching circuit and the sixth upper switching circuit.
  • FIG. 6 current is supplied while a high value is applied to the upper switching circuit, and current can be sensed when a low value is applied to the upper switching circuit. This is explained through FIGS. 7 and 8 .
  • FIG 7 and 8 are diagrams for explaining current flow by PWM control according to an embodiment of the present disclosure.
  • FIG. 7 shows a current flow when a high value is applied to an upper switching circuit in FIG. 6 .
  • the first upper switching circuit is turned on and the first lower switching circuit is turned off, a current path is formed through the first upper switching circuit and the fourth lower switching circuit, and a current is generated in the first shunt resistor. does not flow
  • the fifth upper switching circuit and the sixth upper switching circuit are turned on and the fifth lower switching circuit and the sixth lower switching circuit are turned off, the current through the fifth upper switching circuit and the second lower switching circuit A path is formed, a current path is formed through the sixth upper switching circuit and the third lower switching circuit, and current flows through the second shunt resistor and the third shunt resistor.
  • FIG. 8 shows a current flow when a low value is applied to an upper switching circuit in FIG. 6 .
  • the first upper switching circuit is turned off and the first lower switching circuit is turned on
  • a current path is formed through the first lower switching circuit and the fourth lower switching circuit, and a current is generated in the first shunt resistor.
  • the fifth upper switching circuit and the sixth upper switching circuit are turned off and the fifth lower switching circuit and the sixth lower switching circuit are turned on, the current through the fifth lower switching circuit and the second lower switching circuit A path is formed, a current path is formed through the sixth lower switching circuit and the third lower switching circuit, and current flows through the second shunt resistor and the third shunt resistor.
  • the processor 130 may measure the current flowing through the shunt resistors during the time period shown in FIG. 8 .
  • the processor 130 transfers the first current flowing through the first shunt resistor to the fourth lower switching circuit.
  • the second current flowing through the second shunt resistor may be identified as current flowing through the fifth lower switching circuit
  • the third current flowing through the third shunt resistor may be identified as current flowing through the sixth lower switching circuit.
  • FIG. 9 is a diagram for explaining a current sensing circuit according to an exemplary embodiment of the present disclosure.
  • the washing machine 100 may further include a plurality of sensing circuits that sense the first current, the second current, and the third current and provide them to the processor 130 .
  • FIG. 9 shows a first sensing circuit for sensing a first current, a second sensing circuit for sensing a second current, and a third sensing circuit for sensing a third current, and all three sensing circuits are implemented identically. state, only the first sensing circuit will be described.
  • the first sensing circuit includes an operational amplifier (OP-Amp) 910, one end of which is connected to one end of the corresponding shunt resistor, and the other end of which is connected to the (+) input terminal of the OP-Amp.
  • a second resistor 930 connected to the (+) input terminal of and the other end of which is grounded; a third resistor having one end connected to the other end of the corresponding shunt resistor and the other end connected to the (-) input terminal of the OP Amp ( 940) and a fourth resistor 950 having one end connected to the (-) input terminal of the OP Amp and the other end connected to the output terminal of the OP Amp, and the output terminal of the OP Amp being connected to the processor 130. .
  • each of the two input terminals of the op-amp is connected to both ends of the shunt resistor to receive a differential input, and accordingly, it is possible to measure current with circuit noise removed.
  • the second inverter does not have a shunt resistor and, accordingly, a separate circuit for measuring the current of the second inverter is not required, material costs can be reduced.
  • FIG. 10 is a flowchart illustrating a method of controlling a washing machine according to an embodiment of the present disclosure.
  • the washing machine may include a washing tub and a driving unit for rotating the washing tub.
  • the driving unit is a rectifier, a capacitor connected in parallel with the rectifier, a first inverter connected in parallel with the capacitor, a second inverter connected in parallel with the first inverter, and a three-phase output terminal of the first inverter and an open winding (open winding) of the three-phase output terminal of the second inverter.
  • winding may include a driving motor.
  • the first inverter has a first upper switching circuit having one end connected to one end of the capacitor, a first lower switching circuit having one end connected to the other end of the first upper switching circuit, one end connected to the other end of the first lower switching circuit, and the other end A first shunt resistor connected to the other end of the capacitor, a second upper switching circuit having one end connected to one end of the capacitor, a second lower switching circuit having one end connected to the other end of the second upper switching circuit, and one end connected to the other end of the second lower switching circuit A second shunt resistor having one end connected to the other end of the capacitor, a third upper switching circuit having one end connected to one end of the capacitor, a third lower switching circuit having one end connected to the other end of the third upper switching circuit, and one end connected to the third upper switching circuit.
  • a third shunt resistor connected to the other end of the lower switching circuit and the other end connected to the other end of the capacitor may be included.
  • the second inverter has a fourth upper switching circuit having one end connected to one end of the capacitor, a fourth lower switching circuit having one end connected to the other end of the fourth upper switching circuit and the other end connected to the other end of the capacitor, and one end connected to the other end of the capacitor.
  • a fifth upper switching circuit connected to, a fifth lower switching circuit having one end connected to the other end of the fifth upper switching circuit and the other end connected to the other end of the capacitor, a sixth upper switching circuit having one end connected to one end of the capacitor, and one end connected to the first end of the fifth upper switching circuit. 6 may include a sixth lower switching circuit connected to the other end of the upper switching circuit and the other end connected to the other end of the capacitor.
  • controlling step (S1020) controls the first inverter and the second inverter based on the first current flowing through the first shunt resistor, the second current flowing through the second shunt resistor, and the third current flowing through the third shunt resistor. can do.
  • the step of controlling (S1020) is based on the first current, the second current, and the third current
  • the first inverter and the second inverter are the first AC voltage of the first phase, the second AC voltage of the second phase
  • the control terminals of the first to sixth upper switching circuits and the control terminals of the first to sixth lower switching circuits are controlled to output a third AC voltage of a third phase, wherein the first phase is the second phase and the third phase, respectively. and 120 degree difference, and the second phase may be 120 degree difference from the third phase.
  • the first AC voltage corresponding to the at least one positive AC voltage is provided to provide at least one AC voltage among the first AC voltage, the second AC voltage, and the third AC voltage as a positive voltage.
  • PWM pulse width modulation
  • the upper switching circuit and the lower switching circuit of the second inverter corresponding to the negative AC voltage of may be PWM controlled.
  • the step of controlling applies a PWM signal obtained by inverting the PWM signal applied to the upper switching circuit of the first inverter to the lower switching circuit of the first inverter, and applies the PWM signal to the upper switching circuit of the second inverter.
  • the inverted PWM signal may be applied to the lower switching circuit of the second inverter.
  • the washing machine is provided with a plurality of shunt resistors in only one inverter among the dual inverters, thereby reducing manufacturing costs.
  • the current sensing method of the dual inverter applied to the washing machine has been described above, but is not limited thereto.
  • the present disclosure may be applied to a case where a motor is provided, such as a dryer or a refrigerator, and the motor is controlled through a dual inverter.
  • a device is a device capable of calling a stored command from a storage medium and operating according to the called command, and may include an electronic device (eg, the electronic device A) according to the disclosed embodiments.
  • the processor may perform a function corresponding to the command directly or by using other components under the control of the processor.
  • An instruction may include code generated or executed by a compiler or interpreter.
  • the device-readable storage medium may be provided in the form of a non-transitory storage medium.
  • 'non-temporary' only means that the storage medium does not contain a signal and is tangible, but does not distinguish whether data is stored semi-permanently or temporarily in the storage medium.
  • the method according to the various embodiments described above may be included in a computer program product and provided.
  • Computer program products may be traded between sellers and buyers as commodities.
  • the computer program product may be distributed in the form of a device-readable storage medium (eg compact disc read only memory (CD-ROM)) or online through an application store (eg Play StoreTM).
  • CD-ROM compact disc read only memory
  • application store eg Play StoreTM
  • at least part of the computer program product may be temporarily stored or temporarily created in a storage medium such as a manufacturer's server, an application store server, or a relay server's memory.
  • the various embodiments described above use software, hardware, or a combination thereof in a recording medium readable by a computer or similar device. can be implemented in In some cases, the embodiments described herein may be implemented in a processor itself. According to software implementation, embodiments such as procedures and functions described in this specification may be implemented as separate software modules. Each of the software modules may perform one or more functions and operations described herein.
  • Non-transitory computer-readable medium may be stored in a non-transitory computer-readable medium.
  • Computer instructions stored in such a non-transitory computer readable medium when executed by a processor of a specific device, cause a specific device to perform a processing operation in the device according to various embodiments described above.
  • a non-transitory computer readable medium is a medium that stores data semi-permanently and is readable by a device, not a medium that stores data for a short moment, such as a register, cache, or memory.
  • Specific examples of the non-transitory computer readable media may include CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM, and the like.
  • each of the components may be composed of a single object or a plurality of entities, and some sub-components among the aforementioned sub-components may be omitted, or other sub-components may be used. Components may be further included in various embodiments. Alternatively or additionally, some components (eg, modules or programs) may be integrated into one entity and perform the same or similar functions performed by each corresponding component prior to integration. According to various embodiments, operations performed by modules, programs, or other components are executed sequentially, in parallel, iteratively, or heuristically, or at least some operations are executed in a different order, are omitted, or other operations are added. It can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

세탁기가 개시된다. 본 세탁기는 세탁조, 구동부 및 세탁조가 회전하도록 구동부를 제어하는 프로세서를 포함하며, 구동부는 정류기, 정류기와 병렬 연결된 커패시터, 커패시터와 병렬 연결된 제1 인버터, 제1 인버터와 병렬 연결된 제2 인버터 및 제1 인버터의 3상 출력단 및 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터를 포함하며, 프로세서는 제1 인터버에 포함된 복수의 션트(shunt) 저항에 흐르는 전류에 기초하여 제1 인버터 및 제2 인버터를 제어할 수 있다.

Description

세탁기 및 그 제어 방법
본 개시는 세탁기 및 그 제어 방법에 대한 것으로, 더욱 상세하게는 모터를 구동하는 세탁기 및 그 제어 방법에 대한 것이다.
세탁기는 모터에 3상 전원을 공급하기 위한 인버터를 포함한다. 인버터는 모터의 전류를 측정하고, 측정된 전류에 기초하여 모터를 구동할 수 있다.
모터의 전류를 측정하기 위해서는 도 1a에 도시된 바와 같이, Hall CT(hall current transducer)를 이용하는 방법이 있다. Hall CT는 전류가 흐르는 도선에 발생하는 자기장을 감지하여 전류를 측정하는 소자이다. Hall CT는 정밀도가 좋지만, 부품의 가격이 비싼 문제가 있다. 모터 3상 전류는 모두 더하면 항상 0이기 때문에 Hall CT를 2개만 이용할 수도 있으나, 그럼에도 비싼 부품 가격이 문제가 된다.
또는, 도 1b에 도시된 바와 같이, 션트(shunt) 저항을 이용하는 방법도 있다. 구체적으로, 인버터의 3상 레그(leg) 각각에 션트 저항이 직렬로 연결되며, 션트 저항 양단에 발생하는 전압을 이용하여 모터 3상 전류의 측정이 가능하다. 션트 저항을 이용하는 방법은 Hall CT를 이용하는 방법보다 저렴한 장점이 있으나, 최근의 듀얼(dual) 인터버에 적용할 경우 재료비가 증가하는 문제가 있다.
듀얼 인버터는 도 1c에 도시된 바와 같이, 두 개의 인버터를 사용하며, 기존의 인버터 및 모터 회로에서 모터의 중성점을 풀어 새로운 인버터의 A, B, C상에 연결된 구조를 갖는다. 듀얼 인버터는 전압 이용률이 기존보다 1.73배 높으며, 모터를 좀더 고속으로 운용할 수 있는 장점이 있다.
다만, 도 1c에 도시된 바와 같이, 두 개의 인버터를 이용하며, 두 개의 인버터 각각에 총 6개의 션트 저항이 연결됨에 따라 재료비가 상승하는 문제가 있다.
본 개시는 상술한 필요성에 따른 것으로, 본 개시의 목적은 원가 절감이 가능한 듀얼 인버터의 전류 감지 회로를 포함하는 세탁기 및 그 제어 방법을 제공함에 있다.
이상과 같은 목적을 달성하기 위한 본 개시의 일 실시 예에 따르면, 세탁기는 세탁조, 구동부 및 상기 세탁조가 회전하도록 상기 구동부를 제어하는 프로세서를 포함하며, 상기 구동부는 정류기, 상기 정류기와 병렬 연결된 커패시터, 상기 커패시터와 병렬 연결된 제1 인버터, 상기 제1 인버터와 병렬 연결된 제2 인버터 및 상기 제1 인버터의 3상 출력단 및 상기 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터를 포함하며, 상기 프로세서는 상기 제1 인터버에 포함된 복수의 션트(shunt) 저항에 흐르는 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어할 수 있다.
또한, 상기 제1 인버터는 일단이 상기 커패시터의 일단에 연결된 제1 상단 스위칭 회로, 일단이 상기 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로, 일단이 상기 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제1 션트 저항, 일단이 상기 커패시터의 일단에 연결된 제2 상단 스위칭 회로, 일단이 상기 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로, 일단이 상기 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제2 션트 저항, 일단이 상기 커패시터의 일단에 연결된 제3 상단 스위칭 회로, 일단이 상기 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로 및 일단이 상기 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제3 션트 저항을 포함할 수 있다.
그리고, 상기 제2 인버터는 일단이 상기 커패시터의 일단에 연결된 제4 상단 스위칭 회로, 일단이 상기 제4 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제4 하단 스위칭 회로, 일단이 상기 커패시터의 일단에 연결된 제5 상단 스위칭 회로, 일단이 상기 제5 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제5 하단 스위칭 회로, 일단이 상기 커패시터의 일단에 연결된 제6 상단 스위칭 회로 및 일단이 상기 제6 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제6 하단 스위칭 회로를 포함할 수 있다.
또한, 상기 프로세서는 상기 제1 션트 저항에 흐르는 제1 전류, 상기 제2 션트 저항에 흐르는 제2 전류 및 상기 제3 션트 저항에 흐르는 제3 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어할 수 있다.
그리고, 상기 프로세서는 상기 제1 전류, 상기 제2 전류 및 상기 제3 전류에 기초하여, 상기 제1 인버터 및 상기 제2 인버터가 제1 위상의 제1 교류 전압, 제2 위상의 제2 교류 전압 및 제3 위상의 제3 교류 전압을 출력하도록 상기 제1 내지 제6 상단 스위칭 회로의 제어 단자, 상기 제1 내지 제6 하단 스위칭 회로의 제어 단자를 제어하며, 상기 제1 위상은 상기 제2 위상 및 상기 제3 위상 각각과 120도 차이이고, 상기 제2 위상은 상기 제3 위상과 120도 차이일 수 있다.
또한, 상기 프로세서는 상기 제1 교류 전압, 상기 제2 교류 전압 및 상기 제3 교류 전압 중 적어도 하나의 교류 전압을 양의 전압으로 제공하기 위해, 상기 적어도 하나의 양의 교류 전압에 대응되는 상기 제1 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM(pulse width modulation) 제어하고, 상기 제1 교류 전압, 상기 제2 교류 전압 및 상기 제3 교류 전압 중 적어도 하나의 교류 전압을 음의 전압으로 제공하기 위해, 상기 적어도 하나의 음의 교류 전압에 대응되는 상기 제2 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM 제어할 수 있다.
그리고, 상기 프로세서는 상기 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 상기 제1 인버터의 하단 스위칭 회로에 인가하고, 상기 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 상기 제2 인버터의 하단 스위칭 회로에 인가할 수 있다.
또한, 상기 프로세서는 상기 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호 및 상기 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 모두 로우(low) 값인 경우, 상기 제1 전류, 상기 제2 전류 및 상기 제3 전류를 감지할 수 있다.
그리고, 상기 프로세서는 상기 제1 전류, 상기 제2 전류 및 상기 제3 전류에 기초하여 상기 PWM 펄스 폭을 제어할 수 있다.
또한, 상기 제1 전류, 상기 제2 전류 및 상기 제3 전류를 감지하여 상기 프로세서로 제공하는 복수의 감지 회로를 더 포함할 수 있다.
그리고, 상기 복수의 감지 회로 각각은 OP Amp(operational amplifier), 일단이 대응되는 션트 저항의 일단에 연결되고, 타단이 상기 OP Amp의 (+) 입력 단자에 연결되는 제1 저항, 일단이 상기 OP Amp의 (+) 입력 단자에 연결되고, 타단이 접지된 제2 저항, 일단이 상기 대응되는 션트 저항의 타단에 연결되고, 타단이 상기 OP Amp의 (-) 입력 단자에 연결되는 제3 저항 및 일단이 상기 OP Amp의 (-) 입력 단자에 연결되고, 타단이 상기 OP Amp의 출력 단자에 연결된 제4 저항을 포함하며, 상기 OP Amp의 출력 단자는, 상기 프로세서와 연결될 수 있다.
또한, 상기 프로세서는 상기 제1 전류를 상기 제4 하단 스위칭 회로를 흐르는 전류로 식별하고, 상기 제2 전류를 상기 제5 하단 스위칭 회로를 흐르는 전류로 식별하고, 상기 제3 전류를 상기 제6 하단 스위칭 회로를 흐르는 전류로 식별할 수 있다.
그리고, 상기 구동 모터는 상기 제1 상단 스위칭 회로 및 상기 제1 하단 스위칭 회로가 연결된 제1 노드, 상기 제2 상단 스위칭 회로 및 상기 제2 하단 스위칭 회로가 연결된 제2 노드, 상기 제3 상단 스위칭 회로 및 상기 제3 하단 스위칭 회로가 연결된 제3 노드, 상기 제4 상단 스위칭 회로 및 상기 제4 하단 스위칭 회로가 연결된 제4 노드, 상기 제5 상단 스위칭 회로 및 상기 제5 하단 스위칭 회로가 연결된 제5 노드 및 상기 제6 상단 스위칭 회로 및 상기 제6 하단 스위칭 회로가 연결된 제6 노드와 연결될 수 있다.
한편, 본 개시의 일 실시 예에 따르면, 세탁조 및 상기 세탁조를 회전시키는 구동부를 포함하는 세탁기의 제어 방법에 있어서, 상기 구동부는 정류기, 상기 정류기와 병렬 연결된 커패시터, 상기 커패시터와 병렬 연결된 제1 인버터, 상기 제1 인버터와 병렬 연결된 제2 인버터 및 상기 제1 인버터의 3상 출력단 및 상기 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터를 포함하며, 상기 제어 방법은 상기 제1 인터버에 포함된 복수의 션트(shunt) 저항에 흐르는 전류를 감지하는 단계 및 상기 감지된 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어하는 단계를 포함할 수 있다.
또한, 상기 제1 인버터 일단이 상기 커패시터의 일단에 연결된 제1 상단 스위칭 회로, 일단이 상기 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로, 일단이 상기 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제1 션트 저항, 일단이 상기 커패시터의 일단에 연결된 제2 상단 스위칭 회로, 일단이 상기 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로, 일단이 상기 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제2 션트 저항, 일단이 상기 커패시터의 일단에 연결된 제3 상단 스위칭 회로, 일단이 상기 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로 및 일단이 상기 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제3 션트 저항을 포함할 수 있다.
그리고, 상기 제2 인버터는 일단이 상기 커패시터의 일단에 연결된 제4 상단 스위칭 회로, 일단이 상기 제4 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제4 하단 스위칭 회로, 일단이 상기 커패시터의 일단에 연결된 제5 상단 스위칭 회로, 일단이 상기 제5 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제5 하단 스위칭 회로, 일단이 상기 커패시터의 일단에 연결된 제6 상단 스위칭 회로 및 일단이 상기 제6 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제6 하단 스위칭 회로를 포함할 수 있다.
또한, 상기 제어하는 단계는 상기 제1 션트 저항에 흐르는 제1 전류, 상기 제2 션트 저항에 흐르는 제2 전류 및 상기 제3 션트 저항에 흐르는 제3 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어할 수 있다.
그리고, 상기 제어하는 단계는 상기 제1 전류, 상기 제2 전류 및 상기 제3 전류에 기초하여, 상기 제1 인버터 및 상기 제2 인버터가 제1 위상의 제1 교류 전압, 제2 위상의 제2 교류 전압 및 제3 위상의 제3 교류 전압을 출력하도록 상기 제1 내지 제6 상단 스위칭 회로의 제어 단자, 상기 제1 내지 제6 하단 스위칭 회로의 제어 단자를 제어하며, 상기 제1 위상은 상기 제2 위상 및 상기 제3 위상 각각과 120도 차이이고, 상기 제2 위상은 상기 제3 위상과 120도 차이일 수 있다.
또한, 상기 제어하는 단계는 상기 제1 교류 전압, 상기 제2 교류 전압 및 상기 제3 교류 전압 중 적어도 하나의 교류 전압을 양의 전압으로 제공하기 위해, 상기 적어도 하나의 양의 교류 전압에 대응되는 상기 제1 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM(pulse width modulation) 제어하고, 상기 제1 교류 전압, 상기 제2 교류 전압 및 상기 제3 교류 전압 중 적어도 하나의 교류 전압을 음의 전압으로 제공하기 위해, 상기 적어도 하나의 음의 교류 전압에 대응되는 상기 제2 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM 제어할 수 있다.
그리고, 상기 제어하는 단계는 상기 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 상기 제1 인버터의 하단 스위칭 회로에 인가하고, 상기 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 상기 제2 인버터의 하단 스위칭 회로에 인가할 수 있다.
이상과 같은 본 개시의 다양한 실시 예에 따르면, 세탁기는 듀얼 인버터 중 하나의 인버터에만 복수의 션트(shunt) 저항이 구비되어 제조 원가 절감이 가능하다.
도 1a 내지 1c는 종래 기술의 문제점을 설명하기 위한 도면들이다.
도 2는 본 개시의 일 실시 예에 따른 세탁기를 개략적으로 설명하기 위한 도면이다.
도 3은 본 개시의 일 실시 예에 따른 세탁기의 구성을 나타내는 블럭도이다.
도 4는 본 개시의 일 실시 예에 따른 구동부를 설명하기 위한 도면이다.
도 5는 본 개시의 일 실시 예에 따른 구동 모터에 인가되는 3상 전원을 나타내는 도면이다.
도 6은 본 개시의 일 실시 예에 따른 3상 전원을 출력하기 위한 인버터의 제어 방법을 설명하기 위한 도면이다.
도 7 및 도 8은 본 개시의 일 실시 예에 따른 PWM 제어에 의한 전류 흐름을 설명하기 위한 도면들이다.
도 9는 본 개시의 일 실시 예에 따른 전류 감지 회로를 설명하기 위한 도면이다.
도 10은 본 개시의 일 실시 예에 따른 세탁기의 제어 방법을 설명하기 위한 흐름도이다.
이하에서는 첨부 도면을 참조하여 본 개시를 상세히 설명한다.
본 개시의 실시 예에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 개시의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
A 또는/및 B 중 적어도 하나라는 표현은 "A" 또는 "B" 또는 "A 및 B" 중 어느 하나를 나타내는 것으로 이해되어야 한다.
본 명세서에서 사용된 "제1," "제2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구성되다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, 사용자라는 용어는 전자 장치를 사용하는 사람 또는 전자 장치를 사용하는 장치(예: 인공 지능 전자 장치)를 지칭할 수 있다.
이하 첨부된 도면들을 참조하여 본 개시의 다양한 실시 예를 보다 상세하게 설명한다.
도 2는 본 개시의 일 실시 예에 따른 세탁기(100)를 개략적으로 설명하기 위한 도면이다.
일 실시 예에 따른, 세탁기(100)는 물과 세제를 이용하여 세탁물을 세탁하고, 젖은 세탁물에 대한 탈수를 수행하는 장치를 의미할 수 있다. 또한, 실시 예에 따라, 세탁기(100)는 탈수가 완료된 세탁물에 대한 건조를 수행할 수도 있다.
도 1를 참조하면, 세탁기(100)는 본체(10), 터브(20) 및 세탁조(110)를 포함할 수 있다.
본체(10)는 세탁기(100)의 외관을 형성하며, 본체(10)의 전면에는 본체(10) 내부로 세탁물을 넣고 꺼낼 수 있는 세탁물 투입부(11)가 마련된다. 세탁물 투입구(11)에는 도어(12)가 개폐 가능하게 설치될 수 있다.
또한, 본체(10)의 전면에는 사용자 명령을 입력받기 위한 입력 인터페이스(13)가 마련될 수 있다. 이 경우, 입력 인터페이스(13)는 세탁기(100)를 제어하기 위한 사용자 명령을 입력받기 위한 복수의 버튼(13-1) 및 세탁과 관련된 정보를 표시하기 위한 디스플레이(13-2)를 포함할 수 있다.
터브(20)는 세탁기(100)의 본체(10) 내부에 설치되며, 세탁물 투입구(11)를 향하여 개구가 마련된 원통형으로 형성될 수 있다. 터브(20)는 세탁에 필요한 소정량의 물을 저장할 수 있다.
세탁조(110)는 투입된 세탁물이 세탁되는 공간을 형성할 수 있으며, 원통형으로 형성될 수 있다. 한편, 세탁조(110)는 드럼으로 불릴 수도 있으나, 이하에서는 세탁조(110)로 통칭하도록 한다. 세탁조(110)의 전면에는 세탁물 투입구(11)와 대응하는 개구가 마련되어, 개구를 통해 세탁물이 세탁조(110)로 투입될 수 있다.
또한, 세탁조(110)에는 물이 통과할 수 있는 다수의 통공이 마련될 수 있다. 이 경우, 통공을 통해, 터브(20)에 저장된 물이 세탁조(110) 내부로 유입되고 세탁조(110) 내부의 물이 터브(20)로 유출될 수 있다.
또한, 세탁조(110)는 세탁기(100)에 마련된 구동부(미도시)에 의해 회전될 수 있다. 구동부(미도시)에 의해 세탁조(110)가 회전하면, 세탁조(110) 내부에 투입된 세탁물의 오물은 터브(20)에 저장된 물과 마찰하는 과정에서 세탁물에서 제거될 수 있다.
한편, 세탁기(100)는 터브(20)(또는, 세탁조(110))로 물을 공급하기 위한 급수 장치(미도시)를 포함할 수 있다. 이 경우, 급수 장치(미도시)는 수도 꼭지 등의 외부 급수원과 연결된 급수관(미도시) 및 급수관을 개폐하는 급수 밸브(미도시)를 포함할 수 있다.
또한, 세탁기(100)는 터브(20)로 세제, 섬유 유연제 등을 공급하기 위한 세제 수용부(14)를 포함할 수 있다. 급수 밸브(미도시)가 개방되어 급수관(미도시)으로 물이 공급되면, 물은 세제 수용부(14)로 제공되고, 세제 수용부(14)에 수용된 세제, 섬유 유연제 등은 물에 혼합될 수 있다. 이에 따라, 세제, 섬유 유연제 등이 혼합된 물은 터브(20)로 공급될 수 있다.
또한, 세탁기(100)는 터브(20)에 저장된 물을 외부로 배수하기 위한 배수 장치(미도시)를 포함할 수 있다. 배수 장치(미도시)는 펌프(미도시) 및 배수관(미도시)을 포함할 수 있다. 이 경우, 펌프(미도시)는 터브(20)에 저장된 물을 배수관(미도시)을 통해 세탁기(100)의 외부로 배출할 수 있다.
세탁기(100)는 세탁, 헹굼 및 탈수 등의 세탁 행정을 수행하여, 세탁물의 오물을 제거할 수 있다. 한편, 본 개시의 일 실시 예에 따른 세탁기(100)는 세탁물의 재질(또는, 포질)을 감지하고, 감지된 재질에 적합한 최적의 세탁 코스를 수행할 수 있다. 여기서, 세탁물의 포질은, 옷감(예를 들어, 면, 마, 모, 견, 합성 섬유, 데임, 모피, 가죽, 스웨이드 등), 혼용률(예를 들어, 면 70%, 아크릴 30% 등)을 포함할 수 있다.
한편, 세탁물에 적합한 세탁 코스는, 세탁물의 재질(또는, 옷감, 섬유) 특성에 기초하여 세탁물의 손상은 최소화하면서 세탁물 내의 오염물을 제거하는 세탁 코스를 의미한다. 여기서, 세탁 코스는, 세탁 행정, 헹굼 행정 또는 탈수 행정 중 적어도 하나를 포함할 수 있다.
세탁 행정과 관련된 결정은, 세탁조(110) 내로의 세탁수 공급량, 세탁조(110)를 회전시키기 위한 구동부(예를 들어, 모터)의 부하, 회전 속도, 세탁 시간 중 적어도 하나를 포함할 수 있다.
헹굼 행정과 관련된 결정 및 탈수 행정과 관련된 결정 각각은 세탁조(110) 내로의 세탁수 공급량, 세탁조(110)를 회전시키기 위한 구동부(예를 들어, 모터)의 부하, 회전 속도, 행정 수행 시간 중 적어도 하나를 포함할 수 있음을 물론이다.
이하에서는, 본 개시의 다양한 실시 예에 따라 세탁기(100)의 내부 회로 및 동작을 설명하도록 한다.
도 3은 본 개시의 일 실시 예에 따른 세탁기(100)의 구성을 나타내는 블럭도이다. 세탁기(100)는 도 3에 도시된 바와 같이, 세탁조(110), 구동부(120) 및 프로세서(130)를 포함한다.
세탁조(110)는 세탁물이 배치되며, 회전을 통해 세탁을 수행할 수 있다. 예를 들어, 세탁조(110)가 회전하면, 세탁조(110) 내부의 세탁물은 물과 마찰하게 되며, 그 과정에서 세탁물의 오물이 제거될 수 있다.
구동부(120)는 프로세서(130)의 제어에 따라 세탁조(110)를 회전시키는 구성일 수 있다. 예를 들어, 구동부(120)는 교류 전원을 정류하는 정류기, 정류기와 병렬 연결되며 정류된 전원의 리플을 제거하는 커패시터, 커패시터와 병렬 연결된 제1 인버터, 제1 인버터와 병렬 연결된 제2 인버터 및 제1 인버터의 3상 출력단 및 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터를 포함할 수 있다. 여기서, 제1 인버터 및 제2 인버터는 리플이 제거된 전원으로부터 3상 전원을 생성하고, 3상 전원을 구동 모터로 제공할 수 있다.
정류기는 외부로부터 입력되는 50Hz 또는 60Hz의 교류 전원을 정류할 수 있다. 예를 들어, 정류기는 복수의 브릿지 다이오드로 구현될 수 있으며, 양방향으로 전류가 흐르는 교류 전원을 어느 한 방향으로 흐르게 할 수 있다.
커패시터는 정류된 전원의 리플을 제거하여 일정 크기의 전압을 출력할 수 있다. 즉, 커패시터는 정류기가 출력하는 전압의 크기를 조정하여 정전압을 출력할 수 있다.
제1 인버터는 일단이 커패시터의 일단에 연결된 제1 상단 스위칭 회로, 일단이 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로, 일단이 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제1 션트(shunt) 저항, 일단이 커패시터의 일단에 연결된 제2 상단 스위칭 회로, 일단이 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로, 일단이 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제2 션트 저항, 일단이 커패시터의 일단에 연결된 제3 상단 스위칭 회로, 일단이 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로 및 일단이 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제3 션트 저항을 포함할 수 있다.
제2 인버터는 일단이 커패시터의 일단에 연결된 제4 상단 스위칭 회로, 일단이 제4 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제4 하단 스위칭 회로, 일단이 커패시터의 일단에 연결된 제5 상단 스위칭 회로, 일단이 제5 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제5 하단 스위칭 회로, 일단이 커패시터의 일단에 연결된 제6 상단 스위칭 회로 및 일단이 제6 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제6 하단 스위칭 회로를 포함할 수 있다.
즉, 제1 인버터는 복수의 션트 저항을 포함하는 형태로 구현되나, 제2 인버터는 션트 저항을 포함하지 않는 형태로 구현될 수 있다.
제1 인버터 및 제2 인버터에 포함된 복수의 스위칭 회로는 구동 모터로 3상 전원을 출력하도록 프로세서(130)에 의해 제어될 수 있다.
구동 모터는 제1 인버터의 3상 출력단 및 제2 인버터의 3상 출력단과 오픈 와인딩된 형태로 구현될 수 있다. 즉, 오픈 와인딩된 형태는 종래의 하나의 인버터와 구동 모터가 연결된 형태에서, 구동 모터의 중성점을 풀어 새로운 인버터에 연결된 구조일 수 있다.
예를 들어, 구동 모터는 제1 상단 스위칭 회로 및 제1 하단 스위칭 회로가 연결된 제1 노드, 제2 상단 스위칭 회로 및 제2 하단 스위칭 회로가 연결된 제2 노드, 제3 상단 스위칭 회로 및 제3 하단 스위칭 회로가 연결된 제3 노드, 제4 상단 스위칭 회로 및 제4 하단 스위칭 회로가 연결된 제4 노드, 제5 상단 스위칭 회로 및 제5 하단 스위칭 회로가 연결된 제5 노드 및 제6 상단 스위칭 회로 및 제6 하단 스위칭 회로가 연결된 제6 노드와 연결될 수 있다.
즉, 구동 모터는 6개의 입력 단자가 각각 제1 노드, 제2 노드, 제3 노드, 제4 노드, 제5 노드 및 제6 노드와 연결되며, 3상 전원을 수신할 수 있다. 이러한 형태를 듀얼 인버터 구조라고 하며, 하나의 인버터를 이용하는 경우보다 전압 이용률이 1.73배 높으며, 모터를 좀더 고속으로 운용할 수 있다.
프로세서(130)는 세탁기(100)의 동작을 전반적으로 제어한다. 구체적으로, 프로세서(130)는 세탁기(100)의 각 구성과 연결되어 세탁기(100)의 동작을 전반적으로 제어할 수 있다. 예를 들어, 프로세서(130)는 세탁조(110), 구동부(120) 등과 같은 구성과 연결되어 세탁기(100)의 동작을 제어할 수 있다.
일 실시 예에 따라 프로세서(130)는 디지털 시그널 프로세서(digital signal processor(DSP), 마이크로 프로세서(microprocessor), TCON(Time controller)으로 구현될 수 있다. 다만, 이에 한정되는 것은 아니며, 중앙처리장치(central processing unit(CPU)), MCU(Micro Controller Unit), MPU(micro processing unit), 컨트롤러(controller), 어플리케이션 프로세서(application processor(AP)), 또는 커뮤니케이션 프로세서(communication processor(CP)), ARM 프로세서 중 하나 또는 그 이상을 포함하거나, 해당 용어로 정의될 수 있다. 또한, 프로세서(130)는 프로세싱 알고리즘이 내장된 SoC(System on Chip), LSI(large scale integration)로 구현될 수도 있고, FPGA(Field Programmable gate array) 형태로 구현될 수도 있다.
프로세서(130)는 제1 인버터에 포함된 복수의 션트 저항에 흐르는 전류에 기초하여 제1 인버터 및 제2 인버터를 제어할 수 있다.
구체적으로, 프로세서(130)는 제1 션트 저항에 흐르는 제1 전류, 제2 션트 저항에 흐르는 제2 전류 및 제3 션트 저항에 흐르는 제3 전류에 기초하여 제1 인버터 및 제2 인버터를 제어할 수 있다.
예를 들어, 프로세서(130)는 제1 전류, 제2 전류 및 제3 전류에 기초하여, 제1 인버터 및 제2 인버터가 제1 위상의 제1 교류 전압, 제2 위상의 제2 교류 전압 및 제3 위상의 제3 교류 전압을 출력하도록 제1 내지 제6 상단 스위칭 회로의 제어 단자, 제1 내지 제6 하단 스위칭 회로의 제어 단자를 제어할 수 있다. 여기서, 제1 위상은 제2 위상 및 제3 위상 각각과 120도 차이이고, 제2 위상은 제3 위상과 120도 차이일 수 있다.
프로세서(130)는 제1 교류 전압, 제2 교류 전압 및 제3 교류 전압 중 적어도 하나의 교류 전압을 양의 전압으로 제공하기 위해, 적어도 하나의 양의 교류 전압에 대응되는 제1 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM(pulse width modulation) 제어하고, 제1 교류 전압, 제2 교류 전압 및 제3 교류 전압 중 적어도 하나의 교류 전압을 음의 전압으로 제공하기 위해, 적어도 하나의 음의 교류 전압에 대응되는 제2 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM 제어할 수 있다.
예를 들어, 프로세서(130)는 제1 교류 전압을 양의 전압으로 제공하기 위해, 제1 인버터의 제1 상단 스위칭 회로 및 제1 하단 스위칭 회로를 PWM 제어하고, 제1 인버터의 제2 상단 스위칭 회로 및 제3 상단 스위칭 회로는 턴 오프하고, 제1 인버터의 제2 하단 스위칭 회로 및 제3 하단 스위칭 회로는 턴 온할 수 있다. 그리고, 프로세서(130)는 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 제1 인버터의 하단 스위칭 회로에 인가할 수 있다.
프로세서(130)는 제2 교류 전압 및 제3 교류 전압을 음의 전압으로 제공하기 위해, 제2 인버터의 제5 상단 스위칭 회로, 제5 하단 스위칭 회로, 제6 상단 스위칭 회로 및 제6 하단 스위칭 회로를 PWM 제어하고, 제2 인버터의 제4 상단 스위칭 회로는 턴 오프하고, 제2 인버터의 제4 하단 스위칭 회로는 턴 온할 수 있다. 그리고, 프로세서(130)는 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 제2 인버터의 하단 스위칭 회로에 인가할 수 있다.
프로세서(130)는 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호 및 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 모두 로우(low) 값인 경우, 제1 전류, 제2 전류 및 제3 전류를 감지할 수 있다. 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호 및 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 모두 로우 값인 경우, 제1 인버터의 하단 스위칭 회로에 인가되는 PWM 신호 및 제2 인버터의 하단 스위칭 회로에 인가되는 PWM 신호가 모두 하이(high) 값이고, 이 경우 제1 인버터의 복수의 션트 저항으로 전류가 흐르게 된다. 즉, 프로세서(130)는 각 상에 흐르는 전류를 감지할 수 있다.
반면, 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호 및 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 모두 하이 값인 경우, 제1 인버터의 복수의 션트 저항 중 일부로는 전류가 흐르지 않게 되며, 프로세서(130)는 각 상에 흐르는 전류를 정확하게 감지할 수 없다.
프로세서(130)는 제1 전류, 제2 전류 및 제3 전류에 기초하여 PWM 펄스 폭을 제어할 수 있다. 예를 들어, 프로세서(130)는 제1 전류, 제2 전류, 제3 전류를 각각 타겟 전류와 비교하여 제1 교류 전압, 제2 교류 전압, 제3 교류 전압 각각의 타겟 전압을 변경하며, 변경된 타겟 전압에 기초하여 PWM 펄스 폭을 제어할 수 있다. 이에 대하여는 도면을 통해 구체적으로 설명한다.
한편, 세탁기(100)는 제1 전류, 제2 전류 및 제3 전류를 감지하여 프로세서(130)로 제공하는 복수의 감지 회로를 더 포함할 수 있다.
여기서, 복수의 감지 회로 각각은 OP Amp(operational amplifier), 일단이 대응되는 션트 저항의 일단에 연결되고, 타단이 OP Amp의 (+) 입력 단자에 연결되는 제1 저항, 일단이 OP Amp의 (+) 입력 단자에 연결되고, 타단이 접지된 제2 저항, 일단이 대응되는 션트 저항의 타단에 연결되고, 타단이 OP Amp의 (-) 입력 단자에 연결되는 제3 저항 및 일단이 OP Amp의 (-) 입력 단자에 연결되고, 타단이 OP Amp의 출력 단자에 연결된 제4 저항을 포함하며, OP Amp의 출력 단자는 프로세서(130)와 연결될 수 있다. OP Amp의 (+) 입력 단자 및 (-) 입력 단자를 모두 입력 단자로 이용함에 따라 노이즈의 제거가 가능하다.
프로세서(130)는 제1 전류를 제4 하단 스위칭 회로를 흐르는 전류로 식별하고, 제2 전류를 제5 하단 스위칭 회로를 흐르는 전류로 식별하고, 제3 전류를 제6 하단 스위칭 회로를 흐르는 전류로 식별할 수 있다.
이상과 같이 제1 인버터만이 복수의 션트 저항을 구비함에 따라 재료비의 절감이 가능하다. 또한, 제1 인버터에 포함된 복수의 션트 저항을 흐르는 전류를 이용하여 제2 인버터에 흐르는 전류를 식별하고, 그에 따라 제2 인버터의 제어가 가능하다.
이하에서는 도 4 내지 도 9를 통해 세탁기(100)의 동작을 좀더 구체적으로 설명한다. 도 4 내지 도 9에서는 설명의 편의를 위해 개별적인 실시 예에 대하여 설명한다. 다만, 도 4 내지 도 9의 개별적인 실시 예는 얼마든지 조합된 상태로 실시될 수도 있다.
도 4는 본 개시의 일 실시 예에 따른 구동부(120)를 설명하기 위한 도면이다.
도 4에 도시된 바와 같이, 구동부(120)는 정류기, 정류기와 병렬 연결된 커패시터(C), 커패시터와 병렬 연결된 제1 인버터(Inverter 1), 제1 인버터와 병렬 연결된 제2 인버터(Inverter 2) 및 제1 인버터의 3상 출력단 및 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터(Motor)를 포함할 수 있다.
여기서, 제1 인버터는 일단이 커패시터의 일단에 연결된 제1 상단 스위칭 회로(SU1), 일단이 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로(SD1), 일단이 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제1 션트 저항, 일단이 커패시터의 일단에 연결된 제2 상단 스위칭 회로(SU2), 일단이 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로(SD2), 일단이 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제2 션트 저항, 일단이 커패시터의 일단에 연결된 제3 상단 스위칭 회로(SU3), 일단이 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로(SD3) 및 일단이 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제3 션트 저항을 포함할 수 있다.
제2 인버터는 일단이 커패시터의 일단에 연결된 제4 상단 스위칭 회로(SU4), 일단이 제4 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제4 하단 스위칭 회로(SD4), 일단이 커패시터의 일단에 연결된 제5 상단 스위칭 회로(SU5), 일단이 제5 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제5 하단 스위칭 회로(SD5), 일단이 커패시터의 일단에 연결된 제6 상단 스위칭 회로(SU6) 및 일단이 제6 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제6 하단 스위칭 회로(SD6)를 포함할 수 있다.
즉, 제1 인버터는 제2 인버터보다 3개의 션트 저항을 더 포함할 수 있다.
프로세서(130)는 제1 인터버에 포함된 복수의 션트 저항에 흐르는 전류에 기초하여 제1 인버터 및 제2 인버터를 제어할 수 있다. 구체적으로, 프로세서(130)는 제1 션트 저항에 흐르는 제1 전류, 제2 션트 저항에 흐르는 제2 전류 및 제3 션트 저항에 흐르는 제3 전류에 기초하여 제1 인버터를 제어할 수 있다. 그리고, 프로세서(130)는 제1 전류를 제4 하단 스위칭 회로를 흐르는 전류로 식별하고, 제2 전류를 제5 하단 스위칭 회로를 흐르는 전류로 식별하고, 제3 전류를 제6 하단 스위칭 회로를 흐르는 전류로 식별하고, 식별된 전류에 기초하여 제2 인버터를 제어할 수 있다.
이상과 같이, 제2 인버터는 션트 저항을 구비하지 않으나, 프로세서(130)는 제1 인버터에서 감지된 전류에 기초하여 제2 인버터를 제어할 수 있다. 즉, 제2 인버터에 별도의 션트 저항을 구비하지 않고도 제2 인버터를 제어할 수 있으며, 재료비를 절감할 수 있다.
도 5는 본 개시의 일 실시 예에 따른 구동 모터에 인가되는 3상 전원을 나타내는 도면이다.
프로세서(130)는 총 12개의 스위칭 회로를 제어하여, 도 5에 도시된 바와 같은 3상 전원을 구동 모터에 인가할 수 있다.
프로세서(130)의 스위칭 회로의 제어 방법을 설명하기 위해, 도 5의 t1 시점을 설명한다.
프로세서(130)는 교류 전압이 양의 전압을 갖는 경우 제1 인버터의 스위칭 회로를 동작시키고, 교류 전압이 음의 전압을 갖는 경우 제2 인버터의 스위칭 회로를 동작시킬 수 있다.
예를 들어, 프로세서(130)는 t1 시점에서 제1 교류 전압(Va)이 양의 전압을 가지므로 제1 인버터의 제1 상단 스위칭 회로 및 제1 하단 스위칭 회로를 PWM 제어하고, t1 시점에서 제2 교류 전압(Vb)이 음의 전압을 가지므로 제2 인버터의 제5 상단 스위칭 회로 및 제5 하단 스위칭 회로를 PWM 제어하고, t1 시점에서 제3 교류 전압(Vc)이 음의 전압을 가지므로 제2 인버터의 제6 상단 스위칭 회로 및 제6 하단 스위칭 회로를 PWM 제어할 수 있다.
그리고, 프로세서(130)는 나머지 상단 스위칭 회로를 턴 오프하고, 나머지 하단 스위칭 회로를 턴 온할 수 있다. 이상과 같은 제어 방법을 도 6에 도시하였다.
도 6은 본 개시의 일 실시 예에 따른 3상 전원을 출력하기 위한 인버터의 제어 방법을 설명하기 위한 도면이다.
프로세서(130)는 도 5에서 설명한 인버터 제어 방법에 따라 인버터 내의 12개의 스위칭 회로를 제어하며, 도 5의 t1 시점에서는 도 6과 같이 12개의 스위칭 회로를 제어할 수 있다.
도 6 상단의 삼각 파형은 PWM 제어 시 펄스 폭을 결정하기 위해 프로세서(130)가 자체적으로 구동하는 파형이다. 프로세서(130)는 교류 전원의 값에 기초하여 비교(comparator) 값을 식별하며, 비교 값과 삼각 파형의 교차점을 펄스 폭으로 결정할 수 있다. 도 5에서 제2 교류 전압(Vb) 및 제3 교류 전압(Vc)은 동일한 값이며, 제5 상단 스위칭 회로의 비교 값 및 제6 상단 스위칭 회로의 비교 값도 동일하고, 그에 따라 제5 상단 스위칭 회로 및 제6 상단 스위칭 회로에 대한 PWM 제어 신호의 펄스 폭도 동일하다.
도 5에서 제1 교류 전압(Va)은 제2 교류 전압(Vb) 및 제3 교류 전압(Vc)보다 크다. 그에 따라, 제1 상단 스위칭 회로의 비교 값은 제5 상단 스위칭 회로의 비교 값 및 제6 상단 스위칭 회로의 비교 값보다 작으며, 제1 상단 스위칭 회로에 대한 PWM 제어 신호의 펄스 폭은 제5 상단 스위칭 회로 및 제6 상단 스위칭 회로에 대한 PWM 제어 신호의 펄스 폭보다 크다.
t1 시점으로부터 시간이 경과하는 경우, 제1 교류 전압(Va)은 점점 작아지므로 제1 상단 스위칭 회로의 비교 값은 커지게 되며, 제1 상단 스위칭 회로에 대한 PWM 제어 신호의 펄스 폭은 작아지게 된다.
도 6에서 상단 스위칭 회로에 하이 값이 인가되는 동안 전류가 공급되며, 상단 스위칭 회로에 로우 값이 인가되면 전류를 센싱할 수 있다. 이는 도 7 및 도 8을 통해 설명한다.
도 7 및 도 8은 본 개시의 일 실시 예에 따른 PWM 제어에 의한 전류 흐름을 설명하기 위한 도면들이다.
먼저, 도 7은 도 6에서 상단 스위칭 회로에 하이 값이 인가되는 경우의 전류 흐름을 나타낸다. 이 경우, 제1 상단 스위칭 회로는 턴 온된 상태이고 제1 하단 스위칭 회로는 턴 오프된 상태이므로, 제1 상단 스위칭 회로 및 제4 하단 스위칭 회로를 통해 전류 패스가 형성되며 제1 션트 저항에는 전류가 흐르지 않는다. 그리고, 제5 상단 스위칭 회로 및 제6 상단 스위칭 회로는 턴 온된 상태이고 제5 하단 스위칭 회로 및 제6 하단 스위칭 회로는 턴 오프된 상태이므로, 제5 상단 스위칭 회로 및 제2 하단 스위칭 회로를 통해 전류 패스가 형성되고, 제6 상단 스위칭 회로 및 제3 하단 스위칭 회로를 통해 전류 패스가 형성되며, 제2 션트 저항 및 제3 션트 저항에 전류가 흐르게 된다.
즉, 도 7의 경우에는 제1 션트 저항에 전류가 흐르지 않기 때문에 3상 전원 전체에 대한 전류를 측정할 수 없다.
도 8은 도 6에서 상단 스위칭 회로에 로우 값이 인가되는 경우의 전류 흐름을 나타낸다. 이 경우, 제1 상단 스위칭 회로는 턴 오프된 상태이고 제1 하단 스위칭 회로는 턴 온된 상태이므로, 제1 하단 스위칭 회로 및 제4 하단 스위칭 회로를 통해 전류 패스가 형성되며 제1 션트 저항에는 전류가 흐른다. 그리고, 제5 상단 스위칭 회로 및 제6 상단 스위칭 회로는 턴 오프된 상태이고 제5 하단 스위칭 회로 및 제6 하단 스위칭 회로는 턴 온된 상태이므로, 제5 하단 스위칭 회로 및 제2 하단 스위칭 회로를 통해 전류 패스가 형성되고, 제6 하단 스위칭 회로 및 제3 하단 스위칭 회로를 통해 전류 패스가 형성되며, 제2 션트 저항 및 제3 션트 저항에 전류가 흐르게 된다.
즉, 도 8의 경우에는 모든 션트 저항에 전류가 흐르므로, 프로세서(130)는 도 8의 시간 구간 동안 션트 저항에 흐르는 전류를 측정할 수 있다.
또한, 도 8의 시간 구간 동안 제1 인버터 및 제2 인버터의 대응되는 각각의 상에 흐르는 전류가 동일하므로, 프로세서(130)는 제1 션트 저항에 흐르는 제1 전류를 제4 하단 스위칭 회로를 흐르는 전류로 식별하고, 제2 션트 저항에 흐르는 제2 전류를 제5 하단 스위칭 회로를 흐르는 전류로 식별하고, 제3 션트 저항에 흐르는 제3 전류를 제6 하단 스위칭 회로를 흐르는 전류로 식별할 수 있다.
도 9는 본 개시의 일 실시 예에 따른 전류 감지 회로를 설명하기 위한 도면이다.
세탁기(100)는 제1 전류, 제2 전류 및 제3 전류를 감지하여 프로세서(130)로 제공하는 복수의 감지 회로를 더 포함할 수 있다.
도 9에는 제1 전류를 감지하는 제1 감지 회로, 제2 전류를 감지하는 제2 감지 회로 및 제3 전류를 감지하는 제3 감지 회로가 도시되어 있으며, 3개의 감지 회로는 모두 동일하게 구현된 상태이므로, 이중 제1 감지 회로만을 설명한다.
제1 감지 회로는 OP Amp(operational amplifier, 910), 일단이 대응되는 션트 저항의 일단에 연결되고, 타단이 OP Amp의 (+) 입력 단자에 연결되는 제1 저항(920), 일단이 OP Amp의 (+) 입력 단자에 연결되고, 타단이 접지된 제2 저항(930), 일단이 대응되는 션트 저항의 타단에 연결되고, 타단이 OP Amp의 (-) 입력 단자에 연결되는 제3 저항(940) 및 일단이 OP Amp의 (-) 입력 단자에 연결되고, 타단이 OP Amp의 출력 단자에 연결된 제4 저항(950)을 포함하며, OP Amp의 출력 단자는 프로세서(130)와 연결될 수 있다.
즉, OP Amp의 두 개의 입력 단자는 각각 션트 저항의 양단에 연결되어 차등 입력을 수신하며, 그에 따라 회로의 노이즈를 제거한 전류의 측정이 가능하다.
또한, 제2 인버터에는 션트 저항이 없고, 그에 따라 제2 인버터의 전류를 측정하기 위한 회로가 별도로 필요하지 않기 때문에, 재료비 절감이 가능하다.
도 10은 본 개시의 일 실시 예에 따른 세탁기의 제어 방법을 설명하기 위한 흐름도이다.
세탁기는 세탁조 및 세탁조를 회전시키는 구동부를 포함할 수 있다. 여기서, 구동부는 정류기, 정류기와 병렬 연결된 커패시터, 커패시터와 병렬 연결된 제1 인버터, 제1 인버터와 병렬 연결된 제2 인버터 및 제1 인버터의 3상 출력단 및 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터를 포함할 수 있다.
세탁기의 제어 방법은 먼저, 제1 인터버에 포함된 복수의 션트(shunt) 저항에 흐르는 전류를 감지한다(S1010). 그리고, 감지된 전류에 기초하여 제1 인버터 및 제2 인버터를 제어한다(S1020).
여기서, 제1 인버터는 일단이 커패시터의 일단에 연결된 제1 상단 스위칭 회로, 일단이 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로, 일단이 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제1 션트 저항, 일단이 커패시터의 일단에 연결된 제2 상단 스위칭 회로, 일단이 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로, 일단이 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제2 션트 저항, 일단이 커패시터의 일단에 연결된 제3 상단 스위칭 회로, 일단이 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로 및 일단이 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제3 션트 저항을 포함할 수 있다.
그리고, 제2 인버터는 일단이 커패시터의 일단에 연결된 제4 상단 스위칭 회로, 일단이 제4 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제4 하단 스위칭 회로, 일단이 커패시터의 일단에 연결된 제5 상단 스위칭 회로, 일단이 제5 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제5 하단 스위칭 회로, 일단이 커패시터의 일단에 연결된 제6 상단 스위칭 회로 및 일단이 제6 상단 스위칭 회로의 타단에 연결되고, 타단이 커패시터의 타단에 연결된 제6 하단 스위칭 회로를 포함할 수 있다.
여기서, 제어하는 단계(S1020)는 제1 션트 저항에 흐르는 제1 전류, 제2 션트 저항에 흐르는 제2 전류 및 제3 션트 저항에 흐르는 제3 전류에 기초하여 제1 인버터 및 제2 인버터를 제어할 수 있다.
그리고, 제어하는 단계(S1020)는 제1 전류, 제2 전류 및 제3 전류에 기초하여, 제1 인버터 및 제2 인버터가 제1 위상의 제1 교류 전압, 제2 위상의 제2 교류 전압 및 제3 위상의 제3 교류 전압을 출력하도록 제1 내지 제6 상단 스위칭 회로의 제어 단자, 제1 내지 제6 하단 스위칭 회로의 제어 단자를 제어하며, 제1 위상은 제2 위상 및 제3 위상 각각과 120도 차이이고, 제2 위상은 제3 위상과 120도 차이일 수 있다.
여기서, 제어하는 단계(S1020)는 제1 교류 전압, 제2 교류 전압 및 제3 교류 전압 중 적어도 하나의 교류 전압을 양의 전압으로 제공하기 위해, 적어도 하나의 양의 교류 전압에 대응되는 제1 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM(pulse width modulation) 제어하고, 제1 교류 전압, 제2 교류 전압 및 제3 교류 전압 중 적어도 하나의 교류 전압을 음의 전압으로 제공하기 위해, 적어도 하나의 음의 교류 전압에 대응되는 제2 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM 제어할 수 있다.
그리고, 제어하는 단계(S1020)는 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 제1 인버터의 하단 스위칭 회로에 인가하고, 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 제2 인버터의 하단 스위칭 회로에 인가할 수 있다.
이상과 같은 본 개시의 다양한 실시 예에 따르면, 세탁기는 듀얼 인버터 중 하나의 인버터에만 복수의 션트(shunt) 저항이 구비되어 제조 원가 절감이 가능하다.
한편, 이상에서는 세탁기에 적용된 듀얼 인버터의 전류 감지 방법을 설명하였으나, 이에 한정되는 것은 아니다. 예를 들어, 건조기, 냉장고 등과 같이 모터가 구비되고, 듀얼 인버터를 통해 모터를 제어하는 경우에는 본 개시가 적용될 수 있다.
한편, 본 개시의 일시 예에 따르면, 이상에서 설명된 다양한 실시 예들은 기기(machine)(예: 컴퓨터)로 읽을 수 있는 저장 매체(machine-readable storage media)에 저장된 명령어를 포함하는 소프트웨어로 구현될 수 있다. 기기는, 저장 매체로부터 저장된 명령어를 호출하고, 호출된 명령어에 따라 동작이 가능한 장치로서, 개시된 실시 예들에 따른 전자 장치(예: 전자 장치(A))를 포함할 수 있다. 명령이 프로세서에 의해 실행될 경우, 프로세서가 직접, 또는 프로세서의 제어 하에 다른 구성요소들을 이용하여 명령에 해당하는 기능을 수행할 수 있다. 명령은 컴파일러 또는 인터프리터에 의해 생성 또는 실행되는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장매체는, 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, '비일시적'은 저장매체가 신호(signal)를 포함하지 않으며 실재(tangible)한다는 것을 의미할 뿐 데이터가 저장매체에 반영구적 또는 임시적으로 저장됨을 구분하지 않는다.
또한, 본 개시의 일 실시 예에 따르면, 이상에서 설명된 다양한 실시 예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory (CD-ROM))의 형태로, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 온라인으로 배포될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.
또한, 본 개시의 일 실시 예에 따르면, 이상에서 설명된 다양한 실시 예들은 소프트웨어(software), 하드웨어(hardware) 또는 이들의 조합을 이용하여 컴퓨터(computer) 또는 이와 유사한 장치로 읽을 수 있는 기록 매체 내에서 구현될 수 있다. 일부 경우에 있어 본 명세서에서 설명되는 실시 예들이 프로세서 자체로 구현될 수 있다. 소프트웨어적인 구현에 의하면, 본 명세서에서 설명되는 절차 및 기능과 같은 실시 예들은 별도의 소프트웨어 모듈들로 구현될 수 있다. 소프트웨어 모듈들 각각은 본 명세서에서 설명되는 하나 이상의 기능 및 동작을 수행할 수 있다.
한편, 상술한 다양한 실시 예들에 따른 기기의 프로세싱 동작을 수행하기 위한 컴퓨터 명령어(computer instructions)는 비일시적 컴퓨터 판독 가능 매체(non-transitory computer-readable medium)에 저장될 수 있다. 이러한 비일시적 컴퓨터 판독 가능 매체에 저장된 컴퓨터 명령어는 특정 기기의 프로세서에 의해 실행되었을 때 상술한 다양한 실시 예에 따른 기기에서의 처리 동작을 특정 기기가 수행하도록 한다. 비일시적 컴퓨터 판독 가능 매체란 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 비일시적 컴퓨터 판독 가능 매체의 구체적인 예로는, CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리카드, ROM 등이 있을 수 있다.
또한, 상술한 다양한 실시 예들에 따른 구성 요소(예: 모듈 또는 프로그램) 각각은 단수 또는 복수의 개체로 구성될 수 있으며, 전술한 해당 서브 구성 요소들 중 일부 서브 구성 요소가 생략되거나, 또는 다른 서브 구성 요소가 다양한 실시 예에 더 포함될 수 있다. 대체적으로 또는 추가적으로, 일부 구성 요소들(예: 모듈 또는 프로그램)은 하나의 개체로 통합되어, 통합되기 이전의 각각의 해당 구성 요소에 의해 수행되는 기능을 동일 또는 유사하게 수행할 수 있다. 다양한 실시예들에 따른, 모듈, 프로그램 또는 다른 구성 요소에 의해 수행되는 동작들은 순차적, 병렬적, 반복적 또는 휴리스틱하게 실행되거나, 적어도 일부 동작이 다른 순서로 실행되거나, 생략되거나, 또는 다른 동작이 추가될 수 있다.
이상에서는 본 개시의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 개시는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 개시의 요지를 벗어남이 없이 당해 개시에 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 개시의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (15)

  1. 세탁기에 있어서,
    세탁조;
    구동부; 및
    상기 세탁조가 회전하도록 상기 구동부를 제어하는 프로세서;를 포함하며,
    상기 구동부는,
    정류기;
    상기 정류기와 병렬 연결된 커패시터;
    상기 커패시터와 병렬 연결된 제1 인버터;
    상기 제1 인버터와 병렬 연결된 제2 인버터; 및
    상기 제1 인버터의 3상 출력단 및 상기 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터;를 포함하며,
    상기 프로세서는,
    상기 제1 인터버에 포함된 복수의 션트(shunt) 저항에 흐르는 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어하는, 세탁기.
  2. 제1항에 있어서,
    상기 제1 인버터는,
    일단이 상기 커패시터의 일단에 연결된 제1 상단 스위칭 회로;
    일단이 상기 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로;
    일단이 상기 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제1 션트 저항;
    일단이 상기 커패시터의 일단에 연결된 제2 상단 스위칭 회로;
    일단이 상기 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로;
    일단이 상기 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제2 션트 저항;
    일단이 상기 커패시터의 일단에 연결된 제3 상단 스위칭 회로;
    일단이 상기 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로; 및
    일단이 상기 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제3 션트 저항;을 포함하는, 세탁기.
  3. 제2항에 있어서,
    상기 제2 인버터는,
    일단이 상기 커패시터의 일단에 연결된 제4 상단 스위칭 회로;
    일단이 상기 제4 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제4 하단 스위칭 회로;
    일단이 상기 커패시터의 일단에 연결된 제5 상단 스위칭 회로;
    일단이 상기 제5 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제5 하단 스위칭 회로;
    일단이 상기 커패시터의 일단에 연결된 제6 상단 스위칭 회로; 및
    일단이 상기 제6 상단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제6 하단 스위칭 회로;를 포함하는, 세탁기.
  4. 제3항에 있어서,
    상기 프로세서는,
    상기 제1 션트 저항에 흐르는 제1 전류, 상기 제2 션트 저항에 흐르는 제2 전류 및 상기 제3 션트 저항에 흐르는 제3 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어하는, 세탁기.
  5. 제4항에 있어서,
    상기 프로세서는,
    상기 제1 전류, 상기 제2 전류 및 상기 제3 전류에 기초하여, 상기 제1 인버터 및 상기 제2 인버터가 제1 위상의 제1 교류 전압, 제2 위상의 제2 교류 전압 및 제3 위상의 제3 교류 전압을 출력하도록 상기 제1 내지 제6 상단 스위칭 회로의 제어 단자, 상기 제1 내지 제6 하단 스위칭 회로의 제어 단자를 제어하며,
    상기 제1 위상은, 상기 제2 위상 및 상기 제3 위상 각각과 120도 차이이고,
    상기 제2 위상은, 상기 제3 위상과 120도 차이인, 세탁기.
  6. 제5항에 있어서,
    상기 프로세서는,
    상기 제1 교류 전압, 상기 제2 교류 전압 및 상기 제3 교류 전압 중 적어도 하나의 교류 전압을 양의 전압으로 제공하기 위해, 상기 적어도 하나의 양의 교류 전압에 대응되는 상기 제1 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM(pulse width modulation) 제어하고,
    상기 제1 교류 전압, 상기 제2 교류 전압 및 상기 제3 교류 전압 중 적어도 하나의 교류 전압을 음의 전압으로 제공하기 위해, 상기 적어도 하나의 음의 교류 전압에 대응되는 상기 제2 인버터의 상단 스위칭 회로 및 하단 스위칭 회로를 PWM 제어하는, 세탁기.
  7. 제6항에 있어서,
    상기 프로세서는,
    상기 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 상기 제1 인버터의 하단 스위칭 회로에 인가하고,
    상기 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 반전된 PWM 신호를 상기 제2 인버터의 하단 스위칭 회로에 인가하는, 세탁기.
  8. 제7항에 있어서,
    상기 프로세서는,
    상기 제1 인버터의 상단 스위칭 회로에 인가되는 PWM 신호 및 상기 제2 인버터의 상단 스위칭 회로에 인가되는 PWM 신호가 모두 로우(low) 값인 경우, 상기 제1 전류, 상기 제2 전류 및 상기 제3 전류를 감지하는, 세탁기.
  9. 제6항에 있어서,
    상기 프로세서는,
    상기 제1 전류, 상기 제2 전류 및 상기 제3 전류에 기초하여 상기 PWM 펄스 폭을 제어하는, 세탁기.
  10. 제4항에 있어서,
    상기 제1 전류, 상기 제2 전류 및 상기 제3 전류를 감지하여 상기 프로세서로 제공하는 복수의 감지 회로;를 더 포함하는, 세탁기.
  11. 제10항에 있어서,
    상기 복수의 감지 회로 각각은,
    OP Amp(operational amplifier);
    일단이 대응되는 션트 저항의 일단에 연결되고, 타단이 상기 OP Amp의 (+) 입력 단자에 연결되는 제1 저항;
    일단이 상기 OP Amp의 (+) 입력 단자에 연결되고, 타단이 접지된 제2 저항;
    일단이 상기 대응되는 션트 저항의 타단에 연결되고, 타단이 상기 OP Amp의 (-) 입력 단자에 연결되는 제3 저항; 및
    일단이 상기 OP Amp의 (-) 입력 단자에 연결되고, 타단이 상기 OP Amp의 출력 단자에 연결된 제4 저항;을 포함하며,
    상기 OP Amp의 출력 단자는, 상기 프로세서와 연결된, 세탁기.
  12. 제4항에 있어서,
    상기 프로세서는,
    상기 제1 전류를 상기 제4 하단 스위칭 회로를 흐르는 전류로 식별하고,
    상기 제2 전류를 상기 제5 하단 스위칭 회로를 흐르는 전류로 식별하고,
    상기 제3 전류를 상기 제6 하단 스위칭 회로를 흐르는 전류로 식별하는, 세탁기.
  13. 제3항에 있어서,
    상기 구동 모터는,
    상기 제1 상단 스위칭 회로 및 상기 제1 하단 스위칭 회로가 연결된 제1 노드, 상기 제2 상단 스위칭 회로 및 상기 제2 하단 스위칭 회로가 연결된 제2 노드, 상기 제3 상단 스위칭 회로 및 상기 제3 하단 스위칭 회로가 연결된 제3 노드, 상기 제4 상단 스위칭 회로 및 상기 제4 하단 스위칭 회로가 연결된 제4 노드, 상기 제5 상단 스위칭 회로 및 상기 제5 하단 스위칭 회로가 연결된 제5 노드 및 상기 제6 상단 스위칭 회로 및 상기 제6 하단 스위칭 회로가 연결된 제6 노드와 연결된, 세탁기.
  14. 세탁조 및 상기 세탁조를 회전시키는 구동부를 포함하는 세탁기의 제어 방법에 있어서,
    상기 구동부는,
    정류기;
    상기 정류기와 병렬 연결된 커패시터;
    상기 커패시터와 병렬 연결된 제1 인버터;
    상기 제1 인버터와 병렬 연결된 제2 인버터; 및
    상기 제1 인버터의 3상 출력단 및 상기 제2 인버터의 3상 출력단과 오픈 와인딩(open winding)된 구동 모터;를 포함하며,
    상기 제어 방법은,
    상기 제1 인터버에 포함된 복수의 션트(shunt) 저항에 흐르는 전류를 감지하는 단계; 및
    상기 감지된 전류에 기초하여 상기 제1 인버터 및 상기 제2 인버터를 제어하는 단계;를 포함하는, 제어 방법.
  15. 제14항에 있어서,
    상기 제1 인버터는,
    일단이 상기 커패시터의 일단에 연결된 제1 상단 스위칭 회로;
    일단이 상기 제1 상단 스위칭 회로의 타단에 연결된 제1 하단 스위칭 회로;
    일단이 상기 제1 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제1 션트 저항;
    일단이 상기 커패시터의 일단에 연결된 제2 상단 스위칭 회로;
    일단이 상기 제2 상단 스위칭 회로의 타단에 연결된 제2 하단 스위칭 회로;
    일단이 상기 제2 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제2 션트 저항;
    일단이 상기 커패시터의 일단에 연결된 제3 상단 스위칭 회로;
    일단이 상기 제3 상단 스위칭 회로의 타단에 연결된 제3 하단 스위칭 회로; 및
    일단이 상기 제3 하단 스위칭 회로의 타단에 연결되고, 타단이 상기 커패시터의 타단에 연결된 제3 션트 저항;을 포함하는, 제어 방법.
PCT/KR2022/015447 2021-12-08 2022-10-13 세탁기 및 그 제어 방법 WO2023106601A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210174487A KR20230086139A (ko) 2021-12-08 2021-12-08 세탁기 및 그 제어 방법
KR10-2021-0174487 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023106601A1 true WO2023106601A1 (ko) 2023-06-15

Family

ID=86730602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015447 WO2023106601A1 (ko) 2021-12-08 2022-10-13 세탁기 및 그 제어 방법

Country Status (2)

Country Link
KR (1) KR20230086139A (ko)
WO (1) WO2023106601A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196398A (ja) * 2011-03-23 2012-10-18 Panasonic Corp ドラム式洗濯機
KR20180026070A (ko) * 2016-09-02 2018-03-12 아주대학교산학협력단 이중 병렬 전동기의 구동 장치
US20180148086A1 (en) * 2016-11-30 2018-05-31 Steering Solutions Ip Holding Corporation Detection and mitigation of inverter errors in steering system motors
JP2021013209A (ja) * 2019-07-04 2021-02-04 日本電産株式会社 電力変換装置、駆動装置およびパワーステアリング装置
KR20210081057A (ko) * 2019-12-23 2021-07-01 엘지전자 주식회사 모터구동장치 및 이를 구비하는 홈 어플라이언스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196398A (ja) * 2011-03-23 2012-10-18 Panasonic Corp ドラム式洗濯機
KR20180026070A (ko) * 2016-09-02 2018-03-12 아주대학교산학협력단 이중 병렬 전동기의 구동 장치
US20180148086A1 (en) * 2016-11-30 2018-05-31 Steering Solutions Ip Holding Corporation Detection and mitigation of inverter errors in steering system motors
JP2021013209A (ja) * 2019-07-04 2021-02-04 日本電産株式会社 電力変換装置、駆動装置およびパワーステアリング装置
KR20210081057A (ko) * 2019-12-23 2021-07-01 엘지전자 주식회사 모터구동장치 및 이를 구비하는 홈 어플라이언스

Also Published As

Publication number Publication date
KR20230086139A (ko) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2012005510A2 (en) Washing machine
CN104631054B (zh) 电机驱动装置及具有该电机驱动装置的洗涤物处理设备
WO2016068575A1 (ko) 세탁물 처리기기 및 그 제어방법
EP2728051B1 (en) Laundry treatment machine and method of operating the same
WO2017183886A1 (ko) 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기
WO2020060269A1 (en) A control method of the laundry apparatus
WO2017209491A1 (en) Control method of laundry treatment apparatus
JP6437279B2 (ja) モータ駆動装置及びこれを備えた洗濯物処理機器
WO2023106601A1 (ko) 세탁기 및 그 제어 방법
KR20210051962A (ko) 세탁물 처리기기 및 이를 구비하는 세탁물 처리 시스템
WO2017126931A1 (ko) 세탁물 처리기기 및 그 제어방법
US8248017B2 (en) Method for operating an electric motor and apparatus for performing the method
WO2019194650A1 (ko) 세탁물처리장치 및 제어방법
WO2018131855A1 (ko) 의류처리장치 및 그의 제어방법
WO2020071739A1 (en) Washing machine
WO2024136094A1 (ko) 가전 기기의 고장 진단 방법, 및 가전 기기
WO2019107872A1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
EP3824129A1 (en) Washing machine
WO2023128217A1 (ko) 세탁기 및 그 제어 방법
WO2019088619A1 (ko) 의류처리장치 및 그의 제어방법
WO2022092496A1 (ko) 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
WO2023153690A1 (ko) 세탁 방법 및 상기 방법을 수행하는 전자 장치
WO2023055037A1 (ko) 의류 처리 장치의 제어방법 및 그 의류 처리 장치
WO2013165112A1 (en) Washing machine for showrooms and method of controlling the washing machine for showrooms
WO2019045448A1 (en) WASHING MACHINE AND METHOD OF REGULATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE