WO2023104216A1 - 一种晶圆驱动机构 - Google Patents

一种晶圆驱动机构 Download PDF

Info

Publication number
WO2023104216A1
WO2023104216A1 PCT/CN2022/143983 CN2022143983W WO2023104216A1 WO 2023104216 A1 WO2023104216 A1 WO 2023104216A1 CN 2022143983 W CN2022143983 W CN 2022143983W WO 2023104216 A1 WO2023104216 A1 WO 2023104216A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
signal
notch
groove
wheel
Prior art date
Application number
PCT/CN2022/143983
Other languages
English (en)
French (fr)
Inventor
殷骐
Original Assignee
杭州众硅电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州众硅电子科技有限公司 filed Critical 杭州众硅电子科技有限公司
Publication of WO2023104216A1 publication Critical patent/WO2023104216A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Definitions

  • the invention belongs to the field of semiconductor integrated circuit chip manufacturing, and in particular relates to a wafer driving mechanism.
  • Chemical mechanical planarization is a processing technology in the integrated circuit process. With the development of technology, the requirements for processing technology will increase. At the same time, chemical mechanical planarization is a wet process in the wafer processing process. A large amount of polishing liquid and different chemical reagents are used in the process, so at the end of the process, the wafer needs to be cleaned and dried to remove the particles attached to the surface of the wafer, so that it can enter the next process.
  • the surface of the wafer is scrubbed with the cooperation of the support wheel system and the roller brush system to ensure that there is no particle residue on the wafer surface.
  • Wafers are placed on several support wheels in the scrubber box.
  • the support wheel system consists of two driving wheels and a non-powered idler wheel. The wafer is in contact with the bottom surface of the groove on the driving wheel, and the wafer is driven by the rotation of the driving wheel itself.
  • Circular rotation not in contact with the bottom surface of the groove on the idler wheel, but only in contact with the side wall of the groove on the idler wheel, so as to realize the rotation of the idler wheel while the wafer is rotating, and realize the purpose of monitoring the wafer speed by using the idler wheel.
  • the notch width is 1.5-3mm and the depth is 1-2mm.
  • L1 is 1.5-3mm
  • L2 is 1-2mm.
  • the 6-inch wafer positioning notch is in the form of a plane with a plane width of 57.5mm, which means the overall area of the notch is relatively large.
  • the distance between the two driving wheels of the support wheel system is relatively large, which is greater than the length of the notch plane of the 6-inch wafer.
  • the notch plane of the wafer comes into contact with one of the support wheels, the wafer no longer rotates according to the fixed center of the circle, and the support wheels cannot reliably drive the wafer. The circle turns, causing the wafer to get stuck.
  • the problem of unstable rotation speed during wafer scrubbing will affect the consistency of cleaning solution spraying, making the reaction time of cleaning solution on the wafer surface inconsistent, and ultimately affecting the cleaning effect.
  • the driving system of the support wheel needs to be improved.
  • the present invention provides a wafer driving mechanism that reliably drives the wafer to rotate, and the wafer rotates stably and detects the wafer rotational speed accurately.
  • a wafer drive mechanism used to drive the wafer to rotate vertically, the outer edge of the wafer has a notch formed by horizontal cutting, and the drive mechanism includes ,
  • the side driving wheel 1 has a first groove, the bottom surface of the first groove is in contact with the outer edge of the wafer, and the side driving wheel 1 rotates by itself to drive the wafer to rotate;
  • the middle driving wheel has a second groove, the bottom surface of the second groove can be in contact with the outer edge of the wafer, and the middle driving wheel itself rotates to drive the wafer to rotate;
  • the second side driving wheel has a third groove, the bottom surface of the third groove is in contact with the outer edge of the wafer, and the second side driving wheel rotates by itself to drive the wafer to rotate;
  • the height of the axis of the intermediate drive wheel is less than the height of the axis of the side drive wheel 1 and the side drive wheel 2;
  • the distance between the contact points of the first lateral driving wheel and the second lateral driving wheel and the wafer is S, and the horizontal width of the notch is L, then S ⁇ L.
  • the driving mechanism of the present invention drives the wafer to rotate vertically through the cooperation of the first side drive wheel, the middle drive wheel and the second three driving wheels of the side side drive wheel, which reduces the impact effect between the wafer and the three wheels and improves To ensure the reliability of driving the wafer rotation, prevent the wafer notch from rotating to contact with the side drive wheel 1 or the middle drive wheel or the side drive wheel 2, and the wafer jumps to produce a large swing, ensuring the stable rotation of the wafer .
  • first groove, the second groove and the third groove all include a lower groove body and an upper groove body; the width of the lower groove body is equal everywhere, and can be inserted into a wafer, and the upper groove body
  • the tank body is flared, and the side wall is a protruding arc surface.
  • the side wall of the upper tank body is an arc surface, which can guide the wafer, especially the notch of the wafer, so that the rotation process of the wafer is more stable; on the basis of ensuring that the wafer has a larger guiding surface, it will not interfere with the crystal surface. friction.
  • the angle between the tangent of the side wall of the upper tank and the horizontal plane is 70-90°.
  • the height of the upper tank body is 5-10mm.
  • the opening width of the upper tank body is 4-8mm.
  • the depth of the lower tank body is h, and h is 1-3mm.
  • the center of the wafer is at point B; when the notch of the wafer is not in contact with the side drive wheel When the first wheel is in contact with the second side driving wheel, the center of the wafer is at point A, and the height difference between point A and point B is less than 0.4 mm.
  • the side wall of the upper tank is designed with a protruding arc surface, which effectively slows down the swing of the wafer when it is beating, and the rotation of the wafer is more stable.
  • first side driving wheel, the middle driving wheel and the second side driving wheel rotate synchronously under the drive of the driving source.
  • the occupied space of the side driving wheel one, the middle driving wheel, the side driving wheel two and the driving source is small, and the use cost is saved.
  • the horizontal width of the notch is 55-60mm.
  • a speed meter unit which includes,
  • the signal sending mechanism is used to send a signal to the direction of the wafer, the signal can pass through the notch, and the signal is blocked by the wafer when it passes through;
  • the signal receiving mechanism is used to receive the signal sent by the signal sending mechanism to determine whether the notch passes through the signal transmission path, or to determine the number of times the notch passes through the signal transmission path;
  • a wafer speed measurement method utilizing a speed measurement unit comprising the following steps,
  • the signal passes through the notch, and the signal receiving mechanism sends the received signal to the signal processing mechanism to start timing;
  • the signal processing mechanism reads the interval time and obtains the rotation speed of the wafer
  • the signal passes through the notch multiple times, and the signal processing mechanism reads the interval time, passes the total time and the number of passes, and obtains the rotation speed of the wafer.
  • the existing scrubbing device usually has a supporting wheel system in the box consisting of two driving wheels and a non-powered idler wheel.
  • the wafer drives the idler wheel to rotate to obtain the rotation speed of the wafer during scrubbing.
  • the surface of the wafer and the idler wheel will Sliding friction affects the transmission accuracy, and the real rotational speed of the wafer cannot be accurately obtained.
  • the speed measurement method can overcome the above problems and realize accurate recording of the wafer rotation speed.
  • the beneficial effect of the present invention is that the vertical rotation of the wafer is driven by the cooperation of the side drive wheel 1, the middle drive wheel and the side drive wheel 2 and the three driving wheels, which improves the reliability of driving the wafer rotation and avoids wafer gaps
  • the wafer jumps to produce a large swing to ensure the stable rotation of the wafer; it solves the gap part of the wafer with a large area
  • the idler wheel in the prior art cannot be driven to realize the problem of speed detection; because the positioning signal will only exist once when the wafer rotates 360°, it will not be blocked once, and the signal will be transmitted once (the distance measuring sensor will measure a different distance once) value signal), the accuracy of wafer speed measurement is higher than that of the idle wheel speed, which improves the reliability of wafer speed detection; the side drive wheel 1, the middle drive wheel and the side drive wheel 2 drive the wafer at the same time
  • the combination of the rotating structure and the speed measuring unit solves the problem that the
  • Figure 1 is a front view of an existing 8-inch wafer.
  • FIG. 2 is a front view of a 6-inch wafer in the present invention.
  • Fig. 3 is a perspective view of the scrubbing device of the present invention.
  • Fig. 4 is a perspective view of the driving mechanism of the present invention.
  • FIG. 5 is a first schematic diagram of the cooperation structure between the driving mechanism and the wafer of the present invention.
  • FIG. 6 is the second schematic diagram of the cooperation structure between the driving mechanism and the wafer according to the present invention.
  • FIG. 7 is a schematic diagram of the cooperation structure of the side driving wheel-and the wafer according to the present invention.
  • Fig. 8 is a sectional view of C-C in Fig. 7 .
  • Fig. 9-1 is a schematic diagram of a planar structure in which the side wall of the upper tank body is in the prior art.
  • FIG. 9-2 is a schematic diagram of the vertical runout range of the wafer in the prior art.
  • Fig. 10 is a side view of side drive wheel 1 of the present invention.
  • FIG. 11 is an enlarged view of the structure at D in FIG. 10 .
  • Fig. 12 is a sectional view of side drive wheel 1 of the present invention.
  • FIG. 13 is a cross-sectional view of the speed measuring unit of the present invention located in the scrubbing device.
  • the notch of the placed wafer is not located directly above, and the wafer blocks the signal.
  • FIG. 14 is a cross-sectional view of the velocity measuring unit of the present invention located in the scrubbing device, and the notch of the placed wafer is just above.
  • Fig. 15 is a sectional view of the speed measuring unit and the driving mechanism in the scrubbing device of the present invention.
  • FIG. 16 is an enlarged view of the structure at E in FIG. 15 .
  • FIG. 17 is a schematic diagram of the signals of the part where the wafer rotates to the shielded part.
  • Fig. 18 is a schematic diagram of the present invention where the signal sending mechanism and the signal receiving mechanism are located on different sides.
  • Fig. 19 is a schematic diagram of the present invention where the signal sending mechanism and the signal receiving mechanism are located on the same side.
  • FIG. 20 is a working schematic diagram of the present invention in which the signal sending mechanism is a transmission laser generator, and the signal receiving mechanism is a transmission laser receiver.
  • a wafer drive mechanism used to drive the wafer 1 to rotate vertically, the outer edge of the wafer 1 has a notch 11, the notch 11 is formed by cutting the edge of the wafer 1 horizontally, that is, it has a plane, as shown in Figure 2 As shown, the plane width L of the notch 11 reaches 55-60mm.
  • the drive mechanism includes a side drive wheel one 2, an intermediate drive wheel 3 and a side drive wheel two 4.
  • the side driving wheel one 2 has a first groove 21, and the bottom surface of the first groove 21 is in contact with the outer edge of the wafer 1, specifically, it may be in contact with the side wall in the thickness direction of the outer edge of the wafer 1, so as to drive laterally
  • the wheel 1 can drive the wafer 1 to rotate when it rotates by itself.
  • the middle drive wheel 3 has a second groove 31, the bottom surface of which can be in contact with the outer edge of the wafer 1, specifically with the side wall in the thickness direction of the outer edge of the wafer 1, so that the middle drive wheel 3 itself When rotating, the wafer 1 can be driven to rotate.
  • the side driving wheel 2 4 has a third groove 41, the bottom surface of the third groove 41 is in contact with the outer edge of the wafer 1, specifically, it can be in contact with the side wall in the thickness direction of the outer edge of the wafer 1, so as to drive laterally When the wheel 2 4 rotates by itself, the wafer 1 can be driven to rotate.
  • the first side driving wheel 2, the middle driving wheel 3 and the second side driving wheel 4 are driven by a driving source 6, and the three rotate synchronously under the cooperation of the synchronous belt.
  • a plurality of driving sources respectively drive the side driving wheel 1, the middle driving wheel 3 and the side driving wheel 2 4, or one driving source drives the side driving wheel through gear transmission or belt transmission.
  • axle centers of the side drive wheel one 2, the middle drive wheel 3 and the side drive wheel two 4 are not at the same level.
  • the first groove 21, the second groove 31 and the third groove 41 have the same structure, and all include a lower groove body 51 and an upper groove body 52, and the width of each place of the lower groove body 51 equal, and can be inserted by the wafer 1, that is to say, the cross section of the lower tank body 51 is square, and its width is slightly larger than the thickness of the wafer 1.
  • the depth of the lower groove body 51 as h, then h is 1-3mm, within the range of the trimming width of the wafer 1, as shown in FIG. 11 .
  • the lower groove body 51 is in contact with the surface of the wafer 1 to limit the swing of the wafer 1 .
  • the upper tank body 52 is flared, that is, the groove width gradually increases outward from the direction where the lower tank body 51 is located.
  • the height of the upper tank body 52 is 5-10mm, that is, h2 is 5-10mm among Fig. 11, and the opening 521 width of the upper tank body 52 is 4-8mm, that is, S2 is 4-8mm among Fig. 11 .
  • the side wall of the upper tank body 52 is a protruding arc surface.
  • the included angle between the tangent line of the side wall of the upper tank body 52 and the horizontal plane is 70-90°, that is, the ⁇ angle in FIG. 11 is 70-90°.
  • the drive system in the form of a combination of driving wheels and driven wheels is used, the side wall of the upper tank is a plane, and the angle between it and the plane where the wafer 1 is located is is ⁇ 2, the wafer is always in contact with the groove surface at the bottom of the driven wheel, and is actually supported and driven by two wheels.
  • the angle between the notch and the horizontal plane is 45°, the center of the wafer is lowered by 3.57mm in the vertical direction, and the drop of the wafer is large, resulting in The impact is large, the wafer jumps, and the rotation is unstable.
  • the above-mentioned wafer driving mechanism can be arranged in the scrubbing device 8 .
  • the wafer drive mechanism of the present invention also includes a speed counter unit, which includes a signal sending mechanism 71 and a signal receiving mechanism 72 .
  • the signal sending mechanism 71 is used to send a signal in the direction of the wafer 1 , the signal can pass through the notch 11 , and when the signal passes through the wafer 1 , it is blocked by the wafer 1 and cannot pass through.
  • the signal receiving unit 72 is used to receive the signal sent by the signal sending unit 71 to determine whether the notch 11 passes through the signal transmission path, or to determine the number of times the notch 11 passes through the signal transmission path. In other words, when the signal passes through the notch 11 , the signal receiving mechanism 72 receives the signal, and when the signal is blocked by the wafer 1 , the signal receiving mechanism 72 cannot receive the signal.
  • the notch 11 faces directly upward, all the signals are received by the signal receiving mechanism 72, and the signal strength is high; when the wafer 1 rotates through a certain angle, the signal is partially blocked, and the signal strength becomes weak.
  • the accuracy of the position of the wafer notch 11 can be improved by adjusting the signal threshold of the signal receiving mechanism 72, that is, the greater the signal reception strength, the more signals are accepted, the more level the position of the notch 11 is, and the more the notch 11 faces at this time. Close to directly above the level; the weaker the signal, the lower the level of flatness at the position of the notch 11 .
  • the signal threshold of the signal receiving mechanism 72 can be adjusted according to the requirement for the horizontal flatness of the notch position in the process, that is, the requirement for the position accuracy of the notch portion 11 .
  • the distance between the signal receiving mechanism 72, the signal transmitting mechanism 71 and the notch 11 can also be adjusted to affect the detection sensitivity. The closer the distance, the higher the sensitivity.
  • the signal sending mechanism 71 and the signal receiving mechanism 72 are located on both sides of the wafer 1, as shown in FIG.
  • the laser corresponds to a signal processing mechanism.
  • the signal can also be a point laser, and at this time, whether the signal passes through the notch 11 is judged by the appearance and disappearance of the laser.
  • the signal can also be in any other shape, such as optical fiber, ultrasound, etc., without any specific limitation.
  • the signal sending mechanism 71 and the signal receiving mechanism 72 can be an integral structure, as shown in Figure 19, at this moment, the signal sending mechanism 71 and the signal receiving mechanism 72 are retro-reflective laser generators, and the positioning device also includes a reflector 74, corresponding to also includes the signal processing mechanism. After the signal is sent from the retro-reflective laser generator, the reflective plate 74 reflects the signal back to the retro-reflective laser generator.
  • the signal sending mechanism 71 and the signal receiving mechanism 72 are located on the same side of the wafer 1, as shown in FIG. , the signal 73 is a ribbon laser, and the positioning device also includes a reflector 74, and correspondingly includes a signal processing mechanism, which is connected to the signal sending mechanism 71 and the signal receiving mechanism 72 respectively. After the signal is sent from the transmission laser generator, the reflection plate 74 reflects the signal back to the transmission laser receiver.
  • a transparent cover is provided outside the signal sending mechanism 71 and the signal receiving mechanism 72 .
  • a method for measuring the speed of a rotating wafer comprising the steps of:
  • the signal passes through the notch 11, specifically at the moment when it completely passes through, the signal receiving mechanism 72 sends the received signal to the signal processor, and starts timing;
  • the signal processing mechanism can read the interval between the two signals to obtain the rotation speed of the wafer 1;
  • the signal processing mechanism reads the interval between the two signals, and then when the signal passes through the notch 11 again, the signal processing mechanism reads The interval between the second time and the third time is repeated, the above steps are repeated, the signal passes through the notch 11 multiple times, the signal processing mechanism reads the interval time for multiple times, and the rotation speed of the wafer 1 is obtained by calculating the average time;
  • the signal passes through the notch 11 multiple times, and the signal processing mechanism reads the total interval time and the total number of times the signal passes, and obtains the rotational speed of the wafer 1 through calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Die Bonding (AREA)

Abstract

本发明公开了一种晶圆驱动机构,晶圆的外边缘带有缺口部,驱动机构包括,侧方驱动轮一,带有第一凹槽,其底面与晶圆外缘接触,侧方驱动轮一自身转动以驱动晶圆转动;中间驱动轮,带有第二凹槽,其底面可与晶圆外缘接触,中间驱动轮自身转动以驱动晶圆转动;侧方驱动轮二,带有第三凹槽,其底面与晶圆外缘接触,侧方驱动轮二自身转动以驱动晶圆转动;中间驱动轮的轴心所在高度小于侧方驱动轮一和侧方驱动轮二的轴心所在高度;侧方驱动轮一和侧方驱动轮二与晶圆的接触点之间的间距为S,缺口部的水平宽度为L,S≥L。本发明通过三个主动轮的配合驱动晶圆竖直转动,提高了驱动晶圆转动的可靠性,保证晶圆的稳定转动;提高了晶圆转速检测可靠性。

Description

一种晶圆驱动机构 技术领域
本发明属于半导体集成电路芯片制造领域,尤其是涉及一种晶圆驱动机构。
背景技术
化学机械平坦化是集成电路工艺中的一种加工工艺,随着技术的发展,对加工工艺的要求会随之提高,同时化学机械平坦化在晶圆加工过程中属于湿法工艺,在整个工艺过程中会使用大量的研磨液以及不同的化学试剂,所以在工艺末端需要对晶圆进行一个清洗和干燥来去除附着在晶圆表面的颗粒,从而能够进入到下一道工艺的制程中。
在现有的集成电路设备中,通过将晶圆插入到刷洗机箱,在支撑轮系统和滚刷系统的配合下实现晶圆表面刷洗,确保晶圆表面无颗粒物残留。晶圆在刷洗机箱内放置于数个支撑轮上,支撑轮系统由两个主动轮和一个无动力惰性轮组成,晶圆与主动轮上的凹槽底面接触,通过主动轮自身的转动驱动晶圆旋转,与惰性轮上的凹槽底面不接触,只与惰性轮上的凹槽侧壁接触,以实现晶圆转动的同时带动惰性轮转动,实现利用惰性轮监测晶圆转速的目的。
由于8英寸晶圆和12英寸晶圆定位为小缺口形式,缺口宽度1.5~3mm深度1~2mm,如图1所示,L1为1.5~3mm,L2为1~2mm,缺口较小不会影响对惰性轮的带动旋转。但是6英寸晶圆定位缺口采取了平面的形式,平面宽度长达57.5mm,即缺口整体面积相对较大,当缺口转动至对应惰性轮的区域时,晶圆会完全脱出惰性轮的凹槽,随着晶圆的旋转,除去缺口部分的晶圆再次进入惰性轮的凹槽时,由于凹槽过窄,晶圆大概率无法切入惰性轮的凹槽内,导致晶圆脱片。而一旦将惰性轮的凹槽宽度增大,又无法实现晶圆带动惰性轮同步转动以监测晶圆转速的目的。
再者,支撑轮系统两主动轮间距较大,大于6英寸晶圆缺口平面长度,当晶圆缺口平面与其中一个支撑轮接触后,晶圆不再按固定圆心转动,支撑轮无法可靠驱动晶圆转动,导致晶圆卡住。晶圆刷洗时转速不稳定的问题,会影响清洗液喷洒的一致性,使清洗液在晶圆表面的反应时间不一致,最终影响清洗效果。为便于实现晶圆稳定转动,支撑轮驱动系统有待改进。
发明内容
为了克服现有技术的不足,本发明提供一种可靠驱动晶圆转动,且晶圆转动稳定,晶圆转速检测准确的晶圆驱动机构。
本发明解决其技术问题所采用的技术方案是:一种晶圆驱动机构,用于驱动晶圆竖 直转动,所述晶圆的外边缘带有水平切削形成的缺口部,所述驱动机构包括,
侧方驱动轮一,带有第一凹槽,第一凹槽的底面与晶圆外缘接触,侧方驱动轮一自身转动以驱动晶圆转动;
中间驱动轮,带有第二凹槽,第二凹槽的底面可与晶圆外缘接触,中间驱动轮自身转动以驱动晶圆转动;
侧方驱动轮二,带有第三凹槽,第三凹槽的底面与晶圆外缘接触,侧方驱动轮二自身转动以驱动晶圆转动;
所述中间驱动轮的轴心所在高度小于侧方驱动轮一和侧方驱动轮二的轴心所在高度;
所述侧方驱动轮一和侧方驱动轮二与晶圆的接触点之间的间距为S,缺口部的水平宽度为L,则S≥L。
本发明的驱动机构通过侧方驱动轮一、中间驱动轮和侧方驱动轮二三个主动轮的配合驱动晶圆竖直转动,减小了晶圆和三个轮之间的冲击作用,提高了驱动晶圆转动的可靠性,避免晶圆缺口部转动至与侧方驱动轮一或中间驱动轮或侧方驱动轮二接触时,晶圆跳动产生大幅度的摆动,保证晶圆的稳定转动。
进一步的,所述第一凹槽、第二凹槽和第三凹槽均包括下部槽体和上部槽体;所述下部槽体的各处宽度相等,且可供晶圆插入,所述上部槽体呈扩口状,且侧壁为突出的圆弧面。
上部槽体的侧壁为圆弧面,对晶圆,特别是晶圆的缺口部产生导向作用,使得晶圆转动过程更加平稳;在确保晶圆具有更大导向面基础上不会与晶面摩擦。
进一步的,所述上部槽体的侧壁的切线与水平面的夹角为70-90°。
进一步的,所述上部槽体的高度为5-10mm。
进一步的,所述上部槽体的开口宽度为4-8mm。
进一步的,所述下部槽体的深度为h,则h为1-3mm。
进一步的,当所述晶圆的缺口部与侧方驱动轮一、或与侧方驱动轮二接触时,晶圆的圆心在B点,当所述晶圆的缺口部不与侧方驱动轮一和侧方驱动轮二接触时,晶圆的圆心在A点,所述A点和B点的高度差小于0.4mm。上部槽体的侧壁为突出的圆弧面设计,有效减缓晶圆跳动时的摆动,晶圆转动更加稳定。
进一步的,所述侧方驱动轮一、中间驱动轮和侧方驱动轮二在驱动源的带动下同步转动。侧方驱动轮一、中间驱动轮、侧方驱动轮二和驱动源的占用空间小,节省使用成 本。
进一步的,所述缺口部的水平宽度为55-60mm。
进一步的,还包括计速单元,其包括,
信号发送机构,用于向晶圆所在方向发送信号,该信号可从缺口部通过,信号经过晶圆时被其阻挡;
信号接收机构,用于接收信号发送机构发送的信号,以判断缺口部是否经过信号发送的路径,或者,判断缺口部经过信号发送路径的次数;
一种利用计速单元的晶圆计速方法,包括以下步骤,
启动信号发送机构和信号接收机构,晶圆在驱动机构的驱动下转动;
信号从缺口部通过,所述信号接收机构将接收到的信号发送至信号处理机构,开始计时;
信号下一次从缺口部通过,信号处理机构读取间隔时长,获取晶圆的转速;
或者,信号多次从缺口部通过,信号处理机构读取间隔时长,通过总时长和通过次数,获取晶圆的转速。
现有刷洗装置通常箱体内支撑轮系统由两个主动轮和一个无动力惰性轮组成,通过晶圆带动惰性轮转动以得到晶圆在刷洗时的转速,该方案晶圆与惰性轮表面会发生滑动摩擦影响传动精度,无法准确得到晶圆的真实转速,特别是缺口部面积较大时,当缺口部转动至惰性轮时,其无法带动惰性轮同步转动以实现测速的目的;利用本发明的计速方法可以克服上述问题,实现晶圆转速的准确记录。
本发明的有益效果是,通过侧方驱动轮一、中间驱动轮和侧方驱动轮二三个主动轮的配合驱动晶圆竖直转动,提高了驱动晶圆转动的可靠性,避免晶圆缺口部转动至与侧方驱动轮一或中间驱动轮或侧方驱动轮二接触时,晶圆跳动产生大幅度的摆动,保证晶圆的稳定转动;解决了晶圆带有较大面积的缺口部时无法带动现有技术中的惰性轮实现转速检测的问题;由于定位信号在晶圆旋转一圈360°只会存在一次不被遮挡,传递一次信号(测距传感器,会测到一次不同的距离值信号),晶圆转速测量准确度高于惰性轮计速,提高了晶圆转速检测可靠性;将侧方驱动轮一、中间驱动轮和侧方驱动轮二三个主动轮同时驱动晶圆转动的结构与计速单元的结合,解决了6英寸晶圆在缺口部转动至惰性轮时无法带动惰性轮转动,即无法完成测速的问题,不仅保证了晶圆的稳定转动,保证良好的清洗效果,而且可以准确计速。
附图说明
图1为现有8英寸晶圆的主视图。
图2为本发明中6英寸晶圆的主视图。
图3为本发明的刷洗装置的立体图。
图4为本发明的驱动机构的立体图。
图5为本发明的驱动机构与晶圆配合结构示意图一。
图6为本发明的驱动机构与晶圆配合结构示意图二。
图7为本发明的侧方驱动轮一与晶圆配合结构示意图。
图8为图7中的C-C剖视图。
图9-1为现有技术中上部槽体侧壁为平面结构的示意图。
图9-2为现有技术中晶圆竖直方向跳动幅度示意图。
图10为本发明的侧方驱动轮一的侧视图。
图11为图10中的D处结构放大图。
图12为本发明的侧方驱动轮一的剖视图。
图13为本发明的计速单元位于刷洗装置的剖视图,放置的晶圆缺口部不位于正上方,晶圆阻挡信号。
图14为本发明的计速单元位于刷洗装置的剖视图,放置的晶圆缺口部刚好位于正上方。
图15为本发明的计速单元、驱动机构位于刷洗装置的剖视图。
图16为图15中的E处结构放大图。
图17为晶圆转动至遮挡部分信号的示意图。
图18为本发明信号发送机构和信号接收机构位于不同侧的示意图。
图19为本发明信号发送机构和信号接收机构位于同一侧的示意图。
图20为本发明信号发送机构为透过式激光发生器、信号接收机构为透过式激光接收器的工作示意图。
具体实施方式
为了使本技术领域的人员更好的理解本发明方案,下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
一种晶圆驱动机构,用于驱动晶圆1竖直转动,晶圆1的外边缘带有缺口部11,该缺口部11为晶圆1边缘水平切削形成,即带有一平面,如图2所示,其缺口部11的平面宽度L达到了55-60mm。
如图3、图4所示,驱动机构包括侧方驱动轮一2、中间驱动轮3和侧方驱动轮二4。
侧方驱动轮一2带有第一凹槽21,该第一凹槽21的底面与晶圆1外缘接触,具体可以是与晶圆1外缘厚度方向的侧壁接触,从而侧方驱动轮一2自身转动时可以驱动晶圆1转动。
中间驱动轮3带有第二凹槽31,该第二凹槽31的底面可以与晶圆1外缘接触,具体是与晶圆1外缘厚度方向的侧壁接触,从而中间驱动轮3自身转动时可以驱动晶圆1转动。
侧方驱动轮二4带有第三凹槽41,该第三凹槽41的底面与晶圆1外缘接触,具体可以是与晶圆1外缘厚度方向的侧壁接触,从而侧方驱动轮二4自身转动时可以驱动晶圆1转动。
在本实施例中,侧方驱动轮一2、中间驱动轮3和侧方驱动轮二4由一个驱动源6驱动,在同步带的配合下三者同步转动。当然在其他实施例中,也可以是多个驱动源分别驱动侧方驱动轮一2、中间驱动轮3和侧方驱动轮二4,或者一个驱动源通过齿轮传动、皮带传动的方式带动侧方驱动轮一2、中间驱动轮3和侧方驱动轮二4。
侧方驱动轮一2、中间驱动轮3和侧方驱动轮二4的轴心不位于同一水平高度,在本实施例中,中间驱动轮3的轴心所在高度小于侧方驱动轮一2和侧方驱动轮二4的轴心所在高度。
定义侧方驱动轮一2与晶圆1的接触点、侧方驱动轮二4与晶圆1的接触点,两者之间的间距为S,则S≥L。换句话说,缺口部11的水平面不可能同时与侧方驱动轮一2和侧方驱动轮二4接触,当缺口部11的水平面与侧方驱动轮一2接触时,与侧方驱动轮二4接触的势必是晶圆1的圆弧部分,而不是缺口部11部分。
如图10-图12所示,第一凹槽21、第二凹槽31和第三凹槽41的结构相同,均包括下部槽体51和上部槽体52,下部槽体51的各处宽度相等,且可供晶圆1插入,也就是说下部槽体51的截面呈方形,其宽度略大于晶圆1的厚度。定义下部槽体51的深度为h,则h为1-3mm,在晶圆1切边宽度范围内,如图11所示。下部槽体51与晶圆1表面接触用于限制晶圆1的摆动。
上部槽体52呈扩口状,即其从下部槽体51所在方向向外槽宽逐渐增大。上部槽体 52的高度为5-10mm,即图11中h2为5-10mm,上部槽体52的开口521宽度为4-8mm,即图11中S2为4-8mm。
上部槽体52的侧壁为突出的圆弧面。上部槽体52的侧壁的切线与水平面的夹角为70-90°,即图11中α角为70-90°。
如图5所示,6英寸晶圆1在转动过程中,缺口部11平面朝下时会脱出第一凹槽21的下部槽体51,撞击第一凹槽21的上部槽体52,导致晶圆1缺口部11平面受到冲击,存在晶圆1碎片及磨损风险,同时晶圆1在冲击作用下会发生明显摆动,晶圆1驱动可靠性差。
为避免晶圆1碰撞受损,需要减小晶圆1在竖直方向的跳动幅度,以及实现缺口部11平面处掉落时更顺滑过度。图6所示,采用侧方驱动轮一2、中间驱动轮3、侧方驱动轮二4三个主动轮形式的驱动系统,中间驱动轮3也起支撑作用,且上部槽体52的侧壁为突出的圆弧面,晶圆1在相同状态下圆心仅降低0.28mm,有效减小了竖直方向跳动幅度。
换句话说,当晶圆1的缺口部11与侧方驱动轮一2接触时,晶圆1的圆心在B点,或者,当晶圆1的缺口部11与侧方驱动轮二4接触时,晶圆1的圆心在B点;当晶圆1的缺口部11不与侧方驱动轮一2接触,且不与侧方驱动轮二4接触时,晶圆1的圆心在A点,则A点所在高度高于B点所在高度,且A点和B点的高度差小于0.4mm,即图6中h3小于0.4mm。
而现有技术中,如图9-1和图9-2所示,采用主动轮和从动轮组合形式的驱动系统,上部槽体的侧壁为平面,其与晶圆1所在平面的夹角为β2,晶圆在从动轮底始终与凹槽面接触,实际为两轮支撑和驱动,在缺口与水平面夹角45°时晶圆圆心在竖直方向降低3.57mm,晶圆落差大,产生冲击大,晶圆发生跳动,转动不稳定。
如图8所示,上部槽体52的侧壁为突出的圆弧面时,晶圆1与上部槽体522的侧壁接触时,接触点所在的切线与晶圆1所在平面的夹角为β1,β1>β2。当晶圆1的缺口部11掉落到相同位置时,相比于现有技术中的侧壁为平面,圆弧面坡度远大于斜面,且晶圆1越接近下部槽体51处,圆弧面坡度越大,导向效果越好。
上述的晶圆驱动机构可以设置在刷洗装置8内。
本发明的晶圆驱动机构还包括计速单元,其包括信号发送机构71和信号接收机构72。
信号发送机构71用于向晶圆1所在方向发送信号,该信号可以从缺口部11通过,而当信号经过晶圆1时则被晶圆1阻挡,无法通过。
信号接收机构72用于接收信号发送机构71发送的信号,以判断缺口部11是否经过信号发送的路径,或者说,判断缺口部11经过信号发送路径的次数。换句话说,当信号从缺口部11通过时,信号接收机构72接收到该信号,当信号被晶圆1阻挡时,则信号接收机构72无法接收到信号。
为了保证信号通过缺口部11后具有足够的强度,信号完整通过缺口部11时,信号距离缺口部11的平面的垂直距离为h1,则0<h1≤5mm,具体如16图所示。
当缺口部11朝正上方时,信号全部被信号接收机构72接收,信号强度大;当晶圆1转过一定角度后信号被部分遮挡,信号强度变弱。可以通过调节信号接收机构72的信号阈值提高晶圆缺口部11位置的准确度,即信号接收强度越大,信号被接受的越多,缺口部11位置越水平平整,此时缺口部11朝向越接近于水平正上方;信号越弱,缺口部11位置水平平整度越低。实际应用中,可根据工艺缺口位置水平平整度需求即缺口部11位置准确度的需求,调节信号接收机构72的信号阈值。另,还可以调整信号接收机构72、信号发送机构71与缺口部11的距离,以此影响检测的灵敏度,距离越近,灵敏度越高。
信号发送机构71和信号接收机构72位于晶圆1的两侧,如图18所示,此时可以是信号发送机构71为激光发生器,信号接收机构72为激光接收器,信号73为带状激光,相对应的还包括信号处理机构。当然在其他实施例中,信号也可以是点状激光,此时通过激光的出现和消失来判断信号是否通过缺口部11。当然,信号还可以是其他任意形状,如光纤、超声等,不作具体限制。
信号发送机构71和信号接收机构72可以是一体结构,如图19所示,此时信号发送机构71和信号接收机构72为回归反射式激光发生器,寻位装置还包括反射板74,相对应的还包括信号处理机构。信号自回归反射式激光发生器发送后,反射板74将信号反射回至回归反射式激光发生器。
信号发送机构71和信号接收机构72位于晶圆1的同一侧,如图20所示,此时可以是信号发送机构71为透过式激光发生器,信号接收机构72为透过式激光接收器,信号73为带状激光,寻位装置还包括反射板74,相对应的还包括信号处理机构,其分别与信号发送机构71和信号接收机构72相连。信号自透过式激光发生器发送后,反射板74将信号反射回至透过式激光接收器。
为了形成良好的保护作用,防止刷洗过程中液体的污染,同时保证透光不会影响信号的发送和接收,在信号发送机构71和信号接收机构72外设有透明罩。
一种旋转晶圆计速方法,包括以下步骤:
启动信号发送机构71和信号接收机构72,晶圆1在驱动机构的驱动下转动;在本实施例中,驱动机构为刷洗装置8的支撑轮驱动机构,当然在其他实施例中,驱动机构可以是超声清洗装置的支撑轮驱动机构,或者别的与清洗相关的箱体内的驱动机构;
信号从缺口部11通过,具体是完全通过的一瞬间,信号接收机构72将接收到的信号发送至信号处理机,,开始计时;
信号下一次从缺口部11通过时,具体是完全通过的一瞬间,信号处理机构读取两次信号之间的间隔时长,即可获取晶圆1的转速;
又或者,信号下一次从缺口部11通过时,具体是完全通过的一瞬间,信号处理机构读取两次信号之间的间隔时长,接着信号再次从缺口部11通过时,信号处理机构读取第二次和第三次之间的间隔时长,重复上述步骤,信号多次从缺口部11通过,信号处理机构读取多次间隔时长,通过平均时长计算获取晶圆1的转速;
当然也可以是,信号多次从缺口部11通过,信号处理机构读取总的间隔时长和信号通过的总次数,通过计算获取晶圆1的转速。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

  1. 一种晶圆驱动机构,用于驱动晶圆(1)竖直转动,其特征在于:所述晶圆(1)的外边缘带有水平切削形成的缺口部(11),所述驱动机构包括,
    侧方驱动轮一(2),带有第一凹槽(21),第一凹槽(21)的底面与晶圆(1)外缘接触,侧方驱动轮一(2)自身转动以驱动晶圆(1)转动;
    中间驱动轮(3),带有第二凹槽(31),第二凹槽的底面可与晶圆(1)外缘接触,中间驱动轮(3)自身转动以驱动晶圆(1)转动;
    侧方驱动轮二(4),带有第三凹槽(41),第三凹槽(41)的底面与晶圆(1)外缘接触,侧方驱动轮二(4)自身转动以驱动晶圆(1)转动;
    所述中间驱动轮(3)的轴心所在高度小于侧方驱动轮一(2)和侧方驱动轮二(4)的轴心所在高度;
    所述侧方驱动轮一(2)和侧方驱动轮二(4)与晶圆(1)的接触点之间的间距为S,缺口部(11)的水平宽度为L,则S≥L。
  2. 根据权利要求1所述的晶圆驱动机构,其特征在于:所述第一凹槽(21)、第二凹槽(31)和第三凹槽(41)均包括下部槽体(51)和上部槽体(52);所述下部槽体(51)的各处宽度相等,且可供晶圆(1)插入,所述上部槽体(52)呈扩口状,且侧壁为突出的圆弧面。
  3. 根据权利要求2所述的晶圆驱动机构,其特征在于:所述上部槽体(52)的侧壁的切线与水平面的夹角为70-90°。
  4. 根据权利要求2所述的晶圆驱动机构,其特征在于:所述上部槽体(52)的高度为5-10mm。
  5. 根据权利要求2所述的晶圆驱动机构,其特征在于:所述上部槽体(52)的开口(521)宽度为4-8mm。
  6. 根据权利要求2所述的晶圆驱动机构,其特征在于:所述下部槽体(51)的深度为h,则h为1-3mm。
  7. 根据权利要求1所述的晶圆驱动机构,其特征在于:当所述晶圆(1)的缺口部(11)与侧方驱动轮一(2)、或与侧方驱动轮二(4)接触时,晶圆(1)的圆心在B点,当所述晶圆(1)的缺口部(11)不与侧方驱动轮一(2)和侧方驱动轮二(4)接触时,晶圆(1)的圆心在A点,所述A点和B点的高度差小于0.4mm。
  8. 根据权利要求1所述的晶圆驱动机构,其特征在于:所述侧方驱动轮一(2)、中间驱动轮(3)和侧方驱动轮二(4)在驱动源(6)的带动下同步转动。
  9. 根据权利要求1所述的晶圆驱动机构,其特征在于:所述缺口部(11)的水平宽度为55-60mm。
  10. 根据权利要求1所述的晶圆驱动机构,其特征在于:还包括计速单元,其包括,
    信号发送机构(71),用于向晶圆(1)所在方向发送信号,该信号可从缺口部(11)通过, 信号经过晶圆(1)时被其阻挡;
    信号接收机构(72),用于接收信号发送机构(71)发送的信号,以判断缺口部(11)是否经过信号发送的路径,或者,判断缺口部(11)经过信号发送路径的次数;
    一种利用计速单元的晶圆计速方法,包括以下步骤,
    启动信号发送机构和信号接收机构,晶圆在驱动机构的驱动下转动;
    信号从缺口部通过,所述信号接收机构将接收到的信号发送至信号处理机构,开始计时;
    信号下一次从缺口部通过,信号处理机构读取间隔时长,获取晶圆的转速;
    或者,信号多次从缺口部通过,信号处理机构读取间隔时长,通过总时长和通过次数,获取晶圆的转速。
PCT/CN2022/143983 2021-12-06 2022-12-30 一种晶圆驱动机构 WO2023104216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111479207.8 2021-12-06
CN202111479207.8A CN114242634A (zh) 2021-12-06 2021-12-06 一种晶圆驱动机构

Publications (1)

Publication Number Publication Date
WO2023104216A1 true WO2023104216A1 (zh) 2023-06-15

Family

ID=80753452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143983 WO2023104216A1 (zh) 2021-12-06 2022-12-30 一种晶圆驱动机构

Country Status (3)

Country Link
CN (1) CN114242634A (zh)
TW (1) TWI817770B (zh)
WO (1) WO2023104216A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889429B (zh) * 2021-12-06 2022-04-15 杭州众硅电子科技有限公司 一种用于晶圆的寻位装置、寻位方法及晶圆计速方法
CN114242634A (zh) * 2021-12-06 2022-03-25 杭州众硅电子科技有限公司 一种晶圆驱动机构
CN117038446B (zh) * 2023-10-08 2023-12-26 粤芯半导体技术股份有限公司 一种半导体器件、制造方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270404A (ja) * 1997-03-25 1998-10-09 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
CN1242872A (zh) * 1997-10-17 2000-01-26 奥林巴斯光学工业株式会社 晶片输送装置
JP2007027241A (ja) * 2005-07-13 2007-02-01 Nippo Ltd 超音波洗浄装置
CN114242634A (zh) * 2021-12-06 2022-03-25 杭州众硅电子科技有限公司 一种晶圆驱动机构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575177B1 (en) * 1999-04-27 2003-06-10 Applied Materials Inc. Semiconductor substrate cleaning system
US7685667B2 (en) * 2005-06-14 2010-03-30 Taiwan Semiconductor Manufacturing Co., Ltd. Post-CMP cleaning system
CN202120880U (zh) * 2011-07-04 2012-01-18 清华大学 晶圆清洗支撑轮组件及晶圆竖直清洗装置
CN103341457A (zh) * 2013-06-03 2013-10-09 上海华力微电子有限公司 硅片转速测定装置及其测定方法
JP6435036B2 (ja) * 2017-11-09 2018-12-05 株式会社荏原製作所 回転保持装置及び基板洗浄装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270404A (ja) * 1997-03-25 1998-10-09 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
CN1242872A (zh) * 1997-10-17 2000-01-26 奥林巴斯光学工业株式会社 晶片输送装置
JP2007027241A (ja) * 2005-07-13 2007-02-01 Nippo Ltd 超音波洗浄装置
CN114242634A (zh) * 2021-12-06 2022-03-25 杭州众硅电子科技有限公司 一种晶圆驱动机构

Also Published As

Publication number Publication date
TW202322929A (zh) 2023-06-16
TWI817770B (zh) 2023-10-01
CN114242634A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023104216A1 (zh) 一种晶圆驱动机构
WO2023103695A1 (zh) 一种用于晶圆的寻位装置、寻位方法及晶圆计速方法
EP0204143B1 (fr) Procédé de détection par ultrasons des défauts internes d'un rail de chemin de fer situés dans les bords du champignon de ce rail et dispositif pour sa mise en oeuvre
CN216793621U (zh) 晶圆驱动机构
RU2002116446A (ru) Путевая машина и способ регистрации положения рельсового пути
FR2579750A1 (fr) Procede et dispositif pour determiner l'emplacement de defauts presents dans du verre plat
JP3282145B2 (ja) ダイシング装置
JPH05149734A (ja) 表面粗さ計測センサの取付け構造
CN106153734B (zh) 二次波轮式探头支架及探头
CN209372002U (zh) 一种光学组件及体积测量装置
CN210953813U (zh) 一种能见度传感器
US5671108A (en) Tape drive cleaner
TWI849752B (zh) 拋光裝置及其工作方法
CN213658424U (zh) 一种建筑监理用墙砖强度检测装置
CN115946042B (zh) 抛光装置及其工作方法
CN2550718Y (zh) 一种厚度测试仪
CN213515887U (zh) 一种防脏和减少清洁维护的超声波液位测量装置
CN209525668U (zh) 一种用于制动盘二维码的打码设备
CN220170502U (zh) 一种断轴检测装置
CN218584018U (zh) 成品护拦板涂层厚度自动检测装置
JPH11281330A (ja) 軌道狂いを測定する方法及びその装置
CN221198861U (zh) 一种通讯工程施工通讯光缆振动实时在线传感系统
US20020041725A1 (en) Optical transmitter with back facet monitor
CN219988108U (zh) 金刚线跳线检测装置及切割机
CN215663419U (zh) 一种铁道信号测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE