WO2023103433A1 - 一种长寿命憎水透波涂料及其制备方法和应用 - Google Patents

一种长寿命憎水透波涂料及其制备方法和应用 Download PDF

Info

Publication number
WO2023103433A1
WO2023103433A1 PCT/CN2022/111325 CN2022111325W WO2023103433A1 WO 2023103433 A1 WO2023103433 A1 WO 2023103433A1 CN 2022111325 W CN2022111325 W CN 2022111325W WO 2023103433 A1 WO2023103433 A1 WO 2023103433A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
hydrophobic
wave
long
life
Prior art date
Application number
PCT/CN2022/111325
Other languages
English (en)
French (fr)
Inventor
王波
轩立新
宁亮
苏韬
王贤明
吴连锋
修志锋
李镇
崔绪瑞
易敏华
王飞
Original Assignee
海洋化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋化工研究院有限公司 filed Critical 海洋化工研究院有限公司
Publication of WO2023103433A1 publication Critical patent/WO2023103433A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • the invention relates to the technical field of coatings, in particular to a long-life hydrophobic wave-transmitting coating and its preparation method and application.
  • Marine exploration equipment plays an important role in safeguarding marine rights and interests, developing marine resources, early warning of marine disasters, and strengthening national defense construction. It is also an important symbol of a country's comprehensive national strength.
  • the radome is an important part of the equipment detection system, which is used to ensure the normal operation of its internal radar system all-weather and all-time.
  • Underwater equipment radomes mostly use resin-based composite materials. Such materials have poor water resistance. They work underwater for a long time and are affected by water pressure, which intensifies the risk of seawater and other corrosive media penetrating through the substrate. Structural strength and electrical performance have a significant impact, and even cause the cover to leak and damage the radar system. Therefore, the underwater radome must be equipped with wave-transparent coatings for protection during use. Unlike the working environment on the water surface or above water, the underwater radome is affected by water depth changes and osmotic pressure for a long time, and the protective coating is prone to problems such as water absorption and leakage.
  • the existing radome coating technology has problems such as poor water resistance, rapid electrical performance degradation, and short service life. Protection requirements for long-term work, with excellent electrical properties, hydrophobicity and hydrophobicity stability, to reduce the risk of water absorption, leakage, and structural damage to the cover.
  • the present invention provides a long-life hydrophobic wave-transmitting coating and its preparation method and application, which can meet the special needs of the radome working underwater for a long time.
  • the long-life hydrophobic wave-transmitting coating for underwater radome of the present invention can meet the working requirements of the underwater radar system covering the whole area and all time based on its excellent electrical properties, hydrophobicity and hydrophobic stability.
  • One of the objectives of the present invention is to provide a long-life hydrophobic wave-transparent coating.
  • the long-life hydrophobic wave-transmitting coating is prepared from component A and component B;
  • the first component is prepared from raw materials including low surface energy modified fluorocarbon resin, low dielectric filler, low dielectric pigment, wetting and dispersing agent, leveling agent and organic solvent;
  • each component is calculated by parts by weight:
  • the B component is an isocyanate curing agent component
  • the molar ratio of -OH in component A to -NCO in component B is 1:(1.0 ⁇ 1.2); preferably 1:(1.0 ⁇ 1.1).
  • the -OH in component A comes from low surface energy modified fluorocarbon resin, and the -OH content is 0.8mol/kg.
  • the low surface energy modified fluorocarbon resin in component A is WN-50713 resin produced by Ocean Chemical Research Institute Co., Ltd., and its properties are shown in Table 1:
  • the performance of the low surface energy modified fluorocarbon resin is listed in Table 1.
  • the performance of the low surface energy modified fluorocarbon resin is the support of the hydrophobic performance of the coating.
  • the hydrophobicity includes the hydrophobic angle, rolling angle, and soaking in water for 14 days (49 ⁇ 2°C); by adding fillers in the low surface energy modified fluorocarbon resin matrix, it can provide support for wave-transmitting properties, including dielectric constant and loss tangent; resin and fillers interact and synergize , to achieve the purpose of the invention.
  • the powders in component A include two types, namely low dielectric fillers and low dielectric pigments; low dielectric materials generally refer to materials with a dielectric constant lower than 10 and a loss tangent lower than 0.01. Properties favor lower dielectric constant and loss tangent values of the material.
  • the low dielectric filler is a mixture of nano-boron nitride and silicone resin microspheres
  • the nano-boron nitride is preferably flake;
  • the organosilicon resin microsphere is preferably spherical;
  • the particle size of nano boron nitride is 50nm ⁇ 100nm
  • the particle size of the silicone resin microspheres is 6 ⁇ m to 8 ⁇ m.
  • the mass ratio of nano-boron nitride to organic silicon resin microspheres is (2-4):1; preferably (2.8-3.2):1.
  • Boron nitride has a lamellar structure, and silicone resin microbeads have a spherical structure. The mixture of the two overlaps each other. The overlapping relationship formed by different mixing ratios is different, which directly affects its physical barrier ability. The effect decreases, and the anti-penetration ability decreases; the increase of the mass ratio of nano-boron nitride and silicone resin microspheres can improve the shielding and barrier effect on water. After repeated experiments, it can be compared with the mass ratio of (2-4):1. It well embodies the synergistic effect of nano-sheet nano-boron nitride and spherical silicone resin microspheres, and has better performance when the mass ratio is (2.8-3.2): 1.
  • the dielectric properties of nano-boron nitride and organosilicon microspheres are different, and the dielectric properties of the materials can be balanced through the use of appropriate dosage ratios.
  • nano-boron nitride carries out surface coating treatment through the surface coating treatment agent that the polyisocyanate that contains perfluoroalkyl segment and organic solvent B mixes and prepares;
  • the mass ratio of the polyisocyanate containing perfluoroalkyl segments in the surface coating treatment agent is 5% to 15%.
  • the polyisocyanate containing perfluoroalkyl chain segment of the present invention is the perfluoroalkyl chain containing polyisocyanate in the patent application (patent No. is CN101143840A, the title of invention is " preparation and application of polyisocyanate containing perfluoroalkyl segment "). Segment of polyisocyanates.
  • the processing method consists of the following steps:
  • the dispersing aid is a common dispersing aid in this field, preferably BYK163, BYK104s or BYK170.
  • the invention adopts the surface coating treatment method of nano boron nitride. After the treatment, the surface of nano boron nitride is hydrophobic, which helps to improve the service life of the coating.
  • the low dielectric pigment is an organic powder, prepared according to color requirements; preferably at least one of perylene black, phthalocyanine blue, and phthalocyanine green; and/or,
  • the wetting and dispersing agent is at least one of BYK163, BYK104s, BYK180; and/or,
  • the leveling agent is a silicone polyether copolymer; preferably at least one of BYK378, BYK390 and BYK388.
  • the organic solvent A and the organic solvent B can adopt organic solvents commonly used in this field in the prior art, and are independently selected from at least one of aromatic solvents, ester solvents, and ether ester solvents; preferably xylene , aromatic hydrocarbon hydrocarbons, butyl acetate, ethyl acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate at least one.
  • the B component is a trimer of aliphatic isocyanate; preferably at least one of Bayer's N3375 and N3390.
  • Two of object of the present invention is to provide a kind of preparation method of long-life hydrophobic wave-transmitting coating, comprising:
  • component A Mix the raw materials including the low surface energy modified fluorocarbon resin, low dielectric filler, low dielectric pigment, wetting and dispersing agent, and organic solvent, grind them to a fineness of 20 ⁇ m to 30 ⁇ m, add a leveling agent, After stirring evenly, filter to obtain component A;
  • the obtained component A and component B are uniformly mixed according to the molar ratio to obtain the long-life hydrophobic wave-transmitting coating.
  • the third object of the present invention is to provide an application of a long-life hydrophobic wave-transmitting coating in an underwater radome.
  • the present invention specifically can adopt following technical scheme:
  • the grinding fineness is 20-30 ⁇ m and the material is discharged.
  • add leveling agent stir and disperse for 30 minutes under the condition of 2000 rpm, filter with 120 mesh filter, test the viscosity of the coating (coating - 4 cups), measure and pack.
  • After the components of component A are mixed evenly, take measured components A and B according to the ratio of molar ratio -OH:-NCO 1:(1.0 ⁇ 1.2), mix them evenly, and let them stand for 20 minutes.
  • the method used for coating is spraying or brushing
  • the coating thickness of the dry film is controlled at 40 ⁇ m to 60 ⁇ m.
  • the coating of the present invention is a long-life water-repellent wave-transmitting coating, which is simple in construction and convenient in maintenance, and can meet the protection requirements of long-term underwater work of the radome, and reduce the risks of water absorption, leakage, and structural damage of the radome.
  • the coating of the present invention uses a low surface energy modified fluorocarbon resin as a film-forming substance, is applied by an air spraying method, and is dried and cured at room temperature, which can solve the problems of hydrophilicity (water film is formed on the surface) and rapid deterioration of electrical properties in the existing radome coating technology. , short service life and other service problems.
  • the coating of the present invention is sprayed on the composite material substrate, and the performance characteristics of the coating are as follows:
  • the electrical properties of the radome for underwater equipment are affected by the continuous water film on the surface, and the performance drops sharply.
  • the invention has excellent hydrophobicity and dielectric properties, and after soaking in water for 14 days, the water contact angle is still ⁇ 110°, and the rolling angle ⁇ 15°, water droplets can roll freely on the surface of the coating, will not form a continuous water film, will not deteriorate the dielectric properties of the radome, and at the same time avoid the conduction of corrosive media to the interior of the coating, which can ensure that the radome can be kept in water for a long time
  • the protective requirements for long-term work are met, and the risks of water absorption, leakage, and structural damage to the cover body are reduced.
  • the raw materials used in Examples and Comparative Examples are conventional commercially available raw materials.
  • test instrument is the water contact angle meter OCA20 from LAUDA Scientific in Germany.
  • the surface coating treatment agent (the mass ratio of the polyisocyanate containing the perfluoroalkyl segment is 5%
  • Component A 100 parts by weight of low surface energy modified fluorocarbon resin; 14 parts by weight of nano boron nitride; 4.5 parts by weight of silicone resin microspheres; 2 parts by weight of perylene black; 0.5 parts by weight of phthalocyanine blue ; Phthalocyanine green is 0.5 parts by weight; BYK163 is 1 part by weight; BYK 378 is 1 part by weight; Butyl acetate is 27 parts by weight;
  • Drying the pigments and fillers for later use mixing the low surface energy modified fluorocarbon resin, low dielectric filler, low dielectric filler, wetting and dispersing agent, and organic solvent into a basket sand mill for grinding, The grinding fineness is 20-30 ⁇ m and the material is discharged. After discharging, add leveling agent, stir and disperse for 30 minutes under the condition of 2000 rpm, filter with 120 mesh filter, test the viscosity of the coating (coating - 4 cups), measure and pack.
  • the second component N3375 is 20 parts by weight
  • the surface coating treatment agent (the mass ratio of the polyisocyanate containing the perfluoroalkyl segment is 15%,
  • the rest is xylene solvent) heated up to 45°C, filled with nitrogen and kept warm for 10min;
  • Component A 100 parts by weight of low surface energy modified fluorocarbon resin; 15 parts by weight of nano-boron nitride; 4.8 parts by weight of silicone resin microspheres; 0.5 parts by weight of perylene black; 1 part by weight of phthalocyanine blue ; Phthalocyanine green is 0.5 parts by weight; BYK163 is 1.2 parts by weight; BYK 378 is 0.8 parts by weight; Butyl acetate is 15 parts by weight; Xylene is 10 parts by weight;
  • the preparation method of A component is with embodiment 1;
  • B component N3390 is 22 parts by weight
  • the surface coating treatment agent (the mass ratio of the polyisocyanate containing the perfluoroalkyl segment is 10%
  • Component A 100 parts by weight of low surface energy modified fluorocarbon resin; 16 parts by weight of nano-boron nitride; 5.7 parts by weight of silicone resin microspheres; 1 part by weight of perylene black; 1 part by weight of phthalocyanine blue ; Phthalocyanine green is 1 weight part; BYK163 is 1.5 weight parts; BYK 378 is 1.2 weight parts; Butyl acetate is 20 weight parts; Xylene is 10 weight parts;
  • the preparation method of A component is with embodiment 1;
  • B component N3390 is 24 parts by weight
  • Comparative Example 1 is compared with Example 1, and the difference from Example 1 is that the mass ratio of nano-boron nitride to silicone resin microspheres is 1:1.
  • nanometer boron nitride The surface coating treatment of nanometer boron nitride is the same as embodiment 1;
  • Component A 100 parts by weight of low surface energy modified fluorocarbon resin; 10 parts by weight of nano boron nitride; 10 parts by weight of silicone resin microspheres; 2 parts by weight of perylene black; 0.5 parts by weight of phthalocyanine blue ; Phthalocyanine green is 0.5 parts by weight; BYK163 is 1 part by weight; BYK 378 is 1 part by weight; Butyl acetate is 27 parts by weight;
  • the preparation method of A component is with embodiment 1;
  • B component N3390 is 20 parts by weight
  • Comparative example 2 is compared with embodiment 2.
  • Comparative Example 2 The main difference between Comparative Example 2 and Example 2 is that the nano boron nitride used has no surface coating treatment, and the fluorocarbon resin is commercially available GK570 fluorocarbon resin.
  • Table 3 shows the coating performance test results of Examples 1-3 and Comparative Examples 1-2.
  • the coatings obtained in Examples 1-3 all passed the tests of hydrophobic angle, rolling angle, dielectric constant, and loss tangent.
  • the project index requirement of the water-repellent angle of the water-soaked water-repellent coating for 14 days is more than 110°, and the water-repellent angle of the water-soaked 14-day of comparative example 1 is 102.3°, which does not reach the project index requirement, and is similar to that of Example 1.
  • Contrast Example 1 The mass ratio of nano-boron nitride to silicone resin microspheres is 1:1.
  • the hydrophobicity (hydrophobic angle and rolling angle) of the coating in Comparative Example 2 decreased significantly. After the water soaking test, the hydrophobic angle greatly decreased to 80.1°, which did not meet the index requirements.
  • the rolling angle test The performance is non-rolling, which proves that the selection of low surface energy resin and the surface coating treatment of nano boron nitride play an important role in chemically shielding water vapor.
  • the selection of low surface energy fluorocarbon resin and the chemical modification of the surface of nano boron nitride filler The stability of hydrophobicity can be greatly improved, and the anti-penetration ability of the coating is stronger.
  • the long-life hydrophobic and wave-permeable coatings prepared in Examples 1 to 3 have excellent hydrophobicity and dielectric properties, and after 14 days of soaking in water, the water contact angle is still ⁇ 110°, the rolling angle is ⁇ 15°, and the water drops are in the
  • the surface of the coating can roll freely without forming a continuous water film and will not deteriorate the dielectric properties of the radome. At the same time, it avoids the conduction of corrosive media to the interior of the coating, which can ensure the protection requirements of the radome for long-term underwater work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种长寿命憎水透波涂料及其制备方法和应用。所述长寿命憎水透波涂料由甲组分和乙组分制备而成;甲组分由包括低表面能改性氟碳树脂、低介电填料、低介电颜料、润湿分散剂、流平剂和有机溶剂的原料制备而成;乙组分为异氰酸酯固化剂组分;制得的涂料具有优异的憎水性和介电性能,且施工简单、维护便捷,可满足雷达罩长期在水下长时间工作的防护要求,降低罩体吸水、渗漏、结构被破坏等风险。

Description

一种长寿命憎水透波涂料及其制备方法和应用 技术领域
本发明涉及涂料技术领域,进一步地说,是涉及一种长寿命憎水透波涂料及其制备方法和应用。
背景技术
海洋探测装备在维护海洋权益、开发海洋资源、预警海洋灾害、加强国防建设等方面发挥着重要的作用,同时也是国家综合国力的重要标志。雷达罩是装备探测系统的重要组成部分,用于保障其内部雷达系统全天候全时段正常工作。水下装备雷达罩多使用的是树脂基复合材料,这类材料本身耐水能力较差,长时间工作在水下,受水压影响,更加剧海水等腐蚀性介质渗透贯穿基材的风险,对结构强度和电性能产生重大影响,甚至导致罩体漏水损坏雷达系统因此,水下雷达罩在使用过程中必须配套透波涂料进行防护。与水面或水上工作环境不同,水下雷达罩长时间受水深变化、渗透压影响,防护涂层极易出现吸水、渗漏等问题。
鉴于此,现有雷达罩涂层技术存在耐水性差、电性能劣化快、服役寿命短等问题,需要研发一种水下雷达罩用长寿命憎水透波涂料,可满足雷达罩长期在水下长时间工作的防护要求,具有优异的电性能、憎水性和憎水稳定性,以降低罩体吸水、渗漏、结构被破坏等风险。
发明内容
为解决现有技术中存在的问题,本发明提供了一种长寿命憎水透波涂料及 其制备方法和应用,可满足雷达罩长期在水下工作的特殊需要。
本发明的水下雷达罩用长寿命憎水透波涂料,基于其优异的电性能、憎水性和憎水稳定性,可满足水下雷达系统全区域全时段覆盖的工作需求。
本发明的目的之一是提供一种长寿命憎水透波涂料。
所述长寿命憎水透波涂料由甲组分和乙组分制备而成;
所述甲组分由包括低表面能改性氟碳树脂、低介电填料、低介电颜料、润湿分散剂、流平剂和有机溶剂的原料制备而成;
以低表面能改性氟碳树脂为100重量份,各组分按重量份计:
Figure PCTCN2022111325-appb-000001
所述乙组分为异氰酸酯固化剂组分;
甲组分的-OH与乙组分的-NCO摩尔比为1:(1.0~1.2);优选为1:(1.0~1.1)。
甲组份中的-OH来自于低表面能改性氟碳树脂,-OH含量为0.8mol/kg。
甲组分中的低表面能改性氟碳树脂为海洋化工研究院有限公司生产的WN-50713树脂,性能如表1所示:
表1 WN-50713树脂的性能
Figure PCTCN2022111325-appb-000002
低表面能改性氟碳树脂的性能如表1中所列,低表面能改性氟碳树脂的性能是涂层憎水性能的支撑,憎水性包括憎水角、滚动角、泡水14天(49±2℃);通过在低表面能改性氟碳树脂基体里添加填料,可以提供透波性能支撑,透波性能包括介电常数和损耗角正切值;树脂和填料相互影响、协同效用,实现发明目的。
本发明的一种优选的实施方式中,
甲组分中的粉体包含两类,分别是低介电填料和低介电颜料;低介电材料一般是指介电常数低于10,损耗角正切值低于0.01的材料,低介电性能有利于降低材料的介电常数和损耗角正切值。
所述低介电填料为纳米氮化硼与有机硅树脂微球的混合物;
其中纳米氮化硼优选为片状的;有机硅树脂微球优选为球形的;
纳米氮化硼的粒径为50nm~100nm;
有机硅树脂微球粒径为6μm~8μm。
本发明的一种优选的实施方式中,
纳米氮化硼与有机硅树脂微球的质量比为(2~4):1;优选为(2.8~3.2):1。
氮化硼是片层结构,有机硅树脂微珠为球状结构,两者混合相互交叠,不同混合比例形成的交叠关系是不同的,直接影响其物理阻隔能力,比例之外容易导致物理阻隔作用下降,抗渗透能力下降;纳米氮化硼与有机硅树脂微球的质量比增加可以提高对水的屏蔽和阻隔作用,经过实验反复验证,在质量比为(2~4):1能够较好地体现纳米片状纳米氮化硼与球状有机硅树脂微球的协同效果,在质量比为(2.8~3.2):1性能更优。
纳米氮化硼和有机硅微球的介电性能不同,通过适当用量比配合使用可以平衡材料的介电性能。
本发明的一种优选的实施方式中,
所述纳米氮化硼经含全氟烷基链段的多异氰酸酯与有机溶剂B混合制得的 表面包覆处理剂进行表面包覆处理;
所述表面包覆处理剂中含全氟烷基链段的多异氰酸酯的质量比为5%~15%。
纳米氮化硼的表面包覆处理:
将含全氟烷基链段的多异氰酸酯与有机溶剂B混合配制为表面包覆处理剂,其中全氟烷基链段的多异氰酸酯占比为5~15%,其余为有机溶剂B;
本发明的含全氟烷基链段的多异氰酸酯为专利申请(专利号为CN101143840A,发明名称为“含全氟烷基链段的多异氰酸酯的制备及应用”)中的含全氟烷基链段的多异氰酸酯。
处理处理过程包含以下步骤的方法:
(1)将表面包覆处理剂升温至40~45℃,充氮保温10~15min;
(2)滴加1~3‰的分散助剂;
(3)分批将纳米氮化硼加入搅拌的处理剂中;
(4)升温至60~65℃,充氮保温3~4h;
(5)降温至室温;
(6)抽滤后,80~85℃烘箱内烘干45~48h后备用;
分散助剂为本领域通用分散助剂,优选为BYK163、BYK104s或BYK170等。
本发明采用了纳米氮化硼的表面包覆处理方法,经处理后,纳米氮化硼表面为疏水性,有助于提高涂层的寿命。
本发明的一种优选的实施方式中,
所述低介电颜料为有机粉体,根据颜色要求调制;优选为苝黑、酞菁蓝、酞菁绿中的至少一种;和/或,
所述润湿分散剂为BYK163、BYK104s、BYK180中的至少一种;和/或,
所述流平剂为有机硅聚醚共聚物;优选为BYK378、BYK390、BYK388中的至少一种。
本发明的一种优选的实施方式中,
所述有机溶剂A和有机溶剂B可采用现有技术中本领域通常采用的有机溶剂,分别独立地选自芳香类溶剂、酯类溶剂、醚酯类溶剂中的至少一种;优选为二甲苯、芳香烃碳氢化合物、醋酸丁酯、醋酸乙酯、乙二醇乙醚醋酸酯、丙二醇甲醚醋酸酯中的至少一种。
本发明的一种优选的实施方式中,
所述乙组分为脂肪族异氰酸酯的三聚体;优选为Bayer公司的N3375、N3390中的至少一种。
本发明的目的之二是提供一种长寿命憎水透波涂料的制备方法,包括:
将包括所述低表面能改性氟碳树脂、低介电填料、低介电颜料、润湿分散剂、有机溶剂在内的原料混合后研磨至细度为20μm~30μm,加入流平剂,搅拌均匀后过滤制得甲组分;
将得到的甲组分与乙组分按照所述摩尔比混合均匀得到所述长寿命憎水透波涂料。
本发明的目的之三是提供一种长寿命憎水透波涂料在水下雷达罩中的应用。
本发明具体可采用以下技术方案:
按照上述用量称取各种原料;
烘干所述的颜填料,备用;将所述低表面能改性氟碳树脂、低介电填料、低介电填料、润湿分散剂、有机溶剂混合后加入到篮式砂磨中研磨,研磨细度20~30μm出料。出料后,加入流平剂,在2000转/分钟条件下搅拌分散30分钟,用120目滤网过滤,测试涂料粘度(涂-4杯),计量包装。待甲组分各物质混合均匀后,按摩尔比-OH:-NCO=1:(1.0~1.2)的比例,取计量的甲、乙组分,混合均匀,静置20min。
涂敷使用的方法为喷涂或刷涂;
涂敷一遍后干膜的涂层厚度控制在40μm~60μm。
与现有技术相比,本发明的有益效果:
本发明的涂料是一种长寿命憎水透波涂料,施工简单,维护便捷,可满足雷达罩长期在水下长时间工作的防护要求,降低罩体吸水、渗漏、结构被破坏等风险。
本发明涂料以低表面能改性氟碳树脂为成膜物,采用空气喷涂方法施工,常温干燥固化,可解决现有雷达罩涂层技术亲水性(表面形成水膜)、电性能劣化快、服役寿命短等服役问题。
本发明的涂料喷涂在复合材料基材上,涂层的性能特点如下:
1)水接触角OCA20接触角仪测试(座滴法),≥120°;
2)滚动角OCA20接触角仪测试(座滴法),≤10°;
3)介电常数矢网法(10GHz),≤3.2;
4)损耗角正切值矢网法(10GHz),≤0.04;
5)泡水14天(49±2℃):憎水角≥110°,滚动角≤15°。
水下装备用雷达罩的电性能受表面连续水膜的影响而性能急剧下降,本发明具有优异的憎水性和介电性能,且经过泡水14天后,水接触角仍然≥110°,滚动角≤15°,水珠在涂层表面可自由滚动,不会形成连续水膜,不会劣化雷达罩的介电性能,同时避免了腐蚀性介质向涂层内部传导,可保障雷达罩长期在水下长时间工作的防护要求,并降低罩体吸水、渗漏、结构被破坏等风险。
具体实施方式
下面结合具体实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
实施例和对比例中所用原料均为常规市购原料。
实施例和对比例中的份数均指重量份数。
表2实施例中的原材料明细表
序号 原材料 型号 厂家
1 低表面能改性氟碳树脂 WN-50713 海洋化工研究院
2 纳米氮化硼(70nm) -- 哈工大
3 球形有机硅树脂微球(6μm) DSA6 迈图
4 苝黑 -- BASF
5 酞菁蓝 -- BASF
6 酞菁绿 -- BASF
7 润湿分散剂 163/104s/180 BYK
8 流平剂 378/390/388 BYK
9 二甲苯 -- 青岛海力加
10 醋酸丁酯 -- 青岛海力加
11 丙二醇甲醚醋酸酯 -- 青岛海力加
12 固化剂 N3375/N3390 Bayer
测试仪器为德国LAUDA Scientific的水接触角仪OCA20。
实施例1
纳米氮化硼的表面包覆处理:
1、将表面包覆处理剂(含全氟烷基链段的多异氰酸酯的质量占比为5%,
其余为二甲苯溶剂)升温至42℃,充氮保温15min;
2、滴加1.5‰的BYK163分散剂;
3、分批将纳米氮化硼加入搅拌的表面包覆处理剂中;
4、升温至65℃,充氮保温4h;
5、降温至室温;
6、抽滤后,80℃烘箱内烘干45h后备用;
甲组分:低表面能改性氟碳树脂为100重量份;纳米氮化硼为14重量份;有机硅树脂微球为4.5重量份;苝黑为2重量份;酞菁蓝为0.5重量份;酞菁绿为0.5重量份;BYK163为1重量份;BYK 378为1重量份;醋酸丁酯为27重量份;
烘干所述的颜填料,备用;将所述低表面能改性氟碳树脂、低介电填料、 低介电填料、润湿分散剂、有机溶剂混合后加入到篮式砂磨中研磨,研磨细度20~30μm出料。出料后,加入流平剂,在2000转/分钟条件下搅拌分散30分钟,用120目滤网过滤,测试涂料粘度(涂-4杯),计量包装。
乙组分N3375为20重量份;
摩尔比:-OH:-NCO=1:1
按以上用量取甲、乙组分,混合均匀,静置20min,采用喷涂方式涂敷一遍,干膜的涂层厚度控制在50μm,干燥后测试性能。
实施例2
纳米氮化硼的表面包覆处理:
1、将表面包覆处理剂(含全氟烷基链段的多异氰酸酯的质量占比为15%,
其余为二甲苯溶剂)升温至45℃,充氮保温10min;
2、滴加3‰的BYK163分散剂;
3、分批将纳米氮化硼加入搅拌的表面包覆处理剂中;
4、升温至60℃,充氮保温3h;
5、降温至室温;
6、抽滤后,85℃烘箱内烘干48h后备用;
甲组分:低表面能改性氟碳树脂为100重量份;纳米氮化硼为15重量份;有机硅树脂微球为4.8重量份;苝黑为0.5重量份;酞菁蓝为1重量份;酞菁绿为0.5重量份;BYK163为1.2重量份;BYK 378为0.8重量份;醋酸丁酯为15重量份;二甲苯为10重量份;
甲组分的制备方法同实施例1;
乙组分N3390为22重量份;
摩尔比:-OH:-NCO=1:1。
按以上用量取甲、乙组分,混合均匀,静置20min,采用喷涂方式涂敷一遍,干膜的涂层厚度控制在50μm,干燥后测试性能。
实施例3
纳米氮化硼的表面包覆处理:
1、将表面包覆处理剂(含全氟烷基链段的多异氰酸酯的质量占比为10%,
其余为醋酸丁酯溶剂)升温至42℃,充氮保温15min;
2、滴加1‰的BYK104s分散剂;
3、分批将纳米氮化硼加入搅拌的处理剂中;
4、升温至65℃,充氮保温4h;
5、降温至室温;
6、抽滤后,80℃烘箱内烘干45h后备用;
甲组分:低表面能改性氟碳树脂为100重量份;纳米氮化硼为16重量份;有机硅树脂微球为5.7重量份;苝黑为1重量份;酞菁蓝为1重量份;酞菁绿为1重量份;BYK163为1.5重量份;BYK 378为1.2重量份;醋酸丁酯为20重量份;二甲苯为10重量份;
甲组分的制备方法同实施例1;
乙组分N3390为24重量份;
摩尔比:-OH:-NCO=1:1.1。
按以上用量取甲、乙组分,混合均匀,静置20min,采用喷涂方式涂敷一遍,干膜的涂层厚度控制在50μm,干燥后测试性能。
对比例1
对比例1同实施例1相对比,与实施例1的区别为纳米氮化硼与有机硅树脂微球的质量比为1:1。
纳米氮化硼的表面包覆处理同实施例1;
甲组分:低表面能改性氟碳树脂为100重量份;纳米氮化硼为10重量份;有机硅树脂微球为10重量份;苝黑为2重量份;酞菁蓝为0.5重量份;酞菁绿为0.5重量份;BYK163为1重量份;BYK 378为1重量份;醋酸丁酯为27重量份;
甲组分的制备方法同实施例1;
乙组分N3390为20重量份;
摩尔比:-OH:-NCO=1:1。
按以上用量取甲、乙组分,混合均匀,静置20min,采用喷涂方式涂敷一遍,干膜的涂层厚度控制在50μm,干燥后测试性能。
对比例2
对比例2同实施例2相对比。
对比例2与实施例2的主要区别为所用纳米氮化硼未经表面包覆处理,氟碳树脂为市售的GK570氟碳树脂。
对比例2的其它原料及用量均与实施例2相同;
对比例2的甲、乙组分的制备方法及甲、乙组分的用量比均与实施例2相同。
按用量取甲、乙组分,混合均匀,静置20min,采用喷涂方式涂敷一遍,干膜的涂层厚度控制在50μm,干燥后测试性能。
将实施例1~3,对比例1~2的甲乙组分混合均匀后,静置20min后,采用喷涂方法涂覆,涂层厚度为50μm,其性能见下表3。
表3实施例1~3、对比例1~2的涂层性能测试结果
Figure PCTCN2022111325-appb-000003
表3为实施例1~3、对比例1~2的涂层性能测试结果,实施例1~3得到的涂层均通过憎水角、滚动角、介电常数、损耗角正切值测试。憎水透波涂料的泡水14天的憎水角的项目指标要求是110°以上,对比例1的泡水14天的憎水角是102.3°,未达到项目指标要求,与实施例1相比,对比例1纳米氮化硼与有机硅树脂微球的质量比为1:1,经过泡水后,其涂层憎水性(憎水角和滚动角)出现明显下降,证明纳米氮化硼与有机硅树脂微球的质量比过低,片状与球状填料配比不适当,协同效应不好,会导致涂层的抗渗透作用下降,物理阻隔性能较差。
与实施例2相比,对比例2涂层憎水性(憎水角和滚动角)出现明显下降,经过泡水试验后,憎水角极大下降为80.1°,未达到指标要求,滚动角测试表现为不滚动,证明低表面能树脂的选用和纳米氮化硼的表面包覆处理起到了化学屏蔽水汽的重要作用,选用低表面能的氟碳树脂,以及纳米氮化硼填料表面的化学改性,都能使憎水稳定性大幅提高,涂层的抗渗透能力更强。
与实施例1~3相比,对比例1~2的泡水14天的滚动角出现大幅增加,是因为涂层的憎水稳定性(表面化学改性发挥的化学屏蔽作用+填料尺寸协同发挥的物理阻隔作用)出现了不同程度的变化,导致涂层表面变得亲水,表现了动态疏水性下降,涂层表面更容易挂水珠形成水膜导致透波率下降,因而通过化学和物理协同作用的效果更好。
实施例1~3所制备的长寿命憎水透波涂料,具有优异的憎水性和介电性能,且经过泡水14天后,水接触角仍然≥110°,滚动角≤15°,水珠在涂层表面可自由滚动,不会形成连续水膜,不会劣化雷达罩的介电性能,同时避免了腐蚀性介质向涂层内部传导,可保障雷达罩长期在水下长时间工作的防护要求,并降低罩体吸水、渗漏、结构被破坏等风险,可满足雷达罩长期在水下长时间工作的防护要求,降低罩体吸水、渗漏、结构被破坏等风险。

Claims (10)

  1. 一种长寿命憎水透波涂料,其特征在于:
    所述长寿命憎水透波涂料由甲组分和乙组分制备而成;
    所述甲组分由包括低表面能改性氟碳树脂、低介电填料、低介电颜料、润湿分散剂、流平剂和有机溶剂的原料制备而成;
    以低表面能改性氟碳树脂为100重量份,各组分按重量份计:
    Figure PCTCN2022111325-appb-100001
    所述乙组分为异氰酸酯固化剂组分;
    甲组分的-OH与乙组分的-NCO摩尔比为1:(1.0~1.2)。
  2. 如权利要求1所述的长寿命憎水透波涂料,其特征在于:
    所述甲组分以低表面能改性氟碳树脂为100重量份,各组分按重量份计:
    Figure PCTCN2022111325-appb-100002
    甲组分的-OH与乙组分的-NCO摩尔比为1:(1.0~1.1)。
  3. 如权利要求1所述的长寿命憎水透波涂料,其特征在于:
    所述低介电填料为纳米氮化硼与有机硅树脂微球的混合物;
    纳米氮化硼的粒径为50nm~100nm;
    有机硅树脂微球粒径为6μm~8μm。
  4. 如权利要求3所述的长寿命憎水透波涂料,其特征在于:
    纳米氮化硼与有机硅树脂微球的质量比为(2~4):1;优选为(2.8~3.2):1。
  5. 如权利要求3所述的长寿命憎水透波涂料,其特征在于:
    所述纳米氮化硼经含全氟烷基链段的多异氰酸酯与有机溶剂B混合制得的表面包覆处理剂进行表面包覆处理;
    所述表面包覆处理剂中含全氟烷基链段的多异氰酸酯的质量比为5%~15%。
  6. 如权利要求1所述的长寿命憎水透波涂料,其特征在于:
    所述低介电颜料为苝黑、酞菁蓝、酞菁绿中的至少一种;和/或,
    所述流平剂为有机硅聚醚共聚物。
  7. 如权利要求5所述的长寿命憎水透波涂料,其特征在于:
    所述有机溶剂A和有机溶剂B分别独立地选自芳香类溶剂、酯类溶剂、醚酯类溶剂中的至少一种;优选为二甲苯、芳香烃碳氢化合物、醋酸丁酯、醋酸乙酯、乙二醇乙醚醋酸酯、丙二醇甲醚醋酸酯中的至少一种。
  8. 如权利要求1所述的长寿命憎水透波涂料,其特征在于:
    所述乙组分为脂肪族异氰酸酯的三聚体。
  9. 一种如权利要求1~8之一所述的长寿命憎水透波涂料的制备方法,其特征在于所述方法包括:
    将包括所述低表面能改性氟碳树脂、低介电填料、低介电颜料、润湿分散剂、有机溶剂在内的原料混合后研磨至细度为20μm~30μm,加入流平剂,搅拌均匀后过滤制得甲组分;
    将得到的甲组分与乙组分按照所述摩尔比混合均匀得到所述长寿命憎水透波涂料。
  10. 一种如权利要求1~8之一所述的长寿命憎水透波涂料或权利要求9所述方法制得的长寿命憎水透波涂料在水下雷达罩中的应用。
PCT/CN2022/111325 2021-12-06 2022-08-10 一种长寿命憎水透波涂料及其制备方法和应用 WO2023103433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111480822.0 2021-12-06
CN202111480822.0A CN114058260B (zh) 2021-12-06 2021-12-06 一种长寿命憎水透波涂料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023103433A1 true WO2023103433A1 (zh) 2023-06-15

Family

ID=80228726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111325 WO2023103433A1 (zh) 2021-12-06 2022-08-10 一种长寿命憎水透波涂料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114058260B (zh)
WO (1) WO2023103433A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058260B (zh) * 2021-12-06 2022-09-13 海洋化工研究院有限公司 一种长寿命憎水透波涂料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082699A1 (en) * 1997-02-03 2004-04-29 Brown James F. Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
CN101143840A (zh) * 2007-09-14 2008-03-19 海洋化工研究院 含全氟烷基链段的多异氰酸酯的制备及应用
CN101885934A (zh) * 2010-06-18 2010-11-17 北京化工大学 一种用于铝合金表面防腐疏水处理的方法
CN104789085A (zh) * 2015-04-21 2015-07-22 中国人民解放军国防科学技术大学 天线罩用耐大功率密度微波辐射涂层及其制备方法
CN107868533A (zh) * 2017-12-04 2018-04-03 陕西宝塔山油漆股份有限公司 一种超疏水涂料及其制作耐久性超疏水涂层的方法
CN111944364A (zh) * 2020-07-31 2020-11-17 国网山东省电力公司电力科学研究院 一种高疏水氟碳组合物及其制备方法和应用
CA3145280A1 (en) * 2019-10-07 2021-04-15 Daisuke Tahara Boron nitride powder, method of manufacturing boron nitride powder, resin material, and method of manufacturing resin material
CN114058260A (zh) * 2021-12-06 2022-02-18 海洋化工研究院有限公司 一种长寿命憎水透波涂料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146933A (ja) * 1990-10-11 1992-05-20 Mitsubishi Gas Chem Co Inc 機能性樹脂フィルムおよびその製造法
JPH04283234A (ja) * 1991-03-11 1992-10-08 Hitachi Ltd ブロック型イソシアネートとテトラカルボン酸二無水物を含む低粘度ワニスおよびそれを用いた電子装置の製法
JP2012521962A (ja) * 2009-03-27 2012-09-20 ロレアル 化粧用の紡錘状粒子を含む粒子組成物
CN101792631B (zh) * 2010-04-01 2012-09-26 国家电网公司 一种高疏水导静电防冰涂料及其制备方法
CN102127361A (zh) * 2011-01-31 2011-07-20 中国人民解放军91872部队 一种高电磁波透波率的浅色防静电涂料及其制备方法
CN103242718A (zh) * 2013-04-03 2013-08-14 广东电网公司电力科学研究院 一种钛酸酯偶联剂改性的防污闪氟碳涂料及其制备方法
CN105623490B (zh) * 2016-03-23 2018-05-11 山东大学 一种透波抗静电涂料及其制备方法与应用
CN110623376B (zh) * 2019-09-29 2022-06-03 东莞市瑞翔新型材料科技有限公司 一种防水金属拉链及其制作工艺
CN111534177A (zh) * 2020-06-04 2020-08-14 安徽宇航派蒙健康科技股份有限公司 石墨烯散热涂料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082699A1 (en) * 1997-02-03 2004-04-29 Brown James F. Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
CN101143840A (zh) * 2007-09-14 2008-03-19 海洋化工研究院 含全氟烷基链段的多异氰酸酯的制备及应用
CN101885934A (zh) * 2010-06-18 2010-11-17 北京化工大学 一种用于铝合金表面防腐疏水处理的方法
CN104789085A (zh) * 2015-04-21 2015-07-22 中国人民解放军国防科学技术大学 天线罩用耐大功率密度微波辐射涂层及其制备方法
CN107868533A (zh) * 2017-12-04 2018-04-03 陕西宝塔山油漆股份有限公司 一种超疏水涂料及其制作耐久性超疏水涂层的方法
CA3145280A1 (en) * 2019-10-07 2021-04-15 Daisuke Tahara Boron nitride powder, method of manufacturing boron nitride powder, resin material, and method of manufacturing resin material
CN111944364A (zh) * 2020-07-31 2020-11-17 国网山东省电力公司电力科学研究院 一种高疏水氟碳组合物及其制备方法和应用
CN114058260A (zh) * 2021-12-06 2022-02-18 海洋化工研究院有限公司 一种长寿命憎水透波涂料及其制备方法和应用

Also Published As

Publication number Publication date
CN114058260B (zh) 2022-09-13
CN114058260A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN104530974B (zh) 一种防覆冰涂料及其制备方法与应用
CN110982421B (zh) 一种耐高温吸波涂料及其制备方法
CN108395835A (zh) 一种多频谱宽波段防腐蚀隐身涂层材料
WO2023103433A1 (zh) 一种长寿命憎水透波涂料及其制备方法和应用
CN114456386B (zh) 一种反应型环氧改性有机硅树脂及无溶剂耐高温涂料
CN109439185B (zh) 多功能伪装涂料及其制备方法
CN114395324B (zh) 感温变色防污闪硅橡胶组合物
CN107474733A (zh) 聚硅氮烷陶瓷前驱体树脂的合成方法以及一种吸波涂料
CN107868567A (zh) 环氧锌粉底漆、油漆配套组合物及应用
CN109535971B (zh) 一种耐磨自润滑涂料及其制备方法
CN108854130B (zh) 一种搪玻璃蒸馏釜
CN109762452A (zh) 一种耐高温砂纹粉末涂料及其制备方法
CN112457766A (zh) 一种多波段伪装隔热降温涂料及其制备方法
CN109439158A (zh) 一种无溶剂聚脲耐候防腐涂料及制备方法
CN110054942A (zh) 一种含石墨烯的红外雷达兼容隐身涂料及其制备方法
CN110878184A (zh) 一种石墨烯改性环氧富锌底漆及其制备方法
CN109575777B (zh) 一种雷达罩用抗静电涂层及其制备方法
CN114075390B (zh) 一种高适海性热反射透波涂料、制备方法及应用
CN106085056A (zh) 电熨斗用涂料及其制备、使用方法
CN115895450A (zh) 一种高耐候性的光学红外兼容伪装涂料及其制备方法
CN114933838A (zh) 一种环氧有机硅改性酚醛环氧耐温防腐涂料及其制备方法
CN115058194A (zh) 一种陶瓷防腐涂料及其制备方法
CN113322004B (zh) 憎水耐候涂料及其制备方法与应用
CN114058255B (zh) 一种核装备用低表面能弹性三防涂料及制备方法
WO2020133327A1 (zh) 一种锂电池铝塑膜用的外保护涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE